Wrox Programmer to Programmerm™

Professional

JavaScript

for Web Developers
2nd Edition

Nicholas C. Zakas

Updates, source code, and Wrox technical support at www.wrox.com

Professional

JavaScript
for Web Developers, 2nd Edition

Professional JavaScript for Web Developers, 2nd Edition
978-0-470-22780-0
This updated bestseller offers an in-depth look at the JavaScript language,

o Professiona and covers such topics as debugging tools in Microsoft Visual Studio,

JavaScript Ajax FireBug, and Drosera; client-side data storage with cookies, the DOM,

S| éi and Flash; client-side graphics with JavaScript including SVG, VML, and
Canvas; and design patterns including creational, structural, and behavorial
patterns.

Professional Ajax, 2nd Edition

978-0-470-10949-6

Professional Ajax, 2nd Edition is written for Web application developers
looking to enhance the usability of their web sites and Web applications

. e and intermediate JavaScript developers looking to further understand

'fﬂf;mmm the language. This second edition is updated to cover Prototype, jQuery,
== FireBug, Microsoft Fiddler, ASP.NET AJAX Extensions, and much more.
S — ireBug, Mi i X i u

Concise Guide to Dojo

978-0-470-45202-8

Dojo has rapidly become one of the hottest JavaScript based Web
development frameworks. It provides you with the power and flexibility to
create attractive and useful dynamic Web applications quickly and easily.
In this fast-paced, code-intensive guide, you'll discover how to quickly start
taking advantage of Dojo. The pages are packed with useful information

%g”vAScript‘ and insightful examples that will help you.

Beginning JavaScript and CSS Development with jQuery
978-0-470-22779-4

Beginning JavaScript and CSS Development with jQuery presents the
Enhance YOUI‘ KnOWIGdge world of dynamic Web applications to Web developers from the standpoint
of modern standards. The author shows new JavaScript developers how

Advance Your Career working with the standard jQuery library will help them to do more with less

code and fewer errors.

Beginning JavaScript, 3rd Edition

978-0-470-05151-1

This book aims to teach you all you need to know to start experimenting with JavaScript: what it is, how it works, and what you
can do with it. Starting from the basic syntax, you'll move on to learn how to create powerful Web applications.

Beginning CSS, 2nd Edition

978-0-470-17708-2

Updated and revised, this book offers a hands-on look at designing standards-based, large-scale, professional-level CSS Web

sites. Understand designers’ processes from start to finish and gain insight into how designers overcome a site’s unique set of
challenges and obstacles. Become comfortable with solving common problems, learn the best practices for using XHMTL with

CSS, orchestrate a new look for a blog, tackle browser-compatibility issues, and develop functional navigational structures.

Professional JavaScript® for Web Developers

INtroductioncccieiieiiiiirr e ran XXix
Chapter 1: What Is JavaScript?c.cocirimirimireimrsnrss s s s ss s s smssssassnsnsss 1
Chapter 2: JavaScript in HTIML ... s s s s s s s s s nmnmsnsnnas 13
Chapter 3: Language BasiCScccurmirurmimnrmimsrmimarssmsrssssssssassssassssassssassssassnsnnes 23
Chapter 4: Variables, Scope, and Memory........ccccciriiereimimiminsreressesnssssssasasasnns 79
Chapter 5: Reference TYPeSccvuirurmirurmimnrmimsrmsmarsssssesssssssassssassssassssassnsnssnsnsss 97
Chapter 6: Object-Oriented Programming.........cccocvveimimiiinnsrresesnsssasasasnsnns 151
Chapter 7: Anonymous FUNCtionsc.ccccieiiieiiieisrin s s s s s nnnas 183
Chapter 8: The Browser Object Modelcccoemiiiiiiiic s s 201
Chapter 9: Client Detectionc.ceeimimiiiiiiiiic e 229
Chapter 10: The Document Object Modelccccccvrimiiiicrr e 261
Chapter 11: DOM Levels 2 and 3........ccccoeiimimimimnrmimsresmsrsssrss s sasnssasassas 317
Chapter 12: EVeNnts......ccceeieieirrrrssrsrere s s s s s s s s s s s snmsasasmsnsnsnsnnnnnns 365
Chapter 13: Scripting FOrmsccccceiiiiiiiiiiir s s s e 433
Chapter 14: Error Handling and Debuggingc.ccecvimimiiiiircrieisnsssssesesnnnes 465
Chapter 15: XML in JavaScriptcc.coiiimirimreimreissrsssrssssssssssss s sssssssssssassas 515
Chapter 16: ECMAScript for XIML......ccceieiivrrrsrere s s s s s s s s s s s nns 547
Chapter 17: Ajax and JSONcccoiimiieimirirr s s s s na s n s nnnas 567
Chapter 18: Advanced TEChNIQUEScccveverererrnmrmrmrerr s s s s s snsnnnns 589
Chapter 19: Client-Side Storageccicvireimiimimirimsri s s e e 617
Chapter 20: Best PractiCes.......cccvvrimimiermrrrrrsssss s rese s s s ssssmsesmsssnsnsnsnnnns 635
Chapter 21: Upcoming APIScccceieimieimireinreisrssssessssss s ssssssnssssnsnssnsassns 669
Chapter 22: The Evolution of JavaScriptc.cccveremiiiircrc s r s s s e e 703
Appendix A: JavaScript Libraries.......ccccvvcieriririmiererrs s ses s s s ssasanas 759
Appendix B: JavaScript TOOIScccciiiirreiiisrrr s s s s s s s snsass 765
INAEX ceieiiiiiiiii i s s s s s ra s rarEEEE R R EaEsEEEEEEEESESESEEEEEEEESESEsEEEEEEES 773

Professional
JavaScript® for Web Developers

2nd Edition

Professional
JavaScript® for Web Developers

2nd Edition

Nicholas C. Zakas

WILEY
Wiley Publishing, Inc.

Professional JavaScript® for Web Developers, 2nd Edition

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-22780-0

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data

Zakas, Nicholas C.
Professional JavaScript for web developers/Nicholas C. Zakas. — 2nd ed.
. cm.
Includes index.
ISBN 978-0-470-22780-0 (paper/website)
1. Web site development. 2. JavaScript (Computer program language) 1. Title.
TK5105.8885.]38234 2008

005.2'762 — dc22
2008045552

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. JavaScript is a
registered trademark of Sun Microsystems, Inc. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

http://www.wiley.com

Dedicated to my family:
mom, dad, Greg, Yiayia, and Papou.
We may be few in numbers, but we are mighty!
Your constant love and support have made the past couple of years possible.

About the Author

Nicholas C. Zakas has a B.S. in Computer Science from Merrimack College and an M.B.A. from Endicott
College. He is the coauthor of Professional Ajax, Second Edition (Wiley, 2007) as well as dozens of online
articles. Nicholas works for Yahoo! as a principal front-end engineer on Yahoo!’s front page and a
contributor to the Yahoo! User Interface (YUI) Library. He has worked in web development for more than
eight years, during which time he has helped develop web solutions in use at some of the largest
companies in the world.

Nicholas can be reached through his web site www.nczonline.net.

Credits

Acquisitions Director Production Manager

Jim Minatel Tim Tate

Senior Development Editor Vice President and Executive Group Publisher
Kevin Kent Richard Swadley

Technical Editor Vice President and Executive Publisher
Alexei Gorkov Joseph B. Wikert

Development Editor Project Coordinator, Cover

Gus Miklos Lynsey Stanford

Production Editor Proofreader

Rebecca Coleman Kathryn Duggan

Copy Editors Indexer

Foxxe Editorial Services, Candace English Jack Lewis

Editorial Manager
Mary Beth Wakefield

Acknowledgments

It takes many people to create a single book, and I'd like to thank some people here for their
contributions to this work.

First and foremost, thanks to everyone at Wiley for their support: Jim Minatel for once again putting his
faith in me; Kevin Kent for dealing with the hectic outline rearrangements I tend to make throughout
writing; and Alexei Gorkov, the best technical editor in the world, who makes sure that everything I say
is 100-percent accurate.

A big thanks to everyone who provided feedback on draft chapters: David Serduke, Julian Turner, Pete
Frueh, Chris Klaiber, Stoyan Stefanov, Ross Harmes, and David Golightly. Your early feedback was really
helpful in making this book what it is today.

Last, thanks to Eric Miraglia for his contribution of a foreword. Eric is the reason I ended up at Yahoo!,
and it has been a pleasure to work with him for the past two years.

Contents

Foreword Xxvii
Introduction XXix
Chapter 1: What Is JavaScript? 1
A Short History 1
JavaScript Implementations 3
ECMAScript 3

The Document Object Model (DOM) 7

The Browser Object Model (BOM) 9
JavaScript Versions 10
Summary 11
Chapter 2: JavaScript in HTML 13
The <script> Element 13
Tag Placement 15
Deferred Scripts 16
Changes in XHTML 17
Deprecated Syntax 18
Inline Code versus External Files 19
Document Modes 19
The <noscript> Element 21
Summary 22
Chapter 3: Language Basics 23
Syntax 23
Case-sensitivity 23
Identifiers 24
Comments 24
Statements 25
Keywords and Reserved Words 25
Variables 26
Data Types 28
The typeof Operator 28

The Undefined Type 28

The Null Type 30

Contents

The Boolean Type
The Number Type
The String Type
The Object Type

Operators

Unary Operators
Bitwise Operators
Boolean Operators
Multiplicative Operators
Additive Operators
Relational Operators
Equality Operators
Conditional Operator
Assignment Operators
Comma Operator

Statements

The if Statement

The do-while Statement
The while Statement
The for Statement

The for-in Statement
Labeled Statements

The break and continue Statements

The with Statement
The switch Statement

Functions

Understanding Arguments

No Overloading

Summary

Chapter 4: Variables, Scope, and Memory

Primitive and Reference Values

Execution Context and Scope
Scope Chain Augmentation

Xvi

Dynamic Properties
Copying Values
Argument Passing
Determining Type

No Block-Level Scopes

30
31
37
40
41
41
45
51
54
56
58
60
62
62
63
63
63
64
65
65
66
67
67
69
70
72
74
76
76

79

79
80
81
82
84
84
87
88

Contents

Garbage Collection 90
Mark-and-Sweep 91
Reference Counting 91
Performance 93
Managing Memory 93

Summary 94

Chapter 5: Reference Types 97

The Object Type 97

The Array Type 100
Conversion Methods 102
Stack Methods 104
Queue Methods 105
Reordering Methods 106
Manipulation Methods 108

The Date Type 109
Inherited Methods 111
Date-Formatting Methods 112
Date/Time Component Methods 113

The RegExp Type 115
RegExp Instance Properties 117
RegExp Instance Methods 118
RegExp Constructor Properties 120
Pattern Limitations 122

The Function Type 122
No Overloading (Revisited) 123
Function Declarations vs. Function Expressions 124
Functions as Values 125
Function Internals 126
Function Properties and Methods 128

Primitive Wrapper Types 130
The Boolean Type 131
The Number Type 132
The String Type 134

Built-in Objects 142
The Global Object 142
The Math Object 146

Summary 149

xvii

Contents

Chapter 6: Object-Oriented Programming 151
Creating Objects 151
The Factory Pattern 152
The Constructor Pattern 152
The Prototype Pattern 155
Combination Constructor/Prototype Pattern 166
Dynamic Prototype Pattern 166
Parasitic Constructor Pattern 167
Durable Constructor Pattern 169
Inheritance 170
Prototype Chaining 170
Constructor Stealing 175
Combination Inheritance 176
Prototypal Inheritance 177
Parasitic Inheritance 178
Parasitic Combination Inheritance 179
Summary 182
Chapter 7: Anonymous Functions 183
Recursion 184
Closures 185
Closures and Variables 188
The this Object 189
Memory Leaks 190
Mimicking Block Scope 191
Private Variables 193
Static Private Variables 195
The Module Pattern 196
The Module-Augmentation Pattern 198
Summary 199
Chapter 8: The Browser Object Model 201
The window Object 201
The Global Scope 201
Window Relationships and Frames 202
Window Position 205
Window Size 206
Navigating and Opening Windows 207
Intervals and Timeouts 211
System Dialogs 213

xviii

Contents

The location Object 216
Query String Arguments 216
Manipulating the Location 217

The navigator Object 219
Detecting Plug-ins 221
Registering Handlers 223

The screen Object 224

The history Object 226

Summary 227

Chapter 9: Client Detection 229

Capability Detection 229

Quirks Detection 231

User-Agent Detection 232
History 233
Working with User-Agent Detection 240
The Complete Script 255
Usage 258

Summary 258

Chapter 10: The Document Object Model 261

Hierarchy of Nodes 261
The Node Type 263
The Document Type 269
The Element Type 279
The Text Type 289
The Comment Type 292
The CDATASection Type 293
The DocumentType Type 294
The DocumentFragment Type 294
The Attr Type 296

DOM Extensions 297
Rendering Modes 297
Scrolling 298
The children Property 298
The contains() Method 299
Content Manipulation 300

Working with the DOM 307
Dynamic Scripts 307
Dynamic Styles 309

Xix

Contents

Manipulating Tables 311
Using NodelLists 314
Summary 314
Chapter 11: DOM Levels 2 and 3 317
DOM Changes 317
XML Namespaces 318
Other Changes 322
Styles 326
Accessing Element Styles 326
Working with Style Sheets 331
Element Dimensions 336
Traversals 342
Nodelterator 344
TreeWalker 347
Ranges 349
Ranges in the DOM 349
Ranges in Internet Explorer 358
Summary 362
Chapter 12: Events 365
Event Flow 365
Event Bubbling 366
Event Capturing 367
DOM Event Flow 367
Event Handlers or Listeners 368
HTML Event Handlers 368
DOM Level O Event Handlers 369
DOM Level 2 Event Handlers 370
Internet Explorer Event Handlers 372
Cross-Browser Event Handlers 373
The Event Object 375
The DOM Event Object 375
The Internet Explorer Event Object 379
Cross-Browser Event Object 381
Event Types 383
Ul Events 383
Mouse Events 383
Keyboard Events 392
HTML Events 397

XX

Contents

Mutation Events 402
Proprietary Events 407
Mobile Safari Events 417
Memory and Performance 422
Event Delegation 422
Removing Event Handlers 424
Simulating Events 425
DOM Event Simulation 426
Internet Explorer Event Simulation 430
Summary 432
Chapter 13: Scripting Forms 433
Form Basics 433
Submitting Forms 434
Resetting Forms 435
Form Fields 436
Scripting Text Boxes 441
Text Selection 442
Input Filtering 445
Automatic Tab Forward 449
Scripting Select Boxes 450
Options Selection 452
Adding Options 454
Removing Options 455
Moving and Reordering Options 455
Form Serialization 456
Rich Text Editing 458
Interacting with Rich Text 459
Rich Text Selections 462
Rich Text in Forms 463
Summary 464
Chapter 14: Error Handling and Debugging 465
Browser Error Reporting 465
Internet Explorer 465
Firefox 467
Safari 469
Opera 470
Chrome 472

XXi

Contents

Error Handling 473
The try-catch Statement 474
Throwing Errors 477
The error Event 480
Error-Handling Strategies 481
Identify Where Errors Might Occur 481
Distinguishing between Fatal and Nonfatal Errors 486
Log Errors to the Server 487

Debugging Techniques 488
Logging Messages to a Console 488
Logging Messages to the Page 491
Throwing Errors 491

Common Internet Explorer Errors 492
Operation Aborted 493
Invalid Character 494
Member Not Found 494
Unknown Runtime Error 495
Syntax Error 495
The System Cannot Locate the Resource Specified 496

Debugging Tools 496
Internet Explorer Debugger 496
Firebug 502
Drosera 507
Opera JavaScript Debugger 510
Other Options 513

Summary 513

Chapter 15: XML in JavaScript 515

XML DOM Support in Browsers 515
DOM Level 2 Core 515
The DOMParser Type 516
The XMLSerializer Type 517
DOM Level 3 Load and Save 518
Serializing XML 523
XML in Internet Explorer 523
Cross-Browser XML Processing 528

XPath Support in Browsers 530
DOM Level 3 XPath 530
XPath in Internet Explorer 535
Cross-Browser XPath 536

xxXii

Contents

XSLT Support in Browsers 539
XSLT in Internet Explorer 539
The XSLTProcessor Type 543
Cross-Browser XSLT 545

Summary 546

Chapter 16: ECMAScript for XML 547

E4X Types 547
The XML Type 547
The XMLList Type 549
The Namespace Type 550
The QName Type 551

General Usage 552
Accessing Attributes 553
Other Node Types 555
Querying 556
XML Construction and Manipulation 558
Parsing and Serialization Options 560
Namespaces 561

Other Changes 563

Enabling Full E4X 564

Summary 564

Chapter 17: Ajax and JSON 567

The XHR Object 568
XHR Usage 569
HTTP Headers 571
GET Requests 573
POST Requests 574
Browser Differences 575
Security 577

Cross-Domain Requests 578
The XDomainRequest Object 578
Cross-Domain XHR 580

JSON 581
Using JSON with Ajax 583
Security 586

Summary 587

xxiii

Contents

Chapter 18: Advanced Techniques 589
Advanced Functions 589
Scope-Safe Constructors 589
Lazy Loading Functions 592
Function Binding 594
Function Currying 596
Advanced Timers 598
Repeating Timers 600
Yielding Processes 602
Function Throttling 604
Custom Events 606
Drag-and-Drop 609
Fixing Drag Functionality 611
Adding Custom Events 613
Summary 615
Chapter 19: Client-Side Storage 617
Cookies 617
Restrictions 618
Cookie Parts 618
Cookies in JavaScript 619
Subcookies 622
Cookie Considerations 626
Internet Explorer User Data 627
DOM Storage 628
The Storage Type 628
The sessionStorage Object 629
The globalStorage Object 631
The localStorage Object 632
The Storageltem Type 633
The storage Event 633
Limits and Restrictions 634
Summary 634
Chapter 20: Best Practices 635
Maintainability 635
What is Maintainable Code? 636
Code Conventions 636
Loose Coupling 639
Programming Practices 642

XXiv

Contents

Performance 647
Be Scope-Aware 648
Choose the Right Approach 650
Minimize Statement Count 655
Optimize DOM Interactions 657

Deployment 660
Build Process 660
Validation 662
Compression 663

Summary 666

Chapter 21: Upcoming APIs 669

The Selectors API 669
The querySelector() Method 670
The querySelectorAll() Method 671
Support and the Future 672

HTML 5 672
Character Set Properties 672
Class-Related Additions 673
Custom Data Attributes 675
Cross-Document Messaging 676
Media Elements 677
The <canvas> Element 682
Offline Support 692
Changes to History 693
Database Storage 694
Drag-and-Drop 696
The WebSocket Type 700
The Future of HTML 5 701

Summary 702

Chapter 22: The Evolution of JavaScript 703

ECMAScript 4/JavaScript 2 703
JavaScript 1.5 704
JavaScript 1.6 706
JavaScript 1.7 709
JavaScript 1.8 714
JavaScript 1.9 717
ECMAScript 4 Proposals 717
Variable Typing 717

XXV

Contents

Functions

Defining Types

Classes and Interfaces
Interfaces

Inheritance

Namespaces

Packages

Other Language Changes
The Future of ECMAScript 4

ECMAScript 3.1

Changes to Object Internals
Static Object Methods

Object Creation

Changes to Functions

Native JSON Support
Decimals

Usage Subsets

The Future of ECMAScript 3.1

Summary

Appendix A: JavaScript Libraries

Appendix B: JavaScript Tools

Index

XXVi

720
723
726
730
730
732
734
734
741
741
741
742
744
748
750
752
756
757
757

759

765

773

Foreword

JavaScript, for much of its existence, has been the subject of fear, invective, disdain, and
misunderstanding. In its early years, many “serious programmers” thought that JavaScript wasn’t
serious enough.

By contrast, many liberal arts majors drafted into web-developer service during the dotcom boom
thought JavaScript was mysterious and arcane. Many who had both the tenacity and the patience to fully
grok JavaScript as a language were nevertheless frustrated by its inconsistent implementation across
competing browsers. All of these factors helped lead to a proliferation of awkward and poorly conceived
scripts. And, through the extraordinary openness of front-end code on the Web, a lot of bad habits were
copied from one site and pasted into the source of another. Thus JavaScript’s bad reputation as a
language, which was generally ill-deserved, became intertwined with a deservedly bad reputation
surrounding its implementations.

Around 2001 (with the release of Internet Explorer 6), improved browser implementations and
improving practice in web development began to converge. The XMLHt tpRequest object at the heart of
Ajax was slowly being discovered, and a new paradigm of desktop-style user interaction was emerging
within the browser. The DOM APIs that allowed JavaScript to manipulate the structure and content of
web documents had solidified. CSS, for all the contortions, omissions, and the willful insanity of its
implementations by browser vendors, had progressed far enough that beauty and responsiveness could
be combined with the Web’s new interactive power. As a result, JavaScript became the subject of a new
set of emotions: surprise, delight, and awe. If you think back to the first time you used Google Maps in
2004, you may recall the feeling.

Google Maps was among an emerging class of applications that took browser-based programming as
seriously as back-end programming and made us think differently about the application canvas provided
by the web browser. (Oddpost, which provided Outlook-style email functionality in a webmail client as
early as 2003, was another notable pioneer.) The proliferation of these applications and the increasing
market penetration of browsers that supported them led to a genuine renaissance in web application
engineering. “Web 2.0” was born, and Ajax became the “it” technology. The Web was suddenly interesting
all over again. JavaScript, as the only programming language of the Web, became more interesting, too.

Interesting, but hard to do well. JavaScript and its companion APIs in the Document Object Model (DOM)
and Browser Object Model (BOM) were inconsistently implemented, making cross-browser
implementations vastly more difficult than they needed to be. The profession of front-end engineering
was still young. University curricula had not (and still have not) stepped in to meet the training challenge.

JavaScript, arguably the most important programming language in the world by the end of 2004, was not
a first-class subject in the academic sense of the word. A new day was dawning on the Web, and there
was a serious question as to whether there would be enough knowledgeable, well-informed engineers to
meet the new challenges.

Many technical writers stepped in to fill the gap with books on JavaScript. There were dozens of these
over the years, but by and large they were a disappointing lot. Some of them promoted techniques that

Foreword

were relevant only in retrograde browsers; some promoted techniques that were easy to cut and paste
but hard to extend and maintain. Puzzlingly, many books on JavaScript seemed to be written by people
who didn’t really like JavaScript, who didn’t think you should like it, and who weren’t optimistic about
your ability to understand it fully.

One of the genuinely good books in the world of front-end engineering arrived when Nicholas C. Zakas
published the first edition of Professional JavaScript for Web Developers in 2005. At the time, my colleagues
and I were working at Yahoo! to create the Yahoo! User Interface Library (YUI) as a foundation for
front-end engineering here and to evangelize best practices in our nascent discipline. Every Friday, we’d
gather in a classroom to talk about the front-end engineering and to teach classes on JavaScript, CSS, and
the creation of web applications in the browser. We carefully reviewed the offerings at the time for books
that would help new engineers learn how to build robust, standards-based, easy-to-maintain web
applications using advanced JavaScript and DOM scripting. As soon as it was published, Zakas’s book
became our textbook for JavaScript.

We've been using it ever since. We thought so highly of the book that we talked Zakas into coming to
Yahoo! to help shape the front-end engineering community here.

What Zakas accomplished with Professional JavaScript for Web Developers is singular: He treated JavaScript
as a subject that is both serious and accessible. If you are a programmer, you will learn where JavaScript
fits into the broader spectrum of languages and paradigms with which you're familiar. You'll learn how
its system of inheritance and its intrinsic dynamism are, yes, unconventional but also liberating and
powerful. You'll learn to appreciate JavaScript as a language from a fellow programmer who respects it
and understands it.

If you're one of those liberal arts majors who was drawn into this profession in the boom years and never
left, and if you want to fill in the gaps of your understanding of JavaScript, you'll find Zakas to be the
mentor you've always wanted — the one who will help you make the transition from “making things
work” to “making things that work well.” He'll leave you with a serious understanding of a serious subject.
Best of all, you'll find that he doesn’t pander to preconceived notions about how deeply you should
understand the language. He takes it seriously, and in a patient, accessible way he helps you to do the same.

This second edition of Professional JavaScript for Web Developers — expanded, updated, improved — drops
some subjects that are less relevant to the profession today and upgrades the rest with what we’ve
learned between 2005 and 2008. These years have been important ones, and Zakas is on the front line of
the process of learning. He’s spent those years architecting the current generation of the Web’s most
popular personal portal (My Yahoo!) and the next version of the web’s most visited site (Yahoo!’s front
page). Insights forged in these complex, ultra-high-volume applications inform every page of this new
volume, all passed through Zakas’s unique filter as a teacher/author.

As a result, his solutions go beyond being book-smart and include the kind of practical wisdom you can
only get by living and breathing code on a daily basis.

And that’s seriously good news for the rest of us. Professional JavaScript for Web Developers is now even
better, even more relevant, and even more important to have on your shelf.

Eric Miraglia, Ph.D.

Sr. Engineering Manager, Yahoo! User Interface Library (YUT)
Sunnyvale, California

XXViii

Introduction

Some claim that JavaScript is now the most popular programming language in the world, running any
number of complex web applications that the world relies on to do business, make purchases, manage
processes, and more.

JavaScript is very loosely based on Java, an object-oriented programming language popularized for use on the
Web by way of embedded applets. Although JavaScript has a similar syntax and programming methodology,
itis not a “light” version of Java. Instead, JavaScript is its own dynamic language, finding its home in web
browsers around the world and enabling enhanced user interaction on web sites and web applications alike.

In this book, JavaScript is covered from its very beginning in the earliest Netscape browsers to the
present-day incarnations flush with support for the DOM and Ajax. You learn how to extend the
language to suit specific needs and how to create seamless client-server communication without
intermediaries such as Java or hidden frames. In short, you learn how to apply JavaScript solutions to
business problems faced by web developers everywhere.

What Does This Book Cover?

Professional JavaScript for Web Developers, 2nd Edition, provides a developer-level introduction along with
the more advanced and useful features of JavaScript.

Starting at the beginning, the book explores how JavaScript originated and evolved into what it is today.
A detailed discussion of the components that make up a JavaScript implementation follows, with specific
focus on standards such as ECMAScript and the Document Object Model (DOM). The differences in
JavaScript implementations used in different popular web browsers are also discussed.

Building on that base, the book moves on to cover basic concepts of JavaScript, including its version of
object-oriented programming, inheritance, and its use in various markup languages such as HTML. An
in-depth examination of events and event handling is followed by an exploration of browser-detection
techniques and a guide to using regular expressions in JavaScript. The book then takes all this
knowledge and applies it to creating dynamic user interfaces.

The last part of the book is focused on advanced topics, including performance and memory
optimization, best practices, and a look at where JavaScript is going in the future.

Who Is This Book For?

This book is aimed at the following three groups of readers:
Q Experienced developers familiar with object-oriented programming who are looking to learn
JavaScript as it relates to traditional object-oriented (OO) languages such as Java and C++

0 Web application developers attempting to enhance the usability of their web sites and web
applications

O Novice JavaScript developers aiming to better understand the language

Introduction

In addition, familiarity with the following related technologies is a strong indicator that this book is for
you:

Java
PHP
ASP.NET
HTML
CSS
XML

0O 000U oo

This book is not aimed at beginners who lack a basic computer-science background or those looking to
add some simple user interactions to web sites. These readers should instead refer to Wrox’s Beginning
JavaScript, 3rd Edition (Wiley, 2007).

What You Need to Use This Book

To run the samples in the book, you need the following;:

O Windows 2000, Windows Server 2003, Windows XP, Vista, or Mac OS X

Q Internet Explorer 6 or higher, Firefox 2 or higher, Opera 9 or higher, Chrome 0.2 or higher, or
Safari 2 or higher.

The complete source code for the samples is available for download at www.wrox.com/.

How This Book Is Structured

This book comprises the following chapters:

XXX

Chapter 1, What Is JavaScript? — Explains the origins of JavaScript: where it came from, how it
evolved, and what it is today. Concepts introduced include the relationship between JavaScript and
ECMAScript, the Document Object Model (DOM), and the Browser Object Model (BOM). A discussion
of the relevant standards from the European Computer Manufacturer’s Association (ECMA) and the
World Wide Web Consortium (W3C) is also included.

Chapter 2, JavaScript in HTML — Examines how JavaScript is used in conjunction with HTML to
create dynamic web pages. This chapter introduces the various ways of embedding JavaScript into a
page, including a discussion surrounding the JavaScript content-type and its relationship to the
<script> element.

Chapter 3, Language Basics — Introduces basic language concepts, including syntax and flow control
statements. This chapter explains the syntactic similarities of JavaScript and other C-based languages
and points out the differences. Type coercion is introduced as it relates to built-in operators.

Introduction

Chapter 4, Variables, Scope, and Memory — Explores how variables are handled in JavaScript given
their loosely typed nature. A discussion about the differences between primitive and reference values
is included, as is information about execution context as it relates to variables. Also, a discussion about
garbage collection in JavaScript explains how memory is reclaimed when variables go out of scope.

Chapter 5, Reference Types — Covers all of the details regarding JavaScript’s built-in reference types,
such as Object and Array. Each reference type described in ECMA-262 is discussed both in theory
and how it relates to browser implementations.

Chapter 6, Object-Oriented Programming — Explains how to use object-oriented (OO) programming
in JavaScript. Since JavaScript has no concept of classes, several popular techniques are explored for
object creation and inheritance. Also covered in this chapter is the concept of function prototypes and
how that relates to an overall OO approach.

Chapter 7, Anonymous Functions — Explores one of the most powerful aspects of JavaScript:
anonymous functions. Topics include closures, how the this object works, the module pattern, and
creating private object members.

Chapter 8, The Browser Object Model — Introduces the Browser Object Model (BOM), which is
responsible for objects allowing interaction with the browser itself. Each of the BOM objects is covered,
including window, document, location, navigator, and screen.

Chapter 9, Client Detection — Explains various approaches to detecting the client machine and its
capabilities. Different techniques include capability detection and user-agent string detection. This
chapter discusses the pros and cons as well as the situational appropriateness of each approach.

Chapter 10, The Document Object Model — Introduces the Document Object Model (DOM) objects
available in JavaScript as defined in DOM Level 1. A brief introduction to XML and its relationship to
the DOM gives way to an in-depth exploration of the entire DOM and how it allows developers to
manipulate a page.

Chapter 11, DOM Levels 2 and 3 — Builds on the previous chapter, explaining how DOM Levels 2
and 3 augmented the DOM with additional properties, methods, and objects. Compatibility issues
between Internet Explorer and other browsers are discussed.

Chapter 12, Events — Explains the nature of events in JavaScript, where they originated, legacy
support, and how the DOM redefined how events should work. A variety of devices are covered,
including the Wii and iPhone.

Chapter 13, Scripting Forms — Looks at using JavaScript to enhance form interactions and work
around browser limitations. The discussions in this chapter focus on individual form elements such as
text boxes and select boxes and on data validation and manipulation.

Chapter 14, Error Handling and Debugging — Discusses how browsers handle errors in JavaScript
code and presents several ways to handle errors. Debugging tools and techniques are also discussed
for each browser, including recommendations for simplifying the debugging process.

Chapter 15, XML in JavaScript — Presents the features of JavaScript used to read and manipulate
eXtensible Markup Language (XML) data. This chapter explains the differences in support and objects in
various web browsers, and offers suggestions for easier cross-browser coding. This chapter also covers
the use of eXtensible Stylesheet Language Transformations (XSLT) to transform XML data on the client.

XXXi

Introduction

Chapter 16, ECMAScript for XML — Discusses the ECMAScript for XML (E4X) extension to
JavaScript, which is designed to simplify working with XML. This chapter explains the advantages of
E4X over using the DOM for XML manipulation.

Chapter 17, Ajax and JSON — Looks at common Ajax techniques, including the use of the

XMLHt tpRequest object and Internet Explorer’s XDomainRequest object for cross-domain Ajax. This
chapter explains the differences in browser implementations and support as well as recommendations
for usage.

Chapter 18, Advanced Techniques — Dives into some of the more complex JavaScript patterns,
including function currying, partial function application, and dynamic functions. This chapter also
covers creating a custom event framework to enable simple event support for custom objects.

Chapter 19, Client-Side Storage — Discusses the various techniques for storing data on the client
machine. This chapter begins with a discussion of the most commonly supported feature, cookies, and
then discusses newer functionality such as DOM storage.

Chapter 20, Best Practices — Explores approaches to working with JavaScript in an enterprise
environment. Techniques for better maintainability are discussed, including coding techniques,
formatting, and general programming practices. Execution performance is discussed and several
techniques for speed optimization are introduced. Last, deployment issues are discussed, including
how to create a build process.

Chapter 21, Upcoming APIs — Introduces APIs being created to augment JavaScript in the browser.
Even though these APIs aren’t yet complete or fully implemented, they are on the horizon and
browsers have already begun partially implementing their features. This chapter includes discussions
on the Selectors API and HTML 5.

Chapter 22, The Evolution of JavaScript — Looks into the future of JavaScript to see where the
language is headed. ECMAScript 3.1, ECMAScript 4, and ECMAScript Harmony are discussed.

Conventions

To help you get the most from the text and keep track of what’s happening, a number of conventions are
used throughout this book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

XXXii

QO New terms and important words are italicized when they’re introduced.
QO Keyboard combinations are shown like this: Ctrl+A.

QO File names, URLs, and code within the text look like this: persistence.properties.

Introduction

Q Code is presented in two different ways:

Monofont type with no highlighting is used for most code examples.

Gray highlighting is used to emphasize code that's particularly important in the
present context.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www.wrox . com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN. This book’s ISBN is
978-0-470-22780-0.

After you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save
another reader hours of frustration and help us provide even higher-quality information.

To find the errata page for this book, go to www.wrox. com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We'll check the information and, if
appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox . com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies, as well as to interact
with other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

XXXiii

Introduction

Athttp://p2p.wrox.com, you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1.
2.
3.

Go to p2p.wrox. com and click the Register link.
Read the terms of use and click Agree.

Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

You will receive an e-mail with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXXiV

Professional
JavaScript® for Web Developers

2nd Edition

What Is JavaScript?

When JavaScript first appeared in 1995, its main purpose was to handle some of the input
validation that had previously been left to server-side languages such as Perl. Prior to that time, a
round-trip to the server was needed to determine if a required field had been left blank or an
entered value was invalid. Netscape Navigator sought to change that with the introduction of
JavaScript. The capability to handle some basic validation on the client was an exciting new feature
at a time when use of telephone modems was widespread. The associated slow speeds turned
every trip to the server into an exercise in patience.

Since that time, JavaScript has grown into an important feature of every major web browser on the
market. No longer bound to simple data validation, JavaScript now interacts with nearly all
aspects of the browser window and its contents. JavaScript is recognized as a full programming
language, capable of complex calculations and interactions, including closures, anonymous
(lambda) functions, and even metaprogramming. JavaScript has become such an important part of
the Web that even alternative browsers, including those on mobile phones and those designed for
users with disabilities, support it. Even Microsoft, with its own client-side scripting language
called VBScript, ended up including its own JavaScript implementation in Internet Explorer from
its earliest version.

The rise of JavaScript from a simple input validator to a powerful programming language could
not have been predicted. JavaScript is at once a very simple and very complicated language that
takes minutes to learn but years to master. To begin down the path to using JavaScript’s full
potential, it is important to understand its nature, history, and limitations.

A Short History

Around 1992, a company called Nombas (later bought by Openwave) began developing an
embedded scripting language called C-minus-minus (Cmm for short). The idea behind Cmm was
simple: a scripting language powerful enough to replace macros, but still similar enough to C (and
C++) that developers could learn it quickly. This scripting language was packaged in a shareware
product called CEnvi, which first exposed the power of such languages to developers. Nombas

Chapter 1: What Is JavaScript?

eventually changed the name Cmm to ScriptEase. ScriptEase became the driving force behind Nombas
products. When the popularity of Netscape Navigator started peaking, Nombas developed a version of
CEnvi that could be embedded into web pages. These early experiments were called Espresso Pages, and
they represented the first client-side scripting language used on the World Wide Web. Little did Nombas
know that its ideas would become an important foundation for the Internet.

As the Web gained popularity, a gradual demand for client-side scripting languages developed. At

the time, most Internet users were connecting over a 28.8 kbps modem even though web pages were
growing in size and complexity. Adding to users’ pain was the large number of round-trips to the server
required for simple form validation. Imagine filling out a form, clicking the Submit button, waiting

30 seconds for processing, and then being met with a message indicating that you forgot to complete a
required field. Netscape, at that time on the cutting edge of technological innovation, began seriously
considering the development of a client-side scripting language to handle simple processing.

Brendan Eich, who worked for Netscape at the time, began developing a scripting language called
LiveScript for the release of Netscape Navigator 2 in 1995, with the intention of using it both in the
browser and on the server (where it was to be called LiveWire). Netscape entered into a development
alliance with Sun Microsystems to complete the implementation of LiveScript in time for release. Just
before Netscape Navigator 2 was officially released, Netscape changed LiveScript’s name to JavaScript to
capitalize on the buzz that Java was receiving from the press.

Because JavaScript 1.0 was such a hit, Netscape released version 1.1 in Netscape Navigator 3. The
popularity of the fledgling Web was reaching new heights and Netscape had positioned itself to be

the leading company in the market. At this time, Microsoft decided to put more resources into a
competing browser named Internet Explorer. Shortly after Netscape Navigator 3 was released, Microsoft
introduced Internet Explorer 3 with a JavaScript implementation called JScript (so called to avoid any
possible licensing issues with Netscape). This major step for Microsoft into the realm of web browsers in
August 1996 is now a date that lives in infamy for Netscape, but it also represented a major step forward
in the development of JavaScript as a language.

Microsoft’s implementation of JavaScript meant that there were three different JavaScript versions
floating around: JavaScript in Netscape Navigator, JScript in Internet Explorer, and CEnvi in ScriptEase.
Unlike C and many other programming languages, JavaScript had no standards governing its syntax or
features, and the three different versions only highlighted this problem. With industry fears mounting, it
was decided that the language must be standardized.

In 1997, JavaScript 1.1 was submitted to the European Computer Manufacturers Association

(Ecma) as a proposal. Technical Committee #39 (TC39) was assigned to “standardize the syntax

and semantics of a general purpose, cross-platform, vendor-neutral scripting language”
(http://www.ecma-international.org/memento/TC39.htm). Made up of programmers from
Netscape, Sun, Microsoft, Borland, and other companies with interest in the future of scripting, TC39
met for months to hammer out ECMA-262, a standard defining a new scripting language named
ECMAScript.

The following year, the International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC) also adopted ECMAScript as a standard (ISO/IEC-16262). Since that time,
browsers have tried, with varying degrees of success, to use ECMAScript as a basis for their JavaScript
implementations.

Chapter 1: What Is JavaScript?

JavaScript Implementations

Though JavaScript and ECMAScript are often used synonymously, JavaScript is much more than just
what is defined in ECMA-262. Indeed, a complete JavaScript implementation is made up of the following

three distinct parts (see Figure 1-1):

Q The Core (ECMAScript)

Q The Document Object Model (DOM)
Q The Browser Object Model (BOM)

JavaScript

ECMAScript

DOM

BOM

Figure 1-1

ECMAScript

ECMAScript, the language defined in ECMA-262, isn’t tied to web browsers. In fact, the language

has no methods for input or output whatsoever. ECMA-262 defines this language as a base upon

which more-robust scripting languages may be built. Web browsers are just one host environment

in which an ECMAScript implementation may exist. A host environment provides the base
implementation of ECMAScript as well as extensions to the language designed to interface with the
environment itself. Extensions, such as the Document Object Model (DOM), use ECMAScript’s core
types and syntax to provide additional functionality that’s more specific to the environment. Other host
environments include ScriptEase and Adobe Flash.

What exactly does ECMA-262 specify if it doesn’t reference web browsers? On a very basic level, it

describes the following parts of the language:

QO Syntax

Types
Statements
Keywords
Reserved words
Operators

Objects

U 000U o

Chapter 1: What Is JavaScript?

ECMAScript is simply a description of a language implementing all of the facets described in the
specification. JavaScript implements ECMAScript, but so does Adobe ActionScript and OpenView
ScriptEase (see Figure 1-2).

EMCAScript

JavaScript ActionScript ScriptEase
Figure 1-2

ECMAScript Editions

The different versions of ECMAScript are defined as editions (referring to the edition of ECMA-262 in
which that particular implementation is described). The most recent edition of ECMA-262 is edition 4,
released in 2007. The first edition of ECMA-262 was essentially the same as Netscape’s JavaScript 1.1, but
with all references to browser-specific code removed and a few minor changes: ECMA-262 required
support for the Unicode standard (to support multiple languages) and that objects be platform-
independent (Netscape JavaScript 1.1 actually had different implementations of objects, such as the

Date object, depending on the platform). This was a major reason why JavaScript 1.1 and 1.2 did not
conform to the first edition of ECMA-262.

The second edition of ECMA-262 was largely editorial. The standard was updated to get into strict
agreement with ISO/IEC-16262 and didn’t feature any additions, changes, or omissions. ECMAScript
implementations typically don’t use the second edition as a measure of conformance.

The third edition of ECMA-262 was the first real update to the standard. It provided updates to string
handling, the definition of errors, and numeric outputs. It also added support for regular expressions,
new control statements, try-catch exception handling, and small changes to better prepare the
standard for internationalization. To many, this marked the arrival of ECMAScript as a true
programming language.

The fourth edition of ECMA-262 was a complete overhaul of the language. In response to the
popularity of JavaScript on the Web, developers began revising ECMAScript to meet the growing
demands of web development around the world. In response, ECMA TC39 reconvened to decide the
future of the language. The resulting specification defined an almost completely new language based on
the third edition. The fourth edition includes strongly typed variables, new statements and data
structures, true classes and classical inheritance, as well as new ways to interact with data (this is
discussed in Chapter 22).

As an alternate proposal, a specification called “ECMAScript 3.1” was developed as a smaller evolution
of the language by a subgroup of TC39, who believed that the fourth edition was too big of a jump for
the language. The result was a smaller proposal with incremental changes to the languages (discussed in
Chapter 22).

Chapter 1: What Is JavaScript?

What Does ECMAScript Conformance Mean?

ECMA-262 lays out the definition of ECMAScript conformance. To be considered an implementation
of ECMAScript, an implementation must do the following:

Q Support all “types, values, objects, properties, functions, and program syntax and semantics”
(ECMA-262, p. 1) as they are described in ECMA-262.

Q Support the Unicode character standard.
Additionally, a conforming implementation may do the following;:

Q Add “additional types, values, objects, properties, and functions” that are not specified in
ECMA-262. ECMA-262 describes these additions as primarily new objects or new properties of
objects not given in the specification.

Q Support “program and regular expression syntax” that is not defined in ECMA-262 (meaning
that the built-in regular-expression support is allowed to be altered and extended).

These criteria give implementation developers a great amount of power and flexibility for developing
new languages based on ECMAScript, which partly accounts for its popularity.

ECMAScript Support in Web Browsers

Netscape Navigator 3 shipped with JavaScript 1.1 in 1996. That same JavaScript 1.1 specification was
then submitted to Ecma as a proposal for the new standard, ECMA-262. With JavaScript’s explosive
popularity, Netscape was very happy to start developing version 1.2. There was, however, one problem:
Ecma hadn’t yet accepted Netscape’s proposal.

Alittle after Netscape Navigator 3 was released, Microsoft introduced Internet Explorer 3. This
version of IE shipped with JScript 1.0, which was supposed to be equivalent to JavaScript 1.1. However,
because of undocumented and improperly replicated features, JScript 1.0 fell far short of JavaScript 1.1.

Netscape Navigator 4 was shipped in 1997 with JavaScript 1.2 before the first edition of ECMA-262 was
accepted and standardized later that year. As a result, JavaScript 1.2 is not compliant with the first
edition of ECMAScript even though ECMAScript was supposed to be based on JavaScript 1.1.

The next update to JScript occurred in Internet Explorer 4 with JScript version 3.0 (version 2.0 was
released in Microsoft Internet Information Server version 3.0 but was never included in a browser).
Microsoft put out a press release touting JScript 3.0 as the first truly ECMA-compliant scripting language
in the world. At that time, ECMA-262 hadn’t yet been finalized, so JScript 3.0 suffered the same fate as
JavaScript 1.2: it did not comply with the final ECMAScript standard.

Netscape opted to update its JavaScript implementation in Netscape Navigator 4.06 to JavaScript 1.3,
which brought Netscape into full compliance with the first edition of ECMA-262. Netscape added
support for the Unicode standard and made all objects platform-independent while keeping the features
that were introduced in JavaScript 1.2.

When Netscape released its source code to the public as the Mozilla project, it was anticipated that
JavaScript 1.4 would be shipped with Netscape Navigator 5. However, a radical decision to completely
redesign the Netscape code from the bottom up derailed that effort. JavaScript 1.4 was released only as a
server-side language for Netscape Enterprise Server and never made it into a web browser.

Chapter 1: What Is JavaScript?

As of 2008, the five major web browsers (Internet Explorer, Firefox, Safari, Chrome, and Opera) all
comply with the third edition of ECMA-262. Only one, Firefox, has made an attempt to comply with the
fourth edition of the standard. Internet Explorer 8 was the first to start implementing the unfinished
ECMAScript 3.1 specification. The following table lists ECMAScript support in the most popular web
browsers:

Browser ECMAScript Compliance

Netscape Navigator 2 —
Netscape Navigator 3 —
Netscape Navigator 4-4.05 —
Netscape Navigator 4.064.79 Edition 1
Netscape 6+ (Mozilla 0.6.0+) Edition 3
Internet Explorer 3 —

Internet Explorer 4 —

Internet Explorer 5 Edition 1
Internet Explorer 5.5-7 Edition 3
Internet Explorer 8 Edition 3.1*
Opera 6-7.1 Edition 2
Opera 7.2+ Edition 3
Safari 1-2.0.x Edition 3*
Safari 3+ Edition 3
Chrome 0.2+ Edition 3
Firefox 1-2 Edition 3
Firefox 3 Edition 4*
Firefox 3.1 Edition 4*
Firefox 4.0** Edition 4

*Incomplete implementations
**Planned

Chapter 1: What Is JavaScript?

The Document Object Model (DOM)

The Document Object Model (DOM) is an application programming interface (API) for XML that was
extended for use in HTML. The DOM maps out an entire page as a hierarchy of nodes. Each part of
an HTML or XML page is a type of a node containing different kinds of data. Consider the following
HTML page:

<html>
<head>
<title>Sample Page</title>
</head>
<body>
<p>Hello World!</p>
</body>
</html>

This code can be diagrammed into a hierarchy of nodes using the DOM (see Figure 1-3).

html

— ¢ |
Hello World!

Figure 1-3

By creating a tree to represent a document, the DOM allows developers an unprecedented level of
control over its content and structure. Nodes can be removed, added, replaced, and modified easily by
using the DOM APL

Why the DOM Is Necessary

With Internet Explorer 4 and Netscape Navigator 4 each supporting different forms of Dynamic HTML
(DHTML), developers for the first time could alter the appearance and content of a web page without
reloading it. This represented a tremendous step forward in web technology, but also a huge problem.
Netscape and Microsoft went separate ways in developing DHTML, thus ending the period when
developers could write a single HTML page that could be accessed by any web browser.

Chapter 1: What Is JavaScript?

It was decided that something had to be done to preserve the cross-platform nature of the Web. The fear
was that if someone didn’t rein in Netscape and Microsoft, the Web would develop into two distinct
factions that were exclusive to targeted browsers. It was then that the World Wide Web Consortium (W3C),
the body charged with creating standards for web communication, began working on the DOM.

DOM Levels

DOM Level 1 became a W3C recommendation in October of 1998. It consisted of two modules: the DOM
Core, which provided a way to map the structure of an XML-based document to allow for easy access to
and manipulation of any part of a document, and the DOM HTML, which extended the DOM Core by
adding HTML-specific objects and methods.

Note that the DOM is not JavaScript-specific, and indeed has been implemented in numerous other
languages. For web browsers, however, the DOM has been implemented using ECMAScript and now
makes up a large part of the JavaScript language.

Whereas the goal of DOM Level 1 was to map out the structure of a document, the aims of DOM Level 2
were much broader. This extension of the original DOM added support for mouse and user-interface
events (long supported by DHTML), ranges, traversals (methods to iterate over a DOM document), and
support for Cascading Style Sheets (CSS) through object interfaces. The original DOM Core introduced
in Level 1 was also extended to include support for XML namespaces.

DOM Level 2 introduced the following new modules of the DOM to deal with new types of interfaces:

O DOM Views — Describes interfaces to keep track of the various views of a document

(the document before and after CSS styling, for example)

Q DOM Events — Describes interfaces for events and event handling

Q DOM Style — Describes interfaces to deal with CSS-based styling of elements

QO DOM Traversal and Range — Describes interfaces to traverse and manipulate a document tree
DOM Level 3 further extends the DOM with the introduction of methods to load and save documents
in a uniform way (contained in a new module called DOM Load and Save) as well as methods to

validate a document (DOM Validation). In Level 3, the DOM Core is extended to support all of XML 1.0,
including XML Infoset, XPath, and XML Base.

When reading about the DOM, you may come across references to DOM Level 0. Note that there is no
standard called DOM Level 0; it is simply a reference point in the history of the DOM. DOM Level 0 is
considered to be the original DHTML supported in Internet Explorer 4.0 and Netscape Navigator 4.0.

Other DOMs

Aside from the DOM Core and DOM HTML interfaces, several other languages have had their own
DOM standards published. The languages in the following list are XML-based, and each DOM adds
methods and interfaces unique to a particular language:

U Scalable Vector Graphics (SVG) 1.0
Q Mathematical Markup Language (MathML) 1.0

Q Synchronized Multimedia Integration Language (SMIL)

Chapter 1: What Is JavaScript?

Additionally, other languages have developed their own DOM implementations, such as Mozilla’s XML
User Interface Language (XUL). However, only the languages in the preceding list are standard
recommendations from W3C.

DOM Support in Web Browsers

The DOM had been a standard for some time before web browsers started implementing it. Internet
Explorer made its first attempt with version 5, but it didn’t have any realistic DOM support until
version 5.5, when it implemented most of DOM Level 1. Internet Explorer hasn’t introduced new DOM
functionality in versions 6 and 7, though version 8 introduces some bug fixes.

For Netscape, no DOM support existed until Netscape 6 (Mozilla 0.6.0) was introduced. After

Netscape 7, Mozilla switched its development efforts to the Firefox browser. Firefox 3 supports all of
Level 1, nearly all of Level 2, and some parts of Level 3. (The goal of the Mozilla development team was
to build a 100% standards-compliant browser, and their work paid off.)

DOM support became a huge priority for most browser vendors, and efforts have been ongoing to
improve support with each release. Internet Explorer now lags far behind the other three major browsers
in DOM support, being stuck at a partial implementation of DOM Level 1. Chrome 0.2+, Opera 9, and
Safari 3 support all of DOM Level 1 and most of DOM Level 2. The following table shows DOM support
for popular browsers:

Browser DOM Compliance

Netscape Navigator 1.—4.x —

Netscape 6+ (Mozilla 0.6.0+) Level 1, Level 2 (almost all), Level 3 (partial)
Internet Explorer 2—4.x —

Internet Explorer 5 Level 1 (minimal)

Internet Explorer 5.5-7 Level 1 (almost all)

Opera 1-6 —

Opera 7-8.x Level 1 (almost all), Level 2 (partial)

Opera 9+ Level 1, Level 2 (almost all), Level 3 (partial)
Safari 1.0.x Level 1

Safari 2+ Level 1, Level 2 (partial)

Chrome 0.2+ Level 1, Level 2 (partial)

Firefox 1+ Level 1, Level 2 (almost all), Level 3 (partial)

The Browser Object Model (BOM)

The Internet Explorer 3 and Netscape Navigator 3 browsers featured a Browser Object Model (BOM) that
allowed access and manipulation of the browser window. Using the BOM, developers can interact with
the browser outside of the context of its displayed page. What makes the BOM truly unique, and often
problematic, is that it is the only part of a JavaScript implementation that has no related standard.

Chapter 1: What Is JavaScript?

Primarily, the BOM deals with the browser window and frames, but generally any browser-specific
extension to JavaScript is considered to be a part of the BOM. The following are some such extensions:

Q The capability to pop up new browser windows

The capability to move, resize, and close browser windows

The navigator object, which provides detailed information about the browser

The location object, which gives detailed information about the page loaded in the browser
The screen object, which gives detailed information about the user’s screen resolution

Support for cookies

O 000 oo

Custom objects such as XMLHt tpRequest and Internet Explorer’s ActiveXObject

Because no standards exist for the BOM, each browser has its own implementation. There are some de
facto standards, such as having a window object and a navigator object, but each browser defines its
own properties and methods for these and other objects. A detailed discussion of the BOM is included in
Chapter 8.

JavaScript Versions

Mozilla, as a descendant from the original Netscape, is the only browser vendor that has continued

the original JavaScript version-numbering sequence. When the Netscape source code was spun off

into an open-source project (named the Mozilla Project), the last browser version of JavaScript was 1.3.
(As mentioned previously, version 1.4 was implemented on the server exclusively.) As the Mozilla
Foundation continued work on JavaScript, adding new features, keywords, and syntaxes, the JavaScript
version number was incremented. The following table shows the JavaScript version progression in
Netscape/Mozilla browsers:

Browser JavaScript Version
Netscape Navigator 2 1.0
Netscape Navigator 3 1.1
Netscape Navigator 4 1.2
Netscape Navigator 4.06 1.3
Netscape 6+ (Mozilla 0.6.0+) 1.5
Firefox 1 1.5
Firefox 1.5 1.6
Firefox 2 1.7
Firefox 3 1.8
Firefox 3.1 1.9
Firefox 4 2.0

10

Chapter 1: What Is JavaScript?

The numbering scheme is based on the idea that Firefox 4 will feature JavaScript 2.0, and each increment
in the version number prior to that point indicates how close the JavaScript implementation is to the 2.0
proposal. Though this was the original plan, it is unclear if Mozilla will continue along this path given
the popularity of the ECMAScript 3.1 proposal.

It’s important to note that only the Netscape/Mozilla browsers follow this versioning
scheme. Internet Explorer, for example, has different version numbers for JScript.
These JScript versions don’t correspond whatsoever to the JavaScript versions
mentioned in the preceding table. Further, most browsers talk about JavaScript
support in relation to their level of ECMAScript compliance and DOM support.

Summary

JavaScript is a scripting language designed to interact with web pages and is made up of the following
three distinct parts:

Q ECMAScript, which is defined in ECMA-262 and provides the core functionality

Q The Document Object Model (DOM), which provides methods and interfaces for working with
the content of a web page

Q The Browser Object Model (BOM), which provides methods and interfaces for interacting with
the browser

There are varying levels of support for the three parts of JavaScript across the five major web browsers
(Internet Explorer, Firefox, Chrome, Safari, and Opera). Support for ECMAScript edition 3 is generally
good across all browsers, whereas support for the DOM varies widely. The BOM, the only part of
JavaScript that has no corresponding standard, can vary from browser to browser though there are some
commonalities that are assumed to be available.

11

|

JavaScript in HTML

The introduction of JavaScript into web pages immediately ran into the Web’s predominant
language, HTML. As part of its original work on JavaScript, Netscape tried to figure out how to
make JavaScript coexist in HTML pages without breaking those pages’ rendering in other
browsers. Through trial, error, and controversy, several decisions were finally made and agreed
upon to bring universal scripting support to the Web. Much of the work done in these early days
of the Web has survived and become formalized in the HTML specification.

The <script> Element

The primary method of inserting JavaScript into an HTML page is via the <script> element. This
element was created by Netscape and first implemented in Netscape Navigator 2. It was later
added to the formal HTML specification. HTML 4.01 defines the following five attributes for the
<script> element:

Q charset — Optional. The character set of the code specified using the src attribute. This
attribute is rarely used, because most browsers don’t honor its value.

Q defer — Optional. Indicates that the execution of the script can safely be deferred until
after the document’s content has been completely parsed and displayed.

0 language — Deprecated. Originally indicated the scripting language being used by the
code block (such as "JavaScript", "JavaScriptl.2",or "VBScript"). Most browsers
ignore this attribute; it should not be used.

QO src— Optional. Indicates an external file that contains code to be executed.

O type — Required. Seen as a replacement for language; indicates the content type (also
called MIME type) of the scripting language being used by the code block. Traditionally,
this value has always been "text/javascript", though both "text/javascript" and
"text/ecmascript" are deprecated. JavaScript files are typically served with the
"application/x-javascript" MIME type even though setting this in the type

Chapter 2: JavaScript in HTML

14

attribute may cause the script to be ignored. Other values that work in non-Internet Explorer
(IE) browsers are "application/javascript” and "application/ecmascript”. The type
attribute is still typically set to "text/javascript" by convention and for maximum browser
compatibility.

There are two ways to use the <script> element: embed JavaScript code directly into the page or
include JavaScript from an external file.

To include inline JavaScript code, the <script> element needs only the type attribute. The JavaScript
code is then placed inside the element directly, as follows:

<script type="text/javascript">
function sayHi () {
alert ("Hi!");
}

</script>

The JavaScript code contained inside a <script> element is interpreted from top to bottom. In the case
of this example, a function definition is interpreted and stored inside the interpreter environment. The
rest of the page content is not loaded and/or displayed until after all of the code inside the <script>
element has been evaluated.

When using inline JavaScript code, keep in mind that you cannot have the string "</script>"
anywhere in your code. For example, the following code causes an error when loaded into a browser:

<script type="text/javascript">
function sayScript () {

alert("</script>");

}
</script>

Due to the way that inline scripts are parsed, the browser sees the string "</script>" as if it were the
closing </script> tag. This problem can be avoided easily by splitting the string into two parts, as in
this example:

<script type="text/javascript">
function sayScript () {

alert("</scr" + "ipt>");

}
</script>

The changes to this code make it acceptable to browsers and won’t cause any errors.

To include JavaScript from an external file, the src attribute is required. The value of src is a URL
linked to a file containing JavaScript code, like this:

<script type="text/javascript" src="example.js"></script>

Chapter 2: JavaScript in HTML

In this example, an external file named example. js is loaded into the page. The file itself need only
contain the JavaScript code that would occur between the opening <script> and closing </script>
tags. As with inline JavaScript code, processing of the page is halted while the external file is interpreted
(there is also some time taken to download the file). In XHTML documents, you can omit the closing tag,
as in this example:

<script type="text/javascript" src="example.js" />

This syntax should not be used in HTML documents, because it is invalid HTML and won’t be handled
properly by some browsers, most notably IE.

By convention, external JavaScript files have a . js extension. This is not a requirement, because
browsers do not check the file extension of included JavaScript files. This leaves open the possibility of
dynamically generating JavaScript code using JSP, PHP, or another server-side scripting language.

It’s important to note that a <script> element using the src attribute should not include additional
JavaScript code between the <script> and </script> tags.

One of the most powerful and most controversial parts of the <script> element is its ability to include
JavaScript files from outside domains. Much like an element, the <script> element’s src
attribute may be set to a full URL that exists outside the domain on which the HTML page exists, as in
this example:

<script type="text/javascript" src="http://www.somewhere.com/afile.js"></script>

Code from an external domain will be loaded and interpreted as if it were part of the page that is loading
it. This capability allows you to serve up JavaScript from various domains if necessary. Be careful,
however, if you are accessing JavaScript files located on a server that you don’t control. A malicious
programmer could, at any time, replace the file. When including JavaScript files from a different domain,
make sure you are the domain owner or the domain is owned by a trusted source.

Regardless of how the code is included, the <script> elements are interpreted in the order in which they
appear in the page. The first <script> element’s code must be completely interpreted before the second
<script> element begins interpretation, the second must be completed before the third, and so on.

Tag Placement

Traditionally, all <script> elements were placed within the <head> element on a page, such as in this
example:

<html>
<head>
<title>Example HTML Page</title>
<script type="text/javascript" src="examplel.js"></script>
<script type="text/javascript" src="example2.js"></script>
</head>
<body>
<!-- content here -->
</body>
</html>

15

Chapter 2: JavaScript in HTML

The main purpose of this format was to keep external file references, both CSS files and JavaScript files,
in the same area. However, including all JavaScript files in the <head> of a document means that all of
the JavaScript code must be downloaded, parsed, and interpreted before the page begins rendering
(rendering begins when the browser receives the opening <body> tag). For pages that require a lot of
JavaScript code, this can cause a noticeable delay in page rendering, during which time the browser will
be completely blank. For this reason, modern web applications typically include all JavaScript references
in the <body> element, after the page content, as shown in this example:

<html>
<head>
<title>Example HTML Page</title>
</head>
<body>
<!-- content here -->
<script type="text/javascript" src="examplel.js"></script>
<script type="text/javascript" src="example2.Jjs"></script>
</body>
</html>

Using this approach, the page is completely rendered in the browser before the JavaScript code is
processed. The resulting user experience is perceived as faster, because the amount of time spent on a
blank browser window is reduced.

Deferred Scripts

HTML 4.01 defines an attribute named defer for the <script> element. The purpose of defer is to
indicate that a script won’t be changing the structure of the page as it executes. As such, the script can be
run safely after the entire page has been parsed. Setting the defer attribute on a <script> element
effectively, as shown in the following example, is the same as putting the <script> element at the very
bottom of the page (as described in the previous section):

<html>
<head>
<title>Example HTML Page</title>
<script type="text/javascript" defer="defer" src="examplel.js"></script>
<script type="text/javascript" defer="defer" src="example2.js"></script>
</head>
<body>
<!-- content here -->
</body>
</html>

Even though the <script> elements in this example are included in the document <head>, they will not
be executed until after the browser has received the closing </html> tag.

The one downside of defer is that it is not commonly supported across all browsers. IE and Firefox 3.1

are the only major browsers that support the defer attribute. All other browsers simply ignore this
attribute and treat the script as it normally would.

16

Chapter 2: JavaScript in HTML

For information on more ways to achieve functionality similar to that of the defer attribute, see
Chapter 12.

Changes in XHTML

Extensible HyperText Markup Language, or XHTML, is a reformulation of HTML as an application
of XML. The rules for writing code in XHTML are stricter than those for HTML, which affects the
<script/> element when using embedded JavaScript code. Although valid in HTML, the following
code block is invalid in XHTML.:

<script type="text/javascript">
function compare(a, b) {
if (a < b) {
alert("A is less than B");
} else if (a > b) {
alert("A is greater than B");
} else {
alert("A is equal to B");
}
}
</script>

In HTML, the <script> element has special rules governing how its contents should be parsed; in
XHTML, these special rules don’t apply. This means that the less-than symbol (<) in the statementa < b
is interpreted as the beginning of a tag, which causes a syntax error because a less-than symbol must not
be followed by a space.

There are two options for fixing the XHTML syntax error. The first is to replace all occurrences of the
less-than symbol (<) with its HTML entity (&1t ;). The resulting code looks like this:

<script type="text/javascript">
function compare(a, b) {
if (a < b) {
alert("A is less than B");
} else if (a > b) {
alert(}A is greater than B");
} else {
alert("A is equal to B");
}
}

</script>

This code will now run in an XHTML page; however, the code is slightly less readable. Fortunately, there
is another approach.

17

Chapter 2: JavaScript in HTML

The second option for turning this code into a valid XHTML version is to wrap the JavaScript code in a
CData section. In XHTML (and XML), CData sections are used to indicate areas of the document that
contain free-form text not intended to be parsed. This enables you to use any character, including the
less-than symbol, without incurring a syntax error. The format is as follows:

<script type="text/javascript"><![CDATA[
function compare(a, b) {
if (a < b) {
alert("A is less than B");
} else if (a > b) {
alert ("A is greater than B");
} else {
alert("A is equal to B");
}
}

]1></script>
In XHTML-compliant web browsers, this solves the problem. However, many browsers are still not
XHTML-compliant and don’t support the CData section. To work around this, the CData markup must

be offset by JavaScript comments:

<script type="text/javascript">

/ /<! [CDATA[
function compare(a, b) {
if (a < b) {

alert("A is less than B");
} else if (a > b) {
alert ("A is greater than B");
} else {
alert("A is equal to B");
}
}
/711>

</script>

This format works in all modern browsers. Though a little bit of a hack, it validates as XHTML and
degrades gracefully for pre-XHTML browsers.

Deprecated Syntax

When the <script> element was originally introduced, it marked a departure from traditional HTML

parsing. Special rules needed to be applied within this element, and that caused problems for browsers
that didn’t support JavaScript (the most notable being Mosaic). Nonsupporting browsers would output
the contents of the <script> element onto the page, effectively ruining the page’s appearance.

18

Chapter 2: JavaScript in HTML

Netscape worked with Mosaic to come up with a solution that would hide embedded JavaScript code
from browsers that didn’t support it. The final solution was to enclose the script code in an HTML
comment, like this:

<script><!--
function sayHi () {
alert ("Hi!");
}

//--></script>

Using this format, browsers like Mosaic would safely ignore the content inside of the <script> tag, and
browsers that supported JavaScript had to look for this pattern to recognize that there was indeed
JavaScript content to be parsed.

Although this format is still recognized and interpreted correctly by all web browsers, it is no longer
necessary and should not be used.

Inline Code versus External Files

Although it’s possible to embed JavaScript in HTML files directly, it's generally considered a best
practice to include as much JavaScript as possible using external files. Keeping in mind that there are no
hard and fast rules regarding this practice, the arguments for using external files are as follows:

Maintainability — JavaScript code that is sprinkled throughout various HTML pages turns code
maintenance into a problem. It is much easier to have a directory for all JavaScript files so that
developers can edit JavaScript code independent of the markup in which it’s used.

Caching — Browsers cache all externally linked JavaScript files according to specific settings,
meaning that if two pages are using the same file, the file is downloaded only once. This ultimately
means faster page-load times.

Future-proof — By including JavaScript using external files, there’s no need to use the XHTML or
comment hacks mentioned previously. The syntax to include external files is the same for both
HTML and XHTML.

Document Modes

Internet Explorer 5.5 introduced the concept of document modes through the use of doctype switching.
The first two document modes were quirks mode, which made IE behave as if it were version 5 (with
several nonstandard features), and standards mode, which made IE behave in a more standards-compliant
way. Though the primary difference between these two modes is related to the rendering of content with
regard to CSS, there are also several side effects related to JavaScript. These side effects are discussed
throughout the book.

Since Internet Explorer first introduced the concept of document modes, other browsers have followed
suit. As this adoption happened, a third mode called almost standards mode arose. That mode has a lot of
the features of standards mode but isn't as strict. The main difference is in the treatment of spacing
around images (most noticeable when images are used in tables).

19

Chapter 2: JavaScript in HTML

20

Quirks mode is achieved in all browsers by omitting the doctype at the beginning of the document. This
is considered poor practice, because quirks mode is very different across all browsers and no level of true
browser consistency can be achieved without hacks.

Standards mode is turned on when one of the following doctypes is used:

<!-- HTML 4.01 Strict -->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4d/strict.dtd">

<!-- XHTML 1.0 Strict -->

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

Almost standards mode is triggered by transitional and frameset doctypes, as follows:

<!-- HTML 4.01 Transitional -->
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<!-- HTML 4.01 Frameset -->

<!DOCTYPE HTML PUBLIC

"-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/htmld/frameset.dtd">

<!-- XHTML 1.0 Transitional -->

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<!-- XHTML 1.0 Frameset -->

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-frameset.dtd">

Because almost standards mode is so close to standards mode, the distinction is rarely made. People
talking about “standards mode” may be talking about either, and detection for the document mode
(discussed later in this book) also doesn’t make the distinction.

Internet Explorer 8 introduced a new document mode originally called super standards mode. Super
standards mode puts IE into the most standards-compliant version of the browser available. Quirks
mode renders as if the browser is IE 5, whereas standards mode uses the IE 7 rendering engine. Super
standards mode is the default document mode in IE 8, though it can be turned off using a special
<meta> value as shown here:

<meta http-equiv="X-UA-Compatible" content="IE=7" />

Chapter 2: JavaScript in HTML

The value of IE in the content attribute specifies what version’s rendering engine should be used to
render the page. This is intended to allow backwards compatibility for sites and pages that have been
designed specifically for older versions of IE.

As with almost standards mode, super standards mode is typically not called out as separate from
standards mode. Throughout this book, the term standards mode should be taken to mean any mode other
than quirks.

The <noscript> Element

Of particular concern to early browsers was the graceful degradation of pages when the browser didn’t
support JavaScript. To that end, the <noscript> element was created to provide alternate content for
browsers without JavaScript. This element can contain any HTML elements, aside from <script>, that
can be included in the document <body>. Any content contained in a <noscript> element will be
displayed under only the following two circumstances:

Q The browser doesn’t support scripting.

Q The browser’s scripting support is turned off.

If either of these conditions is met, then the content inside the <noscript> element is rendered. In all
other cases, the browser does not render the content of <noscript>.

Here is a simple example:

<html>
<head>
<title>Example HTML Page</title>
<script type="text/javascript" defer="defer" src="examplel.js"></script>
<script type="text/javascript" defer="defer" src="example2.js"></script>
</head>
<body>
<noscript>
<p>This page requires a JavaScript-enabled browser.</p>
</noscript>
</body>
</html>

In this example, a message is displayed to the user when the scripting is not available. For scripting-
enabled browsers, this message will never be seen even though it is still a part of the page.

21

Chapter 2: JavaScript in HTML

Summary

JavaScript is inserted into HTML pages by using the <script> element. This element can be used to
embed JavaScript into an HTML page, leaving it inline with the rest of the markup, or to include
JavaScript that exists in an external file. The following are key points:

22

Q

a

Both uses require the type attribute to be set to "text/javascript", indicating the scripting
language is JavaScript.

To include external JavaScript files, the src attribute must be set to the URL of the file to
include, which may be a file on the same server as the containing page or one that exists on a
completely different domain.

All <script> elements are interpreted in the order in which they occur on the page. The code
contained within a <script> element must be completely interpreted before code in the next
<script> element can begin.

The browser must complete interpretation of the code inside a <script> element before it can
continue rendering the rest of the page. For this reason, <script> elements are usually included
toward the end of the page, after the main content and just before the closing </body> tag.

In Internet Explorer (IE), you can defer a script’s execution until after the document has
rendered by using the defer attribute. Though this attribute is part of the HTML 4.01
specification, IE is the only browser that has implemented support for it.

By using the <noscript> element, you can specify that content is to be shown only if scripting support
isn’t available on the browser. Any content contained in the <noscript> element will not be rendered if
scripting is enabled on the browser.

Language Basics

At the core of any language is a description of how it should work at the most basic level. This
description typically defines syntax, operators, data types, and built-in functionality upon which
complex solutions can be built. As previously mentioned, ECMA-262 defines all of this information
for JavaScript in the form of a pseudolanguage called ECMAScript (often pronounced as
“ek-ma-script”).

ECMAScript as defined in ECMA-262, Third Edition, is the most-implemented version among
web browsers. The Fourth Edition introduced new syntax, operators, objects, and concepts that
dramatically alter how JavaScript works. For this reason, and due to a lack of support, the
following information is based only on ECMAScript as defined in the Third Edition (see
Chapter 22 for information on the Fourth Edition and JavaScript 2.0).

Syntax

ECMAScript’s syntax borrows heavily from C and other C-like languages such as Java and Perl.
Developers familiar with such languages should have an easy time picking up the somewhat
looser syntax of ECMAScript.

Case-sensitivity

The first concept to understand is that everything is case-sensitive: variables, function names, and
operators are all case-sensitive, meaning that a variable named test is different from a variable
named Test. Similarly, typeof can’t be the name of a function because it’s a keyword (described
in the next section); however, typeOf is a perfectly valid function name.

Chapter 3: Language Basics

Identifiers

An identifier is the name of a variable, function, property, or function argument. Identifiers may be one or
more characters in the following format:

Q The first character must be a letter, an underscore (_), or a dollar sign ($).

Q All other characters may be letters, underscores, dollar signs, or numbers.

Letters in an identifier may include extended ASCII or Unicode letter characters such as A and £,
though this is not recommended.

By convention, ECMAScript identifiers use camel case, meaning that the first letter is lowercase and each
additional word is offset by a capital letter, like this:

firstSecond
myCar
doSomethingImportant

Although this is not strictly enforced, it is considered a best practice to adhere to the built-in
ECMAScript functions and objects that follow this format.

Keywords, reserved words, true, false, and null cannot be used as identifiers. See
the next section, “Keywords and Reserved Words,” for more detail.

Comments

ECMAScript uses C-style comments for both single-line and block comments. A single-line comment
begins with two forward-slash characters, such as this:

//single line comment

A block comment begins with a forward-slash and asterisk (/ *), and ends with the opposite (*/), as in
this example:

/*

* This is a multi-line
* Comment

*/

Note that even though the second and third lines contain an asterisk, these are not necessary and are
added purely for readability (this is the format preferred in enterprise applications).

24

Chapter 3: Language Basics

Statements

Statements in ECMAScript are terminated by a semicolon, though omitting the semicolon makes the
parser determine where the end of a statement occurs, as in the following examples:

var sum = a + b //valid even without a semicolon - not recommended
var diff = a - b; //valid - preferred

Even though a semicolon is not required at the end of statements, it is recommended to always include
one. Including semicolons helps prevent errors of omission, such as not finishing what you were typing,
and allows developers to compress ECMAScript code by removing extra white space (such compression
causes syntax errors when lines do not end in a semicolon). Including semicolons also improves
performance in certain situations because parsers try to correct syntax errors by inserting semicolons
where they appear to belong.

Multiple statements can be combined into a code block by using C-style syntax, beginning with a left
curly brace ({) and ending with a right curly brace (}):

if (test){
test = false;
alert(test);

}

Control statements, such as if, require code blocks only when executing multiple statements. However,
it is considered a best practice to always use code blocks with control statements, even if there’s only one
statement to be executed, as in the following examples:

if (test)
alert (test); //valid, but error-prone and should be avoided
if (test){ //preferred

alert(test);
}

Using code blocks for control statements makes the intent clearer, and there’s less of a chance for errors
when changes need to be made.

Keywords and Reserved Words

ECMA-262 describes a set of keywords that have specific uses, such as indicating the beginning or end of
control statements or performing specific operations. By rule, keywords are reserved and cannot be used
as identifiers. The complete list of keywords is as follows:

break else new var
case finally return void
catch for switch while
continue function this with
default if throw

delete in try

do instanceof typeof

25

Chapter 3: Language Basics

The specification also describes a set of reserved words that cannot be used as identifiers. Though reserved
words don’t have any specific usage in the language, they are reserved for future use as keywords. The
following is the complete list of reserved words defined in ECMA-262, Third Edition:

abstract enum int short
boolean export interface static

byte extends long super

char final native synchronized
class float package throws

const goto private transient
debugger implements protected volatile
double import public

Attempting to use a keyword as an identifier name will cause an “Identifier Expected” error in most web
browsers. Attempting to use a reserved word may or may not cause the same error, depending on the
particular browser being used. Generally speaking, it’s best to avoid using both keywords and reserved
words, to ensure compatibility with future ECMAScript editions.

Variables

26

ECMAScript variables are loosely typed, meaning that a variable can hold any type of data. Every
variable is simply a named placeholder for a value. To define a variable, use the var operator (note that
var is a keyword) followed by the variable name (an identifier, as described earlier), like this:

var message;

This code defines a variable named message that can be used to hold any value (without initialization, it
holds the special value undefined, which is discussed in the next section). ECMAScript implements
variable initialization, so it’s possible to define the variable and set its value at the same time, as in this
example:

var message = "hi";

Here, message is defined to hold a string value of "hi". Doing this initialization doesn’t mark the
variable as being a string type; it is simply the assignment of a value to the variable. It is still possible to
not only change the value stored in the variable, but also to change the type of value, such as this:

var message = "hi";
message = 100; //legal, but not recommended

In this example, the variable message is first defined as having the string value "hi" and then
overwritten with the numeric value 100. Though it’s not recommended to switch the data type that a
variable works with, it is completely valid in ECMAScript.

Chapter 3: Language Basics

It’s important to note that using the var operator to define a variable makes it local to the scope in which
it was defined. For example, defining a variable inside of a function using var means that the variable is
destroyed as soon as the function exits, as shown here:

function test () {
var message = "hi"; //local variable
}
test();
alert (message); //undefined

Here, the message variable is defined within a function using var. The function is called, which creates
the variable and assigns its value. Immediately after that, the variable is destroyed so the last line in
this example causes an error. It is, however, possible to define a variable globally by simply omitting the
var operator as follows:

function test(){
message = "hi"; //global variable
}

test();
alert (message); //"hi"

By removing the var operator from the example, the message variable becomes global. As soon as the
function test () is called, the variable is defined and becomes accessible outside of the function once it
has been executed.

Although it’s possible to define global variables by omitting the var operator, this
approach is not recommended. Global variables defined locally are hard to maintain,
and cause confusion because it’s not immediately apparent if the omission of var
was intentional.

If you need to define more than one variable, you can do it using a single statement, separating each
variable (and optional initialization) with a comma like this:

var message = "hi",
found = false,
age = 29;

Here, three variables are defined and initialized. Because ECMAScript is loosely typed, variable
initializations using different data types may be combined into a single statement. Though inserting line
breaks and indenting the variables isn’t necessary, it helps to improve readability.

27

Chapter 3: Language Basics

Data Types

There are five simple data types (also called primitive types) in ECMAScript: Undefined, Null, Boolean,
Number, and String. There is also one complex data type called Object, which is an unordered list of
name-value pairs. Because there is no way to define your own data types in ECMAScript, all values can
be represented as one of these six. Having only six data types may seem like too few to fully represent
data; however, ECMAScript’s data types have dynamic aspects that make other data types unnecessary.

The typeof Operator

Because ECMAScript is loosely typed, there needs to be a way to determine the data type of a given
variable. The typeof operator provides that information. Using the typeof operator on a value returns

one of the following strings:

Qa

0O 00 oo

"undefined" if the value is undefined
"boolean" if the value is a Boolean
"string" if the value is a string
"number" if the value is a number
"object" if the value is an object or null

"function" if the value is a function

The typeof operator is called like this:

var message = "some string";

alert (typeof message); //"string"
alert (typeof (message)) ; //"string"
alert (typeof 95); // "number"

In this example, both a variable (message) and a numeric literal are passed into the typeof operator.
Note that because typeof is an operator and not a function, no parentheses are required (although they

can be used).

Technically, functions are considered objects in ECMAScript and don’t represent
another data type. However, they do have some special properties, which necessitates
differentiating between functions and other objects via the typeof operator.

The Undefined Type

28

The Undefined type has only one value, which is the special value undefined. When a variable is
declared using var but not initialized, it is assigned the value of undefined as follows:

var message;
alert (message == undefined); //true

Chapter 3: Language Basics

In this example, the variable message is declared without initializing it. When compared with the literal
value of undefined, the two are equal. This example is identical to the following;:

var message = undefined;
alert (message == undefined); //true

Here the variable message is explicitly initialized to be undefined. This is unnecessary because, by
default, any uninitialized variable gets the value of undefined.

Generally speaking, you should never explicitly set a variable to be undefined.
The literal undefined value is provided mainly for comparison and wasn’t added
until ECMA-262 Third Edition to help formalize the difference between an empty
object pointer and an uninitialized variable.

Note that a variable containing the value of undefined is different from a variable that hasn’t been
defined at all. Consider the following:

var message; //this variable is declared but has a value of undefined

//make sure this variable isn't declared
//var age

alert (message); //"undefined"
alert (age) ; //causes an error

In this example, the first alert displays the variable message, which is undefined. In the second alert, an
undeclared variable called age is passed into the alert () function, which causes an error because the
variable hasn’t been declared. Only one operation can be performed on an undeclared variable: you can
call typeof onit.

The typeof operator returns "undefined" when called on an uninitialized variable, but it also returns
"undefined" when called on an undeclared variable, which can be a bit confusing. Consider this
example:

var message; //this variable is declared but has a value of undefined

//make sure this variable isn't declared
//var age

alert (typeof message); //"undefined"
alert (typeof age); //"undefined"

In both cases, calling typeof on the variable returns the string "undefined". Logically, this makes

sense because no real operations can be performed with either variable even though they are technically
very different.

29

Chapter 3: Language Basics

Even though uninitialized variables are automatically assigned a value of
undefined, it is advisable to always initialize variables. That way, when typeof
returns "undefined", you’ll know that it’s because a given variable hasn’t been
declared rather than simply not having been uninitialized.

The Null Type

The Null type is the second data type that has only one value: the special value null. Logically, a null
value is an empty object pointer, which is why typeof returns "object" when it’s passed a null value
in the following example:

var car = null;
alert (typeof car); //"object"

When defining a variable that is meant to later hold an object, it is advisable to initialize the variable to
null as opposed to anything else. That way, you can explicitly check for the value null to determine if
the variable has been filled with an object reference at a later time, such as in this example:

if (car != null){
//do something with car
}

The value undefined is a derivative of null, so ECMA-262 defines them to be superficially equal as follows:
alert (null == undefined); //true

Using the equality operator (==) between null and undefined always returns true, though keep in
mind that this operator converts its operands for comparison purposes (covered in detail later in this
chapter).

Even though null and undefined are related, they have very different uses. As mentioned previously,
you should never explicitly set the value of a variable to undefined, but the same does not hold true for
null. Any time an object is expected but is not available, null should be used in its place. This helps to
keep the paradigm of null as an empty object pointer and further differentiates it from undefined.

The Boolean Type

The Boolean type is one of the most frequently used types in ECMAScript and has only two literal
values: true and false. These values are distinct from numeric values, so true is not necessarily equal
to 1, and false is not necessarily equal to 0. Assignment of Boolean values to variables is as follows:

var found = true;
var lost = false;

Note that the Boolean literals true and false are case-sensitive, so True and False (and other mixings
of uppercase and lowercase) are valid as identifiers but not as Boolean values.

30

Chapter 3: Language Basics

Though there are just two literal Boolean values, all types of values have Boolean equivalents in
ECMAScript. To convert a value into its Boolean equivalent, the special Boolean () casting function is
called, like this:

var message = "Hello world!";
var messageAsBoolean = Boolean (message) ;

In this example, the string message is converted into a Boolean value and stored in messageAsBoolean.
The Boolean () casting function can be called on any type of data and will always return a Boolean
value. The rules for when a value is converted to true or false depend on the data type as much as the
actual value. The following table outlines the various data types and their specific conversions.

Data Type Values Converted to True Values Converted to False

Boolean True false

String Any nonempty string " (empty string)

Number Any nonzero number 0, NaN (See the “NaN" section later in this
(including infinity) chapter.)

Object Any object null

Undefined n/a undefined

These conversions are important to understand because flow-control statements, such as the if
statement, automatically perform this Boolean conversion, as shown here:

var message = "Hello world!";
if (message) {
alert("Value is true");

In this example, the alert will be displayed because the string message is automatically converted into
its Boolean equivalent (true). It’s important to understand what variable you're using in a flow-control
statement because of this automatic conversion. Mistakenly using an object instead of a Boolean can
drastically alter the flow of your application.

The Number Type

Perhaps the most interesting data type in ECMAScript is Number, which uses the IEEE 754 format to
represent both integers and floating-point values (also called double-precision values in some
languages). To support the various types of numbers, there are several different number literal formats.

The most basic number literal format is that of a decimal integer, which can be entered directly as
shown here:

var intNum = 55; //integer

31

Chapter 3: Language Basics

Integers can also be represented as either octal (base 8) or hexadecimal (base 16) literals. For an octal
literal, the first digit must be a zero (0) followed by a sequence of octal digits (numbers 0 through 7). If a
number out of this range is detected in the literal, then the leading zero is ignored and the number is
treated as a decimal, as in the following examples:

var octalNuml = 070; //octal for 56
var octalNum2 = 079; //invalid octal - interpreted as 79
var octalNum3 = 08; //invalid octal - interpreted as 8

To create a hexadecimal literal, the first two digits must be 0x, followed by any number of hexadecimal
digits (0 through 9, and A through F). Letters may be in uppercase or lowercase. Here’s an example:

var hexNuml = O0xA; //hexadecimal for 10
var hexNum2 = O0x1f; //hexedecimal for 31

Numbers created using octal or hexadecimal format are treated as decimal numbers in all arithmetic
operations.

Floating-Point Values

32

To define a floating-point value, you must include a decimal point and at least one number after the
decimal point. Although an integer is not necessary before a decimal point, it is recommended. Here are
some examples:

var floatNuml
var floatNum2

1
0.
var floatNum3 = .1; //valid, but not recommended

L1
1

i

Because storing floating-point values uses twice as much memory as storing integer values, ECMAScript
always looks for ways to convert values into integers. When there is no digit after the decimal point, the
number becomes an integer. Likewise, if the number being represented is a whole number (such as 1.0),
it will be converted into an integer, as in this example:

var floatNuml = 1.; //missing digit after decimal - interpreted as integer 1
var floatNum2 = 10.0; //whole number - interpreted as integer 10

For very large or very small numbers, floating-point values can be represented using e-notation.
E-notation is used to indicate a number that should be multiplied by 10 raised to a given power. The
format of e-notation in ECMAScript is to have a number (integer or floating-point) followed by an
uppercase or lowercase letter E, followed by the power of 10 to multiply by. Consider the following:

var floatNum = 3.125e7; //equal to 31250000

In this example, £1oatNum is equal to 31,250,000 even though it is represented in a more compact form
using e-notation. The notation essentially says, “Take 3.125 and multiple it by 107.”

E-notation can also be used to represent very small numbers, such as 0.00000000000000003, which can be
written more succinctly as 3e-17. By default, ECMAScript converts any floating-point value with at least
six zeros after the decimal point into e-notation (for example, 0.0000003 becomes 3e-7).

Chapter 3: Language Basics

Floating-point values are accurate up to 17 decimal places but are far less accurate in arithmetic numbers
than in whole numbers. For instance, adding 0.1 and 0.2 yields 0.30000000000000004 instead of 0.3. These
small rounding errors make it difficult to test for specific floating-point values. Consider this example:

if (a + b == 0.3){ //avoid!
alert("You got 0.3.");
}

Here the sum of two numbers is tested to see if it’s equal to 0.3. This will work for 0.05 and 0.25 as well
as 0.15 and 0.15. But if applied to 0.1 and 0.2, as discussed previously, this test would fail. Therefore you
should never test for specific floating-point values.

It's important to understand that rounding errors are a side effect of the way floating-point arithmetic is
done in IEEE 754-based numbers and is not unique to ECMAScript. Other languages that use the
same format have the same issues.

Range of Values

Not all numbers in the world can be represented in ECMAScript, due to memory constraints. The smallest
number that can be represented in ECMAScript is stored in Number . MIN_VALUE, and is 5e-324 on most
browsers; the largest number is stored in Number . MAX_VALUE, and is 1.7976931348623157e+308 on

most browsers. If a calculation results in a number that cannot be represented by JavaScript’s numeric
range, the number automatically gets the special value of Infinity. Any negative number that can’t be
represented is ~-Infinity (negative infinity), and any positive number that can’t be represented is simply
Infinity (positive infinity).

If a calculation returns either positive or negative Infinity, that value cannot be used in any further
calculations because Infinity has no numeric representation with which to calculate. To determine if a
value is finite (that is, it occurs between the minimum and the maximum), there is the isFinite ()
function. This function returns true only if the argument is between the minimum and maximum
values, as in this example:

var result = Number.MAX_ VALUE + Number.MAX_VALUE;
alert (isFinite(result)); //false

Though it is rare to do calculations that take values outside of the range of finite numbers, it is possible
and should be monitored when doing very large or very small calculations.

You can also get the values of positive and negative Infinity by accessing
Number . NEGATIVE_INFINITY and Number .POSITIVE_INFINITY. As you may expect,
these properties contain the values -Infinity and Infinity, respectively.

NaN

There is a special numeric value called NaN, short for Not a Number, which is used to indicate when an
operation intended to return a number has failed (as opposed to throwing an error). For example, dividing
any number by 0 typically causes an error in other programming languages, halting code execution. In
ECMAScript, dividing a number by 0 returns NaN, which allows other processing to continue.

33

Chapter 3: Language Basics

The value NaN has a couple of unique properties. First, any operation involving NaN always returns NaN
(for instance, NaN /10), which can be problematic in the case of multistep computations. Second, NaN is
not equal to any value, including NaN. For example, the following returns false:

alert (NaN == NaN) ; //false

For this reason, ECMAScript provides the isNaN () function. This function accepts a single argument,
which can be of any data type, to determine if the value is “not a number.” When a value is passed
into isNaN (), an attempt is made to convert it into a number. Some non-number values convert into
numbers directly, such as the string "10" or a Boolean value. Any value that cannot be converted

into a number causes the function to return true. Consider the following;:

alert (isNaN (NaN)) ; //true

alert (isNaN(10)); //false - 10 is a number

alert (isNaN("10")); //false - can be converted to number 10
alert (isNaN("blue")); //true - cannot be converted to a number
alert (isNaN(true)) ; //false - can be converted to number 1

This example tests five different values. The first test is on the value NaN itself, which, obviously,
returns true. The next two tests use numeric 10 and the string "10", which both return false because
the numeric value for each is 10. The string "blue", however, cannot be converted into a number, so the
function returns false. The Boolean value of true can be converted into the number 1, so the function
returns false.

Although typically not done, isNaN () can be applied to objects. In that case, the
object’s valueOf£ () method is first called to determine if the returned value can be
converted into a number. If not, the toString () method is called and its returned
value is tested as well. This is the general way that built-in functions and operators
work in ECMASacript and is discussed more in the “Operators” section later in

this chapter.

Number Conversions

34

There are three functions to convert non-numeric values into numbers: the Number () casting function,
the parseInt () function, and the parseFloat () function. The first function, Number (), can be used on
any data type; the other two functions are used specifically for converting strings to numbers. Each of
these functions reacts differently to the same input.

The Number () function performs conversions based on these rules:

Q When applied to Boolean values, true and false get converted into 1 and 0, respectively.
QO When applied to numbers, the value is simply passed through and returned.

QO When applied to null, Number () returns 0.

Chapter 3: Language Basics

QO When applied to undefined, Number () returns NaN.
Q When applied to strings, the following rules are applied:

1 If the string contains only numbers, it is always converted to a decimal number, so "1"
becomes 1, "123" becomes 123, and "011" becomes 11 (note: leading zeros are ignored).

d If the string contains a valid floating-point format, such as "1.1", it is converted into the
appropriate floating-point numeric value (once again, leading zeros are ignored).

1 If the string contains a valid hexadecimal format, such as "0x£", it is converted into an
integer that matches the hexadecimal value.

d If the string is empty (contains no characters), it is converted to 0.
[d If the string contains anything other than these previous formats, it is converted into NaN.

0 When applied to objects, the valueOf () method is called and the returned value is converted
based on the previously described rules. If that conversion results in NaN, the toString ()
method is called and the rules for converting strings are applied.

Converting to numbers from various data types can get complicated, as indicated by the number of rules
there are for Number (). Here are some concrete examples:

var numl = Number ("Hello world!"); //NaN
var num2 = Number (""); //0
var num3 = Number ("000011"); //11
var num4 = Number (true) ; //1

In these examples, the string "Hello world" is converted into NaN because it has no corresponding
numeric value, and the empty string is converted into 0. The string "000011" is converted to the
number 11 because the initial zeros are ignored. Last, the value true is converted to 1.

Because of the complexities and oddities of the Number () function when converting strings, the
parselnt () function is usually a better option when you are dealing with integers. The parseInt ()
function examines the string much more closely to see if it matches a number pattern. Leading white
space in the string is ignored until the first non—-white space character is found. If this first character isn’t
a number, parselInt () always returns NaN, which means the empty string returns NaN (unlike with
Number (), which returns 0). If the first character is a number, then the conversion goes on to the second
character and continues on until either the end of the string is reached or a non-numeric character is
found. For instance, "1234blue" is converted to 1234 because "blue" is completely ignored. Similarly,
»22.5" will be converted to 22 because the decimal is not a valid integer character.

Assuming that the first character in the string is a number, the parseInt () function also recognizes the
various integer formats (decimal, octal, and hexadecimal, as discussed previously). This means when
the string begins with "0x", it is interpreted as a hexadecimal integer; if it begins with "0" followed by a
number, it is interpreted as an octal value.

35

Chapter 3: Language Basics

36

Here are some conversion examples to better illustrate what happens:

"1234blue") ; //1234
var num2 = parselnt "") / /NaN
var num3 = parselnt ("OxA"); //10 - hexadecimal

var numl = parselnt (
(
(
var num4 = parseInt(2 5); /722
("
(
(

var num5 = parselnt 070")' //56 - octal
var numé6 = parselInt("70"); //70 - decimal
var num/7 = parselnt ("Oxf"); //15 - hexadecimal

The important part of these examples is the different ways the function parses "070" and "70". The
leading zero indicates that "070" is an octal value, not a decimal value, so it gets parsed to 56 (note how
this differs from Number ()). The "70", on the other hand, is converted to 70 because it lacks the leading
zero. This can be confusing when used deep inside an ECMAScript application, so parseInt () provides
a second argument: the radix (number of digits) to use.

If you know that the value you're parsing is in hexadecimal format, you can pass in the radix 16 as a
second argument and ensure that the correct parsing will occur, as shown here:

var num = parselnt ("0xAF", 16); //175

In fact, by providing the hexadecimal radix, you can leave off the leading " 0x" and the conversion will
work as follows:

var numl = parselnt ("AF", 16); //175
var num?2 parseInt ("AF"); //NaN

In this example, the first conversion occurs correctly but the second conversion fails. The difference is
that the radix is passed in on the first line, telling parseInt () that it will be passed a hexadecimal
string; the second line sees that the first character is not a number, and stops automatically.

Passing in a radix can greatly change the outcome of the conversion. Consider the following;:

var numl = parseInt("10", 2); //2 - parsed as binary

var num2 = parselnt("10", 8); //8 - parsed as octal

var num3 = parseInt("10", 10); //10 - parsed as decimal

var num4 = parseInt("10", 16); //16 - parsed as hexadecimal

Because leaving off the radix allows parseInt () to choose how to interpret the input, it’s advisable to
always include a radix to avoid errors, especially when dealing with octal values as shown here:

var numl = parseInt ("010"); //8 - parsed as octal
var num2 = parseInt("010", 8); //8 - parsed as octal
var num3 = parseInt("010", 10); //10 - parsed as decimal

In this example, "010" is converted into different values based on the second argument. The first line is a

straight conversion, allowing parseInt () to decide what to do. Because the first character is a 0 followed
by a number, it assumes an octal value. This is essentially duplicated in the second line, which also passes
in the radix. The third line passes in a radix of 10, which tells the function to ignore any leading zeros and

parse the rest of the number.

Chapter 3: Language Basics

Most of the time you'll be parsing decimal numbers, so it’s good to always include
10 as the second argument.

The parseFloat () function works in a similar way to parseInt (), looking at each character starting in
position 0. It also continues to parse the string until it reaches either the end of the string or a character
that is invalid in a floating-point number. This means that a decimal point is valid the first time it
appears, but a second decimal point is invalid and the rest of the string is ignored, resulting in
"22.34.5" being converted to 22.34.

Another difference in parseFloat () is that initial zeros are always ignored. This function will recognize
any of the floating-point formats discussed earlier, as well as the decimal and octal integer formats.
Hexadecimal numbers always become 0. Because parseFloat () parses only decimal values, there is no
radix mode. A final note: if the string represents a whole number (no decimal point or only a zero after
the decimal point), parseFloat () returns an integer. Here are some examples:

var numl = parseFloat("1234blue"); //1234 - integer
var num2 = parseFloat ("0xA"); //0

var num3 = parseFloat("22.5"); //22.5

var num4 = parseFloat("22.34.5"); //22.34

var num5 = parseFloat("0908.5"); //908.5

var numé = parseFloat("3.125e7"); //31250000

The String Type

The String data type represents a sequence of zero or more 16-bit Unicode characters. Strings can be
delineated by either double quotes (") or single quotes ('), so both of the following are legal:

var firstName = "Nicholas";
var lastName = 'Zakas';

Unlike PHP, for which using double or single quotes changes how the string is interpreted, there is no
difference in the two syntaxes in ECMAScript. A string using double quotes is exactly the same as a
string using single quotes. Note, however, that a string beginning with a double quote must end with
a double quote, and a string beginning with a single quote must end with a single quote. For example,
the following will cause a syntax error:

var firstName = 'Nicholas"; //syntax error - quotes must match

37

Chapter 3: Language Basics

Character Literals

The String data type includes several character literals to represent nonprintable or otherwise useful
characters, as listed in the following table:

Literal Meaning

\n New line

\t Tab

\b Backspace

\r Carriage return

\f Form feed

\\ Backslash (\)

\! Single quote (') — used when the string is delineated by single quotes.

Example: 'He said, \'hey.\''.

\" Double quote (") — used when the string is delineated by double quotes.
Example: "He said, \"hey.\"".

\xnn A character represented by hexadecimal code nn (where n is an octal digit 0-F).
Example: \x41 is equivalent to "A".

\unnnn A Unicode character represented by the hexadecimal code nnnn (where nis a
hexadecimal digit 0-F). Example: \u03a3 is equivalent to the Greek character .

38

These character literals can be included anywhere with a string and will be interpreted as if they were a
single character, as shown here:

var text = "This is the letter sigma: \u03a3.";

In this example, the variable text is 28 characters long even though the escape sequence is six characters
long. The entire escape sequence represents a single character, so it is counted as such.

The length of any string can be returned by using the 1length property as follows:
alert (text.length); //outputs 28

This property returns the number of 16-bit characters in the string. If a string contains double-byte
characters, the length property may not accurately return the number of characters in the string.

Chapter 3: Language Basics

The Nature of Strings

Strings are immutable in ECMAScript, meaning that once they are created, their values cannot change.
To change the string held by a variable, the original string must be destroyed and the variable filled with
another string containing a new value, like this:

var lang = "Java'";
lang = lang + "Script";

Here, the variable lang is defined to contain the string "Java". On the next line, 1ang is redefined to
combined "Java" with "Script", making its value "JavaScript". This happens by creating a new
string with enough space for 10 characters, and then filling that string with "Java" and "Script". The
last step in the process is to destroy the original string "Java" and the string "Script", because neither
is necessary anymore. All of this happens behind the scenes, which is why older browsers (such as pre-1.0
versions of Firefox, and Internet Explorer 6.0) had very slow string concatenation. These inefficiencies
were addressed in later versions of these browsers.

Converting to a String

There are two ways to convert a value into a string. The first is to use the toString () method that
almost every value has (the nature of this method is discussed in Chapter 5). This method’s only job is to
return the string equivalent of the value. Consider this example:

var age = 11;

var ageAsString = age.toString(); //the string "11"
var found = true;
var foundAsString = found.toString(); //the string "true"

The tostring () method is available on values that are numbers, Booleans, objects, and strings (yes,
each string has a toString () method that simply returns a copy of itself). If a value is null or
undefined, this method is not available.

In most cases, toString () doesn’t have any arguments. However, when used on a number value,
toString () actually accepts a single argument: the radix in which to output the number.

By default, tostring () always returns a string that represents the number as a decimal, but by
passing in a radix, toString () can output the value in binary, octal, hexadecimal, or any other
valid base, as in this example:

var num = 10;

alert (num.toString()); //"10"
alert (num. toString(2)); //"1010"
alert (num.toString(8)); //"12"
alert (num.toString (10)) ; //"10"
alert (num.toString (16)); //"a"

This example shows how the output of toString () can change for numbers when providing a radix.
The value 10 can be output into any number of numeric formats. Note that the default (with no
argument) is the same as providing a radix of 10.

39

Chapter 3: Language Basics

If you're not sure that a value isn’t null or undefined, you can use the String () casting function,
which always returns a string regardless of the value type. The String () function follows these rules:

Q If the value has a toString () method, it is called (with no arguments) and the result is
returned.
Q Ifthevalueisnull, "null" is returned.

Q If the value is undefined, "undefined" is returned.

Consider the following:

var valuel = 10;
var value2 = true;
var value3 = null;
var valued;

alert (String(valuel)) ; //"10"

alert (String(value2)) ; //"true"

alert (String(value3)); //"null"
(())

alert (String(valued)) ; //"undefined"

Here, four values are converted into strings: a number, a Boolean, "null", and "undefined". The result
for the number and the Boolean are the same as if toString () were called. Because toString () isn’t
available on "null" and "undefined", the String () method simply returns literal text for those
values.

The Object Type

40

Objects in ECMAScript start out as nonspecific groups of data and functionality. Objects are created by
using the new operator followed by the name of the object type to create. Developers create their own objects
by creating instances of the Object type and adding properties and/or methods to it, as shown here:

var o = new Object();
This syntax is similar to Java, although ECMAScript requires parentheses to be used only when
providing arguments to the constructor. If there are no arguments, as in the following example, then the
parentheses can be omitted safely (though that’s not recommended):

var o = new Object; //legal, but not recommended
Instances of Object aren’t very useful on their own, but the concepts are important to understand
because, similar to java.lang.Object in Java, the Object type in ECMAScript is the base from which
all other objects are derived. All of the properties and methods of the Object type are also present on
other, more specific objects.

Each Object instance has the following properties and methods:

Q constructor — The function that was used to create the object. In the previous example, the
constructor is the Object () function.

Chapter 3: Language Basics

QO hasOwnProperty (propertyName) — Indicates if the given property exists on the object
instance (not on the prototype). The property name must be specified as a string (for example,
o.hasOwnProperty ("name")).

0 isPrototypeOf (object) — Determines if the object is a prototype of another object (prototypes
are discussed in Chapter 5).

0O propertyIsEnumerable (propertyName) — Indicates if the given property can be
enumerated using the for-in statement (discussed later in this chapter). As with
hasOwnProperty (), the property name must be a string.

O toString() — Returns a string representation of the object.
O valueOf () — Returns a string, number, or Boolean equivalent of the object. It often returns the

same value as toString ().

Since Object is the base for all objects in ECMAScript, every object has these base properties and
methods. Chapters 5 and 6 cover the specifics of how this occurs.

The Internet Explorer (IE) implementation of JavaScript has a slightly different
approach to JavaScript objects. In IE, only developer-defined objects inherit from
Object. All Browser Object Model (BOM) and Document Object Model (DOM)
objects are represented differently and so may not have all of the properties and
methods of object.

Operators

ECMA-262 describes a set of operators that can be used to manipulate data values. The operators

range from mathematical operations (such as addition and subtraction) and bitwise operators to
relational operators and equality operators. Operators are unique in ECMAScript in that they can be
used on a wide range of values, including strings, numbers, Booleans, and even objects. When used on
objects, operators typically call the valueOf () and/or toString () method to retrieve a value they can
work with.

Unary Operators

Operators that work on only one value are called unary operators. They are the simplest operators in
ECMAScript.

Increment/Decrement

The increment and decrement operators are taken directly from C and come in two versions: prefix and
postfix. The prefix versions of the operators are placed before the variable they work on; the postfix ones
are placed after the variable. To use a prefix increment, which adds one to a numeric value, you place
two plus signs (++) in front of a variable like this:

var age = 29;
++age;

41

Chapter 3: Language Basics

42

In this example, the prefix increment changes the value of age to 30 (adding 1 to its previous value
of 29). This is effectively equal to the following:

var age = 29;
age = age + 1;

The prefix decrement acts in a similar manner, subtracting 1 from a numeric value. To use a prefix
decrement, place two minus signs (--) before a variable, as shown here:

var age = 29;
--age;

Here the age variable is decremented to 28 (subtracting 1 from 29).
When using either a prefix increment or decrement, the variable’s value is changed before the statement
is evaluated (in computer science, this is usually referred to as having a side effect). Consider the

following:

var age = 29;

var anotherAge = --age + 2;
alert (age) ; //outputs 28
alert (anotherAge); //outputs 30

In this example, the variable anotherage is initialized with the decremented value of age plus 2.
Because the decrement happens first, age is set to 28, and then 2 is added, resulting in 30.

The prefix increment and decrement are equal in terms of order of precedence in a statement and are
therefore evaluated left to right. Consider this example:

var numl = 2;
var num2 = 20;
var num3 = --numl + num2; //equals 21
var num4d = numl + num2; //equals 21

Here, num3 is equal to 21 because numl is decremented to 1 before the addition occurs. The variable num4
also contains 21, because the addition is also done using the changed values.

The postfix versions of increment and decrement use the same syntax (++ and --, respectively) but are
placed after the variable instead of before it. Postfix increment and decrement differ from the prefix
versions in one important way: the increment or decrement doesn’t occur until after the containing
statement has been evaluated. In certain circumstances, this difference doesn’t matter, as in this example:

var age = 29;
age++;

Chapter 3: Language Basics

Moving

the increment operator after the variable doesn’t change what these statements do because the

increment is the only operation occurring. However, when mixed together with other operations,
the difference becomes apparent, as in the following example:

var
var

var

var

numl = 2;
num2 = 20;
num3 = numl-- + num2; //equals 22
num4 = numl + num?2; //equals 21

With just one simple change in this example, using postfix decrement instead of prefix, you can see the
difference. In the prefix example, num3 and num4 both ended up equal to 21, whereas this example ends
with num3 equal to 22 and num4 equal to 21. The difference is that the calculation for num3 uses the

original

All four

value of numl (2) to complete the addition, whereas num4 is using the decremented value (1).

of these operators work on any values, meaning not just integers, but strings, Booleans, floating-

point values, and objects. The increment and decrement operators follow these rules regarding values:

Q

Q

When used on a string that is a valid representation of a number, convert to a number and apply
the change. The variable is changed from a string to a number.

When used on a string that is not a valid number, the variable’s value is set to NaN (discussed in
Chapter 4). The variable is changed from a string to a number.

When used on a Boolean value that is false, convert to 0 and apply the change. The variable is
changed from a Boolean to a number.

When used on a Boolean value that is true, convert to 1 and apply the change. The variable is
changed from a Boolean to a number.

When used on a floating-point value, apply the change by adding or subtracting 1.

When used on an object, call its valueOf () method (discussed more in Chapter 5) to get a value
to work with. Apply the other rules. If the result is NaN, then call toString () and apply the
other rules again. The variable is changed from an object to a number.

The following example demonstrates some of these rules:

var sl = "2";
var s2 = "z";
var b = false;
var £ = 1.1;
var o = {

valueOf: function() {

return -1;

}
};
sl++; //value becomes numeric 3
S2++; //value becomes NaN
b++; //value becomes numeric 1
f--; //value becomes 0.10000000000000009 (due to floating-point inaccuracies)
o--; //value becomes numeric -2

43

Chapter 3: Language Basics

Unary Plus and Minus

44

The unary plus and minus operators are familiar symbols to most developers and operate the same way
in ECMAScript as they do in high-school math. The unary plus is represented by a single plus sign (+)
placed before a variable and does nothing to a numeric value, as shown in this example:

var num = 25;
num = +num; //still 25

When the unary plus is applied to a non-numeric value, it performs the same conversion as the

Number () casting function: the Boolean values of false and true are converted to 0 and 1, string values
are parsed according to a set of specific rules, and objects have their valueOf () and/or toString()
method called to get a value to convert.

The following example demonstrates the behavior of the unary plus when acting on different data types:

var sl = "01";
var s2 = "1.1";
var s3 = "z";
var b = false;
var £ = 1.1;
var o = {

valueOf: function() {
return -1;

sl = +s1; //value becomes numeric 1
s2 = +82; //value becomes numeric 1.1
s3 = +s3; //value becomes NaN

b = +b; //value becomes numeric 0

f = +f; //no change, still 1.1

o = +0; //value becomes numeric -1

The unary minus operator’s primary use is to negate a numeric value, such as converting 1 into —1. The
simple case is illustrated here:

var num = 25;
num = -num; //becomes -25

When used on a numeric value, the unary minus simply negates the value (as in this example). When
used on non-numeric values, unary minus applies all of the same rules as unary plus and then negates
the result, as shown here:

var sl = "01";
var s2 = "1.1";
var s3 = "z";
var b = false;
var £ = 1.1;
var o = {

valueOf: function() {
return -1;

Chapter 3: Language Basics

}i

sl = -s1; //value becomes numeric -1
s2 = -s2; //value becomes numeric -1.1
s3 = -s3; //value becomes NaN

b = -b; //value becomes numeric 0

f =-f; //change to -1.1

o = -0; //value becomes numeric 1

The unary plus and minus operators are used primarily for basic arithmetic but can also be useful for
conversion purposes, as illustrated in the previous example.

Bitwise Operators

The next set of operators works with numbers at their very base level, with the bits that represent them
in memory. All numbers in ECMAScript are stored in IEEE-754 64-bit format, but the bitwise operations
do not work directly on the 64-bit representation. Instead, the value is converted into a 32-bit integer, the
operation takes place, and the result is converted back into 64 bits. To the developer, it appears that only
the 32-bit integer exists because the 64-bit storage format is transparent. With that in mind, consider how
32-bit integers work.

Signed integers use the first 31 of the 32 bits to represent the numeric value of the integer. The 32nd bit
represents the sign of the number: 0 for positive or 1 for negative. Depending on the value of that bit,
called the sign bit, the format of the rest of the number is determined. Positive numbers are stored in true
binary format, with each of the 31 bits representing a power of 2, starting with the first bit (called bit 0),
representing 2°, the second bit represents 2!, and so on. If any bits are unused, they are filled with 0 and
essentially ignored. For example, the number 18 is represented as 00000000000000000000000000010010,
or more succinctly as 10010. These are the five most significant bits and can be used, by themselves, to
determine the actual value (see Figure 3-1).

110010

(24x1) + (23x0) + (22x0) + (21x1) + (29%0)

16 + 0 + O + 2 + O

18
Figure 3-1

45

Chapter 3: Language Basics

Negative numbers are also stored in binary code but in a format called two’s complement. The two’s
complement of a number is calculated in three steps:

1. Determine the binary representation of the absolute value (for example, to find —18, first
determine the binary representation of 18).

2. Find the one’s complement of the number, which essentially means that every 0 must be
replaced with a 1 and vice versa.

3. Add1 to the result.

Using this process to determine the binary representation —18, start with the binary representation of 18,
which is the following;:

0000 0000 0000 0000 0000 0000 0001 0010

Next, take the one’s complement, which is the inverse of this number:
1111 1111 1111 1111 1111 1111 1110 1101

Finally, add 1 to the one’s complement as follows:

1111 1111 1111 1111 1111 1111 1110 1101

1111 1111 1111 1111 1111 1111 1110 1110

So the binary equivalent of —18 is 11111111111111111111111111101110. Keep in mind that you have no
access to bit 31 when dealing with signed integers.

ECMAScript does its best to keep all of this information from you. When outputting a negative number
as a binary string, you get the binary code of the absolute value preceded by a minus sign, as in this

example:
var num = -18;
alert (num.toString(2)); //"-10010"

When converting the number -18 to a binary string, the result is ~10010. The conversion process
interprets the two’s complement and represents it in an arguably more logical form.

By default, all integers are represented as signed in ECMAScript. There is, however,
such a thing as an unsigned integer. In an unsigned integer, the 32nd bit doesn’t
represent the sign because there are only positive numbers. Unsigned integers also
can be larger because the extra bit becomes part of the number instead of an
indicator of the sign.

46

Chapter 3: Language Basics

When applying bitwise operators to numbers in ECMAScript, a conversion takes place behind the
scenes: the 64-bit number is converted into a 32-bit number, the operation is performed, and then

the 32-bit result is stored back into a 64-bit number. This gives the illusion that you're dealing with true
32-bit numbers, which makes the binary operations work in a way similar to other languages. A curious
side effect of this conversion is that the special values NaN and Infinity both are treated as equivalent
to 0 when used in bitwise operations.

If a bitwise operator is applied to a non-numeric value, the value is first converted into a number using
the Number () function (this is done automatically) and then the bitwise operation is applied. The
resulting value is a number.

Bitwise NOT

The bitwise NOT is represented by a tilde (~) and simply returns the one’s complement of the number.
Bitwise NOT is one of just a few ECMAScript operators related to binary mathematics. Consider this

example:
var numl = 25; //binary 00000000000000000000000000011001
var num2 = ~numl; //binary 11111111111111111111111111100110
alert (num2) ; //-26

Here, the bitwise NOT operator is used on 25, producing —26 as the result. This is the end effect of
the bitwise NOT: it negates the number and subtracts 1. The same outcome is produced with the
following code:

var numl = 25;
var num2 = -numl - 1;
alert (num2) ; //"-26"

Realistically, though this returns the same result, the bitwise operation is much faster because it works at
the very lowest level of numeric representation.

Bitwise AND

The bitwise AND operator is indicated by the ampersand character (&) and works on two values.
Essentially, bitwise AND lines up the bits in each number and then, using the rules in the following truth
table, performs an AND operation between the two bits in the same position:

Bit from First Number Bit from Second Number Result

S = O
o O O =

1
1
0
0

The short description of a bitwise AND is that the result will be 1 only if both bits are 1. If either bit is 0,
then the result is 0.

47

Chapter 3: Language Basics

As an example, to AND the numbers 25 and 3 together, the code looks like this:

var result = 25 & 3;
alert (result) ; //1

The result of a bitwise AND between 25 and 3 is 1. Why is that? Take a look:

[Ne)
wl
1}

0000 0000 0000 0000 0000 0000 0001 1001
3 = 0000 0000 0000 0000 0000 0000 0000 0011

AND = 0000 0000 0000 0000 0000 0000 0000 0001

As you can see, only one bit (bit 0) contains a 1 in both 25 and 3. Because of this, every other bit of the
resulting number is set to 0, making the result equal to 1.

Bitwise OR

48

The bitwise OR operator is represented by a single pipe character (|) and also works on two numbers.
Bitwise OR follows the rules in this truth table:

Bit from First Number Bit from Second Number Result

[T S G S

1
0
1
0

[l el

A bitwise OR operation returns 1 if at least one bit is 1. It returns 0 only if both bits are 0.

Using the same example as for bitwise AND, if you want to OR the numbers 25 and 3 together, the code
looks like this:

var result = 25 | 3;
alert (result) ; //27

The result of a bitwise OR between 25 and 3 is 27:

[N
U1
I

0000 0000 0000 0000 0000 0000 0001 1001
3 = 0000 0000 0000 0000 0000 0000 0000 0011

OR = 0000 0000 0000 0000 0000 0000 0001 1011

In each number, four bits are set to 1, so these are passed through to the result. The binary code 11011 is
equal to 27.

Chapter 3: Language Basics

Bitwise XOR

The bitwise XOR operator is represented by a caret (*) and also works on two values. Here is the truth
table for bitwise XOR:

Bit from First Number Bit from Second Number Result

[=
O =k = O

1
1
0
0

Bitwise XOR is different from bitwise OR in that it returns 1 only when exactly one bit has a value of 1 (if
both bits contain 1, it returns 0).

To XOR the numbers 25 and 3 together, the code is as follows:

var result = 25 * 3;
alert (result); //26

The result of a bitwise XOR between 25 and 3 is 26, as shown here:

0000 0000 0000 0000 0000 0000 0001 1001
0000 0000 0000 0000 0000 0000 0000 0011

XOR = 0000 0000 0000 0000 0000 0000 0001 1010

Four bits in each number are set to 1; however, the first bit in both numbers is 1, so that becomes 0 in the
result. All of the other 1s have no corresponding 1 in the other number, so they are passed directly
through to the result. The binary code 11010 is equal to 26 (note that this is one less than when performing
bitwise OR on these numbers).

Left Shift

The left shift is represented by two less-than signs (<<) and shifts all bits in a number to the left by the
number of positions given. For example, if the number 2 (which is equal to 10 in binary) is shifted 5 bits
to the left, the result is 64 (which is equal to 1000000 in binary), as shown here:

var oldvalue
var newValue

2; //equal to binary 10
oldvalue << 5; //equal to binary 1000000 which is decimal 64

Note that when the bits are shifted, five empty bits remain to the right of the number. The left shift fills
these bits with Os to make the result a complete 32-bit number (see Figure 3-2).

49

Chapter 3: Language Basics

"Secret" sign bit The number 2

(I) o|o[of[ofo]o]o]o]o[o|o|o|o|o|o]o]o][o]o]o]o]o[o[ofo|oo]o]o]1]0]

The number 2 shifted to the left five bits (the number 64)
ofofofofofofoofofofofofofofofofofoofo]ofofofofo[1][of[ofofo]o]o]

Padded with zeros

Figure 3-2

Note that left shift preserves the sign of the number it’s operating on. For instance, if -2 is shifted to the
left by five spaces, it becomes —64, not positive 64.

Signed Right Shift

The signed right shift is represented by two greater-than signs (>>) and shifts all bits in a 32-bit number
to the right while preserving the sign (positive or negative). A signed right shift is the exact opposite of a
left shift. For example, if 64 is shifted to the right five bits, it becomes 2:

64; //equal to binary 1000000
oldvalue >> 5; //equal to binary 10 which is decimal 2

var oldvalue
var newValue

Once again, when bits are shifted, the shift creates empty bits. This time, the empty bits occur at the left
of the number, but after the sign bit (see Figure 3-3). Once again, ECMAScript fills these empty bits with
the value in the sign bit to create a complete number.

"Secret" sign bit The number 64
|
o o|o[ofofo]o]o]o]o[o|o|o[o|o]o]o][o][o][o]o]o]o|ofo|1]o]0]0]0]0]0]

The number 64 shifted to the right five bits (the number 2)
olojojojolofofofofo]o]o]ofofofofofofofofofofofofofofofoo]o]1]0]
]

Padded with zeros
Figure 3-3

50

Chapter 3: Language Basics

Unsigned Right Shift

The unsigned right shift is represented by three greater-than signs (>>>) and shifts all bits in a 32-bit
number to the right. For numbers that are positive, the effect is the same as a signed right shift. Using the
same example as for the signed-right-shift example, if 64 is shifted to the right five bits, it becomes 2:

var oldvalue = 64; //equal to binary 1000000
var newValue = oldvalue >>> 5; //equal to binary 10 which is decimal 2

For numbers that are negative, however, something quite different happens. Unlike signed right shift,
the empty bits get filled with zeros regardless of the sign of the number. For positive numbers, it has the
same effect as a signed right shift; for negative numbers, the result is quite different. The unsigned-right-
shift operator considers the binary representation of the negative number to be representative of a
positive number instead. Because the negative number is the two’s complement of its absolute value, the
number becomes very large, as you can see in the following example:

var oldvalue = -64; //equal to binary 11111111111111111111111111000000
var newValue = oldvalue >>> 5; //equal to decimal 134217726

When an unsigned right shift is used to shift —64 to the right by five bits, the result is 134217726. This
happens because the binary representation of —-64 is 11111111111111111111111111000000, but because the
unsigned right shift treats this as a positive number, it considers the value to be 4294967232. When this
value is shifted to the right by five bits, it becomes 00000111111111111111111111111110, which is 134217726.

Boolean Operators

Almost as important as equality operators, Boolean operators are what make a programming language
function. Without the capability to test relationships between two values, statements such as i f. . .else
and loops wouldn’t be useful. There are three Boolean operators: NOT, AND, and OR.

Logical NOT

The logical NOT operator is represented by an exclamation point (!) and may be applied to any value
in ECMAScript. This operator always returns a Boolean value, regardless of the data type it’s used on.
The logical NOT operator first converts the operand to a Boolean value and then negates it, meaning
that the logical NOT behaves in the following ways:
Q If the operand is an object, false is returned.
If the operand is an empty string, true is returned.

If the operand is a nonempty string, false is returned.

If the operand is the number 0, true is returned.

If the operand is null, true is returned.

Q
Q
Q
Q If the operand is any number other than 0 (including Infinity), false is returned.
Q
Q If the operand is NaN, true is returned.

Q

If the operand is undefined, true is returned.

51

Chapter 3: Language Basics

The following example illustrates this behavior:

alert(!false); //true
alert(!"blue"); //false
alert(!0); //true
alert (!NaN) ; //true
alert(!""); //true
alert(!112345); //false

The logical NOT operator can also be used to convert a value into its Boolean equivalent. By using two
NOT operators in a row, you can effectively simulate the behavior of the Boolean () casting function.
The first NOT returns a Boolean value no matter what operand it is given. The second NOT negates that
Boolean value and so gives the true Boolean value of a variable. The end result is the same as using the
Boolean () function on a value, as shown here:

alert(!!"blue"); //true

alert(!10); //false

alert(!!NaN) ; //false

alert(!!t""); //false

alert (!112345); //true
Logical AND

52

The logical AND operator is represented by the double ampersand (&&) and is applied to two values,
such as in this example:

var result = true && false;

Logical AND behaves as described in the following truth table:

Operand 1 Operand 2 Result

True true true

True false false
False true false
False false false

Logical AND can be used with any type of operand, not just Boolean values. When either operand is not
a primitive Boolean, logical AND does not always return a Boolean value; instead, it does one of the
following:

Q If the first operand is an object, then the second operand is always returned.

Q If the second operand is an object, then the object is returned only if the first operand evaluates
to true.

Q If both operands are objects, then the second operand is returned.

Chapter 3: Language Basics

Q If either operand is null, then null is returned.
Q If either operand is NaN, then NaN is returned.

Q If either operand is undefined, then undefined is returned.

The logical AND operator is a short-circuited operation, meaning that if the first operand determines the
result, the second operand is never evaluated. In the case of logical AND, if the first operand is false,
no matter what the value of the second operand, the result can’t be equal to true. Consider the
following example:

var found = true;
var result = (found && someUndefinedvariable); //error occurs here
alert (result) ; //this line never executes

This code causes an error when the logical AND is evaluated, because the variable
someUndefinedvariable isn’t declared. The value of the variable found is true, so the logical AND
operator continued to evaluate the variable someUndefinedvariable. When it did, an error occurred
because someUndefinedvariable is undefined and therefore cannot be used in a logical

AND operation. If found is instead set to false, as in the following example, the error won’t occur:

var found = false;

var result = (found && someUndefinedvVariable); //no error
alert (result); / /works

In this code, the alert is displayed successfully. Even though the variable someUndefinedvariable is
undefined, it is never evaluated, because the first operand is false. This means that the result of the
operation must be false, so there is no reason to evaluate what’s to the right of the &&. Always keep in
mind short-circuiting when using logical AND.

Logical OR
The logical OR operator is represented by the double pipe (| |) in ECMAScript, like this:

var result = true || false;

Logical OR behaves as described in the following truth table:

Operand 1 Operand 2 Result

true true true
true false true
false true true
false false false

53

Chapter 3: Language Basics

M

54

Just like logical AND, if either operand is not a Boolean, logical OR will not always return a Boolean
value; instead, it does one of the following:

Q If the first operand is an object, then the first operand is returned.

If the first operand evaluates to false, then the second operand is returned.
If both operands are objects, then the first operand is returned.

If both operands are null, then null is returned.

If both operands are NaN, then NaN is returned.

0O 00U oo

If both operands are undefined, then undefined is returned.

Also like the logical AND operator, the logical OR operator is short-circuited. In this case, if the first
operand evaluates to true, the second operand is not evaluated. Consider this example:

var found = true;
var result = (found || someUndefinedvariable); //no error
alert (result); / /works

As with the previous example, the variable someUndefinedvariable is undefined. However, because
the variable found is set to true, the variable someUndefinedvariable is never evaluated and thus the
outputis "true". If the value of found is changed to false, an error occurs, as in the following example:

var found = false;

var result = (found || someUndefinedVariable); //error occurs here
alert (result); //this line never executes

You can also use this behavior to avoid assigning a null or undefined value to a variable. Consider the
following:

var myObject = preferredObject || backupObject;

In this example, the variable myObject will be assigned one of two values. The preferredobject
variable contains the value that is preferred if it’s available, whereas the backupObject variable
contains the backup value if the preferred one isn’t available. If preferredobject isn’t null, thenit’s
assigned to myObject; if it is null, then backupObject is assigned to myObject. This pattern is used
very frequently in ECMAScript for variable assignment and is used throughout this book.

ultiplicative Operators

There are three multiplicative operators in ECMAScript: multiply, divide, and modulus. These operators
work in a manner similar to their counterparts in languages such as Java, C, and Perl, but they also
include some automatic type conversions when dealing with non-numeric values. If either of the
operands for a multiplication operation isn’t a number, it is converted to a number behind the scenes
using the Number () casting function. This means that an empty string is treated as 0 and the Boolean
value of true is treated as 1.

Chapter 3: Language Basics

Multiply

The multiply operator is represented by an asterisk (*) and is used, as one might suspect, to multiply
two numbers. The syntax is the same as in C, as shown here:

var result = 34 * 56;

However, the multiply operator also has the following unique behaviors when dealing with special values:

Q

(]

Divide

If the operands are numbers, regular arithmetic multiplication is performed, meaning that

two positives or two negatives equal a positive, whereas operands with different signs yield a
negative. If the result cannot be represented by ECMAScript, either Infinity or —Infinity is
returned.

If either operand is NaN, the result is NaN.
If Infinity is multiplied by 0, the result is NaN.

If Infinity is multiplied by any number other than 0, the result is either Infinity or
—-Infinity, depending on the sign of the second operand.

If Infinity is multiplied by Infinity, the resultis Infinity.

If either operand isn’t a number, it is converted to a number behind the scenes using Number ()
and then the other rules are applied.

The divide operator is represented by a slash (/) and divides the first operand by the second operand,
as shown here:

var result = 66 / 11;

The divide operator, like the multiply operator, has special behaviors for special values. They are as

follows:

a

U 00 oo

(]

If the operands are numbers, regular arithmetic division is performed, meaning that two
positives or two negatives equal a positive, whereas operands with different signs yield a
negative. If the result can’t be represented in ECMAScript, it returns either Infinity or
—Infinity.

If either operand is NaN, the result is NaN.

If Infinity is divided by Infinity, the result is NaN.

If Infinity is divided by any number, the resultis Infinity.
If zero is divided by zero, the result is NaN.

If a nonzero finite number is divided by zero, the result is either Infinity or -Infinity,
depending on the sign of the first operand.

If Infinity is divided by any number other than zero, the result is either Infinity or
—-Infinity, depending on the sign of the second operand.

If either operand isn’t a number, it is converted to a number behind the scenes using Number ()
and then the other rules are applied.

55

Chapter 3: Language Basics

Modulus

The modulus (remainder) operator is represented by a percent sign (%) and is used in the following way:
var result = 26 % 5; //equal to 1

Just like the other multiplicative operators, the modulus operator behaves differently for special values,
as follows:

Q If the operands are numbers, regular arithmetic division is performed, and the remainder of that
division is returned.

If the dividend is Infinity or the divisor is 0, the result is NaN.

If Infinity is divided by Infinity, the result is NaN.

If the divisor is an infinite number, the result is the dividend.

If the dividend is zero, the result is zero.

U 00 0o

If either operand isn’t a number, it is converted to a number behind the scenes using Number ()
and then the other rules are applied.

Additive Operators

The additive operators, add and subtract, are typically the simplest mathematical operators in
programming languages. In ECMAScript, however, a number of special behaviors are associated with
each operator. As with the multiplicative operators, conversions occur behind the scenes for different
data types. For these operators, however, the rules aren’t as straightforward.

Add

The add operator (+) is used just as one would expect, as shown in the following example:
var result = 1 + 2;

If the two operands are numbers, they perform an arithmetic add and return the result according to the
following rules:
0 If either number is NaN, the result is NaN.
If Infinityis added to Infinity, the resultis Infinity.
If -Infinityis added to -Infinity, the resultis —-Infinity.
If Infinityis added to -Infinity, the result is NaN.
If +0 is added to +0, the result is +0.

If -0 is added to +0, the result is +0.

U 000 oD o

If -0 is added to -0, the result is —0.

56

Chapter 3: Language Basics

If, however, one of the operands is a string, then the following rules apply:

Q If both operands are strings, the second string is concatenated to the first.

Q If only one operand is a string, the other operand is converted to a string and the result is the
concatenation of the two strings.

If either operand is an object, number, or Boolean, its toString () method is called to get a string value
and then the previous rules regarding strings are applied. For undefined and null, the String ()
function is called to retrieve the values "undefined" and "null", respectively.

Consider the following;:

var resultl =5 + 5; //two numbers

alert (resultl); //10

var result2 =5 + "5"; //a number and a string
alert (result2); //"55"

This code illustrates the difference between the two modes for the add operator. Normally, 5 + 5 equals
10 (a number value), as illustrated by the first two lines of code. However, if one of the operands is
changed to a string, "5", the result becomes "55" (which is a primitive string value) because the first
operand gets converted to "5" as well.

One of the most common mistakes in ECMAScript is being unaware of the data types involved with an
addition operation. Consider the following:

var numl = 5;

var num2 = 10;

var message = "The sum of 5 and 10 is " + numl + num2;
alert (message) ; //"The sum of 5 and 10 is 510"

In this example, the message variable is filled with a string that is the result of two addition operations.
One might expect the final string to be "The sum of 5 and 10 is 15";however, it actually ends up
as "The sum of 5 and 10 is 510". This happens because each addition is done separately. The first
combines a string with a number (5), which results in a string. The second takes that result (a string) and
adds a number (10), which also results in a string. To perform the arithmetic calculation and then append
that to the string, just add some parentheses like this:

var numl = 5;
var num2 = 10;

var message = "The sum of 5 and 10 is " + (numl + num2);
alert (message) ; //"The sum of 5 and 10 is 15"

Here, the two number variables are surrounded by parentheses, which instructs the interpreter to
calculate its result before adding it to the string. The resulting string is "The sum of 5 and 10
is 15".

Subtract

The subtract operator (-) is another that is used quite frequently. Here’s an example:

var result = 2 - 1;

57

Chapter 3: Language Basics

Just like the add operator, the subtract operator has special rules to deal with the variety of type
conversions present in ECMAScript. They are as follows:

(]

If the two operands are numbers, perform arithmetic subtract and return the result.
If either number is NaN, the result is NaN.

If Infinity is subtracted from Infinity, the result is NaN.

If -Infinity is subtracted from —Infinity, the result is NaN.

If -Infinity is subtracted from Infinity, the resultis Infinity.

If Infinity is subtracted from —Infinity, the resultis —Infinity.

If +0 is subtracted from +0, the result is +0.

If -0 is subtracted from +0, the result is —0.

If -0 is subtracted from -0, the result is +0.

U 00000000

If either operand is a string, a Boolean, null, or undefined, it is converted to a number (using
Number () behind the scenes) and the arithmetic is calculated using the previous rules. If that
conversion results in NaN, then the result of the subtraction is NaN.

Q If either operand is an object, its valueOf () method is called to retrieve a numeric value to
represent it. If that value is NaN, then the result of the subtraction is NaN. If the object doesn’t
have valueOf () defined, then toString () is called and the resulting string is converted into a
number.

The following are some examples of these behaviors:

var resultl = 5 - true; //4 because true is converted to 1
var result2 = NaN - 1; / /NaN

var result3d =5 - 3; //2

var resultd4d =5 - ""; //5 because "" is converted to 0
var result5 = 5 - "2"; //3 because "2" is converted to 2
var result6 = 5 - null; //5 because null is converted to 0

Relational Operators

58

The less-than (<), greater-than (>), less-than-or-equal to (<=), and greater-than-or-equal to (>=) relational
operators perform comparisons between values in the same way that you learned in math class. Each of
these operators returns a Boolean value, as in this example:

var resultl = 5 > 3; //true
var result2 //false

1l
wul
A
w

As with other operators in ECMAScript, there are some conversions and other oddities that happen
when using different data types. They are as follows:

Q If the operands are numbers, perform a numeric comparison.

Q If the operands are strings, compare the character codes of each corresponding character in
the string.

Chapter 3: Language Basics

Q If one operand is a number, convert the other operand to a number and perform a numeric
comparison.

Q If an operand is an object, call valueOf () and use its result to perform the comparison
according to the previous rules. If valueOf£ () is not available, call toString () and use that
value according to the previous rules.

Q Ifan operand is a Boolean, convert it to a number and perform the comparison.

When a relational operator is used on two strings, an interesting behavior occurs. Many expect that less-
than means “alphabetically before” and greater-than means “alphabetically after,” but this is not the
case. For strings, each of the first string’s character codes is numerically compared against the character
codes in a corresponding location in the second string. After this comparison is complete, a Boolean
value is returned. The problem here is that the character codes of uppercase letters are all lower than the
character codes of lowercase letters, meaning that you can run into situations like this:

var result = "Brick" < "alphabet"; //true
In this example, the string "Brick" is considered to be less than the string "alphabet" because the
letter B has a character code of 66 and the letter 4 has a character code of 97. To force a true alphabetic
result, you must convert both operands into a common case (upper or lower) and then compare like this:

var result = "Brick".toLowerCase() < "alphabet".toLowerCase(); //false

Converting both operands to lowercase ensures that "alphabet" is correctly identified as alphabetically
before "Brick".

Another sticky situation occurs when comparing numbers that are strings, such as in this example:

var result = "23" < "3"; //true
This code returns true when comparing the string "23" to "3". Because both operands are strings, they
are compared by their character codes (the character code for "2 is 50; the character code for "3 is 51).
If, however, one of the operands is changed to a number as in the following example, the result makes
more sense:

var result = "23" < 3; //false
Here, the string "23" is converted into the number 23 and then compared to 3, giving the expected
result. Whenever a number is compared to a string, the string is converted into a number and then
numerically compared to the other number. This works well for cases like the previous example, but
what if the string can’t be converted into a number? Consider this example:

var result = "a" < 3; //false because "a" becomes NaN

The letter "a" can’t be meaningfully converted into a number, so it becomes NaN. As a rule, the result of
any relational operation with NaN is false, which is interesting when considering the following:

var resultl = NaN < 3; //false
var result2 = NaN >= 3; //false

59

Chapter 3: Language Basics

In most comparisons, if a value is not less than another, it is always greater than or equal to it. When
using NaN, however, both comparisons return false.

Equality Operators

Eq

60

Determining whether two variables are equivalent is one of the most important operations in
programming. This is fairly straightforward when dealing with strings, numbers, and Boolean values,
but the task gets a little complicated when you take objects into account. Originally ECMAScript’s equal
and not-equal operators performed conversions into like types before doing a comparison. The question
of whether these conversions should, in fact, take place was then raised. The end result was for
ECMAScript to provide two sets of operators: equal and not equal to perform conversion before
comparison, and identically equal and not identically equal to perform comparison without conversion.

ual and Not Equal

The equal operator in ECMAScript is the double equal sign (==), and it returns true if the operands are
equal. The not-equal operator is the exclamation point followed by an equal sign (! =), and it returns
true if two operands are not equal. Both operators do conversions to determine if two operands are
equal (often called type coercion).

When performing conversions, the equal and not-equal operators follow these basic rules:
Q If an operand is a Boolean value, convert it into a numeric value before checking for equality.
A value of false converts to 0, whereas a value of true converts to 1.

Q If one operand is a string and the other is a number, attempt to convert the string into a number
before checking for equality.

Q If either operand is an object, the valueOf () method is called to retrieve a primitive value to
compare according to the previous rules. If valueOf () is not available, then toString () is
called.

The operators also follow these rules when making comparisons:

O Values of null and undefined are equal.
Q Values of null and undefined cannot be converted into any other values for equality checking.

Q If either operand is NaN, the equal operator returns false and the not-equal operator returns
true. Important note: Even if both operands are NaN, the equal operator returns false because,
by rule, NaN is not equal to NaN.

Q If both operands are objects, then they are compared to see if they are the same object. If both
operands point to the same object, then the equal operator returns true. Otherwise, the two are
not equal.

Chapter 3: Language Basics

The following table lists some special cases and their results:

Expression Value
null == undefined true
"NaN" == NaN false
5 == NaN false
NaN == NaN false
NaN != NaN true
false == true
true == true
true == false
undefined == false
null == false
"5" == 5 true

Identically Equal and Not Identically Equal

The identically equal and not identically equal operators do the same thing as equal and not equal,
except that they do not convert operands before testing for equality. The identically equal operator is
represented by three equal signs (===) and returns true only if the operands are equal without
conversion, as in this example:

var resultl
var result?2

("55" == 55); //true - equal because of conversion
("55" === 55); //false - not equal because different data types

In this code, the first comparison uses the equal operator to compare the string "55" and the number 55,
which returns true. As mentioned previously, this happens because the string "55" is converted to

the number 55 and then compared with the other number 55. The second comparison uses the
identically equal operator to compare the string and the number without conversion, and of course, a
string isn’t equal to a number, so this outputs false.

The not identically equal operator is represented by an exclamation point followed by two equal signs
(1==) and returns true only if the operands are not equal without conversion. For example:

var resultl = ("55" != 55); //false - equal because of conversion
var result2 ("55" == 55); //true - not equal because different data types

Here, the first comparison uses the not equal operator, which converts the string "55" to the number 55,
making it equal to the second operand, also the number 55. Therefore, this evaluates to false because
the two are considered equal. The second comparison uses the not identically equal operator. It helps to
think of this operation as saying, “Is the string 55 different from the number 55?” The answer to this is
yes (true).

61

Chapter 3: Language Basics

Because of the type conversion issues with the equal and not-equal operators, it is
recommended to use identically equal and not identically equal instead. This helps
to maintain data type integrity throughout your code.

Conditional Operator

The conditional operator is one of the most versatile in ECMAScript, and it takes on the same form as
in Java, which is as follows:

variable = boolean_expression ? true_value : false_value;
This basically allows a conditional assignment to a variable depending on the evaluation of the
boolean_expression. If it’s true, then true_value is assigned to the variable; if it'’s false, then

false_value is assigned to the variable, as in this instance:

var max = (numl > num2) ? numl : num2;

In this example, max is to be assigned the number with the highest value. The expression states that if
numl is greater than num2, then num1 is assigned to max. If, however, the expression is false (meaning
that num2 is less than or equal to num1), then num?2 is assigned to max.

Assignment Operators

Simple assignment is done with the equal sign (=) and simply assigns the value on the right to the
variable on the left, as shown in the following example:

var num = 10;

Compound assignment is done with one of the multiplicative, additive, or bitwise-shift operators

followed by an equal sign (=). These assignments are designed as shorthand for such common situations
as this:

var num = 10;
num = num + 10;

The second line of code can be replaced with a compound assignment:

var num = 10;
num += 10;

Compound-assignment operators exist for each of the major mathematical operations, and a few others
as well. They are as follows:

Q Multiply/assign (*=)
0 Divide/assign (/=)
Q Modulus/assign (%=)

62

Chapter 3: Language Basics

Add/assign (+=)
Subtract/assign (-=)

Left shift/assign (<<=)

Signed right shift/assign (>>=)

U 0 U oo

Unsigned right shift/assign (>>>=)

These operators are designed specifically as shorthand ways of achieving operations. They do not
represent any performance improvement.

Comma Operator

The comma operator allows execution of more than one operation in a single statement, as
illustrated here:

var numl=1, num2=2, num3=3;

Most often, the comma operator is used in the declaration of variables; however, it can also be used to
assign values. When used in this way, the comma operator always returns the last item in the expression,
as in the following example:

var num = (5, 1, 4, 8, 0); //num becomes 0

In this example, num is assigned the value of 0 because it is the last item in the expression. There
aren’t many times when commas are used in this way; however, it is helpful to understand that this
behavior exists.

Statements

ECMA-262 describes several statements (also called flow-control statements). Essentially, statements define
most of the syntax of ECMAScript and typically use one or more keywords to accomplish a given task.
Statements can be simple, such as telling a function to exit, or complicated, such as specifying a number
of commands to be executed repeatedly.

The if Statement

One of the most frequently used statements in most programming languages is the i f statement. The if
statement has the following syntax:

if (condition) statementl else statement2
The condition can be any expression; it doesn’t even have to evaluate to an actual Boolean value.

ECMAScript automatically converts the result of the expression into a Boolean by calling the Boolean ()
casting function on it. If the condition evaluates to true, statement1 is executed; if the condition

63

Chapter 3: Language Basics

evaluates to false, statement2 is executed. Each of the statements can be either a single line or a code
block (a group of code lines enclosed within braces). Consider this example:

if (1 > 25)

alert ("Greater than 25."); //one-line statement
else {

alert("Less than or equal to 25."); //block statement

}

It’s considered best coding practice to always use block statements, even if only one line of code is to be
executed. Doing so can avoid confusion about what should be executed for each condition.

You can also chain if statements together like so:
if (conditionl) statementl else if (condition2) statement2 else statement3
Here’s an example:

if (i > 25) {
alert ("Greater than 25.")
} else if (1 < 0) {
alert("Less than 0.");
} else {
alert ("Between 0 and 25, inclusive.");
}

The do-while Statement

The do-while statement is a post-test loop, meaning that the escape condition is evaluated only
after the code inside the loop has been executed. The body of the loop is always executed at least once
before the expression is evaluated. Here’s the syntax:

do {
statement
} while (expression);

And here’s an example of its usage:

var i = 0;
do {
i+=2;
} while (i < 10);

In this example, the loop continues as long as i is less than 10. The variable starts at 0 and is incremented
by two each time through the loop.

Post-test loops such as this are most often used when the body of the loop should be
executed at least once before exiting.

64

Chapter 3: Language Basics

The while Statement

The while statement is a pretest loop. This means the escape condition is evaluated before the code
inside the loop has been executed. Because of this, it is possible that the body of the loop is never
executed. Here’s the syntax:

while (expression) statement
And here’s an example of its usage:

var i = 0;
while (i < 10) {
1 += 2;

}

In this example, the variable i starts out equal to 0 and is incremented by two each time through the
loop. As long as the variable is less than 10, the loop will continue.

The for Statement

The for statement is also a pretest loop with the added capabilities of variable initialization before
entering the loop and defining postloop code to be executed. Here’s the syntax:

for (initialization; expression; post-loop-expression) statement
And here’s an example of its usage:

var count = 10;
for (var i=0; 1 < count; i++){
alert(1);

}

This code defines a variable i that begins with the value 0. The for loop is entered only if the
conditional expression (i < count) evaluates to true, making it possible that the body of the code
might not be executed. If the body is executed, the postloop expression is also executed, iterating the
variable i. This for loop is the same as the following:

var count = 10;
var 1 = 0;
while (i < count){
alert(i);
i++;

}

Nothing can be done with a for loop that can’t be done using a while loop. The for loop simply
encapsulates the loop-related code into a single location.

65

Chapter 3: Language Basics

It’s important to note that there’s no need to use the var keyword inside the for loop initialization. It
can be done outside the initialization as well, such as the following:

var count = 10;
var 1i;
for (i=0; 1 < count; i++){

alert(1i);

This code has the same affect as having the declaration of the variable inside the loop initialization.
There are no block-level variables in ECMAScript (discussed further in Chapter 4), so a variable defined
inside the loop is accessible outside the loop as well. For example:

var count = 10;

for (var 1=0; 1 < count; i++){
alert(1i);

}

alert (i) ; //10

In this example, an alert displays the final value of the variable i after the loop has completed. This
displays the number 10, because the variable i is still accessible even though it was defined inside the loop.

The initialization, control expression, and postloop expression are all optional. You can create an infinite
loop by omitting all three, like this:

for (;;) { //infinite loop
doSomething () ;
}
Including only the control expression effectively turns a for loop into a while loop, as shown here:
var count = 10;
var 1 = 0;
for (; i < count;){
alert (i) ;
1++;

}

This versatility makes the for statement one of the most used in the language.

The for-in Statement

The for-in statement is a strict iterative statement. It is used to enumerate the properties of an object.
Here’s the syntax:

for (property in expression) statement
And here’s an example of its usage:

for (var propName in window) {
document .write (propName) ;

66

Chapter 3: Language Basics

Here, the for-in statement is used to display all the properties of the BOM window object. Each time
through the loop, the propName variable is filled with the name of a property that exists on the window
object. This continues until all of the available properties have been enumerated over. As with the for
statement, the var operator in the control statement is not necessary but is recommended for ensuring
the use of a local variable.

Object properties in ECMAScript are unordered, so the order in which property names are returned in
a for-in statement cannot necessarily be predicted. All enumerable properties will be returned once,
but the order may differ across browsers.

In versions of Safari earlier than 3, the for-in statement had a bug in which some
properties were returned twice.

Labeled Statements

It is possible to label statements for later use with the following syntax:
label: statement
Here’s an example:

start: for (var i=0; 1 < count; i++) {
alert(i);

}

In this example, the label start can be referenced later by using the break or continue statement.
Labeled statements are typically used with loops such as the for statement.

The break and continue Statements

The break and continue statements provide stricter control over the execution of code in a loop. The
break statement exits the loop immediately, forcing execution to continue with the next statement after
the loop. The continue statement, on the other hand, exits the loop immediately, but execution
continues from the top of the loop. Here’s an example:

var num = 0;

for (var i=1; 1 < 10; 1i++) {
if (1 %5 ==0) {
break;

}

num++;

}

alert (num) ; //4

67

Chapter 3: Language Basics

68

In this code, the for loop increments the variable i from 1 to 10. In the body of loop, an i f statement
checks to see if the value of i is evenly divisible by 5 (using the modulus operator). If so, the break
statement is executed and the loop is exited. The num variable starts out at 0 and indicates the number of
times the loop has been executed. After the break statement has been hit, the next line of code to be
executed is the alert, which displays 4. So the number of times the loop has been executed is four
because when i equals 5, the break statement causes the loop to be exited before num can be
incremented. A different effect can be seen if break is replaced with continue like this:

var num = 0;

for (var 1=1; 1 < 10; i++) {
if (1 %5 ==0) {

continue;
}
num++;
}
alert (num) ; //8

Here, the alert displays 8, the number of times the loop has been executed. When i reaches a value of 5,
the loop is exited before num is incremented, but execution continues with the next iteration, when the
value is 6. The loop then continues until its natural completion, when i is 10. The final value of num is 8
instead of 9, because one increment didn’t occur due to the continue statement.

Both the break and continue statements can be used in conjunction with labeled statements to return
to a particular location in the code. This is typically used when there are loops inside of loops, as in the
following example:

var num = 0;

outermost:
for (var i1=0; 1 < 10; i++) {
for (var j=0; j < 10; j++) {
if (1 == 5 && j == 5) {
break outermost;
}

num++;
}

alert (num) ; //55

In this example, the outermost label indicates the first for statement. Each loop normally executes

10 times, meaning that the num++ statement is normally executed 100 times and, consequently, num
should be equal to 100 when the execution is complete. The break statement here is given one argument:
the label to break to. Adding the label allows the break statement not just to break out of the inner for
statement (using the variable j) but also out of the outer for statement (using the variable i). Because of

Chapter 3: Language Basics

this, num ends up with a value of 55, because execution is halted when both i and j are equal to 5. The
continue statement can be used in the same way, as shown in the following example:

var num = 0;

outermost:
for (var 1=0; 1 < 10; 1i++) {
for (var j=0; j < 10; j++) {
if (1 == 5 && j == 5) {
continue outermost;

}

num++;
}

alert (num) ; //95

In this case, the continue statement forces execution to continue — not in the inner loop, but in

the outer loop. When j is equal to 5, continue is executed, which means that the inner loop misses five
iterations, leaving num equal to 95.

Using labeled statements in conjunction with break and continue can be very powerful but can

cause debugging problems if overused. Always use descriptive labels and try not to nest more than a
few loops.

The with Statement

The with statement sets the scope of the code within a particular object. The syntax is as follows:

with (expression) statement;

The with statement was created as a convenience for times when a single object was being coded to over
and over again, such as in this example:

var gs = location.search.substring (1) ;
var hostName = location.hostname;
var url = location.href;

Here, the 1ocation object is used on every line. This code can be rewritten using the with statement as
follows:

with (location) {
var gs = search.substring(l);
var hostName = hostname;
var url = href;

69

Chapter 3: Language Basics

In this rewritten version of the code, the with statement is used in conjunction with the location object.
This means that each variable inside the statement is first considered to be a local variable. If it's not
found to be a local variable, the 1ocation object is searched to see if it has a property of the same name.
If so, then the variable is evaluated as a property of location.

It is widely considered a poor practice to use the with statement in production code
due to its negative performance impact and the difficulty in debugging code
contained in the with statement.

The switch Statement

Closely related to the if statement is the switch statement, another flow-control statement adopted
from other languages. The syntax for the swi tch statement in ECMAScript closely resembles the syntax
in other C-based languages, as you can see here:

switch (expression) {
case value: statement
break;
case value: statement
break;
case value: statement
break;
case value: statement
break;
default: statement
}

Each case in a switch statement says, “If the expression is equal to the value, execute the statement.”
The break keyword causes code execution to jump out of the switch statement. Without the break
keyword, code execution falls through the original case into the following one. The default keyword
indicates what is to be done if the expression does not evaluate to one of the cases (in effect, it is an else
statement).

Essentially, the switch statement prevents a developer from having to write something like this:

if (1 == 25){
alert("25");

} else if (i == 35) {
alert ("35");

} else if (i == 45) {
alert("45");

} else {
alert ("Other");

70

Chapter 3: Language Basics

The equivalent switch statement is as follows:

switch (i) {

case 25:
alert("25");
break;

case 35:
alert("35");
break;

case 45:
alert ("45") ;
break;

default:
alert ("Other");

It’s best to always put a break statement after each case to avoid having cases fall through into the next
one. If you need a case statement to fall through, include a comment indicating that the omission of the
break statement is intentional, such as this:

switch (i) {

case 25:
/* falls through */

case 35:
alert("25 or 35");
break;

case 45:
alert("45");
break;

default:
alert ("Other") ;

Although the switch statement was borrowed from other languages, it has some unique characteristics
in ECMAScript. First, the switch statement works with all data types (in many languages it works
only with numbers), so it can be used with strings and even with objects. Second, the case values need
not be constants; they can be variables and even expressions. Consider the following example:

switch ("hello world") {

case "hello" + " world":
alert ("Greeting was found.");
break;

case "goodbye":
alert("Closing was found.");
break;

default:
alert ("Unexpected message was found.");

71

Chapter 3: Language Basics

In this example, a string value is used in a switch statement. The first case is actually an expression that
evaluates a string concatenation. Because the result of this concatenation is equal to the switch
argument, the alert displays "Greeting was found. " The ability to have case expressions also allows
you to do things like this:

var num = 25;
switch (true) {
case num < 0:
alert("Less than 0.");
break;
case num >= 0 && num <= 10:
alert ("Between 0 and 10.");
break;
case num > 10 && num <= 20:
alert ("Between 10 and 20.");
break;
default:
alert ("More than 20.");

Here, a variable num is defined outside the switch statement. The expression passed into the switch
statement is true because each case is a conditional that will return a Boolean value. Each case is
evaluated, in order, until a match is found or until the default statement is encountered (which is the
case here).

The switch statement compares values using the identically equal operator, so no type coercion occurs
(for example, the string "10" is not equal to the number 10).

Functions

Functions are the core of any language, because they allow the encapsulation of statements that can be
run anywhere and at any time. Functions in ECMAScript are declared using the function keyword,
followed by a set of arguments and then the body of the function. The basic syntax is as follows:

function functionName (arg0, argl,...,argN) {
statements
}
Here’s an example:
function sayHi (name, message) {
alert("Hello " + name + "," + message);
}
This function can then be called by using the function name, followed by the function arguments
enclosed in parentheses (and separated by commas, if there are multiple arguments). The code to call the

sayHi () function looks like this:

sayHi ("Nicholas", "how are you today?");

72

Chapter 3: Language Basics

The output of this function call is, "Hello Nicholas, how are you today?" The named arguments
name and message are used as part of a string concatenation that is ultimately displayed in an alert.

Functions in ECMAScript need not specify whether they return a value. Any function can return a value
at any time by using the return statement followed by the value to return. Consider this example:

function sum(numl, num2) {
return numl + num2;

}

The sum () function adds two values together and returns the result. Note that aside from the return
statement, there is no special declaration indicating that the function returns a value. This function can
be called using the following:

var result = sum(5, 10);

Keep in mind that a function stops executing and exits immediately when it encounters the return
statement. Therefore, any code that comes after a return statement will never be executed. For example:

function sum(numl, num2) {
return numl + num2;

alert("Hello world"); //never executed

In this example, the alert will never be displayed because it appears after the return statement.
It’s also possible to have more than one return statement in a function, like this:

function diff (numl, num2) {
if (numl < num2) {
return num2 - numl;
} else {
return numl - num2;

}

Here, the diff () function determines the difference between two numbers. If the first number is less
than the second, it subtracts the first from the second; otherwise it subtracts the second from the first.
Each branch of the code has its own return statement that does the correct calculation.

The return statement can also be used without specifying a return value. When used in this way,

the function stops executing immediately and returns undefined as its value. This is typically used in
functions that don’t return a value to stop function execution early, as in the following example, where
the alert won't be displayed:

function sayHi (name, message) {
return;

alert("Hello " + name + "," + message); //never called

73

Chapter 3: Language Basics

It’s recommended that a function either always return a value or never return a value. Writing a
function that sometimes returns a value causes confusion, especially during debugging.

Understanding ArSuments

Function arguments in ECMAScript don’t behave in the same way as function arguments in most other
languages. An ECMAScript function doesn’t care how many arguments are passed in, nor does it care
about the data types of those arguments. Just because you define a function to accept two arguments
doesn’t mean you can pass in only two arguments. You could pass in one or three or none, and the
interpreter won’t complain. This happens because arguments in ECMAScript are represented as an array
internally. The array is always passed to the function, but the function doesn’t care what (if anything) is
in the array. If the array arrives with zero items, that’s fine; if it arrives with more, that’s okay too. In fact,
there actually is an arguments object that can be accessed while inside a function to retrieve the values
of each argument that was passed in.

The arguments object acts like an array (though it isn’t an instance of Array) in that you can access each
argument using bracket notation (the first argument is arguments [0], the second is arguments[1],
and so on) and determine how many arguments were passed in by using the length property. In the
previous example, the sayHi () function’s first argument is named name. The same value can be
accessed by referencing arguments [0]. Therefore, the function can be rewritten without naming the
arguments explicitly, like this:

function sayHi() {
alert("Hello " + arguments[0] + "," + arguments[1l]);

}

In this rewritten version of the function, there are no named arguments. The name and message
arguments have been removed, yet the function will behave appropriately. This illustrates an important
point about functions in ECMAScript: named arguments are a convenience, not a necessity. Unlike in
other languages, naming your arguments in ECMAScript does not create a function signature that must
be matched later on; there is no validation against named arguments.

The arguments object can also be used to check the number of arguments passed into the function via
the 1ength property. The following example outputs the number of arguments passed into the function
each time it is called:

function howManyArgs () {
alert (arguments.length) ;
}

howManyArgs ("string", 45); //2
howManyArgs () ; //0
howManyArgs (12) ; //1

74

Chapter 3: Language Basics

This example shows alerts displaying 2, 0, and 1 (in that order). In this way, developers have the freedom
to let functions accept any number of arguments and behave appropriately. Consider the following:

function doAdd() {

if (arguments.length == 1) {
alert (arguments[0] + 10);
} else if (arguments.length == 2) {

alert (arguments[0] + arguments([l]);
}
}

doAdd (10) ; //20
doAdd (30, 20); //50

The function doadd () adds 10 to a number only if there is one argument; if there are two arguments,
they are simply added together and returned. So doAdd (10) returns 20, whereas doAdd (30, 20) returns
50. It’s not quite as good as overloading, but it is a sufficient workaround for this ECMAScript limitation.

Another important thing to understand about arguments is that the arguments object can be used in
conjunction with named arguments, such as the following;:

function doAdd (numl, num2) {
if (arguments.length == 1) {
alert (numl + 10);
} else if (arguments.length == 2) {
alert (arguments[0] + num2);

In this rewrite of the doAdd () function, two named arguments are used in conjunction with the
arguments object. The named argument numl holds the same value as arguments[0], so they can be
used interchangeably (the same is true for num2 and arguments[1]).

One last note on arguments: any named argument that is not passed into the function is automatically
assigned the value undefined. This is akin to defining a variable without initializing it. For example, if

only one argument is passed into the doAdd () function, then num2 has a value of undefined.

All arquments in ECMAScript are passed by value. It is not possible to pass arguments by reference.

75

Chapter 3: Language Basics

No Overloading

ECMAScript functions cannot be overloaded in the traditional sense. In other languages, such as Java, it
is possible to write two definitions of a function so long as their signatures (the type and number of
arguments accepted) are different. As just covered, functions in ECMAScript don’t have signatures,
because the arguments are represented as an array containing zero or more values. Without function
signatures, true overloading is not possible.

If two functions are defined to have the same name in ECMAScript, it is the last function that becomes
the owner of that name. Consider the following example:

function addSomeNumber (num) {
return num + 100;

}

function addSomeNumber (num) {
return num + 200;

}

var result = addSomeNumber (100) ; //300

Here, the function addSomeNumber () is defined twice. The first version of the function adds 100 to the
argument, and the second adds 200. When the last line is called, it returns 300 because the second
function has overwritten the first.

As mentioned previously, it’s possible to simulate overloading of methods by checking the type and
number of arguments that have been passed into a function and then reacting accordingly.

Summary

76

The core language features of JavaScript are defined in ECMA-262 as a pseudo-language named
ECMAScript. ECMAScript contains all of the basic syntax, operators, data types, and objects necessary to
complete basic computing tasks, though it provides no way to get input or to produce output.
Understanding ECMAScript and its intricacies is vital to a complete understanding of JavaScript as
implemented in web browsers. The most widely implemented version of ECMAScript is the one defined
in ECMA-262, Third Edition. The following are some of the basic elements of ECMAScript:

Q The basic data types in ECMAScript are Undefined, Null, Boolean, Number, and String.

Q Unlike other languages, there’s no separate data type for integers versus floating-point values;
the Number type represents all numbers.

Q Thereis also a complex data type, Object, that is the base type for all objects in the language.

QO ECMAScript provides a lot of the basic operators available in C and other C-like languages,
including arithmetic operators, Boolean operators, relational operators, equality operators, and
assignment operators.

Q The language features flow-control statements borrowed heavily from other languages, such as
the if statement, the for statement, and the switch statement.

Chapter 3: Language Basics

Functions in ECMAScript behave differently than functions in other languages:

Q There is no need to specify the return value of the function since any function can return any
value at any time.

Q Functions that don’t specify a return value actually return the special value undefined. There is
no such thing as a function signature, because arguments are passed as an array containing zero
or more values.

Q Any number of arguments can be passed into a function and are accessible through the
arguments object.

Q Function overloading is not possible due to the lack of function signatures.

77

Variables, Scope,
and Memory

The nature of variables in JavaScript, as defined in ECMA-262 Third Edition, is quite unique
compared to other languages. Being loosely typed, a variable is literally just a name for a particular
value at a particular time. Because there are no rules defining the type of data that a variable must
hold, a variable’s value and data type can change during the lifetime of a script. Though this is an
interesting, powerful, and problematic feature, there are many more complexities related to
variables.

Primitive and Reference Values

ECMAScript variables may contain two different types of data: primitive values and reference
values. Primitive values are simple pieces of data that are stored in memory on the stack, which is to
say that the value is completely stored in one memory location. Reference values, on the other hand,
are objects that are stored on the heap, meaning that the value stored in the variable is actually just
a pointer to another memory location where the object is stored.

When a value is assigned to a variable, the interpreter must determine if it’s a primitive or a
reference. The five primitive types were discussed in the previous chapter: Undefined, Null,
Boolean, Number, and String. Each of these data types takes up a fixed amount of space, so values
can easily be stored on the stack. Doing so also allows for fast variable lookup. These variables are
said to be accessed by value, because you are manipulating the actual value stored in the variable.

In many languages, strings are represented by objects and are therefore considered to be reference
types. ECMAScript breaks away from this tradition.

If a reference value is assigned to a variable, space must be allocated on the heap. Reference values
cannot be stored on the stack, because they don’t have fixed sizes. A memory address does

Chapter 4: Variables, Scope, and Memory

have a fixed size, so it can easily be placed on the stack. When variable lookup occurs, the memory
addpress is first read and then the value on the heap is recovered using that address. Variables found this
way are said to be accessed by reference, because you are not manipulating the actual value but rather an
object that the value references. Figure 4-1 diagrams how different data types are stored in memory.

Stack Heap

11
(Number type)

true

(Boolean type)
null
Null t
| “.& —

(Object type)

"hello"
(String type)

undefined
(Undefined type)

Figure 4-1

This figure shows several primitive types stored on the stack. Variables on the stack each take up a single
slot and are accessed sequentially. When there’s a memory address on the stack, it acts as a pointer that
indicates where an object is located on the heap. The heap is not accessed sequentially, because each
object may require different amounts of memory.

Dynamic Properties

80

Primitive and reference values are defined similarly: a variable is created and assigned a value. What you
can do with those values once they’re stored in a variable, however, is quite different. When working with
reference values, properties and methods may be added, changed, or deleted at any time. Consider this
example:

var person = new Object();
person.name = "Nicholas";
alert (person.name) ; //"Nicholas"

Here, an object is created and stored in the variable person. Next, a property called name is added and
assigned the string value of "Nicholas". The new property is then accessible from that point on, until
the object is destroyed or the property is explicitly removed.

Primitive values can’t have properties added to them even though attempting to do so won’t cause an
error. Here’s an example:

var name = "Nicholas";
name.age = 27;
alert (name.age) ; //undefined

Here, a property called age is defined on the string name and assigned a value of 27. On the very next
line, however, the property is gone. Only reference values can have properties defined dynamically for
later usage.

Chapter 4: Variables, Scope, and Memory

Copying Values

Aside from differences in how they are stored, primitive and reference values act differently when
copied from one variable to another. When a primitive value is assigned from one variable to another,
the value stored on the stack is created and copied into the location for the new variable. Consider the
following example:

var numl = 5;
var num2 = numl;

Here, numl contains the value of 5. When num2 is initialized to numi, it also gets the value of 5. This value

is completely separate from the one that is stored in numl because it’s a copy of that value. Each of these
variables can now be used separately with no side effects. This process is diagrammed in Figure 4-2.

Stack before copy

5

numi (Number type)

Stack after copy

5
num2 (Number type)
5
numi (Number type)
Figure 4-2

When a reference value is assigned from one variable to another, the value stored on the stack is also
copied into the location for the new variable. The difference is that this value is actually a pointer to an
object stored on the heap. Once the operation is complete, two variables point to exactly the same object,
so changes to one are reflected on the other, as in the following example:

var objl = new Object();

var obj2 = objl;

objl.name = "Nicholas";

alert (obj2.name) ; //"Nicholas"

In this example, the variable obj1 is filled with a new instance of an object. This value is then copied into
obj2, meaning that both variables are now pointing to the same object. When the property name is set

81

Ch

apter 4: Variables, Scope, and Memory

on objl, it can later be accessed from obj2 because they both point to the same object. Figure 4-3 shows
the relationship between the variables on the stack and the object on the heap.

Stack before copy Heap

OOIL | opiect type)

Stack after copy

_/
010

ObJ2 (Object tyy)/
obj1 v

(Object type)

Figure 4-3

Argument Passing

82

All function arguments in ECMAScript are passed by value. This means that the value outside of the
function is copied into an argument on the inside of the function the same way a value is copied from
one variable to another. If the value is primitive, then it acts just like a primitive variable copy, but if the
value is a reference, it acts just like a reference variable copy. This is often a point of confusion for
developers because variables are accessed both by value and by reference, but arguments are passed
only by value.

When an argument is passed by value, the value is copied into a local variable (a named argument or, in
ECMAScript, a slot in the arguments object). When an argument is passed by reference, the location of
the value in memory is stored into a local variable, which means that changes to the local variable are
reflected outside of the function. Consider the following example:

function addTen (num) {
num += 10;
return num;

}

var count = 20;
var result = addTen(count) ;
alert (count) ; //20 - no change
alert (result) ; //30

Chapter 4: Variables, Scope, and Memory

Here, the function addTen () has an argument num, which is essentially a local variable. When called,
the variable count is passed in as an argument. This variable has a value of 20, which is copied into the
argument num for use inside of addTen () . Within the function, the argument num has its value changed
by adding 10, but this doesn’t change the original variable count that exists outside of the function. The
argument num and the variable count do not recognize each other; they only happen to have the same
value. If num had been passed by reference, then the value of count would have changed to 30 to reflect
the change made inside the function. This fact is obvious when using primitive values such as numbers,
but things aren’t as clear when using objects. Take this for example:

function setName (obj) {
obj.name = "Nicholas";

}

var person = new Object();
setName (person) ;
alert (person.name) ; //"Nicholas"

In this code, an object is created and stored in the variable person. This object is then passed into the
setName () method, where it is copied into obj. Inside the function, obj and person both point to

the same object. The result is that obj is accessing an object by reference, even though it was passed into
the function by value. When the name property is set on obj inside the function, this change is reflected
outside the function because the object that it points to exists globally on the heap. Many developers
incorrectly assume that when a local change to an object is reflected globally, that means an argument
was passed by reference. To prove that objects are passed by value, consider the following modified code:

function setName (obj) {
obj.name = "Nicholas";
obj = new Object();
obj.name = "Greg";

var person = new Object();
setName (person) ;
alert (person.name) ; //"Nicholas"

The only change between this example and the previous one are two lines added to setName () that
redefine object as a new object with a different name. When person is passed into setName (), its name
property is set to "Nicholas". Then the variable obj is set to be a new object and its name property is
set to "Greg". If person were passed by reference, then person would automatically be changed to
point to the object whose name is "Greg". However, when person.name is accessed again, its value is
"Nicholas", indicating that the original reference remained intact even though the argument’s value
changed inside the function. When obj is overwritten inside the function, it becomes a pointer to a local
object. That local object is destroyed as soon as the function finishes executing.

Think of function arguments in ECMAScript as nothing more than local variables.

83

Chapter 4: Variables, Scope, and Memory

Determining Type

The typeof operator, introduced in the previous chapter, is the best way to determine if a variable is a
primitive type. More specifically, it’s the best way to determine if a variable is a string, number, Boolean,
or undefined. If the value is an object or nul1l, then typeof returns "object" as in this example:

var s = "Nicholas";
var b = true;

var i = 22;

var u;

var n = null;

var o = new Object();

alert (typeof s); //string
alert (typeof 1i); / /number
alert (typeof b); //boolean
alert (typeof u); //undefined
alert (typeof n); //object
alert (typeof o); //object

Although typeof works well for primitive values, it’s of little use for reference values. Typically, you
don’t care that a value is an object — what you really want to know is what type of object it is. To aid in
this identification, ECMAScript provides the instanceof operator, which is used with the following
syntax:

result = variable instanceof constructor

The instanceof operator returns true if the variable is an instance of the given reference type
(identified by its constructor function). Consider this example:

alert (person instanceof Object); //is the variable person an Object?
alert(colors instanceof Array); //is the variable colors an Array?
alert (pattern instanceof RegExp); //is the variable pattern a RegExp?

All reference values, by definition, are instances of Object, so the instanceof operator always returns
true when used with a reference value and the object constructor. Similarly, if instanceof is used
with a primitive value, it will always return false because primitives aren’t objects.

The typeof operator also returns "function" when used on a function. When used
on a regular expression, typeof incorrectly returns " function" as well.

Execution Context and Scope

The concept of execution context, referred to as context for simplicity, is of the utmost importance in
JavaScript. The execution context of a variable or function defines what other data it has access to, as
well as how it should behave. Each execution context has an associated variable object upon which all of

84

Chapter 4: Variables, Scope, and Memory

its defined variables and functions exist. This object is not accessible by code but is used behind the
scenes to handle data.

The global execution context is the outermost one. Depending on the host environment for an
ECMAScript implementation, the object representing this context may differ. In web browsers, the global
context is said to be that of the window object (discussed in Chapter 7), so all global variables and
functions are created as properties and methods on the window object. When an execution context has
executed all of its code, it is destroyed, taking with it all of the variables and functions defined within it
(the global context isn’t destroyed until the application exits, such as when a web page is closed or a web
browser is shut down).

Each function has its own execution context. Whenever code execution flows into a function, the
function’s context is pushed onto a context stack. After the function has finished executing, the stack is
popped, returning control to the previously executing context. This facility controls execution flow
throughout an ECMAScript program.

When code is executed in a context, a scope chain of variable objects is created. The purpose of the scope
chain is to provide ordered access to all variables and functions that an execution context has access to.
The front of the scope chain is always the variable object of the context whose code is executing. If the
context is a function, then the activation object is used as the variable object. An activation object starts
with a single variable defined called arguments (this doesn’t exist for the global context). The next
variable object in the chain is from the containing context, and the next after that is from the next
containing context. This pattern continues until the global context is reached; the global context’s
variable object is always the last of the scope chain.

Identifiers are resolved by navigating the scope chain in search of the identifier name. The search always
begins at the front of the chain and proceeds to the back until the identifier is found (if the identifier isn’t
found, typically an error occurs).

Consider the following code:

var color = "blue";

function changeColor () {

if (color === "blue"){
color = "red";
} else {
color = "blue";
}
}
changeColor () ;

In this simple example, the function changeColor () has a scope chain with two objects in it: its own
variable object (upon which the arguments object is defined) and the global context’s variable object.
The variable color is therefore accessible inside the function because it can be found in the scope chain.

85

Chapter 4: Variables, Scope, and Memory

Additionally, locally defined variables can be used interchangeably with global variables in a local
context. Here’s an example:

var color = "blue";

function changeColor () {
var anotherColor = "red";

function swapColors () {
var tempColor = anotherColor;
anotherColor = color;
color = tempColor;

//color, anotherColor, and tempColor are all accessible here

}

//color and anotherColor are accessible here, but not tempColor
swapColors () ;

}

//only color is accessible here
changeColor () ;

There are three execution contexts in this code: global context, the local context of changeColor (), and
the local context of swapColors (). The global context has one variable, color, and one function,
changeColor (). The local context of changeColor () has one variable named anotherColor and one
function named swapColors (), but it can also access the variable color from the global context. The
local context of swapColors () has one variable, named tempColor, that is accessible only within that
context. Neither the global context nor the local context of swapColors () has access to tempColor.
Within swapColors (), though, the variables of the other two contexts are fully accessible because they
are parent execution contexts. Figure 4-4 represents the scope chain for the previous example.

window

color

changeColor()

anotherColor

swapColors()
tempColor

Figure 4-4

86

Chapter 4: Variables, Scope, and Memory

In this figure, the rectangles represent specific execution contexts. An inner context can access everything
from all outer contexts through the scope chain, but the outer contexts cannot access anything within an
inner context. The connection between the contexts is linear and ordered. Each context can search up the
scope chain for variables and functions, but no context can search down the scope chain into another
execution context. There are three objects in the scope chain for the local context of swapColors (): the
swapColors () variable object, the variable object from changeColor (), and the global variable object.
The local context of swapColors () begins its search for variable and function names in its own variable
object before moving along the chain. The scope chain for the changeColor () context has only two objects:
its own variable object and the global variable object. This means that it cannot access the context of
swapColors ().

Function arguments are considered to be variables and follow the same access rules as any other variable
in the execution context.

Scope Chain Augmentation

Even though there are only two types of execution contexts, global and local (function), there are other
ways to augment the scope chain. Certain statements cause a temporary addition to the front of the
scope chain that is later removed after code execution. There are two times when this occurs, specifically
when execution enters either of the following;:

@ The catchblock in a try-catch statement

a A with statement

Both of these statements add a variable object to the front of the scope chain. For the with statement, the
variable object contains variable declarations for all properties and methods of the specified object; for
the catch statement, the variable object contains a declaration for the thrown error object. These variable
objects are read-only, so variables declared in a with or catch statement are added to the execution
context’s variable object. Consider the following;:

function buildUrl () {
var gs = "?debug=true";

with(location) {
var url = href + gs;

}

return url;

}

In this example, the with statement is acting on the 1ocation object, so a variable object containing all
of location’s properties and methods is added to the front of the scope chain. There is one variable, gs,
defined in the buildurl () function. When the variable href is referenced, it’s actually referring to
location.href, which is in its own variable object. When the variable gs is referenced, it’s referring to
the variable defined in buildurl (), which is in the function context’s variable object. Inside the with
statement is a variable declaration for url. Because this variable object is read-only, url becomes part of
the function’s context and can, therefore, be returned as the function value.

87

Chapter 4: Variables, Scope, and Memory

There is a deviation in the Internet Explorer (IE) implementation of JavaScript,
where the error caught in a catch statement is added to the execution context’s
variable object, making it accessible even outside the catch block.

No Block-Level Scopes

JavaScript’s lack of block-level scopes is a common source of confusion. In other C-like languages, code
blocks enclosed by brackets have their own scope (more accurately described as their own execution
context in ECMAScript), allowing conditional definition of variables. For example, the following code
may not act as expected:

if (true) {
var color = "blue";

}

alert (color) ; //"blue"

Here, the variable color is defined inside an if statement. In languages such as C, C++, and Java, that
variable would be destroyed after the if statement is executed. In JavaScript, however, the variable
declaration adds a variable into the current execution context (the global context, in this case). This is
important to keep in mind when dealing with the for statement, which is typically written like this:

for (var 1=0; 1 < 10; 1i++){
doSomething (i) ;
}

alert(i); //10

In languages with block-level scoping, the initialization part of the for statement defines variables that
exist only within the context of the loop. In JavaScript, the i variable is created by the for statement and
continues to exist outside the loop after the statement executes.

Variable Declaration

When a variable is declared using var, it is automatically added to the most immediate context
available. In a function, the most immediate one is the function’s local context; in a with statement, the
most immediate is the function context. If a variable is initialized without first being declared, it gets
added to the global context automatically, as in this example:

function add(numl, num2) {
var sum = numl + num2;
return sum;

}

var result = add(10, 20); //30
alert (sum) ; //causes an error since sum is not a valid variable

88

Chapter 4: Variables, Scope, and Memory

Here, the function add () defines a local variable named sum that contains the result of an addition
operation. This value is returned as the function value, but the variable sum isn’t accessible outside the
function. If the var keyword is omitted from this example, sum becomes accessible after add () has been
called, as shown here:

function add(numl, num2) {
sum = numl + num2;

return sum;

}

var result = add (10, 20); //30
alert (sum) ; //30

Here, the variable sum is initialized to a value without ever having been declared using var. When
add() is called, sumis created in the global context and continues to exist even after the function has
completed, allowing you to access it later.

Initializing variables without declaring them is a very common mistake in
JavaScript programming and can lead to errors. It’s advisable to always declare
variables before initializing them to avoid such issues.

Identifier Lookup

When an identifier is referenced for either reading or writing within a particular context, a search must
take place to determine what identifier it represents. The search starts at the front of the scope chain,
looking for an identifier with the given name. If it finds that identifier name in the local context, then
the search stops and the variable is set; if the search doesn’t find the variable name, it continues along
the scope chain. This process continues until the search reaches the global context’s variable object. If the
identifier isn’t found there, it hasn’t been declared.

To better illustrate how identifier lookup occurs, consider the following example:
var color = "blue";
function getColor () {
return color;

}

alert(getColor()); //"blue"

When the function getColor () is called in this example, the variable color is referenced. At that point,
a two-step search begins. First getColor ()’s variable object is searched for an identifier named color.
When it isn’t found, the search goes to the next variable object (from the global context) and then
searches for an identifier named color. Because that variable object is where the variable is defined, the
search ends. Figure 4-5 illustrates this search process.

89

Chapter 4: Variables, Scope, and Memory

window

color

getColor

return color

Figure 4-5

Given this search process, referencing local variables automatically stops the search from going into
another variable object. This means that identifiers in a parent context cannot be referenced if an
identifier in the local context has the same name, as in this example:

var color = "blue";

function getColor () {
var color = "red";
return color;

}

alert (getColor()); //"red"

In this modified code, a local variable named color is declared inside the getColor () function. When
the function is called, the variable is declared. When the second line of the function is executed, it

knows that a variable named color must be used. The search begins in the local context, where it finds
a variable named color with a value of "red". Because the variable was found, the search stops and
the local variable is used, meaning that the function returns "red". Any lines of code appearing after the
declaration of color as a local variable cannot access the global color variable.

Variable lookup doesn’t come without a price. It’s faster to access local variables
than global variables because there’s no search up the scope chain.

Garbage Collection

JavaScript is a garbage-collected language, meaning that the execution environment is responsible for
managing the memory required during code execution. In languages like C and C++, keeping track of
memory usage is a principle concern and the source of many issues for developers. JavaScript frees
developers from worrying about memory management by automatically allocating what is needed and

20

Chapter 4: Variables, Scope, and Memory

reclaiming memory that is no longer being used. The basic idea is simple: figure out which variables
aren’t going to be used and free the memory associated with them. This process is periodic, with the
garbage collector running at specified intervals (or at predefined collection moments in code execution).

Consider the normal lifecycle of a local variable in a function. The variable comes into existence during
the execution of the function. At that time, memory is allocated on the stack (and possibly on the heap)
to provide storage space for the value. The variable is used inside the function and then the function
ends. At that point this variable is no longer needed, so its memory can be reclaimed for later use. In this
situation, it’s obvious that the variable isn’t needed, but not all situations are as obvious. The garbage
collector must keep track of which variables can and can’t be used so it can identify likely candidates for
memory reclamation. The strategy for identifying the unused variables may differ on an implementation
basis, though two strategies have traditionally been used in browsers.

Mark-and-Sweep

The most popular form of garbage collection for JavaScript is called mark-and-sweep. When a variable
comes into context, such as when a variable is declared inside a function, it is flagged as being in context.
Variables that are in context, logically, should never have their memory freed because they may be used
as long as execution continues in that context. When a variable goes out of context, it is also flagged as
being out of context.

Variables can be flagged in any number of ways. There may be a specific bit that is flipped when

a variable is in context or there may be an “in context” variable list and an “out of context” variable list
between which variables are moved. The implementation of the flagging is unimportant; it’s really the
theory that is key.

When the garbage collector runs, it marks all variables stored in memory (once again, in any number of
ways). It then clears its mark off of variables that are in context and variables that are referenced by
in-context variables. The variables that are marked after that are considered ready for deletion because
they can’t be reached by any in-context variables. The garbage collector then does a memory sweep,
destroying each of the marked values and reclaiming the memory associated with them.

As of 2008, IE, Firefox, Opera, Chrome, and Safari all use mark-and-sweep garbage collection (or
variations thereof) in their JavaScript implementations, though the timing of garbage collection differs.

Reference Counting

A second, less-popular type of garbage collection is reference counting. The idea is that every value keeps
track of how many references are made to it. When a variable is declared and a reference value is
assigned, the reference count is one. If another variable is then assigned to the same value, the reference
count is incremented. Likewise, if a variable with a reference to that value is overwritten with another
value, then the reference count is decremented. When the reference count of a value reaches zero, there is
no way to reach that value and it is safe to reclaim the associated memory. The garbage collector frees the
memory for values with a reference count of zero the next time it runs.

91

Chapter 4: Variables, Scope, and Memory

92

Reference counting was initially used by Netscape Navigator 3.0 and was immediately met with a
serious issue: circular references. A circular reference occurs when object A has a pointer to object B and
object B has a reference to object A, such as in the following example:

function problem() {
var objectA = new Object();
var objectB = new Object();

objectA.someOtherObject = objectB;
objectB.anotherObject = objectAl;
}

In this example, objecta and objectB reference each other through their properties, meaning that each
has a reference count of two. In a mark-and-sweep system, this wouldn’t be a problem because both
objects go out of scope after the function has completed. In a reference-counting system, though, objecta
and objectB will continue to exist after the function has exited because their reference counts will never
reach zero. If this function were called repeatedly, it would lead to a large amount of memory never being
reclaimed. For this reason, Netscape abandoned a reference-counting garbage-collection routine in favor
of a mark-and-sweep implementation in version 4.0. Unfortunately, that’s not where the reference-counting
problem ended.

Not all objects in IE are native JavaScript objects. Objects in the Browser Object Model (BOM) and
Document Object Model (DOM) are implemented as COM (Component Object Model) objects in C++,
and COM objects use reference counting for garbage collection. So even though the IE JavaScript engine
uses a mark-and-sweep implementation, any COM objects that are accessed in JavaScript still use
reference counting, meaning circular references are still a problem when COM objects are involved. The
following simple example demonstrates a circular reference with a COM object:

var element = document.getElementById("some_element") ;
var myObject = new Object();

myObject.element = element;

element .someObject = myObject;

This example sets up a circular reference between a DOM element (element) and a native JavaScript
object (myObject). The myObject variable has a property called element that points to element, and
the element variable has a property called someObject that points back to myObject. Because of this
circular reference, the memory for the DOM element will never be reclaimed even if it is removed from
the page.

To avoid circular-reference problems such as this, it’s best to break the connection between native
JavaScript objects and DOM elements when you're finished using them. For example, the following code
cleans up the circular references in the previous example:

myObject.element = null;
element.someObject = null;

Setting a variable to null effectively severs the connection between the variable and the value it
previously referenced. The next time the garbage collector runs, these values will be deleted and the
memory will be reclaimed.

Chapter 4: Variables, Scope, and Memory

There are several other patterns that may cause circular references, which they will
be covered throughout this book.

Performance

The garbage collector runs periodically and can potentially be an expensive process if there is a large
number of variable allocations in memory, so the timing of the garbage-collection process is important.
IE was infamous for its performance issues related to how often the garbage collector ran — it ran based
on the number of allocations, specifically 256 variable allocations, 4,096 object/array literals and array
slots, or 64kb of strings. If any of these thresholds were reached, the garbage collector would run. The
problem with this implementation is that a script with so many variables will probably continue to have
that many variables throughout its lifetime, meaning the garbage collector will run quite frequently. This
issue caused serious performance problems that led to changes in the garbage-collection routine in IE 7.

With the release of IE 7, the JavaScript engine’s garbage-collection routine was tuned to dynamically
change the allocation threshold of variables, literals, and/or array slots that triggered garbage collection.
The IE 7 thresholds start out equal to those in IE 6. If the garbage-collection routine reclaims less than
15% of the allocations, the threshold for variables, literals, and/or array slots doubles. If the routine ever
reclaims 85% of the allocations, then the threshold is reset to the default. This simple change greatly
improved the performance of the browser on JavaScript-heavy web pages.

It's possible, though not recommended, to trigger the garbage-collection process
in some browsers. In IE, the window.CollectGarbage () method causes garbage
collection to occur immediately. In Opera 7 and higher, calling window. opera
.collect () initiates the garbage-collection process.

Managing Memory

In a garbage-collected programming environment, developers typically don’t have to worry about
memory management. However, JavaScript runs in an environment where memory management and
garbage collection operate uniquely. The amount of memory available for use in web browsers is
typically much less than is available for desktop applications. This is more of a security feature than
anything else, ensuring that a web page running JavaScript can’t crash the operating system by using up
all the system memory. The memory limits affect not only variable allocation but also the call stack and
the number of statements that can be executed in a single thread.

Keeping the amount of used memory to a minimum leads to better page performance. The best way to
optimize memory usage is to ensure that you're keeping around only data that is necessary for the
execution of your code. When data is no longer necessary, it’s best to set the value to null, freeing up the
reference — this is called dereferencing the value. This advice applies mostly to global values and

93

Chapter 4: Variables, Scope, and Memory

properties of global objects. Local variables are dereferenced automatically when they go out of context,
as in this example:

function createPerson (name) {
var localPerson = new Object();
localPerson.name = name;
return localPerson;

}
var globalPerson = createPerson("Nicholas");
//do something with globalPerson

globalPerson = null;

In this code, the variable globalPerson is filled with a value returned from the createPerson ()
function. Inside createPerson (), localPerson creates an object and adds a name property to it.

The variable localPerson is returned as the function value and assigned to globalPerson. Because
localPerson goes out of context after createPerson () has finished executing, it doesn’t need to be
dereferenced explicitly. Because globalPerson is a global variable, it should be dereferenced when it’s
no longer needed, which is what happens in the last line.

Keep in mind that dereferencing a value doesn’t automatically reclaim the memory associated with it.
The point of dereferencing is to make sure the value is out of context and will be reclaimed the next time
garbage collection occurs.

Summary

94

Two types of values can be stored in JavaScript variables: primitive values and reference values.
Primitive values have one of the five primitive data types: Undefined, Null, Boolean, Number, and
String. Primitive and reference values have the following characteristics:

Primitive values are of a fixed size and so are stored in memory on the stack.

Copying primitive values from one variable to another creates a second copy of the value.

Reference values are objects and are stored in memory on the heap.

0O 0 0O O

A variable containing a reference value actually contains just a pointer to the object, not the
object itself.

(]

Copying a reference value to another variable copies just the pointer, so both variables end up
referencing the same object.

Q The typeof operator determines a value’s primitive type, whereas the instanceof operator is
used to determine the reference type of a value.

Chapter 4: Variables, Scope, and Memory

All variables, primitive and reference, exist within an execution context (also called a scope), that
determines the lifetime of the variable and which parts of the code can access it. Execution context can be
summarized as follows:

Q
Q

Q

Q

Execution contexts exist globally (called the global context) as well as within functions.

Each time a new execution context is entered, it creates a scope chain to search for variables and
functions.

Contexts that are local to a function have access not only to variables in that scope, but also to
variables in any containing contexts as well as the global context.

The global context has access only to variables and functions in the global context and cannot
directly access any data inside local contexts.

The execution context of variables helps to determine when memory will be freed.

JavaScript is a garbage-collected programming environment where the developer need not be concerned
with memory allocation or reclamation. JavaScript’s garbage-collection routine can be summarized as

follows:

Q

Q

Values that go out of scope will automatically be marked for reclamation and will be deleted
during the garbage-collection process.

The predominant garbage-collection algorithm is called mark-and-sweep, which marks values
that aren’t currently being used and then goes back to reclaim that memory.

Another algorithm is reference counting, which keeps track of how many references there are to
a particular value. JavaScript engines no longer use this algorithm, but it still affects IE due to
non-native JavaScript objects (such as DOM elements) being accessed in JavaScript.

Reference counting causes problems when circular references exist in code.

Dereferencing variables helps not only with circular references but also with garbage collection
in general. To aid in memory reclamation, global objects, properties on global objects, and
circular references should all be dereferenced when no longer needed.

95

Reference Types

A reference value (object) is an instance of a specific reference type. In ECMAScript, reference types
are structures used to group data and functionality together and are often incorrectly called classes.
Although technically an object-oriented language, ECMAScript lacks some basic constructs that
have traditionally been associated with object-oriented programming, including classes and
interfaces. Reference types are also sometimes called object definitions, because they describe the
properties and methods that objects should have.

Even though reference types are similar to classes, the two concepts are not equivalent. To avoid
any confusion, the term class is not used in the rest of this book.

Again, objects are considered to be instances of a particular reference type. New objects are created
by using the new operator followed by a constructor. A constructor is simply a function whose
purpose is to create a new object. Consider the following line of code:

var person = new Object();

This code creates a new instance of the Object reference type and stores it in the variable person.
The constructor being used is Object (), which creates a simple object with only the default
properties and methods. ECMAScript provides a number of native reference types, such as
Object, to help developers with common computing tasks.

The Object Type

Up to this point, most of the reference-value examples have used the Object type, which is one of
the most often-used types in ECMAScript. Although instances of Object don’t have much
functionality, they are ideally suited to storing data and transmitting data around an application.

Chapter 5: Reference Types

98

There are two ways to create an instance of Object. The first is to use the new operator with the Object
constructor like this:

var person = new Object();
person.name = "Nicholas";
person.age = 29;

The other way is to use object literal notation. Object literal notation is a shorthand form of object
definition designed to simplify creating an object with numerous properties. For example, the following
defines the same person object from the previous example using object literal notation:

var person = {
name : "Nicholas",
age : 29

Y

In this example, the left curly brace ({) signifies the beginning of an object literal because it occurs after
an assignment operator (in any other context, the left curly brace indicates the beginning of a block
statement). Next, the name property is specified, followed by a colon, followed by the property’s value.
A comma is used to separate properties in an object literal, so there’s a comma after the string
"Nicholas" but not after the value 29 because age is the last property in the object. Including a comma
after the last property causes an error in Internet Explorer (IE) and Opera.

Property names can also be specified as strings when using object literal notation, such as in this
example:

var person = {
"name" : "Nicholas",
"age" : 29

Y

This example produces the same result as the previous one: an object with a name property and an age
property is created.

It’s also possible to create an object with only the default properties and methods using object literal
notation by leaving the space between the curly braces empty, such as this:

var person = {}; //same as new Object ()

person.name = "Nicholas";
person.age = 29;

This example is equivalent to the first one in this section, though it looks a little strange. It’s
recommended to use object literal notation only when you're going to specify properties for readability.

When defining an object via object literal notation, the Object constructor is never actually called
(except in Firefox).

Though it’s acceptable to use either method of creating Object instances, developers tend to favor object
literal notation because it requires less code and visually encapsulates all related data. In fact, object

Chapter 5: Reference Types

literals have become a preferred way of passing a large number of optional arguments to a function, such
as in this example:

function displayInfo(args) {
var output = "";

if (typeof args.name == "string") {

output += "Name: " + args.name + "\n";
}
if (typeof args.age == "number") {

output += "Age: " + args.age + "\n";

}

alert (output) ;
}

displayInfo ({
name: "Nicholas",
age: 29

1)

displayInfo({
name: "Greg"

1)

Here, the function displayInfo () accepts a single argument named args. The argument may come in
with a property called name or age, or both or neither of those. The function is set up to test for the
existence of each property using the typeof operator and then to construct a message to display based
on their availability. This function is then called twice, each time with different data specified in an object
literal. The function works correctly in both cases.

This pattern for arqument passing is best used when there is a large number of optional arguments that
can be passed into the function. Generally speaking, named arguments are easier to work with but can
get unwieldy when there are numerous optional arguments. The best approach is to use named
arguments for those that are required, and an object literal to encompass multiple optional arguments.

Although object properties are typically accessed using dot notation, which is common to many object-
oriented languages, it’s also possible to access properties via bracket notation. When you use bracket

notation, a string containing the property name is placed between the brackets, as in this example:

alert (person|["name"]) ; //"Nicholas"
alert (person.name) ; //"Nicholas"

Functionally, there is no difference between the two approaches. The main advantage of bracket notation
is that it allows you to use variables for property access, such as in this example:

var propertyName = "name";
alert (person[propertyName]) ; //"Nicholas"

Generally speaking, dot notation is preferred unless variables are necessary to access properties
by name.

29

Chapter 5: Reference Types

The Array Type

After the Object type, the Array type is probably the most used in ECMAScript. An ECMAScript array
is very different from arrays in most other programming languages. As in other languages, arrays are
ordered lists of data, but unlike in other languages, they can hold any type of data in each slot. This
means that it’s possible to create an array that has a string in the first position, a number in the second,
an object in the third, and so on. ECMAScript arrays are also dynamically sized, automatically growing
to accommodate any data that is added to them.

Arrays can be created in two basic ways. The first is to use the Array constructor, as in this line:

var colors = new Array();
If you know the number of items that will be in the array, you can pass the count into the constructor,
and the array will automatically be created with that number of slots (each of the items is initialized with
the value undefined). For example, the following creates an array with 20 items:

var colors = new Array(20);

The Array constructor can also be passed items that should be included in the array. The following
creates an array with three string values:

var colors = new Array("red", "blue", "green");

An array can be created with a single value by passing it into the constructor. This gets a little bit tricky
because providing a single argument that is a number always creates an array with the given number of
items, whereas an argument of any other type creates a one-item array that contains the specified value.
Here’s an example:

var colors = new Array(3); //create an array with three items
var names = new Array("Greg"); //create an array with one item, the string "Greg"

It’s possible to omit the new operator when using the Array constructor. It has the same result, as you
can see here:

var colors = Array(3); //create an array with three items
var names = Array("Greg"); //create an array with one item, the string "Greg"

The second way to create an array is by using array literal notation. An array literal is specified by using
square brackets and placing a comma-separated list of items between them, as in this example:

var colors = ["red", "blue", "green"]; //creates an array with three strings

var names = []; //creates an empty array

var values = [1,2,]; //AVOID! Creates an array with 2 or 3 items
var options = [,,,,,]; //AVOID! creates an array with 5 or 6 items

In this code, the first line creates an array with three string values. The second line creates an empty
array by using empty square brackets. The third line shows the effects of leaving a comma after the last
value in an array literal: In IE, values becomes a three-item array containing the values 1, 2, and
undefined; in all other browsers, values is a two-item array containing the values 1 and 2.

This is due to a bug regarding array literals in the IE implementation of ECMAScript. Another instance

100

Chapter 5: Reference Types

of this bug is shown in the last line, which creates an array with either five (in Firefox, Opera, Safari, and
Chrome) or six (in IE) items. By omitting values between the commas, each item gets a value of
undefined, which is logically the same as calling the Array constructor and passing in the number of
items. However, due to the inconsistent implementation of IE, using this syntax is strongly discouraged.

As with objects, the Array constructor isn’t called when an array is created using array literal notation
(except in Firefox).

To get and set array values, you use square brackets and provide the zero-based numeric index of the
value, as shown here:

var colors = ["red", "blue", "green"]; //define an array of strings
alert (colors[0]); //display the first item
colors[2] = "black"; //change the third item
colors[3] = "brown"; //add a fourth item

The index provided within the square brackets indicates the value being accessed. If the index is less
than the number of items in the array, then it will return the value stored in the corresponding item, as
colors[0] displays "red" in this example. Setting a value works in the same way, replacing the value
in the designated position. If a value is set to an index that is past the end of the array, as with
colors[3] in this example, the array length is automatically expanded to be that index plus 1 (so the
length becomes 4 in this example because the index being used is 3).

The number of items in an array is stored in the 1ength property, which always returns 0 or more as
shown in the following example:

var colors = ["red", "blue", "green"]; //creates an array with three strings
var names = []; //creates an empty array

alert (colors.length) ; //3

alert (names.length) ; //0

A unique characteristic of 1ength is that it’s not read-only. By setting the 1ength property, you can
easily remove items from or add items to the end of the array. Consider this example:

var colors = ["red", "blue", "green"]; //creates an array with three strings

colors.length = 2;
alert (colors[2]); //undefined

Here, the array colors starts out with three values. Setting the 1ength to 2 removes the last item (in
position 2), making it no longer accessible using colors[2].If the length were set to a number greater
than the number of items in the array, the new items would each get filled with the value of undefined,
such as in this example:

var colors = ["red", "blue", "green"]; //creates an array with three strings

colors.length = 4;
alert (colors([3]); //undefined

This code sets the 1ength of the colors array to 4 even though it contains only three items. The value in

position 3, then, is undefined even though the position itself exists and counts toward the total length
of the array.

101

Chapter 5: Reference Types

The length property can also be helpful in adding items to the end of an array, as in this example:

var colors = ["red", "blue", "green"]; //creates an array with three strings
colors[colors.length] = "black"; //add a color (position 3)
colors[colors.length] = "brown"; //add another color (position 4)

The last item in an array is always at position length - 1, so the next available open slot is at position
length. Each time an item is added after the last one in the array, the 1ength property is automatically
updated to reflect the change. That means colors[colors.length] assigns a value to position 3 in the
second line of this example and to position 4 in the last line. The new length is automatically calculated
when an item is placed into a position that’s outside of the current array size, which is done by adding 1
to the position, as in this example:

var colors = ["red", "blue", "green"]; //creates an array with three strings

colors[99] = "black"; //add a color (position 99)
alert (colors.length); //100

In this code, the colors array has a value inserted into position 99, resulting in a new length of 100
(99 + 1). Each of the other items, positions 3 through 98, is filled with undefined.

Arrays can contain a maximum of 4,294,967,295 items, which should be plenty
for almost all programming needs. If you try to add more than that number, an
exception occurs. Trying to create an array with an initial size approaching this
maximum may cause a long-running script error.

Conversion Methods

As mentioned previously, all objects have toLocaleString (), toString (), and valueOf () methods.
The toString () and valueOf () methods return the same value when called on an array. The result is a
comma-separated string that contains the string equivalents of each value in the array, which is to say
that each item has its toString () method called to create the final string. Take a look at this example:

var colors = ["red", "blue", "green"]; //creates an array with three strings
alert (colors.toString()); //red,blue, green
alert (colors.valueOf()); //red,blue, green
alert(colors) ; //red,blue, green

In this code, the tostring () and valueOf () methods are first called explicitly to return the string
representation of the array, which combines the strings, separating them by commas. The last line passes
the array directly into alert (). Because alert () expects a string, it calls toString () behind the
scenes to get the same result as when toString () is called directly.

The toLocaleString () method may end up returning the same value as toString () and valueOf (),

but not always. When toLocaleString () is called on an array, it creates a comma-delimited string of
the array values. The only difference between this and the two other methods is that toLocaleString ()

102

Chapter 5: Reference Types

calls each item’s toLocaleString () instead of toString () to get its string value. Consider the
following example:

var personl = {
toLocaleString : function () {
return "Nikolaos";

b,

toString : function() {
return "Nicholas";
}
};

var person2 = {
toLocaleString : function () {
return "Grigorios";

I

toString : function() {
return "Greg";
}
Y

var people = [personl, person2];

alert (people) ; //Nicholas, Greg
alert (people.toString()); //Nicholas, Greg
alert (people.toLocaleString()); //Nikolaos,Grigorios

Here, two objects are defined, personl and person2. Each object defines both a toString () method
and a toLocaleString () method that return different values. An array, people, is created to contain
both objects. When passed into alert (), the outputis "Nicholas, Greg" because the toString()
method is called on each item in the array (the same as when toString () is called explicitly on the next
line). When toLocaleString () is called on the array, the result is "Nikolaos, Grigorios" because
this calls toLocaleString () on each array item.

The inherited methods toLocaleString (), toString (), and valueOf () each return the array items
as a comma-separated string. It’s possible to construct a string with a different separator using the
join () method. The join () method accepts one argument, which is the string separator to use, and
returns a string containing all items. Consider this example:

var colors = ["red", "green", "blue"];
alert(colors.join(",")); //red,green, blue
alert(colors.join("||")); //red||green| |blue

Here, the join () method is used on the colors array to duplicate the output of toString (). By
passing in a comma, the result is a comma-separated list of values. On the last line, double pipes are
passed in, resulting in the string "red| |green| |blue".

If an item in the array is null or undefined, itis represented by an empty string in
the result of join(), toLocaleString(), toString(), and valueOf ().

103

Chapter 5: Reference Types

Stack Methods

One of the interesting things about ECMAScript arrays is that they provide a method to make an array
behave like other data structures. An array object can act just like a stack, which is one of a group of data
structures that restrict the insertion and removal of items. A stack is referred to as a last-in-first-out (LIFO)
structure, meaning that the most recently added item is the first one removed. The insertion (called a
push) and removal (called a pop) of items in a stack occur at only one point: the top of the stack.
ECMAScript arrays provide push () and pop () specifically to allow stacklike behavior.

The push () method accepts any number of arguments and adds them to the end of the array, returning
the array’s new length. The pop () method, on the other hand, removes the last item in the array,
decrements the array’s length, and returns that item. Consider this example:

var colors = new Array(); //create an array

var count = colors.push("red", "green"); //push two items
alert(count); //2

count = colors.push("black"); //push another item on
alert(count); //3

var item = colors.pop(); //get the last item
alert (item) ; //"black"

alert(colors.length); //2

In this code, an array is created for use as a stack (note that there’s no special code required to make this
work; push () and pop () are default methods on arrays). First two strings are pushed onto the end of
the array using push () and the result is stored in the variable count (which gets the value of 2). Then
another value is pushed on and the result is once again stored in count. Because there are now three
items in the array, push () returns 3. When pop () is called, it returns the last item in the array, which is
the string "black". The array then has only two items left.

The stack methods may be used in combination with all of the other array methods as well, as in this
example:

var colors = ["red", "blue"];
colors.push("brown") ; //add another item
colors[3] = "black"; //add an item

alert(colors.length); //4

var item = colors.pop(); //get the last item
alert(item); //"black"

Here, an array is initialized with two values. A third value is added via push (), and a fourth is added by
direct assignment into position 3. When pop () is called, it returns the string "black", which was the last
value added to the array.

104

Chapter 5: Reference Types

Queue Methods

Just as stacks restrict access in a LIFO data structure, queues restrict access in a first-in-first-out (FIFO)
data structure. A queue adds items to the end of a list and retrieves items from the front of the list.
Because the push () method adds items to the end of an array, all that is needed to emulate a queue is a
method to retrieve the first item in the array. The array method for this is called shift (), which
removes the first item in the array and returns it, decrementing the length of the array by one. Using
shift () in combination with push () allows arrays to be used as queues:

var colors = new Array(); //create an array

var count = colors.push("red", "green"); //push two items
alert(count); //2

count = colors.push("black"); //push another item on
alert(count); //3

var item = colors.shift(); //get the first item
alert(item); //"red"

alert(colors.length); //2

This example creates an array of three colors using the push () method. The highlighted line shows the
shift () method being used to retrieve the first item in the array, which is "red". With that item
removed, "green" is moved into the first position and "black" is moved into the second, leaving the
array with two items.

ECMAScript also provides an unshift () method for arrays. As the name indicates, unshift () does
the opposite of shift (): it adds any number of items to the front of an array and returns the new array
length. By using unshift () in combination with pop (), it’s possible to emulate a queue in the opposite
direction, where new values are added to the front of the array and values are retrieved off the back, as
in this example:

var colors = new Array(); //create an array

var count = colors.unshift("red", "green"); //push two items
alert(count); //2

count = colors.unshift("black"); //push another item on
alert(count); //3

var item = colors.pop(); //get the first item
alert(item); //"green"

alert(colors.length); //2

In this code, an array is created and then populated by using unshift (). First "red" and "green" are
added to the array, and then "black" is added, resulting in an order of "black", "red", "green".
When pop () is called, it removes the last item, "green", and returns it.

A deviation in the IE implementation of JavaScript causes unshift () to always
return undefined instead of the new length of the array.

105

Chapter 5: Reference Types

Reordering Methods

Two methods deal directly with the reordering of items already in the array: reverse () and sort (). As
one might expect, the reverse () method simply reverses the order of items in an array. Take this code
for example:

var values = [1, 2, 3, 4, 5];
values.reverse() ;
alert (values) ; //5,4,3,2,1

Here, the array values has its items initially set to 1, 2, 3, 4, and 5, in that order. Calling reverse () on
the array reverses the order to 5, 4, 3, 2, 1. This method is fairly straightforward but doesn’t provide
much flexibility, which is where the sort () method comes in.

By default, the sort () method puts the items in ascending order — with the smallest value first and the
largest value last. To do this, the sort () method calls the String () casting function on every item and
then compares the strings to determine the correct order. This occurs even if all items in an array are
numbers, as in this example:

var values = [0, 1, 5, 10, 15];
values.sort ()
alert (values)

i //0,1,10,15,5

Even though the values in this example begin in correct numeric order, the sort () method changes that
order based on their string equivalents. So even though 5 is less than 10, the string "10" comes before
"5" when doing a string comparison, so the array is updated accordingly. Clearly this is not an optimal
solution in many cases, so the sort () method allows you to pass in a comparison function that indicates
which value should come before which.

A comparison function accepts two arguments and returns a negative number if the first argument
should come before the second, a zero if the arguments are equal, or a positive number if the first
argument should come after the second. Here’s an example of a simple comparison function:

function compare(valuel, value2) {
if (valuel < value2) {
return -1;
} else if (valuel > wvalue2) {
return 1;
} else {
return 0;

}

106

Chapter 5: Reference Types

This comparison function works for most data types and can be used by passing it as an argument to the
sort () method, as in the following example:

var values = [0, 1, 5, 10, 15];
values.sort (compare) ;
alert (values) ; //0,1,5,10,15

When the comparison function is passed to the sort () method, the numbers remain in the correct order.
Of course, the comparison function could produce results in descending order if you simply switch the
return values like this:

function compare(valuel, value2) {
if (valuel < value2) {

return 1;
} else if (valuel > value2) {
return -1;

} else {
return 0;
}
}

[0, 1, 5, 10, 15];
compare) ;
) //15,10,5,1,0

var values =
values.sort (
alert (values

In this modified example, the comparison function returns 1 if the first value should come after the
second, and -1 if the first value should come before the second. Swapping these means the larger value
will come first and the array will be sorted in descending order. Of course, if you just want to reverse the
order of the items in the array, reverse () is a much faster alternative than sorting.

Both reverse () and sort () return a reference to the array on which they were applied.

A much simpler version of the comparison function can be used with numeric types, and objects whose
valueOf () method returns numeric values (such as the Date object). In either case, you can simply
subtract the second value from the first as shown here:

function compare(valuel, value2) {
return value2 - valuel;

}

Because comparison functions work by returning a number less than zero, zero, or a number greater
than zero, the subtraction operation handles all of the cases appropriately.

107

Chapter 5: Reference Types

Manipulation Methods

There are various ways to work with the items already contained in an array. The concat ()

method, for instance, allows you to create a new array based on all of the items in the current array.

This method begins by creating a copy of the array and then appending the method arguments to the
end and returning the newly constructed array. When no arguments are passed in, concat () simply
clones the array and returns it. If one or more arrays are passed in, concat () appends each item in these
arrays to the end of the result. If the values are not arrays, they are simply appended to the end of the
resulting array. Consider this example:

var colors = ["red", "green", "blue"];

var colors2 = colors.concat("yellow", ["black", "brown"]);
alert(colors) ; //red,green, blue

alert(colors2); //red,green,blue,yellow,black, brown

This code begins with the colors array containing three values. The concat () method is called on
colors, passing in the string "yvellow" as well as an array containing "black" and "brown". The
result, stored in colors2, contains "red", "green", "blue", "yellow", "black", and "brown"
The original array, colors, remains unchanged.

The next method, slice (), creates an array that contains one or more items already contained in an
array. The slice () method may accept one or two arguments: the starting and stopping positions of the
items to return. If only one argument is present, the method returns all items between that position and
the end of the array. If there are two arguments, the method returns all items between the start position
and end position, not including the item in the end position. Keep in mind that this operation does not
affect the original array in any way. Consider the following;:

var colors = ["red", "green", "blue", "yellow", "purple"];
var colors2 = colors.slice(l);
var colors3 = colors.slice(1l,4);

alert(colors2); //green,blue,yellow,purple
alert(colors3); //green,blue,yellow

In this example, the colors array starts out with five items. Calling slice () and passing in 1 yields an
array with four items, omitting "red" because the operation began copying from position 1, which
contains "green". The resulting colors2 array contains "green", "blue", "yellow", and "purple".
The colors3 array is constructed by calling slice () and passing in 1 and 4, meaning that the method
will begin copying from the item in position 1 and stop copying at the item in position 3. As a result,
colors3 contains "green", "blue", and "yellow"

If either the start or end position of slice () is a negative number, then the
number is subtracted from the length of the array to determine the appropriate
locations. For example, calling slice (-2, -1) on an array with five items is the
same as calling slice (3, 4). If the end position is smaller than the start, then an
empty array is returned.

108

Chapter 5: Reference Types

Perhaps the most powerful array method is splice (), which can be used in a variety of ways. The main
purpose of splice () is to insert items into the middle of an array, but there are three distinct ways of
using this method. They are as follows:

Deletion — Any number of items can be deleted from the array by specifying just two
arguments: the position of the first item to delete and the number of items to delete. For
example, splice (0, 2) deletes the first two items.

Insertion — Items can be inserted into a specific position by providing three arguments: the
starting position, 0 (the number of items to delete), and the item to insert. Optionally, you can
specify a fourth, fifth, or any number of other parameters to insert. For example, splice (2, 0,
"red", "green") inserts the strings "red" and "green" into the array at position 2.

Replacement — Items can be inserted into a specific position while simultaneously deleting
items if you specify three arguments: the starting position, the number of items to delete, and
any number of items to insert. The number of items to insert doesn’t have to match the number
of items to delete. For example, splice(2, 1, "red", "green") deletes one item at position
2 and then inserts the strings "red" and "green" into the array at position 2.

The splice () method always returns an array that contains any items that were removed from the array
(or an empty array if no items were removed). These three uses are illustrated in the following code:

var colors = ["red", "green", "blue"];

var removed = colors.splice(0,1); //remove the first item
alert(colors); //green,blue

alert (removed) ; //red - one item array

removed = colors.splice(l, 0, "yellow", "orange"); //insert two items at position 1
alert(colors); //green,yellow, orange, blue

alert (removed) ; //empty array

removed = colors.splice(l, 1, "red", "purple"); //insert two values, remove one
alert(colors) ; //green, red,purple, orange, blue

alert (removed) ; //yellow - one item array

This example begins with the colors array containing three items. When splice is called the first time, it
simply removes the first item, leaving colors with the items "green" and "blue". The second time
splice () is called, it inserts two items at position 1, resulting in colors containing "green",
"yellow", "orange", and "blue". No items are removed at this point, so an empty array is returned.
The last time splice() is called, it removes one item, beginning in position 1, and inserts "red" and
"purple". After all of this code has been executed, the colors array contains "green",

"red", "purple", "orange",and "blue"

The Date Type

The ECMAScript Date type is based on an early version of java.util.Date from Java. As such, the
Date type stores dates as the number of milliseconds that have passed since midnight on January 1, 1970
UTC (Universal Time Code). Using this data storage format, the Date type can accurately represent
dates 285,616 years before or after January 1, 1970.

109

Chapter 5: Reference Types

To create a date object, use the new operator along with the Date constructor, like this:

var now = new Date();

When the Date constructor is used without any arguments, the created object is assigned the current
date and time. To create a date based on another date or time, you must pass in the millisecond
representation of the date (the number of milliseconds after midnight, January 1, 1970 UTC). To aid in
this process, ECMAScript provides two methods: Date.parse () and Date.UTC ().

The Date.parse () method accepts a string argument representing a date. It attempts to convert the
string into a millisecond representation of a date. ECMA-262 doesn’t define which date formats Date
.parse () should support, so its behavior is implementation-specific and often locale-specific. Browsers
in the United States typically accept the following date formats:

Q month/date/year (such as 6/13/2004)
QO month_name date, year (such as January 12, 2004)

Q day_of_week month_name date year hours:minutes:seconds time_zone (such as Tue May 25
2004 00:00:00 GMT-0700)

For instance, to create a date object for May 25, 2004, the following code can be used:

var someDate = new Date(Date.parse("May 25, 2004"));
If the string passed into Date.parse () doesn’t represent a date, then it returns NaN. The Date
constructor will call Date.parse () behind the scenes if a string is passed in directly, meaning that the
following code is identical to the previous example:

var someDate = new Date("May 25, 2004");

This code produces the same result as the previous example.

There are a lot of quirks surrounding the Date type and its implementation in
various browsers. There is a tendency to replace out-of-range values with the
current value to produce an output, so when trying to parse "January 32,

2007", some browsers will interpret it as "February 1, 2007", whereas Opera
tends to insert the current day of the current month, returning "January
current_day, 2007". This means running the code on September 21 returns
"January 21, 2007".

The Date.UTC () method also returns the millisecond representation of a date, but constructs that value
using different information than Date.parse (). The arguments for Date.UTC () are the year, the zero-
based month (January is 0, February is 1, and so on), the day of the month (1 through 31), and the hours
(0 through 23), minutes, seconds, and milliseconds of the time. Of these arguments, only the first two
(year and month) are required. If the day of the month isn’t supplied, it's assumed to be 1, while all other
omitted arguments are assumed to be 0. Here are two examples of Date.UTC () in action:

110

Chapter 5: Reference Types

//January 1, 2000 at midnight GMT
var y2k = new Date(Date.UTC (2000, 0));

//May 5, 2005 at 5:55:55 PM GMT
var allFives = new Date(Date.UTC(2005, 4, 5, 17, 55, 55));

Two dates are created in this example. The first date is for midnight (GMT) on January 1, 2000, which is
represented by the year 2000 and the month 0 (which is January). Because the other arguments are filled
in (the day of the month as 1 and everything else as 0), the result is the first day of the month at
midnight. The second date represents May 5, 2005 at 5:55:55 PM GMT. Even though the date and time
contain only fives, creating this date requires some different numbers: the month must be set to 4
because months are zero-based, and the hour must be set to 17 because hours are represented as 0
through 23. The rest of the arguments are as expected.

As with Date.parse (), Date.UTC () is mimicked by the Date constructor, but with one

major difference: the date and time created are in the local time zone, not in GMT. However, the

Date constructor takes the same arguments as Date.UTC (), so if the first argument is a number,

the constructor assumes that it is the year of a date, the second argument is the month, and so on. The
preceding example can then be rewritten as this:

//January 1, 2000 at midnight in local time
var y2k = new Date (2000, 0);

//May 5, 2005 at 5:55:55 PM local time
var allFives = new Date(2005, 4, 5, 17, 55, 55);

This code creates the same two dates as the previous example, but this time both dates are in the local
time zone as determined by the system settings.

Inherited Methods

As with the other reference types, the Date type overrides toLocaleString (), toString (), and
valueOf (), though unlike the previous types, each method returns something different. The Date
type’s toLocaleString () method returns the date and time in a format appropriate for the locale in
which the browser is being run. This often means that the format includes AM or PM for the time and
doesn’t include any time-zone information (the exact format varies from browser to browser). The
toString () method typically returns the date and time with time-zone information, and the time is
typically indicated in military time (hours ranging from 0 to 23). The following list displays the formats
that various browsers use for toLocaleString () and toString () when representing the date/time of
February 1, 2007 at midnight PST (Pacific Standard Time):

Internet Explorer 7
toLocaleString() — Thursday, February 01, 2007 12:00:00 AM

toString() — Thu Feb 1 00:00:00 PST 2007

Firefox 2
toLocaleString() — Thursday, February 01, 2007 12:00:00 AM

toString() — Thu Feb 01 2007 00:00:00 GMT-0800 (Pacific Standard Time)

111

Chapter 5: Reference Types

Safari 3
toLocaleString() — Thursday, February 01, 2007 00:00:00

tosString() — Thu Feb 01 2007 00:00:00 GMT-0800 (Pacific Standard Time)

Chrome 0.2
toLocaleString() — Thu Feb 01 2007 00:00:00 GMT-0800 (Pacific Standard Time)

toString() — Thu Feb 01 2007 00:00:00 GMT-0800 (Pacific Standard Time)

Opera 9
toLocaleString() — 2/1/2007 12:00:00 AM

toString() — Thu, 01 Feb 2007 00:00:00 GMT-0800

As you can see, there are some pretty significant differences between the formats that browsers return
for each method. These differences mean toLocaleString () and toString () are really useful only for
debugging purposes, not for display purposes.

The valueOf () method for the Date type doesn’t return a string at all, because it is overridden to return
the milliseconds representation of the date so that operators (such as less-than and greater-than) will
work appropriately for date values. Consider this example:

var datel = new Date (2007, 0, 1); //"January 1, 2007"
var date2 = new Date (2007, 1, 1); //"February 1, 2007"
alert (datel > date2); //true
alert(datel > date2); //false

The date January 1, 2007 logically comes before February 1, 2007, so it would make sense to say that the
former is less than the latter. Because the milliseconds representation of January 1, 2007 is less than that
of February 1, 2007, the less-than operator returns true when the dates are compared, providing an easy
way to determine the order of dates.

Date-Formatting Methods

There are several Date type methods used specifically to format the date as a string. They are as follows:

toDatestring () — Displays the date’s day of the week, month, day of the month, and year in
an implementation-specific format

toTimeString () — Displays the date’s hours, minutes, seconds, and time zone in an
implementation-specific format

toLocaleDateString () — Displays the date’s day of the week, month, day of the month, and
year in an implementation- and locale-specific format

toLocaleTimeString () — Displays the date’s hours, minutes, and seconds in an
implementation-specific format

toUTCcString () — Displays the complete UTC date in an implementation-specific format

112

Chapter 5: Reference Types

The output of these methods, as with toLocaleString () and toString (), varies widely from browser
to browser and therefore can’t be employed in a user interface for consistent display of a date.

There is also a method called toGMTString () , which is equivalent to
toUTCString () and is provided for backwards compatibility. However,
the specification recommends that new code use toUTCString () exclusively.

Date/Time Component Methods

The remaining methods of the Date type (listed in the following table) deal directly with getting and
setting specific parts of the date value. Note that references to a UTC date mean the date value when
interpreted without a time-zone offset (the date when converted to GMT).

Method

Description

getTime ()

setTime (milliseconds)

getFullYear ()
getUTCFullYear ()

setFullYear (year)

setUTCFullYear (year)

getMonth ()

getUTCMonth ()

setMonth (month)

setUTCMonth (month)

getDate ()

getUTCDate ()

setDate (date)

Returns the milliseconds representation of the date;
same as valueOf ().

Sets the milliseconds representation of the date, thus
changing the entire date.

Returns the four-digit year (2007 instead of just 07).
Returns the four-digit year of the UTC date value.

Sets the year of the date. The year must be given with
four digits (2007 instead of just 07).

Sets the year of the UTC date. The year must be given
with four digits (2007 instead of just 07).

Returns the month of the date, where 0 represents
January and 11 represents December.

Returns the month of the UTC date, where 0 represents
January and 11 represents December.

Sets the month of the date, which is any number 0 or
greater. Numbers greater than 11 add years.

Sets the month of the UTC date, which is any number 0
or greater. Numbers greater than 11 add years.

Returns the day of the month (1 through 31) for the date.

Returns the day of the month (1 through 31) for the UTC
date.

Sets the day of the month for the date. If the date is
greater than the number of days in the month, the
month value also gets increased.

(continued)

113

Chapter 5: Reference Types

Method

Description

setUTCDate (date)

getDay ()

getUTCDay ()

getHours ()

getUTCHours ()

setHours (hours)

setUTCHours (hours)

getMinutes ()

getUTCMinutes ()

setMinutes (minutes)

setUTCMinutes (minutes)

getSeconds ()

getUTCSeconds ()

setSeconds (seconds)

setUTCSeconds (seconds)

getMilliseconds ()
getUTCMilliseconds ()
setMilliseconds (milliseconds)
setUTCMilliseconds (milliseconds)

getTimezoneOffset ()

Sets the day of the month for the UTC date. If the date is
greater than the number of days in the month, the
month value also gets increased.

Returns the date’s day of the week as a number (where 0
represents Sunday and 6 represents Saturday).

Returns the UTC date’s day of the week as a number
(where 0 represents Sunday and 6 represents Saturday).

Returns the date’s hours as a number between 0 and 23.

Returns the UTC date’s hours as a number between
0 and 23.

Sets the date’s hours. Setting the hours to a number
greater than 23 also increments the day of the month.

Sets the UTC date’s hours. Setting the hours to a number
greater than 23 also increments the day of the month.

Returns the date’s minutes as a number between 0 and 59.

Returns the UTC date’s minutes as a number between 0
and 59.

Sets the date’s minutes. Setting the minutes to a number
greater than 59 also increments the hour.

Sets the UTC date’s minutes. Setting the minutes to a
number greater than 59 also increments the hour.

Returns the date’s seconds as a number between 0 and 59.

Returns the UTC date’s seconds as a number between
0 and 59.

Sets the date’s seconds. Setting the seconds to a number
greater than 59 also increments the minutes.

Sets the UTC date’s seconds. Setting the seconds to a
number greater than 59 also increments the minutes.

Returns the date’s milliseconds.
Returns the UTC date’s milliseconds.
Sets the date’s milliseconds.

Sets the UTC date’s milliseconds.

Returns the number of minutes that the local time zone
is offset from UTC. For example, Eastern Standard Time
returns 300. This value changes when an area goes into
Daylight Saving Time.

114

Chapter 5: Reference Types

The RegExp Type

ECMAScript supports regular expressions through the RegExp type. Regular expressions are easy to
create using syntax similar to Perl as shown here:

var expression = /pattern/flags;

The pattern part of the expression can be any simple or complicated regular expression, including character
classes, quantifiers, grouping, lookaheads, and backreferences. Each expression can have zero or more flags
indicating how the expression should behave. Three supported flags represent matching modes, as follows:

g — Indicates global mode, meaning the pattern will be applied to all of the string instead of
stopping after the first match is found

i — Indicates case-insensitive mode, meaning the case of the pattern and the string are ignored
when determining matches

m — Indicates multiline mode, meaning the pattern will continue looking for matches after
reaching the end of one line of text

A regular expression is created using a combination of a pattern and these flags to produce different
results, as in this example:

/*
* Match all instances of "at" in a string.
*/

var patternl = /at/g;

/*
* Match the first instance of "bat" or "cat", regardless of case.
*/
var pattern2 = /[bclat/i;
/*
* Match all three-character combinations ending with "at", regardless of case.
*/
var pattern3 = /.at/gi;

As with regular expressions in other languages, all metacharacters must be escaped when used as part of
the pattern. The metacharacters are as follows:

(NS) 2 *+ .

115

Chapter 5: Reference Types

Each metacharacter has one or more uses in regular expression syntax and so must be escaped by a
backslash when you want to match the character in a string. Here are some examples:

/*

* Match the first instance of "bat" or "cat", regardless of case.
*/

var patternl = /[bclat/i;

/*
* Match the first instance of "[bclat", regardless of case.
*/

var pattern2 = /\[bc\lat/i;

/*

* Match all three-character combinations ending with "at", regardless of case.
*/

var pattern3 = /.at/gi;

/*

* Match all instances of ".at", regardless of case.
*/

var patternd = /\.at/gi;

In this code, patternl matches all instances of "bat" or "cat", regardless of case. To match
"[bclat" directly, both square brackets need to be escaped with a backslash, as in pattern2. In
pattern3, the dot indicates that any character can precede "at" to be a match. If you want to match
".at", then the dot needs to be escaped, as in patternd.

The preceding examples all define regular expressions using the literal form. Regular expressions can
also be created by using the RegExp constructor, which accepts two arguments: a string pattern to match
and an optional string of flags to apply. Any regular expression that can be defined using literal syntax
can also be defined using the constructor, as in this example:

/*
* Match the first instance of "bat" or "cat", regardless of case.
*/
var patternl = /[bclat/i;
/*
* Same as patternl, just using the constructor.
*/
var pattern2 = new RegExp("[bclat", "i");

Here, patternl and pattern2 define equivalent regular expressions. Note that both arguments of the
RegExp constructor are strings (regular-expression literals should not be passed into the RegExp
constructor). Because the pattern argument of the RegExp constructor is a string, there are some
instances in which you need to double-escape characters. All metacharacters must be double-escaped, as
must characters that are already escaped, such as \n (the \ character, which is normally escaped in
strings because \ \ becomes \\\\ when used in a regular-expression string). The following table shows
some patterns in their literal form and the equivalent string that would be necessary to use the RegExp
constructor.

116

Chapter 5: Reference Types

Literal Pattern String Equivalent
/\[bc\lat/ "\\ [bc\\]at"

/\.at/ "\\.at"

/name\/age/ "name\\/age"
/\a.\da{1,2}/ "\N\d.\\d{1,2}"
/\w\\hello\\123/ "\\w\\\\hello\\\\123"

RegExp Instance Properties

Each instance of RegExp has the following properties that allow you to get information about the pattern:

global — A Boolean value indicating whether the g flag has been set.
ignoreCase — A Boolean value indicating whether the i flag has been set.

lastIndex — An integer indicating the character position where the next match will be
attempted in the source string. This value always begins as 0.

multiline — A Boolean value indicating whether the m flag has been set.

source — The string source of the regular expression. This is always returned as if specified in
literal form rather than a string pattern as passed into the constructor.

These properties are helpful in identifying aspects of a regular expression; however, they typically don’t
have much use, because the information is available in the pattern declaration. Here’s an example:

var patternl = /\[bc\lat/i;

alert (patternl.global) ; //false
alert (patternl.ignoreCase); //true
alert (patternl.multiline); //false
alert (patternl.lastIndex); //0

alert (patternl.source) ; //"\[bc\lat"
var pattern2 = new RegExp("\\[bc\\]at", "i");
alert (pattern2.global); //false
alert (pattern2.ignoreCase); //true
alert (pattern2.multiline); //false
alert (pattern2.lastIndex); //0

alert (pattern2.source) ; //"\ [bc\lat"

Note that the source properties of each pattern are equivalent even though the first pattern is in literal
form and the second uses the RegExp constructor. The source property normalizes the string into the
form you’d use in a literal.

117

Chapter 5: Reference Types

RegExp Instance Methods

The primary method of a RegExp object is exec (), which is intended for use with capturing groups.
This method accepts a single argument, which is the string on which to apply the pattern, and returns an
array of information about the first match, or null if no match was found. The returned array, though an
instance of Array, contains two additional properties: index, which is the location in the string where
the pattern was matched, and input, which is the string that the expression was run against. In the
array, the first item is the string that matches the entire pattern. Any additional items represent captured
groups inside the expression (if there are no capturing groups in the pattern, then the array has only one
item). Consider the following;:

var text = "mom and dad and baby";
var pattern = /mom(and dad(and baby)?)?/gi;

var matches = pattern.exec(text);

alert (matches.index) ; //0

alert (matches.input) ; //"mom and dad and baby"
alert (matches[0]); //"mom and dad and baby"
alert (matches[1]); //" and dad and baby"
alert (matches[2]); //" and baby"

In this example, the pattern has two capturing groups. The innermost one matches "and baby", and its
enclosing group matches "and dad" or "and dad and baby". When exec () is called on the string, a

match is found. Because the entire string matches the pattern, the index property on the matches array
is set to 0. The first item in the array is the entire matched string, the second contains the contents of the
first capturing group, and the third contains the contents of the third capturing group.

The exec () method returns information about one match at a time even if the pattern is global. When
the global flag is not specified, calling exec () on the same string multiple times will always return
information about the first match. With the g flag set on the pattern, each call to exec () moves further
into the string looking for matches, as in this example:

var text = "cat, bat, sat, fat";
var patternl = /.at/;

var matches = patternl.exec(text);

alert (matches.index) ; //0
alert (matches[0]) ; //cat
alert (patternl.lastIndex) ; //0

matches = patternl.exec(text);

alert (matches.index) ; //0
alert (matches[0]); //cat
alert (patternl.lastIndex) ; //0

var pattern2 = /.at/g;

var matches = pattern2.exec(text);

alert (matches.index) ; //0
alert (matches[0]); //cat
alert (pattern2.lastIndex) ; //0

118

Chapter 5: Reference Types

matches = pattern2.exec(text);

alert (matches.index) ; //5
alert (matches[0]); //bat
alert (pattern2.lastIndex) ; //8

The first pattern in this example, patternl, is not global, so each call to exec () returns the first match
only ("cat"). The second pattern, pattern2, is global, so each call to exec () returns the next match in
the string until the end of the string has been reached. Note also how the pattern’s 1astIndex property
is affected. In global matching mode, 1astIndex is incremented after each call to exec (), but it remains
unchanged in nonglobal mode.

A deviation in the IE implementation of JavaScript causes lastIndex to always be
updated, even in nonglobal mode.

Another method of regular expressions is test (), which accepts a string argument and returns true if
the pattern matches the argument, and false if it does not. This method is useful when you want to
know if a pattern is matched but you have no need for the actual matched text. The test () method is
often used in if statements, such as the following:

var text = "000-00-0000";
var pattern = /\d{3}\-\d{2}-\d{4}/;

if (pattern.test(text)){
alert ("The pattern was matched.");

}

In this example, the regular expression tests for a specific numeric sequence. If the input text matches the
pattern, then a message is displayed. This functionality is often used for validating user input, when you
care only if the input is valid, not necessarily why it’s invalid.

The inherited methods of toLocaleString () and toString () each return the literal representation of
the regular expression, regardless of how it was created. Consider this example:

var pattern = new RegExp("\\[bc\\]lat", "gi");
alert (pattern.toString()); // /\[bc\lat/gi
alert (pattern.toLocaleString()); // /\[bc\lat/gi

Even though the pattern in this example is created using the RegExp constructor, the
toLocaleString () and toString () methods return the pattern as if it were specified in literal format.

The valueOf () method for a regular expression returns the regular expression itself.
This oddity occurs partially because the specification does not indicate what value
should be returned by this method.

119

Chapter 5: Reference Types

RegExp Constructor Properties

The RegExp constructor function has several properties (these would be considered static properties in
other languages). These properties apply to all regular expressions that are in scope, and they change

based on the last regular-expression operation that was performed. Another unique element of these

properties is that they can be accessed in two different ways. Each property has a verbose property name

as well as a shorthand name (except in Opera, which doesn’t support the short names). The RegExp
constructor properties are listed in the following table.

Verbose Name Short Name Description

input S_ The last string matched against. This is not implemented in Opera.
lastMatch $& The last matched text. This is not implemented in Opera.
lastParen S+ The last matched capturing group. This is not implemented in Opera.
leftContext $° The text that appears in the input string prior to lastMatch.
multiline $* A Boolean value specifying whether all expressions should use

multiline mode. This is not implemented in IE or Opera.

rightContext $ The text that appears in the input string after lastMatch.

These properties can be used to extract specific information about the operation performed by exec () or

test (). Consider this example:

var text = "this has been a short summer";
var pattern = /(.)hort/g;

/*
* Note: Opera doesn't support input, lastMatch, lastParen, or multiline.
* Internet Explorer doesn't support multiline.

*/
if (pattern.test(text)) {
alert (RegExp.input) ; //this has been a short summer
alert (RegExp.leftContext) ; //this has been a
alert (RegExp.rightContext) ; // summer
alert (RegExp.lastMatch) ; //short
alert (RegExp.lastParen) ; //s
alert (RegExp.multiline); //false

120

Chapter 5: Reference Types

This code creates a pattern that searches for any character followed by "hort" and puts a capturing
group around the first letter. The various properties are used as follows:

Q The input property contains the original string.

0 The leftContext property contains the characters of the string before the word "short"
and the rightContext property contains the characters after the word "short".

QO The lastMatch property contains the last string that matches the entire regular expression,
which is "short".

Q The lastParen property contains the last matched capturing group, which is "s" in this case.

These verbose property names can be replaced with the short property names, although you must use
bracket notation to access them, as shown in the following example, because most are illegal identifiers
in ECMAScript:

var text = "this has been a short summer";
var pattern = /(.)hort/g;

/*

* Note: Opera doesn't short property names.

* Internet Explorer doesn't support multiline.

*/
if (pattern.test(text)) {

alert (RegExp.$S_); //this has been a short summer

alert (RegExp["$ "]1); //this has been a
alert (RegExp["$'"]1); // summer
alert (RegExp["$&"1]) ; //short
alert (RegExp["$+"]) ; /s
alert (RegExp["$*"]) ; //false

There are also constructor properties that store up to nine capturing-group matches. These properties are
accessed via RegExp . $1, which contains the first capturing-group match, through RegExp . $9, which
contains the ninth capturing-group match. These properties are filled in when calling either exec () or
test (), allowing you to do things like this:

var text = "this has been a short summer";
var pattern = /(..)or(.)/g;

if (pattern.test(text)) {

alert (RegExp.$1) ; //sh
alert (RegExp.$2) ; //t

In this example, a pattern with two matching groups is created and tested against a string. Even though
test () simply returns a Boolean value, the properties $1 and $2 are filled in on the RegExp constructor.

121

Chapter 5: Reference Types

Pattern Limitations

Although ECMAScript’s regular-expression support is fully developed, it does lack some of the advanced
regular-expression features available in languages such as Perl. The following features are not supported
in ECMAScript regular expressions (for more information, see www.regular-expressions.info):

(]

The \a and \z anchors (matching the start or end of a string, respectively)
Lookbehinds

Union and intersection classes

Atomic grouping

Unicode support (except for matching a single character at a time)
Named capturing groups

The s (single-line) and x (free-spacing) matching modes

Conditionals

U 000U 000

Regular-expression comments

Despite these limitations, ECMAScript’s regular-expression support is powerful enough for doing most
pattern-matching tasks.

The Function Type

Some of the most interesting parts of ECMAScript are its functions, primarily because functions actually
are objects. Each function is an instance of the Function type that has properties and methods just like
any other reference type. Because functions are objects, function names are simply pointers to function
objects and are not necessarily tied to the function itself. Functions are typically defined using function-
declaration syntax, as in this example:

function sum (numl, num2) {
return numl + num2;

)
This is almost exactly equivalent to using a function expression, such as this:

var sum = function (numl, num2) {
return numl + num2;

Y

In this code, a variable sum is defined and initialized to be a function. Note that there is no name
included after the function keyword because it’s not needed — the function can be referenced by the
variable sum. Also note that there is a semicolon after the end of the function, just as there would be after
any variable initialization.

122

Chapter 5: Reference Types

The last way to define functions is by using the Function constructor, which accepts any number of
arguments. The last argument is always considered to be the function body, and the previous arguments
enumerate the new function’s arguments. Take this for example:

var sum = new Function("numl", "num2", "return numl + num2"); //not recommended

Technically this is a function expression. This syntax is not recommended because it causes a double
interpretation of the code (once for the regular ECMAScript code and once for the strings that are passed
into the constructor), and thus can affect performance. However, it’s important to think of functions as
objects, and function names as pointers — this syntax is great at representing that concept.

Because function names are simply pointers to functions, they act like any other variable containing a
pointer to an object. This means it’s possible to have multiple names for a single function, as in this
example:

function sum(numl, num2) {
return numl + num2;

}
alert (sum(10,10)); //20

var anotherSum = sum;
alert (anotherSum(10,10)); //20

sum = null;
alert (anotherSum(10,10)); //20

This code defines a function named sum () that adds two numbers together. A variable, anotherSum, is
declared and set equal to sum. Note that using the function name without parentheses accesses the function
pointer instead of executing the function. At this point, both anotherSum and sum point to the same
function, meaning that anotherSum () can be called and a result returned. When sum s set to nul1, it
severs its relationship with the function, although anothersum() can still be called without any problems.

No Overloading (Revisited)

Thinking of function names as pointers also explains why there can be no function overloading in
ECMAScript. Recall the following example from Chapter 3:

function addSomeNumber (num) {
return num + 100;

}
function addSomeNumber (num) {
return num + 200;

}

var result = addSomeNumber (100) ; //300

123

Chapter 5: Reference Types

In this example, it’s clear that declaring two functions with the same name always results in the last
function overwriting the previous one. This code is almost exactly equivalent to the following:

var addSomeNumber = function (num) {
return num + 100;

}

addSomeNumber = function (num) {
return num + 200;

}

var result = addSomeNumber (100) ; //300

In this rewritten code, it’s much easier to see exactly what is going on. The variable addSomeNumber is
simply being overwritten when the second function is created.

Function Declarations vs. Function Expressions

Throughout this section, the function declaration and function expression have been referred to as being
almost equivalent. This hedging is due to one major difference in the way that an interpreter loads data
into the execution context. Function declarations are read and available in an execution context before
any code is executed, whereas function expressions aren’t complete until the execution reaches that line
of code. Consider the following:

alert(sum(10,10));
function sum(numl, num2) {
return numl + num2;

}

This code runs perfectly because function declarations are read and added to the execution context
before the code begins running. Changing the function declaration to an initialization, as in the following
example, will cause an error during execution:

alert(sum(10,10));
var sum = function (numl, num2) {

return numl + num2;

Y

This updated code will cause an error because the function is part of an initialization statement, not part
of a function declaration. That means the function isn’t available in the variable sum until the
highlighted line has been executed, which won’t happen, because the first line causes an “unexpected
identifier” error.

Aside from this difference in when the function is available by the given name, the two syntaxes are
equivalent.

It is possible to use function declaration and initialization together, such as
var sum = function sum() {}. However this syntax will cause an error in Safari.

124

Chapter 5: Reference Types

Functions as Values

Because function names in ECMAScript are nothing more than variables, functions can be used any place
any other value can be used. This means it’s possible to not only pass a function into another function as an
argument, but also to return a function as the result of another function. Consider the following function:

function callSomeFunction (someFunction, someArgument) {
return someFunction (someArgument) ;

}

This function accepts two arguments. The first argument should be a function, and the second argument
should be a value to pass to that function. Any function can then be passed in as follows:

function addl0 (num) {
return num + 10;

}

var resultl = callSomeFunction(addl0, 10);
alert (resultl); //20

function getGreeting (name) {
return "Hello, " + name;

}

var result2 = callSomeFunction(getGreeting, "Nicholas");
alert (result2); //"Hello, Nicholas"

The callsomeFunction () function is generic, so it doesn’t matter what function is passed in as the first
argument — the result will always be returned from the first argument being executed. Remember that in
order to access a function pointer instead of executing the function, you must leave off the parentheses, so
the variables add10 and getGreeting are passed into callSomeFunction () instead of their results
being passed in.

Returning a function from a function is also possible and can be quite useful. For instance, suppose that
you have an array of objects and want to sort the array on an arbitrary object property. A comparison
function for the array’s sort () method accepts only two arguments, which are the values to compare, but
really you need a way to indicate which property to sort by. This problem can be addressed by defining a
function to create a comparison function based on a property name, as in the following example :

function createComparisonFunction (propertyName) {

return function(objectl, object2){
var valuel = objectl[propertyName];
var value2 = object2|[propertyName];

if (valuel < value2){
return -1;

} else if (valuel > value2){
return 1;

} else {
return 0;

}

Y

125

Chapter 5: Reference Types

This function’s syntax may look complicated, but essentially it’s just a function inside of a function,
preceded by the return operator. The propertyName argument is accessible from the inner function
and is used with bracket notation to retrieve the value of the given property. Once the property values
are retrieved, a simple comparison can be done. This function can be used as in the following example:

var data = [{name: "Zachary", age: 28}, {name: "Nicholas", age: 29}];

data.sort (createComparisonFunction ("name")) ;
alert(data[0] .name); //Nicholas

data.sort (createComparisonFunction("age")) ;
alert(data[0] .name); //Zachary

In this code, an array called data is created with two objects. Each object has a name property and an
age property. By default, the sort () method would call tostring () on each object to determine the
sort order, which wouldn’t give logical results in this case. Calling createComparisonFunction
("name") creates a comparison function that sorts based on the name property, which means the first
item will have the name “Nicholas” and an age of 29. When createComparisonFunction ("age") is
called, it creates a comparison function that sorts based on the age property, meaning the first item will
be the one with its name equal to "Zachary" and age equal to 28.

Function Internals

Two special objects exist inside a function: arguments and this. The arguments object, as discussed in
Chapter 3, is an arraylike object that contains all of the arguments that were passed into the function.
Though its primary use is to represent function arguments, the arguments object also has a property
named callee, which is a pointer to the function that owns the arguments object. Consider the
following classic factorial function:

function factorial (num) {
if (num <= 1) {
return 1;
} else {
return num * factorial (num-1)

}

Factorial functions are typically defined to be recursive, as in this example, which works fine when the
name of the function is set and won’t be changed. However, the proper execution of this function is
tightly coupled with the function name "factorial®. It can be decoupled by using arguments
.callee as follows:

function factorial (num) {
1if (num <= 1) {
return 1;
} else {

return num * arguments.callee(num-1)

126

Chapter 5: Reference Types

In this rewritten version of the factorial () function, there is no longer a reference to the name
"factorial" in the function body, which ensures that the recursive call will happen on the correct
function no matter how the function is referenced. Consider the following;:

var trueFactorial = factorial;

factorial = function() {

return 0;
};
alert (trueFactorial(5)); //120
alert (factorial(5)); //0

Here, the variable trueFactorial is assigned the value of factorial, effectively storing the function
pointer in a second location. The factorial variable is then reassigned to a function that simply

returns 0. Without using arguments.callee in the original factorial () function’s body, the call

to trueFactorial () would return 0. However, with the function decoupled from the function name,
trueFactorial () correctly calculates the factorial, and factorial () is the only function that returns 0.

The other special object is called this, which operates similar to the this object in Java and C#. Itis a
reference to the object that the function is operating on — or rather, it is the scope in which the function
is being executed (when a function is called in the global scope of a web page, the this object points to
window). Consider the following:

window.color = "red";
var o = { color: "blue" };

function sayColor () {
alert (this.color);
}

sayColor () ; //"red"

o.sayColor = sayColor;
o.sayColor(); //"blue"

The function sayColor () is defined globally but references the this object. The value of this is not
determined until the function is called, so its value may not be consistent throughout the code execution.
When sayColor () is called in the global scope, it outputs "red" because this is pointing to window,
which means this.color evaluates to window. color. By assigning the function to the object o and
then calling o.sayColor (), the this object points to o, so this.color evaluates to o.color and
"blue" is displayed.

Remember that function names are simply variables containing pointers, so the
global sayColor () function and o.sayColor () point to the same function even
though they execute in different contexts.

127

Chapter 5: Reference Types

Function Properties and Methods

Functions are objects in ECMAScript and, as mentioned previously, therefore have properties and
methods. Each function has two properties: length and prototype. The length property indicates the
number of named arguments that the function expects, as in this example:

function sayName (name) {
alert (name) ;

}

function sum(numl, num2) {
return numl + num2;

}

function sayHi () {
alert("hi");
}

alert (sayName.length); //1
alert (sum.length) ; //2
alert (sayHi.length) ; //0

This code defines three functions, each with a different number of named arguments. The sayName ()
function specifies one argument, so its length property is set to 1. Similarly, the sum() function specifies
two arguments, so its Length property is 2, and sayHi () has no named arguments, so its length is 0.

The prototype property is perhaps the most interesting part of the ECMAScript core. The prototype is
the actual location of all instance methods for reference types, meaning methods such as tostring ()
and valueOf£ () actually exist on the prototype and are then accessed from the object instances. This
property is very important in terms of defining your own reference types and inheritance (these topics
are covered in Chapter 6).

There are two noninherited methods for functions: apply () and call (). These methods both call the
function within a specific scope, effectively setting the value of the this object inside the function body.
The apply () method accepts two arguments: the scope in which to run the function, and an array of
arguments. This second argument may be an instance of Array, but it can also be the arguments object.
Consider the following:

function sum(numl, num2) {
return numl + num2;

}

function callSuml (numl, num2) {
return sum.apply(this, arguments); //passing in arguments object

}

function callSum2 (numl, num2) {

return sum.apply(this, [numl, num2]); //passing in array
}
alert(callSuml (10,10)); //20
alert(callSum2(10,10)); //20

128

Chapter 5: Reference Types

In this example, callSuml () executes the sum () method, passing in this as the scope (which is equal
to window because it’s being called in the global scope) and also passing in the arguments object. The
callsum2 () method also calls sum (), but it passes in an array of the arguments instead. Both functions
will execute and return the correct result.

The call () method exhibits the same behavior as apply (), but arguments are passed to it differently.
The first argument is the scope, but the remaining arguments are passed directly into the function. Using
call (), arguments must be enumerated specifically, as in this example:

function sum(numl, num2) {
return numl + num2;

}

function callSum(numl, num2) {
return sum.call(this, numl, num2);

}

alert(callSum(10,10)); //20

Using the call () method, callSum () must pass in each of its arguments explicitly. The result is the
same as using apply (). The decision to use either apply () or call () depends solely on the easiest
way for you to pass arguments into the function. If you intend to pass in the arguments object directly
or if you already have an array of data to pass in, then apply () is the better choice; otherwise, call ()
may be a more appropriate choice. (If there are no arguments to pass in, these methods are identical.)

The true power of apply () and call () lies not in their ability to pass arguments, but rather in their
ability to augment the scope in which a function runs. Consider the following example:

window.color = "red";
var o = { color: "blue" };

function sayColor () {
alert(this.color);

}

sayColor () ; //red
sayColor.call (this) ; //red
sayColor.call (window); //red
sayColor.call (o) ; //blue

This example is a modified version of the one used to illustrate the this object. Once again, sayColor ()
is defined as a global function, and when it’s called in the global scope, it displays "red" because this
.color evaluates to window. color. You can then call the function explicitly in the global scope by
using sayColor.call (this) and sayColor.call (window), which both display "red". Running
sayColor.call (o) switches the context of the function such that this points to o, resulting in a
display of "blue".

The advantage of using call () (or apply ()) to augment the scope is that the object doesn’t need to know

anything about the method. In the first version of this example, the sayColor () function was placed
directly on the object o before it was called; in the updated example, that step is no longer necessary.

129

Chapter 5: Reference Types

For functions, the inherited methods toLocaleString () and toString () always return the function’s
code. The exact format of this code varies from browser to browser — some return your code exactly as it
appeared in the source code, including comments, whereas others return the internal representation of
your code, which has comments removed and possibly some code changes that the interpreter made.
Due to these differences, you can’t rely on what is returned for any important functionality, though this
information may be useful for debugging purposes. The inherited method valueOf () simply returns
the function itself.

A nonstandard caller property on each function points to the function that called the current
function. This property is typically accessed inside a function via arguments.callee.caller to
trace back through the call stack. The caller property is available in IE, Firefox, Safari, and Chrome,
though it is not recommended for use outside of debugging.

Primitive Wrapper Types

Three special reference types are designed to easy interaction with primitive values: the Boolean type,
the Number type, and the String type. These types can act like the other reference types described

in this chapter, but they also have a special behavior related to their primitive-type equivalents. Every
time a primitive value is read, an object of the corresponding primitive wrapper type is created behind
the scenes, allowing access to any number of methods for manipulating the data. Consider the following
example:

var sl = "some text";
var s2 = sl.substring(2);

In this code, s1 is a variable containing a string, which is a primitive value. On the next line, the
substring () method is called on s1 and stored in s2. Primitive values aren’t objects, so logically they
shouldn’t have methods, though this still works as you would expect. In truth, there is a lot going on
behind the scenes to allow this seamless operation. When s1 is accessed in the second line, it is being
accessed in read mode, which is to say that its value is being read from memory. Any time a string value
is accessed in read mode, the following three steps occur:

1. Create an instance of the String type.
2. Call the specified method on the instance.

3. Destroy the instance.
You can think of these three steps as they’re used in the following three lines of ECMAScript code:

var sl = new String("some text");
var s2 = sl.substring(2);
sl = null;

This behavior allows the primitive string value to act like an object. These same three steps are repeated
for Boolean and numeric values using the Boolean and Number types, respectively.

The major difference between reference types and primitive wrapper types is the lifetime of the object.
When you instantiate a reference type using the new operator, it stays in memory until it goes out of

130

Chapter 5: Reference Types

scope, whereas automatically created primitive wrapper objects exist for only one line of code before they
are destroyed. This means that properties and methods cannot be added at runtime. Take this for example:

var sl = "some text";
sl.color = "red";
alert(sl.color); //undefined

Here, the second line attempts to add a color property to the string s1. However, when s1 is accessed
on the third line, the color property is gone. This happens because the String object that was created
in the second line is destroyed by the time the third line is executed. The third line creates its own
String object, which doesn’t have the color property.

It is possible to create the primitive wrapper objects explicitly using the Boolean, Number, and String
constructors. This should be done only when absolutely necessary, because it is often confusing for
developers as to whether they are dealing with a primitive or reference value. Calling typeof on an
instance of a primitive wrapper type returns "object", and all primitive wrapper objects convert to the
Boolean value true.

Even though it’s not recommended to create primitive wrapper objects explicitly, their functionality is
important in being able to manipulate primitive values. Each primitive wrapper type has methods that
make data manipulation easier.

The Boolean Type

The Boolean type is the reference type corresponding to the Boolean values. To create a Boolean object,
use the Boolean constructor and pass in either true or false as in the following example:

var booleanObject = new Boolean(true);

Instances of Boolean override the valueOf () method to return a primitive value of either true or
false. The tostring () method is also overridden to return a string of "true" or "false" when
called. Unfortunately, not only are Boolean objects of little use in ECMAScript, they can actually be
rather confusing. The problem typically occurs when trying to use Boolean objects in Boolean
expressions, as in this example:

var falseObject = new Boolean(false);
var result = falseObject && true;
alert (result); //true

var falseValue = false;
result = falseValue && true;
alert(result); //false

In this code, a Boolean object is created with a value of false. That same object is then ANDed with the
primitive value true. In Boolean math, false AND true is equal to false. However, in this line of
code, it is the object named falseObject being evaluated, not its value (false). As discussed earlier, all
objects are automatically converted to true in Boolean expressions, so falseObject actually is given a
value of true in the expression. Then, true ANDed with true is equal to true.

131

Chapter 5: Reference Types

There are a couple of other differences between the primitive and reference Boolean types. The typeo£
operator returns "boolean" for the primitive but "object" for the reference. Also, a Boolean object is
an instance of the Boolean type and will return true when used with the instanceof operator,
whereas a primitive value returns false, as shown here:

alert (typeof falseObject); //object

alert (typeof falseValue); //boolean

alert (falseObject instanceof Boolean); //true
alert (falseValue instanceof Boolean); //false

It’s very important to understand the difference between a primitive Boolean value and a Boolean
object — it is recommended to never use the latter.

The Number Type

The Number type is the reference type for numeric values. To create a Number object, use the Number
constructor and pass in any number. Here’s an example:

var numberObject = new Number (10);

As with the Boolean type, the Number type overrides valueOf (), toLocaleString (), and toString ().
The valueOf () method returns the primitive numeric value represented by the object, whereas the other
two methods return the number as a string. As mentioned in Chapter 3, the toString () method
optionally accepts a single argument indicating the radix in which to represent the number, as shown in
the following examples:

var num = 10;

alert (num.toString()); //"10"
alert (num.toString(2)); //"1010"
alert (num.toString(8)); //"12n
alert (num.toString(10)) ; //"10"
alert (num.toString (16)) ; //"a"

Aside from the inherited methods, the Number type has several additional methods used to format
numbers as strings.

The toFixed () method returns a string representation of a number with a specified number of decimal
points, as in this example:

var num = 10;
alert (num. toFixed(2)) ; //"10.00"

Here, the toFixed () method is given an argument of 2, which indicates how many decimal places
should be displayed. As a result, the method returns the string "10.00", filling out the empty decimal
places with zeros. If the number has more than the given number of decimal places, the result is rounded
to the nearest decimal place as shown here:

var num = 10.005;
alert (num.toFixed(2)) ; //"10.01"

132

Chapter 5: Reference Types

The rounding nature of toFixed () may be useful for applications dealing with currency, though it’s
worth noting that rounding using this method differs between browsers.

The toFixed () method can represent numbers with 0 through 20 decimal places. Some browsers may
support larger ranges, but this is the typically implemented range.

Another method related to formatting numbers is the toExponential () method, which returns a string
with the number formatted in exponential notation (aka e-notation). Just as with toFixed (),

toExponential () accepts one argument, which is the number of decimal places to output. Consider
this example:

var num = 10;

alert (num. toExponential (1)) ; //"1.0e+1"

This code outputs "1.0e+1" as the result. Typically, this small a number wouldn’t be represented using
e-notation. If you want to have the most appropriate form of the number, the toPrecision () method
should be used instead.

The toPrecision () method returns either the fixed or exponential representation of a number,
depending on which makes the most sense. This method takes one argument, which is the total number
of digits to use to represent the number (not including exponents). Here’s an example:

var num = 99;

alert (num. toPrecision (1)) ; //"le+2"
alert (num.toPrecision(2)); //"99n"
alert (num. toPrecision(3)); //"99.0"

In this example, the first task is to represent the number 99 with a single digit, which results in "1e+2",
otherwise known as 100. Because 99 cannot accurately be represented by just one digit, the method
rounded up to 100, which can be represented using just one digit. Representing 99 with two digits yields
"99" and with three digits returns "99.0". The toPrecision () method essentially determines whether
to call toFixed () or toExponential () based on the numeric value you're working with; all three
methods round up or down to accurately represent a number with the correct number of decimal places.

Similar to the Boolean object, the Number object gives important functionality to numeric values but really
should not be instantiated directly due to the same potential problems. The typeof and instanceof
operators work differently when dealing with primitive numbers versus reference numbers, as shown in
the following examples:

var numberObject = new Number (10);
var numberValue = 10;

alert (typeof numberObject) ; //"object"

alert (typeof numberValue) ; // "number"

alert (numberObject instanceof Number); //true
alert (numberValue instanceof Number) ; //false

Primitive numbers always return "number" when typeof is called on them, whereas Number objects
return "object". Similarly, a Number object is an instance of Number, but a number primitive is not.

133

Chapter 5: Reference Types

The String Type

The string type is the object representation for strings and is created using the String constructor as
follows:

var stringObject = new String("hello world");

The methods of a String object are available on all string primitives. All three of the inherited
methods — valueOf (), toLocaleString (), and toString () — return the object’s primitive string value.

Each instance of String contains a single property, 1ength, which indicates the number of characters in
the string. Consider the following example:

var stringValue = "hello world";
alert (stringValue.length) ; //"11

This example outputs "11", the number of characters in "hello world". Note that even if the string
contains a double-byte character (as opposed to an ASCII character, which uses just one byte), each
character is still counted as one.

The string type has a large number of methods to aid in the dissection and manipulation of strings in
ECMAScript.

Character Methods

Two methods access specific characters in the string: charat () and charCodeat (). These methods each
accept a single argument, which is the character’s zero-based position. The charat () method simply
returns the character in the given position as a single-character string (there is no character type in
ECMAScript). For example:

var stringValue = "hello world";
alert (stringValue.charAt (1)) ; //"e"

The character in position 1 of "hello world" is "e", so calling charat (1) returns "e". If you want the
character’s character code instead of the actual character, then calling charCodeat () is the appropriate

choice, as in the following example:

var stringValue = "hello world";
alert (stringValue.charCodeAt (1)) ; //outputs "101"

This example outputs "101", which is the character code for the lowercase "e" character.
Though technically not part of ECMA-262, there is another way to access an individual character in some
browsers. Firefox, Opera, and Safari allow you to use bracket notation with a numeric index to access a

specific character in the string, as in this example:

var stringValue = "hello world";
alert (stringValue [1]); //"e"

If this syntax is used in IE, the result is undefined (though not the special value undefined).

134

Chapter 5: Reference Types

String-Manipulation Methods

Several methods manipulate the values of strings. The first of these methods is concat (), which is used
to concatenate one or more strings to another, returning the concatenated string as the result. Consider
the following example:

var stringValue = "hello ";

var result = stringValue.concat ("world");
alert (result) ; //"hello world"
alert (stringValue) ; //"hello"

The result of calling the concat () method on stringValue in this example is "hello world" — the
value of stringValue remains unchanged. The concat () method accepts any number of arguments, so
it can create a string from any number of other strings, as shown here:

var stringValue = "hello ";
var result = stringValue.concat ("world", "!");

alert (result) ; //"hello world!"
alert (stringValue) ; //"hello"
This modified example concatenates "wor1ld" and " ! " to the end of "hello ". Although the concat ()

method is provided for string concatenation, the addition operator (+) is used more often and, in most
cases, actually performs better than the concat () method even when concatenating multiple strings.

ECMAScript provides three methods for creating string values from a substring: slice (), substr (),
and substring (). All three methods return a substring of the string they act on, and all accept either
one or two arguments. The first argument is the position where capture of the substring begins; the
second argument, if used, indicates where the operation should stop. For slice () and substring(),
this second argument is the position before which capture is stopped (all characters up to this point are
included except the character at that point). For substr (), the second argument is the number of
characters to return. If the second argument is omitted in any case, it is assumed that the ending position
is the length of the string. Just as with the concat () method, slice(), substr (), and substring() do
not alter the value of the string itself — they simply return a primitive string value as the result, leaving
the original unchanged. Consider this example:

var stringValue = "hello world";

alert (stringValue.slice(3)); //"lo world"
alert (stringValue.substring(3)); //"lo world"
alert (stringValue.substr(3)); //"1lo world"
alert (stringValue.slice(3, 7)); //"lo w"
alert (stringValue.substring(3,7)); //"lo w"
alert (stringValue.substr (3, 7)); //"1lo worl"

In this example, slice (), substr (), and substring () are used in the same manner, and in most cases
return the same value. When given just one argument, 3, all three methods return "lo world", because
the second "1" in "hello" is in position 3. When given two arguments, 3 and 7, slice () and
substring () return "lo w" (the "o" in "world" is in position 7, so it is not included), while substr ()
returns "lo worl" because the second argument specifies the number of characters to return.

There are different behaviors for these methods when an argument is a negative number. For the
slice () method, a negative argument is treated as the length of the string plus the negative argument.

135

Chapter 5: Reference Types

For the substr () method, a negative first argument is treated as the length of the string plus the
number, whereas a negative second number is converted to 0. For the substring () method, all negative
numbers are converted to 0. Consider this example:

var stringValue = "hello world";

alert (stringValue.slice(-3)); //"rld"

alert (stringValue.substring(-3)); //"hello world"
alert (stringValue.substr(-3)); //"rld"

alert (stringValue.slice(3, -4)); //"lo w"

alert (stringValue.substring (3, -4)); //"hel"

alert (stringValue.substr (3, -4)); //"" (empty string)

This example clearly indicates the differences between three methods. When slice () and substr () are
called with a single negative argument, they act the same. This occurs because -3 is translated into 7

(the length plus the argument), effectively making the calls slice (7) and substr (7). The substring ()
method, on the other hand, returns the entire string because -3 is translated to 0.

Due to a deviation in the IE implementation of JavaScript passing in a negative
number to substr () results in the original string being returned.

When the second argument is negative, the three methods act differently from one another. The slice ()
method translates the second argument to 7, making the call equivalent to slice (3, 7) and so
returning "lo w". For the substring () method, the second argument gets translated to 0, making the
call equivalent to substring (3, 0), whichis actually equivalent to substring (0, 3) because this
method expects that the smaller number is the starting position and the larger one is the ending position.
For the substr () method, the second argument is also converted to 0, which means there should be
zero characters in the returned string, leading to the return value of an empty string.

String Location Methods

There are two methods for locating substrings within another string: index0f () and lastIndexOf ().
Both methods search a string for a given substring and return the position (or -1 if the substring isn’t
found). The difference between the two is that the index0f () method begins looking for the substring
at the beginning of the string, whereas the lastIndexOf () method begins looking from the end of the
string. Consider this example:

var stringValue = "hello world";
alert (stringValue.indexOf ("o")) ; //4
alert (stringValue.lastIndexOf ("o")); /117

Here, the first occurrence of the string "o" is at position 4, which is the "o" in "hello". The last
occurrence of the string "o is in the word "world", at position 7. If there is only one occurrence of "o"
in the string, then indexOf () and lastIndexOf () return the same position.

Each method accepts an optional second argument that indicates the position to start searching from

within the string. This means that the index0Of () method will start searching from that position and go
toward the end of the string, ignoring everything before the start position, whereas lastIndexOf ()

136

Chapter 5: Reference Types

starts searching from the given position and continues searching toward the beginning of the string,
ignoring everything between the given position and the end of the string. Here’s an example:

var stringValue = "hello world";
alert (stringValue.indexOf ("o", 6)); /117
alert (stringValue.lastIndexOf ("o", 6)); //4

When the second argument of 6 is passed in to each method, the results are the opposite from the
previous example. This time, indexOf () returns 7 because it starts searching the string from position 6
(the letter "w") and continues to position 7, where "o" is found. The lastIndexOf () method returns 4
because the search starts from position 6 and continues back toward the beginning of the string, where it
encounters the "o" in "hello". Using this second argument allows you to locate all instances of a
substring by looping callings to indexOf () or lastIndexOf ()as in the following example:

var stringValue = "Lorem ipsum dolor sit amet, consectetur adipisicing elit";
var positions = new Array();
var pos = stringValue.indexOf ("e");

while(pos > -1){
positions.push (pos);
pos = stringValue.indexOf("e", pos + 1);

}

alert (positions); //"3,24,32,35,52"

This example works through a string by constantly increasing the position at which index0f () should
begin. It begins by getting the initial position of "e" in the string, and then enters a loop that continually
passes in the last position plus one to indexOf (), ensuring that the search continues after the last
substring instance. Each position is stored in the positions array so the data can be used later.

String Case Methods

The next set of methods involves case conversion. Four methods perform case conversion:

toLowerCase (), toLocaleLowerCase (), toUpperCase (), and toLocaleUpperCase ().

The toLowerCase () and toUpperCase () methods are the original methods, modeled after the same
methods in java.lang.String. The toLocalelLowerCase () and toLocaleUpperCase () methods are
intended to be implemented based on a particular locale. In many locales, the locale-specific methods
are identical to the generic ones; however, a few languages (such as Turkish) apply special rules to
Unicode case conversion, and this necessitates using the locale-specific methods for proper conversion.
Here are some examples:

var stringValue = "hello world";

alert (stringValue.toLocaleUpperCase()); //"HELLO WORLD"
alert (stringValue.toUpperCase()) ; //"HELLO WORLD"
alert (stringValue.toLocaleLowerCase()); //"hello world"
alert (stringValue.toLowerCase()) ; //"hello world"

This code outputs "HELLO WORLD" for both toLocaleUpperCase () and toUpperCase (), just as
"hello world" is output for both toLocaleLowerCase () and toLowerCase (). Generally speaking, if
you do not know the language in which the code will be running, it is safer to use the locale-specific
methods.

137

Chapter 5: Reference Types

String Pattern-Matching Methods

The string type has several methods designed to pattern-match within the string. The first of these
methods is match () and is essentially the same as calling a RegExp object’s exec () method.

The match () method accepts a single argument, which is either a regular expression string or a RegExp
object. Consider this example:

var text = "cat, bat, sat, fat";
var pattern = /.at/;

//same as pattern.exec (text)
var matches = text.match(pattern);

alert (matches.index) ; //0
alert (matches[0]); //"cat"
alert (pattern.lastIndex) ; //0

The array returned from match () is the same array that is returned when the RegExp object’s exec ()
method is called with the string as an argument: the first item is the string that matches the entire
pattern, and each other item (if applicable) represents capturing groups in the expression.

Another method for finding patterns is search (). The only argument for this method is the same as the
argument for match () : a regular expression specified by either a string or a RegExp object.

The search () method returns the index of the first pattern occurrence in the string, or -1 if it’s not found.
search () always begins looking for the pattern at the beginning of the string. Consider this example:

var text = "cat, bat, sat, fat";

var pos = text.search(/at/);
alert (pos) ; //1

Here, search(/at/) returns 1, which is the first position of "at " in the string.

To simplify replacing substrings, ECMAScript provides the replace () method. This method accepts
two arguments. The first argument can be a RegExp object or a string (the string is not converted

to a regular expression), and the second argument can be a string or a function. If the first argument is
a string, then only the first occurrence of the substring will be replaced. The only way to replace all
instances of a substring is to provide a regular expression with the global flag specified, as in this

example:
var text = "cat, bat, sat, fat";
var result = text.replace("at", "ond");
alert (result) ; //"cond, bat, sat, fat"

result = text.replace(/at/g, "ond");
alert (result) ; //"cond, bond, sond, fond"

In this example, the string "at" is first passed in to replace () with a replacement text of "ond". The
result of the operation is that "cat" is changed to "cond", but the rest of the string remains intact. By
changing the first argument to a regular expression with the global flag set, each instance of "at" is
replaced with "ond".

When the second argument is a string, there are several special character sequences that can be used to
insert values from the regular-expression operations. ECMA-262 specifies the following table of values.

138

Chapter 5: Reference Types

Sequence Replacement Text

$5 $

$& The substring matching the entire pattern. Same as RegExp . lastMatch.

$" The part of the string occurring before the matched substring. Same as RegExp
.leftContext.

$° The part of the string occurring after the matched substring. Same as RegExp
.rightContext.

$n The nth capture, where 7 is a value 0-9. For instance, $1 is the first capture, $2 is

the second, etc. If there is no capture then the empty string is used.

$nn The nnth capture, where nn is a value 01-99. For instance, $01 is the first capture,
$02 is the second, etc. If there is no capture then the empty string is used.

Using these special sequences allows replacement using information about the last match, such as in this
example:

var text = "cat, bat, sat, fat";

result = text.replace(/(.at)/g, "word ($S1)");
alert (result) ; //word (cat), word (bat), word (sat), word (fat)

Here, each word ending with "at" is replaced with "word" followed in parentheses by what it replaces
by using the $1 sequence.

The second argument of replace () may also be a function. When there is a single match, the function
gets passed three arguments: the string match, the position of the match within the string, and the whole
string. When there are multiple capturing groups, each matched string is passed in as an argument, with
the last two arguments being the position of the pattern match in the string and the original string. The
function should return a string indicating what the match should be replaced with. Using a function as
the second argument allows more granular control over replacement text, as in this example:

function htmlEscape (text) {
return text.replace(/[<>"&]/g, function(match, pos, originalText) {
switch (match) {

case "<":

return "<";
case ">":

return ">";
case "&":

return "&";
case "\"":

return """;

)
}

alert (htmlEscape("<p class=\"greeting\">Hello world!</p>"));
//"&1lt;p class="greeting">Hello world!< /p>";

139

Chapter 5: Reference Types

Here, the function htmlEscape () is defined to escape four characters for insertion into HTML: the less-
than, greater-than, ampersand, and double-quote characters all must be escaped. The easiest way to
accomplish this is to have a regular expression to look for those characters and then define a function
that returns the specific HTML entities for each matched character.

The last string method for dealing with patterns is split (), which separates the string into an array of
substrings based on a separator. The separator may be a string or a RegExp object (the string is not
considered a regular expression for this method). An optional second argument, the array limit, assures
that the returned array will be no larger than a certain size. Consider this example:

var colorText = "red,blue,green,yellow";

var colorsl = colorText.split(","); //["red", "blue", "green", "yellow"]
var colors2 = colorText.split(",", 2); //["red", "blue"]

var colors3 = colorText.split(/["\,1+/); //["", ",", ",", ",", ""]

In this example, the string colorText is a comma-separated string of colors. The call to split (", ")
retrieves an array of those colors, splitting the string on the comma character. To truncate the results to
only two items, a second argument of 2 is specified. Lastly, using a regular expression, it’s possible to get
an array of the comma characters. Note that in this last call to split (), the returned array has an empty
string before and after the commas. This happens because the separator specified by the regular
expression appears at the beginning of the string (the substring "red") and at the end (the substring
"yellow").

The localeCompare() Method

The last method is localeCompare (), which compares one string to another and returns one of three
values as follows:

Q If the string should come alphabetically before the string argument, a negative number is
returned (most often this is -1, but it is up to each implementation as to the actual value).

Q If the string is equal to the string argument, 0 is returned.

Q If the string should come alphabetically after the string argument, a positive number is returned

(most often this is 1, but once again, this is implementation-specific).

Here’s an example:

var stringValue = "yellow";

alert (stringValue.localeCompare ("brick")); //1
alert (stringValue.localeCompare("yellow")); //0
alert (stringValue.localeCompare("zoo")) ; //-1

140

Chapter 5: Reference Types

In this code, the string "yellow" is compared to three different values: "brick", "yellow", and "zoo".
Because "brick" comes alphabetically before "yellow", localeCompare () returns 1; "yellow" is
equal to "yellow", so localeCompare () returns 0 for that line; and "zoo" comes after "yellow", so
localeCompare () returns -1 for that line. Once again, because the values are implementation-specific,
it is best to use localeCompare () as shown in this example:

function determineOrder (value) {
var result = stringValue.localeCompare (value);
if (result < 0){

alert ("The string 'yellow' comes before the string '" + value + "'.");
} else if (result > 0) {

alert ("The string 'yellow' comes after the string '" + value + "'.");
} else {

alert ("The string 'yellow' is equal to the string '" + value + "'.");

}
}

determineOrder ("brick") ;
determineOrder ("yellow") ;
determineOrder ("zoo") ;

By using this sort of construct, you can be sure that the code works correctly in all implementations.

The unique part of localeCompare () is that an implementation’s locale (country and language)
indicates exactly how this method operates. In the United States, where English is the standard language
for ECMAScript implementations, localeCompare () is case-sensitive, determining that uppercase
letters come alphabetically after lowercase letters. However, this may not be the case in other locales.

The fromCharCode() Method

There is one method on the String constructor: fromCharCode (). This method’s job is to take one or
more character codes and convert them into a string. Essentially, this is the reverse operation from the
charCodeAt () instance method. Consider this example:

alert (String. fromCharCode (104, 101, 108, 108, 111)); //"hello"

In this code, fromCharCode () is called on a series of character codes from the letters in the word
"hello".

HTML Methods

The web-browser vendors recognized a need early on to format HTML dynamically using JavaScript.
As a result, they extended the specification to include several methods specifically designed to aid in
common HTML formatting tasks. The following table enumerates the HTML methods. However, be
aware that typically these methods aren’t used, because they tend to create nonsemantic markup.

141

Chapter 5: Reference Types

Method

Output

anchor (name)
big()

bold()

fixed()
fontcolor (color)
fontsize (size)
italics()

link (url)
small ()
strike ()

sub ()

sup ()

string
<big>string</big>

string

<tt>string</tt>

string
string
<i>string</i>

string
<small>string</small>
<strike>string</strike>
_{string}

^{string}

Built-in Objects

ECMA-262 defines a built-in object as “any object supplied by an ECMAScript implementation,
independent of the host environment, which is present at the start of the execution of an ECMAScript
program.” This means the developer does not need to explicitly instantiate a built-in object; it is already
instantiated. Only two built-in objects are defined by ECMA-262: Global and Math.

The Global Object

The Global object is the most unique in ECMAScript because, for all intents and purposes, it doesn’t
exist. ECMA-262 specifies the Global object as a sort of catchall for properties and methods that don’t
otherwise have an owning object. In truth, there is no such thing as a global variable or global function;
all variables and functions defined globally become properties of the Global object. Functions covered
earlier in this book, such as 1sNaN (), isFinite (), parselInt (), and parseFloat () are actually
methods of the Global object. In addition to these, there are several other methods available on the
Global object.

URI-Encoding Methods

The encodeURI () and encodeURIComponent () methods are used to encode URIs (Uniform Resource
Identifiers) to be passed to the browser. To be valid, a URI cannot contain certain characters, such as
spaces. The URI-encoding methods encode the URIs so that a browser can still accept and understand
them, replacing all invalid characters with a special UTE-8 encoding.

The encodeURI () method is designed to work on an entire URI (for instance, http: //www.wrox.com/
illegal value.htm), whereas encodeURIComponent () is designed to work solely on a segment of a

142

Chapter 5: Reference Types

URI (such as illegal value.htm from the previous URI). The main difference between the two
methods is that encodeURI () does not encode special characters that are part of a URI, such as the
colon, forward slash, question mark, and pound sign, whereas encodeURIComponent () encodes every
nonstandard character it finds. Consider this example:

var uri = "http://www.wrox.com/illegal value.htm#start";

//"http://www.wrox.com/illegal%20value.htm#start"
alert (encodeURI (uri)) ;

//"http%3A%2F%2Fwww.wrox.com%2Fillegal%20value.htm®%23start"
alert (encodeURIComponent (uri)) ;

Here, using encodeURI () left the value completely intact except for the space, which was replaced with
%20. The encodeURIComponent () method replaced all nonalphanumeric characters with their encoded
equivalents. This is why encodeURI () can be used on full URIs, whereas encodeURIComponent () can
be used only on strings that are appended to the end of an existing URIL

Generally speaking, you'll use encodeURIComponent () much more frequently
than encodeURI () because it's more common to encode query string arguments
separately from the base URIL.

The two counterparts to encodeURI () and encodeURIComponent () are decodeURI () and
decodeURIComponent (). The decodeURI () method decodes only characters that would have been
replaced by using encodeURI (). For instance, $20 is replaced with a space, but %23 is not replaced
because it represents a pound sign (#), which encodeURI () does not replace. Likewise,
decodeURIComponent () decodes all characters encoded by encodeURIComponent (), essentially
meaning it decodes all special values. Consider this example:

var uri = "http%3A%2F%2Fwww.wrox.com%2Fillegal%20value.htm%23start";

//http%3A%$2F%2Fwww.wrox.com%2Fillegal value.htm%23start
alert (decodeURI (uri)) ;

//http://www.wrox.com/illegal value.htm#start
alert (decodeURIComponent (uri)) ;

Here, the uri variable contains a string that is encoded using encodeURIComponent (). The first

value output is the result of decodeURI (), which replaced only the $20 with a space. The second value
is the output of decodeURIComponent (), which replaces all the special characters and outputs a string
that has no escaping in it (this string is not a valid URI).

The URI methods encodeURI (), encodeURIComponent (), decodeURI (), and
decodeURIComponent () replace the escape () and unescape () methods, which are
deprecated in the ECMA-262 third edition. The URI methods are always preferable
because they encode all Unicode characters, whereas the original methods encode only
ASCII characters correctly. Avoid using escape () and unescape () in production code.

143

Chapter 5: Reference Types

The eval() Method

The final method is perhaps the most powerful in the entire ECMAScript language: the eval () method.
This method works like an entire ECMAScript interpreter and accepts one argument, a string of
ECMAScript (or JavaScript) to execute. Here’s an example:

eval ("alert('hi')");
This line is functionally equivalent to the following:
alert("hi");

When the interpreter finds an eval () call, it interprets the argument into actual ECMAScript statements
and then inserts it into place. Code executed by eval () is considered to be part of the execution context
in which the call is made, and the executed code has the same scope chain as that context. This means
variables that are defined in the containing context can be referenced inside an eval () call, such as in
this example:

var msg = "hello world";
eval ("alert (msg)"); //"hello world"

Here, the variable msg is defined outside the context of the eval () call, yet the call to alert () still
displays the text "hello world" because the second line is replaced with a real line of code. Likewise,
you can define a function or variables inside an eval () call that can be referenced by the code outside as
follows:

eval ("function sayHi() { alert('hi'); }");
sayHi () ;

Here, the sayHi () function is defined inside an eval () call. Because that call is replaced with the actual
function, it is possible to call sayHi () on the following line.

The capability to interpret strings of code is very powerful, but also very dangerous.
Use extreme caution with eval (), especially when passing user-entered data into it.
A mischievous user could insert values that might compromise your site or
application security (this is called code injection).

144

Chapter 5: Reference Types

Global Object Properties

The Global object has a number of properties, some of which have already been mentioned in this
book. The special values of undefined, NaN, and Infinity are all properties of the Global object.
Additionally, all native reference type constructors, such as Object and Function, are properties of the

Global object. The following table lists all of the properties.

Property Description

undefined The special value undefined
NaN The special value NaN
Infinity The special value Infinity
Object Constructor for Object
Array Constructor for Array
Function Constructor for Function
Boolean Constructor for Boolean
String Constructor for String
Number Constructor for Number

Date Constructor for Date

RegExp Constructor for RegExp
Error Constructor for Error
EvalError Constructor for EvalError
RangeError Constructor for RangeError
ReferenceError Constructor for ReferenceError
SyntaxError Constructor for SyntaxError
TypeError Constructor for TypeError
URIError Constructor for URIError

The Window Object

Though ECMA-262 doesn’t indicate a way to access the Global object directly, web browsers implement
it as part of the window object. Therefore, all variables and functions declared in the global scope become
properties on window. Consider this example:

var color = "red";
function sayColor () {
alert (window.color) ;

}

window.sayColor(); //"red"

145

Chapter 5: Reference Types

Here, a global variable named color and a global function named sayColor () are defined. Inside
sayColor (), the color variable is accessed via window.color to show that the global variable became a
property of window. The function is then called directly off of the window object as window. sayColor (),
which pops up the alert.

The window object does much more in JavaScript than just implement the
ECMAScript Global object. Details of the window object and the Browser Object
Model are discussed in Chapter 8.

The Math Object

ECMAScript provides the Math object as a common location for mathematical formulas and information.
The computations available on the Math object execute faster than if you were to write the computations
in JavaScript directly. There are a number of properties and methods to help these computations

Math Object Properties

The Math object has several properties, consisting mostly of special values in the world of
mathematics. The following table describes these properties.

Property Description

Math.E The value of e, the base of the natural logarithms
Math.LN10 The natural logarithm of 10

Math.LN2 The natural logarithm of 2

Math.LOG2E The base 2 logarithm of E

Math.LOGLO0E The base 1 logarithm of E

Math.PI The value of &

Math.SQRT1_2 The square root of %

Math.SQRT2 The square root of 2

Although the meanings and uses of these values are outside the scope of this book, they are available if
and when you need them.

The min() and max() Methods

The Math object also contains many methods aimed at performing both simple and complex
mathematical calculations.

146

Chapter 5: Reference Types

The methods min () and max () determine which number is the smallest or largest in a group of numbers.
These methods accept any number of parameters, as shown in the following example:

var max = Math.max(3, 54, 32, 16);
alert (max) ; //54

var min = Math.min(3, 54, 32, 16);
alert (min) ; //3

Out of the numbers 3, 54, 32, and 16, Math.max () returns the number 54, whereas Math.min () returns
the number 3. These methods are useful for avoiding extra loops and 1if statements to determine the
maximum value out of a group of numbers.

Rounding Methods
The next group of methods has to do with rounding decimal values into integers. Three methods —
Math.ceil(),Math.floor (), and Math.round () — handle rounding in different ways as described here:

Q TheMath.ceil () method represents the ceiling function, which always rounds numbers up to
the nearest value.

Q TheMath.floor () method represents the floor function, which always rounds numbers down
to the nearest value.

Q TheMath.round() method represents a standard round function, which rounds up if the
number is more than halfway to the next value (0.5 or higher) and rounds down if not. This is
the way you were taught to round in elementary school.

The following example illustrates how these methods work:

alert (Math.ceil(25.9)); //26
alert (Math.ceil(25.5)); //26
alert (Math.ceil(25.1)); //26
alert (Math.round(25.9)) ; //26
alert (Math.round (25.5)) ; //26
alert (Math.round(25.1)); //25
alert (Math.floor (25.9)); //25
alert (Math.floor(25.5)); //25
alert (Math.floor(25.1)); //25

For all values between 25 and 26 (exclusive), Math.ceil () always returns 26 because it will always
round up. The Math.round () method returns 26 only if the number is 25.5 or greater; otherwise it returns
26. Last, Math. floor () returns 25 for all numbers between 25 and 26 (exclusive).

147

Chapter 5: Reference Types

The random() Method

The Math.random () method returns a random number between the 0 and 1, not including either 0 or 1.
This is a favorite tool of web sites that are trying to display random quotes or random facts upon entry of
a web site. You can use Math.random () to select numbers within a certain integer range by using the
following formula:

number = Math.floor (Math.random() * total_number_of_choices + first_possible_value)

The Math. floor () method is used here because Math.random () always returns a decimal value,
meaning that multiplying it by a number and adding another still yields a decimal value. So, if you
wanted to select a number between 1 and 10, the code would look like this:

var num = Math.floor (Math.random() * 10 + 1);

You see 10 possible values (1 through 10), with the first possible value being 1. If you want to select a
number between 2 and 10, then the code would look like this:

var num = Math.floor (Math.random() * 9 + 2);

There are only nine numbers when counting from 2 to 10, so the total number of choices is nine, with the
first possible value being 2. Many times, it’s just easier to use a function that handles the calculation of
the total number of choices and the first possible value, as in this example:

function selectFrom(lowerValue, upperValue) {
var choices = upperValue - lowerValue + 1;
return Math.floor (Math.random() * choices + lowerValue) ;

var num = selectFrom(2,10);
alert (num); //number between 2 and 10, inclusive

Here, the function selectFrom() accepts two arguments: the lowest value that should be returned and
the highest value that should be returned. The number of choices is calculated by subtracting the two
values and adding one, and then applying the previous formula to those numbers. So it’s possible to
select a number between 2 and 10 (inclusive) by calling selectFrom(2,10). Using the function, it’s easy
to select a random item from an array, as shown here:

var colors = ["red", "green", "blue", "yellow", "black", "purple", "brown"];
var color = colors[selectFrom(0, colors.length-1)];

In this example, the second argument to selectFrom() is the length of the array minus 1, which is the
last position in an array.

Other Methods

The Math object has a lot of methods related to various simple and higher-level mathematical operations.
It’s beyond the scope of this book to discuss the ins and outs of each or in what situations they may be
used, but the following table enumerates the remaining methods of the Math object.

148

Chapter 5: Reference Types

Method Description

Math.abs (num) Returns the absolute value of (num)
Math.exp (num) Returns Math. E raised to the power of (num)
Math.log (num) Returns the natural logarithm of (num)

Math.pow (num, power) Returnsnum raised to the power of power

Math.sqrt (num) Returns the square root of (num)
Math.acos (x) Returns the arc cosine of x
Math.asin (x) Returns the arc sine of x
Math.atan (x) Returns the arc tangent of x
Math.atan2 (y, x) Returns the arc tangent of y/x
Math.cos (x) Returns the cosine of x
Math.sin (x) Returns the sine of x

Math.tan (x) Returns the tangent of x

Even though these methods are defined by ECMA-262, the results are implementation-dependent for
those dealing with sines, cosines, and tangents, because you can calculate each value in many different
ways. Consequently, the precision of the results may vary from one implementation to another.

Summary

Objects in JavaScript are called reference values, and several built-in reference types can be used to create
specific types of objects, as follows:

Qa

Reference types are similar to classes in traditional object-oriented programming but are
implemented differently.

The Object type is the base from which all other reference types inherit basic behavior.

The Array type represents an ordered list of values and provides functionality for manipulating
and converting the values.

The Date type provides information about dates and times, including the current date and time
as well as calculations.

The RegExp type is an interface for regular-expression support in ECMAScript, providing most
basic and some advanced regular-expression functionality.

149

Chapter 5: Reference Types

One of the unique aspects of JavaScript is that functions are actually instances of the Function type,
meaning functions are objects. Because functions are objects, functions have methods that can be used to
augment how they behave.

Due to the existence of primitive wrapper types, primitive values in JavaScript can be accessed as if they
were objects. There are three primitive wrapper types: Boolean, Number, and String. They all have the
following characteristics:

Q Each of the wrapper types maps to the primitive type of the same name.

QO When a primitive value is accessed in read mode, a primitive wrapper object is instantiated so
that it can be used to manipulate the data.

0 Assoon as a statement involving a primitive value is executed, the wrapper object is destroyed.
There are also two built-in objects that exist at the beginning of code execution: Global and Math. The
Global object isn’t accessible in most ECMAScript implementations; however, web browsers implement

it as the window object. The G1obal object contains all global variables and functions as properties. The
Math object contains properties and methods to aid in complex mathematical calculations.

150

Object-Oriented Programming

Object-oriented (OO) languages typically are identified through their use of classes to

create multiple objects that have the same properties and methods. As mentioned previously,
ECMAScript has no concept of classes, and therefore objects are different than in class-based
languages.

ECMA-262 defines an object as an “unordered collection of properties each of which contains

a primitive value, object, or function.” Strictly speaking, this means that an object is an array of
values in no particular order. Each property or method is identified by a name that is mapped to

a value. For this reason (and others yet to be discussed), it helps to think of ECMAScript objects as
hash tables: nothing more than a grouping of name-value pairs where the value may be data

or a function.

Each object is created based on a reference type, either one of the native types discussed in the
previous chapter or a developer-defined type.

Creating Objects

As mentioned in the previous chapter, the simplest way to create a custom object is to create a new
instance of Object and add properties and methods to it, as in this example:

var person = new Object();

person.name = "Nicholas";
person.age = 29;
person.job = "Software Engineer";

person.sayName = function() {
alert (this.name) ;

}i

This example creates an object called person that has three properties (name, age, and job) and
one method (sayName ()). The sayName () method displays the value of this.name, which

Chapter 6: Object-Oriented Programming

resolves to person.name. Early JavaScript developers used this pattern frequently to create new objects.
There was an obvious downside to this approach: creating multiple objects with the same interface
requires a lot of code duplication. To solve this problem, developers began using a variation of the
factory pattern.

The Factory Pattern

The factory pattern is a well-known design pattern used in software engineering to abstract away the
process of creating specific objects (other design patterns and their implementation in JavaScript are
discussed later in the book). With no way to define classes in ECMAScript, developers created functions
to encapsulate the creation of objects with specific interfaces, such as in this example:

function createPerson(name, age, job) {
var o = new Object();
O0.name = name;
o0.age = age;
o0.job = job;
o.sayName = function() {
alert (this.name) ;
Y
return o;

}

var personl = createPerson("Nicholas", 29, "Software Engineer");
var person2 = createPerson("Greg", 27, "Doctor");

Here, the function createPerson () accepts arguments with which to build an object with all of the
necessary information to represent a Person object. The function can be called any number of times with
different arguments and will still return an object that has three properties and one method. Though this
solved the problem of creating multiple similar objects, the factory pattern didn’t address the issue of object
identification (what type of object an object is). As JavaScript continued to evolve, a new pattern emerged.

The Constructor Pattern

As mentioned in previous chapters, constructors in ECMAScript are used to create specific types of
objects. There are native constructors, such as Object and Array, which are available automatically in
the execution environment at runtime. It is also possible to define custom constructors that define
properties and methods for your own type of object. For instance, the previous example can be rewritten
using the constructor pattern as the following:

function Person(name, age, job){
this.name = name;
this.age = age;
this.job = job;
this.sayName = function() {
alert (this.name) ;
Y
}

var personl = new Person("Nicholas", 29, "Software Engineer");
var person2 = new Person("Greg", 27, "Doctor");

152

Chapter 6: Object-Oriented Programming

In this example, the Person () function takes the place of the factory createPerson () function. Note that
the code inside Person () is the same as the code inside createPerson (), with the following exceptions:
Q There is no object being created explicitly.
Q The properties and method are assigned directly onto the this object.
Q There is no return statement.
Also note the name of the function is Person with an uppercase P. By convention, constructor functions
always begin with an uppercase letter, whereas nonconstructor functions begin with a lowercase letter.

This convention is borrowed from other OO languages and helps to distinguish function use in
ECMAScript since constructors are simply functions that create objects.

To create a new instance of Person, the new operator is used. Calling a constructor in this manner
essentially causes the following four steps to be taken:
1. Create a new object.
2. Assign the scope of the constructor to the new object (so this points to the new object).
3. Execute the code inside the constructor (adds properties to the new object).
4. Return the new object.

At the end of the preceding example, personl and person2 are each filled with a different instance of
person. Each of these objects has a constructor property that points back to Person as follows:

alert (personl.constructor == Person); //true
alert (person2.constructor == Person); //true

The constructor property was originally intended for use in identifying the object type. However, the
instanceof operator is considered to be a safer way of determining type. Each of the objects in this
example is considered to be both an instance of Object and an instance of Person, as indicated by using
the instanceof operator like this:

alert (personl instanceof Object); //true
alert (personl instanceof Person); //true
alert (person2 instanceof Object); //true
alert (person2 instanceof Person); //true

Defining your own constructors ensures that instances can be identified as a particular type later on,
which is a great advantage over the factory pattern. In this example, personl and person2 are
considered to be instances of Object because all custom objects inherit from Object (the specifics of this
are discussed later).

Constructors defined in this manner are defined on the Global object (the window
object in web browsers). The instanceof operator and the constructor property
always assume that the constructor being queried exists in the global scope unless
otherwise indicated. The Browser Object Model (BOM) is discussed further in
Chapter 8.

153

Chapter 6: Object-Oriented Programming

Constructors as Functions

The only difference between constructor functions and other functions is the way in which they are
called. Constructors are, after all, just functions; there’s no special syntax to define a constructor that
automatically makes it behave as such. Any function that is called with the new operator acts as

a constructor, whereas any function called without it acts just as you would expect a normal function
call to act. For instance, the Person () function from the previous example may be called in any of the
following ways:

//use as a constructor
var person = new Person("Nicholas", 29, "Software Engineer");
person.sayName () ; //"Nicholas"

//call as a function
Person("Greg", 27, "Doctor"); //adds to window
window. sayName () ; //"Greg"

//call in the scope of another object
var o = new Object();

Person.call (o, "Kristen", 25, "Nurse");
o.sayName () ; //"Kristen"

The first part of this example shows the typical use of a constructor, to create a new object via the

new operator. The second part shows what happens when the Person () function is called without

the new operator: the properties and methods get added to the window object. Remember that the this
object always points to the Global object (window in web browsers) when a function is called in the
global scope. So after the function is called, the sayName () method can be called on the window object
and it will return "Greg". The Person () function can also be called within the scope of a particular
object using call () (or apply ()). In this case, it’s called in the scope of the object o, which then gets
assigned all of the properties and the sayName () method.

Problems with Constructors

Though the constructor paradigm is useful, it is not without its faults. The major downside to
constructors is that methods are created once for each instance. So, in the previous example, both
personl and person2 have a method called sayName (), but those methods are not the same instance of
Function. Remember — functions are objects in ECMAScript, so every time a function is defined, it’s
actually an object being instantiated. Logically, the constructor actually looks like this:

function Person(name, age, job){
this.name = name;
this.age = age;
this.job = job;
this.sayName = new Function("alert(this.name)"); //logical equivalent

}

Thinking about the constructor in this manner makes it clear that each instance of Person gets its own
instance of Function that happens to display the name property. These functions are not equivalent, as
the following code proves:

alert (personl.sayName == person2.sayName); //false

154

Chapter 6: Object-Oriented Programming

It doesn’t make sense to have two instances of Function that do the same thing, especially when the
this object makes it possible to avoid binding functions to particular objects until runtime. It’s possible
to work around this limitation by moving the function definition outside of the constructor as follows:

function Person(name, age, job) {
this.name = name;
this.age = age;
this.job = job;
this.sayName = sayName;

function sayName () {
alert (this.name) ;

}

var personl = new Person("Nicholas", 29, "Software Engineer");
var person2 = new Person("Greg", 27, "Doctor");

In this example, the sayName () function is defined outside the constructor. Inside the constructor, the
sayName property is set equal to the global sayName () function. Since the sayName property now
contains just a pointer to a function, both personl and person2 end up sharing the sayName () function
that is defined in the global scope. This solves the problem of having duplicate functions that do the
same thing, but also creates some clutter in the global scope by introducing a function that can
realistically be used only in relation to an object. If the object needed multiple methods, that would mean
multiple global functions, and all of a sudden the custom reference type definition is no longer nicely
grouped in the code. These problems are addressed by using the prototype pattern.

The Prototype Pattern

Each function is created with a prototype property, which is an object containing properties and
methods that should be available to instances of a particular reference type. This object is literally a
prototype for the object to be created once the constructor is called. The benefit of using the prototype is
that all of its properties and methods are shared among object instances. Instead of assigning object
information in the constructor, they can be assigned directly to the prototype, as in this example:

function Person/() {

}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function() {
alert (this.name) ;

}i

var personl = new Person();
personl.sayName () ; //"Nicholas"

var person2 = new Person();
person2.sayName () ; //"Nicholas"

alert (personl.sayName == person2.sayName); //true

155

Chapter 6: Object-Oriented Programming

Here, the properties and the sayName () method are added directly to the prototype property of
Person, leaving the constructor empty. However, it’s still possible to call the constructor to create a new
object and have the properties and methods present. Unlike the constructor pattern, the properties and
methods are all shared among instances, so personl and person2 are both accessing the same set of
properties and the same sayName () function. To understand how this works, it’s necessary to
understand the nature of prototypes in ECMAScript.

How Prototypes Work

Whenever a function is created, its prototype property is also created according to a specific set of rules.
By default, all prototypes automatically get a property called constructor that points back to the function
on which it is a property. In the previous example, for instance, Person.prototype.constructor points
to Person. Then, depending upon the constructor, other properties and methods may be added to the

prototype.

When defining a custom constructor, the prototype gets the constructor property only by default; all
other methods are inherited from object. Each time the constructor is called to create a new instance,
that instance has an internal pointer to the constructor’s prototype. In many implementations, this
property is called __proto__ and can be accessed via script (Firefox, Safari, Chrome, and Flash’s
ActionScript all allow access to __proto__); in other implementations, this property is completely
hidden from script. The important thing to understand is that a link exists between the instance and the
constructor’s prototype but not between the instance and the constructor.

Consider the previous example using the Person constructor and Person.prototype. The relationship
between the objects in the example is shown in Figure 6-1.

.

Person —> Person Prototype

prototype | e constructor [4
name "Nicholas"
age 29
job "Software Engineer"
sayName (function)

Personl Person2
__proto___ | O __proto__ ad
Figure 6-1

Figure 6-1 shows the relationship between the Person constructor, the Person’s prototype, and the two
instances of Person that exist. Note that Person.prototype points to the prototype object but
Person.prototype.constructor points back to Person. The prototype contains the constructor
property as well as the other properties that were added. Each instance of Person, personl, and
person2 have internal properties that point back to Person.prototype only; they have no direct
relationship with the constructor. Also note that even though neither of these instances have properties
or methods, personl . sayName () works. This is due to the lookup procedure for object properties.

156

Chapter 6: Object-Oriented Programming

Even though _ proto__ is not accessible in all implementations, the isPrototype0O£ () method can be
used to determine if this relationship exists between objects. Essentially, isPrototypeOf () returns true
if _ proto__ points to the prototype on which the method is being called, as shown here:

alert (Person.prototype.isPrototypeOf (personl)); //true
alert (Person.prototype.isPrototypeOf (person2)); //true

In this code, the prototype’s isPrototypeOf () method is called on both personl and person2. Since
both instances have a link to Person.prototype, it returns true.

Whenever a property is accessed for reading on an object, a search is started to find a property with that
name. The search begins on the object instance itself. If a property with the given name is found on the
instance, then that value is returned; if the property is not found, then the search continues up the pointer
to the prototype, and the prototype is searched for a property with the same name. If the property is
found on the prototype, then that value is returned. So, when personl . sayName () is called, a two-step
process happens. First, the interpreter asks, “Does the instance person1 have a property called
sayName?” The answer is no, so it continues the search and asks, “Does the personl prototype have a
property called sayName?” The answer is yes, so the function stored on the prototype is accessed. When
person2.sayName () is called, the same search executes, ending with the same result. This is how
prototypes are used to share properties and methods among multiple object instances.

The constructor property mentioned earlier exists only on the prototype and so is accessible from
object instances.

Although it’s possible to read values on the prototype from object instances, it is not possible to overwrite
them. If you add a property to an instance that has the same name as a property on the prototype, you
create the property on the instance, which then masks the property on the prototype. Here’s an example:

function Person() {

}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function() {
alert (this.name) ;

}i

var personl = new Person();
var person2 = new Person();

personl.name = "Greg";
alert (personl.name) ; //"Greg" - from instance
alert (person2.name) ; //"Nicholas" - from prototype

In this example, the name property of personl is shadowed by a new value. Both personl .name and
person2 . name still function appropriately, returning "Greg" (from the object instance) and "Nicholas"
(from the prototype), respectively. When personl .name was accessed in the alert (), its value was read,
so the search began for a property called name on the instance. Since the property exists, it is used without
searching the prototype. When person2 . name is accessed the same way, the search doesn’t find the
property on the instance, so it continues to search on the prototype where the name property is found.

157

Chapter 6: Object-Oriented Programming

Once a property is added to the object instance, it shadows any properties of the same name on the
prototype, which means that it simply blocks access to the property on the prototype without altering it.
Even setting the property to null only sets the property on the instance and doesn’t restore the link to the
prototype. The delete operator, however, completely removes the instance property and allows

the prototype property to be accessed again as follows:

function Person () {

}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function() {
alert (this.name) ;

}i

var personl = new Person();
var person2 = new Person();

personl.name = "Greg";
alert (personl.name) ; //"Greg" - from instance
alert (person2.name) ; //"Nicholas" - from prototype

delete personl.name;
alert (personl.name) ; //"Nicholas" - from the prototype

In this modified example, delete is called on personl .name, which previously had been shadowed
with the value "Greg". This restores the link to the prototype’s name property, so the next time
personl.name is accessed, it’s the prototype property’s value that is returned.

The hasOwnProperty () method can determine if a property exists on the instance or on the prototype.
This method, which you’ll remember as inherited from Object, returns true only if a property of the
given name exists on the object instance, as in this example:

function Person/() {

}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function() {
alert (this.name) ;

Y

var personl = new Person();

var person2 = new Person();

alert (personl.hasOwnProperty ("name")); //false
personl.name = "Greg";

alert (personl.name) ; //"Greg" - from instance
alert (personl.hasOwnProperty ("name")); //true

158

Chapter 6: Object-Oriented Programming

alert (person2.name) ; //"Nicholas" - from prototype

alert (person2.hasOwnProperty ("name")); //false

delete personl.name;
alert (personl.name) ; //"Nicholas" - from the prototype

alert (personl.hasOwnProperty ("name")); //false

By injecting calls to hasOwnProperty () in this example, it becomes clear when the instance’s property is being
accessed and when the prototype’s property is being accessed. Calling personl . hasOwnProperty ("name")
returns true only after name has been overwritten on personl, indicating that it now has an instance
property instead of a prototype property. Figure 6-2 illustrates the various steps being taken in this example
(for simplicity, the relationship to the Person constructor has been omitted).

Initially
Personl —> Person Prototype
__proto__ | o constructor °
name "Nicholas"
Person2 age 29
—proto__ | ° job "Software Engineer"
sayName (function)
personl.name = "Greg"
Personl —> Person Prototype
__proto__ [4 constructor [
name "Greg" name "Nicholas"
age 29
Person? job "Software Engineer"
~ proto__ | P sayName (function)
delete personl.name
Personl —> Person Prototype
__proto__ | < constructor o
name "Nicholas"
age 29
Person?2 job "Software Engineer"
__proto__ | Ps sayName (function)

Figure 6-2

159

Chapter 6: Object-Oriented Programming

Prototypes and the in Operator

There are two ways to use the in operator: on its own or as a for-in loop. When used on its own, the in
operator returns true when a property of the given name is accessible by the object, which is to say that
the property may exist on the instance or on the prototype. Consider the following example:

function Person() {

}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function() {
alert (this.name) ;
Y

var personl = new Person();
var person2 = new Person();

alert (personl.hasOwnProperty ("name")); //false
alert ("name" in personl); //true

personl.name = "Greg";

alert (personl.name) ; //"Greg" - from instance
alert (personl.hasOwnProperty ("name")); //true

alert ("name" in personl); //true

alert (person2.name) ; //"Nicholas" - from prototype
alert (person2.hasOwnProperty ("name")); //false
alert ("name" in person2); //true

delete personl.name;

alert (personl.name) ; //"Nicholas" - from the prototype
alert (personl.hasOwnProperty ("name")); //false
alert ("name" in personl); //true

Throughout the execution of this code, the property name is available on each object either directly or
from the prototype. Therefore, calling "name" in personl always returns true, regardless of whether
the property exists on the instance. It’s possible to determine if the property of an object exists on the
prototype by combining a call to hasOwnProperty () with the in operator like this:

function hasPrototypeProperty (object, name) {
return !object.hasOwnProperty(name) && (name in object);

}

Since the in operator always returns true so long as the property is accessible by the object and
hasOwnProperty () returns true only if the property exists on the instance, a prototype property can

160

Chapter 6: Object-Oriented Programming

be determined if the in operator returns true but hasOwnProperty () returns false. Consider the
following example:

function Person() {
}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function() {
alert (this.name) ;
};

var person = new Person() ;

alert (hasPrototypeProperty (person, "name")); //true
person.name = "Greg";
alert (hasPrototypeProperty (person, "name")); //false

In this code, the name property first exists on the prototype, so hasPrototypeProperty () returns true.
Once the name property is overwritten, it exists on the instance, so hasPrototypeProperty () returns
false.

When using a for-in loop, all properties that are accessible by the object and can be enumerated will be
returned, which includes properties on both the instance and on the prototype. Instance properties that
shadow a nonenumerable prototype property (a property that has [[DontEnum]] set) will be returned
in the for-in loop since all developer-defined properties are enumerable by rule, except in Internet
Explorer (IE).

The IE implementation of JScript has a bug where properties that shadow nonenumerable properties will
not show up in a for-in loop. Here’s an example:

var o = {
toString : function() {
return "My Object";
}
Y

for (var prop in o) {
if (prop == "toString") {
alert ("Found toString"); //won't display in Internet Explorer

When this code is run, a single alert should be displayed indicating that the toString () method was
found. The object o has an instance property called toString () that shadows the prototype’s

toString () method (which is not enumerable). In IE, this alert is never displayed because it skips over
the property, honoring the [[DontEnum]] flag that was set on the prototype’s toString () method. This
same bug affects all properties and methods that aren’t enumerable by default: hasownProperty (),
propertyIsEnumerable (), toLocaleString (), toString (), and valueOf (). Some browsers set

[[DontEnum]] on the constructor and prototype properties, but this is inconsistent across
implementations.

161

Chapter 6: Object-Oriented Programming

Alternate Prototype Syntax

You may have noticed in the previous example that Person.prototype had to be typed out for each
property and method. To limit this redundancy and to better visually encapsulate functionality on the
prototype, it has become more common to simply overwrite the prototype with an object literal that
contains all of the properties and methods, as in this example:

function Person() {

}

Person.prototype = {

name : "Nicholas",

age : 29,

job : "Software Engineer",
sayName : function () {

alert (this.name) ;
}
}i

In this rewritten example, the Person.prototype property is set equal to a new object created with an
object literal. The end result is the same, with one exception: the constructor property no longer points
to Person. When a function is created, its prototype object is created and the constructor is
automatically assigned. Essentially, this syntax overwrites the default prototype object completely,
meaning that the constructor property is equal to that of a completely new object (the Object
constructor) instead of the function itself. Although the instanceof operator still works reliably, you
cannot rely on the constructor to indicate the type of object, as this example shows:

var person = new Person();

alert (person instanceof Object); //true
alert (person instanceof Person); //true
alert (person.constructor == Person); //false
alert (person.constructor == Object); //true

Here, instanceof still returns true for both Object and Person, but the constructor property is
now equal to Object instead of Person. If the constructor’s value is important, you can set it
specifically back to the appropriate value as shown here:

function Person() {

}

Person.prototype = {

constructor: Person,

name : "Nicholas",

age : 29,

job : "Software Engineer",

sayName : function () {
alert (this.name) ;
}
Y

This code specifically includes a constructor property and sets it equal to Person, ensuring that the

property contains the appropriate value.

162

Chapter 6: Object-Oriented Programming

Dynamic Nature of Prototypes

Since the process of looking up values on a prototype is a search, changes made to the prototype at any
point are immediately reflected on instances, even the instances that existed before the change was
made. Here’s an example:

var person = new Person();

Person.prototype.sayHi = function() {
alert("hi");
}i

person.sayHi () ; //"hi" - works!

In this code, an instance of Person is created and stored in person. The next statement adds a method
called sayHi () to Person.prototype. Even though the person instance was created prior to this
change, it still has access to the new method. This happens because of the loose link between the instance
and the prototype. When person. sayHi () is called, the instance is first searched for a property named
sayHi; when it’s not found, the search continues to the prototype. Since the link between the instance
and the prototype is simply a pointer, not a copy, the search finds the new sayHi property on the
prototype and returns the function stored there.

Although properties and methods may be added to the prototype at any time and they are reflected
instantly by all object instances, you cannot overwrite the entire prototype and expect the same behavior.
The _ proto__ pointer is assigned when the constructor is called, so changing the prototype to a
different object severs the tie between the constructor and the original prototype. Remember: the
instance has a pointer to only the prototype, not to the constructor. Consider the following:

function Person() {

}
var person = new Person();

Person.prototype = {
constructor: Person,

name : "Nicholas",

age : 29,

job : "Software Engineer",
sayName : function () {

alert (this.name) ;
}
}i

person.sayName () ; //error
In this example, a new instance of Person is created before the prototype object is overwritten. When

person.sayName () is called, it causes an error because the prototype that person points to doesn’t
contain a property of that name. Figure 6-3 illustrates why this happens.

163

Chapter 6: Object-Oriented Programming

Before prototype assignment

v
Person —> Person Prototype
prototype | O constructor O
Person
__proto__ O

After prototype assignment

v

Person NewPerson Prototype
prototype | ’_j constructor d
name "Nicholas"
age 29
Person job "Software Engineer"
__proto__ @— sayName (function)

Person Prototype
constructor | ®

Figure 6-3

Overwriting the prototype on the constructor severs the link between the current prototype and any
previously existing object instances, which still reference the old prototype.

Native Object Prototypes

The prototype pattern is important not just for defining custom types but also because it is the pattern
used to implement all of the native reference types. Each of these (including Object, Array, String, and
so on) has its methods defined on the constructor’s prototype. For instance, the sort () method can be
found on Array.prototype, and substring () can be found on String.prototype, as shown here:

alert (typeof Array.prototype.sort); //"function"
alert (typeof String.prototype.substring); //"function"

Through native object prototypes, it’s possible to get references to all of the default methods as well as to
define new methods. Native object prototypes can be modified just like custom object prototypes, so
methods can be added at any time. For example, the following code adds a method called
startsWith() to the String primitive wrapper:

String.prototype.startsWith = function (text) {

return this.indexOf (text) == 0;
Y
var msg = "Hello world!";
alert (msg.startsWith("Hello")); //true

164

Chapter 6: Object-Oriented Programming

The startswith () method in this example returns true if some given text occurs at the beginning of a
string. The method is assigned to String.prototype, making it available to all strings in the
environment. Since msq is a string, the String primitive wrapper is created behind the scenes, making
startswith () accessible.

Although possible, it is not recommended to modify native object prototypes in a
production environment. This can often cause confusion and create possible name
collisions if a method that didn’t exist natively in one browser is implemented
natively in another. It's also possible to overwrite native methods accidentally.

Problems with Prototypes

The prototype pattern isn’t without its faults. For one, it negates the ability to pass initialization
arguments into the constructor, meaning that all instances get the same property values by default.
Although this is an inconvenience, it isn’t the biggest problem with prototypes. The main problem comes
with their shared nature.

All properties on the prototype are shared among instances, which is ideal for functions. Properties that
contain primitive values also tend to work well, as shown in the previous example, where it’s possible to
hide the prototype property by assigning a property of the same name to the instance. The real
problem occurs when a property contains a reference value. Consider the following example:

function Person() {

}

Person.prototype = {
constructor: Person,

name : "Nicholas",

age : 29,

job : "Software Engineer",
friends : ["Shelby", "Court"],
sayName : function () {

alert (this.name) ;
}
}i

var personl = new Person();
var person2 = new Person();

personl.friends.push("Van") ;

alert (personl.friends) ; //"Shelby, Court,Van"
alert (person2.friends) ; //"Shelby, Court,Van"
alert (personl.friends === person2.friends); //true

Here, the Person.prototype object has a property called friends that contains an array of strings.
Two instances of Person are then created. The personl. friends array is altered by adding another
string. Because the friends array exists on Person.prototype, not on personl, the changes made are
also reflected on person2 . friends (which points to the same array). If the intention is to have an array

165

Chapter 6: Object-Oriented Programming

shared by all instances, then this outcome is okay. Typically, though, instances want to have their own
copies of all properties. This is why the prototype pattern is rarely used on its own.

Combination Constructor/Prototype Pattern

The most common way of defining custom types is to combine the constructor and prototype

patterns. The constructor pattern defines instance properties, whereas the prototype pattern defines
methods and shared properties. With this approach, each instance ends up with its own copy of the
instance properties, but they all share references to methods, conserving memory. This pattern allows
arguments to be passed into the constructor as well, effectively combining the best parts of each pattern.
The previous example can now be rewritten as follows:

function Person(name, age, job){
this.name = name;
this.age = age;
this.job = job;
this.friends = ["Shelby", "Court"];
}

Person.prototype = {
constructor: Person,
sayName : function () {

alert (this.name) ;
}
Y

var personl = new Person("Nicholas", 29, "Software Engineer");
var person2 = new Person("Greg", 27, "Doctor");

personl.friends.push("Van") ;

alert (personl.friends) ; //"Shelby, Court,Van"
alert (person2.friends) ; //"Shelby, Court"

alert (personl.friends === person2.friends); //false
alert (personl.sayName === person2.sayName); //true

Note that the instance properties are now defined solely in the constructor, and the shared property
constructor and the method sayName () are defined on the prototype. When personl. friends is
augmented by adding a new string, person2 . friends is not affected because they each have separate
arrays.

The hybrid constructor/prototype pattern is the most widely used and accepted practice for defining
custom reference types in ECMAScript. Generally speaking, this is the default pattern to use for defining
reference types.

Dynamic Prototype Pattern

Developers coming from other OO languages may find the visual separation between the constructor
and prototype confusing. The dynamic prototype pattern seeks to solve this problem by encapsulating all
of the information within the constructor while maintaining the benefits of using both a constructor

and a prototype by initializing the prototype inside the constructor, but only if it is needed. You can

166

Chapter 6: Object-Oriented Programming

determine if the prototype needs to be initialized by checking for the existence of a method that should
be available. Consider this example:

functi

/1

on Person(name, age, job) {

properties

this.name = name;
this.age = age;
this.job = job;

/ /methods

if

var pe

(typeof this.sayName != "function") {
Person.prototype.sayName = function() {

alert (this.name) ;

Iy

rson = new Person("Nicholas", 29, "Software Engineer");

person.sayName () ;

The highlighted section of code inside the constructor adds the sayName () method if it doesn’t already
exist. This block of code is executed only the first time the constructor is called. After that, the prototype has
been initialized and doesn’t need any further modification. Remember that changes to the prototype are
reflected immediately in all instances, so this approach works perfectly. The i f statement may check for
any property or method that will be present once initialized — there’s no need for multiple if statements
to check each property or method; any one will do. This pattern preserves the use of instanceof in
determining what type of object was created.

You

prototype pattern. As described previously, overwriting a prototype when an
instance already exists effectively cuts off that instance from the new prototype.

cannot overwrite the prototype using an object literal when using the dynamic

Parasitic Constructor Pattern

The parasitic constructor pattern is typically a fallback when the other patterns fail. The basic idea of this
pattern is to create a constructor that simply wraps the creation and return of another object while
looking like a typical constructor. Here’s an example:

functi
va
0.

o
O.
[¢]

on Person(name, age, job) {

r o = new Object();
name = name;

.age = age;

job = job;

.sayName = function() {

alert (this.name) ;
(continued)

167

Chapter 6: Object-Oriented Programming

(continued)

Y

return o;

var person = new Person("Nicholas", 29, "Software Engineer");
person.sayName(); //"Nicholas"

In this example, the Person constructor creates a new object, initializes it with properties and methods,
and then returns the object. This is exactly the same as the factory pattern except that the function is
called as a constructor, using the new operator. When a constructor doesn’t return a value, it returns the
new object instance by default. Adding a return statement at the end of a constructor allows you to
override the value that is returned when the constructor is called.

This pattern allows you to create constructors for objects that may not be possible otherwise. For
example, you may want to create a special array that has an extra method. Since you don’t have direct
access to the Array constructor, this pattern works:

function SpecialArray () {

//create the array
var values = new Array();

//add the values
values.push.apply(values, arguments) ;

//assign the method
values.toPipedString = function() {
return this.join("|");

Y

//return it
return values;

}

var colors = new SpecialArray("red", "blue", "green");
alert(colors.toPipedString()); //"red|blue|green"

In this example, a constructor called SpecialArray is created. In the constructor, a new array is created
and initialized using the push () method (which has all of the constructor arguments passed in). Then a
method called toPipedstring () is added to the instance, which simply outputs the array values as a
pipe-delimited list. The last step is to return the array as the function value. Once that is complete, the
SpecialArray constructor can be called, passing in the initial values for the array, and
toPipedString () can be called.

A few important things to note about this pattern: There is no relationship between the returned object
and the constructor or the constructor’s prototype; the object exists just as if it were created outside of a
constructor. Therefore, you cannot rely on the instanceof operator to indicate the object type. Due to
these issues, this pattern should not be used when other patterns work.

168

Chapter 6: Object-Oriented Programming

Durable Constructor Pattern

Douglas Crockford coined the term durable objects in JavaScript to refer to objects that have no public
properties and whose methods don’t reference the this object. Durable objects are best used in secure
environments (those that forbid the use of this and new) or to protect data from the rest of the
application (as in mashups). A durable constructor is a constructor that follows a pattern similar to the
parasitic constructor pattern, with two differences: instance methods on the created object don’t refer to
this, and the constructor is never called using the new operator. The Person constructor from the
previous section can be rewritten as a durable constructor like this:

function Person(name, age, job) {

//create the object to return
var o = new Object();

//optional: define private variables/functions here

//attach methods
o.sayName = function() {
alert (name) ;

Y

//return the object
return o;

}

Note that there is no way to access the value of name from the returned object. The sayName () method
has access to it, but nothing else does. The Person durable constructor is used as follows:

var person = Person("Nicholas", 29, "Software Engineer");
person.sayName(); //"Nicholas"

The person variable is a durable object, and there is no way to access any of its data members without
calling a method. Even if some other code adds methods or data members to the object, there is no way
to access the original data that was passed into the constructor. Such security makes the durable
constructor pattern useful when dealing with secure execution environments such as those provided by
ADsafe (www.adsafe.org) or Caja (http://code.google.com/p/google-caja/).

As with the parasitic constructor pattern, there is no relationship between the
constructor and the object instance, so instanceof will not work.

169

Chapter 6: Object-Oriented Programming

Inheritance

The concept most often discussed in relation to OO programming is inheritance. Many OO languages
support two types of inheritance: interface inheritance, where only the method signatures are inherited,
and implementation inheritance, where actual methods are inherited. Interface inheritance is not
possible in ECMAScript because, as mentioned previously, functions do not have signatures.
Implementation inheritance is the only type of inheritance supported by ECMAScript, and this is done
primarily through the use of prototype chaining.

Prototype Chaining

ECMA-262 describes prototype chaining as the primary method of inheritance in ECMAScript. The basic
idea is to use the concept of prototypes to inherit properties and methods between two reference types.
Recall the relationship between constructors, prototypes, and instances: each constructor has a prototype
object that points back to the constructor, and instances have an internal pointer to the prototype. What if
the prototype were actually an instance of another type? That would mean the prototype itself would
have a pointer to a different prototype that, in turn, would have a pointer to another constructor. If that
prototype were also an instance of another type, then the pattern would continue, forming a chain
between instances and prototypes. This is the basic idea behind prototype chaining.

Implementing prototype chaining involves the following code pattern:

function SuperType () {
this.property = true;
}

SuperType.prototype.getSuperValue = function() {
return this.property;
Y

function SubType () {
this.subproperty = false;
}

//inherit from SuperType
SubType.prototype = new SuperType() ;

SubType.prototype.getSubvalue = function () {
return this.subproperty;

Y

var instance = new SubType();
alert (instance.getSuperValue()) ; //true

This code defines two types: SuperType and SubType. Each type has a single property and a single
method. The main difference between the two is that SubType inherits from SuperType by creating a
new instance of SuperType and assigning it to SubType.prototype. This overwrites the original
prototype and replaces it with a new object, which means that all properties and methods that typically

170

Chapter 6: Object-Oriented Programming

exist on an instance of SuperType now also exist on SubType.prototype. After the inheritance takes
place, a method is assigned to SubType.prototype, adding a new method on top of what was inherited
from SuperType. The relationship between the instance and both constructors and prototypes is
displayed in Figure 6-4.

J

SuperType —> SuperType Prototype
prototype | O constructor [
|getSuperValue| (function)

SubType —> SubType Prototype
prototype | s __proto__ O
property true
getSubValue | (function)
instance
__proto__ @
subproperty false
Figure 6-4

Instead of using the default prototype of SubType, a new prototype is assigned. That new prototype happens
to be an instance of SuperType, so it not only gets the properties and methods of a SuperType instance, but
it also points back to the SuperType’s prototype. So instance points to SubType.prototype, and
SubType .prototype points to SuperType.prototype. Note that the getSupervalue () method remains
on the SuperType .prototype object, but property ends up on SubType . prototype. That’s because
getSuperValue () is a prototype method and property is an instance property. SubType . prototype is
now an instance of SuperType, so property is stored there. Also note that instance. constructor points
to SuperType because the constructor property on the SubType . prototype was overwritten.

Prototype chaining extends to the prototype search mechanism described earlier. As you may recall,
when a property is accessed in read mode on an instance, the property is first searched for on the
instance. If the property is not found, then the search continues to the prototype. When inheritance has
been implemented via prototype chaining, that search can continue up the prototype chain. In the
previous example, for instance, a call to instance.getSupervValue () results in a three-step search:

1) the instance; 2) SubType.prototype; and 3) SuperType.prototype, where the method is found.
The search for properties and methods always continues until the end of the prototype chain is reached.

Default Prototypes

In reality, there is another step in the prototype chain. All reference types inherit from Object by default,
which is accomplished through prototype chaining. The default prototype for any function is an instance
of Object, meaning that its internal prototype pointer points to Object .prototype. This is how
custom types inherit all of the default methods such as toString () and valueOf (). So the previous
example has an extra layer of inheritance. Figure 6-5 shows the complete prototype chain.

171

Chapter 6: Object-Oriented Programming

SubType inherits from SuperType, and SuperType inherits from Object. When instance.
toString () is called, the method being called actually exists on Object.prototype.

\:

Prototype and Instance Relationships

The relationship between prototypes and instances is discernable in two ways. The first way is to use the
instanceof operator, which returns true whenever an instance is used with a constructor that appears

in its prototype chain, as in this example:

Here, the instance object is technically an instance of Object, SuperType, and SubType due to the
prototype chain relationship. The result is that instanceof returns true for all of these constructors.

The second way to determine this relationship is to use the isPrototype0f () method. Each prototype
in the chain has access to this method, which returns true for an instance in the chain as in this example:

172

alert (instance instanceof Object);
alert (instance instanceof SuperType) ;
alert (instance instanceof SubType);

alert (Object.prototype.isPrototypeOf (instance)) ;
alert (SuperType.prototype.isPrototypeOf (instance)) ;
alert (SubType.prototype.isPrototypeOf (instance)) ;

//true
//true
//true

Object —> Object Prototype
prototype | P constructor [
hasOwnProperty (function)
isPrototypeOf (function)
propertylsEnumerable | (function)
toLocaleString (function)
toString (function)
valueOf (function)
Ay
¢ 4
SuperType —> SuperType Prototype
prototype | o __proto__ o
constructor [
getSuperValue (function)
SubType —> SubType Prototype
prototype | ® __proto__ o
property true
- getSubValue (function)
instance
__proto__ [
subproperty false
Figure 6-5

//true
//true
//true

Chapter 6: Object-Oriented Programming

Working with Methods

Often a subtype will need to either override a supertype method or introduce new methods that don’t
exist on the supertype. To accomplish this, the methods must be added to the prototype after the
prototype has been assigned. Consider this example:

function SuperType () {
this.property = true;
}

SuperType.prototype.getSuperValue = function() {
return this.property;

}i

function SubType () {
this.subproperty = false;
}

//inherit from SuperType
SubType.prototype = new SuperType() ;

//new method

SubType.prototype.getSubvValue = function () {
return this.subproperty;

b3

//override existing method
SubType.prototype.getSuperValue = function () {
return false;

B3

var instance = new SubType();
alert (instance.getSuperValue()) ; //false

In this code, the highlighted area shows two methods. The first is get Subvalue (), which is a new
method on the SubType. The second is get Supervalue (), which already exists in the prototype chain
but is being shadowed here. When getSupervalue () is called on an instance of SubType, it will call
this one, but instances of SuperType will still call the original. The important thing to note is that both of
the methods are defined after the prototype has been assigned as an instance of SuperType.

Another important thing to understand is that the object-literal approach to creating prototype methods
cannot be used with prototype chaining because you end up overwriting the chain. Here’s an example:

function SuperType () {
this.property = true;
}

SuperType.prototype.getSuperValue = function() {
return this.property;

Y

function SubType () {
(continued)

173

Chapter 6: Object-Oriented Programming

(continued)

this.subproperty = false;
}

//inherit from SuperType
SubType.prototype = new SuperType() ;

//try to add new methods - this nullifies the previous line
SubType.prototype = {
getSubvalue : function () {
return this.subproperty;

by

someOtherMethod : function () {
return false;

b g

var instance = new SubType();
alert (instance.getSuperValue()) ; //error!

In this code, the prototype is reassigned to be an object literal after it was already assigned to be an
instance of SuperType. The prototype now contains a new instance of Object instead of an instance of
SuperType, so the prototype chain has been broken — there is no relationship between subType and
SuperType.

Problems with Prototype Chaining

Even though prototype chaining is a powerful tool for inheritance, it is not without its issues. The major
issue revolves around prototypes that contain reference values. Recall from earlier that prototype
properties containing reference values are shared with all instances; this is why that properties are typically
defined within the constructor instead of on the prototype. When implementing inheritance using
prototypes, the prototype actually becomes an instance of another type, meaning that what once were
instance properties are now prototype properties. The issue is highlighted by the following example:

function SuperType () {
this.colors = ["red", "blue", "green"];

}

function SubType () {
}

//inherit from SuperType
SubType.prototype = new SuperType() ;

var instancel = new SubType();
instancel.colors.push("black") ;

alert (instancel.colors) ; //"red,blue,green,black"

var instance2 = new SubType();
alert (instance2.colors) ; //"red,blue,green,black"

174

Chapter 6: Object-Oriented Programming

In this example, the SuperType constructor defines a property colors that contains an array

(a reference value). Each instance of SuperType has its own colors property containing its own array.
When SubType inherits from SuperType via prototype chaining, SubType .prototype becomes an
instance of SuperType and so it gets its own colors property, which is akin to specifically creating
SubType.prototype.colors. The end result: all instances of SubType share a colors property. This is
indicated as the changes made to instancel.colors are reflected on instance2.colors.

A second issue with prototype chaining is that you cannot pass arguments into the supertype constructor
when the subtype instance is being created. In fact, there is no way to pass arguments into the supertype
constructor without affecting all of the object instances. Due to this and the aforementioned issue with
reference values on the prototype, prototype chaining is rarely used alone.

Constructor Stealing

In an attempt to solve the inheritance problem with reference values on prototypes, developers began
using a technique called constructor stealing (also sometimes called object masquerading or classical
inheritance). The basic idea is quite simple: call the supertype constructor from within the subtype
constructor. Keeping in mind that functions are simply objects that execute code in a particular context,
the apply () and call () methods can be used to execute a constructor on the newly created object, as in
this example:

function SuperType () {
this.colors = ["red", "blue", "green"];

}

function SubType () {
//inherit from SuperType
SuperType.call (this);

}

var instancel = new SubType();
instancel.colors.push("black");
alert (instancel.colors) ; //"red,blue,green,black"

var instance2 = new SubType();
alert (instance2.colors) ; //"red,blue,green"

The highlighted lines in this example show the single call that is used in constructor stealing. By

using the call () method (or alternately, apply ()), the SuperType constructor is called in the context
of the newly created instance of SubType. Doing this effectively runs all of the object-initialization code
in the SuperType () function on the new SubType object. The result is that each instance has its own
copy of the colors property.

175

Chapter 6: Object-Oriented Programming

Passing Arguments

One advantage that constructor stealing offers over prototype chaining is the ability to pass arguments
into the supertype constructor from within the subtype constructor. Consider the following:

function SuperType (name) {
this.name = name;

}

function SubType () {
//inherit from SuperType passing in an argument
SuperType.call (this, "Nicholas");

//instance property
this.age = 29;
}

var instance = new SubType();
alert (instance.name) ; //"Nicholas";
alert (instance.age) ; //29

In this code, the SuperType constructor accepts a single argument, name, which is simply assigned to a
property. A value can be passed into the SuperType constructor when called from within the subType
constructor, effectively setting the name property for the subType instance. To ensure that the
SuperType constructor doesn’t overwrite those properties, additional properties may be defined on the
subtype after the call to the supertype constructor.

Problems with Constructor Stealing

The downside to using constructor stealing exclusively is that it introduces the same problems as the
constructor pattern for custom types: methods must be defined inside the constructor, so there’s no
function reuse. Further, methods defined on the supertype’s prototype are not accessible on the subtype,
so all types can use only the constructor pattern. Due to these issues, constructor stealing is rarely used
on its own.

Combination Inheritance

Combination inheritance (sometimes also called pseudoclassical inheritance) combines prototype chaining
and constructor stealing to get the best of each approach. The basic idea is to use prototype chaining to
inherit properties and methods on the prototype, and to use constructor stealing to inherit instance
properties. This allows function reuse by defining methods on the prototype and allows each instance to
have its own properties. Consider the following:

function SuperType (name) {
this.name = name;
this.colors = ["red", "blue", "green"];

}
SuperType.prototype.sayName = function() {

alert (this.name) ;
Y

176

Chapter 6: Object-Oriented Programming

function SubType (name, age) {

//inherit properties
SuperType.call (this, name);

this.age = age;
}

//inherit methods
SubType.prototype = new SuperType();

SubType.prototype.sayAge = function() {
alert (this.age);
Y

var instancel = new SubType ("Nicholas", 29);
instancel.colors.push("black");

alert(instancel.colors); //"red,blue,green,black"
instancel.sayName () ; //"Nicholas";
instancel.sayAge () ; //29

var instance2 = new SubType ("Greg", 27);

alert (instance2.colors); //"red,blue,green"
instance2.sayName () ; //"Greg";
instance2.sayAge () ; /727

In this example, the SuperType constructor defines two properties, name and colors, and the
SuperType prototype has a single method called sayName (). The SubType constructor calls

the SuperType constructor, passing in the name argument, and defines its own property called age.
Additionally, the SubType prototype is assigned to be an instance of SuperType, and then a new
method called sayage () is defined. With this code, it’s then possible to create two separate instances of
SubType that have their own properties, including the colors property, but all use the same methods.

Addressing the downsides of both prototype chaining and constructor stealing, combination inheritance
is the most frequently used inheritance pattern in JavaScript. It also preserves the behavior of
instanceof and isPrototypeOf () for identifying the composition of objects.

Prototypal Inheritance

In 2006, Douglas Crockford wrote an article entitled “Prototypal Inheritance in JavaScript” in which he
introduced a method of inheritance that didn’t involve the use of strictly defined constructors. His
premise was that prototypes allow you to create new objects based on existing objects without the need
for defining custom types. The function he introduced to this end is as follows:

function object (o) {
function F() {}
F.prototype =
return new F(

o;

)

177

Chapter 6: Object-Oriented Programming

The object () function creates a temporary constructor, assigns a given object as the constructor’s
prototype, and returns a new instance of the temporary type. Essentially, object () performs a shadow
copy of any object that is passed into it. Consider the following:

var person = {

name: "Nicholas",

friends: ["Shelby", "Court", "Van"]
Y

var anotherPerson = object (person);
anotherPerson.name = "Greg";
anotherPerson. friends.push("Rob") ;

var yetAnotherPerson = object (person) ;
yetAnotherPerson.name = "Linda";
yetAnotherPerson. friends.push("Barbie") ;

alert (person.friends) ; //"Shelby, Court,Van,Rob, Barbie"

This is the way Crockford advocates using prototypal inheritance: You have an object that you want to
use as the base of another object. That object should be passed into object (), and the resulting object
should be modified accordingly. In this example, the person object contains information that should be
available on another object, so it is passed into the object () function, which returns a new object. The
new object has person as its prototype, meaning that it has both a primitive value property and a
reference value property on its prototype. This also means that person. friends is shared not only by
person, but also with anotherPerson and yetAnotherPerson. Effectively, this code has created two
clones of person.

Prototypal inheritance is useful when there is no need for the overhead of creating separate constructors
but you still need an object to behave similarly to another. Keep in mind that properties containing
reference values will always share those values, similar to using the prototype pattern.

Parasitic Inheritance

Closely related to prototypal inheritance is the concept of parasitic inheritance, another pattern popularized
by Crockford. The idea behind parasitic inheritance is similar to that of the parasitic constructor and factory
patterns: create a function that does the inheritance, augments the object in some way, and then returns the

object as if it did all the work. The basic parasitic inheritance pattern looks like this:

function createAnother (original) {
var clone = object(original); //create a new object by calling a function
clone.sayHi = function() { //augment the object in some way
alert("hi");
Y
return clone; //return the object

178

Chapter 6: Object-Oriented Programming

In this code, the createanother () function accepts a single argument, which is the object to base a new
object on. This object, original, is passed into the object () function, and the result is assigned to
clone. Next, the clone object is changed to have a property called newProperty. The last step is to
return the object. The createAnother () function can be used in the following way:

var person = {

name: "Nicholas",

friends: ["Shelby", "Court", "Van"]
Y

var anotherPerson = createAnother (person) ;
anotherPerson.sayHi(); //"hi"

The code in this example returns a new object based on person. The anotherPerson object has all of
the properties and methods of person but adds a new method called sayHi ().

Parasitic inheritance is another pattern to use when you are concerned primarily with objects and not
with custom types and constructors. The object () method is not required for parasitic inheritance; any
function that returns a new object fits the pattern.

Keep in mind that adding functions to objects using parasitic inheritance leads to
inefficiencies related to function reuse, similar to the constructor pattern.

Parasitic Combination Inheritance

Combination inheritance is the most often-used pattern for inheritance in JavaScript, though it is not
without its inefficiencies. The most inefficient part of the pattern is that the supertype constructor is
always called twice: once to create the subtype’s prototype, and once inside the subtype constructor.
Essentially, the subtype property ends up with all of the instance properties of a supertype object, only
to have it overwritten when the subtype constructor executes. Consider the combination inheritance
example again:

function SuperType (name) {
this.name = name;
this.colors = ["red", "blue", "green"];
}
SuperType.prototype.sayName = function() {
alert (this.name) ;

}i

function SubType (name, age) {
SuperType.call (this, name); //second call to SuperType ()

this.age = age;

(continued)

179

Chapter 6: Object-Oriented Programming

(continued)

SubType.prototype = new SuperType(); //first call to SuperType ()

SubType.prototype.sayAge = function() {
alert (this.age) ;
Y

The highlighted lines of code indicate when SuperType constructor is executed. When this code is
executed, SubType .prototype ends up with two properties: name and colors. These are instance
properties for SuperType, but they are now on the subType’s prototype. When the subType constructor
is called, the SuperType constructor is also called, which creates instance properties name and colors
on the new object that mask the properties on the prototype. Figure 6-6 illustrates this process.

Initially

SubType SubType Prototype
prototype | Q—J constructor | ®

SubType.prototype = new SuperType()

v
SubType —>| SuperType Prototype
prototype | ® constructor | °

SubType SubType Prototype
prototype | Q—J °

__proto__ ®

constructor ®
name (undefined)

colors (array)

var instance = new SubType("Nicholas", 29)

\
SuperType ——>| SuperType Prototype
prototype | [constructor| (4
SubType —> SubType Prototype
prototype | o __proto__ °
constructor o
instance name (undefined)
— proto_ ° colors (array)
name "Nicholas"
colors (array)
age 29

Figure 6-6

180

Chapter 6: Object-Oriented Programming

As you can see, there are two sets of name and colors properties: one on the instance and one on the
SubType prototype. This is the result of calling the SuperType constructor twice. Fortunately, there is a
way around this.

Parasitic combination inheritance uses constructor stealing to inherit properties but uses a hybrid form
of prototype chaining to inherit methods. The basic idea is this: instead of calling the supertype
constructor to assign the subtype’s prototype, all you need is a copy of the supertype’s prototype.
Essentially, use parasitic inheritance to inherit from the supertype’s prototype and then assign the result
to the subtype’s prototype. The basic pattern for parasitic combination inheritance is as follows:

function inheritPrototype (subType, superType) {

var prototype = object (superType.prototype) ; //create object
prototype.constructor = subType; //augment object
subType.prototype = prototype; //assign object

The inheritPrototype () function implements very basic parasitic combination inheritance. This
function accepts two arguments: the subtype constructor and the supertype constructor. Inside

the function, the first step is to create a clone of the supertype’s prototype. Next, the constructor
property is assigned onto clone to account for losing the default constructor property when the
prototype is overwritten. Finally, the subtype’s prototype is assigned to the newly created object. A call
to inheritPrototype () can replace the subtype prototype assignment in the previous example as
shown here:

function SuperType (name) {
this.name = name;
this.colors = ["red", "blue", "green"];

SuperType.prototype.sayName = function() {
alert (this.name) ;

Y

function SubType (name, age) {
SuperType.call (this, name);

this.age = age;
}

inheritPrototype (SubType, SuperType) ;

SubType.prototype.sayAge = function() {
alert (this.age);
Y

This example is more efficient in that the SuperType constructor is being called only one time, avoiding
having unnecessary and unused properties on SubType . prototype. Further, the prototype chain is kept
intact, so both instanceof and isPrototypeOf () behave as they would normally. Parasitic
combination inheritance is considered the most optimal inheritance paradigm for reference types.

The Yahoo! User Interface (YUI) library was the first to include parasitic combination inheritance in a
widely distributed JavaScript library via the YAHOO . lang . extend () method. For more information
on YUI, visit http: //developer.yahoo.com/yui/.

181

Chapter 6: Object-Oriented Programming

Summary

ECMAScript supports object-oriented (OO) programming without the use of classes or interfaces. Objects
are created and augmented at any point during code execution, making objects into dynamic rather than
strictly defined entities. In place of classes, the following patterns are used for the creation of objects:

Q The factory pattern uses a simple function that creates an object, assigns properties and
methods, and then returns the object. This pattern fell out of favor when the constructor pattern
emerged.

Q Using the constructor pattern, it’s possible to define custom reference types that can be created
using the new operator in the same way as built-in object instances are created. The constructor
pattern does have a downside, however, in that none of its members are reused, including
functions. Since functions can be written in a loosely typed manner, there’s no reason they
cannot be shared by multiple object instances.

Q The prototype pattern takes this into account, using the constructor’s prototype property to
assign properties and methods that should be shared. The combination constructor/prototype
pattern uses the constructor to define instance properties and the prototype pattern to define
shared properties and methods.

Inheritance in JavaScript is implemented primarily using the concept of prototype chaining. Prototype
chaining involves assigning a constructor’s prototype to be an instance of another type. In doing so, the
subtype assumes all of the properties and methods of the supertype in a manner similar to class-based
inheritance. The problem with prototype chaining is that all of the inherited properties and methods are
shared among object instances, making it ill-suited for use on its own. The constructor stealing pattern
avoids these issues, calling the supertype’s constructor from inside of the subtype’s constructor. This
allows each instance to have its own properties but forces the types to be defined using only the
constructor pattern. The most popular pattern of inheritance is combination inheritance, which uses
prototype chaining to inherit shared properties and methods, and uses constructor stealing to inherit
instance properties.

There are also the following alternate inheritance patterns:

Q Prototypal inheritance implements inheritance without the need for predefined constructors,
essentially performing a shallow clone operation on a given object. The result of the operation
then may be augmented further.

Q Closely related is parasitic inheritance, which is a pattern for creating an object based on another
object or some information, augmenting it, and returning it. This pattern has also been
repurposed for use with combination inheritance to remove the inefficiencies related to the
number of times the supertype constructor is called.

O Parasitic combination inheritance is considered the most efficient way to implement type-based
inheritance.

182

Anonymous Functions

An anonymous function is any function that doesn’t have a name; these are also sometimes referred
to as lambda functions. Anonymous functions are incredibly powerful programming tools and can
be used in any number of ways. Consider the following typical function declaration:

function functionName (arg0, argl, arg2) {
//function body
}

As discussed earlier in the book, functions can be declared in this manner or defined as a function
expression such as the following:

var functionName = function(arg0, argl, arg2) {
//function body
}i

Even though this example is logically equivalent to the previous one, there are some slight
differences. The primary difference between function declarations and function expressions, of
course, is that the former is loaded into the scope before code execution whereas the latter is
unavailable until that particular line has been evaluated during code execution (discussed in
Chapter 5). Another important distinction is that function declarations assign a name to the
function, whereas function expressions actually create anonymous functions and assign them to a
variable. This means the second example creates an anonymous function with three arguments
and assigns it to the variable functionName, but the function itself doesn’t have a name assigned.

It’s also possible to write an anonymous function like this:
function (arg0, argl, arg2){
//function body

}

This code is completely valid. Of course, the function can never be called because there is no
pointer to it. Anonymous functions are typically defined in this way when passing a function

Chapter 7: Anonymous Functions

into another function as an argument or when returning a function from a function. Recall the following
createComparisonFunction () example from Chapter 5:

function createComparisonFunction (propertyName) {

return function(objectl, object2) {
var valuel = objectl[propertyName];
var value2 = object2[propertyName];

if (valuel < value2){
return -1;

} else if (valuel > wvalue2){
return 1;

} else {
return 0;

}i

createComparisonFunction () returns an anonymous function. The returned function will,
presumably, be either assigned to a variable or otherwise called, but within
createComparisonFunction () itis anonymous. Any time a function is being used as a value, it is
being treated as an anonymous function. However, these are not the only uses for anonymous functions.

Recursion

A recursive function typically is formed when a function calls itself by name, as in the following
example:

function factorial (num) {
if (num <= 1){
return 1;
} else {
return num * factorial (num-1);

This is the classic recursive factorial function. Although this works initially, it’s possible to prevent it
from functioning by running the following code immediately after it:

var anotherFactorial = factorial;
factorial = null;
alert (anotherFactorial(4)); //error!

Here, the factorial () function is stored in a variable called anotherFactorial. The factorial
variable is then set to nul1l, so only one reference to the original function remains. When
anotherFactorial () is called, it will cause an error because it will try to execute factorial (), which
is no longer a function. Using arguments. callee can alleviate this problem.

184

Chapter 7: Anonymous Functions

Recall that arguments.callee is a pointer to the function being executed, and as such, can be used to
call the function recursively, as shown here:

function factorial (num) {
if (num <= 1){
return 1;
} else {

return num * arguments.callee(num-1);

Changing the highlighted line to use arguments. callee instead of the function name ensures that this
function will work regardless of how it is accessed. It's advisable to always use arguments.callee of
the function name whenever you're writing anonymous functions.

Closures

The terms anonymous functions and closures are often incorrectly used interchangeably. Closures are
functions that have access to variables from another function’s scope. This is often accomplished by
creating a function inside a function, as in the following highlighted lines from the previous
createComparisonFunction () example:

function createComparisonFunction (propertyName) {

return function(objectl, object2) {

var valuel = objectl [propertyName] ;
var value2 = object2[propertyName] ;

if (valuel < value2){
return -1;

} else if (valuel > value2){
return 1;

} else {
return 0;

}

Y

The highlighted lines in this example are part of the inner function (an anonymous function) that is
accessing a variable (propertyName) from the outer function. Even after the inner function has been
returned and is being used elsewhere, it has access to that variable. This occurs because the inner
function’s scope chain includes the scope of createComparisonFunction (). To understand why this is
possible, consider what happens when a function is first called.

Chapter 4 introduced the concept of a scope chain. The details of how scope chains are created and used
are important for a good understanding of closures. When a function is called, an execution context is
created and its scope chain assigned to a special internal property (referred to as [[Scope]]). The
activation object for the function is initialized with values for this, arguments, and any named
arguments. The outer function’s activation object is the second object in the scope chain. This process
continues for all containing functions until the scope chain terminates with the global execution context.

185

Chapter 7: Anonymous Functions

As the function executes, variables are looked up in the scope chain for the reading and writing of
values. Consider the following:

function compare(valuel, value2) {
if (valuel < value2){
return -1;
} else if (valuel > wvalue2) {
return 1;
} else {
return 0;
}
}

var result = compare(5, 10);

This code defines a function named compare () that is called in the global execution context. When
compare () is called for the first time, a new activation object is created that contains this, arguments,
valuel, and value2. The global execution context’s variable object is next in the compare () function’s
scope chain, which contains this, result, and compare. Figure 7-1 illustrates this relationship.

—> Global Scope

this window
compare ﬁ Scope Chain compare @
[[Scopel] | *— 1 o result undefined
0 [

—> compare Scope
this window
arguments | [5, 10]
valuel 5
value2 10

Figure 7-1

Behind the scenes, an object represents the variables in each execution context. The global context’s
variable object always exists, whereas local context variable objects, such as the one for compare (), exist
only while the function is being executed. When compare () is created, its scope chain is created,
preloaded with the global variable object, and saved to the internal [[Scope]] property. The scope
chain is built up by creating an activation object (which also acts as a variable object) when the function
is called and adding it to the front of the scope chain. In this example, that means the compare ()
function has two variable objects in its scope chain: the local activation object and the global variable
object. Note that the scope chain is essentially a list of pointers to variable objects and does not physically
contain the objects.

Whenever a variable is accessed inside a function, the scope chain is searched for a variable with the
given name. Once the function has completed, the local activation object is destroyed, leaving only

the global scope in memory. Closures, however, behave differently.

A function that is defined inside another function adds the containing function’s activation object into its
scope chain. So in createComparisonFunction (), the anonymous function’s scope chain actually

186

Chapter 7: Anonymous Functions

contains a reference to the activation object for createComparisonFunction (). Figure 7-2 illustrates
this relationship when the following code is executed:

var compare = createComparisonFunction ("name");
var result = compare({ name: "Nicholas" }, { name: "Michael" });

When the anonymous function is returned from createComparisonFunction (), its scope chain has
been initialized to contain its own activation object, the activation object from
createComparisonFunction (), and the global variable object. This gives the anonymous function
access to all of the variables from createComparisonFunction (). Another interesting side effect is that
the activation object from createComparisonFunction () cannot be destroyed once the function
finishes executing because a reference still exists in the anonymous function’s scope chain. After
createComparisonFunction () completes, its scope chain is destroyed but its activation object will
remain in memory until the anonymous function is destroyed, as in the following;:

//create function
var compareNames = createComparisonFunction ("name");

//call function
var result = compareNames ({ name: "Nicholas" }, { name: "Greg"});

//dereference function - memory can now be reclaimed
compareNames = null;

Here, the comparison function is created and stored in the variable compareNames. Setting
compareNames equal to null dereferences the function and allows the garbage collection routine to
clean it up. The scope chain will then be destroyed and all of the scopes (except the global scope) can be
destroyed safely. Figure 7-2 shows the scope-chain relationships that occur when compareNames () is
called in this example.

—> Global Scope
this window
createComparisonFunction ﬁ Scope Chain createComparisonFunction o
[[Scope]] | ° 1 PS p result undefined
0 [
createComparisonFunction Scope
this window
(anonymous) ﬁ Scope Chain arguments ["name’]
[[Scopel]] | *— 2 — propertyName "name"
1 [
0 —
1 (anonymous) Scope
this window
arguments [
objectl undefined
object2 undefined
Figure 7-2

187

Chapter 7: Anonymous Functions

Since closures carry with them the containing function’s scope, they take up more
memory than other functions. Overuse of closures can lead to excess memory
consumption, so it’s recommended to use them only when absolutely necessary.

Closures and Variables

There is one notable side effect of this scope chain configuration. The closure always gets the last value
of any variable from the containing function. Remember that the closure stores a reference to the entire
variable object, not just to a particular variable. This issue is illustrated clearly in the following example:

function createFunctions () {
var result = new Array();

for (var 1=0; 1 < 10; 1i++){
result[i] = function() {
return 1i;
Y
}

return result;

}

This function returns an array of functions. It seems that each function should just return the value of its
index, so the function in position 0 returns 0, the function in position 1 returns 1, and so on. In reality,
every function returns 10. Since each function has the createFunctions () activation object in its scope
chain, they are all referring to the same variable, i. When createFunctions () finishes running, the
value of i is 10, and since every function references the same variable object in which i exists, the value
of i inside each function is 10. You can, however, force the closures to act appropriately by creating
another anonymous function as follows:

function createFunctions () {
var result = new Array();

for (var i=0; i < 10; i++){
result[i] = function (num) {
return function() {
return num;
V5
(1) ;
}

return result;

With this version of createFunctions (), each function returns a different number. Instead of assigning
a closure directly into the array, an anonymous function is defined and called immediately. The
anonymous function has one argument, num, which is the number that the result function should return.
The variable 1 is passed in as an argument to the anonymous function. Since function arguments are
passed by value, the current value of i is copied into the argument num. Inside the anonymous function,

188

Chapter 7: Anonymous Functions

a closure that accesses num is created and returned. Now each function in the result array has its own
copy of num, and thus can return separate numbers.

The this Object

Using the this object inside closures introduces some problems. The this object is bound at runtime
based on the context in which a function is executed: when used inside global functions, this is equal to
window, whereas this is equal to the object when called as an object method. Anonymous functions are
considered to be global in this context, so the this object always points to window. Due to the way
closures are written, however, this fact is not always obvious. Consider the following:

var name = "The Window";

var object = {
name : "My Object",

getNameFunc : function() {
return function(){
return this.name;

Y
}i
alert (object.getNameFunc () ()); //"The Window"

Here, a global variable called name is created along with an object that also contains a property called
name. The object contains a method, getNameFunc (), that returns an anonymous function, which
returns this.name. Since getNameFunc () returns a function, calling object . getNameFunc () ()
immediately calls the function that is returned, which returns a string. In this case, however, it returns
"The Window", which is the value of the global name variable. Why didn’t the anonymous function pick
up the containing scope’s this object?

Remember that each function automatically gets two special variables in its activation object as soon as
the function is called: this and arguments. An inner function can never access these variables from an
outer function directly since the search for variables with these names stops on the inner function’s
activation object (look back at Figure 7-2 for more information). It is possible to allow a closure access to
a different this object by storing it in another variable that the closure can access, as in this example:

var name = "The Window";

var object = {
name : "My Object",

getNameFunc : function() {
var that = this;
return function() {
return that.name;

Y
};

alert (object.getNameFunc() ()); //"My Object"

189

Chapter 7: Anonymous Functions

The two highlighted lines show the difference between this example and the previous one. Before
defining the anonymous function, a variable named that is assigned equal to the this object. When the
closure is defined, it has access to that, since it is a uniquely named variable in the containing function.
Even after the function is returned, that is still bound to object, so calling object .getNameFunc () ()
returns "My Object".

Both this and arguments behave in this way. If you want access to a containing scope’s arguments
object, you’ll need to save a reference into another variable that the closure can access.

Memory Leaks

The way closures work causes particular problems in Internet Explorer due to the different garbage-
collection routines used for JScript objects versus COM objects (discussed in Chapter 4). Storing a scope
in which an HTML element is stored effectively ensures that the element cannot be destroyed. Consider
the following:

function assignHandler () {
var element = document.getElementById("someElement") ;
element.onclick = function() {
alert (element.id) ;

Y

This code creates a closure as an event handler on element, which in turn creates a circular reference
(events are discussed in Chapter 12). The anonymous function keeps a reference to the

assignHandler () function’s activation object, which prevents the reference count for element from
being decremented. As long as the anonymous function exists, the reference count for element will be at
least 1, which means the memory will never be reclaimed. This situation can be remedied by changing
the code slightly, as shown here:

function assignHandler () {
var element = document.getElementById("someElement") ;

var id = element.id;

element.onclick = function() {
alert (id);
Y

element = null;

In this version of the code, a copy of element’s ID is stored in a variable that is used in the closure,
eliminating the circular reference. That step alone is not enough, however, to prevent the memory
problem. Remember: the closure has a reference to the containing function’s entire activation object,
which contains element. Even if the closure doesn’t reference element directly, a reference is still stored
in the containing function’s activation object. It is necessary, therefore, to set the element variable equal
to null. This dereferences the COM object and decrements its reference count, assuring that the memory
can be reclaimed when appropriate.

190

Chapter 7: Anonymous Functions

Mimicking Block Scope

As mentioned previously, JavaScript has no concept of block-level scoping, meaning variables defined
inside of block statements are actually created in the containing function, not within the statement.
Consider the following;:

function outputNumbers (count) {
for (var 1=0; 1 < count; i++){
alert(1);

}

alert(1); //count

}

In this function, a for loop is defined and the variable i is initialized to be equal to 0. For languages such
as Java and C++, the variable i would be defined only in the block statement representing the for loop,
so the variable would be destroyed as soon as the loop completed. However, in JavaScript the variable i is
defined as part of the outputNumbers () activation object, meaning it is accessible inside the function
from that point on. Even the following errant redeclaration of the variable won’t wipe out its value:

function outputNumbers (count) {
for (var 1=0; 1 < count; i++){
alert(i);

}

var i; //variable redeclared
alert(1); //count

}

JavaScript will never tell you if you've declared the same variable more than once; it simply ignores all
subsequent declarations (though it will honor initializations). Anonymous functions can be used to
mimic block scoping and avoid such problems.

The basic syntax of an anonymous function used as a block scope (often called a private scope) is as
follows:

(function () {
//block code here
1) O

This syntax defines an anonymous function that is called immediately. The function declaration is
enclosed in parentheses to indicate that it’s actually a function expression. This function is then called via
the second set of parentheses at the end. If this syntax is confusing, consider the following example:

var count = 5;
outputNumbers (count) ;

191

Chapter 7: Anonymous Functions

In this example, a variable count is initialized with the value of 5. Of course, the variable is unnecessary
since the value is being passed directly into a function. To make the code more concise, the value 5 can
replace the variable count when calling the function as follows:

outputNumbers (5) ;

This works the same as the previous example because a variable is just a representation of another value,
so the variable can be replaced with the actual value and the code works fine. Now consider the
following:

var someFunction = function() {
//block code here
Y

someFunction() ;

In this example, a function is defined and then called immediately. An anonymous function is created and
assigned to the variable someFunction. The function is then called by placing parentheses after the function
name, becoming someFunction (). Remember in the previous example that the variable count could be
replaced with its actual value; the same thing can be done here. However, the following won’t work:

function() {

//block code here
DO //error!

This code causes a syntax error because JavaScript sees the function keyword as the beginning of a
function declaration, and function declarations cannot be followed by parentheses. Function expressions,
however, can be followed by parentheses. To turn the function declaration into a function expression,
you need only surround it with parentheses like this:

(function() {
//block code here
1) O

These private scopes can be used anywhere variables are needed temporarily, as in this example:

function outputNumbers (count) {

(function () {
for (var 1=0; 1 < count; i++){
alert(i);
}
INON
alert(i); //causes an error

192

Chapter 7: Anonymous Functions

In this rewritten version of the outputNumbers () function, a private scope is inserted around the for
loop. Any variables defined within the anonymous function are destroyed as soon as it completes
execution, so the variable 1 is used in the loop and then destroyed. The count variable is accessible
inside the private scope because the anonymous function is a closure, with full access to the containing
scope’s variables.

This technique is often used in the global scope outside of functions to limit the number of variables and
functions added to the global scope. Typically you want to avoid adding variables and functions to the
global scope, especially in large applications with multiple developers, to avoid naming collisions.
Private scopes allow every developer to use their own variables without worrying about polluting the
global scope. Consider this example:

(function () {

var now = new Date();
if (now.getMonth() == 0 && now.getDate() == 1){
alert ("Happy new year!");

IDNON

Placing this code in the global scope provides functionality for determining if the day is January 1, and if
so, displaying a message to the user. The variable now becomes a variable that is local to the anonymous
function instead of being created in the global scope.

This pattern limits the closure memory problem because there is no reference to the anonymous function.
Therefore the scope chain can be destroyed immediately after the function has completed.

Private Variables

Strictly speaking, JavaScript has no concept of private members; all object properties are public. There is,
however, a concept of private variables. Any variable defined inside a function is considered private
since it is inaccessible outside that function. This includes function arguments, local variables, and
functions defined inside other functions. Consider the following:

function add(numl, num2) {
var sum = numl + num2;
return sum;

}

In this function, there are three private variables: num1, num2, and sum. These variables are accessible
inside the function but can’t be accessed outside it. If a closure were to be created inside this function, it
would have access to these variables through its scope chain. Using this knowledge, it’s possible to
create public methods that have access to private variables.

193

Chapter 7: Anonymous Functions

A privileged method is a public method that has access to private variables and/or private functions. There
are two ways to create privileged methods on objects. The first is to do so inside a constructor, as in this
example:

function MyObject () {

//private variables and functions
var privateVariable = 10;

function privateFunction() {
return false;

}

//privileged methods
this.publicMethod = function () {
privateVariable++;
return privateFunction() ;

Y

This pattern defines all private variables and functions inside the constructor. Then privileged methods
can be created to access those private members. This works because, when defined in the constructor, the
privileged methods become closures with full access to all variables and functions defined inside the
constructor’s scope. In this example, the variable privatevariable and the function
privateFunction () are accessed only by publicMethod (). Once an instance of MyObject is created,
there is no way to access privateVariable and privateFunction () directly; you can do so only by
way of publicMethod ().

You can define private and privileged members to hide data that should not be changed directly, as in
this example:

function Person (name) {
this.getName = function() {
return name;
Y
this.setName = function (value) {

name = value;

Y

var person = new Person("Nicholas");

alert (person.getName()) ; //"Nicholas"
person.setName ("Greg") ;
alert (person.getName()) ; //"Greg"

194

Chapter 7: Anonymous Functions

The constructor in this code defines two privileged methods: getName () and setName (). Each method
is accessible outside the constructor and accesses the private name variable. Outside the Person
constructor, there is no way to access name. Since both methods are defined inside the constructor, they
are closures and have access to name through the scope chain. The private variable name is unique to
each instance of Person since the methods are being re-created each time the constructor is called. One
downside, however, is that you must use the constructor pattern to accomplish this result. As discussed
in Chapter 6, the constructor pattern is flawed in that new methods are created for each instance. Using
static private variables to achieve privileged methods avoids this problem.

Static Private Variables

Privileged methods can also be created by using a private scope to define the private variables or
functions. The pattern is as follows:

(function() {

//private variables and functions
var privatevVariable = 10;

function privateFunction () {
return false;

}

//constructor
MyObject = function() {
Y

//public and privileged methods
MyObject.prototype.publicMethod = function() {
privateVariable++;
return privateFunction() ;

IDNON;

In this pattern, a private scope is created to enclose the constructor and its methods. The private
variables and functions are defined first, followed by the constructor and the public methods. Public
methods are defined on the prototype, as in the typical prototype pattern. Note that this pattern defines
the constructor not by using a function declaration but instead by using a function expression. Function
declarations always create local functions, which is undesirable in this case. For this same reason, the
var keyword is not used with MyObject. Remember: initializing an undeclared variable always creates a
global variable, so MyObject becomes global and available outside the private scope.

195

Chapter 7: Anonymous Functions

The main difference between this pattern and the previous one is that private variables and functions are
shared among instances. Since the privileged method is defined on the prototype, all instances use that
same function. The privileged method, being a closure, always holds a reference to the containing scope.
Consider the following:

(function() {
var name = "";

Person = function(value) {
name = value;

Y

Person.prototype.getName = function() {
return name;

Y

Person.prototype.setName = function (value) {
name = value;
Y
IEON

var personl = new Person("Nicholas");

alert (personl.getName()) ; //"Nicholas"
personl.setName ("Greg") ;
alert (personl.getName()) ; //"Greg"

var person2 = new Person("Michael");
alert (personl.getName ()) ; //"Michael"
alert (person2.getName ()) ; //"Michael"

The Person constructor in this example has access to the private variable name, as do the getName ()
and setName () methods. Using this pattern, the name variable becomes static and will be used among
all instances. This means calling setName () on one instance affects all other instances. Calling
setName () or creating a new Person instance sets the name variable to a new value. This causes all
instances to return the same value.

Creating static private variables in this way allows for better code reuse through prototypes, although
each instance doesn’t have its own private variable. Ultimately, the decision to use instance or static

private variables needs to be based on your individual requirements.

The farther up the scope chain a variable lookup is, the slower the lookup becomes due to the use of
closures and private variables.

The Module Pattern

The previous patterns create private variables and privileged methods for custom types. The module
pattern, as described by Douglas Crockford, does the same for singletons. Singletons are objects of which

196

Chapter 7: Anonymous Functions

there will only ever be one instance. Traditionally, singletons are created in JavaScript using object literal
notation as shown in the following example:

var singleton = {

name : value,
method : function () {
//method code here

Y

The module pattern augments the basic singleton to allow for private variables and privileged methods,
taking the following format:

var singleton = function() {

//private variables and functions
var privateVariable = 10;

function privateFunction () {
return false;

}

//privileged/public methods and properties
return {

publicProperty: true,

publicMethod : function() {
privateVariable++;
return privateFunction();

1O ;

The module pattern uses an anonymous function that returns an object. Inside of the anonymous function,
the private variables and functions are defined first. After that, an object literal is returned as the function
value. That object literal contains only properties and methods that should be public. Since the object is
defined inside the anonymous function, all of the public methods have access to the private variables and
functions. Essentially, the object literal defines the public interface for the singleton. This can be useful when
the singleton requires some sort of initialization as well as access to private variables, as in this example:

var application = function() {

//private variables and functions
var components = new Array();

//initialization
components.push (new BaseComponent()) ;

//public interface
return {
getComponentCount : function() {
return components.length;

o
(continued)

197

Chapter 7: Anonymous Functions

(continued)
registerComponent : function (component) {
if (typeof component == "object") {
components.push (component) ;

In web applications, it’s quite common to have a singleton that manages application-level information.
This simple example creates an application object that manages components. When the object is first
created, the private components array is created and a new instance of BaseComponent is added to its
list (the code for BaseComponent is not important; it is used only to show initialization in the example).
The getComponentCount () and registerComponent () methods are privileged methods with access
to the components array. The former simply returns the number of registered components, and the latter
registers a new component.

The module pattern is useful for cases like this, when a single object must be created and initialized with
some data and expose public methods that have access to private data. Every singleton created in this
manner is an instance of Object, since ultimately an object literal represents it. This is inconsequential,
because singletons are typically accessed globally instead of being passed as arguments into a function,
which negates the need to use the instanceof operator to determine the object type.

The Module-Augmentation Pattern

Another take on the module pattern calls for the augmentation of the object before returning it. This
pattern is useful when the singleton object needs to be an instance of a particular type but must be
augmented with additional properties and/or methods. Consider the following example:

var singleton = function() {

//private variables and functions
var privatevVariable = 10;

function privateFunction() {
return false;

}

//create object
var object = new CustomType();

//add privileged/public properties and methods
object.publicProperty = true;

object.publicMethod = function() {
privateVariable++;
return privateFunction() ;

Y
//return the object

return object;

YO s

198

Chapter 7: Anonymous Functions

If the application object in the module pattern example had to be an instance of BaseComponent, the
following code could be used:

var

YO

application = function() {

//private variables and functions
var components = new Array();

//initialization
components.push (new BaseComponent()) ;

//create a local copy of application
var app = new BaseComponent () ;

//public interface
app.getComponentCount = function() {
return components.length;

Y
app.registerComponent = function (component) {

if (typeof component == "object") {
components.push (component) ;

Y

//return it
return app;

In this rewritten version of the application singleton, the private variables are defined first as in the
previous example. The main difference is the creation of a variable named app that is a new instance of
BaseComponent. This is the local version of what will become the application object. Public methods

are then

added onto the app object to access the private variables. The last step is to return the app

object, which assigns it to application.

Summary

Anonymous functions, also called lamba functions, are a powerful way to use JavaScript functions. The

followin

Q

Q

g is a summary of anonymous functions:

Any function that is defined as a function expression is technically an anonymous function since
there is no definitive way to reference it.

With no definitive way to reference a function, recursive functions become more complicated.

Recursive functions should always use arguments.callee to call themselves recursively
instead of using the function name, which may change.

199

Chapter 7: Anonymous Functions

Closures are created when anonymous functions are defined inside other functions, allowing the closure
access to all of the variables inside of the containing function, as follows:

O Behind the scenes, the closure’s scope chain contains a scope for itself, a scope for the containing
function, and the global scope.

Q Typically a function’s scope and all of its variables are destroyed when the function has finished
executing.

QO When a closure is returned from that function, its scope remains in memory until the closure no
longer exists.

Using closures, it’s possible to mimic block scoping in JavaScript, which doesn’t exist natively, as follows:

0 A function can be created and called immediately, executing the code within it but never leaving
a reference to the function.

Q This results in all of the variables inside the function being destroyed unless they are specifically
set to a variable in the containing scope.

Closures can also be used to create private variables in objects, as follows:

Q Even though JavaScript doesn’t have a formal concept of private object properties, anonymous
functions can be used to implement public methods that have access to variables defined within
the containing scope.

Q Public methods that have access to private variables are called privileged methods.
O Privileged methods can be implemented on custom types using the constructor or prototype

patterns as well as on singletons by using the module or module-augmentation patterns.

Anonymous functions and closures are extremely powerful in JavaScript and can be used to accomplish
many things. Keep in mind that closures maintain extra scopes in memory, so overusing them may result
in increased memory consumption.

200

The Browser Object Model

Though ECMAScript describes it as the core of JavaScript, the Browser Object Model (BOM) is
really the core of using JavaScript on the Web. The BOM provides objects that expose browser
functionality independent of any web page content. A lack of any real specification makes the
BOM both interesting and problematic, because browser vendors are free to augment it as they see
fit. The commonalities between browsers are de facto standards that have survived browser
development mostly for the purpose of interoperability. There is no such thing as a standard BOM
implementation or standard BOM interfaces.

The window Object

At the core of the BOM is the window object, which represents an instance of the browser. The
window object serves a dual purpose in browsers, acting as the JavaScript interface to the browser
window as well as the ECMAScript Global object. This means that every object, variable, and
function defined in a web page uses window as its Global object, and has access to methods like

parselnt ().

The Global Scope

Since the window object doubles as the ECMAScript Global object, all variables and functions
declared globally become properties and methods of the window object. Consider this example:

var age = 29;
function sayAge () {

alert(this.age);
}

alert (window.age) ; //29
sayAge () ; /729
window. sayAge () ; //29

Chapter 8: The Browser Object Model

Here, a variable named age and a function named sayAge () are defined in the global scope, which
automatically places them on the window object. Thus, the variable age is also accessible as window. age,
and the function sayAge () is also accessible via window. sayAge (). Since sayAge () exists in the global
scope, this.age maps to window.age, and the correct result is displayed.

Keeping this in mind, there are many objects in JavaScript that are considered to be global, such as
location and navigator (both discussed later in the chapter), but are actually properties of the
window object.

Internet Explorer for Windows Mobile doesn’t allow direct creation of new
properties or methods on the window object via window.property = value. All
variables and functions declared globally, however, will still become members of

window.

Window Relationships and Frames

If a page contains frames, each frame has its own window object and is stored in the frames collection.
Within the frames collection, the window objects are indexed both by number (starting at 0, going from
left to right and then row by row) and by the name of the frame. Each window object has a name
property containing the name of the frame. Consider the following:

<html>
<head>
<title>Frameset Example</title>
</head>
<frameset rows="160,*">
<frame src="frame.htm" name="topFrame" />
<frameset cols="50%,50%">
<frame src="anotherframe.htm" name="leftFrame" />
<frame src="yetanotherframe.htm" name="rightFrame" />
</frameset>
</frameset>
</html>

This code creates a frameset with one frame across the top and two frames underneath. Here, the top
frame can be referenced by window. frames[0] or window. frames [" topFrame"]; however, you
would probably use the top object instead of window to refer to these frames (making it

top. frames[0], for instance).

The top object always points to the very top (outermost) frame, which is the browser window itself. This
assures that you are pointing to the correct frame from which to access the others. Any code written
within a frame that references the window object is pointing to that frame’s unique instance rather than
the topmost one. Figure 8-1 indicates the various ways that the frames in the previous example may be
accessed from code that exists in the topmost window.

202

Chapter 8: The Browser Object Model

window.frames[0]
window.frames["topFrame"]
top.frames[0]
top.frames["topFrame"]
frames[O]
frames["topFrame"]

window.frames[1]
window.frames["leftFrame"]
top.frames[1]
top.frames["leftFrame"]
frames[1]
frames["leftFrame"]

window.frames[2]
window.frames["rightFrame"]
top.frames[2]
top.frames["rightFrame"]
frames[2]
frames["rightFrame"]

Figure 8-1

Another window object is called parent. The parent object always points to the current frame’s
immediate parent frame. In some cases, parent may be equal top, and when there are no frames,
parent is equal to top (and both are equal to window). Consider the following example:

<html>
<head>
<title>Frameset Example</title>
</head>
<frameset rows="100,*">
<frame src="frame.htm" name="topFrame" />
<frameset cols="50%,50%">
<frame src="anotherframe.htm" name="leftFrame" />
<frame src="anotherframeset.htm" name="rightFrame" />
</frameset>
</frameset>
</html>

This frameset has a frame that contains another frameset, the code for which is as follows:

<html>
<head>
<title>Frameset Example</title>
</head>
<frameset cols="50%,50%">
<frame src="red.htm" name="redFrame" />
<frame src="blue.htm" name="blueFrame" />
</frameset>
</html>

203

Chapter 8: The Browser Object Model

When the first frameset is loaded into the browser, it loads another frameset into rightFrame. If code is
written inside redFrame (or blueFrame), the parent object points to rightFrame. If, however, the code
is written in topFrame, then parent points to top because its immediate parent is the outermost frame.
Figure 8-2 shows the values of the various window objects when this example is loaded into a web
browser.

Figure 8-2

Note that the topmost window will never have a value set for name unless the window was opened using
window.open (), as discussed later in this chapter.

There is one final window object, called self, which always points to window. The two can, in fact, be
used interchangeably. Even though it has no separate value, self is included for consistency with the
top and parent objects.

Each of these objects is actually a property of the window object, accessible via window.parent,

window. top, and so on. This means it’s possible to chain window objects together, such as window
.parent .parent. frames[0].

204

Chapter 8: The Browser Object Model

Whenever frames are used, multiple Global objects exist in the browser. Global
variables defined in each frame are defined to be properties of that frame’s window
object. Since each window object contains the native type constructors, each frame
has its own version of the constructors, which are not equal. For example,
top.Object is not equal to top. frames[0] .Object, which affects the use of
instanceof when objects are passed across frames.

Window Position

The position of a window object may be determined and changed using various properties and methods.
Internet Explorer (IE), Safari, Opera, and Chrome all provide screenLeft and screenTop properties
that indicate the window’s location in relation to the left and top of the screen, respectively. Firefox
provides this functionality through the screenx and screeny properties, which are also supported in
Safari and Chrome. Opera supports screenx and screenY, but you should avoid using them in Opera,
because they don’t correspond to screenLeft and screenTop. The following code determines the left
and top positions of the window across browsers:

var leftPos = (typeof window.screenLeft == "number") ?
window.screenLeft : window.screenX;
var topPos = (typeof window.screenTop == "number") ?

window.screenTop : window.screenY;

This example uses the ternary operator to determine if the screenLeft and screenTop properties exist.
If they do (which is the case in IE, Safari, Opera, and Chrome), they are used. If they don’t exist (as in
Firefox), screenx and screeny are used.

There are some quirks to using these values. In IE, Opera, and Chrome, screenLeft and screenTop
refer to the space from the left and top of the screen to the page view area represented by window. If the
window object is the topmost object and the browser window is at the very top of the screen (with a
y-coordinate of 0), the screenTop value will be the pixel height of the browser toolbars that appear
above the page view area. Firefox and Safari treat these coordinates as being related to the entire browser
window, so placing the window at y-coordinate 0 on the screen returns a top position of 0.

To further confuse things, Firefox, Safari, and Chrome always return the values of top.screenx and
top.screeny for every frame on the page. Even if a page is offset by some margins, these same values
are returned every time screenX and screeny are used in relation to a window object. IE and Opera
give accurate coordinates for the location of frames in relation to the screen edges.

205

Chapter 8: The Browser Object Model

The end result is that you cannot accurately determine the left and top coordinates of a browser window
across all browsers. It is possible, however, to accurately move the window to a new position using the
moveTo () and moveBy () methods. Each method accepts two arguments. moveTo () expects the x and

y coordinates to move to, and moveBy () expects the number of pixels to move in each direction.
Consider this example:

//move the window to the upper-left coordinate
window.moveTo (0,0) ;

//move the window down by 100 pixels
window.moveBy (0, 100);

//move the window to position (200, 300)
window.moveTo (200, 300);

//move the window left by 50 pixels
window.moveBy (-50, 0);

These methods may be disabled by the browser and are disabled by default in Opera and IE 7 and later.
None of these methods work for frames; they apply only to the topmost window object.

Window Size

Determining the size of a window cross-browser is not straightforward. Firefox, Safari, Opera, and
Chrome all provide four properties: innerwidth, innerHeight, outerWidth, and outerHeight. In
Safari and Firefox, outerWidth and outerHeight return the dimensions of the browser window itself
(regardless of whether it’s used on the topmost window object or on a frame). In Opera, these values are
the size of the page view container. The innerwidth and innerHeight properties indicate the size of
the page view area inside the container (minus borders). In Chrome, outerwidth and outerHeight
return the size of the viewport, the same values as innerwidth and innerHeight, rather than the size
of the browser window.

IE offers no way to get the current dimensions of the browser window; however, it does provide
information about the viewable area of the page via the DOM.

The document . documentElement .clientWidth and document . documentElement .clientHeight
properties provide the width and height of the page viewport in IE, Firefox, Safari, Opera, and Chrome.
In IE 6, the browser must be in standards mode for these properties to be available; when in quirks
mode, the information is available via document . body.clientWidth and document .body
.clientHeight. When Chrome is in quirks mode, the values of clientwidth and clientHeight on
document . documentElement and document . body both contain the viewport dimensions.

206

Chapter 8: The Browser Object Model

The end result is that there’s no way to determine the size of the browser window itself, but it is possible
to get the dimensions of the page viewport as shown in the following example:

var pageWidth = window.innerWidth,
pageHeight = window.innerHeight;

if (typeof pageWidth != "number") {
if (document.compatMode == "CSSlCompat") {
pageWidth = document.documentElement.clientWidth;
pageHeight = document.documentElement.clientHeight;
} else {
pageWidth = document.body.clientWidth;
pageHeight = document.body.clientHeight;

In this code, pageWidth and pageHeight are assigned initial values of window. innerwidth and window
.innerHeight, respectively. A check is then done to see if the value of pageWidth is a number; if not, then
the code determines if the page is in standards mode by using document . compatMode (this property is
discussed fully in Chapter 10). If it is, then document . documentElement . clientWidth and document
.documentElement.clientHeight are used; otherwise, document .body.clientWidth and
document .body.clientHeight are used.

The browser window can be resized using the resizeTo () and resizeBy () methods. Each method
accepts two arguments: resizeTo () expects a new width and height, and resizeBy () expects the
differences in each dimension. Here’s an example:

//resize to 100 x 100
window.resizeTo (100, 100);

//resize to 200 x 150
window.resizeBy (100, 50);

//resize to 300 x 300
window.resizeTo (300, 300);

As with the window-movement methods, the resize methods may be disabled by the browser and are
disabled by default on Opera and IE 7 and later. Also like the movement methods, these methods apply
only to the topmost window object.

Navigating and Opening Windows

The window. open () method can be used both to navigate to a particular URL and to open a new
browser window. This method accepts four arguments: the URL to load, the window target, a string of
features, and a Boolean value indicating that the new page should take the place of the currently loaded
page in the browser history. Typically only the first three arguments are used; the last argument applies
only when not opening a new window.

If the second argument passed to window.open () is the name of a window or frame that already exists,
then the URL is loaded into the window or frame with that name. Here’s an example:

//same as
window.open ("http://www.wrox.com/", "topFrame");

207

Chapter 8: The Browser Object Model

This line of code acts as if the user clicked a link with the href attribute set to "http://www.wrox.com"
and the target attribute set to "topFrame". If there is a window or frame named "topFrame", then the
URL will be loaded there; otherwise, a new window is created and given the name "topFrame". The
second argument may also be any of the special window names: _self, _parent, _top, or _blank.

Popping Up Windows

When the second argument doesn’t identify an existing window or frame, a new window or tab is
created based on a string passed in as the third argument. If the third argument is missing, a new
browser window (or tab, based on browser settings) is opened with all of the default browser window
settings (toolbars, the location bar, and the status bar are all set based on the browser’s default settings).
The third argument is ignored when not opening a new window.

The third argument is a comma-delimited string of settings indicating display information for the new
window. The following table describes the various options.

Setting Value(s) Description

fullscreen "yes" Or "no" Indicates that the browser window should be maximized when
created. IE only.

height Number The initial height of the new window. This cannot be less than 100.

left Number The initial left coordinate of the new window. This cannot be a
negative number.

location "yes" or "no" Indicates if the location bar should be displayed. The default
varies based on the browser.

menubar "yes" Or "no" Indicates if the menu bar should be displayed. The defaultis "no" .

resizable "yes" or "no" Indicates if the new window can be resized by dragging its

border. The defaultis "no".

scrollbars "yes" Or "no" Indicates if the new window allows scrolling if the content cannot
be fit in the viewport. The defaultis "no".

status "yes" or "no" Indicates if the status bar should be displayed. The default varies
based on the browser.

toolbar "yes" or "no" Indicates if the toolbar bar should be displayed. The defaultis "no".

top Number The initial top coordinate of the new window. This cannot be a

negative number.

width Number The initial width of the new window. This cannot be less than 100.

208

Chapter 8: The Browser Object Model

Any or all of these settings may be specified as a comma-delimited set of name-value pairs. The name-
value pairs are indicated by an equal sign (no white space is allowed in the feature string). Consider the
following example:

window.open ("http://www.wrox.com/", "wroxWindow",
"height=400,width=400, top=10,left=10,resizable=yes");

This code opens a new resizable window that’s 400 X 400 and positioned 10 pixels from the top and left
of the screen.

The window. open () method returns a reference to the newly created window. This object is the same as
any other window object except that you typically have more control over it. For instance, some browsers
that don’t allow you to resize or move the main browser window by default may allow you to resize or
move windows that you’ve created using window. open (). This object can be used to manipulate the
newly opened window in the same way as any other window, as shown in this example:

var wroxWin =window.open ("http://www.wrox.com/", "wroxWindow",
"height=400,width=400, top=10,left=10,resizable=yes");

//resize it
wroxWin.resizeTo (500, 500);

//move it
wroxWin.moveTo (100, 100);

It’s possible to close the newly opened window by calling the close () method as follows:
wroxWin.close() ;

This method works only for pop-up windows created by window. open (). It’s not possible to close the
main browser window without confirmation from the user. It is possible, however, for the pop-up
window to close itself without user confirmation by calling top. close (). Once the window has been
closed, the window reference still exists but cannot be used other than to check the closed property, as
shown here:

wroxWin.close() ;
alert (wroxWin.closed); //true

The newly created window object has a reference back to the window that opened it via the opener
property. This property is defined only on the topmost window object (top) of the pop-up window and is
a pointer to the window or frame that called window. open (). For example:

var wroxWin =window.open ("http://www.wrox.com/", "wroxWindow",
"height=400,width=400, top=10,left=10,resizable=yes");

alert (wroxWin.opener == window); //true
Even though there is a pointer from the pop-up window back to the window that opened it, there is no

reverse relationship. Windows do not keep track of the pop-ups that they spawn, so it’s up to you to
keep track if necessary.

209

Chapter 8: The Browser Object Model

Some browsers, such as IE 8 and Google Chrome, try to run each tab in the browser as a separate process.

When one tab opens another, the window objects need to be able to communicate with one another, so the

tabs cannot run in separate processes. Chrome allows you to indicate that the newly created tab should be
run in a separate process by setting the opener property to null as in the following example:

var wroxWin =window.open ("http://www.wrox.com/", "wroxWindow",
"height=400,width=400, top=10,left=10,resizable=yes");

wroxWin.opener = null;

Setting opener to null indicates to the browser that the newly created tab doesn’t need to communicate
with the tab that opened it, so it may be run in a separate process. Once this connection has been
severed, there is no way to recover it.

Security Restrictions

Pop-up windows went through a period of overuse by advertisers online. Pop-ups were often disguised
as system dialogs to get the user to click on an advertisement. Since these pop-up web pages were styled
to look like system dialogs, it was unclear to the user whether the dialog was legitimate. To aid in this
determination, browsers began putting limits on the configuration of pop-up windows.

IE 6 on Windows XP Service Pack 2 implemented multiple security features on pop-up windows, including
not allowing pop-up windows to be created or moved offscreen and ensuring that the status bar cannot be
turned off. Beginning with IE 7, the address bar cannot be turned off and pop-up windows can’t be moved
or resized by default. Firefox 1 turned off the ability to suppress the status bar, so all pop-up windows have
to display the status bar regardless of the feature string passed into window. open () . Firefox 3 forces the
address bar to always be displayed on pop-up windows. Opera opens pop-up windows only within its
main browser window, but doesn’t allow them to exist where they might be confused with system dialogs.

Additionally, browsers will allow the creation of pop-up windows only after a user action. A call to
window. open () while a page is still being loaded, for instance, will not be executed and may cause an
error to be displayed to the user. Pop-up windows may be opened based only on a click or a key press.

Chrome uses a different approach to handling pop-up windows that aren’t initiated by the user. Instead
of blocking them, the browser displays only the title bar of the pop-up window and places it in the
lower-right corner of the browser window.

IE lifts some restrictions on pop-up windows when displaying a web page stored on the computer’s hard
drive. The same code, when run on a server, will invoke the pop-up restrictions.

Pop-up Blockers

Most browsers have pop-up-blocking software built in, and for those that don't, utilities such as the
Yahoo! Toolbar have built-in pop-up blockers. The result is that most unexpected pop-ups are blocked.
When a pop-up is blocked, one of two things happens. If the browser’s built-in pop-up blocker stopped
the pop-up, then window. open () will most likely return null. In that case, you can tell if a pop-up was
blocked by checking the return value, as shown in the following example:

var wroxWin = window.open ("http://www.wrox.com", "_blank");
if (wroxWin == null) {

alert ("The popup was blocked!");
}

210

Chapter 8: The Browser Object Model

When a browser add-on or other program blocks a pop-up, window. open () typically throws an error.
So to accurately detect when a pop-up has been blocked, you must check the return value as well as
wrap the call to window.open () in a try-catch block, as in this example:

var blocked = false;

try {
var wroxWin = window.open("http://www.wrox.com", "_blank");
if (wroxWin == null) {

blocked = true;
}
} catch (ex){
blocked = true;
}

if (blocked) {
alert ("The popup was blocked!");
}

This code accurately detects if a pop-up blocker has blocked the call to window. open (), regardless of
the method being used. Note that detecting if a pop-up was blocked does not stop the browser from
displaying its own message about a pop-up being blocked.

Intervals and Timeouts

JavaScript is a single-threaded language, but it does allow for the scheduling of code to run at specific
points in time through the use of timeouts and intervals. Timeouts execute some code after a specified
amount of time, whereas intervals execute code repeatedly, waiting a specific amount of time in between
each execution.

You set a timeout using the window’s setTimeout () method, which accepts two arguments: the code to
execute and the number of time (in milliseconds) to wait before executing the code. The first argument
can be either a string containing JavaScript code (as would be used with eval ()) or a function. For
example, both of the following display an alert after one second:

//avoid!
setTimeout ("alert ('Hello world!') ", 1000);

//preferred

setTimeout (function() {
alert ("Hello world!");

}, 1000);

Even though both of these statements work, it’s considered poor practice to use a string as the first
argument, because it brings with it performance penalties.

211

Chapter 8: The Browser Object Model

When setTimeout () is called, it returns a numeric ID for the timeout. The timeout ID is a unique
identifier for the scheduled code that can be used to cancel the timeout. To cancel a pending timeout, use
the clearTimeout () method and pass in the timeout ID as in the following example:

//set the timeout

var timeoutId = setTimeout (function() {
alert("Hello world!");

}, 1000);

//nevermind - cancel it
clearTimeout (timeoutId) ;

Aslong as clearTimeout () is called before the specified amount of time has passed, a timeout can be
canceled completely. Calling clearTimeout () after the code has been executed has no effect.

All code executed by a timeout runs in the global scope, so the value of this inside the function will
always point to window.

Intervals work in the same way as timeouts except that they execute the code repeatedly at specific time
intervals until the interval is canceled or the page is unloaded. The setInterval () method lets you set
up intervals, and it accepts the same arguments as setTimeout (): the code to execute (string or
function) and the amount of time in milliseconds to wait between executions. Here’s an example:

//avoid!
setInterval ("alert('Hello world!') ", 10000);

//preferred

setInterval (function() {
alert("Hello world!");

}, 10000);

The setInterval () method also returns an interval ID that can be used to cancel the interval at some
point in the future. The clearInterval () method can be used with this ID to cancel all pending
intervals. This ability is more important for intervals than timeouts since, if left unchecked, they continue
to execute until the page is unloaded. Here is a common example of interval usage:

var num = 0;
var max = 10;
var intervalId = null;

function incrementNumber () {
num++;

//if the max has been reached, cancel all pending executions
if (num == max) {

clearInterval (intervalld) ;

alert ("Done") ;

}

intervalId = setInterval (incrementNumber, 500);

212

Chapter 8: The Browser Object Model

In this example, the variable num is incremented every half second until it finally reaches the maximum
number, at which point the interval is canceled. This pattern can also be implemented using timeouts, as
shown here:

var num = 0;
var max = 10;

function incrementNumber () {
num++;

//1if the max has not been reached, set another timeout
if (num < max) {

setTimeout (incrementNumber, 500);
} else {

alert ("Done") ;

}
}

setTimeout (incrementNumber, 500);

Note that when you're using timeouts, it is unnecessary to track the timeout ID, because the execution
will stop on its own and continue only if another timeout is set. This pattern is considered a best practice
for setting intervals without actually using intervals. True intervals are rarely used in production
environments because it’s possible that one interval will begin before the previous one has finished
executing. Using timeouts, as in the preceding example, ensures that can’t happen. Generally speaking,
it’s best to avoid intervals.

System Dialogs

The browser is capable of invoking system dialogs to display to the user through the alert (),
confirm(), and input () methods. These dialogs are not related to the web page being displayed in the
browser and do not contain HTML. Their appearance is determined by operating-system and/or
browser settings rather than CSS. Additionally, each of these dialogs is synchronous and modal, meaning
code execution stops when a dialog is displayed, and resumes after it has been dismissed.

The alert () method has been used throughout this book. It simply accepts a string to display to the
user. When alert () is called, a system message box displays the specified text to the user, followed by a

single OK button. For example, alert ("Hello world!") renders the dialog box shown in Figure 8-3
when used with IE on Windows XP.

Figure 8-3

213

Chapter 8: The Browser Object Model

Alert dialogs are typically used when users must be made aware of something that they have no control
over, such as an error. A user’s only choice is to dismiss the dialog after reading the message.

The second type of dialog is invoked by calling confirm(). A confirm dialog looks similar to an alert
dialog in that it displays a message to the user. The main difference between the two is the presence of a
Cancel button along with the OK button, which allows the user to indicate if a given action should be
taken. For example, confirm("Are you sure?") displays the confirm dialog box shown in Figure 8-4.

Figure 8-4

To determine if the user clicked OK or Cancel, the confirm () method returns a Boolean value: true if
OK was clicked, or false if Cancel was clicked or the dialog box was closed by clicking the X in the
corner. Typical usage of a confirm dialog looks like this:

if (confirm("Are you sure?")) {
alert("I'm so glad you're sure! ");
} else {

alert("I'm sorry to hear you're not sure. ");

}

In this example, the confirm dialog is displayed to the user in the first line, which is a condition of the i f
statement. If the user clicks OK, an alert is displayed saying, “I'm so glad you're sure!” If, however, the
Cancel button is clicked, an alert is displayed saying, “I'm sorry to hear you're not sure.” This type of
pattern is often employed when the user tries to delete something, such as an e-mail message.

The final type of dialog is displayed by calling prompt (), which prompts the user for input. Along with
OK and Cancel buttons, this dialog has a text box where the user may enter some data. The prompt ()
method accepts two arguments: the text to display to the user, and the default value for the text box
(which can be an empty string). Calling prompt ("What's your name?", "Michael") resultsin the
dialog box shown in Figure 8-5.

Figure 85

214

Chapter 8: The Browser Object Model

If the OK button is clicked, prompt () returns the value in the text box; if Cancel is clicked or the dialog
is otherwise closed without clicking OK, the function returns null. Here’s an example:

var result = prompt ("What is your name? ", "");
if (result !== null) {
alert("Welcome, " + result);

}

These system dialogs can be helpful for displaying information to the user and asking for confirmation
of decisions. Since they require no HTML, CSS, or JavaScript to be loaded, they are fast and easy ways to
enhance a web application.

Google Chrome introduced a new feature regarding these system dialogs. If the actively running script
produces two or more system dialogs during its execution, each subsequent dialog after the first displays
a check box that allows the user to disable any further dialogs until the page reloads (see Figure 8-6).

Fheliy. el
[Privari ITes page = O WMHna Mg

——

Figure 8-6

When the check box is checked and the dialog box is dismissed, all further system dialogs (alerts,
confirms, and prompts) are blocked until the page is reloaded. Chrome 0.2 gives the developer no
indication as to whether the dialog was displayed. The dialog counter resets whenever the browser is
idle, so if two separate user actions produce an alert, the check box will not be displayed in either; if a
single user action produces two alerts in a row, the second will contain the check box. It's expected that
this feature will be refined to give developers more information about the success of the dialogs by the
time the browser reaches version 1.0.

Two other types of dialogs can be displayed from JavaScript: find and print. Both of these dialogs are
displayed asynchronously, returning control to the script immediately. The dialogs are the same as the
ones the browser employs when the user selects either Find or Print from the browser’s menu. These are
displayed using the £ind () and print () methods on the window object as follows:

//display print dialog
window.print () ;

//display find dialog
window. find() ;

These two methods give no indication as to whether the user has done anything with the dialog, so it is

difficult to make good use of them. Further, since they are asynchronous, they don’t contribute to
Chrome’s dialog counter and won't be affected by the user opting to disallow further dialogs.

215

Chapter 8: The Browser Object Model

The location Object

One of the most useful BOM objects is 1ocation, which provides information about the document that
is currently loaded in the window, as well as general navigation functionality. The location object is
unique in that it is a property of both window and document; both window. location and

document . location point to the same object. Not only does 1ocation know about the currently
loaded document, but it also parses the URL into discrete segments that can be accessed via a series of
properties. These properties are enumerated in the following table (the 1ocation prefix is assumed).

Property Name Example Description

hash "#contents" The URL hash (the pound sign followed by zero
or more characters), or an empty string if the URL
doesn’t have a hash.

host WWW . WEOX . Com The name of the server and port number if
"www . wrox.com: 80" present.

hostname "WWW . WEOX . com" The name of the server without the port number.

href "http://www.wrox.com" The full URL of the currently loaded page. The
toString () method of location returns this
value.

pathname " /WileyCDA/" The directory and/or filename of the URL.

port "8080" The port of the request if specified in the URL. If a

URL does not contain a port, then this property
returns an empty string.

protocol "http:" The protocol used by the page. Typically "http: "
or "https:".
search "?g=javascript" The query string of the URL. It returns a string

beginning with a question mark.

Query String Arguments

Most of the information in location is easily accessible from these properties. The one part of the URL
that isn’t provided is an easy-to-use query string. Though location.search returns everything from
the question mark until the end of the URL, there is no immediate access to query-string arguments on a
one-by-one basis. The following function parses the query string and returns an object with entries for
each argument:

function getQueryStringArgs () {

//get query string without the initial ?
var gs = (location.search.length > 0 ? location.search.substring(l) : "");

//object to hold data
var args = {};

216

Chapter 8: The Browser Object Model

//get individual items
var items = gs.split("&");
var item = null,

name = null,

value = null;

//assign each item onto the args object
for (var i=0; i < items.length; i++){
item = items[i].split("=");
name = decodeURIComponent (item[0]);
value = decodeURIComponent (item[1]);
args|[name] = value;

}

return args;

The first step in this function is to strip off the question mark from the beginning of the query string. This
happens only if location. search has one or more characters. The arguments will be stored on the args
object, which is created using object-literal format. Next, the query string is split on the ampersand
character, returning an array of strings in the format name=value. The for loop iterates over this array and
then splits each item on the equal sign, returning an array where the first item is the name of the argument
and the second item is the value. The name and value are each decoded using decodeURIComponent ()
(since query-string arguments are supposed to be encoded). Lastly, the name is assigned as a property on
the args object and its value is set to value. This function is used as follows:

//assume query string of ?g=javascript&num=10
var args = getQueryStringArgs();

alert(args(["g"]l); //"javascript"
alert (args["num"]) ; //" 10"

Each of the query-string arguments is now a property on the returned object, which provides fast access

to each argument.

Manipulating the Location

The browser location can be changed in a number of ways using the location object. The first, and
most common, way is to use the assign () method and pass in a URL as in the following example:

location.assign("http://www.wrox.com") ;
This immediately starts the process of navigating to the new URL and makes an entry in the browser’s
history stack. If location.href or window.location is set to a URL, the assign () method is called

with the value. For example, both of the following perform the same behavior as calling assign ()
explicitly:

window.location = "http://www.wrox.com";
location.href = "http://www.wrox.com";

217

Chapter 8: The Browser Object Model

Of these three approaches to changing the browser location, setting location.href is most often seen
in code.

Changing various properties on the location object can also modify the currently loaded page. The
hash, search, hostname, pathname, and port properties can be set with new values that alter the
current URL, as in this example:

//assume starting at http://www.wrox.com/WileyCDA/

//changes URL to "http://www.wrox.com/WileyCDA/#sectionl"
location.hash = "#sectionl";

//changes URL to "http://www.wrox.com/WileyCDA/?g=javascript"
location.search = "?g=javascript";

//changes URL to "http://www.yahoo.com/WileyCDA/"
location.hostname = "www.yahoo.com";

//changes URL to "http://www.yahoo.com/mydir/"
location.pathname = "mydir";

//changes URL to "http://www.wrox.com:8080/WileyCDA/"
location.port = 8080;

Each time a property on location is changed, with the exception of hash, the page reloads with the
new URL.

Changing the value of hash causes a new entry in the browser’s history to be
recorded as of IE 8, Firefox 1, Safari 2, Opera 9, and Chrome 0.2. In earlier

IE versions, the hash property was not updated when Back or Forward was clicked,
but only when a link containing a hashed URL was clicked.

When the URL is changed using one of the previously mentioned approaches, an entry is made in the
browser’s history stack so the user may click the Back button to navigate to the previous page. It is
possible to disallow this behavior by using the replace () method. This method accepts a single
argument, the URL to navigate to, but does not make an entry in the history stack. After calling
replace (), the user cannot go back to the previous page. Consider this example:

<html>
<head>
<title>You won't be able to get back here</title>
</head>
<body>
<p>Enjoy this page for a second, because you won't be coming back here.</p>
<script type="text/javascript">
setTimeout (function () {
location.replace("http://www.wrox.com/") ;
}, 1000);
</script>
</body>
</html>

218

Chapter 8: The Browser Object Model

If this page is loaded into a web browser, it will redirect to www.wrox . com after a second. At that point,
the Back button will be disabled and you won’t be able to navigate back to this example page without
typing in the complete URL again.

The last method of location is reload (), which reloads the currently displayed page. When reload() is
called with no argument, the page is reloaded in the most efficient way possible, which is to say that the
page may be reloaded from the browser cache if it hasn’t changed since the last request. To force a reload
from the server, pass in true as an argument like this:

location.reload() ; //reload - possibly from cache
location.reload(true) ; //reload - go back to the server

Any code located after a reload () call may or may not be executed, depending on factors such as
network latency and system resources. For this reason, it is best to have reload () as the last line of code.

The navigator Object

Originally introduced in Netscape Navigator 2.0, the navigator object has become a de facto standard
for browser identification on the client. Though some browsers offer alternate ways to provide the same
or similar information (for example, window.clientInformation in IE and window. opera in Opera),
the navigator object is common among all JavaScript-enabled web browsers. As with other BOM
objects, each browser supports its own set of properties. The following table lists each available property
and method, along with which browser versions support it.

Safari/
Property/Method Description IE Firefox =~ Chrome Opera
appCodeName The name of the browser. 3.0+ 1.0+ 1.0+ 7.0+
Typically "Mozilla" evenin
non-Mozilla browsers.
appName Full browser name. 3.0+ 1.0+ 1.0+ 7.0+
appMinorVersion Extra version information. 4.0+ — — 9.5+
appVersion Browser version. Typically 3.0+ 1.0+ 1.0+ 7.0+
does not correspond to the
actual browser version.
buildID Build number for the browser. — 2.0+ — —
cookieEnabled Indicates if cookies are 4.0+ 1.0+ 1.0+ 7.0+
enabled.
cpuClass The type of processor used on 4.0+ — — —
the client computer ("x86",
" 68K", "Alpha ", "PPC", Or
"Other").

(continued)

219

Chapter 8: The Browser Object Model

Safari/

Property/Method Description IE Firefox =~ Chrome Opera

javaEnabled () Indicates if Java is enabled in 4.0+ 1.0+ 1.0+ 7.0+
the browser.

language The browser’s primary — 1.0+ 1.0+ 7.0+
language.

mimeTypes Array of MIME types 4.0+ 1.0+ 1.0+ 7.0+
registered with the browser.

onLine Indicates if the browser is 4.0+ 1.0+ — 9.5+
connected to the Internet.

opsProfile Apparently unused. No 4.0+ — — —
documentation available.

oscpu The operating system and/or — 1.0+ — —
CPU on which the browser is
running.

platform The system platform on 4.0+ 1.0+ 1.0+ 7.0+
which the browser is running.

plugins Array of plug-ins installed on 4.0+ 1.0+ 1.0+ 7.0+
the browser. In IE only, this is
an array of all <embed>
elements on the page.

preference() Sets a user preference. — 1.5+ — —
Accessible only in privileged
mode.

product The name of the product — 1.0+ 1.0+ —
(typically "Gecko™").

productSub Extra information about the — 1.0+ 1.0+ —
product (typically Gecko
version information).

register Registers a web site as a — 2.0+ — —

ContentHandler () handler for a specific MIME
type.

registerProtocol Registers a web site as a — 2.0+ — —

Handler () handler for a particular
protocol.

securityPolicy Deprecated. Name of the — 1.0+ — —

security policy. Retained for
backwards compatibility with
Netscape Navigator 4.

220

Chapter 8: The Browser Object Model

Safari/
Property/Method Description IE Firefox =~ Chrome Opera

systemLanguage The language used by the 4.0+ — — —
operating system.

taintEnabled () Deprecated. Indicates if 4.0+ 1.0+ — 7.0+
variable tainting is enabled.
Retained for backwards
compatibility with Netscape
Navigator 3.

userAgent The user-agent string for the 3.0+ 1.0+ 1.0+ 7.0+
browser.

userLanguage The default language for the 4.0+ — — 7.0+
operating system.

userProfile Object for accessing user 4.0+ — — —
profile information.

vendor The brand name of the — 1.0+ 1.0+ —
browser.

vendorSub Extra information about the — 1.0+ 1.0+ —
vendor.

The navigator object’s properties are typically used to determine the type of browser that is running a
web page (discussed fully in Chapter 9). Note that at the time of this writing, the most current version of
Chrome is 0.2, which supports the same properties as Safari.

Detecting Plug-ins

One of the most common detection procedures is to determine whether the browser has a particular
plug-in installed. For browsers other than IE, this can be determined using the plugins array. Each item
in the array contains the following properties:

Q name — The name of the plug-in

Q description — The description of the plug-in

Q filename — The filename for the plug-in

Q length — The number of MIME types handled by this plug-in
Typically, the name contains all of the information that’s necessary to identify a plug-in, though this is

not an exact science. Plug-in detection is done by looping over the available plug-ins and comparing a
plug-in’s name to a given name, as in this example:

//plugin detection - doesn't work in IE
function hasPlugin (name) {

221

Chapter 8: The Browser Object Model

name = name.toLowerCase() ;
for (var i=0; 1 < navigator.plugins.length; i++){
if (navigator.plugins[i].name.toLowerCase () .indexOf (name) > -1){
return true;

}

return false;

}

//detect flash
alert (hasPlugin("Flash"));

//detect quicktime
alert (hasPlugin("QuickTime")) ;

The hasPlugin () example accepts a single argument: the name of a plug-in to detect. The first step is to
convert that name to lowercase for easier comparison. Next, the plugins array is iterated over and each
name property is checked via indexOf () to see if the passed-in name appears somewhere in that string.
This comparison is done in all lowercase to avoid casing errors. The argument should be as specific as
possible to avoid confusion. String such as "Flash" and "QuickTime" are unique enough that there
should be little confusion. This method works for detecting plug-ins in Firefox, Safari, Opera, and Chrome.

Each plugin object is also an array of MimeType objects that can be accessed using
bracket notation. Each MimeType object has four properties: description, which is
a description of the MIME type; enabledPlugin, which is a pointer back to the
plugin object; suffixes, which is a comma-delimited string of file extensions for
the MIME type; and type, which is the full MIME type string.

Detecting plug-ins in IE is more problematic, because it doesn’t support Netscape-style plug-ins.

The only way to detect plug-ins in IE is to use the proprietary ActivexObject type and attempt to
instantiate a particular plug-in. Plug-ins are implemented in IE using COM objects, which are identified
by unique strings. So to check for a particular plug-in, you must know its COM identifier. For instance,
the identifier for Flash is "ShockwaveFlash. ShockwaveFlash". With this information, you can write a
function to determine if the plug-in is installed in IE as follows:

//plugin detection for IE
function hasIEPlugin (name) {
try {
new ActiveXObject (name) ;
return true;
} catch (ex){
return false;
}
}

//detect flash
alert (hasIEPlugin ("ShockwaveFlash.ShockwaveFlash"));

//detect quicktime
alert (hasIEPlugin ("QuickTime.QuickTime")) ;

222

Chapter 8: The Browser Object Model

In this example, the hasIEPlugin () function accepts a COM identifier as its sole argument. In the
function, an attempt is made to create a new ActiveXObject instance. This is encapsulated in a try-
catch statement because an attempt to create an unknown COM object will throw an error. Therefore, if
the attempt is successful, the function returns true. If there is an error, the catch block gets executed,
which returns false. This code then checks to see if the Flash and QuickTime plug-ins are available in IE.

Since these two plug-in—detection methods are so different, it’s typical to create functions that test for
specific plug-ins rather than using the generic methods described previously. Consider this example:

//detect flash for all browsers
function hasFlash() {
var result = hasPlugin("Flash");
if (!result){
result = hasIEPlugin("ShockwaveFlash.ShockwaveFlash") ;
}

return result;

}

//detect quicktime for all browsers
function hasQuickTime () {
var result = hasPlugin("QuickTime");
if (!result){
result = hasIEPlugin("QuickTime.QuickTime") ;
}

return result;

}

//detect flash
alert (hasFlash());

//detect quicktime
alert (hasQuickTime ()) ;

This code defines two functions: hasFlash () and hasQuickTime (). Each function attempts to use the
non-IE plug-in—detection code first. If that method returns false (which it will for IE), the IE plug-in
detection method is called. If the IE plug-in—detection method also returns false, then the result of the
overall method is false. If either plug-in—detection function returns true, then the overall method
returns true.

The plugins collection has a method called refresh (), which refreshes plugins to reflect any
newly installed plug-ins. This method accepts a single argument: a Boolean value indicating if the page
should be reloaded. When set to true, all pages containing plug-ins are reloaded; otherwise the
plugins collection is updated but the page is not reloaded.

Registering Handlers

Firefox 2.0 introduced the registerContentHandler () and registerProtocolHandler () methods
to the navigator object (these are defined in HTML 5, which is discussed in Chapter 22). These methods
allow a web site to indicate that it can handle specific types of information. With the rise of online RSS
readers and online e-mail applications, this is a way for those applications to be used by default just as
desktop applications are used.

223

Chapter 8: The Browser Object Model

The registerContentHandler () method accepts three arguments: the MIME type to handle, the URL
of the page that can handle that mime type, and the name of the application. For instance, to register a
site as a handler of RSS feeds, you can use the following code:

navigator.registerContentHandler ("application/rss+xml",
"http://www.somereader.com?feed=%s", "Some Reader");

The first argument is the MIME type for RSS feeds. The second argument is the URL that should receive
the RSS-feed URL. In this second argument, the %s represents the URL of the RSS feed, which the
browser inserts automatically. The next time a request is made for an RSS feed, the browser will navigate
to the URL specified and the web application can handle the request in the appropriate way.

Firefox 2 allows only three MIME types to be used in registerContentHandler () :
"application/rss+xml", "application/atom+xml", and "application/vnd.
mozilla.maybe.feed". All three do the same thing: register a handler for all RSS
and Atom feeds.

A similar call can be made for protocols by using registerProtocolHandler (), which also accepts
three arguments: the protocol to handle (i.e., “mailto" or “ftp"), the URL of the page that handles the
protocol, and the name of the application. For example, to register a web application as the default mail
client, you can use the following:

navigator.registerProtocolHandler ("mailto",
"http://www.somemailclient.com?cmd=%s", "Some Mail Client");

In this example, a handler is registered for the mailto protocol, which will now point to a web-based
e-mail client. Once again, the second argument is the URL that should handle the request, and %s
represents the original request.

In Firefox 2, registerProtocolHandler () is implemented but does not work.

The screen Object

The screen object (also a property of window) is one of the few JavaScript objects that have little to no
programmatic use; it is used purely as an indication of client capabilities. This object provides
information about the client’s display outside the browser window, including information such as pixel
width and height. Each browser provides different properties on the screen object. The following table
indicates the properties and which browsers support them.

224

Chapter 8: The Browser Object Model

Safari/
Property Description IE Firefox = Chrome Opera
availHeight The pixel height of the screen X X X X
minus system elements such as
Windows (read only)
availLeft The first pixel from the left that is X X
not taken up by system elements
(read only)
availTop The first pixel from the top that is X X
not taken up by system elements
(read only)
availwidth The pixel width of the screen X X X X
minus system elements (read only)
bufferDepth Reads or writes the number of bits X
used for offscreen bitmap rendering
colorDepth The number of bits used to X X X X
represent colors; for most
systems, 32 (read only)
deviceXDPT The actual horizontal DPI of the X
screen (read only)
deviceYDPT The actual vertical DPI of the X
screen (read only)
fontSmoothing Indicates if font smoothing is X
Enabled turned on (read only)
height The pixel height of the screen X X X X
left The pixel distance of the current X
screen’s left side
logicalXDPI The logical horizontal DPI of the X
screen (read only)
logicalYDPI The logical vertical DPI of the X
screen (read only)
pixelDepth The bit depth of the screen (read X X X
only)
top The pixel distance of the current X
screen’s top
updateInterval Reads or writes the update X
interval for the screen in
milliseconds
width The pixel width of the screen X X X X

225

Chapter 8: The Browser Object Model

This information is often aggregated by site-tracking tools that measure client capabilities, but typically
it is not used to affect functionality. This information is sometimes used to resize the browser to take up
the available space in the screen as follows:

window.resizeTo (screen.availWidth, screen.availHeight);

As noted previously, many browsers turn off the capability to resize the browser window, so this code
may not work in all circumstances.

The history Object

The history object represents the user’s navigation history since the given window was first used.
Because history is a property of window, each browser window, tab, and frame has its own history
object relating specifically to that window object. For security reasons, it’s not possible to determine the
URLs that the user has visited. It is possible, however, to navigate backwards and forwards through the
list of places the user has been without knowing the exact URL.

The go () method navigates through the user’s history in either direction, backward or forward. This
method accepts a single argument, which is an integer representing the number of pages to go backward
or forward. A negative number moves backward in history (similar to clicking the browser’s Back
button), and a positive number moves forward (similar to clicking the browser’s Forward button).
Here’s an example:

//go back one page
history.go(-1);

//go forward one page
history.go(1);

//go forward two pages
history.go(2);

The go () method argument can also be a string, in which case the browser navigates to the first location
in history that contains the given string. The closest location may be either backward or forward. If
there’s no entry in history matching the string, then the method does nothing, as in this example:

//go to nearest wrox.com page
history.go("wrox.com") ;

//go to nearest nczonline.net page
history.go("nczonline.net");

Two shortcut methods, back () and forward (), may be used in place of go () . As you might expect,
these mimic the browser Back and Forward buttons as follows:

//go back one page
history.back();

//go forward one page
history.forward() ;

226

Chapter 8: The Browser Object Model

The history object also has a property, length, which indicates how many items are in the history
stack. This property reflects all items in the history stack, both those going backward and those going
forward. For the first page loaded into a window, tab, or frame, history. length is equal to 0. By
testing for this value as shown here, it’s possible to determine if the user’s start point was your page:

if (history.length == 0){
//this is the first page in the user's window

}

Though not used very often, the history object typically is used to create custom Back and Forward
buttons as well as to determine if the page is the first in the user’s history.

Entries are made in the history stack whenever the page’s URL changes.
For IE 8 and later, Opera, Firefox, Safari 3 and later, and Chrome, this
includes changes to the URL hash (thus, setting location.hash causes
a new entry to be inserted into the history stack for these browsers).

Summary

The Browser Object Model (BOM) is based on the window object, which represents the browser window
as well as the viewable page area. The window object doubles as the ECMAScript G1obal object, so all
global variables and functions become properties on it, and all native constructors and functions exist on
it initially. This chapter discussed the following elements of the BOM:

Q When frames are used, each frame has its own window object and its own copies of all native
constructors and functions. Each frame is stored in the frames collection, indexed both by
position and by name.

To reference other frames, including parent frames, there are several window pointers.
The top object always points to the outermost frame, which represents the entire browser window.

The parent object represents the containing frame, and sel £ points back to window.

U 0 U U

The location object allows programmatic access to the browser’s navigation system. By setting
properties, it’s possible to change the browser’s URL piece-by-piece or altogether.

(]

The replace () method allows for navigating to a new URL and replacing the currently
displayed page in the browser’s history.

Q Thenavigator object provides information about the browser. The type of information
provided depends largely on the browser being used, though some common properties, such as
userAgent, are available in all browsers.

Two other objects available in the BOM perform very limited functions. The screen object provides
information about the client display. This information is typically used in metrics-gathering for web
sites. The history object offers a limited peek into the browser’s history stack, allowing developers to
determine how many sites are in the history stack and giving them the ability to go back or forward

to any page in the history.

227

Client Detection

Although browser vendors have made a concerted effort to implement common interfaces, the fact
remains that each browser presents its own capabilities and flaws. Browsers that are available
cross-platform often have different issues even though they are technically the same version. These
differences force web developers to either design for the lowest common denominator or, more
commonly, use various methods of client detection to work with or around limitations.

Client detection remains one of the most controversial topics in web development. The idea that
browsers should support a common set of functionality pervades most conversations on the topic.
In an ideal world, this would be the case. In reality, however, there are enough browser differences
and quirks that client detection becomes not just an afterthought, but also a vital part of the
development strategy.

There are several approaches to determine the web client being used, and each has advantages and
disadvantages. It’s important to understand that client detection should be the very last step in
solving a problem; whenever a more common solution is available, that solution should be used.
Design for the most common solution first and then augment it with browser-specific solutions later.

Capability Detection

The most commonly used and widely accepted form of client detection is called capability detection.
Capability detection (also called feature detection) aims not to identify a specific browser being
used, but rather to identify the browser’s capabilities. This approach presumes that specific
browser knowledge is unnecessary and that the solution may be found by determining if the
capability in question actually exists. The basic pattern for capability detection is as follows:

if (object.propertyInQuestion) {
//use object.propertyInQuestion
}

Chapter 9: Client Detection

For example, the DOM method document . getElementById () didn’t exist in Internet Explorer (IE)
prior to version 5.0. This method simply didn’t exist in earlier versions, although the same functionality
could be achieved using the nonstandard document .all property. This led to a capability detection fork
such as the following:

function getElement (id) {
if (document.getElementById) {
return document.getElementById(id);
} else if (document.all) {
return document.all[id];
} else {
throw new Error ("No way to retrieve element!");

}

The purpose of the getElement () function is to return an element with the given ID. Since

document .getElementById() is the standard way of achieving this, it is tested for first. If the function
exists (it isn’t undefined), then it is used. Otherwise, a check is done to determine if document.all is
available, and if so, that is used. If neither method is available (which is highly unlikely), an error is
thrown to indicate that the function won’t work.

There are two important concepts to understand in capability detection. As just mentioned, the most
common way to achieve the result should be tested for first. In the previous example, this meant testing
for document .getElementById () before document.all. Testing for the most common solution
ensures optimal code execution by avoiding multiple-condition testing in the common case.

The second important concept is that you must test for exactly what you want to use. Just because one
capability exists doesn’t necessarily mean another exists. Consider the following example:

function getWindowWidth () {

if (document.all){ //assumes IE
return document.documentElement.clientWidth; //INCORRECT USAGE!!!
} else {

return window.innerWidth;

}

This example shows an incorrect usage of capability detection. The getWindowWidth () function
first checks to see if document .all exists. It does, so the function then returns document
.documentElement.clientwidth. As discussed in Chapter 8, IE does not support the window.
innerwidth property. The problem in this code is that a test for document .all does not necessarily
indicate that the browser is IE. It could, in fact, be Opera, which supports document .all as well as
window. innerWidth.

Detecting a particular capability or set of capabilities does not necessarily indicate the browser in use.
The following “browser detection” code, or something similar, can be found on numerous web sites and
is an example of improper capability detection:

//AVOID! Not specific enough
var isFirefox = !! (navigator.vendor && navigator.vendorSub) ;

//AVOID! Makes too many assumptions
var isIE = !! (document.all && document.uniquelD) ;

230

Chapter 9: Client Detection

This code represents a classic misuse of capability detection. In the past, Firefox could be determined by
checking for navigator.vendor and navigator.vendorSub, but then Safari came along and
implemented the same properties, meaning this code would give a false positive. To detect IE, the code
checks for the presence of document .all and document .uniqueID. This assumes that both of these
properties will continue to exist in future versions of IE and won't ever be implemented by any other
browser. Both checks use a double NOT operator to produce a Boolean result (which is more optimal to
store and access).

It is appropriate, however, to group capabilities together into classes of browsers. If you know that your
application needs to use specific browser functionality, it may be useful to do detection for all of the
capabilities once rather than doing it repeatedly. Consider this example:

//determine if the browser has Netscape-style plugins
var hasNSPlugins = !!(navigator.plugins && navigator.plugins.length) ;

//determine if the browser has basic DOM Level 1 capabilities
var hasDOM1 = !! (document.getElementById && document.createElement &&
document .getElementsByTagName) ;

In this example, two detections are done: one to see if the browser supports Netscape-style plug-ins and
one to determine if the browser supports basic DOM Level 1 capabilities. These Boolean values can later
be queried, and it will take less time than to retest the capabilities.

Capability detection should be used only to determine the next step in a solution,
not as a flag indicating a particular browser is being used.

Quirks Detection

Similar to capability detection, quirks detection aims to identify a particular behavior of the browser.
Instead of looking for something that’s supported, however, quirks detection attempts to figure out what
isn’t working correctly (“quirk” really means “bug”). This often involves running a short amount of code
to determine that a feature isn’t working correctly. For example, a bug in IE causes instance properties
with the same name as prototype properties marked with [[DontEnum]] to not appear in for-in loops.
This quirk can be tested using the following code:

var hasDontEnumQuirk = function() {
var o = { toString : function(){} };
for (var prop in o) {
if (prop == "toString") {
return false;

}

return true;

1O

231

Chapter 9: Client Detection

This code uses an anonymous function to test for the quirk. An object is created with the toString ()
method defined. In proper ECMAScript implementations, toString should be returned as a property in
the for-in loop.

Another quirk commonly tested for is Safari versions prior to 3.0 enumerating over shadowed
properties. This can be tested for as follows:

var hasEnumShadowsQuirk = function/() {

var o = { toString : function(){} };
var count = 0;
for (var prop in o) {
if (prop == "toString") {
count++;

}

return (count > 1);

YO

If the browser has this quirk, an object with a custom toString () method will cause two instances of
toString to appear in the for-in loop.

Quirks are frequently browser-specific and often are recognized as bugs that may or may not be fixed in
later versions. Since quirks detection requires code to be run, it’s advisable to test for only the quirks that
will affect you directly, and to do so at the beginning of the script to get it out of the way.

User-Agent Detection

The third, and most controversial, client-detection method is called user-agent detection. User-agent
detection uses the browser’s user-agent string to determine the exact browser being used. The user-agent
string is sent as a response header for every HTTP request and is made accessible in JavaScript through
navigator.userAgent. On the server side, it is a common and accepted practice to look at the user-
agent string to determine the browser being used and to act accordingly. On the client side, however,
user-agent detection is generally considered a last-ditch approach for when capability detection and/or
quirks detection cannot be used.

Among the controversial aspects of the user-agent string is its long history of spoofing, when browsers try
to fool servers by including erroneous or misleading information in their user-agent string. To
understand this problem, it’s necessary to take a look back at how the user-agent string has evolved
since the Web first appeared.

232

Chapter 9: Client Detection

History

The HTTP specification, both versions 1.0 and 1.1, indicates that browsers should send short user-agent
strings specifying the browser name and version. RFC 2616 (the HTTP 1.1 protocol specification)
describes the user-agent string in this way:

Product tokens are used to allow communicating applications to identify themselves by
software name and version. Most fields using product tokens also allow sub-products which
form a significant part of the application to be listed, separated by white space. By convention,
the products are listed in order of their significance for identifying the application.

The specification further stipulates that the user-agent string should be specified as a list of products
in the form token/product version. In reality, however, user-agent strings have never been that simple.

Early Browsers

The first web browser, Mosaic, was released in 1993 by the National Center for Supercomputing
Applications (NCSA). Its user-agent string was fairly simple, taking a form similar to this:

Mosaic/0.9
Though this would vary depending on the operating system and platform, the basic format was simple
and straightforward. The text before the forward slash indicated the product name (sometimes
appearing as NCSA Mosaic or other derivatives), and the text after the slash is the product version.
When Netscape Communications began developing their web browser, its codename was Mozilla (short
for “Mosaic Killer”). Netscape Navigator 2, the first publicly available version, had a user-agent string
with the following format:

Mozilla/Version [Language]l (Platform; Encryption)

Netscape kept the tradition of using the product name and version as the first part of the user-agent
string, but added the following information afterwards:

Language — The language code indicating where the application was intended to be used.
Platform — The operating system and/or platform on which the application is running.

Encryption — The type of security encryption included. Possible values are U (128-bit
encryption), I (40-bit encryption), and N (no encryption).

A typical user-agent string from Netscape Navigator 2 looked like this:

Mozilla/2.02 [fr] (WinNT; I)

233

Chapter 9: Client Detection

This string indicates Netscape Navigator 2.02 is being used, is compiled for use in French-speaking
countries, and is being run on Windows NT with 40-bit encryption. At this point in time, it was fairly
easy to determine what browser was being used just by looking at the product name in the user-agent
string.

Netscape Navigator 3 and Internet Explorer 3

In 1996, Netscape Navigator 3 was released and became the most popular web browser, surpassing
Mosaic. The user-agent string went through only a small change, removing the language token and
allowing optional information about the operating system or CPU used on the system. The format
became the following;:

Mozilla/Version (Platform; Encryption [; OS-or-CPU description])
A typical user-agent string for Netscape Navigator 3 running on a Windows system looked like this:
Mozilla/3.0 (Win95; U)

This string indicates Netscape Navigator 3 running on Windows 95 with 128-bit encryption. Note that
the OS or CPU description was left off when the browser ran on Windows systems.

Shortly after the release of Netscape Navigator 3, Microsoft released their first publicly available web
browser, Internet Explorer 3. Since Netscape was the dominant browser at the time, many servers
specifically checked for it before serving up pages. The inability to access pages in IE would have
crippled adoption of the fledgling browser, so the decision was made to create a user-agent string that
would be compatible with the Netscape user-agent string. The result was the following format:

Mozilla/2.0 (compatible; MSIE Version; Operating System)
For example, Internet Explorer 3.02 running on Windows 95 had this user-agent string:
Mozilla/2.0 (compatible; MSIE 3.02; Windows 95)

Since most browser sniffers at the time looked only at the product-name part of the user-agent string, IE
successfully identified itself as Mozilla, the same as Netscape Navigator. This move caused some
controversy since it broke the convention of browser identification. Further, the true browser version is
buried in the middle of the string.

Another interesting part of this string is the identification of Mozilla 2.0 instead of 3.0. Since 3.0 was the
dominant browser at the time, it would have made more sense to use that. The actual reason remains a
mystery — it was more likely an oversight than anything else.

Netscape Communicator 4 and Internet Explorer 4-8

In August of 1997, Netscape Communicator 4 was released (the name was changed from Navigator to
Communicator for this release). Netscape opted to keep the following user-agent string format from
version 3:

Mozilla/Version (Platform; Encryption [; OS-or-CPU description])

234

Chapter 9: Client Detection

With version 4 on a Windows 98 machine, the user-agent string looked like this:
Mozilla/4.0 (Win98; I)

As Netscape released patches and fixes for its browser, the version was incremented accordingly, as the
following user-agent string from version 4.79 indicates:

Mozilla/4.79 (Win98; I)

When Microsoft released Internet Explorer 4, the user-agent string featured an updated version, taking
the following format:

Mozilla/4.0 (compatible; MSIE Version; Operating System)
For example, IE 4 running on Windows 98 returned the following user-agent string:

Mozilla/4.0 (compatible; MSIE 4.0; Windows 98)
With this change, the reported Mozilla version and the actual version of IE were synchronized, allowing
for easy identification of these fourth-generation browsers. Unfortunately, the synchronization ended

there. As soon as Internet Explorer 4.5 (released only for Macs), the Mozilla version remained 4 while the
IE version changed as follows:

Mozilla/4.0 (compatible; MSIE 4.5; Mac_PowerPC)

In IE versions through version 8 (the most recent version at the time of this writing), the following
pattern has remained:

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1)

It is unclear if the Mozilla version will ever change as IE continues to develop, because it now has little
meaning (it can’t be used reliably to determine anything).

Gecko

The Gecko rendering engine is at the heart of Firefox. When Gecko was first developed, it was as part
of the generic Mozilla browser that was to become Netscape 6. A specification was written for Netscape
6, indicating how the user-agent string should be constructed in all future versions. The new format
represented a fairly drastic departure from its relatively simple user-agent string used through version
4.x. The format is as follows:

Mozilla/MozillaVersion (Platform; Encryption; OS-or-CPU; Language; PrereleaseVersion)
Gecko/GeckoVersion ApplicationProduct/ApplicationProductVersion

Alot of thought went into this remarkably complex user-agent string. The following table lists the
meaning of each section.

235

Chapter 9: Client Detection

String Required? Description
MozillaVersion Yes The version of Mozilla.
Platform Yes The platform on which the browser is running. Possible

values include Windows, Mac, and X11 (for Unix
X-windows systems).

Encryption Yes Encryption capabilities: U for 128-bit, I for 40-bit, or N for
no encryption.

OS-or-CPU Yes The operating system the browser is being run on or the
processor type of the computer running the browser. If
the platform is Windows, this is the version of Windows
(such as WinNT, Win95, and so on). If the platform is
Macintosh, then this is the CPU (either 68k, PPC for
PowerPC, or Maclntel). If the Platform is X11, this is the
Unix operating-system name as obtained by the Unix
command uname -sm.

Language Yes The language that the browser was created for use in.

Prerelease Version No Originally intended as the prerelease version number for
Mozilla, it now indicates the version number of the Gecko
rendering engine.

GeckoVersion Yes The version of the Gecko rendering engine represented
by a date in the format yyyymmdd.

ApplicationProduct No The name of the product using Gecko. This may be
Netscape, Firefox, and so on.

ApplicationProduct Version No The version of the ApplicationProduct; this is separate from
the MozillaVersion and the GeckoVersion.

To better understand the Gecko user-agent string format, consider the following user-agent strings taken
from various Gecko-based browsers.

Netscape 6.21 on Windows XP:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:0.9.4) Gecko/20011128 Netscape6/6.2.1

SeaMonkey 1.1a on Linux:

Mozilla/5.0 (X11; U; Linux 1686; en-US; rv:1.8.1b2) Gecko/20060823 SeaMonkey/l.la

Firefox 2.0.0.11 on Windows XP:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.11) Gecko/20071127 Firefox/2.0.0.11

Camino 1.5.1 on Mac OS X:

Mozilla/5.0 (Macintosh; U; Intel Mac 0OS X; en; rv:1.8.1.6) Gecko/20070809 Camino/1.5.1

236

Chapter 9: Client Detection

All of these user-agent strings indicate Gecko-based browsers (albeit using different versions).
Oftentimes, looking for a particular browser is not as important as understanding whether it’s Gecko-
based. The Mozilla version hasn’t changed from 5.0 since the first Gecko-based browser was released,
and it likely won’t change again.

WebKit

In 2003, Apple announced that it would release its own web browser, called Safari. The Safari rendering
engine, called WebKit, began as a fork of the KHTML rendering engine used in the Linux-based
Konqueror web browser. A couple of years later, WebKit was split off into its own open-source project,
focusing on development of the rendering engine.

Developers of this new browser and rendering engine faced a problem similar to that faced by Internet
Explorer 3.0: how do you ensure that the browser isn’t locked out of popular sites? The answer is, put
enough information into the user-agent string to convince web sites that the browser is compatible with
another popular browser. This led to a user-agent string with the following format:

Mozilla/5.0 (Platform; Encryption; OS-or-CPU; Language) AppleWebKit/
AppleWebKitVersion (KHTML, like Gecko) Safari/SafariVersion

Here’s an example:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/124 (KHTML, like Gecko)
Safari/125.1

As you can see, this is another long user-agent string. It takes into account not only the version of the
Apple WebKit but also the Safari version. A point of contention over whether to identify the browser as
Mozilla was resolved rather quickly for compatibility reasons. Now, all WebKit-based browsers identify
themselves as Mozilla 5.0, the same as all Gecko-based browsers. The Safari version has typically been
the build number of the browser, not necessarily a representation of the release version number. So
although Safari 1.25 has the number 125.1 in the user-agent string, there may not always be a one-to-one
match.

The most interesting and controversial part of this user-agent string is the addition of the string

" (KHTML, like Gecko) " in a pre-1.0 version of Safari. Apple got a lot of pushback from developers
who saw this as a blatant attempt to trick clients and servers into thinking Safari was actually Gecko (as
if adding Mozilla/5.0 wasn’t enough). Apple’s response was similar to Microsoft’s when the IE user-
agent string came under fire: Safari is compatible with Mozilla, and web sites shouldn’t block out Safari
users because they appear to be using an unsupported browser.

Safari’s user-agent string was augmented slightly when version 3 was released. The following version
token is now used to identify the actual version of Safari being used:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/522.15.5 (KHTML, like
Gecko) Version/3.0.3 Safari/522.15.5

Note that this change was made only to Safari, not to WebKit, so other WebKit-based browsers may not

have this change. Generally speaking, as with Gecko, it’s typical to determine that a browser is WebKit-
based rather than trying to identify Safari specifically.

237

Chapter 9: Client Detection

Konqueror
Konqueror, the browser bundled with the KDE Linux desktop environment, is based on the KHTML
open-source rendering engine. Though available only on Linux, Konqueror has an active user base. For
optimal compatibility, Konqueror opted to format its user-agent string after IE as follows:

Mozilla/5.0 (compatible; Kongqueror/Version; OS-or-CPU)

However, Konqueror 3.2 introduced a change to coincide with changes to the WebKit user-agent string,
identifying itself as KHTML as follows:

Mozilla/5.0 (compatible; Konqueror/Version; OS-or-CPU) KHTML/KHTMLVersion (like Gecko)
Here’s an example:
Mozilla/5.0 (compatible; Kongqueror/3.5; SunOS) KHTML/3.5.0 (like Gecko)

The version numbers for Konqueror and KHTML tend to coincide or be within a subpoint difference,
such as Konquerer 3.5 using KHTML 3.5.1.

Chrome

Google’s Chrome web browser uses WebKit as its rendering engine but uses a different JavaScript
engine. For Chrome’s initial beta release, version 0.2, the user-agent string carries along all of the
information from WebKit as well as an extra section for the Chrome version. The format is as follows:

Mozilla/5.0 (Platform; Encryption; 0OS-or-CPU; Language) AppleWebKit/
AppleWebKitVersion (KHTML, like Gecko) Chrome/ChromeVersion Safari/SafariVersion

The full user-agent string for Chrome 0.2 is as follows:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/525.13 (KHTML, like Gecko)
Chrome/0.2.149.29 Safari/525.13

It’s likely that the WebKit version and Safari version will always be synchronized going forward, though
this is not guaranteed.

Opera
One of the most controversial web browsers, as far as user-agent strings are concerned, is Opera. The
default user-agent string for Opera is the most logical of all modern browsers, correctly identifying itself
and its version. Prior to version 8.0, the Opera user-agent string was in the following format:
Opera/Version (0S-or-CPU; Encryption) [Languagel]

Using Opera 7.54 on a Windows XP computer, the user-agent string is as follows:

Opera/7.54 (Windows NT 5.1; U) [en]

238

Chapter 9: Client Detection

With the release of Opera 8, the language part of the user-agent string was moved inside of the
parentheses to better match other browsers, as follows:

Opera/Version (0S-or-CPU; Encryption; Language)
Opera 8 on Windows XP yields the following user-agent string:
Opera/8.0 (Windows NT 5.1; U; en)

By default, Opera returns a user-agent string in this simple format. Currently it is the only one of the
four major browsers to use the product name and version to fully and completely identify itself. As with
other browsers, however, Opera found problems with using its own user-agent string. Even though it’s
technically correct, there is a lot of browser-sniffing code on the Internet that is geared toward user-agent
strings reporting the Mozilla product name. There is also a fair amount of code looking specifically for IE
or Gecko. Instead of confusing sniffers by changing its own user-agent string, Opera identifies itself as a
different browser completely by changing its own user-agent string.

As of Opera 9, there are two ways to change the user-agent string. One way is to identify it as another
browser, either Firefox or IE. When using this option, the user-agent string changes to look just like the
corresponding one for Firefox or IE, with the addition of the string "Opera" and Opera’s version
number at the end. Here’s an example:

Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0 Opera 9.50

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; en) Opera 9.50

The first string identifies Opera 9.5 as Firefox 2 while maintaining the Opera version information. The
second string identifies Opera 9.5 as Internet Explorer 6 and includes the Opera version information.
Although these user-agent strings pass most tests for Firefox and IE, the possibility of identifying Opera
is open.

Another option for identifying the browser is to mask it as either Firefox or IE. When masking

the browser’s identity, the user-agent strings are exactly the same as would be returned from the

other browsers — the string "Opera" does not appear, nor does any Opera version information. There is
literally no way to distinguish Opera from the other browsers when identity masking is used. Further
complicating the issue is Opera’s tendency to set site-specific user-agent strings without notifying the
user. For instance, navigating to the My Yahoo! site (http://my.yahoo.com) automatically causes
Opera to mask itself as Firefox. This makes identifying Opera by user-agent string very difficult.

Before version 7, Opera could interpret the meaning of Windows operating-system
strings. For example, Windows NT 5.1 actually means Windows XP, so in Opera 6,
the user-agent string included Windows XP instead of Windows NT 5.1. In an effort
to be more compatible with other browsers, version 7 started including the officially
reported operating-system version instead of an interpreted one.

239

Chapter 9: Client Detection

Working with User-Agent Detection

Using the user-agent string to detect specific browsers can get quite complicated due to the history and
usage of user-agent strings in modern browsers. It’s often necessary to first determine how specific you
need the browser information to be. Typically, knowing the rendering engine and a minimum version is
enough to determine the correct course of action. For instance, the following is not recommended:

if (isIE6 || isIE7) { //avoid!!!
//code
}

In this example, code is executed if the browser is IE version 6 or 7. This code is very fragile because it
relies on specific browser versions to determine what to do. What should happen for version 8? Any
time a new version of IE is released, this code would have to be updated. However, using relative
version numbers as shown in the following example avoids this problem:

if (ieVer >= 6){
//code

This rewritten example checks to see if the version of IE is at least 6 to determine the correct course
of action. Doing so ensures that this code will continue functioning appropriately in the future. The
browser-detection script focuses on this methodology for identifying browsers.

Identifying the Rendering Engine

As mentioned previously, the exact name and version of a browser isn’t as important as the rendering
engine being used. If Firefox, Camino, and Netscape all use the same version of Gecko, their capabilities
will be the same. Likewise, any browser using the same version of WebKit that Safari 3 uses will likely
have the same capabilities. Therefore, this script focuses on detecting the five major rendering engines:
IE, Gecko, WebKit, KHTML, and Opera.

This script uses the module-augmentation pattern to encapsulate the detection script and avoid adding
unnecessary global variables. The basic code structure is as follows:

var client = function(){
var engine = {

//rendering engines

ie: 0,

gecko: 0,
webkit: 0,
khtml: 0,
opera: 0,

//specific version
ver: null

Y

//detection of rendering engines/platforms/devices here

240

Chapter 9: Client Detection

return
engine: engine

Y
YO

In this code, a global variable named client is declared to hold the information. Within the anonymous
function is a local variable named engine that contains an object literal with some default settings.

Each rendering engine is represented by a property that is set to 0. If a particular engine is detected,

the version of that engine will be placed into the corresponding property as a floating-point value. The
full version of the rendering engine (a string) is placed into the ver property. This setup allows code
such as the following:

if (client.engine.ie) { //if it's IE, client.ie is greater than 0
//IE-specific code
} else if (client.engine.gecko > 1.5){
if (client.engine.ver == "1.8.1")({
//do something specific to this version

}

Whenever a rendering engine is detected, its property on client.engine gets set to a number greater
than 0, which converts to a Boolean true. This allows a property to be used with an if statement to
determine the rendering engine being used even if the specific version isn’t necessary. Since each
property contains a floating-point value, it’s possible that some version information may be lost. For
instance, the string "1.8.1" becomes the number 1.8 when passed into parseFloat (). The ver
property assures that the full version is available if necessary.

To identify the correct rendering engine, it’s important to test in the correct order. Testing out of order
may result in incorrect results due to the user-agent inconsistencies. For this reason, the first step is to
identify Opera, since its user-agent string may completely mimic other browsers. Opera’s user-agent
string cannot be trusted since it won't, in all cases, identify itself as Opera.

To identify Opera, it’s necessary to look for the window. opera object. This object is present in all
versions of Opera 5 and later, and is used to identify information about the browser and to interact
directly with the browser. In versions later than 7.6, a method called version () returns the

browser version number as a string, which is the best way to determine the Opera version number.
Earlier versions may be detected using the user-agent string, since identity masking wasn’t supported.
However, since Opera’s most recent version at the end of 2007 was 9.5, it’s unlikely that anyone is using
a version older than 7.6. The first step in the rendering engine’s detection code is as follows:

if (window.opera) {
engine.ver = window.opera.version() ;
engine.opera = parseFloat(client.ver);
}

The string representation of the version is stored in engine.ver, and the floating-point representation is
stored in engine. opera. If the browser is Opera, the test for window. opera will return true.

Otherwise, it’s time to detect another browser.

The next logical rendering engine to detect is WebKit. Since WebKit’s user-agent string contains "Gecko"
and "KHTML", incorrect results could be returned if you were to check for those rendering engines first.

241

Chapter 9: Client Detection

WebKit’s user-agent string, however, is the only one to contain the string "AppleWebKit", so it’s the
most logical one to check for. The following is an example of how to do this:

var ua = navigator.userAgent;

if (window.opera) {
engine.ver = window.opera.version();
engine.opera = parseFloat(client.ver);
} else if (/AppleWebKit\/ (\S+)/.test(ua)) {
engine.ver = RegExp["S$1"];
engine.webkit = parseFloat(client.ver) ;

}

This code begins by storing the user-agent string in a variable called ua. A regular expression tests for
the presence of "ApplewWebKit" in the user-agent string and uses a capturing group around the version
number. Since the actual version number may contain a mixture of numbers, decimal points, and letters,
the non—-white-space special character (\s) is used. The separator between the version number and the
next part of the user-agent string is a space, so this pattern ensures all of the versions will be captured.
The test () method runs the regular expression against the user-agent string. If it returns true, then the
captured version number is stored in engine.ver and the floating-point representation is stored in
engine.webkit. WebKit versions correspond to Safari versions as detailed in the following table.

Safari Version Minimum WebKit Version
1.0 through 1.0.2 85.7
1.0.3 85.8.2
1.1 through 1.1.1 100
1.2.2 125.2
1.2.3 125.4
1.24 125.5.5
1.3 312.1
1.3.1 312.5
1.3.2 312.8
2.0 412
2.0.1 412.7
2.0.2 416.11
2.0.3 417.9
2.04 418.8
3.04 523.10
3.1 525

242

Chapter 9: Client Detection

Sometimes Safari versions don’t match up exactly to WebKit versions and may be a subpoint off. The
preceding table indicates the most-likely WebKit versions but is not exact.

The next rendering engine to test for is KHTML. Once again, this user-agent string contains "Gecko", so
you cannot accurately detect a Gecko-based browser before first ruling out KHTML. The KHTML
version is included in the user-agent string in a format similar to WebKit, so a similar regular expression
is used. Also, since Konqueror 3.1 and earlier don’t include the KHTML version specifically, the
Konquerer version is used instead. Here’s an example:

var ua = navigator.userAgent;

if (window.opera) {
engine.ver = window.opera.version();
engine.opera = parseFloat(client.ver);
} else if (/AppleWebKit\/(\S+)/.test(ua)) {
engine.ver = RegExp["$1"];
engine.webkit = parseFloat (client.ver) ;
} else if (/KHTML\/(\S+)/.test(ua) || /Kongueror\/([";]+)/.test(ua)){
engine.ver = RegExp["$1"];
engine.khtml = parseFloat(client.ver);

}

Once again, since the KHTML version number is separated from the next token by a space, the non-
white-space character is used to grab all of the characters in the version. Then the string version is stored
in engine.ver, and the floating-point version is stored in engine. khtml. If KHTML isn’t in the user-
agent string, then the match is against Konqueror, followed by a slash, followed by all characters that
aren’t a semicolon.

If both WebKit and KHTML have been ruled out, it is safe to check for Gecko. The actual Gecko version
does not appear after the string "Gecko" in the user-agent; instead, it appears after the string "rv: .
This requires a more complicated regular expression than the previous tests, as you can see in the
following example:

var ua = navigator.userAgent;

if (window.opera) {
engine.ver = window.opera.version();
engine.opera = parseFloat(client.ver);
} else if (/AppleWebKit\/ (\S+)/.test(ua)){
engine.ver = RegExp["$1"];
engine.webkit = parseFloat (client.ver);
} else if (/KHTML\/ (\S+)/.test(ua)) {
engine.ver = RegExp["$1"];
engine.khtml = parseFloat(client.ver);
} else if (/rv:([”\)]1+)\) Gecko\/\d{8}/.test(ua))
engine.ver = RegExp["$1"];
engine.gecko = parseFloat(client.ver);

243

Chapter 9: Client Detection

The Gecko version number appears between "rv: " and a closing parenthesis, so to extract the version
number, the regular expression looks for all characters that are not a closing parenthesis. The regular
expression also looks for the string "Gecko/ " followed by eight numbers. If the pattern matches, then
the version number is extracted and stored in the appropriate properties. Gecko version numbers are
related to Firefox versions as detailed in the following table.

Firefox Version Minimum Gecko Version
1.0 1.75

1.5 1.8

2.0 1.8.1

3.0 1.9

As with Safari and WebKit, matches between Firefox and Gecko version numbers are not exact.

IE is the last rendering engine to detect. The version number is found following "MSIE" and before a
semicolon, so the regular expression is fairly simple, as you can see in the following example:

var ua = navigator.userAgent;

if (window.opera) {
engine.ver = window.opera.version() ;
engine.opera = parseFloat(client.ver);
} else if (/AppleWebKit\/ (\S+)/.test(ua)) {
engine.ver = RegExp["$1"];
engine.webkit = parseFloat(client.ver);
} else if (/KHTML\/(\S+)/.test(ua)){
engine.ver = RegExp["$1"];
engine.khtml = parseFloat(client.ver);
} else if (/xrv:(["\)]1+)\) Gecko\/\d{8}/.test(ua)) {
engine.ver = RegExp["$1"];
engine.gecko = parseFloat (client.ver);
} else if (/MSIE ([";1+)/.test(ua)){
engine.ver = RegExp["$1"];
engine.ie = parseFloat(client.ver) ;

}

The last part of this rendering engine’s detection script uses a negation class in the regular expression to
get all characters that aren’t a semicolon. Even though IE typically keeps version numbers as standard
floating-point values, that won’t necessarily always be so. The negation class [*;] is used to allow for
multiple decimal points and possibly letters.

244

Chapter 9: Client Detection

Identifying the Browser

In most cases, identifying the browser’s rendering engine is specific enough to determine a correct
course of action. However, the rendering engine alone doesn’t indicate that JavaScript functionality is
present. Apple’s Safari browser and Google’s Chrome browser both use WebKit as their rendering
engine but use different JavaScript engines. Both browsers would return a value for client .webkit,
but that may not be specific enough. For these two browsers, it’s helpful to add new properties to the
client object as shown in the following example:

var client = function() {
var engine = {

//rendering engines

ie: 0,

gecko: 0,
webkit: 0,
khtml: 0,
opera: 0,

//specific version
ver: null

var browser = {

//browsers
ie: 0,
firefox: 0,
safari: 0,
kong: O,
opera: 0,
chrome: 0,
safari: 0,
//specific version
ver: null

¥
//detection of rendering engines/platforms/devices here
return {

engine: engine,

browser: browser

245

Chapter 9: Client Detection

This code adds a private variable called browser that contains properties for each of the major browsers.
As with the engine variable, these properties remain zero unless the browser is being used, in which case
the floating-point version is stored in the property. Also, the ver property contains the full string version
of the browser in case it’s necessary. As you can see in the following example, the detection code for
browsers is intermixed with the rendering-engine-detection code due to the tight coupling between most
browsers and their rendering engines:

//detect rendering engines/browsers
var ua = navigator.userAgent;
if (window.opera) {
engine.ver = browser.ver = window.opera.version() ;
engine.opera = browser.opera = parseFloat (engine.ver) ;
} else if (/AppleWebKit\/ (\S+)/.test(ua)) {
engine.ver = RegExp["$1"];
engine.webkit = parseFloat (engine.ver);

//figure out if it's Chrome or Safari
if (/Chrome\/ (\S+)/.test(ua)) {
browser.ver = RegExp["S$1"];
browser.chrome = parseFloat (browser.ver) ;
} else if (/Version\/(\S+)/.test(ua)) {
browser.ver = RegExp["S$1"];
browser.safari = parseFloat (browser.ver) ;
} else {
//approximate version
var safariVersion = 1;
if (engine.webkit < 100) {
safariVersion = 1;
} else if (engine.webkit < 312){
safariVersion = 1.2;
} else if (engine.webkit < 412){
safariVersion = 1.3;
} else {
safariVersion = 2;

}
browser.safari = browser.ver = safariVersion;
}
} else if (/KHTML\/(\S+)/.test(ua) || /Kongueror\/([";]+)/.test(ua)){

engine.ver = browser.ver = RegExp["$1"];

engine.khtml = browser.kong = parseFloat (engine.ver) ;
} else if (/rv:(["\)]1+)\) Gecko\/\d{8}/.test(ua)){

engine.ver = RegExp["$1"];

engine.gecko = parseFloat (engine.ver);

//determine if it's Firefox
if (/Firefox\/(\S+)/.test (ua)) {
browser.ver = RegExp["S$1"];
browser.firefox = parseFloat (browser.ver) ;
}
} else if (/MSIE (["*;]+)/.test(ua)){
engine.ver = browser.ver = RegExp["$1"];
engine.ie = browser.ie = parseFloat (engine.ver) ;

246

Chapter 9: Client Detection

For Opera and IE, the values in the browser object are equal to those in the engine object. For
Konqueror, the browser . kong and browser . ver properties are equivalent to the engine.khtml and
engine.ver properties, respectively.

To detect Chrome and Safari, additional i f statements are added into the engine-detection code. The
version number for Chrome is extracted by looking for the string "Chrome/" and then taking the
numbers after that. Safari detection is done by looking for the "Version/" string and taking the number
after that. Since this works only for Safari versions 3 and higher, there’s some fallback logic to map
WebKit version numbers to the approximate Safari version numbers (see the table in the previous
section).

For the Firefox version, the string "Firefox/" is found and the numbers after it are extracted as the
version number. This happens only if the detected rendering engine is Gecko.

Using this code, you can now write logic such as the following:

if (client.engine.webkit) { //if it's WebKit
if (client.browser.chrome) {
//do something for Chrome
} else if (client.browser.safari) {
//do something for Safari
}
} else if (client.engine.gecko) {
if (client.browser.firefox) {
//do something for Firefox
} else {
//do something for other Gecko browsers

}

Identifying the Platform

In many cases, simply knowing the rendering engine is enough to get your code working. In some
circumstances, however, the platform is of particular interest. Browsers that are available cross-platform
(such as Safari, Firefox, and Opera) may have different issues on different platforms. The three major
platforms are Windows, Mac, and Unix (including flavors of Linux). To allow for detection of these
platforms, a new object is added to client as follows:

var client = function() {
var engine = {

//rendering engines

ie: 0,

gecko: 0,
webkit: 0,
khtml: 0,
opera: 0,

//specific version
ver: null

(continued)

247

Chapter 9: Client Detection

(continued)

var browser = {

/ /browsers
ie: 0,

firefox: 0,
safari: 0,
kong: O,
opera: 0,
chrome: 0,
safari: 0

’

//specific version
ver: null

var system = {
win: false,
mac: false,
x11: false
¥

//detection of rendering engines/platforms/devices here

return {
engine: engine,
browser: browser,

system: system

YO s

This code introduces a new system variable that has three properties. The win property indicates if the
platform is Windows, mac indicates Mac, and x11 indicates Unix. Unlike rendering engines, platform
information is typically very limited, without access to operating systems or versions. Of these three
platforms, browsers regularly report only Windows versions. For this reason, each of these properties is
represented initially by a Boolean false instead of a number (as with the rendering-engine properties).

To determine the platform, it’s much easier to look at navigator.platform than to look at the user-
agent string, which may represent platform information differently across browsers. The possible values
for navigator.platformare "Win32", "Win64", "MacPPC", "MacIntel", "X11",and "Linux i686",
which are consistent across browsers. The platform-detection code is very straightforward, as you can
see in the following example:

var p = navigator.platform;

system.win = p.indexOf ("Win") == 0;
system.mac = p.indexOf ("Mac") == 0;
system.x11l = (p.indexOf("X11") == 0) || (p.indexOf("Linux") == 0);

This code uses the index0f () method to look at the beginning of the platform string. Even though
"Win32" is currently the only Windows string supported, Windows is moving toward a 64-bit
architecture that may mean the introduction of a "winé64" platform. To prepare for this, the platform-
detection code simply looks for the string "win" at the beginning of the platform string. Testing for a

248

Chapter 9: Client Detection

Mac platform is done in the same way to accommodate both "MacPPC" and "MacIntel". The test for
Unix looks for both "x11" and "Linux" at the beginning of the platform string to future-proof this code
against other variants.

Earlier versions of Gecko returned "windows" for all Windows platforms and "Macintosh" for all
Mac platforms. This occurred prior to the release of Firefox 1, which stabilized navigator.platform
values.

Identifying Windows Operating Systems

If the platform is Windows, it’s possible to get specific operating-system information from the user-agent
string. Prior to Windows XP, there were two versions of Windows: one for home use and one for
business use. The version for home use was simply called Windows and had specific versions of 95, 98,
and ME. The business version was called Windows NT and eventually was marketed as Windows 2000.
Windows XP represented the convergence of these two product lines into a common code base evolved
from Windows NT. Windows Vista then was built upon Windows XP.

This information is important because of the way a Windows operating system is represented in the
user-agent string. The following table shows the different strings used to represent the various Windows
operating systems across browsers.

Windows
Version IE 4+ Gecko Opera<?7 Opera 7+ WebKit
95 "Windows 95" "Win95" "Windows 95" "Windows 95" n/a
98 "Windows 98" "Win98" "Windows 98" "Windows 98" n/a
NT 4.0 "Windows NT" "WinNT4.0" "Windows NT "Windows NT n/a
4.0" 4.0"
2000 "Windows NT "Windows "Windows "Windows NT n/a
5.0" NT 5.0" 2000" 5.0"
ME "Win 9x "Win 9x "Windows ME" "Win 9x n/a
4.90" 4.90" 4.90"
XP "Windows NT "Windows "Windows XP" "Windows NT "Windows NT
5.1" NT 5.1" 5.1 5.1"
Vista "Windows NT "Windows n/a "Windows NT "Windows NT
6.0" NT 6.0" 6.0" 6.0"

Due to the various ways the Windows operating system is represented in the user-agent string, detection
isn’t completely straightforward. The good news is that since Windows 2000, the string representation
has remained mostly the same, with only the version number changing. To detect the different Windows
operating systems, a regular expression is necessary. Keep in mind that Opera versions prior to 7 are no
longer in significant use, so there’s no need to prepare for them.

249

Chapter 9: Client Detection

The first step is to match the strings for Windows 95 and Windows 98. The only difference between the
strings returned by Gecko and the other browsers is the absence of "dows" and a space between "Win"
and the version number. This is a fairly easy regular expression, as you can see here:

/Win(?:dows)?([~dol{2})/

Using this regular expression, the capturing group returns the operating-system version. Since this may
be any two-character code (such as 95, 98, 9x, NT, ME, or XP) two non-white-space characters are used.

The Gecko representation for Windows NT adds a "4.0" at the end. Instead of looking for that exact
string, it makes more sense to look for a decimal number like this:

/Win(?:dows)?(["do]{2}) (\d+\.\d+)?/

This regular expression introduces a second capturing group to get the NT version number. Since that
number won't be there for Windows 95 or 98, it must be optional. The only difference between this
pattern and the Opera representation of Windows NT is the space between "NT" and "4.0", which can
easily be added as follows:

/Win(?:dows)? (["do]{2})\s? (\d+\.\d+)?/

With these changes, the regular expression will also successfully match the strings for Windows ME,
Windows XP, and Windows Vista. The first capturing group will capture 95, 98, 9x, NT, ME, or XP. The
second capturing group is used only for Windows ME and all Windows NT derivatives. This
information can be used to assign specific operating-system information to the system.win property, as
in the following example:

if (system.win) {
if (/Win(?:dows)?(["do]l{2})\s?(\d+\.\d+)?/.test(ua)){
if (RegExp["$1"] == "NT"){
switch(RegExp["$2"]) {
case "5.0":

system.win = "2000";
break;
case "5.1":
system.win = "XP";
break;
case "6.0":
system.win = "Vista";
break;
default:
system.win = "NT";
break;
}
} else if (RegExp["$1"] == "9x"){
system.win = "ME";

} else {
system.win = RegExp["$1"];
}

250

Chapter 9: Client Detection

If system.win is true, then the regular expression is used to extract specific information from the user-
agent string. It’s possible that some future version of Windows won’t be detectable via this method, so
the first step is to check if the pattern is matched in the user-agent string. When the pattern matches, the
first capturing group will contain one of the following: "95", "98", "9x", or "NT". If the value is "NT",
then system.win is set to a specific string for the operating system in question; if the value is "9x", then
system.win is set to "ME"; otherwise the captured value is assigned directly to system.win. This setup
allows code such as the following;:

if (client.system.win) {

if (client.system.win == "XP") {
//report XP
} else if (client.system.win == "Vista") {

//report Vista
}

Since a nonempty string converts to the Boolean value of true, the client.win property can be used as
a Boolean in an if statement. When additional information about the operating system is necessary, the
string value can be used.

Identifying Mobile Devices

In 2006-2007, the use of web browsers on mobile devices exploded. There are mobile versions of all four
major browsers, and versions that run on other devices. Two of the most popular platforms, the iPhone
and the iPod Touch, have the following user-agent strings, respectively:

Mozilla/5.0 (iPhone; U; CPU like Mac 0OS X; en) AppleWebKit/420+ (KHTML, like Gecko)
Version/3.0 Mobile/1A543a Safari/419.3

Mozilla/5.0 (iPod; U; CPU like Mac OS X; en) AppleWebKit/420+ (KHTML, like Gecko)
Version/3.0 Mobile/1C28 Safari/419.3

As should be apparent from the user-agent strings, both the iPhone and iPod Touch use Safari (WebKit).
Although the platform isn’t a true Mac, the user-agent indicates "CPU like Mac 0OS X" to ensure that
platform detection works appropriately. Given these user-agent strings, it’s simple to detect these
devices. The first step is to add properties for all of the mobile devices to detect for, as in the following

example:
var client = function() {
var engine = {

//rendering engines

ie: 0,

gecko: 0,
webkit: 0,
khtml: 0,
opera: 0,

//specific version
ver: null
(continued)

251

Chapter 9: Client Detection

(continued)
}i

var browser = {

/ /browsers
ie: 0,
firefox: 0,
safari: 0,
kong: O,
opera: 0,
chrome: 0,
safari: 0,
//specific version
ver: null

var system = {
win: false,
mac: false,
x11: false,

//mobile devices
iphone: false,
ipod: false,
nokiaN: false,
winMobile: false,
macMobile: false

Y
//detection of rendering engines/platforms/devices here

return {
engine: engine,
browser: browser,
system: system

}i
YO

Next, simple detection for the strings "iPhone" and "iPod" is used as follows to set the values of the
related properties accordingly:

system.iphone = ua.indexOf ("iPhone") > -1;
system.ipod = ua.indexOf ("iPod") > -1;

system.macMobile = (system.iphone || system.ipod);

Nokia Nseries mobile phones also use WebKit. The user-agent string is very similar to other
WebKit-based phones, such as the following:

Mozilla/5.0 (Symbian0S/9.2; U; Series60/3.1 NokiaN95/11.0.026; Profile MIDP-2.0
Configuration/CLDC-1.1) AppleWebKit/413 (KHTML, like Gecko) Safari/413

252

Chapter 9: Client Detection

Note that even though the Nokia Nseries phones report "Safari" in the user-agent string, the browser
is not actually Safari though it is WebKit-based. A simple check for "NokiaN" in the user-agent string, as
shown here, is sufficient to detect this series of phones:

system.nokiaN = ua.indexOf ("NokiaN") > -1;

With this device information, it’s possible to figure out how the user is accessing a page with WebKit by
using code such as this:

if (client.engine.webkit) {
if (client.system.macMobile) {
//mac mobile stuff
} else if (client.nokiaN) {
//nokia stuff
}
}

The last major mobile-device platform is Windows Mobile (also called Windows CE), which is available
on both Pocket PCs and smartphones. Since these devices are technically a Windows platform, the
Windows platform and operating system will return correct values. For Windows Mobile 5.0 and earlier,
the user-agent strings for these two devices were very similar, such as the following;:

Mozilla/4.0 (compatible; MSIE 4.01; Windows CE; PPC; 240x320)
Mozilla/4.0 (compatible; MSIE 4.01; Windows CE; Smartphone; 176x220)

The first of these is mobile Internet Explorer 4.01 on the Pocket PC, and the second one is the same
browser on a smartphone. When the Windows operating system detection script is run against either of
these strings, client.win gets filled with "CE", so detection for Windows Mobile can be done using this
value:

system.winMobile = (client.win == "CE");

It’s not advisable to test for "PPC" or "Smartphone" in the string, because these tokens have been
removed in browsers on Windows Mobile later than 5.0. Oftentimes, simply knowing that the device is
using Windows Mobile is enough.

Identifying Game Systems

Another new area in which web browsers have become increasingly popular is on video game systems.
Both the Nintendo Wii and Playstation 3 have web browsers either built in or available for download.
The Wii browser is actually a custom version of Opera, designed specifically for use with the Wii
remote. The Playstation browser is custom and is not based on any of the rendering engines previously
mentioned. The user-agent strings for these browsers are as follows:

Opera/9.10 (Nintendo Wii;U; ; 1621; en)
Mozilla/5.0 (PLAYSTATION 3; 2.00)

The first user-agent string is Opera running on the Wii. It stays true to the original Opera user-agent

string (keep in mind that Opera on the Wii does not have identity-masking capabilities). The
second string is from a Playstation 3, which reports itself as Mozilla 5.0 for compatibility but doesn’t give

253

Chapter 9: Client Detection

much information. Oddly, it uses all uppercase letters for the device name, prompting concerns that
future versions may change the case.

Before detecting these devices, you must add appropriate properties to the client.system object
as follows:

var client = function(){
var engine = {

//rendering engines

ie: 0,

gecko: 0,
webkit: 0,
khtml: 0,
opera: 0,

//specific version
ver: null

var browser = {

//browsers
ie: 0,
firefox: 0,
safari: 0,
kong: O,
opera: 0,
chrome: 0,
safari: 0,
//specific version
ver: null

var system = {
win: false,
mac: false,
x11: false,

//mobile devices
iphone: false,
ipod: false,
nokiaN: false,
winMobile: false,
macMobile: false,

//game systems

wii: false,
ps: false,

254

Chapter 9: Client Detection

//detection of rendering engines/platforms/devices here

return {

Y

YO

The following code detects each of these game systems:

system.wii = ua.indexOf ("Wii")
system.ps = /playstation/i.test(ua);

engine: engine,
browser: browser,
system: system

For the Wii, a simple test for the string "wii" is enough. The rest of the code will pick up that the
browser is Opera and return the correct version number in client.browser.opera. For the
Playstation, a regular expression is used to test against the user-agent string in a case-insensitive way.

The Complete Script

The complete user-agent detection script, including rendering engines, platforms, Windows operating

systems, mobile devices, and game systems is as follows:

var client = function() {

//rendering engines

var engine = {
ie: 0,
gecko: 0,
webkit: 0,
khtml: 0,
opera: 0,

Y

//complete version
ver: null

/ /browsers
var browser = {

//browsers
ie: 0,
firefox: 0,
safari: 0,
kong: O,
opera: 0,
chrome: 0,
safari: 0,
//specific version
ver: null

(continued)

255

Chapter 9: Client Detection

(continued)

256

//platform/device/0S
var system = {

win:
mac:

x11

false,
false,
: false,

//mobile devices
iphone: false,
ipod: false,
nokiaN: false,
winMobile: false,
macMobile: false,

//game systems

wii:

ps:
Y

false,
false

//detect rendering engines/browsers

var ua = navigator.userAgent;

if (window.opera) {
engine.ver = browser.
engine.opera = browser.opera = parseFloat (engine.ver) ;

} else if (/AppleWebKit\/
engine.ver = RegExpl["
engine.webkit = parse

ver = window.opera.version();

(\S+) /.test (ua)) {
$1'1;

Float (engine.ver) ;

//figure out if it's Chrome or Safari

if

(/Chrome\/ (\S+)/.t

est(ua)) {

browser.ver = RegExp["S$1"];

browser.chrome =

} else if (/Version\/

browser.ver = Reg
browser.safari =

} else {

}

//approximate ver
var safariversion

if (engine.webkit
safarivVersion
} else if (engine
safariversion
} else if (engine
safariVersion
} else {
safariversion

}

parseFloat (browser.ver) ;
(\S+) /.test (ua)) {
Exp["$1"];

parseFloat (browser.ver) ;

sion

= 1;

< 100) {

= 1;

.webkit < 312){
=1.2;

.webkit < 412){
=1.3;

= 2;

browser.safari = browser.ver = safariVersion;

} else if (/KHTML\/ (\S+)/
engine.ver = browser.ver = RegExp["$1"];
engine.khtml = browser.kong = parseFloat (engine.ver);
} else if (/rv:(["\)1+)\)

.test(ua) || /Konqueror\/([";]+)/.test(ua)){

Gecko\/\d{8}/.test(ua)){

Chapter 9: Client Detection

RegExp["$1"];
parseFloat (e

engine.ver =
engine.gecko =

//determine if it's Firefox
if (/Firefox\/(\S+)/.test(u
browser.ver = RegExp["$

ngine.ver) ;

a)){
1"1;

browser.firefox = parseFloat (browser.ver) ;

}
} else if (/MSIE ([";]+)/.test(
engine.ver = browser.ver =
engine.ie = browser.ie =

//detect browsers
browser.ie = engine.ie;
browser.opera = engine.opera;

//detect platform
var p = navigator.platform;
system.win = p.indexOf ("Win") =

ua)) {
RegExp["$1"];

parseFloat (engine.ver) ;

system.mac
system.x11 =

p.indexOf ("Mac") =

(p == "x11") ||

0;
0;

(p.indexOf ("Linux")

)

//detect windows operating systems

if (system.win) {
if (/Win(?:dows
if (RegExp["$1"] ==
switch (RegExp["$2"]
case "5.0":
system.win
break;
"5.1":
system.win
break;
"6.0":
system.win
break;
default:
system.win
break;

case

case

}
} else if (RegExp["$1"]

system.win = "ME";
} else {

system.win =

//mobile devices

system. iphone = ua.indexOf ("iPhone")
system.ipod = ua.indexOf ("iPod")
system.nokiaN = ua.indexOf ("NokiaN")

system.winMobile = (system.win

system.macMobile = (system.iphone || system.ipod) ;

)

= "2000";

= "Xp";

= "Vista";

= "NT";

—= "9X") {

RegExp["$1"];

> -1;
> -1;

> -1;
== "CE");

)2 (["do]l {2})\s? (\d+\.\d+)?/.test (ua)) {
I|NTII) {

(continued)

257

Chapter

9: Client Detection

(continued)

YO s

Usage

As ment
Whenev

//gaming systems
system.wii = ua.indexOf ("Wii") > -1;
system.ps = /playstation/i.test(ua);

//return it

return {
engine: engine,
browser: browser,
system: system
Y

ioned previously, user-agent detection is considered the last option for client detection.
er possible, capability detection and/or quirks detection should be used first. User-agent

detection is best used under the following circumstances:

a

If a capability or quirk cannot be accurately detected directly. For example, some browsers
implement functions that are stubs for future functionality. In that case, testing for the existence
of the function doesn’t give you enough information.

If the same browser has different capabilities on different platforms. It may be necessary to
determine which platform is being used.

If you need to know the exact browser for tracking purposes.

Summary

Client detection is one of the most controversial topics in JavaScript. Due to differences in browsers, it is
often necessary to fork code based on the browser’s capabilities. There are several approaches to client
detection, but the following three are used most frequently:

Q

258

Capability detection — Tests for specific browser capabilities before using them. For instance, a
script may check to see if a function exists before calling it. This approach frees the developer
from worrying about specific browser types and versions, letting them simply focusing on
whether the capability exists or not. Capabilities detection cannot accurately detect a specific
browser or version.

Quirks detection — Quirks are essentially bugs in browser implementations, such as WebKit’s
early quirk of returning shadowed properties in a for-in loop. Quirks detection often involves
running a short piece of code to determine if the browser has the particular quirk. Since it is less
efficient than capability detection, quirks detection is used only when a specific quirk may
interfere with the processing of the script. Quirks detection cannot detect a specific browser or
version.

Chapter 9: Client Detection

Q User-agent detection — Identifies the browser by looking at its user-agent string. The user-agent
string contains a great deal of information about the browser, often including the browser,
platform, operating system, and browser version. There is a long history to the development of
the user-agent string, with browser vendors attempting to fool web sites into believing they are
another browser. User-agent detection can be tricky, especially when dealing with Opera’s
ability to mask its user-agent string. Even so, the user-agent string can determine the rendering
engine being used as well as the platform on which it runs, including mobile devices and
gaming systems.

When deciding which client-detection method to use, it’s preferable to use capability detection first. Quirks

detection is the second choice for determining how your code should proceed. User-agent detection is
considered the last choice for client detection, because it is so dependent on the user-agent string.

259

10

The Document Object Model

The Document Object Model (DOM) is an application programming interface (API) for HTML and
XML documents. The DOM represents a document as a hierarchical tree of nodes, allowing
developers to add, remove, and modify individual parts of the page. Evolving out of early
Dynamic HTML (DHTML) innovations from Netscape and Microsoft, the DOM is now a truly
cross-platform, language-independent way of representing and manipulating pages for markup.

DOM Level 1 became a W3C recommendation in October 1998, providing interfaces for basic
document structure and querying. This chapter focuses on the features and uses of DOM Level 1
as it relates to HTML pages in the browser and its implementation in JavaScript. The browsers that
have mostly complete implementations of DOM Level 1 are Internet Explorer (IE) 6 and later

(IE 5.5 has several missing features), Firefox, Safari, Chrome, and Opera 7.5 and later.

Note that all DOM objects are represented by COM objects in IE. This means that
the objects don’t behave or function the same way as native JavaScript objects.
These differences are highlighted throughout the chapter.

Hierarchy of Nodes

Any HTML or XML document can be represented as a hierarchy of nodes using the DOM. There
are several node types, each representing different information and/or markup in the document.
Each node type has different characteristics, data, and methods, and each may have relationships

Chapter 10: The Document Object Model

with other nodes. These relationships create a hierarchy that allows markup to be represented as a tree,
rooted at a particular node. For instance, consider the following HTML:

<html>
<head>
<title>Sample Page</title>
</head>
<body>
<p>Hello World!</p>
</body>
</html>

This simple HTML document can be represented in a hierarchy, as illustrated in Figure 10-1.

Document |

Element html |

—| Element head |

Element title |

Text Sample Page |

—| Element body |

Element p |

L Text Hello world! |

Figure 10-1

A document node represents every document as the root. In this example, the only child of the document
node is the <html> element, which is called the document element. The document element is the
outermost element in the document within which all other elements exist. There can be only one
document element per document. In HTML pages, the document element is always the <html> element.
In XML, where there are no predefined elements, any element may be the document element.

Every piece of markup can be represented by a node in the tree: HTML elements are represented by
element nodes, attributes are represented by attribute nodes, the document type is represented by a
document type node, and comments are represented by comment nodes. In total, there are 12 node
types, all of which inherit from a base type.

262

Chapter 10: The Document Object Model

The Node Type

DOM Level 1 describes an interface called Node that is to be implemented by all node types in the DOM.
The Node interface is implemented in JavaScript as the Node type, which is accessible in all browsers
except IE. All node types inherit from Node in JavaScript, so all node types share the same basic
properties and methods.

Every node has a nodeType property that indicates the type of node that it is. Node types are
represented by one of the following 12 numeric constants on the Node type:

U

Node . ELEMENT_NODE (1)
Node.ATTRIBUTE_NODE (2)

Node . TEXT_NODE (3)
Node.CDATA_SECTION_NODE (4)
Node.ENTITY_REFERENCE_NODE (5)
Node.ENTITY_NODE (6)

Node . PROCESSING_INSTRUCTION_NODE (7)
Node . COMMENT_NODE (8)

Node . DOCUMENT_NODE (9)

Node . DOCUMENT_TYPE_NODE (10)

Node . DOCUMENT_FRAGMENT_NODE (11)

I I N T N I

Node .NOTATION_NODE (12)
Anode’s type is easy to determine by comparing against one of these constants, as shown here:
if (someNode.nodeType == Node.ELEMENT_NODE) { //won't work in IE

alert ("Node is an element.");

This example compares the someNode . nodeType to the Node . ELEMENT_NODE constant. If they’re equal,
it means someNode is actually an element. Unfortunately, since IE doesn’t expose the Node type
constructor, this code will cause an error. For cross-browser compatibility, it’s best to compare the
nodeType property against a numeric value, as in the following:

if (someNode.nodeType == 1) { //works in all browsers
alert ("Node is an element.");

Not all node types are supported in web browsers. Developers most often work with element and text
nodes. The support level and usage of each node type is discussed later in the chapter.

263

Chapter 10: The Document Object Model

The nodeName and nodeValue Properties

Two properties, nodeName and nodeValue, give specific information about the node. The values of these
properties are completely dependent upon the node type. It’s always best to test the node type before
using one of these values, as the following code shows:

if (someNode.nodeType == 1){
value = someNode.nodeName; //will be the element's tag name
}

In this example, the node type is checked to see if the node is an element. If so, the nodeName value is
stored. For elements, nodeName is always equal to the element’s tag name, and nodevalue is always
null.

Node Relationships

All nodes in a document have relationships to other nodes. These relationships are described in terms of
traditional family relationships as if the document tree were a family tree. In HTML, the <body> element
is considered a child of the <htm1> element; likewise the <html> element is considered the parent of the
<body> element. The <head> element is considered a sibling of the <body> element because they both
share the same immediate parent, the <html> element.

Each node has a childNodes property containing a NodeList. A NodeList is an array-like object used
to store an ordered list of nodes that are accessible by position. Keep in mind that a NodeList is not an
instance of Array even though its values can be accessed using bracket notation and the 1ength
property is present. NodeList objects are unique in that they are actually queries being run against the
DOM structure, so changes will be reflected in NodeList objects automatically. It is often said that a
NodeList is a living, breathing object rather than a snapshot of what happened at the time it was first
accessed.

The following example shows how nodes stored in a NodeList may be accessed via bracket notation or
by using the item () method:

var firstChild = someNode.childNodes[0];
var secondChild = someNode.childNodes.item (1) ;
var count = someNode.childNodes.length;

Note that using bracket notation and using the item() method are both acceptable practices, although
most developers use bracket notation because of its similarity to arrays. Also note that the length
property indicates the number of nodes in the NodeList at that time. It’s possible to convert NodeList
objects into arrays using Array.prototype.slice () as was discussed earlier for the arguments
object. Consider the following example:

//won't work in IE
var arrayOfNodes = Array.prototype.slice.call (someNode.childNodes,0);

264

Chapter 10: The Document Object Model

This works in all browsers except IE, which throws an error because a NodeList is implemented as a
COM object and thus cannot be used where a JScript object is necessary. To convert a NodeList to an
array in IE, you must manually iterate over the members. The following function works in all browsers:

function convertToArray (nodes) {
var array = null;
try {
array = Array.prototype.slice.call(nodes, 0); //non-IE
} catch (ex) {
array = new Array();
for (var i=0, len=nodes.length; i < len; i++){
array.push(nodes[i]) ;

return array;

The convertToArray () function first attempts to use the easiest manner of creating an array. If that
throws an error (which it will in IE), the error is caught by the try-catch block and the array is created
manually. This is another form of quirks detection.

Each node has a parentNode property pointing to its parent in the document tree. All nodes contained
within a childNodes list have the same parent, so each of their parentNode properties points to the
same node. Additionally, each node within a childNodes list is considered to be a sibling of the other
nodes in the same list. It’s possible to navigate from one node in the list to another by using the
previousSibling and nextSibling properties. The first node in the list has null for the value

of its previousSibling property, and the last node in the list has nul1l for the value of its nextSibling
property, as shown in the following example:

if (someNode.nextSibling === null) {
alert("Last node in the parent's childNodes list.");
} else if (someNode.previousSibling === null) {

alert ("First node in the parent's childNodes list.");

}
Note that if there’s only one child node, both nextSibling and previousSibling will be null.

Another relationship exists between a parent node and its first and last child nodes. The firstchild
and lastChild properties point to the first and last node in the childNodes list, respectively. The value
of someNode . firstChildis always equal to someNode. childNodes[0], and the value of someNode
.lastChildis always equal to someNode.childNodes [someNode.childNodes.length-1]. If there
is only one child node, firstChild and lastChild point to the same node; if there are no children,
then firstChild and lastChild are both null. All of these relationships help to navigate easily
between nodes in a document structure. Figure 10-2 illustrates these relationships.

265

Chapter 10: The Document Object Model

Node
lastChild
firstChild
parentNode
parentNode parentNode
l/ nextSibling nextSibling \
—_— > _— >
Node Node Node
& SE——
previousSibling previousSibling
childNodes
Figure 10-2

With all of these relationships, the childNodes property is really more of a convenience than a necessity,
since it’s possible to reach any node in a document tree by simply using the relationship pointers.
Another convenience method is hasChildNodes (), which returns true if the node has one or more
child nodes, and is more efficient than querying the 1ength of the childNodes list.

One final relationship is shared by every node. The ownerDocument property is a pointer to the
document node that represents the entire document. Nodes are considered to be owned by the document
in which they reside, because nodes cannot exist simultaneously in two or more documents. This
property provides a quick way to access the document node without needing to traverse the node
hierarchy back up to the top.

Not all node types can have child nodes even though all node types inherit from
Node. The differences among node types are discussed later in this chapter.

Manipulating Nodes

Because all relationship pointers are read-only, several methods are available to manipulate nodes. The
most often-used method is appendchild (), which adds a node to the end of the childNodes list.
Doing so updates all of the relationship pointers in the newly added node, the parent node, and the
previous last child in the childNodes list. When complete, appendChild () returns the newly added
node. Here is an example:

var returnedNode = someNode.appendChild (newNode) ;
alert (returnedNode == newNode) ; //true

alert (someNode.lastChild == newNode) ; //true

If the node passed into appendchild() is already part of the document, it is removed from its previous
location and placed at the new location. Even though the DOM tree is connected by a series of pointers,

266

Chapter 10: The Document Object Model

no DOM node may exist in more than one location in a document. So if you call appendchild()and
pass in the first child of a parent, as the following example shows, it will end up as the last child:

var returnedNode = someNode.appendChild(someNode.firstChild) ;
alert (returnedNode == someNode.firstChild); //false
alert (returnedNode == someNode.lastChild); //true

When a node needs to be placed in a specific location within the childNodes list, instead of just at the
end, the insertBefore () method may be used. The insertBefore () method accepts two arguments:
the node to insert and a reference node. The node to insert becomes the previous sibling of the reference
node and is ultimately returned by the method. If the reference node is null, then insertBefore () acts
the same as appendChild (), as this example shows:

//insert as last child
returnedNode = someNode.insertBefore (newNode, null);
alert (newNode == someNode.lastChild); //true

//insert as the new first child

var returnedNode = someNode.insertBefore (newNode, someNode.firstChild);
alert (returnedNode == newNode) ; //true

alert (newNode == someNode.firstChild); //true

//insert before last child
returnedNode = someNode.insertBefore (newNode, someNode.lastChild);
alert (newNode == someNode.childNodes[someNode.childNodes.length-2]1); //true

Both appendchild() and insertBefore () insert nodes without removing any. The replaceChild()
method accepts two arguments: the node to insert and the node to replace. The node to replace is
returned by the function and is removed from the document tree completely while the inserted node
takes its place. Here is an example:

//replace first child
var returnedNode = someNode.replaceChild(newNode, someNode.firstChild);

//replace last child
returnedNode = someNode.replaceChild(newNode, someNode.lastChild);

When a node is inserted using replaceChild (), all of its relationship pointers are duplicated from the
node it is replacing. Even though the replaced node is technically still owned by the same document, it
no longer has a specific location in the document.

To remove a node without replacing it, the removeCchild () method may be used. This method accepts a
single argument, which is the node to remove. The removed node is then returned as the function value,
as this example shows:

//remove first child
var formerFirstChild = someNode.removeChild(someNode.firstChild) ;

//remove last child
var formerLastChild = someNode.removeChild (someNode.lastChild);

267

Chapter 10: The Document Object Model

As with replaceChild(), a node removed via removeChild() is still owned by the document but
doesn’t have a specific location in the document.

All four of these methods work on the immediate children of a specific node, meaning that to use them
you must know the immediate parent node (which is accessible via the previously mentioned
parentNode property). Not all node types can have child nodes, and these methods will throw errors if
you attempt to use them on nodes that don’t support children.

Other Methods

Two other methods are shared by all node types. The first is cloneNode (), which creates an exact clone
of the node on which it’s called. The cloneNode () method accepts a single Boolean argument indicating
whether to do a deep copy. When the argument is true, a deep copy is used, cloning the node and its
entire subtree; when false, only the initial node is cloned. The cloned node that is returned is owned by
the document but has no parent node assigned. As such, the cloned node is an orphan and doesn’t exist
in the document until added via appendChild (), insertBefore (), or replaceChild (). For example,
consider the following HTML:

item 1</1i>
item 2</1i>
item 3</1i>

If a reference to this element is stored in a variable named myList, the following code shows the
two modes of the cloneNode () method:

var deepList = myList.cloneNode (true) ;
alert (deepList.childNodes.length) ; //3 (IE) or 7 (others)

var shallowList = myList.cloneNode (false);
alert (shallowList.childNodes.length); //0

In this example, deepList is filled with a deep copy of myList. This means deepList has three list
items, each of which contains text. The variable shallowList contains a shallow copy of myList, so it
has no child nodes.

The cloneNode () method doesn’t copy JavaScript properties that you add to DOM
nodes, such as event handlers. This method copies only attributes and, optionally,
child nodes. Everything else is lost. IE has a bug where event handlers are also
cloned, so removing event handlers before cloning is recommended.

The last remaining method is normalize (). Its sole job is to deal with text nodes in a document subtree.
Due to parser implementations or DOM manipulations, it’s possible to end up with text nodes that
contain no text or text nodes that are siblings. When normalize () is called on a node, that node’s
descendants are searched for both of these circumstances. If an empty text node is found, it is removed; if
text nodes are immediate siblings, they are joined into a single text node. This method is discussed
further later on in this chapter.

268

Chapter 10: The Document Object Model

The Document Type

JavaScript represents document nodes via the Document type. In browsers, the document object is an
instance of HTMLDocument (which inherits from Document) and represents the entire HTML page. The
document object is a property of window and so is accessible globally. A Document node has the
following characteristics:

O nodeTypeis9.

Q nodeName is “#document”.

U nodevalueisnull.

OQ parentNodeisnull.

Q Child nodes may be a DocumentType (maximum of one), Element (maximum of one),

ProcessingInstruction, or Comment

The Document type can represent HTML pages or other XML-based documents, though the most
common use is through an instance of HTMLDocument through the document object. The document
object can be used to get information about the page as well as to manipulate both its appearance and
the underlying structure.

The Document type constructor and prototype are accessible in script for all browsers
except IE. The HTMLDocument type constructor and prototype are accessible in all
browsers, including IE beginning with version 8.

Document Children

Though the DOM specification states that the children of a Document node can be a DocumentType,
Element, ProcessingInstruction, or Comment, there are two built-in shortcuts to child nodes. The
first is the documentElement property, which always points to the <html> element in an HTML page.
The document element is always represented in the childNodes list as well, but the documentElement
property gives faster and more direct access to that element. Consider the following simple page:

<html>
<body>

</body>
</html>

When this page is parsed by a browser, the document has only one child node, which is the <html>
element. This element is accessible from both documentElement and the childNodes list, as shown
here:

var html = document.documentElement; //get reference to <html>
alert (html === document.childNodes[0]) ; //true
alert (html === document.firstChild); //true

269

Chapter 10: The Document Object Model

This example shows that the values of documentElement, firstChild, and childNodes[0] are all the
same — all three point to the <html> element.

As an instance of HTMLDocument, the document object also has a body property that points to the
<body> element directly. Since this is the element most often used by developers, document . body tends
to be used quite frequently in JavaScript, as this example shows:

var body = document.body; //get reference to <body>
Both document . documentElement and document . body are supported in all major browsers.

Another possible child node of a Document is a DocumentType. The <! DOCTYPE> tag is considered to be
a separate entity from other parts of the document, and its information is accessible through the
doctype property (document . doctype in browsers) as shown here:

var doctype = document.doctype; //get reference to <!DOCTYPE>
Browser support for document . doctype varies considerably, as described here:
IE — A document type, if present, is misinterpreted as a comment and treated as

a Comment node. document . doctype is always null.

Firefox — A document type, if present, is the first child node of the document. document
.doctype is a DocumentType node, and the same node is accessible via document . firstChild
or document .childNodes[0].

Safari, Chrome, and Opera — A document type, if present, is parsed but is not considered a
child node of the document. document . doctype is a DocumentType node, but the node does
not appear in document . childNodes.

Due to the inconsistent browser support for document . doctype, it is of limited usefulness.
Comments that appear outside of the <html> element are, technically, child nodes of the document.

Once again, browser support varies greatly as to whether these comments will be recognized and
represented appropriately. Consider the following HTML page:

<!-- first comment -->
<html>
<body>
</body>
</html>
<!-- second comment -->

This page seems to have three child nodes: a comment, the <html> element, and another comment.
Logically, you would expect document . childNodes to have three items corresponding to what appears
in the code. In practice, however, browsers handle comments outside of the <html> element in the
following very different ways:

270

Chapter 10: The Document Object Model

Q IE, Safari 3.1 and later, Opera, and Chrome create a comment node for the first comment but not
for the second. The first comment becomes the first node in document . childNodes.

Q Firefox as well as Safari prior to version 3.1 ignore both comments.

Once again, the inconsistent behavior makes accessing comments outside the <html> element essentially
useless.

For the most part, the appendChild (), removeChild(), and replaceChild () methods aren’t used on
document, since the document type (if present) is read-only and there can be only one element child
node (which is already present).

Document Information

The document object, as an instance of HTMLDocument, has several additional properties that standard
Document objects do not have. These properties provide information about the web page that is loaded.
The first such property is title, which contains the text in the <title> element and is displayed in the
title bar or tab of the browser window. This property can be used to retrieve the current page title as well
as to change the page title such that the changes are reflected in the browser title bar. Changing the value
of the title property does not change the <title> element at all. Here is an example:

//get the document title
var originalTitle = document.title;

//set the document title
document.title = "New page title";

The next three properties are all related to the request for the web page: URL, domain, and referrer. The
URL property contains the complete URL of the page (the URL in the address bar), the domain property
contains just the domain name of the page, and the referrer property gives the URL of the page that
linked to this page. The referrer property may be an empty string if there is no referrer to the page. All
of this information is available in the HTTP header of the request and is simply made available in
JavaScript via these properties, as shown in the following example:

//get the complete URL
var url = document.URL;

//get the domain
var domain = document.domain;

//get the referrer
var referrer = document.referrer;

The URL and domain properties are related. For example, if document . URL is http: //www.wrox.com/
WileyCDA/, then document . domain will be www.wrox. com.

271

Chapter 10: The Document Object Model

Of these three properties, the domain property is the only one that can be set. There are some restrictions
as to what the value of domain can be set to due to security issues. If the URL contains a subdomain,
such as p2p.wrox. com, the domain may only be set to “wrox.com” (the same is true when the URL
contains “www,” such as www.wrox. com). The property can never be set to a domain that the

URL doesn’t contain, as this example demonstrates:

//page from p2p.wrox.com
document .domain = "wrox.com"; //succeeds

document.domain = "nczonline.net"; //error!

The ability to set document . domain is useful when there is a frame or iframe on the page from a
different subdomain. Pages from different subdomains can’t communicate with one another via
JavaScript due to cross-domain security restrictions. By setting document . domain in each page to the
same value, the pages can access JavaScript objects from each other. For example, if a page is loaded
from www . wrox . com and it has an iframe with a page loaded from p2p.wrox. com, each page’s
document . domain string will be different, and the outer page and the inner page are restricted from
accessing each other’s JavaScript objects. If the document . domain value in each page is set to
"wrox.com", the pages can then communicate.

A further restriction in the browser disallows tightening of the domain property once it has been
loosened. This means you cannot set document . domain to "wrox.com" and then try to set it back to
"p2p.wrox.com", because the latter would cause an error, as shown here:

//page from p2p.wrox.com
document .domain = "wrox.com"; //loosen - succeeds

document .domain = "p2p.wrox.com"; //tighten - error!

This restriction exists in all browsers but was implemented in IE beginning with version 8.

Locating Elements

Perhaps the most common DOM activity is to retrieve references to a specific element or sets of elements
to perform certain operations. This capability is provided via a number of methods on the document
object. The Document type provides two methods to this end: getElementById () and
getElementsByTagName ().

The getElementById () method accepts a single argument — the ID of an element to retrieve — and
returns the element if found, or nul1 if an element with that ID doesn’t exist. The ID must be an exact
match, including character case, to the 1d attribute of an element on the page. Consider the following

element:

<div id="myDiv">Some text</div>

272

Chapter 10: The Document Object Model

This element can be retrieved using the following code:

var div = document.getElementById("myDiv") ; //retrieve reference to the <div>
The following code, however, would return null in all browsers except IE:

var div = document.getElementById("mydiv") ; //won't work (except in IE)

IE prior to version 8 considered IDs to be case-insensitive, so "myDiv" and "mydiv" are considered to be
the same element ID. This also occurs in IE 8 running in IE 7—compatibility mode (where document .
documentMode is 7).

If there is more than one element with the same ID in a page, getElementById () returns the element
that appears first in the document. IE 7 and earlier add an interesting quirk to this, also returning form
elements (<input>, <textarea>, <button>, and <select>) that have a name attribute matching the
given ID. If one of these form elements has a name attribute equal to the specified ID, and it appears
before an element with the given ID in the document, IE returns the form element. Here’s an example:

<input type="text" name="myElement" value="Text field">
<div id="myElement">A div</div>

Using this HTML, a call to document . getElementById () in IE 7 returns a reference to the <input>
element, whereas the same call returns a reference to the <div> element in all other browsers. To avoid
this issue in IE, it’s best to ensure that form fields don’t have name attributes that are equivalent to other
element IDs.

The getElementsByTagName () method is another commonly used method for retrieving element
references. It accepts a single argument — the tag name of the elements to retrieve — and returns a
NodeList containing zero or more elements. In HTML documents, this method returns an
HTMLCollection object, which is very similar to a NodeList in that it is considered a “live” collection.
For example, the following code retrieves all elements in the page and returns an
HTMLCollection:

var images = document.getElementsByTagName ("img") ;
This code stores an HTMLCollection object in the images variable. As with NodeList objects, items in

HTMLCollection objects can be accessed using bracket notation or the item () method. The number of
elements in the object can be retrieved via the 1ength property, as this example demonstrates:

alert (images.length) ; //output the number of images
alert (images[0].src); //output the src attribute of the first image
alert (images.item(0) .src); //output the src attribute of the first image

273

Chapter 10: The Document Object Model

The HTMLCollection object has an additional method, namedItem (), that lets you reference an item in
the collection via its name attribute. For example, suppose you had the following element
in a page:

A reference to this element can be retrieved from the images variable like this:
var myImage = images.namedItem("myImage");

In this way, an HTMLCollection gives you access to named items in addition to indexed items, making
it easier to get exactly the elements you want. You can also access named items by using bracket notation
as shown in the following example:

var myImage = images|["myImage"];

For HTMLCollection objects, bracket notation can be used with either numeric or string indices. Behind
the scenes, a numeric index calls item () and a string index calls namedItem().

To retrieve all elements in the document, pass in “*” to getElementsByTagName (). The asterisk is
generally understood to mean “all” in JavaScript and Cascading Style Sheets (CSS). Here’s an example:

var allElements = document.getElementsByTagName ("*") ;

This single line of code returns an HTMLCollection containing all of the elements in the order in which
they appear. So the first item is the <htm1> element, the second is the <head> element, and so on.

The IE implementation of comments actually makes them into elements, so IE will return comment
nodes when getElementsByTagName ("*") is called.

Even though the specification states that tag names are case-sensitive, the

getElementsByTagName () method is case-insensitive for maximum compatibility with existing
HTML pages. When used in XML pages, including XHTML, getElementsByTagName () switches
to case-sensitive mode.

A third method, which is defined on the HTMLDocument type only, is getElementsByName (). As its name
suggests, this method returns all elements that have a given name attribute. The getElementsByName ()
method is most often used with radio buttons, all of which must have the same name to ensure the correct
value gets sent to the browser, as the following example shows:

<fieldset>
<legend>Which color do you prefer?</legend>

<input type="radio" value="red" name="color" id="colorRed">
<label for="colorRed">Red</label></1li>
<input type="radio" value="green" name="color" id="colorGreen">
<label for="colorGreen">Green</label></1li>
<input type="radio" value="blue" name="color" id="colorBlue">
<label for="colorBlue">Blue</label></1li>

</fieldset>

274

Chapter 10: The Document Object Model

In this code, the radio buttons all have a name attribute of "color" even though their IDs are different.
The IDs allow the <label> elements to be applied to the radio buttons, and the name attribute assures
that only one of the three values will be sent to the server. These radio buttons can all then be retrieved
using the following line of code:

var radios = document.getElementsByName ("color");

As with getElementsByTagName (), the getElementsByName () method returns an HTML.Collection.
In this context, however, the namedItem () method always retrieves the first item (since all items have the
same name).

Special Collections

The document object has several special collections. Each of these collections is an HTMLCollection
object and provides faster access to common parts of the document, as described here:

0 document.anchors — Contains all <a> elements with a name attribute in the document.

0 document.applets — Contains all <applet> elements in the document. This collection is
deprecated, because the <applet> element is no longer recommended for use.

Q document. forms — Contains all <form> elements in the document. The same as document
.getElementsByTagName (" form").

0 document.images — Contains all elements in the document. The same as document
.getElementsByTagName ("img").

d document.links — Contains all <a> elements with an href attribute in the document.

These special collections are always available on HTMLDocument objects and, like all HTML.Collection
objects, are constantly updated to match the contents of the current document.

DOM Conformance Detection

Because there are multiple levels as well as multiple parts of the DOM, it became necessary to determine
exactly what parts of the DOM a browser has implemented. The document . implementation property
is an object containing information and functionality tied directly to the browser’s implementation of the
DOM. DOM Level 1 specifies only one method on document . implementation, which is

hasFeature (). The hasFeature () method accepts two arguments: the name and version of the DOM
feature to check for. If the browser supports the named feature and version, this method returns true, as
with this example:

var hasXmlDom = document.implementation.hasFeature("XML", "1.0");

275

Chapter 10: The Document Object Model

The various values that can be tested are listed in the following table.

Feature Supported Versions Description

Core 1.0,2.0,3.0 Basic DOM that spells out the use of a hierarchical
tree to represent documents

XML 1.0,2.0,3.0 XML extension of the Core that adds support for
CDATA sections, processing instructions, and
entities

HTML 1.0,2.0 HTML extension of XML that adds support for
HTML-specific elements and entities

Views 2.0 Accomplishes formatting of a document based on
certain styles

StyleSheets 2.0 Relates style sheets to documents

CSS 2.0 Support for Cascading Style Sheets Level 1

CSSs2 2.0 Support for Cascading Style Sheets Level 2

Events 2.0 Generic DOM events

UlEvents 2.0 User interface events

MouseEvents 2.0 Events caused by the mouse (click, mouseover, and
SO on)

MutationEvents 2.0 Events fired when the DOM tree is changed

HTMLEvents 2.0 HTML 4.01 events

Range 2.0 Objects and methods for manipulating a range in a
DOM tree

Traversal 2.0 Methods for traversing a DOM tree

LS 3.0 Loading and saving between files and DOM trees
synchronously

LS-Async 3.0 Loading and saving between files and DOM trees
asynchronously

Validation 3.0 Methods to modify a DOM tree and still make it
valid

Although it is a nice convenience, the drawback of using hasFeature () is that the implementer gets to
decide if the implementation is indeed conformant with the various parts of the DOM specification. It's
very easy to make this method return true for any and all values, but that doesn’t necessarily mean that
the implementation conforms to all the specifications it claims to. Safari 2.x and earlier, for example,
return true for some features that aren’t fully implemented. In most cases, it’s a good idea to use
capability detection in addition to hasFeature () before using specific parts of the DOM.

276

Chapter 10: The Document Object Model

Document Writing

One of the older capabilities of the document object is the ability to write to the output stream of a web
page. This capability comes in the form of four methods: write (), writeln(),open(),and close().
The write () and writeln () methods each accept a string argument to write to the output stream.
write () simply adds the text as is, whereas writeln () appends a new-line character (\n) to the end

of the string. These two methods can be used as a page is being loaded to dynamically add content to the
page, as shown in the following example:

<html>
<head>
<title>document.write() Example</title>
</head>
<body>
<p>The current date and time is:
<script type="text/javascript">
document .write("" + (new Date()).toString() + "");
</script>
</p>
</body>
</html>

This example outputs the current date and time as the page is being loaded. The date is enclosed by a
 element, which is treated the same as if it were included in the HTML portion of the page,
meaning that a DOM element is created and can later be accessed. Any HTML that is output via
write() orwriteln() is treated this way.

The write () and writeln () methods are often used to dynamically include external resources such as
JavaScript files. When including JavaScript files, you must be sure not to include the string "</script>"
directly, as the following example demonstrates, because it will be interpreted as the end of a script block
and the rest of the code won't execute.

<html>
<head>
<title>document.write() Example</title>
</head>
<body>
<script type="text/javascript">
document .write("<script type=\"text/javascript\" src=\"file.js\">" +
"</script>");
</script>
</body>
</html>

277

Chapter 10: The Document Object Model

Even though this file looks correct, the closing "</script>" string is interpreted as matching the
outermost <script> tag, meaning that the text ") ; will appear on the page. To avoid this, the string
simply needs to be split up, as mentioned in Chapter 2 and shown here:

<html>
<head>
<title>document.write() Example</title>
</head>
<body>
<script type="text/javascript">
document.write("<script type=\"text/javascript\" src=\"file.js\">" +
"</scr" + "ipt>");
</script>
</body>
</html>

With the string "</script>" split into a string concatenation of "</scr" + "ipt>",itno longer
registers as a closing tag for the outermost <script> tag, so there is no extra content output to the page.

The previous examples use document .write () to output content directly into the page as it’s being
rendered. If document .write () is called after the page has been completely loaded, the content
overwrites the entire page, as shown in the following example:

<html>
<head>
<title>document.write() Example</title>
</head>
<body>
<p>This is some content that you won't get to see because it will be
overwritten.</p>
<script type="text/javascript">
window.onload = function() {
document .write("Hello world!");
Y
</script>
</body>
</html>

In this example, the window.onload event handler is used to delay the execution of the function until
the page is completely loaded (events are discussed in Chapter 12). When that happens, the string
"Hello world!" overwrites the entire page content.

The open () and close () methods are used to open and close the web page output stream, respectively.
Neither method is required to be used when write () or writeln() is used during the course of page
loading.

Document writing is not supported in strict XHTML documents. For pages that
are served with the application/xml+xhtml content type, these methods will
not work.

278

Chapter 10: The Document Object Model

The Element Type

Next to the Document type, the Element type is most often used in web programming. The Element
type represents an XML or HTML element, providing access to information such as its tag name,
children, and attributes. An Element node has the following characteristics:

0 nodeTypeis1.

O nodeName is the element’s tag name.

U nodevalueisnull.

a parentNode may be a Document or Element.

Q Child nodes may be Element, Text, Comment, ProcessingInstruction, CDATASection, or

EntityReference

An element’s tag name is accessed via the nodeName property or by using the tagName property; both
properties return the same value (the latter is typically used for clarity). Consider the following element:

<div id="myDiv"></div>
This element can be retrieved and its tag name accessed in the following way:

var div = document.getElementById("myDiv") ;
alert (div.tagName) ; //"DIV"
alert (div.tagName == div.nodeName) ; //true

The element in question has a tag name of div and an ID of "myDiv". Note, however, that div.tagName
actually outputs "DIV" instead of "div". When used with HTML, the tag name is always represented in
all uppercase; when used with XML (including XHTML), the tag name always matches the case of the
source code. If you aren’t sure whether your script will be on an HTML or XML document, it’s best to
convert tag names to a common case before comparison, as this example shows:

if (element.tagName == "div"){ //AVOID! Error prone!
//do something here
}
if (element.tagName.toLowerCase() == "div"){ //Preferred - works in all documents

//do something here

This example shows two comparisons against a tagName property. The first is quite error-prone because
it won’t work in HTML documents. The second approach, converting the tag name to all lowercase, is
preferred because it will work for both HTML and XML documents.

The Element type constructor and prototype are accessible in script in all browsers, including
IE as of version 8.

279

Chapter 10: The Document Object Model

HTML Elements
All HTML elements are represented by the HTMLElement type, either directly or through subtyping. The

HTMLElement inherits directly from Element and adds several properties. Each property represents one
of the following standard attributes that are available on every HTML element:

Q id— A unique identifier for the element in the document.

0O title — Additional information about the element, typically represented as a tooltip.
Q lang — The language code for the contents of the element (rarely used).
Q

dir — The direction of the language, "1tr" (left-to-right) or "rt1" (right-to-left); also rarely
used.

QO className — The equivalent of the class attribute, which is used to specify CSS classes on an
element. The property could not be named class because class is an ECMAScript reserved
word (see Chapter 1 for information about reserved words).

Each of these properties can be used to both retrieve the corresponding attribute value and to change the
value. Consider the following HTML element:

<div id="myDiv" class="bd" title="Body text" lang="en" dir="ltr"></div>
All of the information specified by this element may be retrieved using the following JavaScript code:

var div = document.getElementById("myDiv");

alert(div.id); //"myDiv"
alert(div.className); //"bd"
alert(div.title); //"Body text"
alert (div.lang) ; //"en"
alert(div.dir); //"ltr"

It’s also possible to use the following code to change each of the attributes by assigning new values to
the properties:

div.id = "someOtherId";
div.className = "ft";
div.title = "Some other text";
div.lang = "fr";

div.dir ="rtl";

Not all of the properties affect changes on the page when overwritten. Changes to id or lang will be
transparent to the user (assuming no CSS styles are based on these values), whereas changes to title
will be apparent only when the mouse is moved over the element. Changes to dir will cause the text on
the page to be aligned either to the left or right as soon as the property is written. Changes to className
may appear immediately if the class has different CSS style information than the previous one.

As mentioned previously, all HTML elements are represented by an instance of HTMLElement or a more
specific subtype. The following table lists each HTML element and its associated type (italicized
elements are deprecated). Note that these types are accessible in Opera, Safari, Chrome, and Firefox via
JavaScript, but not in IE prior to version 8.

280

Chapter 10: The Document Object Model

Element Type Element Type
A HTMLAnchorElement FONT HTMLFontElement
ABBR HTMLElement FORM HTMLFormElement
ACRONYM HTMLElement FRAME HTMLFrameElement
ADDRESS HTMLElement FRAMESET HTMLFrameSetElement
APPLET HTMLAppletElement H1 HTMLHeadingElement
AREA HTMLAreaElement H2 HTMLHeadingElement
B HTMLElement H3 HTMLHeadingElement
BASE HTMLBaseElement H4 HTMLHeadingElement
BASEFONT HTMLBaseFontElement H5 HTMLHeadingElement
BDO HTMLElement He HTMLHeadingElement
BIG HTMLElement HEAD HTMLHeadElement
BLOCKQUOTE HTMLQuoteElement HR HTMLHRElement
BODY HTMLBodyElement HTML HTMLHtmlElement
BR HTMLBRElement I HTMLElement
BUTTON HTMLButtonElement IFRAME HTMLIFrameElement
CAPTION HTMLTableCaptionElement IMG HTMLImageElement
CENTER HTMLElement INPUT HTMLInputElement
CITE HTMLElement INS HTMLModElement
CODE HTMLElement ISINDEX HTMLIsIndexElement
COL HTMLTableColElement KBD HTMLElement
COLGROUP HTMLTableColElement LABEL HTMLLabelElement
DD HTMLElement LEGEND HTMLLegendElement
DEL HTMLModElement LI HTMLLIElement
DFN HTMLElement LINK HTMLLinkElement
DIR HTMLDirectoryElement MAP HTMLMapElement
DIV HTMLDivElement MENU HTMLMenuElement
DL HTMLDListElement META HTMLMetaElement
DT HTMLElement NOFRAMES HTMLElement
EM HTMLElement NOSCRIPT HTMLElement
FIELDSET HTMLFieldSetElement OBJECT HTMLObjectElement
(continued)

281

Chapter 10: The Document Object Model

Element Type Element Type

OL HTMLOListElement SUP HTMLElement

OPTGROUP HTMLOptGroupElement TABLE HTMLTableElement
OPTION HTMLOptionElement TBODY HTMLTableSectionElement
P HTMLParagraphElement TD HTMLTableCellElement
PARAM HTMLParamElement TEXTAREA HTMLTextAreaElement
PRE HTMLPreElement TFOOT HTMLTableSectionElement
Q HTMLQuoteElement TH HTMLTableCellElement

S HTMLElement THEAD HTMLTableSectionElement
SAMP HTMLElement TITLE HTMLTitleElement
SCRIPT HTMLScriptElement TR HTMLTableRowElement
SELECT HTMLSelectElement TT HTMLElement

SMALL HTMLElement U HTMLElement

SPAN HTMLElement UL HTMLUListElement
STRIKE HTMLElement VAR HTMLElement

STRONG HTMLElement

STYLE HTMLStyleElement

SUB HTMLElement

Each of these types has attributes and methods associated with it. Many of these types are discussed
throughout this book.

Getting Attributes

Each element may have zero or more attributes, which are typically used to give extra information about
the particular element or its contents. The three primary DOM methods for working with attributes are
getAttribute (), setAttribute (), and removeAttribute (). These methods are intended to work
on any attribute, including those defined as properties on the HTMLElement type. Here’s an example:

var div = document.getElementById("myDiv") ;

alert (div.getAttribute("id")); //"myDiv"
alert (div.getAttribute("class")); //"bd"

alert (div.getAttribute("title")); //"Body text"
alert (div.getAttribute("lang")); //"en"
alert(div.getAttribute("dir")); //"ltr"

Note that the attribute name passed into getAttribute () is exactly the same as the actual attribute
name, so you pass in "class" to get the value of the class attribute (not className, which is

282

Chapter 10: The Document Object Model

necessary when the attribute is accessed as an object property). If the attribute with the given name
doesn’t exist, getAttribute () always returns null.

The getAttribute () method can also retrieve the value of custom attributes that aren’t part of the
formal HTML language. Consider the following element:

<div id="myDiv" my_special_attribute="hello!"></div>

In this element, a custom attribute named my_special_attribute is defined to have a value of
"hello! ". This value can be retrieved using getAttribute () just like any other attribute, as shown
here:

var value = div.getAttribute("my_special_attribute");
Note that the attribute name is case-insensitive, so "ID" and "id" are considered the same attribute.

All attributes on an element are also accessible as properties of the DOM element object itself. There are,
of course, the five properties defined on HTMLEl ement that map directly to corresponding attributes, but
all recognized (noncustom) attributes get added to the object as properties. Consider the following
element:

<div id="myDiv" align="left" my_special_attribute="hello"></div>

Since id and align are recognized attributes for the <div> element in HTML, they will be represented
by properties on the element object. The my_special_attribute attribute is custom, and so won’t
show up as a property on the element in Safari, Opera, Chrome, or Firefox. IE creates properties for
custom attributes as well, as this example demonstrates:

alert(div.id); //"myDiv"
alert(div.my_special_attribute); //undefined (except in IE)
alert(div.align); //"left"

Two types of attributes have property names that don’t map directly to the same value returned by
getAttribute (). The first attribute is style, which is used to specify stylistic information about the
element using CSS. When accessed via getAttribute (), the style attribute contains CSS text while
accessing it via a property that returns an object. The style property is used to programmatically access
the styling of the element (discussed later in this chapter) and so does not map directly to the style
attribute.

The second category of attribute that behaves differently is event-handler attributes such as onclick.
When used on an element, the onclick attribute contains JavaScript code, and that code string is
returned when using getAttribute () .When the onclick property is accessed, however, it returns a
JavaScript function (or null if the attribute isn’t specified). This is because onclick and other event-
handling properties are provided such that functions can be assigned to them.

Due to these differences, developers tend to forego getAttribute () when programming the DOM in

JavaScript and instead use the object properties exclusively. The getAttribute () method is used
primarily to retrieve the value of a custom attribute.

283

Chapter 10: The Document Object Model

In IE versions 7 and earlier, the getAttribute () method for the

style attribute and event handling attributes such as onclick always return the same
value as if they were accessed via a property. So, getAttribute ("style") returns an
object and getAttribute ("onclick") returns a function. Though fixed in IE 8.0, this
inconsistency is another reason to avoid using getAttribute () for HTML attributes.

Setting Attributes

The sibling method to getAttribute () is setAttribute (), which accepts two arguments: the name
of the attribute to set and the value to set it to. If the attribute already exists, setAttribute () replaces
its value with the one specified; if the attribute doesn’t exist, setAttribute () creates it and sets its
value. Here is an example:

div.setAttribute("id", "someOtherId");
div.setAttribute("class", "ft");
div.setAttribute("title", "Some other text");
div.setAttribute("lang","fr");
div.setAttribute("dir", "rtl");

The setattribute () method works with both HTML attributes and custom attributes in the same way:.
Attribute names get normalized to lowercase when set using this method, so "ID" ends up as "id".

Because all attributes are properties, assigning directly to the property can set the attribute values, as
shown here:

div.id = "someOtherId";
div.align = "left";

Note that adding a custom property to a DOM element, as the following example shows, does not
automatically make it an attribute of the element:

div.mycolor = "red";
alert (div.getAttribute ("mycolor")); //null (except in IE)

This example adds a custom property named mycolor and sets its value to "red". In most browsers,
this property does not automatically become an attribute on the element, so calling getAttribute() to
retrieve an attribute with the same name returns null. In IE, however, custom properties are considered
to be attributes of the element and vice versa.

IE versions 7 and earlier had some abnormal behavior regarding setAttribute () .
Attempting to set the class or style attributes has no effect, similar to setting an
event-handler property using setAttribute () . Even though these issues were
resolved in IE 8.0, it's always best to set these attributes using properties.

284

Chapter 10: The Document Object Model

The last method is removeAttribute (), which removes the attribute from the element altogether. This
does more than just clear the attribute’s value; it completely removes the attribute from the element as
shown here:

div.removeAttribute("class") ;

This method isn’t used very frequently, but it can be useful for specifying exactly which attributes to
include when serializing a DOM element.

IE versions 6 and earlier don’t support removeAttribute () .

The attributes Property

The Element type is the only DOM node type that uses the attributes property. The attributes
property contains a NamedNodeMap, which is a “live” collection similar to a NodeList. Every attribute
on an element is represented by an At tr node, each of which is stored in the NamedNodeMap object. A
NamedNodeMap object has the following methods:

QO getNamedItem(name) — Returns the node whose nodeName property is equal to name

QO removeNamedItem(name) — Removes the node whose nodeName property is equal to name
from the list

QO setNamedItem(node) — Adds the node to the list, indexing it by its nodeName property

Q item(pos) — Returns the node in the numerical position pos

Each node in the attributes property is a node whose nodeName is the attribute name and whose
nodeValue is the attribute’s value. To retrieve the id attribute of an element, you can use the following code:

var id = element.attributes.getNamedItem("id") .nodeValue;
Following is a shorthand notation for accessing attributes by name using bracket notation:
var id = element.attributes["id"].nodeValue;

It’s possible to use this notation to set attribute values as well, retrieving the attribute node and then
setting the nodevalue to a new value, as this example shows:

element.attributes["id"] .nodeValue = "someOtherId";
The removeNamedItem () method functions the same as the removeAttribute () method on the
element — it simply removes the attribute with the given name. The following example shows how the
sole difference is that removeNamedItem () returns the Attr node that represented the attribute:

var oldAttr = element.attributes.removeNamedItem("id") ;

The setNamedItem() is a rarely used method that allows you to add a new attribute to the element by
passing in an attribute node as shown in this example:

element.attributes.setNamedItem (newAttr) ;

285

Chapter 10: The Document Object Model

Generally speaking, because of their simplicity, the getAttribute (), removeAttribute (), and
setAttribute () methods are preferred to using any of the preceding attributes methods.

The one area where the attributes property is useful is to iterate over the attributes on an element.
This is done most often when serializing a DOM structure into an XML or HTML string. The following
code iterates over each attribute on an element and constructs a string in the format name="value"
name="value":

function outputAttributes (element) {
var pairs = new Array();
for (var i=0, len=element.attributes.length; i < len; i++){
var attrName = element.attributes[i].nodeName;
var attrValue = element.attributes([i].nodeValue;
pairs.push(attrName + "=\"" + attrvValue + "\"");
}

return pairs.join(" ");

This function uses an array to store the name-value pairs until the end, concatenating them with a space
in between (this technique is frequently used when serializing into long strings). Using the
attributes.length property, the for loop iterates over each attribute, outputting the name and value
into a string. Here are a couple of important things to note about the way this code works:

Q Browsers differ on the order in which they return attributes in the attributes object. The order
in which the attributes appear in the HTML or XML code may not necessarily be the order in
which they appear in the at tributes object.

Q IE 7 and earlier return all possible attributes on an HTML element, even if they aren’t specified.
This means often returning more than 100 attributes.

The previous function can be augmented to ensure that only specified attributes are included to provide
for the issue with IE versions 7 and earlier. Each attribute node has a property called specified thatis
set to true when the attribute is specified either as an HTML attribute or via the setAttribute ()
method. For IE, this value is false for the extra attributes, whereas the extra attributes aren’t present in
other browsers (thus, specified is always true for any attribute node). The code can then be
augmented as follows:

function outputAttributes (element) {
var pairs = new Array();
for (var i=0, len=element.attributes.length; i < len; i++){
var attrName = element.attributes[i].nodeName;
var attrValue = element.attributes[i].nodeValue;
if (element.attributes[i].specified) {
pairs.push(attrName + "=\"" + attrValue + "\"");

}

return pairs.join(" ");

This revised function ensures that only specified attributes are returned for IE 7 and earlier.

286

Chapter 10: The Document Object Model

Creating Elements

New elements can be created by using the document . createElement () method. This method accepts a
single argument, which is the tag name of the element to create. In HTML documents, the tag name is
case-insensitive, whereas it is case-sensitive in XML documents (including XHTML). To create a <div>
element, the following code can be used:

var div = document.createElement ("div") ;

Using the createElement () method creates a new element and sets its ownerDocument property. At
this point, you can manipulate the element’s attributes, add more children to it, and so on. Consider the
following example:

div.id = "myNewDiv";
div.className = "box";

Setting these attributes on the new element assigns information only. Since the element is not part of the
document tree, it doesn’t affect the browser’s display. The element can be added to the document tree
using appendChild(), insertBefore (), or replaceChild (). The following code adds the newly
created element to the document’s <body> element:

document .body .appendChild(div) ;

Once the element has been added to the document tree, the browser renders it immediately. Any changes
to the element after this point are immediately reflected by the browser.

IE allows an alternate use of createElement (), allowing you to specify a full element, including
attributes, as this example shows:

var div = document.createElement ("<div id=\"myNewDiv\" class=\"box\"></div>");

This usage is helpful to work around some issues regarding dynamically created elements in IE 7 and
earlier. The known issues are as follows:
QO Dynamically created <iframe> elements can’t have their name attribute set.

0 Dynamically created <input> elements won't get reset via the form’s reset () method
(discussed in Chapter 13).

Q Dynamically created <button> elements with a type attribute of "reset" won’t reset the form.

Q Dynamically created radio buttons with the same name have no relation to one another. Radio
buttons with the same name are supposed to be different values for the same option, but
dynamically created ones lose this relationship.

287

Chapter 10: The Document Object Model

Each of these issues can be addressed by specifying the complete HTML for the tag in
createElement (), as follows:

if (client.browser.ie && client.browser.ie <= 7){

//create iframe with a name
var iframe = document.createElement ("<iframe name=\"myframe\"></iframe>");

//create input element
var input = document.createElement ("<input type=\"checkbox\">");

//create button
var button = document.createElement ("<button type=\"reset\"></button>");

//create radio buttons

var radiol = document.createElement ("<input type=\"radio\" name=\"choice\" =
value=\"1\">");

var radio2 = document.createElement ("<input type=\"radio\" name=\"choice\" =
value=\"2\">");

}

Just as with the traditional way of using createElement (), using it in this way returns a DOM element
reference that can be added into the document and otherwise augmented. This usage is recommended
only when dealing with one of these specific issues in IE 7 and earlier, because it requires browser
detection. Note that no other browser supports this usage.

Element Children

Elements may have any number of children and descendants since elements may be children of
elements. The childNodes property contains all of the immediate children of the element, which may be
other elements, text nodes, comments, or processing instructions. There is a significant difference
between browsers regarding the identification of these nodes. For example, consider the following code:

<ul id="myList">
Ttem 1</1i>
Item 2</1i>
Ttem 3</1i>

When this code is parsed in IE, the element has three child nodes, one for each of the <1i>
elements. In all other browsers, the element has seven elements: three <1i> elements and four text
nodes representing the white space between <11i> elements. If the white space between elements is
removed, as the following example demonstrates, all browsers return the same number of child nodes:

<ul id="myList">Item 1Item 2Item 3
Using this code, all browsers return three child nodes for the element. It’s important to keep these

browser differences in mind when navigating children using the childNodes property. Oftentimes, it’s
necessary to check the nodeType before performing an action, as the following example shows:

288

Chapter 10: The Document Object Model

for (var i=0, len=element.childNodes.length; 1 < len; i++){
if (element.childNodes[i].nodeType == 1) {
//do processing

This code loops through each child node of a particular element and performs an operation only if
nodeType is equal to 1 (the element node type identified).

To get child nodes and other descendants with a particular tag name, elements also support the
getElementsByTagName () method. When used on an element, this method works exactly the same as
the document version except that the search is rooted on the element, so only descendants of that
element are returned. In the code earlier in this section, all <1i> elements can be retrieved using
the following code:

var ul = document.getElementById("myList");
var items = ul.getElementsByTagName("1li");

Keep in mind that this works because the element has only one level of descendants. If there were
more levels, all <1i> elements contained in all levels would be returned.

The Text Type

Text nodes are represented by the Text type and contain plain text that is interpreted literally, and may
contain escaped HTML characters but no HTML code. A Text node has the following characteristics:

0 nodeTypeis 3.
Q nodeName is “#text”.

U nodevalue is text contained in the node.
1 parentNode is an Element.

Q Child nodes are not supported.

The text contained in a Text node may be accessed via either the nodevalue property or the data
property, both of which contain the same value. Changes to either nodevalue or data are reflected in
the other as well. The following methods allow for manipulation of the text in the node:

0 appendData (text) — Appends text to the end of the node

Q deleteData (offset, count)— Deletes count number of characters starting at position
offset

a insertData (offset, text) — Inserts text at position offset

0 replaceData(offset, count, text)— Replaces the text starting at offset through
offset + count with text

Q splitText (offset) — Splits the text node into two text nodes separated at position offset

Q substringData (offset, count)— Extracts a string from the text beginning at position
offset and continuing until offset + count

289

Chapter 10: The Document Object Model

In addition to these methods, the 1ength property returns the number of characters in the node. This
value is the same as using nodeValue.length or data.length.

By default, every element that may contain content will have at most one text node when content is
present. Here is an example:

<!-- no content, so no text node -->
<div></div>

<!-- white space content, so one text node -->
<div> </div>

<!-- content, so one text node -->
<div>Hello World!</div>

The first <div> element in this code has no content, so there is no text node. Any content between the
opening and closing tags means that a text node must be created, so the second <div> element has a
single text node as a child even though its content is white space. The text node’s nodevalue is a single
space. The third <div> also has a single text node whose nodevalue is "Hello World!". The following
code lets you access this node:

var textNode = div.firstChild; //or div.childNodes[0]
Once a reference to the text node is retrieved, it can be changed like this:

div.firstChild.nodevalue = "Some other message"
As long as the node is currently in the document tree, the changes to the text node will be reflected
immediately. Another note about changing the value of a text node is that the string is HTML- or XML-
encoded (depending on the type of document), meaning that any less-than symbols, greater-than

symbols, or quotation marks are escaped as shown in this example:

//outputs as "Some other message"
div.firstChild.nodeValue = "Some other message";

This is an effective way of HTML-encoding a string before inserting it into the DOM document.

The Text type constructor and prototype are accessible in script in all browsers, including Internet
Explorer beginning with version 8.

Creating Text Nodes

New text nodes can be created using the document . createTextNode () method, which accepts a single
argument — the text to be inserted into the node. As with setting the value of an existing text node, the
text will be HTML- or XML-encoded as shown in this example:

var textNode = document.createTextNode ("Hello world!");
When a new text node is created, its ownerDocument property is set, but it does not appear in the

browser window until it is added to a node in the document tree. The following code creates a new
<div> element and adds a message to it:

290

Chapter 10: The Document Object Model

var element = document.createElement ("div");
element.className = "message";

var textNode = document.createTextNode("Hello world!");
element .appendChild (textNode) ;

document .body .appendChild (element) ;

This example creates a new <div> element and assigns it a class of "message". Then a text node is
created and added to that element. The last step is to add the element to the document’s body, which
makes both the element and the text node appear in the browser.

Typically elements have only one text node as a child. However, it is possible to have multiple text nodes
as children, as this example demonstrates:

var element = document.createElement ("div");
element.className = "message";

var textNode = document.createTextNode("Hello world!");
element .appendChild (textNode) ;

var anotherTextNode = document.createTextNode ("Yippee!") ;
element .appendChild (anotherTextNode) ;

document .body .appendChild(element) ;

When a text node is added as a sibling of another text node, the text in those nodes is displayed without
any space between them.

Normalizing Text Nodes

Sibling text nodes can be confusing in DOM documents since there is no simple text string that can’t be
represented in a single text node. Still, it is not uncommon to come across sibling text nodes in DOM
documents, so there is a method to join sibling text nodes together. This method is called normalize(),
and it exists on the Node type (and thus is available on all node types). When normalize () is called on a
parent of two or more text nodes, those nodes are merged into one text node whose nodevalue is equal
to the concatenation of the nodevalue properties of each text node. Here’s an example:

var element = document.createElement ("div");
element.className = "message";

var textNode = document.createTextNode("Hello world!");
element .appendChild (textNode) ;

var anotherTextNode = document.createTextNode ("Yippee!");
element .appendChild (anotherTextNode) ;

document .body.appendChild(element) ;
alert (element.childNodes.length); //2
element.normalize();

alert (element.childNodes.length); //1
alert (element.firstChild.nodevalue); //"Hello World!Yippee!"

291

Chapter 10: The Document Object Model

When the browser parses a document it will never create sibling text nodes. Sibling text nodes can only
appear due to programmatic DOM manipulation.

The normalize () method causes IE 6 to crash in certain circumstances.
Though unconfirmed, this may have been fixed in later patches to IE 6.
This problem doesn’t occur in IE 7 or later.

Splitting Text Nodes

The Text type has a method that does the opposite of normalize (): the splitText () method splits
a text node into two text nodes, separating the nodevalue at a given offset. The original text node
contains the text up to the specified offset, and the new text node contains the rest of the text.

The method returns the new text node, which has the same parentNode as the original. Consider the
following example:

var element = document.createElement ("div");
element.className = "message";

var textNode = document.createTextNode("Hello world!");
element .appendChild (textNode) ;

document .body.appendChild(element) ;

var newNode = element.firstChild.splitText (5);

alert (element.firstChild.nodevValue); //"Hello"
alert (newNode.nodeValue) ; //" world!"
alert (element.childNodes.length) ; //2

In this example, the text node containing the text "Hello world!" is split into two text nodes at
position 5. Position 5 contains the space between "Hello" and "world!", so the original text node has
the string "Hello" and the new one has the text "world! " (including the space).

Splitting text nodes is used most often with DOM parsing techniques for extracting data from text nodes.

The Comment Type
Comments are represented in the DOM by the Comment type. A Comment node has the following
characteristics:
0 nodeTypeis8.
O nodeName is “#comment”.
O nodevalue is the content of the comment.
a parentNode is a Document or Element.
Q Child nodes are not supported.
The comment type inherits from the same base as the Text type, so it has all of the same string-

manipulation methods except splitText (). Also similar to the Text type, the actual content of the
comment may be retrieved using either nodevalue or the data property.

292

Chapter 10: The Document Object Model

A comment node can be accessed as a child node from its parent. Consider the following HTML code:
<div id="myDiv"><!-- A comment --></div>

In this case, the comment is a child node of the <div> element, which means it can be accessed like this:
var div = document.getElementById("myDiv") ;
var comment = div.firstChild;

alert (comment.data) ; //"A comment"

Comment nodes can also be created using the document . createComment () method and passing in the
comment text, as shown in the following code:

var comment = document.createComment ("A comment") ;
Not surprisingly, comment nodes are rarely accessed or created, because they serve very little purpose

algorithmically. Additionally, browsers don’t recognize comments that exist after the closing </html>
tag. If you need to access comment nodes, make sure they appear as descendants of the <html> element.

The Comment type constructor and prototype are accessible in all
browsers except IE. The IE comment nodes are considered to be
elements with a tag name of " ! " . This means comment nodes can be
returned by getElementsByTagName () .

The CDATASection Type

CDATA sections are specific to XML-based documents and are represented by the CDATASection type.
Similar to Comment, the CDATASection type inherits from the base Text type, so it has all of the same
string manipulation methods except for splitText (). A CDATASection node has the following
characteristics:

U nodeTypeis4.

O nodeName is “#cdata-section”.

0 nodevalue is the contents of the CDATA section.

U parentNode is a Document or Element.

Q Child nodes are not supported.

CDATA sections are valid only in XML documents, so most browsers will incorrectly parse a CDATA
section into either a Comment or an Element. Consider the following;:

<div id="myDiv"><! [CDATA[This is some content.]]></div>
In this example, a CDATASection node should exist as the first child of the <div>; however, none of the

four major browsers interprets it as such. Even in valid XHTML pages, the browsers don’t properly
support embedded CDATA sections.

293

Chapter 10: The Document Object Model

True XML documents allow the creation of CDATA sections using document . createCDataSection ()
and pass in the node’s content.

The CDATASection type constructor and prototype are accessible in all browsers except IE.

The DocumentType Type

The DocumentType type is not used very often in web browsers and is supported in only Firefox, Safari,
and Opera. A DocumentType object contains all of the information about the document’s doctype and
has the following characteristics:

a nodeType is 10.
nodeName is the name of the doctype.
nodevValueisnull.

parentNode is a Document.

a
a
a
Q Child nodes are not supported.

DocumentType objects cannot be created dynamically in DOM Level 1; they are created only as

the document’s code is being parsed. For browsers that support it, the DocumentType object is stored in
document . doctype. DOM Level 1 describes three properties for DocumentType objects: name, which is
the name of the doctype; entities, which is a NamedNodeMap of entities described by the doctype; and
notations, which is a NamedNodeMap of notations described by the doctype. Because documents in
browsers typically use an HTML or XHTML doctype, the entities and notations lists are typically
empty (they only are filled with inline doctypes). For all intents and purposes, the name property is the
only useful one available. This property is filled with the name of the doctype, which is the text that
appears immediately after <! DocTYPE. Consider the following HTML 4.01 strict doctype:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0org/TR/html4/strict.dtd">

For this doctype, the name property would be "HTML":
alert (document .doctype.name); //"HTML"

IE does not support the DocumentType type, so document . doctype is always null. Further, IE misinterprets
the doctype as a comment and actually creates a comment node for it.

The DocumentFragment Type

Of all the node types, the DocumentFragment type is the only one that has no representation in markup.
The DOM defines a document fragment as a “lightweight” document, capable of containing and
manipulating nodes without all of the additional overhead of a complete document. DocumentFragment
nodes have the following characteristics:

294

Chapter 10: The Document Object Model

nodeType is 11.
nodeName is “#document-fragment”.
nodevValueisnull.

parentNode isnull.

U 0 U oo

Child nodes may be Element, ProcessingInstruction, Comment, Text, CDATASection, or
EntityReference

A document fragment cannot be added to a document directly. Instead, it acts as a repository for other
nodes that may need to be added to the document. Document fragments are created using the
document . createDocumentFragment () method, shown here:

var fragment = document.createDocumentFragment () ;

Document fragments inherit all methods from Node and are typically used to perform DOM
manipulations that are to be applied to a document. If a node from the document is added to a document
fragment, that node is removed from the document tree and won’t be rendered by the browser. New
nodes that are added to a document fragment are also not part of the document tree. The contents of

a document fragment can be added to a document via appendChild() or insertBefore (). When a
document fragment is passed in as an argument to either of these methods, all of the document
fragment’s child nodes are added in that spot; the document fragment itself is never added to the
document tree. For example, consider the following HTML:

<ul id="myList">

Suppose you would like to add three list items to this element. Adding each item directly to the
element causes the browser to rerender the page with the new information. To avoid this, the following
code example uses a document fragment to create the list items and then add them all at the same time:

var fragment = document.createDocumentFragment () ;
var ul = document.getElementById("myList");
var 1i = null;

for (var 1=0; 1 < 3; 1++){
1i = document.createElement ("1i");
1i.appendChild(document.createTextNode ("Item " + (i+1)));
fragment.appendChild(1i);

}

ul.appendChild(fragment) ;

This example begins by creating a document fragment and retrieving a reference to the element.
The for loop creates three list items, each with text indicating which item they are. To do this, an <1i>
element is created and then a text node is created and added to that element. The <1i> element is

then added to the document fragment using appendchild (). When the loop is complete, all of the
items are added to the element by calling appendchild () and passing in the document fragment.
At that point, the document fragment’s child nodes are all removed and placed onto the element.

295

Chapter 10: The Document Object Model

The Attr Type

Element attributes are represented by the Attr type in the DOM. The Attr type constructor and
prototype are accessible in all browsers, including IE beginning with version 8. Technically, attributes are
nodes that exist in an element’s attributes property. Attribute nodes have the following
characteristics:

nodeType is 11.

nodeName is the attribute name.

nodeValue is the attribute value.

parentNode isnull.

Child nodes are not supported in HTML.

O 000U oo

Child nodes may be Text or EntityReference in XML.

Even though they are nodes, attributes are not considered part of the DOM document tree. Attribute
nodes are rarely referenced directly, with most developers favoring the use of getAttribute(),
setAttribute (), and removeAttribute ().

There are three properties on an Attr object: name, which is the attribute name (same as nodeName);
value, which is the attribute value (same as nodeValue); and specified, which is a Boolean value
indicating if the attribute was specified in code or if it is a default value.

New attribute nodes can be created by using document . createAttribute () and passing in the name
of the attribute. For example, to add an align attribute to an element, the following code can be used:

var attr = document.createAttribute("align");
attr.value = "left";
element.setAttributeNode (attr) ;

alert (element.attributes["align"].value) ; //"left"
alert (element.getAttributeNode ("align") .value); //"left"
alert (element.getAttribute("align")); //"left"

In this example, a new attribute node is created. The name property is assigned by the call to
createAttribute (), so there is no need to assign it directly afterward. The value property is then
assigned to "left". To add the newly created attribute to an element, the element’s
setAttributeNode () method must be used. Once the attribute is added, it can be accessed in any
number of ways: via the attributes property, using getAttributeNode (), or using
getAttribute (). Both attributes and getAttributeNode () return the actual Attr node for the
attribute, whereas getAttribute () returns only the attribute value.

296

Chapter 10: The Document Object Model

There is really not a good reason to access attribute nodes directly. The getAttribute (),
setAttribute (), and removeAttribute () methods are preferable over manipulating attribute
nodes.

DOM Extensions

The DOM as specified by the W3C is often augmented in browsers with custom properties and methods.
Some of these are legacy features that are provided for backwards compatibility, and others were added
in response to developer feedback on common use cases. Regardless of the reasoning, extensions to the
DOM are very popular and can greatly aid development.

Rendering Modes

With the introduction of IE 6 and the ability to render a document in either standards or quirks mode, it
became necessary to determine which mode the browser was in. IE added a property on the document
named compatMode whose sole job is to indicate what mode the browser is in. As shown in the
following example, when in standards mode, document . compatMode is equal to "CSS1Compat"; when
in quirks mode, document . compatMode is "BackCompat "

if (document.compatMode == "CSSlCompat") {
alert ("Standards mode") ;
} else {

alert ("Quirks mode") ;

}

This property was later implemented by Firefox, Opera, and Chrome. Safari implemented document
.compatMode in version 3.1.

IE 8 introduced a new property on the document called documentMode, which is shown in the example
that follows. This property helps determine the rendering mode of the browser since IE 8 has three
different rendering modes. The possible values are 5 for quirks mode (IE 5 mode), 7 for IE 7 emulation
mode, and 8 for IE 8 standards mode.

if (document.documentMode > 7) {
alert ("IE 8+ Standards Mode") ;
}

Microsoft has given little guidance as to how this property’s value will change when newer browser

versions are released. When you are testing for IE 8 standards mode, it’s best to test that the value is
greater than 7 to protect against future changes rather than explicitly testing for the value 8.

297

Chapter 10: The Document Object Model

Scrolling

One of the issues not addressed by the DOM specification is how to scroll areas of a page. To fill this gap,
browsers have implemented several methods that control scrolling in different ways. Each of the
following methods exists as an extension to the HTMLElement type and therefore each is available on all
elements:

Q

scrollIntoView (alignWithTop) — Scrolls the browser window or container element so the
element is visible in the viewport. If alignwithTop is set to true or is omitted, the window
scrolls so that the top of the element is at the top of the viewport (if possible). This is implemented
in all browsers.

scrollIntoViewIfNeeded (alignCenter) — Scrolls the browser window or container
element so that the element is visible in the viewport only if it’s not already visible; if

the element is already visible in the viewport, this method does nothing. The optional
alignCenter argument will attempt to place the element in the center of the viewport if set to
true. This is implemented in Safari and Chrome.

scrollByLines (l1ineCount) — Scrolls the contents of the element by the height of the given
number of text lines, which may be positive or negative. This is implemented in Safari and Chrome.

scrollByPages (pageCount) — Scrolls the contents of the element by the height of a page,
which is determined by the height of the element. This is implemented in Safari and Chrome.

Keep in mind that scrollIntoView() and scrollIntoViewIfNeeded () act on the element’s
container, whereas scrollByLines () and scrollByPages () affect the element itself. Following is an
example of how this may be used:

//scroll body by five lines
document .body.scrollByLines (5) ;

//make sure this element is visible
document. forms[0] .scrollIntoView() ;

//make sure this element is visible only if it's not already
document . images[0] .scrollIntoViewIfNeeded() ;

//scroll the body back up one page
document .body.scrollByPages (-1);

Because scrollIntoView () is the only method supported in all browsers, this is typically the only
one used.

The children Property

The differences in how IE and other browsers interpret white space in text nodes led to the creation of
the children property. The children property is an HTMLCollection that contains only an element’s
child nodes that are also elements. Otherwise the children property is the same as childNodes and
may contain the same items when an element has only elements as children. The children property is
accessed as follows:

298

Chapter 10: The Document Object Model

var childCount = element.children.length;
var firstChild = element.children[O0];

The children collection is supported in all browsers except Firefox. IE also returns comments in the
children collection.

The contains() Method

It’s often necessary to determine if a given node is a descendant of another. IE first introduced the
contains () method as a way of providing this information without necessitating a walk up the DOM
document tree. The contains () method is called on the ancestor node from which the search should
begin and accepts a single argument, which is the suspected descendant node. If the node exists as a
descendant of the root node, the method returns true; otherwise it returns false. Here is an example:

alert (document .documentElement.contains (document .body)) ; //true

This example tests to see if the <body> element is a descendant of the <html> element, which returns
true in all well-formed HTML pages. The contains () method is supported in IE, Safari 3 and later,
Opera 8 and later, and Chrome. The method exists in Safari 2.x, but it doesn’t work properly. As a result,
browser detection is necessary to determine whether the method is safe to use in Safari.

Firefox does not support the contains () method; however, it offers an alternative in the DOM Level 3
compareDocumentPosition () method (Opera 9.5 and later also supports it). This method determines
the relationship between two nodes and returns a bitmask indicating the relationship. The values for the
bitmask are as shown in the following table.

Mask Relationship between Nodes
1 Disconnected (the given node is not in the document)
2 Precedes (the given node appears in the DOM tree prior to the reference node)
4 Follows (the given node appears in the DOM tree after the reference node)
8 Contains (the given node is an ancestor of the reference node)
16 Is contained by (the given node is a descendant of the reference node)

To mimic the contains () method, the 16 mask is the one of interest. The result of
compareDocumentPosition () can be bitwise ANDed to determine if the reference node contains the
given node. Here is an example:

var result = document.documentElement.compareDocumentPosition (document.body) ;
alert(!!(result & 16));

When this code is executed, the result becomes 20 (4 for “follows” plus 16 for “is contained by”).

Applying a bitwise mask of 16 to the result returns a non-zero number, and the two NOT operators
convert that value into a Boolean.

299

Chapter 10: The Document Object Model

A generic contains function can be created with a little help using browser and capability detection, as
shown here:

function contains(refNode, otherNode) {

if (typeof refNode.contains == "function" &&
(!client.engine.webkit || client.engine.webkit >= 522)){
return refNode.contains (otherNode) ;
} else if (typeof refNode.compareDocumentPosition == "function") {
return !! (refNode.compareDocumentPosition(otherNode) & 16);
} else {
var node = otherNode.parentNode;
do {
if (node === refNode) {
return true;
} else {

node = node.parentNode;
}
} while (node !'== null);
return false;

}

This function combines three methods of determining if a node is a descendant of another. The first
argument is the reference node, and the second argument is the node to check for. In the function body,
the first check is to see if the contains () method exists on refNode (capability detection). This part of
the code also checks the version of WebKit being used. If the function exists and it’s not WebKit
(!client.engine.webkit), then the code can proceed. Likewise, if the browser is WebKit and at least
Safari 3 (WebKit 522 and higher) then the code can proceed. WebKit less than 522 has a contains ()
method that doesn’t work properly.

Next is a check to see if the compareDocumentPosition () method exists, and the final part of the
function walks up the DOM structure from otherNode, recursively getting the parentNode and
checking to see if it’s equal to refNode. At the very top of the document tree, parentNode will be null
and the loop will end. This is the fallback strategy for older versions of Safari.

Content Manipulation

Although the DOM gives unprecedented access to all parts of an HTML document, common operations
such as inserting text and HTML can take multiple lines of code to accomplish. IE 4 first introduced
innerText,innerHTML, outerText, and outerHTML as properties of all elements to insert and modify
code in an HTML page with a single command.

The innerText Property

The innerText property works with all text content contained within an element, regardless of how
deep in the subtree the text exists. When used to read the value, innerText concatenates the values of
all text nodes in the subtree in depth-first order. When used to write the value, innerText removes all
children of the element and inserts a text node containing the given value. Consider the following
HTML code:

300

Chapter 10: The Document Object Model

<div id="content">
<p>This 1s a paragraph with a list following it.</p>

Item 1</1i>
Ttem 2</1i>
Item 3</1i>

</div>

For the <div> element in this example, the innerText property returns the following string:

This is a paragraph with a list following it.
Item 1
Item 2
Item 3

Note that different browsers treat white space in different ways, so the formatting may or may not
include the indentation in the original HTML code.

Using the innerText property to set the contents of the <div> element is as simple as this single line
of code:

div.innerText = "Hello world!";
After executing this line of code, the HTML of the page is effectively changed to the following:

<div id="content">Hello world!</div>
Setting innerText removes all of the child nodes that existed before, completely changing the DOM
subtree. Additionally, setting innerText encodes all HTML syntax characters (less-than, greater-than,
quotation marks, and ampersands) that may appear in the text. Here is an example:

div.innerText = "Hello & welcome, \"reader\"!";
The result of this operation is as follows:

<div id="content">Hello & welcome, "reader"!</div>
Setting innerText can never result in anything other than a single text node as the child of the
container, so the HTML-encoding of the text must take place in order to keep to that single text node.
The innerText property is also useful for stripping out HTML tags. By setting the innerText equal
to the innerText, as shown here, all HTML tags are removed:

div.innerText = div.innerText;

Executing this code replaces the contents of the container with just the text that exists already.

The innerText property is supported in IE, Safari, Opera, and Chrome. Firefox does not support
innerText, but it supports an equivalent property called textContent. The textContent property is

301

Chapter 10: The Document Object Model

specified in DOM Level 3 and is also supported by Safari, Opera, and Chrome. For cross-browser
compatibility, it’s helpful to use functions that check which property is available, as follows:

function getInnerText (element) {
return (typeof element.textContent == "string") ?
element.textContent : element.innerText;

}

function setInnerText (element, text) {

if (typeof element.textContent == "string") {
element.textContent = text;

} else {
element.innerText = text;

}

Each of these methods expects an element to be passed in. Then the element is checked to see if it has
the textContent property. If it does, then the typeof element.textContent should be "string".
If textContent is not available, each function uses innerText. These can be called as follows:

setInnerText (div, "Hello world!");
alert (getInnerText (div)) ; //"Hello world!"

Using these functions ensures the correct property is used based on what is available in the browser.

The innerHTML Property

The innerHTML property is similar to the innerText property in many ways. When used in read mode,
innerHTML returns the HTML representing all of the child nodes, including elements, comments, and
text nodes. When used in write mode, innerHTML completely replaces all of the child nodes in the
element with a new DOM subtree based on the specified value. The primary difference between
innerHTML and innerText is that innerHTML deals with HTML strings, whereas innerText deals with
simple text strings. Consider the following HTML code:

<div id="content">
<p>This is a paragraph with a list following it.</p>

Item 1</1i>
Item 2</1i>
Item 3</1i>

</div>

For the <div> element in this example, the innerHTML property returns the following string:

<p>This is a paragraph with a list following it.</p>

Item 1</1i>

Ttem 2</1i>

Item 3</1i>

302

Chapter 10: The Document Object Model

The exact text returned from innerHTML differs from browser to browser. IE and Opera tend to convert
all tags to uppercase, whereas Safari, Chrome, and Firefox return HTML in the way it is specified in the
document, including white space and indentation. You cannot depend on the returned value of
innerHTML being exactly the same from browser to browser.

When used in write mode, innerHTML parses the given string into a DOM subtree and replaces all of the
existing child nodes with it. Because the string is considered to be HTML, all tags are converted into
elements in the standard way that the browser handles HTML (again, this differs from browser to
browser). Setting simple text without any HTML tags, as shown here, acts the same as innerText:

div.innerHTML = "Hello world!";

Setting innerHTML to a string containing HTML behaves quite differently. Where innerText escaped
HTML syntax characters, innerHTML parses them. Consider the following example:

div.innerHTML = "Hello & welcome, \"reader\"!";
The result of this operation is as follows:
<div id="content">Hello & welcome, "reader"!</div>

After setting innerHTML, you can access the newly created nodes as you would any other nodes in the
document.

Setting innerHTML causes the HTML string to be parsed by the browser into an appropriate DOM
tree. This means that setting innerHTML and then reading it back typically results in a different string
being returned. This is because the returned string is the result of serializing the DOM subtree that was
created for the original HTML string.

There are some limitations to innerHTML. For one, <script> elements cannot be executed when
inserted via innerHTML in most browsers. IE is the only browser that allows this, but only as long as the
defer attribute is specified and the <script> element is preceded by what Microsoft calls a scoped
element. The <script> element is considered a NoScope element, which more or less means that it has no
visual representation on the page, like a <style> element or a comment. IE strips out all NoScope
elements from the beginning of strings inserted via innerHTML, which means the following won’t work:

div.innerHTML = "<script defer>alert('hi');</scr" + "ipt>"; //won't work
In this case, the innerHTML string begins with a NoScope element, so the entire string becomes empty.

To allow this script to work appropriately, it must be preceded by a scoped element, such as a text node
or an element without a closing tag such as <input>. The following lines will all work:

div.innerHTML = "_<script defer>alert('hi');</scr" + "ipt>";
div.innerHTML = "<div> </div><script defer>alert('hi');</scr" + "ipt>";
div.innerHTML = "<input type=\"hidden\"><script defer>alert('hi');</scr" + "ipt>";

The first line results in a text node being inserted immediately before the <script> element. You may
need to remove this after the fact so as not to disrupt the flow of the page. The second line is a similar
approach, using a <div> element with a nonbreaking space. An empty <div> alone won't do the trick; it
must contain some content that will force a text node to be created. Once again, the first node may need

303

Chapter 10: The Document Object Model

to be removed to avoid layout issues. The third line uses a hidden <input> field to accomplish the same
thing. Since it doesn’t affect the layout of the page, this may be the optimal case for most situations.

In most browsers, the <style> element causes similar problems with innerHTML. Opera 9 and later as
well as Firefox 2 and later support the insertion of <style> elements using innerHTML in the exact way
you’d expect, as shown here:

div.innerHTML = "<style type=\"text/css\">body {background-color: red; }</style>";

IE and Safari ignore the <style> element. In IE, <style> is yet another NoScope element, so it must be
preceded by a scoped element such as this:

div.innerHTML = "_<style type=\"text/css\">body {background-color: red; }</style>";
div.removeChild(div.firstChild);

Safari and Chrome continue to ignore the <style> element because it’s not attached to the <head>
element. So, to make this work in all four browsers, the following code must be used:

//Opera, Firefox, and IE
div.innerHTML = "_<style type=\"text/css\">body {background-color: red; }</style>";
div.removeChild (div.firstChild) ;

//Safari and Chrome
document .getElementsByTagName ("head") [0] .appendChild (div.firstChild) ;

When you add the newly created <style> element to the <head>, Safari and Chrome honor the new
style information.

The innerHTML property is not available on all elements. The following elements do not support
innerHTML: <col>, <colgroup>, <frameset>, <head>, <html>, <style>, <table>, <tbody>,
<thead>, <tfoot>, <title>, and <tr>.

Firefox’s support of innerHTML is stricter in XHTML documents served
with the application/xhtml+xml content type. When using innerHTML
in XHTML documents, you must specify well-formed XHTML code. If the
code is not well-formed, setting innerHTML fails silently.

Whenever you're using innerHTML to insert HTML from a source external to your code, it’s important to
sanitize the HTML before passing it through to innerHTML. IE 8 added the window. toStaticHTML () method
for this purpose. This method takes a single argument, an HTML string, and returns a sanitized version

that has all script nodes and script event-handler attributes removed from the source. Following is an example:

var text = "Click Me";
var sanitized = window.toStaticHTML (text) ; //IE 8 only
alert (sanitized) ; //"Click Me"

This example runs an HTML link string through tostaticHTML (). The sanitized text no longer has the
onclick attribute present. Though IE 8 is the only browser with this native functionality, it is still
advisable to be careful when using innerHTML and inspect the text manually before inserting it, if possible.

304

Chapter 10: The Document Object Model

The outerText Property

The outerText property works in the same way as innerText except that it includes the node on
which it’s called. For reading text values, outerText and innerText essentially behave in the exact
same way. In writing mode, however, outerText behaves very differently. Instead of replacing just the
child nodes of the element on which it’s used, outerText actually replaces the entire element, including
its child nodes. Consider the following:

div.outerText = "Hello world!";
This single line of code is equivalent to the following two lines:

var text = document.createTextNode ("Hello world!");
div.parentNode.replaceChild(text, div);

Essentially, the new text node completely replaces the element on which outerText was set. After that
point in time, the element is no longer in the document and cannot be accessed.

The outerText property is supported by IE, Safari, Opera, and Chrome. This property is typically not
used since it modifies the element on which it is accessed. It is recommended to avoid it whenever
possible.

The outerHTML Property

The outerHTML property is to innerHTML what outerText is to innerText. When outerHTML is called
in read mode, it returns the HTML of the element on which it is called, as well as its child nodes. When
called in write mode, outerHTML replaces the node on which it is called with the DOM subtree created
from parsing the given HTML string. Consider the following HTML code:

<div id="content">
<p>This is a paragraph with a list following it.</p>

Item 1</1i>
Item 2</1i>
Item 3</1i>

</div>

When outerHTML is called on the <div> in this example, the same code is returned, including the code
for the <div>. Note that there may be differences based on how the browser parses and interprets the
HTML code (these are the same differences you’ll notice when using innerHTML).
Use outerHTML to set a value in the following manner:

div.outerHTML = "<p>This is a paragraph.</p>";

This code performs the same operation as the following DOM code:

var p = document.createElement ("p");
p.appendChild (document.createTextNode ("This is a paragraph."));
div.parentNode.replaceChild(p, div);

305

Chapter 10: The Document Object Model

The new <p> element replaces the original <div> element in the DOM tree.

The outerHTML property is supported by IE, Safari, Opera, and Chrome. As with outerText, this
property is used very rarely since it modifies the element on which it is accessed. It is recommended to
avoid it whenever possible.

Memory and Performance Issues

Replacing child nodes using innerText, innerHTML, outerText, or outerHTML may cause memory
problems in browsers, especially IE. The problem occurs when event handlers or other JavaScript objects
are assigned to subtree elements that are removed. If an element has an event handler (or a JavaScript
object as a property) and one of these properties is used in such a way that the element is removed from
the document tree, the binding between the element and the event handler remains in memory. If this is
repeated frequently, memory usage increases for the page. When using these four properties, it’s best to
manually remove all event handlers and JavaScript object properties on elements that are going to be
removed (event handlers are discussed further in Chapter 12).

Using these properties does have an upside, especially when using innerHTML. Generally speaking,
inserting a large amount of new HTML is more efficient through innerHTML than through multiple
DOM operations to create nodes and assign relationships between them. This is because an HTML
parser is created whenever a value is set to innerHTML (or outerHTML). This parser runs in browser-
level code (often written in C++), which is must faster than JavaScript. That being said, the creation and
destruction of the HTML parser does have some overhead, so it’s best to limit the number of times you
set innerHTML or outerHTML. For example, the following creates a number of list items using
innerHTML:

for (var i=0, len=values.length; i < len; i++){
ul.innerHTML += "<1li>" + values[i] + "</1li>"; //avoid!!

}

This code is inefficient, because as it sets innerHTML once each time through the loop. Further, this code

is reading innerHTML each time through the loop, meaning that innerHTML is being accessed twice each
time through the loop. It’s best to build up the string separately and assign it using innerHTML just once
at the end, like this:

var itemsHtml = "";

for (var i=0, len=values.length; i < len; i++){
itemsHtml += "<1li>" + values[i] + "</1li>";

}

ul.innerHTML = itemsHtml;

This example is more efficient, limiting the use of innerHTML to one assignment.

306

Chapter 10: The Document Object Model

Working with the DOM

In many cases, working with the DOM is fairly straightforward, making it easy to re-create with
JavaScript what normally would be created using HTML code. There are, however, times when using the
DOM is not as simple as it may appear. Browsers are filled with hidden gotchas and incompatibilities
that make coding certain parts of the DOM more complicated than coding its other parts.

Dynamic Scripts

The <script> element is used to insert JavaScript code into the page, using either the src attribute to
include an external file or by including text inside the element itself. Dynamic scripts are those that don’t
exist when the page is loaded but are included later by using the DOM. As with the HTML element,
there are two ways to do this: pulling in an external file or inserting text directly.

Dynamically loading an external JavaScript file works as you would expect. Consider the following
<script> element:

<script type="text/javascript" src="client.js"></script>

This <script> element includes the text for the Chapter 9 client-detection script. The DOM code to
create this node is as follows:

var script = document.createElement ("script");
script.type = "text/javascript";

script.src = "client.js";

document .body.appendChild(script) ;

As you can see, the DOM code exactly mirrors the HTML code that it represents. Note that the external
file is not downloaded until the <script> element is added to the page on the last line. The element
could be added to the <head> element as well, though this has the same effect. This process can be
generalized into the following function:

function loadScript (url) {
var script = document.createElement ("script");
script.type = "text/javascript";
script.src = url;
document .body.appendChild(script) ;
}

This function can now be used to load external JavaScript files via the following call:
loadScript("client.js");
Once loaded, the script is fully available to the rest of the page. This leaves only one problem: how do you

know when the script has been fully loaded? Unfortunately, there is no standard way to handle this. Some
events are available depending on the browser being used, as discussed in Chapter 12.

307

Chapter 10: The Document Object Model

The other way to specify JavaScript code is inline, as in this example:

<script type="text/javascript">
function sayHi () {
alert("hi");
}
</script>

Using the DOV, it would be logical for the following to work:

var script = document.createElement ("script");

script.type = "text/javascript";

script.appendChild (document.createTextNode ("function sayHi(){alert('hi');}"));
document .body.appendChild(script) ;

This works in Firefox, Safari, Chrome, and Opera. In IE, however, this causes an error. IE treats
<script> elements as special and won't allow regular DOM access to child nodes. A property called

text exists on all <script> elements that can be used specifically to assign JavaScript code to, as in the
following example:

var script = document.createElement ("script");
script.type = "text/javascript";

script.text = "function sayHi(){alert('hi');}";
document .body .appendChild (script) ;

This updated code works in IE, Firefox, Opera, and Safari 3.0 and later. Safari versions prior to 3.0 don’t
support the text property correctly; however, it will allow the assignment of code using the text-node
technique. If you need to do this in an earlier Safari version, the following code can be used:

var script = document.createElement ("script");

script.type = "text/javascript";
var code = "function sayHi(){alert('hi');}";
try {

script.appendChild (document.createTextNode (" "code)) ;
} catch (ex){
script.text = ""code;

}

document .body.appendChild(script) ;

Here, the standard DOM text-node method is attempted first, because it works in everything but IE,
which will throw an error. If that line causes an error, that means it’s IE, and the text property must be
used. This can be generalized into the following function:

function loadScriptString(code) {
var script = document.createElement ("script");
script.type = "text/javascript";
try {
script.appendChild(document.createTextNode (code)) ;

308

Chapter 10: The Document Object Model

} catch (ex){
script.text = code;

}
document .body .appendChild(script) ;

The function is called as follows:
loadScriptString ("function sayHi () {alert('hi');}");

Code loaded in this manner is executed in the global scope and is available immediately after the script
finishes executing. This is essentially the same as passing the string into eval () in the global scope.

Dynamic Styles

CSS styles are included in HTML pages using one of two elements. The <1ink> element is used to
include CSS from an external file, whereas the <style> element is used to specify inline styles. Similar
to dynamic scripts, dynamic styles don’t exist on the page when it is loaded initially; rather, they are
added after the page has been loaded.
Consider this typical <1ink> element:

<link rel="stylesheet" type="text/css" href="styles.css">

This element can just as easily be created using the following DOM code:

var link = document.createElement ("link") ;

link.rel = "stylesheet";
link.type = "text/css";
link.href = "styles.css";

var head = document.getElementsByTagName ("head") [0];
head.appendChild(link) ;

This code works in all major browsers without any issue. Note that <1ink> elements should be added to
the <head> instead of the body for this to work properly in all browsers. The technique can be
generalized into the following function:

function loadStyles(url) {
var link = document.createElement ("link");
link.rel = "stylesheet";
link.type = "text/css";
link.href = url;
var head = document.getElementsByTagName ("head") [0];
head.appendChild(link) ;

The loadstyles () function can then be called like this:

loadStyles("styles.css");

309

Chapter 10: The Document Object Model

Loading styles via an external file is asynchronous, so the styles will load out of order with the JavaScript
code being executed. Typically it’s not necessary to know when the styles have been fully loaded; however,
there are some techniques to accomplish this using events. These techniques are discussed in Chapter 12.

The other way to define styles is using the <style> element and including inline CSS, such as this:

<style type="text/css">
body {

background-color: red;
}
</style>

Logically, the following DOM code should work:

var style = document.createElement ("style");

style.type = "text/css";

style.appendChild (document.createTextNode ("body{background-color:red}"));
var head = document.getElementsByTagName ("head") [0];
head.appendChild(style) ;

This code works in Firefox, Safari, Chrome, and Opera, but not in IE. IE treats <style> nodes as special,
similar to <script> nodes, and so won’t allow access to its child nodes. In fact, IE it throws the same
error as when you try to add a child node to a <script> element. The workaround for IE is to access the
element’s styleSheet property, which in turn has a property called cssText that may be set to CSS
code (both of these properties are discussed further in the next chapter), as this code sample shows:

var style = document.createElement ("style");
style.type = "text/css";
try{
style.appendChild (document.createTextNode ("body{background-color:red}"));
} catch (ex){
style.styleSheet.cssText = "body{background-color:red}";
}
var head = document.getElementsByTagName ("head") [0];
head.appendChild(style) ;

Similar to the code for adding inline scripts dynamically, this new code uses a try-catch statement to
catch the error that IE throws, and then responds by using the IE-specific way of setting styles. The
generic solution is as follows:

function loadStyleString(css) {
var style = document.createElement ("style");
style.type = "text/css";
try{
style.appendChild(document.createTextNode (css)) ;
} catch (ex){
style.styleSheet.cssText = css;
}
var head = document.getElementsByTagName ("head") [0];
head.appendChild(style) ;

310

Chapter 10: The Document Object Model

The function can be called as follows:
loadStyleString ("body{background-color:red}") ;

Styles specified in this way are added to the page instantly, so changes should be seen immediately.

If you're coding for IE specifically, be careful using styleSheet.cssText. If
you reuse the same <style> element and try to set this property more than
once, it has a tendency to crash the browser. This is a bug in the browser that
hopefully will be fixed in the future.

Manipulating Tables

One of the most complex structures in HTML is the <table> element. Creating new tables typically
means numerous tags for table rows, table cells, table headers, and so forth. Due to this complexity,
using the core DOM methods to create and change tables can require a large amount of code. Suppose
you want to create the following HTML table using the DOM:

<table border="1" width="100%">
<tbody>
<tr>
<td>Cell 1,1</td>
<td>Cell 2,1</td>
</tr>
<tr>
<td>Cell 1,2</td>
<td>Cell 2,2</td>
</tr>
</tbody>
</table>

To accomplish this with the core DOM methods, the code would look something like this:

//create the table

var table = document.createElement ("table");
table.border = 1;

table.width = "100%";

//create the tbody
var tbody = document.createElement ("tbody") ;
table.appendChild (tbody) ;

//create the first row

var rowl = document.createElement ("tr");
tbody.appendChild (rowl) ;

var celll 1 = document.createElement ("td");
celll_1.appendChild(document.createTextNode ("Cell 1,1"));
rowl.appendChild(celll_1);

var cell2_1 = document.createElement ("td");
cell2_1.appendChild(document.createTextNode ("Cell 2,1"));

311

Chapter 10: The Document Object Model

rowl .appendChild(cell2_1);

//create the second row

var row2 = document.createElement("tr");
tbody.appendChild (row2) ;

var celll_2 = document.createElement ("td");
celll_2.appendChild(document.createTextNode("Cell 1,2"));
row2 .appendChild(celll_2);

var cell2_ 2= document.createElement ("td");
cell2_2.appendChild(document.createTextNode ("Cell 2,2"));
row2 .appendChild(cell2_2);

//add the table to the document body
document .body.appendChild(table) ;

This code is quite verbose and a little hard to follow. To facilitate building tables, the HTML DOM adds
several properties and methods to the <table>, <tbody>, and <tr> elements.

The <table> element adds the following;:

Q

O 000000

O 00 oo

caption — Pointer to the <caption> element (if it exists)
tBodies — An HTMLCollection of <tbody> elements
tFoot — Pointer to the <t foot> element (if it exists)
tHead — Pointer to the <thead> element (if it exists)

rows — An HTMLCollection of all rows in the table

createTHead () — Creates a <thead> element, places it into the table, and returns a reference
createTFoot () — Creates a <t foot> element, places it into the table, and returns a reference
createCaption () — Creates a <caption> element, places it into the table, and returns a
reference

deleteTHead () — Deletes the <thead> element

deleteTFoot () — Deletes the <t foot> element

deleteCaption () — Deletes the <caption> element

deleteRow (pos) — Deletes the row in the given position

insertRow (pos) — Inserts a row in the given position in the rows collection

The <tbody> element adds the following;:

312

rows — An HTMLCollection of rows in the <tbody> element
deleteRow (pos) — Deletes the row in the given position

insertRow (pos) — Inserts a row in the given position in the rows collection and returns a
reference to the new row

Chapter 10: The Document Object Model

The <tr> element adds the following:

0 cells— AnHTMLCollection of cells in the <tr> element
Q deleteCell (pos) — Deletes the cell in the given position

0 insertCell (pos) — Inserts a cell in the given position in the cells collection and returns a
reference to the new cell

These properties and methods can greatly reduce the amount of code necessary to create a table. For
example, the previous code can be rewritten using these methods as follows (the highlighted code is
updated):

//create the table

var table = document.createElement ("table");
table.border = 1;

table.width = "100%";

//create the tbody
var tbody = document.createElement ("tbody") ;
table.appendChild (tbody) ;

//create the first row

tbody.insertRow (0) ;

tbody.rows[0] .insertCell (0) ;

tbody.rows[0] .cells[0] .appendChild (document.createTextNode ("Cell 1,1"));
tbody.rows[0] .insertCell (1) ;

tbody.rows[0] .cells[1] .appendChild (document.createTextNode ("Cell 2,1"));

//create the second row

tbody.insertRow (1) ;

tbody.rows[1l].insertCell (0) ;

tbody.rows[1] .cells[0] .appendChild (document.createTextNode ("Cell 1,2"));
tbody.rows[1].insertCell (1) ;

tbody.rows[1l].cells[1].appendChild (document.createTextNode ("Cell 2,2"));

//add the table to the document body
document .body.appendChild(table) ;

In this code, the creation of the <table> and <tbody> elements remains the same. What has changed is
the section creating the two rows, which now makes use of the HTML DOM table properties and
methods. To create the first row, the insertRow () method is called on the <tbody> element with an
argument of 0, which indicates the position in which the row should be placed. After that point, the row
can be referenced by tbody . rows [0] because it is automatically created and added into the <tbody>
element in position 0.

Creating a cell is done in a similar way — by calling insertCell () on the <tr> element and passing in
the position in which the cell should be placed. The cell can then be referenced by tbody . rows [0]

.cells[0] because the cell has been created and inserted into the row in position 0.

Using these properties and methods to create a table makes the code much more logical and readable,
although technically both sets of code are correct.

313

Chapter 10: The Document Object Model

Using Nodelists

Understanding a NodeList object and its relatives, NamedNodeMap and HTMLCollection, is critical to a
good understanding of the DOM as a whole. Each of these collections is considered “live,” which is to
say that they are updated when the document structure changes such that they are always current with
the most accurate information. In reality, all NodeList objects are queries that are run against the DOM
document whenever they are accessed. For instance, the following results in an infinite loop:

var divs = document.getElementsByTagName ("div") ;

for (var i=0; i < divs.length; i++){
var div = document.createElement ("div") ;
document .body .appendChild(div) ;

}

The first part of this code gets an HTMLCollection of all <div> elements in the document. Since that
collection is “live,” any time a new <div> element is added to the page, it gets added into the collection.
Since the browser doesn’t want to keep a list of all the collections that were created, the collection is
updated only when it is accessed again. This creates an interesting problem in terms of a loop such as the
one in this example. Each time through the loop, the condition i < divs.length is being evaluated.
That means the query to get all <div> elements is being run. Because the body of the loop creates a new
<div> element and adds it to the document, the value of divs.length increments each time through
the loop; thus i will never equal divs. length since both are being incremented.

Any time you want to iterate over a NodeList, it’s best to initialize a second variable with the length
and then compare the iterator to that variable, as shown in the following example:

var divs = document.getElementsByTagName ("div") ;

for (var i=0, lens=divs.length; i < len; i++){
var div = document.createElement ("div");
document .body.appendChild(div) ;

In this example, a second variable, 1en, is initialized. Since 1en contains a snapshot of divs.length at
the time the loop began, it prevents the infinite loop that was experienced in the previous example. This
technique has been used through this chapter to demonstrate the preferred way of iterating over
NodeList objects.

Generally speaking, it is best to limit the number of times you interact with a NodeList. Since a query is
run against the document each time, try to cache frequently used values retrieved from a NodeList.

Summary

The Document Object Model (DOM) is a language-independent API for accessing and manipulating
HTML and XML documents. DOM Level 1 deals with representing HTML and XML documents as a
hierarchy of nodes that can be manipulated to change the appearance and structure of the underlying
documents using JavaScript.

314

Chapter 10: The Document Object Model

The DOM is made up of a series of node types, as described here:

Q The base node type is Node, which is an abstract representation of an individual part of a
document; all other types inherit from Node.

Q The Document type represents an entire document and is the root node of a hierarchy. In
JavaScript, the document object is an instance of Document, which allows for querying and
retrieval of nodes in a number of different ways.

QO AnElement node represents all HTML or XML elements in a document and can be used to
manipulate their contents and attributes.

Q Other node types exist for text contents, comments, document types, the CDATA section, and
document fragments.

Although the DOM allows significant access to a document’s structure, browsers have extended the
DOM to handle common use cases. Perhaps the most popular extension to the DOM is the innerHTML
property, which allows access to the HTML contained in an element and sets the HTML to be something
else. Originally created by Microsoft, this property is now common in all major browsers that support
the DOM (IE, Safari, Firefox, Chrome, and Opera).

DOM access works as expected in most cases, although there are often complications when working
with <script> and <style> elements. Since these elements contain scripting and stylistic information,
respectively, they are often treated differently in browsers than other elements. These differences create
issues when using these elements with innerHTML as well as when creating new elements.

Perhaps the most important thing to understand about the DOM is how it affects overall performance.
DOM manipulations are some of the most expensive operations that can be done in JavaScript, with
NodeList objects being particularly troublesome. NodeList objects are “live,” meaning that a query is
run every time the object is accessed. Due to these issues, it is best to minimize the number of DOM
manipulations.

315

11

DOM Levels 2 and 3

The first level of the DOM focuses on defining the underlying structure of HTML and XML
documents. DOM Levels 2 and 3 build upon this structure to introduce more interactivity and support
for more advanced XML features. As a result, DOM Levels 2 and 3 actually consist of several modules
that, although related, describe very specific subsets of the DOM. These modules are as follows:

Q

a
a
a

O

DOM Core — Builds upon the Level 1 core, adding methods and properties to nodes
DOM Views — Defines different views for a document based on stylistic information
DOM Events — Explains how to tie interactivity to DOM documents using events

DOM Style — Defines how to programmatically access and change CSS styling
information

DOM Traversal and Range — Introduces new interfaces for traversing a DOM document
and selecting specific parts of it

DOM HTML — Builds upon the Level 1 HTML, adding properties, methods, and new
interfaces

This chapter explores each of these modules except for DOM Events, which are covered fully in
Chapter 12.

DOM Level 3 also contains the XPath module and the Load and Save module. These
are discussed in Chapter 15.

DOM Changes

The purpose of the DOM Levels 2 and 3 Core is to expand the DOM API to encompass all of the
requirements of XML and to provide for better error handling and feature detection. For the most
part, this means supporting the concept of XML namespaces. DOM Level 2 Core doesn’t introduce
any new types; it simply augments the types defined in DOM Level 1 to include new methods and
properties. DOM Level 3 Core further augments the existing types and introduces several new ones.

Chapter 11: DOM Levels 2 and 3

Similarly, DOM Views and HTML augment DOM interfaces, providing new properties and methods.
These two modules are fairly small and so are grouped in with the Core to discussed changes to
fundamental JavaScript objects. You can determine which browsers support these parts of the DOM
using the following code:

"Core", "2.0");

var supportsDOM2Core = document.implementation.hasFeature)
"Core", n3'0u);
)

var supportsDOM3Core = document.implementation.hasFeature

(
(

var supportsDOM2HTML = document.implementation.hasFeature ("HTML", "2.0");
var supportsDOM2Views = document.implementation.hasFeature("Views", "2.0");
var supportsDOM2XML = document.implementation.hasFeature("XML", "2.0");

Internet Explorer does not support any of DOM Level 2 or 3. Other browsers have
varying levels of support. This chapter covers only the parts of the DOM that have
been implemented by browsers; parts that have yet to be implemented by a browser
are not mentioned.

XML Namespaces

XML namespaces allow elements from different XML-based languages to be mixed together in a single,
well-formed document without fear of element name clashes. Technically, XML namespaces are not
supported by HTML but are supported in XHTML; therefore, the examples in this section are in XHTML.

Namespaces are specified using the xmlns attribute. The namespace for XHTML is http: / /www
.w3.0rg/1999/xhtml and should be included on the <html> element of any well-formed XHTML
page, as shown in the following example:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Example XHTML page</title>
</head>
<body>
Hello world!
</body>
</html>

For this example, all elements are considered to be part of the XHTML namespace by default. You can
explicitly create a prefix for an XML namespace using xmlns, followed by a colon, followed by the
prefix, as in this example:

<xhtml:html xmlns:xhtml="http://www.w3.0rg/1999/xhtml">
<xhtml :head>
<xhtml:title>Example XHTML page</xhtml:title>
</xhtml:head>
<xhtml : body>
Hello world!
</xhtml :body>
</xhtml:html>

318

Chapter 11: DOM Levels 2 and 3

Here, the namespace for XHTML is defined with a prefix of xhtml, requiring all XHTML elements to
begin with that prefix. Attributes may also be namespaced to avoid confusion between languages, as
shown in the following example:

<xhtml:html xmlns:xhtml="http://www.w3.0rg/1999/xhtml">
<xhtml :head>
<xhtml:title>Example XHTML page</xhtml:title>
</xhtml:head>
<xhtml :body xhtml:class="home">
Hello world!
</xhtml :body>
</xhtml:html>

The class attribute in this example is prefixed with xhtml. Namespacing isn’t really necessary when
only one XML-based language is being used in a document; it is, however, very useful when mixing two
languages together. Consider the following document containing both XHTML and SVG:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Example XHTML page</title>
</head>
<body>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1"
viewBox="0 0 100 100" style="width:100%; height:100%">
<rect x="0" y="0" width="100" height="100" style="fill:red" />
</svg>
</body>
</html>

In this example, the <svg> element is indicated as foreign to the containing document by setting its own
namespace. All children of the <svg> element, as well as all attributes of the elements, are considered to
be in the http://www.w3.0rg/2000/svg namespace. Even though the document is technically an
XHTML document, the SVG code is considered valid because of the use of namespaces.

The interesting problem with a document such as this is what happens when a method is called on the
document to interact with nodes in the document. When a new element is created, which namespace
does it belong to? When querying for a specific tag name, what namespaces should be included in the
results? DOM Level 2 Core answers these questions by providing namespace-specific versions of most
DOM Level 1 methods.

Changes to Node

The Node type evolves in DOM Level 2 to include the following namespace-specific properties:

0 localName — The node name without the namespace prefix
QO namespaceURI — The namespace URI of the node or null if not specified

Q prefix — The namespace prefix or null if not specified

319

Chapter 11: DOM Levels 2 and 3

When a node uses a namespace prefix, the nodeName is equivalent to prefix + ":" + localName.
Consider the following example:

<html xmlns="http://www.w3.o0rg/1999/xhtml">
<head>
<title>Example XHTML page</title>
</head>
<body>
<s:svg xmlns:s="http://www.w3.0rg/2000/svg" version="1.1"
viewBox="0 0 100 100" style="width:100%; height:100%">
<s:rect x="0" y="0" width="100" height="100" style="fill:red" />
</s:svg>
</body>
</html>

For the <html> element, the 1ocalName and tagName is "html", the namespaceURI is "http: //www
.w3.0rg/1999/xhtml", and the prefix is null. For the <s:svg> element, the localName is “svg”, the
tagName is "s:svg", the namespaceURTI is "http://www.w3.0rg/2000/svg", and the prefixis "s"

DOM Level 3 goes one step further and introduces the following methods to work with namespaces:
0 isDefaultNamespace (namespaceURI) — Returns true when the specified namespaceURT is
the default namespace for the node.
a lookupNamespaceURI (prefix) — Returns the namespace URI for the given prefix.

QO lookupPrefix (namespaceURI) — Returns the prefix for the given namespaceURI.
In the previous example, the following code can be executed:

alert (document .body.isDefaultNamespace ("http://www.w3.0rg/1999/xhtml"); //true

//assume svg contains a reference to <s:svg>
alert (svg.lookupPrefix ("http://www.w3.0rg/2000/svg")); //"s"
alert (svg.lookupNamespaceURI("s")); //"http://www.w3.org/2000/svg"

These methods are primarily useful when you have a reference to a node without knowing its
relationship to the rest of the document.

Changes to Document

The Document type is changed in DOM Level 2 to include the following namespace-specific methods:
QO createElementNS (namespaceURI, tagName) — Createsa new element with the given
tagName as part of the namespace indicated by namespaceURI

a createAttributeNS (namespaceURI, attributeName) — Creates a new attribute node as
part of the namespace indicated by namespaceUR.

a getElementsByTagNameNS (namespaceURI, tagName) — Returns a NodeList of elements
with the given tagName that are also a part of the namespace indicated by namespaceURI

320

Chapter 11: DOM Levels 2 and 3

These methods are used by passing in the namespace URI of the namespace to use (not the namespace
prefix), as shown in the following example.

//create a new SVG element
var svg = document.createElementNS ("http://www.w3.0rg/2000/svg", "svg") ;

//create new attribute for a random namespace
var att = document.createAttributeNS("http://www.somewhere.com", "random");

//get all XHTML elements
var elems = document.getElementsByTagNameNS ("http://www.w3.0rg/1999/xhtml", "*");

The namespace-specific methods are necessary only when there are two or more namespaces in a given
document.

Changes to Element

The changes to Element in DOM Level 2 Core are mostly related to attributes. The following new
methods are introduced:

Q getAttributeNS (namespaceURI, localName) — Gets the attribute from the namespace
represented by namespaceURI and with a name of IocalName.

Q getAttributeNodeNS (namespaceURI, localName) — Gets the attribute node from the
namespace represented by namespaceURI and with a name of IocalName.

a getElement sByTagNameNS (namespaceURI, tagName) — Returns a NodeList of descendant
elements with the given tagName that are also a part of the namespace indicated by
namespaceURI.

Q hasAttributeNS (namespaceURI, localName) — Determines if the element has an attribute
from the namespace represented by namespaceURI and with a name of IocalName. Note: DOM
Level 2 Core also adds a hasAttribute () method for use without namespaces.

] removeAttributeNS (namespaceURI, localName) — Removes the attribute from the
namespace represented by namespaceURI and with a name of IocalName.

O setAttributeNS (namespaceURI, qualifiedName, value) — Sets the attribute from the
namespace represented by namespaceURI and with a name of qualifiedName equal to value.

O setAttributeNodeNS (attNode) — Sets the attribute node from the namespace represented
by namespaceURI.

These methods behave the same as their DOM Level 1 counterparts with the exception of the first
argument, which is always the namespace URL

Changes to NamedNodeMap

The NamedNodeMap type also introduces the following methods for dealing with namespaces. Since
attributes are represented by a NamedNodeMap, these methods mostly apply to attributes.

Q0 getNamedItemNS (namespaceURI, localName) — Gets the item from the namespace
represented by namespaceURI and with a name of JocalName

321

Chapter 11: DOM Levels 2 and 3

a removeNamedItemNS (namespaceURI, localName) — Removes the item from the namespace
represented by namespaceURI and with a name of IocalName

0 setNamedItemNS (node) — Adds node, which should have namespace information already
applied

These methods are rarely used, because attributes are typically accessed directly from an element.

Other Changes

There are some other minor changes made to various parts of the DOM in DOM Level 2 Core. These
changes don’t have to do with XML namespaces and are targeted more toward ensuring the robustness
and completeness of the API.

Changes to DocumentType

The DocumentType type adds three new properties: publicId, systemId, and internalSubset. The
first two of these properties represent data that is readily available in a doctype but were inaccessible
using DOM Level 1. Consider the following HTML doctype:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0org/TR/html4/strict.dtd">

In this doctype, the publicIdis "-//W3C//DTD HTML 4.01//EN" and the systemIdis "http://www
.w3.org/TR/html4/strict.dtd". Browsers that support DOM Level 2 should be able to run the
following JavaScript code:

alert (document.doctype.publicId) ;
alert (document .doctype.systemId) ;

Accessing this information is rarely, if ever, needed in web pages.

The internalSubset property accesses any additional definitions that are included in the doctype, as
shown in the following example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd"
[<!ELEMENT name (#PCDATA)>] >

For this code, document . doctype.internalSubset returns "<!ELEMENT name (#PCDATA)>"
Internal subsets are rarely used in HTML and are slightly more common in XML.

Changes to Document

The only new method on Document that is not related to namespaces is importNode (). The purpose of
this method is to take a node from a different document and import it into a new document so that it can
be added into the document structure. Remember, every node has an ownerDocument property that
indicates the document it belongs to. If a method such as appendchild() is called and a node with a
different ownerDocument is passed in, an error will occur. Calling importNode () on a node from

a different document returns a new version of the node that is owned by the appropriate document.

322

Chapter 11: DOM Levels 2 and 3

The importNode () method is similar to the cloneNode () method on an Element. It accepts two
arguments: the node to clone and a Boolean value indicating if the child nodes should also be copied.
The result is a duplicate of the node that is suitable for use in the document. Here is an example:

var newNode = document.importNode (oldNode, true); //import node and all children
document .body . appendChild (newNode) ;

This method isn’t used very often with HTML documents; it is used more frequently with XML
documents (discussed further in Chapter 15).

DOM Level 2 Views adds a property called defaultview, which is a pointer to the window (or frame)
that owns the given document. The Views specification doesn’t provide details about when other views
may be available, so this is the only property added. The defaultview property is supported in all
browsers except Internet Explorer (IE). There is an equivalent property called parentwindow that is
supported in IE, as well as Opera. Thus, to determine the owning window of a document, the following
code can be used:

var parentWindow = document.defaultView || document.parentWindow;

Aside from this one method and property, there are a couple of changes to the document

. implementation object specified in the DOM Level 2 Core in the form of two new methods:
createDocumentType () and createDocument (). The createDocumentType () method is used to
create new DocumentType nodes and accepts three arguments: the name of the doctype, the publicId,
and the systemId. For example, the following code creates a new HTML 4.01 Strict doctype:

var doctype = document.implementation.createDocumentType ("html",
"-//W3C//DTD HTML 4.01//EN",
"http://www.w3.0org/TR/html4/strict.dtd");

An existing document’s doctype cannot be changed, so createDocumentType () is useful only when
creating new documents, which can be done with createDocument (). This method accepts three
arguments: the namespaceURI for the document element, the tag name of the document element, and
the doctype for the new document. A new blank XML document can be created as shown in the
following example:

var doc = document.implementation.createDocument ("", "root", null);

This code creates a new document with no namespace and a document element of <root> with no
doctype specified. To create an XHTML document, the following code can be used:

var doctype = document.implementation.createDocumentType ("html",
" -//W3C//DTD XHTML 1.0 Strict//EN",
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd");

var doc = document.implementation.createDocument ("http://www.w3.0rg/1999/xhtml",
"html", doctype);

Here, a new XHTML document is created with the appropriate namespace and doctype. The document
has only the document element <html>; everything else must be added.

323

Chapter 11: DOM Levels 2 and 3

The DOM Level 2 HTML module also adds a method called createHTMLDocument () to document
.implementation. The purpose of this method is to create a complete HTML document, including the
<html>, <head>, <title>, and <body> elements. This method accepts a single argument, which is

the title of the newly created document (the string to go in the <title> element), and returns the new
HTML document as follows:

var htmldoc = document.implementation.createHTMLDocument ("New Doc") ;
alert (htmldoc.title); //"New Doc"
alert (typeof htmldoc.body) ; //"object"

The object created from a call to createHTMLDocument () is an instance of the HTMLDocument type, and
so has all of the properties and methods associated with it, including the title and body properties.
This method is supported only in Opera and Safari.

Changes to Node

The sole non-namespace-related change to the Node type is the addition of the isSupported () method.
Like the hasFeature () method on document . implementation that was introduced in DOM Level 1,
the isSupported () method indicates what the node is capable of doing. This method accepts the same
two arguments: the feature name and the feature version. When the feature is implemented and is
capable of being executed by the given node, isSupported () returns true. Here is an example:

if (document.body.isSupported ("HTML", "2.0")){
//do something only possible using DOM Level 2 HTML

This method is of limited usefulness and falls victim to the same issues surrounding hasFeature ()
in that implementations get to decide whether to return true or false for each feature. Capability
detection is a better approach for detecting whether or not a particular feature is available.

DOM Level 3 introduces two methods to help compare nodes: isSameNode () and isEqualNode ().
Each method accepts a single node as an argument and returns true if that node is the same as or equal
to the reference node. Two nodes are the same when they reference the same object. Two nodes are equal
when they are of the same type and have properties that are equal (nodeName, nodevalue, and so on),
and their attributes and childNodes properties are equivalent (containing equivalent values in the
same positions). Here is an example:

var divl = document.createElement ("div");
divl.setAttribute("class", "box");

var div2 = document.createElement ("div") ;

div2.setAttribute("class", "box");

alert (divl.isSameNode (divl)) ; //true
alert (divl.isEqualNode (div2)); //true
alert (divl.isSameNode (div2)) ; //false

Here, two <div> elements are created with the same attributes. The two elements are equivalent to one
another but are not the same.

324

Chapter 11: DOM Levels 2 and 3

DOM Level 3 also introduces methods for attaching additional data to DOM nodes. The setUserData ()
method assigns data to a node and accepts three arguments: the key to set, the actual data (which may be
of any data type), and a handler function. You can assign data to a node using the following code:

document .body.setUserData ("name", "Nicholas", function(){});

You can then retrieve the information using getUserData () and passing in the same key, as shown
here:

var value = document.body.getUserData ("name") ;

The handler function for setUserData () is called whenever the node with the data is cloned, removed,
renamed, or imported into another document and gives you the opportunity to determine what should
happen to the user data in each of those cases. The handler function accepts five arguments: a number
indicating the type of operation (1 for clone, 2 for import, 3 for delete, or 4 for rename), the data key, the
data value, the source node, and the destination node. The source node is null when the node is being
deleted, and the destination node is null unless the node is being cloned. You can then determine how
to store the data. Here is an example:

var div = document.createElement ("div") ;
div.setUserData ("name", "Nicholas", function(operation, key, value, src, dest){
if (operation == 1){
dest.setUserData (key, value);

)i

var newDiv = div.cloneNode (true) ;
alert (newDiv.getUserData ("name")) ; //"Nicholas"

Here, a <div> element is created and has some data assigned to it, including some user data. When the
element is cloned via cloneNode (), the handler function is called, and the data is automatically
assigned to the clone. When getUserData () is called on the clone, it returns the same value that

was assigned to the original.

At the time of this writing, Firefox is the only browser to have implemented
getUserData () and setUserData (). The methods don’t function in Firefox 2 even
though they are present, but they work fine in Firefox 3.

Changes to Frames

Frames and iframes, represented by HTMLFrameElement and HTMLIFrameElement, respectively, have a
new property in DOM Level 2 HTML called contentDocument. This property contains a pointer to

the document object representing the contents of the frame. Prior to this, there was no way to retrieve the
document object directly through the element; it was necessary to use the frames collection. This
property can be used as shown in the following example:

var iframe = document.getElementById("myIframe");
var iframeDoc = iframe.contentDocument; //won't work in IE

325

Chapter 11: DOM Levels 2 and 3

The contentDocument property is an instance of Document and can be used just like any other HTML
document, including all properties and methods. This property is supported in Opera, Firefox, Safari,
and Chrome. IE versions prior to 8 don’t support contentDocument on frames but do support a
property called contentWindow that returns the window object for the frame, which has a

document property. So, to access the document object for an iframe in all four browsers, the

following code can be used:

var iframe = document.getElementById("myIframe");
var iframeDoc = iframe.contentDocument || iframe.contentWindow.document;

The contentWindow property is available in all browsers.

Access to the document object of a frame or iframe is limited based on cross-domain
security restrictions. If you are attempting to access the document object of a frame
containing a page that is loaded from a different domain or subdomain, or with a
different protocol, doing so will throw an error.

Styles

Styles are defined in HTML in three ways: including an external style sheet via the <1ink/> element,
defining inline styles using the <style/> element, and defining element-specific styles using the style
attribute. DOM Level 2 Styles provides an API around all three of these styling mechanisms. You can
determine if the browser supports the DOM Level 2 CSS capabilities using the following code:

var supportsDOM2CSS = document.implementation.hasFeature("CSS", "2.0");
var supportsDOM2CSS2 = document.implementation.hasFeature("CSS2", "2.0");

Accessing Element Styles

Any HTML element that supports the style attribute also has a style property exposed in JavaScript.
The style object is an instance of CSSStyleDeclaration and contains all stylistic information specified
by the HTML sty1le attribute but no information about styles that have cascaded from either included or
inline style sheets. Any CSS property specified in the style attribute are represented as properties on the
style object. Since CSS property names use dash case (using dashes to separate words, such as
background-image), the names must be converted into camel case in order to be used in JavaScript. The
following table lists some common CSS properties and the equivalent property names on the style object.

CSS Property JavaScript Property
background-image style.backgroundImage
color style.color

display style.display
font-family style.fontFamily

326

Chapter 11: DOM Levels 2 and 3

For the most part, property names convert directly simply by changing the format of the property name.
The one CSS property that doesn’t translate directly is £1oat. Since float is a reserved word in
JavaScript, it can’t be used as a property name. The DOM Level 2 Style specification states that the
corresponding property on the style object should be cssFloat, which is supported in Firefox, Safari,
Opera, and Chrome. IE uses styleFloat instead.

Styles can be set using JavaScript at any time so long as a valid DOM element reference is available. Here
are some examples:

var myDiv = document.getElementById("myDiv") ;

//set the background color
myDiv.style.backgroundColor = "red";

//change the dimensions
myDiv.style.width = "100px";
myDiv.style.height = "200px";

//assign a border
myDiv.style.border = "lpx solid black";

When styles are changed in this manner, the display of the element is automatically updated.

When in standards mode, all measurements have to include a unit of measure. In
quirks mode, you can set style.width to be "20" and it will assume that you mean
“20px”; in standards mode, setting style.width to "20" will be ignored because it
has no unit of measure. In practice, it’s best to always include the unit of
measurement.

Styles specified in the style attribute can also be retrieved using the style object. Consider the
following HTML:

<div id="myDiv" style="background-color: blue; width: 10px; height: 25px"></div>

The information from this element’s style attribute can be retrieved via the following code:

alert (myDiv.style.backgroundColor) ; //"blue"
alert (myDiv.style.width); //"10px"
alert (myDiv.style.height) ; //"25px"

If no style attribute is specified on an element, the style object may contain some default values but
cannot give any accurate information about the styling of the element.

327

Chapter 11: DOM Levels 2 and 3

DOM Style Properties and Methods

The DOM Level 2 Style specification also defines several properties and methods on the style object.
These properties and methods provide information about the contents of the element’s style attribute
as well as enabling changes. They are as follows:

Q cssText — As described previously, provides access to the CSS code of the style attribute.

QO length — The number of CSS properties applied to the element.

0 parentRule — The CSSRule object representing the CSS information. The CSSRule type is
discussed in a later section.

0 getPropertyCSSvalue (propertyName) — Returns a CSSValue object containing the value of
the given property.

O

getPropertyPriority (propertyName) — Returns "important" if the given property is set
using ! important; otherwise it returns an empty string.

getPropertyValue (propertyName) — Returns the string value of the given property.
item(index) — Returns the name of the CSS property at the given position.

removeProperty (propertyName) — Removes the given property from the style.

U 0O 0 O

setProperty (propertyName, value, priority)——Semthegh@nfﬂopeﬁytothegh@n
value with a priority (either "important" or an empty string).

The cssText property allows access to the CSS code of the style. When used in read mode, cssText
returns the browser’s internal representation of the CSS code in the style attribute. When used in write
mode, the value assigned to cssText overwrites the entire value of the style attribute, meaning that all
previous style information specified using the attribute is lost. For instance, if the element has a border
specified via the style attribute and you overwrite cssText with rules that don’t include the border, it
is removed from the element. The cssText property is used as follows:

myDiv.style.cssText = "width: 25px; height: 100px; background-color: green";
alert (myDiv.style.cssText) ;

Setting the cssText property is the fastest way to make multiple changes to an element’s style because
all of the changes are applied at once.

The length property is designed to be used in conjunction with the item () method for iterating

over the CSS properties defined on an element. With these, the style object effectively becomes a
collection, and bracket notation can be used in place of item() to retrieve the CSS property name in the
given position, as shown in the following example:

for (var i=0, len=myDiv.style.length; i < len; i++){
alert (myDiv.style[i]); //or myDiv.style.item(i)
}

Using either bracket notation or item (), you can retrieve the CSS property name ("background-color",

not "backgroundColor"). This property name can then be used in getPropertyVvalue () to retrieve the
actual value of the property, as shown in the following example:

328

Chapter 11: DOM Levels 2 and 3

for (var i=0, len=myDiv.style.length; 1 < len; i++){

var prop = myDiv.stylel[i]; //or myDiv.style.item(i)
var value = myDiv.style.getPropertyValue (prop) ;
alert(prop + " : " + value);

}

The getPropertyValue () method always retrieves the string representation of the CSS property value.
If you need more information, getPropertyCSSvalue () returns a CSSvalue object that has two
properties: cssText and cssValueType. The cssText property is the same as the value returned
from getPropertyValue () . The cssValueType property is a numeric constant indicating the type

of value being represented: 0 for an inherited value, 1 for a primitive value, 2 for a list, or 3 for a custom
value. The following code outputs the CSS property value as well as the value type:

for (var i=0, len=myDiv.style.length; 1 < len; i++){
var prop = myDiv.stylel[i]; //or myDiv.style.item(1)

var value = myDiv.style.getPropertyCSSValue (prop) ;
alert(prop + " : " + value.cssText + " (" + value.cssValueType + ")");

In practice, getPropertyCsSvalue () is less useful than getPropertyvalue (). Further, it is only
supported in Safari version 3 and later and Chrome.

The removeProperty () method is used to remove a specific CSS property from the element’s styling.
Removing a property using this method means that any default styling for that property (cascading from
other style sheets) will be applied. For instance, to remove a border property that was set in the style
attribute, the following code can be used:

myDiv.style.removeProperty ("border") ;

This method is helpful when you’re not sure what the default value for a given CSS property is. Simply
removing the property allows the default value to be used.

These properties and methods are supported in Firefox, Safari, Opera 9 and later,
and Chrome. IE supports only cssText, and Safari (version 3 and later) is the only
browser that supports getPropertyCssSvalue ().

Computed Styles

The style object offers information about the style attribute on any element that supports it but contains
no information about the styles that have cascaded from style sheets and affect the element. DOM Level 2
Style augments document . defaultView to provide a method called getComputedstyle (). This
method accepts two arguments: the element to get the computed style for and a pseudo-element

string (such as " :after"). The second argument can be nul1 if no pseudo-element

information is necessary. The getComputedStyle () method returns a CSSStyleDeclaration object

329

Chapter 11: DOM Levels 2 and 3

(the same type as the style property) containing all computed styles for the element. Consider the
following HTML page:

<html>
<head>
<title>Computed Styles Example</title>
<style type="text/css">
#myDiv {
background-color: blue;
width: 100px;
height: 200px;
}
</style>
</head>
<body>
<div id="myDiv" style="background-color: red; border: 1lpx solid black"></div>
</body>
</html>

In this example, the <div> element has styles applied to it both from an inline style sheet (the <style>
element) and from the style attribute. The style object has values for backgroundColor and border,
but nothing for width and height, which are applied through a style sheet rule. The following code
retrieves the computed style for the element:

var myDiv = document.getElementById("myDiv") ;
var computedStyle = document.defaultView.getComputedStyle (myDiv, null);

alert (computedStyle.backgroundColor) ; //"red"

alert (computedStyle.width) ; //"100px"

alert (computedStyle.height) ; //"200px"

alert (computedStyle.border) ; //"1lpx solid black" in some browsers

When retrieving the computed style of this element, the background color is reported as "red", the width as
"100px", and the height as "200px". Note that the background color is not "blue", because that style is
overridden on the element itself. The border property may or may not return the exact border rule from the
style sheet (Opera returns it, but other browsers do not). This inconsistency is due to the way that browsers
interpret rollup properties, such as border, that actually set a number of other properties. When you set
border, you're actually setting rules for the border width, color, and style on all four borders (border-
left-width, border-top-color, border-bottom-style, and so on). So even though computedstyle.
border may not return a value in all browsers, computedStyle.borderLeftWidth does.

Note that although some browsers support this functionality, the manner in which
values are represented can differ. For example, Firefox and Safari translate all colors
into RGB form (such as rgb (255, 0, 0) for red), whereas Opera translates all colors
into their hexadecimal representations (#££0000 for red). It's always best to test your
functionality on a number of browsers when using getComputedStyle ().

IE doesn’t support getComputedStyle (), though it has a similar concept. Every element that has a
style property also has a currentStyle property. The currentStyle property is an instance of

330

Chapter 11: DOM Levels 2 and 3

CsSStyleDeclaration and contains all of the final computed styles for the element. The styles can be
retrieved in a similar fashion, as shown in this example:

var myDiv = document.getElementById("myDiv") ;
var computedStyle = myDiv.currentStyle;

alert (computedStyle.backgroundColor) ; //"red"
alert (computedStyle.width) ; //"100px"
alert (computedStyle.height) ; //"200px"
alert (computedStyle.border) ; //undefined

As with the DOM version, the border style is not returned in IE because it is considered a rollup
property.

The important thing to remember about computed styles in all browsers is that they are read-only; you
cannot change CSS properties on a computed style object. Also, the computed style contains styling
information that is part of the browser’s internal style sheet, so any CSS property that has a default value
will be represented in the computer style. For instance, the visibility property always has a default
value in all browsers, but this value differs per implementation. Some browsers set the visibility
property to "visible" by default, whereas others have it as "inherit". You cannot depend on the
default value of a CSS property to be the same across browsers. If you need elements to have a

specific default value, you should manually specify it in a style sheet.

Working with Style Sheets

The cssstyleSheet type represents a CSS style sheet as included using a <1ink> element or defined in a
<style> element. Note that the elements themselves are represented by the HTMLLinkElement and
HTMLStyleElement types, respectively. The CSSStyleSheet type is generic enough to represent a style
sheet no matter how it is defined in HTML. Further, the element-specific types allow for modification of
HTML attributes, whereas a CSSStylesheet object is, with the exception of one property, a read-only
interface. You can determine if the browser supports the DOM Level 2 style sheets using the following code:

var supportsDOM2StyleSheets =
document.implementation.hasFeature("StyleSheets", "2.0");

The cssstylesSheet type inherits from StyleSheet, which can be used as a base to define non-CSS
style sheets. The following properties are inherited from StyleSheet:

0 disabled — A Boolean value indicating if the style sheet is disabled. This property is read/
write, so setting its value to true will disable a style sheet.

Q href — The URL of the style sheet if it is included using <1ink>; otherwise, this is null.

QO media — A collection of media types supported by this style sheet. The collection has a 1ength
property and item () method, as with all DOM collections. Like other DOM collections, you can
use bracket notation to access specific items in the collection. An empty list indicates that the
style sheet should be used for all media. In IE, media is a string reflecting the media attribute of
the <1link> or <style> element.

0 ownerNode — Pointer to the node that owns the style sheet, which is either a <1ink> or a
<style/> element in HTML (it can be a processing instruction in XML). This property is null if a
style sheet is included in another style sheet using @import. IE does not support this property.

331

Chapter 11: DOM Levels 2 and 3

QO parentStyleSheet — When a style sheet is included via @import, this is a pointer to the style
sheet that imported it.

QO title — The value of the title attribute on the ownerNode.
QO type — Astring indicating the type of style sheet. For CSS style sheets, this is "text/css".

With the exception of disabled, the rest of these properties are read-only. The cSSStyleSheet type
supports all of these properties as well as the following properties and methods:

0 cssRules — A collection of rules contained in the style sheet. IE doesn’t support this property,
but it has a comparable property called rules.

QO ownerRule — If the style sheet was included using @import, this is a pointer to the rule
representing the import; otherwise, this is null. IE does not support this property.

0 deleteRule(index) — Deletes the rule at the given location in the cssRules collection. IE does
not support this method, but it does have a similar method called removeRule ().

QO insertRule(rule, index) — Inserts the given string rule at the position specified in the
cssRules collection. IE does not support this method, but it does have a similar method called
addRule().

The list of style sheets available on the document is represented by the document . styleSheets
collection. The number of style sheets on the document can be retrieved using the 1ength property, and
each individual style sheet can be accessed using either the item() method or bracket notation. Here is
an example:

var sheet = null;

for (var i=0, len=document.styleSheets.length; 1 < len; i++){
sheet = document.styleSheets[i];
alert (sheet.href) ;

This code outputs the href property of each style sheet used in the document (<style> elements have
no href).

The style sheets returned in document . styleSheets vary from browser to browser. All browsers
include <style> elements and <1ink> elements with rel set to "stylesheet". IE and Opera
also include <1ink> elements where rel is set to "alternate stylesheet".

It’s also possible to retrieve the cSSStylesheet object directly from the <1ink> or <style> element.
The DOM specifies a property called sheet that contains the CSSStyleSheet object, which all browsers
except IE support. IE supports a property called stylesheet that does the same thing. To retrieve the
style sheet object across browsers, the following code can be used:

function getStyleSheet (element) {
return element.sheet || element.styleSheet;

}
//get the style sheet for the first <link/> element

var link = document.getElementsByTagName ("link") [0];
var sheet = getStylesheet(link);

332

Chapter 11: DOM Levels 2 and 3

The object returned from getStylesSheet () is the same object that exists in the document
.styleSheets collection.

CSS Rules

A csSRule object represents each rule in a style sheet. The CSSRule type is actually a base type from
which several other types inherit, but the most often used is cSsStyleRule, which represents styling
information (other rules include @import, @font-face, @page, and @charset, although these rules
rarely need to be accessed from script). The following properties are available on a CSSStyleRule
object:

Q cssText — Returns the text for the entire rule. This text may be different from the actual text in
the style sheet due to the way that browsers handle style sheets internally; Safari always
converts everything to all lowercase. This property is not supported in IE.

0 parentRule — If this rule is imported, this is the import rule; otherwise, this is nul1l. This
property is not supported in IE.

Q parentStyleSheet — The style sheet that this rule is a part of. This property is not supported
in IE.

O selectorText — Returns the selector text for the rule. This text may be different from the
actual text in the style sheet because of the way that browsers handle style sheets internally
(for example, Safari versions prior to 3 always convert everything to all lowercase). This
property is read-only in Firefox, Safari, Chrome, and IE (where it throws an error). Opera allows
selectorText to be changed.

QO style—AcssStyleDeclaration object that allows the setting and getting of specific style
values for the rule.

O type — A constant indicating the type of rule. For style rules, this is always 1. This property is
not supported in IE.

The three most frequently used properties are cssText, selectorText, and style. The cssText
property is similar to the style.cssText property but not exactly the same. The former includes the
selector text as well as the braces around the style information; the latter contains only the style
information (similar to style.cssText on an element). Also, cssText is read-only, whereas style
.cssText may be overwritten.

Most of the time, the style property is all that is required to manipulate style rules. This object can be
used just like the one on each element to read or change the style information for a rule. Consider the
following CSS rule:

div.box {
background-color: blue;
width: 100px;
height: 200px;

333

Chapter 11: DOM Levels 2 and 3

Assuming that this rule is in the first style sheet on the page and is the only style in that style sheet, the
following code can be used to retrieve all of its information:

var sheet = document.styleSheets[0];

var rules = sheet.cssRules || sheet.rules; //get rules list
var rule = rules[0]; //get first rule
alert (rule.selectorText) ; //"div.box"

alert (rule.style.cssText) ; //complete CSS code
alert (rule.style.backgroundColor) ; //"blue"
alert(rule.style.width) ; //"100px"

alert (rule.style.height); //"200px"

Using this technique, it’s possible to determine the style information related to a rule in the same way
you can determine the inline style information for an element. As with elements, it’s also possible to
change the style information, as shown in the following example:

var sheet = document.styleSheets[0];

var rules = sheet.cssRules || sheet.rules; //get rules list
var rule = rules[0]; //get first rule
rule.style.backgroundColor = "red"

Note that changing a rule in this way affects all elements on the page for which the rule applies. If there
are two <div> elements that have the box class, they will both be affected by this change.

Creating Rules

The DOM states that new rules are added to existing style sheets using the insertRule () method. This
method expects two arguments: the text of the rule and the index at which to insert the rule. Here is an
example:

sheet.insertRule("body { background-color: silver }", 0); //DOM method

This example inserts a rule that changes the document’s background color. The rule is inserted as the
first rule in the style sheet (position 0)—the order is important in determining how the rule cascades into
the document. The insertRule () method is supported in Firefox, Safari, Opera, and Chrome.

IE has a similar method called addrule () that expects two arguments: the selector text and the
CSS style information. An optional third argument indicates the position in which to insert the rule.
The IE equivalent of the previous example is as follows:

sheet.addRule ("body", "background-color: silver", 0); //IE only

The documentation for this method indicates that you can add up to 4,095 style rules using addrule ().
Any additional calls result in an error.

To add a rule to a style sheet in a cross-browser way, the following method can be used. It accepts four
arguments: the style sheet to add to, followed by the same three arguments as addRule (), as shown in
the following example:

334

Chapter 11: DOM Levels 2 and 3

function insertRule(sheet, selectorText, cssText, position) {
if (sheet.insertRule) {
sheet.insertRule(selectorText + "{" + cssText + "}", position);
} else if (sheet.addRule) {
sheet.addRule (selectorText, cssText, position);
}
}

This function can then be called in the following way:
insertRule (document.styleSheets[0], "body", "background-color: silver", 0);

Although adding rules in this way is possible, it quickly becomes burdensome when the number of rules
to add is large. In that case, it’s better to use the dynamic style loading technique discussed in Chapter 10.

Opera prior to version 9.5 doesn’t always insert the new rule in the correct location.
Unfortunately, there’s no complete workaround for these early Opera versions.

Deleting Rules

The DOM method for deleting rules for a style sheet is deleteRule (), which accepts a single
argument: the index of the rule to remove. To remove the first rule in a style sheet, the following code
can be used:

sheet.deleteRule(0) ; //DOM method
IE supports a method called removeRule () that is used in the same way, as shown here:
sheet.removeRule (0) ; //IE only

The following function handles deleting a rule in a cross-browser way. The first argument is the style
sheet to act on, and the second is the index to delete, as shown in the following example:

function deleteRule (sheet, index) {
if (sheet.deleteRule) {
sheet.deleteRule (index) ;
} else if (sheet.removeRule) {
sheet.removeRule (index) ;
}
}

This function can be used as follows:
deleteRule (document.styleSheets[0], 0);

As with adding rules, deleting rules is not a common practice in web development and should be used
carefully because the cascading effect of CSS can be affected.

335

Chapter 11: DOM Levels 2 and 3

Element Dimensions

The following properties and methods are not part of the DOM Level 2 Style specification but are
nonetheless related to styles on HTML elements. The DOM stops short of describing ways to determine
the actual dimensions of elements on a page. IE first introduced several properties to expose

dimension information to developers. These properties have now been incorporated into all of the major
browsers.

Offset Dimensions

The first set of properties deals with offset dimensions, which incorporate all of the visual space that an
element takes up on the screen. An element’s visual space on the page is made up of its height and
width, including all padding, scrollbars, and borders (but not including margins). The following four
properties are used to retrieve offset dimensions:

QO offsetHeight — The amount of vertical space, in pixels, taken up by the element, including its
height, the height of a horizontal scrollbar (if visible), the top border height, and the bottom
border height

Q offsetLeft — The number of pixels between the element’s outside left border and the
containing element’s inside left border

QO offsetTop — The number of pixels between the element’s outside top border and the
containing element’s inside top border

QO offsetwidth — The amount of horizontal space taken up by the element, including its width,
the width of a vertical scrollbar (if visible), the left border width, and the right border width

The offsetLeft and offsetTop properties are in relation to the containing element, which is stored

in the of fsetParent property. The offsetParent may not necessarily be the same as the parentNode.
For example, the offsetParent of a <td> element is the <table> element that it’s an ancestor of,
because the <table> is the first element in the hierarchy that provides dimensions. Figure 11-1 illustrates
the various dimensions these properties represent.

offsetParent

offsetTop

border
padding

offsetLeft
D—— content offsetHeight

| offsetWidth |

Figure 11-1

336

Chapter 11: DOM Levels 2 and 3

The offset of an element on the page can roughly be determined by taking the of fsetLeft and
offsetTop properties and adding them to the same properties of the of fsetParent, continuing up the
hierarchy until you reach the root element. Here is an example:

function getElementLeft (element) {
var actualLeft = element.offsetLeft;
var current = element.offsetParent;

while (current !== null){
actualLeft += current.offsetLeft;
current = current.offsetParent;

}

return actualLeft;
}

function getElementTop (element) {
var actualTop = element.offsetTop;
var current = element.offsetParent;

while (current !== null){
actualTop += current. offsetTop;
current = current.offsetParent;

}

return actualTop;

}

These two functions climb through the DOM hierarchy using the offsetParent property, adding up
the offset properties at each level. For simple page layouts using CSS-based layouts, these functions are
very accurate. For page layouts using tables and iframes, the values returned are less accurate on a cross-
browser basis because of the different ways that these elements are implemented. Generally, all elements
that are contained solely within <div/> elements have <body/> as their of fsetParent, so
getElementLeft () and getElementTop () will return the same values as of fsetLeft and
offsetTop.

All of the offset dimension properties are read-only and are calculated each time
they are accessed. Therefore, you should try to avoid making multiple calls to any of
these properties; instead, store the values you need in local variables to avoid
incurring a performance penalty.

Client Dimensions

The client dimensions of an element comprise the space occupied by the element’s content and its
padding. There are only two properties related to client dimensions: clientwidth and clientHeight.
The clientwidth property is the width of the content area plus the width of both the left and right
padding. The clientHeight property is the height of the content area plus the height of both the top
and bottom padding. Figure 11-2 illustrates these properties.

337

Chapter 11: DOM Levels 2 and 3

offsetParent

border
padding

content clientHeight

' clientWidth

Figure 11-2

The client dimensions are literally the amount of space inside of the element, so the space taken up by
scrollbars is not counted. The most common use of these properties is to determine the browser viewport
size, as discussed in Chapter 8. This is done by using the clientwidth and clientHeight of document
.documentElement or document . body (in IE versions prior to 7), as shown in the following example:

function getViewport () {
if (document.compatMode == "BackCompat") {
return {
width: document.body.clientWidth,
height: document.body.clientHeight
}i
} else {
return {
width: document.documentElement.clientWidth,
height: document.documentElement.clientHeight

Y

This function determines whether or not the browser is running in quirks mode by checking the document
. compatMode property. Safari prior to version 3.1 doesn’t support this property, so it will automatically
continue execution in the else statement. Chrome, Opera, and Firefox run in standards mode most of the
time, so they will also continue to the else statement. The function returns an object with two properties:
width and height. These represent the dimensions of the viewport (the <html> or <body> elements).

As with offset dimensions, client dimensions are read-only and are calculated each
time they are accessed.

338

Chapter 11: DOM Levels 2 and 3

Scroll Dimensions

The last set of dimensions is scroll dimensions, which provide information about an element whose
content is scrolling. Some elements, such as the <html> element, scroll automatically without needing
any additional code, whereas other elements can be made to scroll by using the CSS overflow property.
The four scroll dimension properties are as follows:

Q
Q

Q

Q

scrollHeight — The total height of the content if there were no scrollbars present.

scrollLeft — The number of pixels that are hidden to the left of the content area. This
property can be set to change the scroll position of the element.

scrollTop — The number of pixels that are hidden in the top of the content area. This property
can be set to change the scroll position of the element.

scrollwidth — The total width of the content if there were no scrollbars present.

Figure 11-3 illustrates these properties.

| scrollWidth |

scrollTop

scrollHeight border

scrollLeft

Figure 11-3

The scrollwidth and scrollHeight properties are useful for determining the actual dimensions
of the content in a given element. For example, the <html> element is considered the element that
scrolls the viewport in a web browser (the <body> element in IE versions prior to 6 running in
quirks mode). Therefore, the height of an entire page that has a vertical scrollbar is document
.documentElement.scrollHeight.

339

Chapter 11: DOM Levels 2 and 3

The relationship between scrollwidth and scrollHeight to clientWidth and clientHeight is not
clear when it comes to documents that do not scroll. Inspecting these properties on document
.documentElement leads to inconsistent results across browsers, as dscribed here:

Q Safari prior to version 3.1 keeps scrollwidth and clientWidth equal as well as
scrollHeight and clientHeight. These properties are equivalent to the viewport
dimensions.

Q Firefox keeps the properties equal, but the size is related to the actual size of the document
content, not the size of the viewport.

Q Opera, Safari 3.1 and later, and Chrome keep the properties different, with scrollwidth and
scrollHeight equal to the size of the viewport, and clientwidth and clientHeight equal
to the document content.

Q IE (in standards mode) keeps the properties different, with scrollwidth and scrollHeight
equal to the size of the document content, and clientWidth and clientHeight equal to the
viewport size.

When trying to determine the total height of a document, including the minimum height based on the
viewport, you must take the maximum value of scrollwidth/clientwidth and scrollHeight/
clientHeight to guarantee accurate results across browsers. Here is an example:

var docHeight = Math.max(document.documentElement.scrollHeight,
document .documentElement.clientHeight) ;

var docWidth = Math.max (document.documentElement.scrollWidth,
document .documentElement.clientWidth) ;

Note that for IE in quirks mode, you’'ll need to use the same measurements on document . body instead
of document . documentElement.

The scrollLeft and scrollTop properties can be used either to determine the current scroll settings
on an element or to set them. When an element hasn’t been scrolled, both properties are equal to 0. If the
element has been scrolled vertically, scrol1Top is greater than 0, indicating the amount of content that
is not visible at the top of the element. If the element has been scrolled horizontally, scrollLeft is
greater than 0, indicating the number of pixels that are not visible on the left. Since each property can
also be set, you can reset the element’s scroll position by setting both scrollLeft and scrollTop to 0.
The following function checks to see if the element is at the top, and if not, scrolls it back to the top:

function scrollToTop (element) {
if (element.scrollTop != 0){
element.scrollTop = 0;

This function uses scrollTop both for retrieving the value and for setting it.

Determining Element Dimensions

IE, Firefox 3 and later, and Opera 9.5 and later offer a method called getBoundingClientRect () on
each element, which returns a rectangle object that has four properties: 1eft, top, right, and bottom.
These properties give the location of the element on the page relative to the viewport. The browser

340

Chapter 11: DOM Levels 2 and 3

implementations are slightly different. IE considers the upper-left corner of the document to be located
at (2,2), whereas the Firefox and Opera implementations use the traditional (0,0) as the starting
coordinates. This necessitates doing an initial check for the location of an element positioned at (0,0),
which will return (2,2) in IE and (0,0) in other browsers. Here is an example:

function getBoundingClientRect (element) {
if (typeof arguments.callee.offset != "number") {
var scrollTop = document.documentElement.scrollTop;
var temp = document.createElement ("div");

temp.style.cssText = "position:absolute;left:0;top:0;";
document .body . appendChild (temp) ;
arguments.callee.offset = -temp.getBoundingClientRect().top - scrollTop;

document .body.removeChild (temp) ;
temp = null;

var rect = element.getBoundingClientRect();
var offset = arguments.callee.offset;

return {
left: rect.left + offset,
right: rect.right + offset,
top: rect.top + offset,
bottom: rect.bottom + offset

This function uses a property on itself to determine the necessary adjustment for the coordinates. The
first step is to see if the property is defined and if not, define it. The offset is defined as the negative
value of a new element’s top coordinate, essentially setting it to -2 in IE and -0 in Firefox and Opera. To
figure this out, it requires creating a temporary element, setting its position to (0,0), and then calling
getBoundingClientRect (). The scrollTop of the viewport is subtracted from this value just in case
the window has already been scrolled when the method is called. Using this construct ensures that you
don’t have to call getBoundingClientRect () twice each time this function is called. Then, the method
is called on the element and an object is created with the new calculations.

For browsers that don’t support getBoundingClientRect (), the same information can be gained by
using other means. Generally, the difference between the right and left properties is equivalent to
offsetwidth, and the difference between the bottom and top properties is equivalent to

of fsetHeight. Further, the left and top properties are roughly equivalent to using the
getElementLeft () and getElementTop () functions defined earlier in this chapter. A cross-browser
implementation of the function can be created as shown in the following example:

function getBoundingClientRect (element) {

var scrollTop = document.documentElement.scrollTop;
var scrollLeft = document.documentElement.scrollLeft;

if (element.getBoundingClientRect) {

if (typeof arguments.callee.offset != "number") {
var temp = document.createElement ("div");
temp.style.cssText = "position:absolute;left:0;top:0;";

(continued)

341

Chapter 11: DOM Levels 2 and 3

(continued)
document .body .appendChild (temp) ;
arguments.callee.offset = -temp.getBoundingClientRect().top -
scrollTop;
document .body.removeChild (temp) ;
temp = null;
}

var rect = element.getBoundingClientRect () ;
var offset = arguments.callee.offset;

return {
left: rect.left + offset,
right: rect.right + offset,
top: rect.top + offset,
bottom: rect.bottom + offset
Y
} else {

var actualLeft = getElementLeft (element) ;
var actualTop = getElementTop (element) ;

return {
left: actualLeft - scrollLeft,
right: actualLeft + element.offsetWidth - scrollLeft,

top: actualTop - scrollTop,
bottom: actualTop + element.offsetHeight - scrollTop

This function uses the native getBoundingClientRect () method when it’s available and defaults to
calculating the dimensions when it is not. There are some instances where the values will vary in
browsers, such as with layouts that use tables or scrolling elements.

Prior to Firefox 3, a method called getBoxObjectFor () was available. This method
originated in XUL and leaked into the web browser due to its location in the class
hierarchy. It is recommended that you avoid using this method in web development.

Traversals

The DOM Level 2 Traversal and Range module defines two types that aid in sequential traversal of a
DOM structure. These types, NodeIterator and TreeWalker, perform depth-first traversals of a DOM
structure given a certain starting point. These object types are available in DOM-compliant browsers,
including Firefox 1 and later, Safari 1.3 and later, Opera 7.6 and later, and Chrome 0.2 and later. There is
no support for DOM traversals in IE. You can test for DOM Level 2 Traversal support using the
following code:

342

Chapter 11: DOM Levels 2 and 3

var supportsTraversals = document.implementation.hasFeature("Traversal", "2.0");
var supportsNodelterator = (typeof document.createNodelterator == "function");
var supportsTreeWalker = (typeof document.createTreeWalker == "function");

As stated previously, DOM traversals are a depth-first traversal of the DOM structure that allows
movement in at least two directions (depending on the type being used). A traversal is rooted at a given
node, and it cannot go any further up the DOM tree than that root. Consider the following HTML page:

<html>
<head>
<title>Example</title>
</head>
<body>
<p>Hello world!</p>
</body>
</html>

This page evaluates to the DOM tree represented in Figure 11-4.

Document

Element html

Element head Element body

Element title Element p
Text Example | Element b | | Text world!

Text Hello

Figure 11-4

Any node can be the root of the traversals. Suppose, for example, that the <body> element is the
traversal root. The traversal can then visit the <p> element, the element, and the two text nodes that
are descendants of <body>; however, the traversal can never reach the <html> element, the <head>
element, or any other node that isn’t in the <body> element’s subtree. A traversal that has its root at
document, on the other hand, can access all of the nodes in document. Figure 11-5 depicts a depth-first
traversal of a DOM tree rooted at document .

343

Chapter 11: DOM Levels 2 and 3

@ Element title @ Element p
@ Text Example |Elementb ||Textwor|d!

@ Text Hello

Figure 11-5

Starting at document and moving sequentially, the first node visited is document and the last node
visited is the text node containing " world!" From the very last text node at the end of the document,
the traversal can be reversed to go back up the tree. In that case, the first node visited is the text node
containing "Hello" and the last one visited is the document node itself. Both NodeIterator and
TreeWalker perform traversals in this manner.

Nodelterator

The NodeIterator type is the simpler of the two, and a new instance can be created using the
document . createNodeIterator () method. This method accepts the following four arguments:

a
a

root — The node in the tree that you want to start searching from.
whatToShow — A numerical code indicating which nodes should be visited.

filter — A NodeFilter object or a function indicating whether a particular node should be
accepted or rejected.

entityReferenceExpansion — A Boolean value indicating whether entity references should
be expanded. This has no effect in HTML pages, because entity references are never expanded.

The whatToShow argument is a bitmask that determines which nodes to visit by applying one or more
filters. Possible values for this argument are included as constants on the NodeFilter type as follows:

a
a

344

NodeFilter.SHOW_ALL — Show all node types.
NodeFilter.SHOW_ELEMENT — Show element nodes.

NodeFilter.SHOW_ATTRIBUTE — Show attribute nodes. This can’t actually be used due to the
DOM structure.

NodeFilter.SHOW_TEXT — Show text nodes.

Chapter 11: DOM Levels 2 and 3

0 NodeFilter.SHOW_CDATA_SECTION — Show CData section nodes. This is not used in HTML
pages.

0 NodeFilter.SHOW_ENTITY_ REFERENCE — Show entity reference nodes. This is not used in
HTML pages.

(]

NodeFilter.SHOW_ENTITY — Show entity nodes. This is not used in HTML pages.

(]

NodeFilter.SHOW_PROCESSING_INSTRUCTION — Show PI nodes. This is not used in HTML
pages.
NodeFilter.SHOW_COMMENT — Show comment nodes.

NodeFilter.SHOW_DOCUMENT — Show document nodes.

NodeFilter.SHOW_DOCUMENT_TYPE — Show document type nodes.

U 0 0 U

NodeFilter.SHOW_DOCUMENT_FRAGMENT — Show document fragment nodes. This is not used
in HTML pages.

0 NodeFilter.SHOW_NOTATION — Show notation nodes. This is not used in HTML pages.

With the exception of NodeFilter.SHOW_ALL, you can combine multiple options using the bitwise OR
operator, as shown in the following example:

var whatToShow = NodeFilter.SHOW_ELEMENT | NodeFilter.SHOW_TEXT;

The filter argument of createNodeIterator () can be used to specify a custom NodeFilter object
or a function that acts as a node filter. A NodeFilter object has only one method, acceptNode (), which
returns NodeFilter.FILTER_ACCEPT if the given node should be visited or NodeFilter .FILTER_
SKIP if the given node should not be visited. Since NodeFilter is an abstract type, it’s not possible to
create an instance of it. Instead, just create an object with an acceptNode () method and pass the object
into createNodeIterator (). The following code accepts only <p> elements:

var filter = {
acceptNode: function (node) {
return node.tagName.toLowerCase() == "p" ?
NodeFilter.FILTER_ACCEPT :
NodeFilter.FILTER_SKIP;

Y

var lterator = document.createNodelterator (root, NodeFilter.SHOW_ELEMENT,
filter, false);

The third argument can also be a function that takes the form of the acceptNode () method, as shown in
this example:

var filter = function (node) {
return node.tagName.toLowerCase() == "p" ?
NodeFilter.FILTER_ACCEPT :
NodeFilter.FILTER_SKIP;
b3

var iterator = document.createNodelterator (root, NodeFilter.SHOW_ELEMENT,
filter, false);

345

Chapter 11: DOM Levels 2 and 3

Typically, this is the form that is used in JavaScript, since it is simpler and works more like the rest of
JavaScript. If no filter is required, the third argument should be set to nul1l.

To create a simple NodeIterator that visits all node types, use the following code:

var iterator = document.createNodelIterator (document, NodeFilter.SHOW_ALL,
null, false);

The two primary methods of NodeIterator are nextNode () and previousNode (). The nextNode ()
method moves one step forward in the depth-first traversel of the DOM subtree, and previousNode ()
moves one step backward in the traversal. When the NodeIterator is first created, an internal pointer
points to the root, so the first call to nextNode () returns the root. When the traversal has reached the
last node in the DOM subtree, nextNode () returns null. The previousNode () method works in a
similar way. When the traversal has reached the last node in the DOM subtree, after previousNode ()
has returned the root of the traversal, it will return nul1l.

Consider the following HTML fragment:

<div id="divl">
<p>Hello world!</p>

List item 1</1i>
List item 2</1i>
List item 3</1i>

</div>

Suppose that you would like to traverse all elements inside of the <div> element. This can be
accomplished using the following code:

var div = document.getElementById("divl");
var iterator = document.createNodelIterator (div, NodeFilter.SHOW_ELEMENT,
null, false);

var node = iterator.nextNode() ;

while (node !== null) {
alert (node. tagName) ; //output the tag name
node = iterator.nextNode() ;

The first call to nextNode () in this example returns the <p> element. Since nextNode () returns null
when it has reached the end of the DOM subtree, a while loop checks to see when null has been
returned as it calls nextNode () each time through. When this code is executed, alerts are displayed with
the following tag names:

DIV
P

B
UL
LT
LT
LT

346

Chapter 11: DOM Levels 2 and 3

Perhaps this is too much information, and you really only want to return the <1i> elements that occur in
the traversal. This can be accomplished by using a filter, as shown in the following example:

var div = document.getElementById("divl");
var filter = function (node) {
return node.tagName.toLowerCase() == "1i" ?
NodeFilter.FILTER_ACCEPT :
NodeFilter.FILTER_SKIP;
b3

var iterator = document.createNodelterator (div, NodeFilter.SHOW_ELEMENT,
filter, false);

var node = iterator.nextNode();

while (node !== null) {
alert (node.tagName) ; //output the tag name
node = iterator.nextNode() ;

In this example, only <1i> elements will be returned from the iterator.

The nextNode () and previousNode () methods work with NodeIterator’s internal pointer in the
DOM structure, so changes to the structure are represented appropriately in the traversal.

Firefox versions prior to 3.1 do not implement the createNodeIterator () method,
though they do support createTreewalker () as discussed in the next section.

TreeWalker

Treelalker is a more advanced version of NodeIterator. It has the same functionality, including
nextNode () and previousNode (), and adds the following methods to traverse a DOM structure in
different directions:

0 parentNode () — Travels to the current node’s parent

Q firstChild() — Travels to the first child of the current node

Q lastChild() — Travels to the last child of the current node

QO nextSibling() — Travels to the next sibling of the current node

Q previousSibling () — Travels to the previous sibling of the current node

A TreeWalker object is created using the document . createTreewWalker () method, which accepts the
same three arguments as document . createNodeIterator (): the root to traverse from, which node types

347

Chapter 11: DOM Levels 2 and 3

to show, a filter, and a Boolean value indicating if entity references should be expanded. Because of these
similarities, TreeWalker can always be used in place of NodeIterator, asin this example:

var div = document.getElementById("divl");
var filter = function(node) {
return node.tagName.toLowerCase() == "1i" ?
NodeFilter.FILTER_ACCEPT :
NodeFilter.FILTER_SKIP;
Y

var iterator = document.createTreeWalker (div, NodeFilter.SHOW_ELEMENT,
filter, false);

var node = iterator.nextNode() ;

while (node !== null) {
alert (node.tagName) ; //output the tag name
node = iterator.nextNode() ;

One difference is in the values that the fi1lter can return. In addition to NodeFilter.FILTER_ACCEPT
and NodeFilter.FILTER_SKIP, there is NodeFilter.FILTER_REJECT. When used with a
NodeIterator object, NodeFilter.FILTER_SKIP and NodeFilter.FILTER_REJECT do the same
thing: they skip over the node. When used with a Treewalker object, NodeFilter.FILTER_SKIP skips
over the node and goes on to the next node in the subtree, whereas NodeFilter.FILTER_REJECT skips
over that node and that node’s entire subtree. For instance, changing the filter in the previous example to
return NodeFilter.FILTER_REJECT instead of NodeFilter.FILTER_SKIP will result in no nodes
being visited. This is because the first element returned is <div>, which does not have a tag name of
"1li", so NodeFilter.FILTER_REJECT is returned, indicating that the entire subtree should be skipped.
Since the <div> element is the traversal root, this means that the traversal stops.

Of course, the true power of TreeWalker is its ability to move around the DOM structure. Instead of
specifying filter, it’s possible to get at the <11i> elements by navigating through the DOM tree using
TreeWalker, as shown here:

var div = document.getElementById("divl");
var walker = document.createTreeWalker (div, NodeFilter.SHOW_ELEMENT, null, false);

walker.firstChild(); //go to <p>
walker.nextSibling(); //go to

var node = walker.firstChild(); //go to first
while (node !== null) {

alert (node. tagName) ;
node = walker.nextSibling() ;

Since you know where the <1i> elements are located in the document structure, it’s possible to navigate
there, using firstChild() to get to the <p> element, nextSibling () to get to the element, and then
firstChild() to get to the first <1i> element. Keep in mind that TreeWalker is returning only elements
(due to the second argument passed in to createTreeWalker ()). Then, nextSibling () can be used to
visit each <11i> until there are no more, at which point the method returns nul1l.

348

Chapter 11: DOM Levels 2 and 3

The TreeWalker type also has a property called currentNode that indicates the node that was last
returned from the traversal via any of the traversal methods. This property can also be set to change
where the traversal continues from when it resumes, as shown in this example:

var node = walker.nextNode() ;
alert (node === walker.currentNode); //true
walker.currentNode = document.body; //change where to start from

Compared to NodeIterator, the TreeWalker type allows greater flexibility when traversing the DOM.
There is no equivalent in IE, so cross-browser solutions using traversals are quite rare.

Ranges

To allow an even greater measure of control over a page, the DOM Level 2 Traversal and Range module
defines an interface called a range. A range can be used to select a section of a document regardless of node
boundaries (this selection occurs behind the scenes and cannot be seen by the user). Ranges are helpful
when regular DOM manipulation isn’t specific enough to change a document. DOM ranges are supported
in Firefox, Opera, Safari, and Chrome. IE implements ranges in a proprietary way.

Ranges in the DOM

DOM Level 2 defines a method on the Document type called createRange (). In DOM-compliant
browsers, this method belongs to the document object. You can test for the range support by using
hasFeature () or by checking for the method directly. Here is an example:

var supportsRange = document.implementation.hasFeature("Range", "2.0");
var alsoSupportsRange = (typeof document.createRange == "function");

If the browser supports it, a DOM range can be created using createRange (), as shown here:
var range = document.createRange() ;

Similar to nodes, the newly created range is tied directly to the document on which it was created and cannot
be used on other documents. This range can then be used to select specific parts of the document behind the
scenes. Once a range has been created and its position set, a number of different operations can be performed
on the contents of the range, allowing more fine-grained manipulation of the underlying DOM tree.

Each range is represented by an instance of the Range type, which has a number of properties and
methods. The following properties provide information about where the range is located in the
document:

0 startContainer — The node within which the range starts (the parent of the first node in the
selection).

Q startoffset — The offset within the startContainer where the range starts. If
startContainer is a text node, comment node, or CData node, the startoffset is the
number of characters skipped before the range starts; otherwise, the offset is the index of the
first child node in the range.

349

Chapter 11: DOM Levels 2 and 3

Q endContainer — The node within which the range ends (the parent of the last node in the
selection).

QO endoffset — The offset within the endContainer where the range ends (follows the same
rules as startOffset).

0O commonAncestorContainer — The deepest node in the document that has both
startContainer and endContainer as descendants.

These properties are filled when the range is placed into a specific position in the document.

Simple Selection in DOM Ranges

The simplest way to select a part of the document using a range is to use either selectNode () or
selectNodeContents (). These methods each accept one argument, a DOM node, and fill a range with
information from that node. The selectNode () method selects the entire node, including its children,
whereas selectNodeContents () selects only the node’s children. For example, consider the following
HTML.:

<html>
<body>
<p id="pl">Hello world!</p>
</body>
</html>

This code can be accessed using the following JavaScript:

var rangel = document.createRange();
var range2 = document.createRange() ;
var pl = document.getElementById("pl");
rangel.selectNode(pl) ;
range2.selectNodeContents (pl) ;

The two ranges in this example contain different sections of the document: rangel contains the <p/>

element and all its children, whereas range2 contains the element, the text node "Hello", and the
text node "world!" (see Figure 11-6).

rangel

r 1
<p id="pl">Hell o world! </p>
| |

range2
Figure 11-6

When selectNode () is called, startContainer, endContainer, and commonAncestorContainer are
all equal to the parent node of the node that was passed in; in this example, these would all be equal to
document .body. The startOffset property is equal to the index of the given node within the parent’s
childNodes collection (which is 1 in this example — remember DOM-compliant browsers count white
space as text nodes), whereas endof fset is equal to the startOffset plus one (because only one node
is selected).

350

Chapter 11: DOM Levels 2 and 3

When selectNodeContents () is called, startContainer, endContainer, and
commonAncestorContainer are equal to the node that was passed in, which is the <p> element in this
example. The startOf fset property is always equal to 0, since the range begins with the first child of
the given node, whereas endof fset is equal to the number of child nodes (node.childNodes.length),
which is 2 in this example.

It’s possible to get more fine-grained control over which nodes are included in the selection by using the
following range methods:

Q setStartBefore(refNode) — Sets the starting point of the range to begin before refNode, so
refNode is the first node in the selection. The startContainer property is set to refNode
.parentNode, and the startOffset property is set to the index of refNode within its parent’s
childNodes collection.

Q setStartAfter (refNode) — Sets the starting point of the range to begin after refNode, so
refNode is not part of the selection; rather, its next sibling is the first node in the selection. The
startContainer property is set to refNode.parentNode, and the startOffset property is
set to the index of refNode within its parent’s childNodes collection plus one.

a setEndBefore (refNode) — Sets the ending point of the range to begin before refNode, so
refNode is not part of the selection; its previous sibling is the last node in the selection. The
endContainer property is set to refNode.parentNode, and the endOf fset property is set to
the index of refNode within its parent’s childNodes collection.

0 setEndAfter (refNode) — Sets the ending point of the range to begin before refNode, so
refNode is the last node in the selection. The endContainer property is set to refNode
.parentNode, and the endoffset property is set to the index of refNode within its parent’s
childNodes collection plus one.

Using any of these methods, all properties are assigned for you. However, it is possible to assign these
values directly in order to make complex range selections.

Complex Selection in DOM Ranges

Creating complex ranges requires the use of the setStart () and setEnd () methods. Both methods
accept two arguments: a reference node and an offset. For setStart (), the reference node becomes the
startContainer, and the offset becomes the startoffset. For setEnd (), the reference node becomes
the endContainer, and the offset becomes the endoffset.

Using these methods, it is possible to mimic selectNode () and selectNodeContents (). Here is an
example:

var rangel = document.createRange();
var range2 = document.createRange();

var pl = document.getElementById("pl");

//determine the index of the node in its parent's childNodes collection

var plIndex = -1;
for (var i=0, len=pl.parentNode.childNodes.length; i < len; i++) {
if (pl.parentNode.childNodes[i] == pl) {

(continued)

351

Chapter 11: DOM Levels 2 and 3

(continued)

plIndex = 1;
break;

}

rangel.setStart (pl.parentNode, plIndex);
rangel.setEnd (pl.parentNode, plIndex + 1);
range?.setStart (pl, 0);

range2.setEnd(pl, pl.childNodes.length) ;

Note that to select the node (using rangel), you must first determine the index of the given node (p1) in
its parent node’s childNodes collection. To select the node contents (using range2), no calculations are
necessary; setStart () and setEnd () can be set with default values. Although mimicking

selectNode () and selectNodeContents () is possible, the real power of setStart () and setEnd(
is in the partial selection of nodes.

Suppose that you want to select only from the "11o" in "Hello" to the "o" in "world! " in the previous
HTML code. This is quite easy to accomplish. The first step is to get references to all of the relevant
nodes, as shown in the following example:

var pl = document.getElementById("pl");
var helloNode = pl.firstChild.firstChild;
var worldNode = pl.lastChild;

The "Hello" text node is actually a grandchild of <p> because it’s a child of , so you can use
pl.firstChildto get and pl.firstChild.firstChild to get the text node. The "world!" text
node is the second (and the last) child of <p>, so you can use p1.1lastChild to retrieve it. Next, the
range must be created and its boundaries defined, as shown in the following example:

var range = document.createRange() ;
range.setStart (helloNode, 2);
range.setEnd (worldNode, 3);

Since the selection should start after the "e" in "Hello", helloNode is passed into setStart () with an
offset of 2 (the position after the "e" where "H" is in position 0). To set the end of the selection,
worldNode is passed into setEnd () with an offset of 3, indicating the first character that should not be
selected, which is "r" in position 3 (there is actually a space in position 0). See Figure 11-7.

range

1
<p i d="p1" >FelTo/ b>Tor T}/ p>

01234 0123456
Figure 11-7

Because both helloNode and worldNode are text nodes, they become the startContainer and
endContainer for the range so that the startOffset and endOffset accurately look at the text
contained within each node instead of looking for child nodes (which is what happens when an element
is passed in). The commonAncestorContainer is the <p> element, which is the first ancestor that
contains both nodes.

352

Chapter 11: DOM Levels 2 and 3

Of course, just selecting sections of the document isn’t very useful unless you can interact with the
selection.

Interacting with DOM Range Content

When a range is created, internally it creates a document fragment node onto which all of the nodes in
the selection are attached. The range contents must be well formed in order for this process to take place.
In the previous example, the range does not represent a well-formed DOM structure because the
selection begins inside one text node and ends in another, which cannot be represented in the DOM.
Ranges, however, recognize missing opening and closing tags, and are therefore able to reconstruct a
valid DOM structure to operate on.

In the previous example, the range calculates that a start tag is missing inside the selection, so the
range dynamically adds it behind the scenes, along with a new end tag to enclose "He", thus
altering the DOM to the following;:

<p>He1lo world!</p>
Additionally, the "world! " text node is split into two text nodes, one containing "wo" and the other

containing "r1d! ". The resulting DOM tree is shown in Figure 11-8, along with the contents of the
document fragment for the range.

Document Range

Element p | DocumentFragment |
Element b

Element b

Text llo

Figure 11-8

With the range created, the contents of the range can be manipulated using a variety of methods (note
that all nodes in the range’s internal document fragment are simply pointers to nodes in the document).

353

Chapter 11: DOM Levels 2 and 3

The first method is the simplest to understand and use: deleteContents (). This method simply
deletes the contents of the range from the document. Here is an example:

var pl = document.getElementById("pl");
var helloNode = pl.firstChild.firstChild;
var worldNode = pl.lastChild;

var range = document.createRange() ;

range.setStart (helloNode, 2);
range.setSend (worldNode, 3);

range.deleteContents () ;
Executing this code results in the following HTML being shown on the page:
<p>He rld!</p>

Since the range selection process altered the underlying DOM structure to remain well formed, the
resulting DOM structure is well formed even after removing the contents.

extractContents () is similar to deleteContents () in that it also removes the range selection from
the document. The difference is that extractContents () returns the range’s document fragment as the
function value. This allows you to insert the contents of the range somewhere else. Here is an example:

var pl = document.getElementById("pl");
var helloNode = pl.firstChild.firstChild;
var worldNode = pl.lastChild;

var range = document.createRange() ;

range.setStart (helloNode, 2);
range.setEnd (worldNode, 3);

var fragment = range.extractContents();
pl.parentNode.appendChild (fragment) ;

In this example, the fragment is extracted and added to the end of the document’s <body> element.
(Remember, when a document fragment is passed into appendchild (), only the fragment’s children are
added, not the fragment itself.) The resulting HTML is as follows:

<p>He rld!</p>
1lo Wo

Another option is to leave the range in place but create a clone of it that can be inserted elsewhere in the
document by using cloneContents (), as shown in this example:

var pl = document.getElementById("pl");
var helloNode = pl.firstChild.firstChild;
var worldNode = pl.lastChild;

var range = document.createRange() ;

range.setStart (helloNode, 2);

354

Chapter 11: DOM Levels 2 and 3

range.setEnd (worldNode, 3);

var fragment = range.cloneContents() ;
pl.parentNode.appendChild (fragment) ;

This method is very similar to extractContents () because both return a document fragment. The
main difference is that the document fragment returned by cloneContents () contains clones of

the nodes contained in the range instead of the actual nodes. With this operation, the HTML in the page
is as follows:

<p>Hello World!</p>
1lo Wo

It’s important to note the splitting of nodes to ensure that a well-formed document isn’t produced until
one of these methods is called. The original HTML remains intact right up until the point that the DOM
is modified.

Inserting DOM Range Content

Ranges can be used to remove or clone content, as seen in the previous section, as well as to manipulate
the contents inside of the range. The insertNode () method enables you to insert a node at the
beginning of the range selection. As an example, suppose that you want to insert the following HTML
prior to the HTML used in the previous example:

Inserted text
The following