
TEAM LinG

Professional VB 2005

01_575368 ffirs.qxd 10/7/05 10:46 PM Page i

01_575368 ffirs.qxd 10/7/05 10:46 PM Page ii

Professional VB 2005

Bill Evjen, Billy Hollis, Rockford Lhotka,
Tim McCarthy, Rama Ramachandran,

Kent Sharkey, Bill Sheldon

01_575368 ffirs.qxd 10/7/05 10:46 PM Page iii

Professional VB 2005
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-7536-5
ISBN-10: 0-7645-7536-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/SW/RQ/QV/IN

Library of Congress Cataloging-in-Publication Data:

Professional Visual Basic 2005 / Bill Evjen ... [et al.].
p. cm.

Includes index.
ISBN-13: 978-0-7645-7536-5 (paper/website)
ISBN-10: 0-7645-7536-8 (paper/website)
1. Microsoft Visual BASIC. 2. BASIC (Computer program language) 3. Microsoft .NET.
I. Evjen, Bill.
QA76.73.B3P7485 2005
005.2’768 — dc22

2005012585

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUIT-
ABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE
FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY
HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Visual Basic is a registered trademark of Microsoft Corporation in the
United States and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

01_575368 ffirs.qxd 10/7/05 10:46 PM Page iv

www.wiley.com

About the Authors
Bill Evjen is an active proponent of .NET technologies and community-based learning initiatives for
.NET. He has been actively involved with .NET since the first bits were released in 2000. In the same
year, Bill founded the St. Louis .NET User Group (www.stlnet.org), one of the world’s first .NET user
groups. Bill is also the founder and the executive director of the International .NET Association (INETA –
www.ineta.org), which represents more than 375,000 members worldwide.

Based in St. Louis, Missouri, Bill is an acclaimed author and speaker on ASP.NET and XML Web Services.
He has written or coauthored more than 10 books, including Professional C# 2005 and Professional ASP.NET
2.0 (Wrox), XML Web Services for ASP.NET, ASP.NET Professional Secrets (Wiley), and more.

Bill is a technical director for Reuters, the international news and financial services company, and he
travels the world speaking to major financial institutions about the future of the IT industry. He gradu-
ated from Western Washington University in Bellingham, Washington, with a Russian language degree.
When he isn’t tinkering on the computer, he can usually be found at his summer house in Toivakka,
Finland. You can reach Bill at evjen@yahoo.com.

To Kalle – Welcome to the family!

Billy Hollis is coauthor of the first book ever published on Visual Basic .NET, VB.NET Programming on
the Public Beta (Wrox Press) as well as numerous other books and articles on .NET. Billy is a Microsoft
regional director and an MVP, and he was selected as one of the original .NET “Software Legends.” He
writes a monthly column for MSDN Online and is heavily involved in training, consultation, and soft-
ware development on the Microsoft .NET platform, focusing on smart-client development and commer-
cial packages. He frequently speaks at industry conferences such as Microsoft’s Professional Developer
Conference, TechEd, and COMDES. Billy is a member of the INETA speakers’ bureau and speaks at user
group meetings all over the United States.

Rockford Lhotka is the principal technology evangelist for Magenic Technologies (www.magenic.com),
a company focused on delivering business value through applied technology and one of the nation’s
premiere Microsoft Gold Certified Partners. Rockford is the author of several books, including Expert
Visual Basic .NET and C# Business Objects. He is a Microsoft Software Legend, regional director, MVP, and
INETA speaker. He is a columnist for MSDN Online and contributing author for Visual Studio Magazine,
and he regularly presents at major conferences around the world — including Microsoft PDC, Tech Ed,
VS Live! and VS Connections. For more information go to www.lhotka.net.

For my Mom and Dad, whose love and guidance have been invaluable in my life. Thank you!

Tim McCarthy is a principal engineer at InterKnowlogy, where he architects and builds highly scalable
n-tier web and smart-client applications utilizing the latest Microsoft platforms and technologies. Tim’s
expertise covers a wide range of Microsoft technologies, including, but not limited to: .NET Framework
(ASP.NET/Smart Clients/Web Services), Active Directory, UDDI, SQL Server, Windows SharePoint
Services/SharePoint Portal Server 2003, and Service Oriented Architecture (SOA) applications. Tim has
worked as a project technical lead/member as well as in a technical consulting role for several Fortune
500 companies. He has held the Microsoft Certified Solution Developer (MCSD) and Microsoft Certified
Trainer (MCT) certifications for several years and was one of the first wave of developers to earn the
Microsoft Certified Application Developer (MCAD) for .NET and MCSD for .NET certifications. He also
holds the Microsoft Certified Database Administrator certification for SQL Server 2000.

01_575368 ffirs.qxd 10/7/05 10:46 PM Page v

Tim has been an author and technical reviewer for several books from Wrox Press and most recently was
a lead author on Professional VB.NET 2003. His other books include Professional Commerce Server 2000,
and Professional ADO 2.5 Programming. Tim is currently working as a lead author on the next edition of
Professional VB.NET. Tim has written numerous articles for the Developer .NET Update newsletter, devel-
oped packaged presentations for MSDN, and has written a whitepaper for Microsoft on using COM+
services in .NET. He has also written articles for SQL Server Magazine and Windows & .NET Magazine.

Tim has spoken at technical conferences around the world and several San Diego area user groups (includ-
ing both .NET and SQL Server groups) and he has been a regular speaker at the Microsoft Developer Days
conference in San Diego for the last several years. Tim has also delivered MSDN webcasts, many of which
were repeat requests from Microsoft. Tim also teaches custom .NET classes to companies in need of expert
.NET mentoring and training.

Tim holds a B.B.A. in marketing from the Illinois Institute of Technology as well as an M.B.A. in market-
ing from National University. Before becoming an application developer, Tim was an officer in the United
States Marine Corps. Tim’s passion for .NET is only surpassed by his passion for Notre Dame athletics.

I dedicate this book to everybody in my family who supports me. Jasmine, some day you will be writing
books, too!

Rama Ramachandran is a software architect at DKR Capital, a major hedge fund company in Stamford,
Connecticut. He is a Microsoft Certified Solutions Developer and Site-Builder and has excelled in
designing and developing WinForms and Web applications using .NET, ASP.NET, Visual Basic and SQL
Server. Rama has more than 15 years’ experience with all facets of the software development lifecycle
and has cowritten Introducing .NET, Professional ASP Data Access, Professional Visual InterDev Programming
(all Wrox Press), and four books on classic Visual Basic.

Rama is also the “ASP Pro” at Devx.com, where he maintains ASP-related columns. He teaches .NET
Development and Web Development for Fairfield University’s master’s degree in software engineering,
and at the University of Connecticut. You can reach Rama at ramabeena@hotmail.com.

This book is dedicated to my wife, Beena, and our children, Ashish and Amit. They make my life whole.
I’m great at writing about technology but get tongue-tied trying to say how much I love and care about
the three of you. I am grateful to our prayer-answering God for your laughing, mischievous, adoring
lives. Thanks for being there, Beens. I love you.

Kent Sharkey. Born in an igloo and raised by wolves in a strange realm called “Manitoba,” Kent
Sharkey wandered the wilderness until found by a group of kind technical evangelists and migrated to
Redmond. He now is content strategist (yeah, he doesn’t know what he’s supposed to do either) for
ASP.NET content on MSDN. When not answering email he dreams of sleeping, complains to everyone
around (come to think of it, he does that while answering email as well), and attempts to keep his house-
mates (Babi, Cica, and Squirrel) happy.

As with all else, to Margaret. Thank you.

Bill Sheldon is a software architect and engineer originally from Baltimore, Maryland. Holding a degree
in Computer Science from the Illinois Institute of Technology (IIT) and a Microsoft Certified Solution
Developer (MCSD) qualification, Bill has been employed as an engineer since resigning his commission
with the U.S. Navy following the first Gulf War. Bill is involved with the San Diego .NET User Group
and writes for Windows and .NET magazines, including the twice monthly Developer .NET Update email
newsletter. He is also a frequent online presenter for MSDN and speaks at live events such as Microsoft
Developer Days. He lives with his wife, Tracie, in Southern California, where he is employed as a princi-
pal engineer with InterKnowlogy. You can reach Bill at bills@interknowlogy.com.

01_575368 ffirs.qxd 10/7/05 10:46 PM Page vi

Credits
Acquisitions Editor
Katie Mohr

Development Editors
Eileen Bien Calabro
Ami Frank Sullivan

Technical Editor
Brian Patterson

Production Editor
Pamela Hanley

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Ryan Steffen

Graphics and Production Specialists
Carrie A. Foster
Lauren Goddard
Denny Hager
Barbara Moore
Lynsey Osborn
Alicia South

Quality Control Technicians
Laura Albert
John Greenough
Leeann Harney
Jessica Kramer
Brian H. Walls

Proofreading
TECHBOOKS Production Services

Indexing
Broccoli Information Management

01_575368 ffirs.qxd 10/7/05 10:46 PM Page vii

01_575368 ffirs.qxd 10/7/05 10:46 PM Page viii

Contents

Introduction xxv

Chapter 1: What Is Microsoft .NET? 1

What Is .NET? 1
A Broad and Deep Platform for the Future 2
What’s Wrong with DNA and COM? 2

An Overview of the .NET Framework 3
The Common Language Runtime 4

Key Design Goals 5
Metadata 7
Multiple-Language Integration and Support 7
A Common Type System 8
Namespaces 8

The Next Layer — The .NET Class Framework 8
What Is in the .NET Class Framework? 9

User and Program Interfaces 10
Windows Forms 11
Web Forms 11
Console Applications 12
Web Services 12

XML as the .NET Metalanguage 12
The Role of COM 13

No Internal Use of COM 13
Some Things Never Change . . . 13
.NET Drives Changes in Visual Basic 14
How .NET Affects You 14

A Spectrum of Programming Models 14
Reducing Barriers to Internet Development 15
Libraries of Prewritten Functionality 15
Easier Deployment 15

The Future of .NET 16
Major Differences in .NET 2.0 16
Summary 17

02_575368 ftoc.qxd 10/7/05 10:47 PM Page ix

x

Contents

Chapter 2: Introducing Visual Basic 2005 and Visual Studio 2005 19

Visual Studio .NET — Startup 20
Visual Studio .NET 21

The Solution Explorer 22
My Project 23
References 24
Assembly Information Screen 25
The New Code Window 26
The Properties Window 29
Dynamic Help 30

Working with Visual Basic 2005 31
Form Properties Set in Code 32

Enhancing the Sample Application 34
Adding a Control and Event Handler 34
Customizing the Code 35
Build Configurations 40
Building Applications 43

Useful Features of Visual Studio 46
The Task List 46
The Command Window 47
The Server Explorer 47
Recording and Using Macros in Visual Studio 2005 49

Summary 50

Chapter 3: Variables and Type 51

Differences of Value and Reference Types 52
Value Types (Structures) 54

Primitive Types 54
Explicit Conversions 63

Compiler Options 64
Performing Explicit Conversions 66

Reference Types (Classes) 68
The Object Class 68
The String Class 70
The DBNull Class and IsDBNull() Function 72
Arrays 73
Collections 76

Parameter Passing 78
Boxing 79

02_575368 ftoc.qxd 10/7/05 10:47 PM Page x

xi

Contents

Retired Keywords and Methods 80
Elements of Visual Basic 6.0 Removed in .NET 80

Summary 81

Chapter 4: Object Syntax Introduction 83

Object-Oriented Terminology 84
Objects, Classes, and Instances 84
Composition of an Object 85

Working with Objects 88
Object Declaration and Instantiation 88
Object References 90
Dereferencing Objects 90
Early versus Late Binding 90

Creating Classes 94
Creating Basic Classes 94
Constructor Methods 114
Termination and Cleanup 115

Advanced Concepts 116
Overloading Methods 116
Overloading Constructor Methods 119
Shared Methods, Variables, and Events 120
Operator Overloading 125
Delegates 128
Classes versus Components 133

Summary 134

Chapter 5: Inheritance and Interfaces 137

Inheritance 138
Implementing Inheritance 140

Multiple Interfaces 187
Object Interfaces 187
Secondary Interfaces 189

Summary 195

Chapter 6: The Common Language Runtime 197

Elements of a .NET Application 198
Modules 198
Assemblies 199
Types 200

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xi

xii

Contents

Versioning and Deployment 201
Better Support for Versioning 201
Better Deployment 202

Cross-Language Integration 203
The Common Type System 203
Metadata 204
Better Support for Metadata 205
Attributes 206
The Reflection API 208

IL Disassembler 209
Memory Management 210

Traditional “Garbage Collection” 211
Faster Memory Allocation for Objects 218
Garbage Collector Optimizations 220

Summary 222

Chapter 7: Applying Objects and Components 223

Abstraction 223
Encapsulation 227
Polymorphism 230

Method Signatures 230
Implementing Polymorphism 230

Inheritance 241
When to Use Inheritance 242
Inheritance and Multiple Interfaces 246
How Deep to Go? 252
Fragile Base Class Issue 254

Summary 257

Chapter 8: Generics 259

Using Generics 260
Generic Types 261
Generic Methods 265

Creating Generics 267
Generic Types 267
Generic Methods 275
Constraints 276
Generics and Late Binding 280

Summary 281

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xii

xiii

Contents

Chapter 9: Namespaces 283

What Is a Namespace? 284
Namespaces and References 287
Common Namespaces 289

Importing and Aliasing Namespaces 291
Importing Namespaces 292
Referencing Namespaces in ASP.NET 293
Aliasing Namespaces 294

Creating Your Own Namespaces 295
My 298

My.Application 299
My.Computer 303
My.Forms 307
My.Resources 308
My.User 308
My.WebServices 308

Summary 309

Chapter 10: Exception Handling and Debugging 311

A Brief Review of Error Handling in VB6 312
Exceptions in .NET 314

Important Properties and Methods of an Exception 314
How Exceptions Differ from the Err Object in VB6 315

Structured-Exception-Handling Keywords in VB.NET 315
The Try, Catch, and Finally Keywords 316
The Throw Keyword 318
Throwing a New Exception 319
The Exit Try Statement 320
Nested Try Structures 321
The Message Property 323
The InnerException and TargetSite Properties 323

Interoperability with VB6-Style Error Handling 328
Error Logging 329

Writing to Trace Files 333
Analyzing Problems and Measuring Performance via the Trace Class 335
Summary 338

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xiii

xiv

Contents

Chapter 11: Data Access with ADO.NET 2.0 341

ADO.NET 2.0 Architecture Enhancements 342
ADO.NET Components 343

.NET Data Providers 344
Connection Object 344
Command Object 345
Using Stored Procedures with Command Objects 346
DataReader Object 350
Executing Commands Asynchronously 352
DataAdapter Objects 354
SQL Server .NET Data Provider 358
OLE DB .NET Data Provider 359

The DataSet Component 359
DataTableCollection 359
DataRelationCollection 360
ExtendedProperties 360
Creating and Using DataSet Objects 361
ADO.NET DataTable Objects 363
ADO.NET 2.0 Enhancements to the DataSet and DataTable 364

Working with the Common Provider Model 366
Connection Pooling Enhancements in ADO.NET 2.0 369
Building a Data Access Component 369

Constructors 370
Properties 371
Stored Procedure XML Structure 372
Methods 373
Using DataSet Objects to Bind to DataGrids 385

Summary 388

Chapter 12: Using XML in Visual Basic 2005 389

An Introduction to XML 391
XML Serialization 392

Source Code Style Attributes 397
System.Xml Document Support 399
XML Stream-Style Parsers 399

Writing an XML Stream 400
Reading an XML Stream 405
Using the MemoryStream Object 414
Document Object Model (DOM) 418

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xiv

xv

Contents

XSLT Transforms 424
XSLT Transforming between XML Standards 429
Using XML in Visual Basic 2005 430
Other Classes and Interfaces in System.Xml.Xsl 432

ADO.NET 432
ADO.NET and SQL Server 2000’s Built-In XML Features 434
XML and SQL Server 2005 436

Summary 437

Chapter 13: Security in the .NET Framework 2.0 439

Security Concepts and Definitions 440
Permissions in the System.Security.Permissions Namespace 442

Code Access Permissions 445
Role-Based Permissions 446
Identity Permissions 449

Managing Code Access Permissions 449
Managing Security Policy 454

Figuring the Minimum Permissions Required for Your Application 465
Using Visual Studio to Figure Minimum Permissions 467
Security Tools 470
Dealing with Exceptions Using the SecurityException Class 471

Cryptography Basics 473
Hash Algorithms 474

Summary 495

Chapter 14: Windows Forms 497

The Importance of Windows Forms 498
Summary of Changes in Windows Forms version 2.0 498

Default Instances of Forms 498
Changes in Existing Controls 499
New Controls 500
Replacements for Older Windows Forms Controls 501

The System.Windows.Forms Namespace 502
Using Forms 502

Showing Forms via Sub Main 503
Setting the Startup Form 503
Startup Location 504
Form Borders 505
Always on Top — The TopMost Property 505
Owned Forms 505

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xv

xvi

Contents

Making Forms Transparent and Translucent 507
Visual Inheritance 508
Scrollable Forms 509

Forms at Runtime 509
Controls 510

Control Tab Order 511
Control Arrays 511
Automatic Resizing and Positioning of Controls 513
FlowLayoutPanel Control 517
TableLayoutPanel Control 520
Extender Provider Controls 520
Advanced Capabilities for Data Entry 523
Validating Data Entry 526
Toolbars and the New ToolStrip Control 528
Menus 531
Common Dialogs 533
Drag and Drop 535
Panel and GroupBox Container Controls 538
Summary of Standard Windows.Forms Controls 539
Retired Controls 543
Using ActiveX Controls 543
Other Handy Programming Tips 543
MDI Forms 544
An MDI Example in VB.NET 545
Dialog Forms 547

Summary 549

Chapter 15: Windows Forms Advanced Features 551

Packaging Logic in Visual Controls 552
Developing Custom Controls in .NET 552

Inherit from an Existing Control 553
Build a Composite Control 553
Write a Control from Scratch 554

Inheriting from an Existing Control 554
Overview of the Process 554
Adding Additional Logic to a Custom Control 555
Other Useful Attributes 559
Defining a Custom Event for the Inherited Control 560
Creating a CheckedListBox that Limits the Number of Selected Items 560

The Control and UserControl Base Classes 564
The Control Class 564
The UserControl Class 565

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xvi

xvii

Contents

A Composite UserControl 566
Creating a Composite UserControl 567
How Does Resize Work? 568
Setting a Minimum Size 568
Exposing Properties of Subcontrols 568
Stepping Through the Example 569

Building a Control from Scratch 572
Painting a Custom Control with GDI+ 573

Attaching an Icon for the Toolbox 579
Embedding Controls in Other Controls 580
Summary 582

Chapter 16: Building Web Applications 583

A Web Site in Action 583
Setting Up the Environment 584
The HelloWorld Web Form 584

The Anatomy of a Web Form 590
Single-File Page Model 590
Code-Behind Page Model 591
The Template for Presentation 593

A More Complex Example 594
The Processing Flow of ASP.NET Web Forms 596
The Controls Available in Web Forms 598

The Concept of Server-Side Controls 598
HTML Server Controls 600
ASP.NET Server Controls 602
Validation Controls 604
User Controls 605

Events in Web Forms 606
The Web Form’s Lifecycle 607
Event Categories 608

Web Forms versus ASP 609
Transferring Control among Web Forms 611
A Final Example 611
Summary 625

Chapter 17: ASP.NET 2.0 Advanced Features 627

Applications and Pages 627
Cross-Page Posting 628
ASP.NET Advanced Compilation 632

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xvii

xviii

Contents

Master Pages 634
Creating a Master Page 635
Creating the Content Page 637
Declaring the Master Page Application-Wide 641
Providing Default Content in Your Master Page 642

Data-Driven Applications 642
Using the GridView and SqlDataSource Controls 643
Allowing for Editing and Deleting of Records with the GridView 648
Don’t Stop There! 652

Navigation 653
Using the SiteMapPath Server Control 654
Menu Server Control 656
The TreeView Server Control 657

Membership and Role Management 661
Personalization 665
Configuring ASP.NET 666
Summary 668

Chapter 18: Assemblies 671

Assemblies 672
The Manifest 673

The Identity Section 675
Referenced Assemblies 677

Assemblies and Deployment 678
Application-Private Assemblies 678
Shared Assemblies 679

Versioning Issues 681
Application Isolation 681
Side-by-Side Execution 682
Self-Describing 682
Version Policies 682
Configuration Files 684

Dynamic Loading of Assemblies 687
The Assembly Class 687
Putting Assemblies to Work 689

Summary 689

Chapter 19: Deployment 691

Application Deployment 692
Why Is Deployment Easier in .NET? 692

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xviii

xix

Contents

XCOPY Deployment 694
Using the Windows Installer 694

Visual Studio .NET Deployment Projects 695
Project Templates 696
Creating a Deployment Project 698
Walkthroughs 698

Modifying the Deployment Project 710
Project Properties 711
The File System Editor 714
The Registry Editor 719
The File Types Editor 722
The User Interface Editor 723
The Custom Actions Editor 726
The Launch Conditions Editor 729

Building 732
Internet Deployment of Windows Applications 733

No-Touch Deployment 733
ClickOnce Deployment 735
Custom Deployment Options 745

Summary 745

Chapter 20: Working with Classic COM and Interfaces 747

Classic COM 748
COM and .NET in Practice 749

A Legacy Component 749
The .NET Application 752
Trying It All Out 754
Using TlbImp Directly 755
Late Binding 756

ActiveX Controls 761
A Legacy ActiveX Control 761
A .NET Application, Again 763
Trying It All Out, Again 766

Using .NET Components in the COM World 766
A .NET Component 767
RegAsm 769
TlbExp 772

Summary 772

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xix

xx

Contents

Chapter 21: Enterprise Services 773

Transactions 774
The ACID Test 774

Transactional Components 775
An Example of Transactions 776

Other Aspects of Transactions 791
Just-In-Time 791
Object Pooling 792
Holding Things Up 792

Queued Components 792
An Example of Queued Components 793
Transactions with Queued Components 799

Summary 801

Chapter 22: Threading 803

What Is a Thread? 803
Processes, AppDomains, and Threads 805
Thread Scheduling 807
Thread Safety and Thread Affinity 809
When to Use Threads 809
Designing a Background Task 811
Interactive Applications 811

Implementing Threading 812
A Quick Tour 812
Threading Options 815
Manually Creating a Thread 820
Shared Data 822
Avoid Sharing Data 823
Sharing Data with Synchronization 825
Synchronization Objects 827

Summary 834

Chapter 23: XML Web Services 835

Introduction to Web Services 835
Early Architectural Designs 837

The Network Angle 837
Application Development 837
Merging the Two with the Web 837
The Foundations of Web Services 838

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xx

xxi

Contents

The Problems 839
The Other Players 840
What All the Foundations Missed 841

Building a Web Service 844
A Realistic Example 848

Using Visual Studio 2005 to Build Web Services 848
Visual Basic and System.Web.Services 858

System.Web.Services Namespace 858
System.Web.Services.Description Namespace 859
System.Web.Services.Discovery Namespace 860
System.Web.Services.Protocols Namespace 860

Architecting with Web Services 861
Why Web Services? 861
How This All Fits Together 862
State Management for XML Web Services 862
Using DNS As a Model 863

Security in Web Services 866
The Secure Sockets Layer 867
Directory-Level Security 867
Other Types of Security 868

The Downside 868
Security 868
State 868
Transactions 868
Speed and Connectivity 868

Where We Go from Here 869
Summary 869

Chapter 24: Remoting 871

Remoting Overview 872
Basic Terminology 872
SingleCall, Singleton, and Activated Objects 875

Implementing Remoting 879
A Simple Example 879
Using IIS As a Remoting Host 890
Using Activator.GetObject 894
Interface-Based Design 895
Using Generated Proxies 897

Summary 898

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xxi

xxii

Contents

Chapter 25: Windows Services 899

Example Windows Services 899
Characteristics of a Windows Service 900
Interacting with Windows Services 901
Creating a Windows Service 902

The .NET Framework Classes for Windows Services 902
Other Types of Windows Services 905

Creating a Windows Service with Visual Basic 906
Creating a Counter Monitor Service 907

Installing the Service 910
Starting the Service 910
Uninstalling the Service 911

Monitoring a Performance Counter 912
Creating a Performance Counter 912
Integrating the Counter into the Service 914
Changing the Value in the Performance Counter 914

Communicating with the Service 915
The ServiceController Class 916
Integrating a ServiceController into the Example 917
More About ServiceController 919

Custom Commands 919
Passing Strings to a Service 921
Creating a File Watcher 922

Writing Events Using an Eventlog 922
Creating a FileSystemWatcher 923

Debugging the Service 927
To Debug a Service 927

Summary 929

Chapter 26: Network Programming 931

Getting Your Message Across: Protocols, Addresses, and Ports 931
Addresses and Names 933
Ports: They’re Not Just for Ships 934
Firewalls: Can’t Live with Them, Can’t Live without Them 934

The System.Net Namespace 935
Web Requests (and Responses) 935
Simplifying Common Web Requests with WebClient 952
Creating Your Own Web Server with HttpListener 955

Summary 963

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xxii

xxiii

Contents

Chapter 27: Visual Basic and the Internet 965

Downloading Internet Resources 965
Sockets 969

Building the Application 970
Creating Conversation Windows 972
Sending Messages 980
Shutting Down the Application 986

Using Internet Explorer in Your Applications 990
Windows Forms and HTML — No Problem! 991

Summary 1000

Appendix A: The Visual Basic Compiler 1001

Appendix B: Visual Basic Resources 1017

Index 1019

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xxiii

02_575368 ftoc.qxd 10/7/05 10:47 PM Page xxiv

Introduction

In 2002, Visual Basic took the biggest leap in innovation since it was released, with the introduction of
Visual Basic .NET (as it was renamed). After more than a decade, Visual Basic was overdue for a major
overhaul. But .NET goes beyond an overhaul. It changes almost every aspect of software development.
From integrating Internet functionality to creating object-oriented frameworks, Visual Basic .NET chal-
lenged traditional VB developers to learn dramatic new concepts and techniques.

2005 brings us an enhanced Visual Basic language (renamed this time Visual Basic 2005). New features
have been added that cement this language’s position as a true object-oriented language. With Visual
Basic 2005, it is still going to be a challenge for the traditional VB6 developers to learn, but it is an easy
road and books like this are here to help you on your path.

First, it’s necessary to learn the differences between Visual Basic 2005 and the older versions. In some
cases, the same functionality is implemented in a different way. This was not done arbitrarily — there are
good reasons for the changes. But you must be prepared to unlearn old habits and form new ones.

Next, you must be open to the new concepts. Full object orientation, new component techniques, new
visual tools for both local and Internet interfaces — all of these and more must become part of your skill
set to effectively develop applications in Visual Basic.

In this book, we cover Visual Basic virtually from start to finish. We begin by looking at the .NET
Framework and end by looking at the best practices for deploying .NET applications. In between, we
look at everything from database access to integration with other technologies such as XML, along with
investigating the new features in detail. You will see that Visual Basic 2005 has emerged as a powerful
yet easy-to-use language that will allow you to target the Internet just as easily as the desktop.

The Importance of Visual Basic
Early in the adoption cycle of .NET, Microsoft’s new language, C#, got the lion’s share of attention. But
as .NET adoption has increased, Visual Basic’s continuing importance has also been apparent. Microsoft
has publicly stated that they consider Visual Basic the language of choice for applications where devel-
oper productivity is one of the highest priorities.

Future development of Visual Basic is emphasizing capabilities that enable access to the whole expanse
of the .NET Framework in the most productive way, while C# development is emphasizing the experi-
ence of writing code. That fits the traditional role of Visual Basic as the language developers use in the
real world to create business applications as quickly as possible.

This difference is more than academic. One of the most important advantages of the .NET Framework is
that it allows applications to be written with dramatically less code. In the world of business applica-
tions, the goal is to concentrate on writing business logic and to eliminate routine coding tasks as much
as possible. The value in this new world is not in churning out lots of code — it is in writing robust, use-
ful applications with as little code as possible.

03_575368 flast.qxd 10/7/05 10:46 PM Page xxv

xxvi

Introduction

Visual Basic is an excellent fit for this type of development, which makes up the bulk of software devel-
opment in today’s economy. And it will grow to be an even better fit as it is refined and evolved for
exactly that purpose.

Who Is This Book For?
This book is written to help experienced developers learn about Visual Basic 2005. From those who are
just starting the transition from earlier versions to those who have used Visual Basic for a while and
need to gain a deeper understanding, this book provides a discussion on the most common program-
ming tasks and concepts you need.

Professional Visual Basic 2005 offers a wide-ranging presentation of Visual Basic concepts, but the .NET
Framework is so large and comprehensive that no single book can cover it all. The most important area
in which this book does not attempt to be complete is Web development. While chapters discussing the
basics of browser-based programming in Visual Basic are included, professional Web developers should
instead refer to Professional ASP.NET 2.0 (Wrox Press).

What You Need to Use This Book
Although, it is possible to create Visual Basic applications using the command-line tools contained in
the .NET Framework SDK, you will need Visual Studio 2005 (Professional or higher), which includes the
.NET Framework SDK, to get the most out of this book. You may use Visual Studio .NET 2002 or Visual
Studio 2003 instead, but there may be cases where much of the lessons will just not work because func-
tionalities and capabilities will not be available in these older versions.

In addition:

❑ Some chapters make use of SQL Server 2005. However, you can also run the example code using
Microsoft’s SQL Express, which ships with Visual Studio 2005.

❑ Several chapters make use of Internet Information Services (IIS). IIS ships with Windows 2003
Server, Windows 2000 Server, Windows 2000 Professional, and Windows XP, although it is not
installed by default.

❑ Chapter 21 makes use of MSMQ to work with queued transactions. MSMQ ships with Windows
2003 Server, Windows 2000 Server, Windows 2000 Professional, and Windows XP, although it is
not installed by default.

What Does This Book Cover?
Chapter 1, “What Is Microsoft .NET?” — This chapter explains the importance of .NET and just how
much it changes application development. You gain an understanding of why you need .NET by looking
at what’s wrong with the current development technologies, including COM and the DNA architectural
model. Then, we look at how .NET corrects the drawbacks by using the common language runtime (CLR).

03_575368 flast.qxd 10/7/05 10:46 PM Page xxvi

xxvii

Introduction

Chapter 2, “Introducing Visual Basic 2005 and Visual Studio 2005” — This chapter provides a first look
at a Visual Basic application. As we develop this application, you’ll take a tour of some of the new fea-
tures of Visual Studio 2005.

Chapter 3, “Variables and Types” — This chapter introduces many of the types commonly used in
Visual Basic. The main goal of this chapter is to familiarize you with value and reference types and to
help those with a background in VB6 understand some of the key differences in how variables are
defined in Visual Basic.

Chapter 4, “Object Syntax Introduction” — This is the first of three chapters that explore object-
oriented programming in Visual Basic. This chapter will define objects, classes, instances, encapsulation,
abstraction, polymorphism, and inheritance.

Chapter 5, “Inheritance and Interfaces” — This chapter examines inheritance and how it can be used
within Visual Basic. We create simple and abstract base classes and demonstrate how to create base
classes from which other classes can be derived.

Chapter 6, “The Common Language Runtime” — This chapter examines the core of the .NET platform,
the common language runtime (CLR). The CLR is responsible for managing the execution of code com-
piled for the .NET platform. We cover versioning and deployment, memory management, cross-language
integration, metadata, and the IL Disassembler.

Chapter 7, “Applying Objects and Components” — This chapter puts the theory of Chapters 4 and 5
into practice. The four defining object-oriented concepts (abstraction, encapsulation, polymorphism,
inheritance) are discussed, and we explain how these concepts can be applied in design and develop-
ment to create effective object-oriented applications.

Chapter 8, “Generics” — This chapter focuses on one of the biggest enhancements to Visual Basic in this
version — generics. Generics enables you to make a generic collection that is still strongly typed — pro-
viding fewer chances for errors, increasing performance, and giving you Intellisense features when you
are working with your collections.

Chapter 9, “Namespaces” — This chapter introduces namespaces and their hierarchical structure. An
explanation of namespaces and some common ones are given. In addition, you learn how to create new
namespaces, and how to import and alias existing namespaces within projects. This chapter also looks at
the new My namespace that was made available in Visual Basic 2005.

Chapter 10, “Exception Handling and Debugging” — This chapter covers how error handling and
debugging work in Visual Basic 2005 by discussing the CLR exception handler and the new Try . . .
Catch . . . Finally structure. We also look at error and trace logging, and how you can use these meth-
ods to obtain feedback on how your program is working.

Chapter 11, “Data Access with ADO.NET 2.0” — This chapter focuses on what you will need to know
about the ADO.NET object model to be able to build flexible, fast, and scalable data access objects and
applications. The evolution of ADO into ADO.NET is explored, and the main objects in ADO.NET that
you need to understand in order to build data access into your .NET applications are explained.

03_575368 flast.qxd 10/7/05 10:46 PM Page xxvii

xxviii

Introduction

Chapter 12, “Using XML in Visual Basic 2005” — This chapter presents the features of the .NET
Framework that facilitate the generation and manipulation of XML. We describe the .NET Framework’s
XML-related namespaces, and a subset of the classes exposed by these namespaces is examined in detail.
This chapter also touches on a set of technologies that utilize XML, specifically ADO.NET and SQL Server.

Chapter 13, “Security in the .NET Framework 2.0” — This chapter examines the additional tools and func-
tionality with regard to the security provided by .NET. Caspol.exe and Permview.exe, which assist in
establishing and maintaining security policies, are discussed. The System.Security.Permissions
namespace is looked at, and we discuss how it relates to managing permissions. Finally, we examine the
System.Security.Cryptography namespace and run through some code to demonstrate the capabilities
of this namespace.

Chapter 14, “Windows Forms” — This chapter looks at Windows Forms, concentrating primarily on
forms and built-in controls. What is new and what has been changed from the previous versions of
Visual Basic are discussed, along with the System.Windows.Forms namespace.

Chapter 15, “Windows Forms Advanced Features” — This chapter looks at some of the more advanced
features that are available to you in building your Windows Forms applications.

Chapter 16, “Building Web Applications” — This chapter explores Web forms and how you can benefit
from their use. Using progressively more complex examples, this chapter explains how .NET provides
the power of Rapid Application Development (normally associated with Windows applications) for the
development of Web applications.

Chapter 17, “ASP.NET 2.0 Advanced Features” — This chapter looks at a lot of the new and advanced
features that have been made available to you with the latest release of ASP.NET 2.0. Examples of items
covered include cross-page posting, master pages, site navigation, personalization, and more.

Chapter 18, “Assemblies” — This chapter examines assemblies and their use within the CLR. The struc-
ture of an assembly, what it contains, and the information it contains is examined.

Chapter 19, “Deployment” — This chapter examines the manifest of the assembly, and its role in deploy-
ment will be looked at. We also look at what Visual Studio 2005 and the CLR have to offer you when you
come to deploy your applications.

Chapter 20, “Working with Classic COM and Interfaces” — This chapter discusses COM and .NET
component interoperability, and what tools are provided to help link the two technologies.

Chapter 21, “Enterprise Services” — This chapter explores the .NET component services — in particular,
transaction processing and queued components.

Chapter 22, “Threading” — This chapter explores threading and explains how the various objects in
the .NET Framework enable any of its consumers to develop multithreaded applications. We examine
how threads can be created, how they relate to processes, and the differences between multitasking and
multithreading.

Chapter 23, “XML Web Services” — This chapter looks at how to create and consume Web services
using Visual Basic. The abstract classes provided by the CLR to set up and work with Web services are
discussed, as are some of the technologies that support Web services.

03_575368 flast.qxd 10/7/05 10:46 PM Page xxviii

xxix

Introduction

Chapter 24, “Remoting” — This chapter takes a detailed look at how to use remoting in classic three-tier
application design. We look at the basic architecture of remoting and build a basic server and client that
uses a singleton object for answering client requests into the business tier. We then look at how to use
serialization to return more complex objects from the server to the client, and how to use the call context
for passing extra data from the client to the server along with each call without having to change the
object model.

Chapter 25, “Windows Services” — This chapter examines how Visual Basic is used in the production of
Windows Services. The creation, installation, running, and debugging of Windows Services are covered.

Chapter 26, “Network Programming” — This chapter takes a look at working with some of the network-
ing protocols that are available to you in your development and how to incorporate a wider network
into the functionality of your applications.

Chapter 27, “Visual Basic and the Internet” — This chapter looks at how to download resources from
the Web, how to design your own communication protocols, and how to reuse the Web browser control
in your applications.

Appendix A, “The Visual Basic Compiler” — This appendix looks at the Visual Basic compiler vbc.exe
and the functionality it provides.

Appendix B, “Visual Basic Resources” — This appendix provides a short list of VB resources that are
out there for you.

Conventions
We have used a number of different styles of text and layout in this book to help differentiate between
the different kinds of information. Here are examples of the styles we use and an explanation of what
they mean:

Bullets appear indented, with each new bullet marked as follows:

❑ New and important words are in italics.

❑ Words that appear on the screen in menus such as File or Window are in a similar font to the
one that you see on screen.

❑ Keyboard strokes are shown like this: Ctrl-A.

❑ If you see something like Object, you’ll know that it’s a filename, object name, or function
name.

Code in a gray box is new, important, pertinent code:

Dim objMyClass as New MyClass(“Hello World”)
Debug.WriteLine(objMyClass.ToString)

03_575368 flast.qxd 10/7/05 10:46 PM Page xxix

xxx

Introduction

Sometimes you’ll see code in a mixture of styles, such as:

Dim objVar as Object
objVar = Me

CType(objVar, Form).Text = “New Dialog Title Text”

The code with a white background is code we’ve already looked at and that we don’t wish to examine
further.

Advice, hints, and background information come in an italicized, indented paragraph like this.

Customer Support
We always value hearing from our readers, and we want to know what you think about this book: what
you liked, what you didn’t like, and what you think we can do better next time. You can send us your
comments, either by returning the reply card in the back of the book or by email to feedback@wrox.com.
Please be sure to mention the book title in your message.

How to Download the Sample Code for the Book
When you visit the Wrox site, www.wrox.com, simply locate the title through our Search facility or by
using one of the title lists. Click Download in the Code column or click Download Code on the book’s
detail page.

The files that are available for download from our site have been archived using WinZip. When you have
saved the attachments to a folder on your hard drive, you need to extract the files using a decompression
program such as WinZip or PKUnzip. When you extract the files, the code is usually extracted into chap-
ter folders. When you start the extraction process, ensure that your software (WinZip, PKUnzip, and so
on) is set to use folder names.

Errata
We’ve made every effort to make sure that there are no errors in the text or in the code. However, no one
is perfect and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or a
faulty piece of code, we would be very grateful for feedback. By sending in errata, you may save another
reader hours of frustration, and of course, you will be helping us provide even higher quality informa-
tion. Simply email the information to support@wrox.com; your information will be checked and if cor-
rect, posted to the errata page for that title, or used in subsequent editions of the book.

To find errata on the Web site, go to www.wrox.com, and simply locate the title through our Advanced
Search or title list. Click the Book Errata link, which is below the cover graphic on the book’s detail page.

Important pieces of information come in shaded boxes like this.

03_575368 flast.qxd 10/7/05 10:46 PM Page xxx

xxxi

Introduction

p2p.wrox.com
For author and peer discussion, join the P2P mailing lists. Our unique system provides programmer to
programmer(tm) contact on mailing lists, forums, and newsgroups, all in addition to our one-to-one
email support system. If you post a query to P2P, you can be confident that the many Wrox authors and
other industry experts who are present on our mailing lists are examining it. At p2p.wrox.com you will
find a number of different lists that will help you, not only while you read this book, but also as you
develop your own applications.

To subscribe to a mailing list just follow these steps:

1. Go to http://p2p.wrox.com/.

2. Choose the appropriate category from the left menu bar.

3. Click the mailing list you wish to join.

4. Follow the instructions to subscribe and fill in your email address and password.

5. Reply to the confirmation email you receive.

6. Use the subscription manager to join more lists and set your email preferences.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum emailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Particularly appropriate to this book are the vb_dotnet and pro_vb_dotnet lists.

03_575368 flast.qxd 10/7/05 10:46 PM Page xxxi

03_575368 flast.qxd 10/7/05 10:46 PM Page xxxii

What Is Microsoft .NET?

New technologies force change, nowhere more so than in computers and software. Occasionally, a
new technology is so innovative that it forces us to challenge our most fundamental assumptions.
In the computing industry, the latest such technology is the Internet. It has forced us to rethink
how software should be created, deployed, and used.

However, that process takes time. Usually, when a powerful new technology comes along, it is
first simply strapped onto existing platforms. So it has been for the Internet. Before the advent of
Microsoft .NET, developers used older platforms with new Internet capabilities “strapped on.”
The resulting systems worked, but they were expensive and difficult to produce, hard to use, and
difficult to maintain.

Realizing this several years ago, Microsoft decided it was time to design a new platform from the
ground up specifically for the post-Internet world. The result is called .NET. It represents a turning
point in the world of Windows software for Microsoft platforms. Microsoft has staked their future on
.NET and publicly stated that henceforth almost all their research and development will be done on
this platform. It is expected that, eventually, almost all Microsoft products will be ported to the .NET
platform. (However, the name “.NET” will evolve, as you will see at the end of the chapter.)

Microsoft is now at version 2.0 of Microsoft .NET, and the development environment associated
with this version is called Visual Studio 2005. The version of Visual Basic in this version is, thus,
called Visual Basic 2005, and that’s what this book is all about.

What Is .NET?
Microsoft’s .NET initiative is broad-based and very ambitious. It includes the .NET Framework,
which encompasses the languages and execution platform, plus extensive class libraries, provid-
ing rich built-in functionality. Besides the core .NET Framework, the .NET initiative includes pro-
tocols (such as the Simple Object Access Protocol, commonly known as SOAP) to provide a new
level of software integration over the Internet, via a standard known as Web Services.

04_575368 ch01.qxd 10/7/05 10:50 PM Page 1

Although Web Services are important (and are discussed in detail in Chapter 23), the foundation of all
.NET-based systems is the .NET Framework. This chapter will look at the .NET Framework from the
viewpoint of a Visual Basic developer. Unless you are quite familiar with the Framework already, you
should consider this introduction an essential first step in assimilating the information about Visual
Basic .NET that will be presented in the rest of this book.

The first released product based on the .NET Framework was Visual Studio .NET 2002, which was pub-
licly launched in February 2002, and included version 1.0 of the .NET Framework. Visual Studio .NET
2003 was introduced a year later and included version 1.1 of the .NET Framework. As mentioned, the
current version is Visual Studio 2005. (Note that the “.NET” part of the name has been dropped for this
version.)

This book assumes that you are using VS.NET 2005. Some of the examples will work transparently with
VS.NET 2002 and VS.NET 2003, but you should not count on this, because the difference between 2.0
and the earlier versions is significant.

A Broad and Deep Platform for the Future
Calling the .NET Framework a platform doesn’t begin to describe how broad and deep it is. It encom-
passes a virtual machine that abstracts away much of the Windows API from development. It includes a
class library with more functionality than any yet created. It makes available a development environ-
ment that spans multiple languages, and it exposes an architecture that makes multiple language inte-
gration simple and straightforward.

At first glance, some aspects of .NET appear similar to previous architectures, such as UCSD Pascal
and Java. No doubt some of the ideas for .NET were inspired by these past efforts, but there are also
many brand new architectural ideas in .NET. Overall, the result is a radically new approach to software
development.

The vision of Microsoft .NET is globally distributed systems, using XML as the universal glue to allow
functions running on different computers across an organization or across the world to come together
in a single application. In this vision, systems from servers to wireless palmtops, with everything in
between, will share the same general platform, with versions of .NET available for all of them, and with
each of them able to integrate transparently with the others.

This does not leave out classic applications as you have always known them, though. Microsoft .NET
also aims to make traditional business applications much easier to develop and deploy. Some of the tech-
nologies of the .NET Framework, such as Windows Forms, demonstrate that Microsoft has not forgotten
the traditional business developer. In fact, such developers will find it possible to Internet- enable their
applications more easily than with any previous platform.

What’s Wrong with DNA and COM?
The pre-.NET technologies used for development on Microsoft platforms encompassed the COM
(Component Object Model) standard for creation of components, and the DNA model for multitier soft-
ware architectures. As these technologies were extended into larger, more enterprise-level settings, and
as integration with the Internet began to be important, several major drawbacks became apparent. These
included:

2

Chapter 1

04_575368 ch01.qxd 10/7/05 10:50 PM Page 2

❑ Difficulty in integrating Internet technologies:

❑ Hard to produce Internet-based user interfaces

❑ No standard way for systems and processes to communicate over the Internet

❑ Expensive, difficult, and undependable deployment

❑ Poor cross-language integration

❑ Weaknesses in the most popular Microsoft tool — Visual Basic:

❑ Lack of full object orientation, which made it impossible to produce frameworks in
Visual Basic

❑ One threading model that did not work in some contexts

❑ Poor integration with the Internet

❑ Other weaknesses such as poor error-handling capabilities

It is important to note that all pre-.NET platforms, such as Java, also have some of these drawbacks, as
well as unique ones of their own. The drawbacks related to the Internet are particularly ubiquitous.

Microsoft .NET was created with the Internet in mind. It was also designed specifically to overcome the
limitations of COM and products such as Visual Basic 6 and Active Server Pages. As a result, all of the pre-
ceding limitations have been eliminated or significantly reduced in Microsoft .NET and Visual Studio 2005.

An Overview of the .NET Framework
First and foremost, .NET is a framework that covers all the layers of software development above the
operating system level. It provides the richest level of integration among presentation technologies, com-
ponent technologies, and data technologies ever seen on a Microsoft, or perhaps any, platform. Second,
the entire architecture has been created to make it as easy to develop Internet applications as it is to
develop for the desktop.

The .NET Framework actually “wraps” the operating system, insulating software developed with .NET
from most operating system specifics such as file handling and memory allocation. This prepares for a
possible future in which the software developed for .NET is portable to a wide variety of hardware and
operating system foundations.

VS.NET supports Windows 2003, Windows XP, and all versions of Windows 2000. Programs created for
.NET can also run under Windows NT, Windows 98, and Windows Me, though VS.NET does not run on
these systems. Note that in some cases certain service packs are required to run .NET.

The major components of the Microsoft .NET Framework are shown in Figure 1-1.

The framework starts all the way down at the memory management and component loading level and
goes all the way up to multiple ways of rendering user and program interfaces. In between, there are
layers that provide just about any system-level capability that a developer would need.

3

What Is Microsoft .NET?

04_575368 ch01.qxd 10/7/05 10:50 PM Page 3

Figure 1-1

At the base is the common language runtime, often abbreviated to CLR. This is the heart of the .NET
Framework — it is the engine that drives key functionality. It includes, for example, a common system of
datatypes. These common types, plus a standard interface convention, make cross-language inheritance
possible. In addition to allocation and management of memory, the CLR also does reference tracking for
objects and handles garbage collection.

The middle layer includes the next generation of standard system Services such as classes that manage data
and Extensible Markup Language (XML). These services are brought under control of the Framework,
making them universally available and making their usage consistent across languages.

The top layer includes user and program interfaces. Windows Forms is a new and more advanced way to
do standard Win32 screens (often referred to as “‘smart clients”). Web Forms provides a new Web-based
user interface. Perhaps the most revolutionary is Web Services, which provide a mechanism for programs
to communicate over the Internet, using SOAP. Web Services provide an analog of COM and DCOM for
object brokering and interfacing, but based on Internet technologies so that allowance is made even for
integration to non-Microsoft platforms. Web Forms and Web Services, which constitute the Internet inter-
face portion of .NET, are implemented by a part of the .NET Framework referred to as ASP.NET.

All of these capabilities are available to any language that is based on the .NET platform, including, of
course, VB.NET.

The Common Language Runtime
We are all familiar with runtimes — they go back further than DOS languages. However, the common
language runtime (CLR) is as advanced over traditional runtimes as a machine gun is over a musket.
Figure 1-2 shows a quick diagrammatic summary of the major pieces of the CLR.

That small part in the middle of Figure 1-2 called Execution support contains most of the capabilities
normally associated with a language runtime (such as the VBRUNxxx.DLL runtime used with Visual
Basic). The rest is new, at least for Microsoft platforms.

ASP.NET
Web Services Web Forms

ASP.NET Application Services

Windows Forms
Controls Drawing

Windows Application Services

.NET Framework Base Classes
ADO.NET XML Threading IO

Component Model Security Diagnostics Etc.

Common Language Runtime

Memory Management Common Type System Lifecycle Monitoring

4

Chapter 1

04_575368 ch01.qxd 10/7/05 10:50 PM Page 4

Figure 1-2

Key Design Goals
The design of the CLR is based on the following primary goals:

❑ Simpler, faster development

❑ Automatic handling of system-level tasks such as memory management and process
communication

❑ Excellent tool support

❑ Simpler, safer deployment

❑ Scalability

Notice that many of these design goals directly address the limitations of COM/DNA. Let’s look at
some of these in detail.

Simpler, Faster Development
A broad, consistent framework allows developers to write less code, and reuse code more. Using less
code is possible because the system provides a rich set of underlying functionality. Programs in .NET
access this functionality in a standard, consistent way, requiring less “hardwiring” and customization
logic to interface with the functionality than is typically needed today.

Programming is also simpler in .NET because of the standardization of datatypes and interface conven-
tions. As will be discussed later, .NET makes knowledge of the intricacies of COM much less important.

The net result is that programs written in VB.NET that take proper advantage of the full capabilities of
the .NET Framework typically have significantly less code than equivalent programs written in earlier
versions of Visual Basic. Less code means faster development, fewer bugs, and easier maintenance.

Excellent Tool Support
Although much of what the CLR does is similar to operating system functionality, it is very much
designed to support development languages. It furnishes a rich set of object models that are useful to

Common Type System
(Data types, etc.)

Intermediate Language (IL)
to native code compilers

Execution support
(traditional runtime

functions)

Security

Garbage collection, stack walk, code manager

Class loader and memory layout

5

What Is Microsoft .NET?

04_575368 ch01.qxd 10/7/05 10:50 PM Page 5

tools like designers, wizards, debuggers, and profilers, and since the object models are at the runtime
level, such tools can be designed to work across all languages that use the CLR. It is expected that third
parties will produce a host of such tools.

Simpler, Safer Deployment
It is hard for an experienced Windows component developer to see how anything can work without
registration, GUIDs, and the like, but the CLR does. Applications produced in the .NET Framework can
be designed to install with a simple XCOPY. That’s right — just copy the files onto the disk and run the
application (as long as the .NET Framework was previously installed, which is discussed in more detail
in the following sections). This hasn’t been seen in the Microsoft world since the days of DOS (and some
of us really miss it).

This works because compilers in the .NET Framework embed identifiers (in the form of metadata, to be
discussed later) into compiled modules, and the CLR manages those identifiers automatically. The iden-
tifiers provide all the information needed to load and run modules, and to locate related modules.

As a great by-product, the CLR can manage multiple versions of the same component (even a shared
component) and have them run side by side. The identifiers tell the CLR which version is needed for a
particular compiled module, because such information is captured at compile time. The runtime policy
can be set in a module to use the exact version of a component that was available at compile time, to use
the latest compatible version, or to specify an exact version. The bottom line is that .NET is intended to
eradicate DLL hell once and for all.

This has implications that might not be apparent at first. For example, if a program needed to run
directly from a CD or a shared network drive (without first running an installation program), that was
not feasible in Visual Basic after version 3. That capability reappears with VB.NET. This dramatically
reduces the cost of deployment in many common scenarios.

Another significant deployment benefit in .NET is that applications only need to install their own core
logic. An application produced in .NET does not need to install a runtime, for example, or modules for
ADO or XML. Such base functionality is part of the .NET Framework, which is installed separately and
only once for each system. The .NET Framework will eventually be included with the operating system
and probably with various applications. Those four-disk installs for a VB “Hello world” program are a
thing of the past.

.NET programs can also be deployed across the Internet. Version 2.0 of the .NET Framework includes a
new technology specifically for that purpose called ClickOnce. This is a new capability in .NET, supple-
menting the older “no touch deployment.” You can read about ClickOnce in Chapter 19.

The .NET Framework, which includes the CLR and the Framework base classes, is required on every
machine where you want to run .NET applications and code. For Windows 2003 and above, the .NET
Framework is installed automatically as part of the operating system. For older operating systems, or to
install a newer version of the .NET Framework, the .NET Framework is a separate installation.
Deployment of .NET applications is discussed in Chapter 19.

Scalability
Since most of the system-level execution functions are concentrated in the CLR, they can be optimized and
architected to allow a wide range of scalability for applications produced in the .NET Framework. As with
most of the other advantages of the CLR, this one comes to all applications with little or no effort.

6

Chapter 1

04_575368 ch01.qxd 10/7/05 10:50 PM Page 6

Memory and process management is one area where scalability can be built in. The memory manage-
ment in the CLR is self-configuring and tunes itself automatically. Garbage collection (reclaiming
memory that is no longer being actively used) is highly optimized, and the CLR supports many of the
component management capabilities of MTS/COM+ (such as object pooling). The result is that compo-
nents can run faster and, thus, support more users.

This has some interesting side effects. For example, the performance and scalability differences among
languages become smaller. All languages compile to a standard bytecode called Microsoft Intermediate
Language (MSIL), often referred to simply as IL, and there is a discussion later on how the CLR executes
IL. With all languages compiling down to similar bytecode, it becomes unnecessary in most cases to look
to other languages when performance is an issue. The difference in performance among .NET languages is
minor — Visual Basic, for example, gives about the same performance as any of the other .NET languages.

Versions of the CLR are available on a wide range of devices. The vision is for .NET to be running at
all levels, from smart palmtop devices all the way up to Web farms. The same development tools work
across the entire range — news that will be appreciated by those who have tried to use older Windows
CE development kits.

Metadata
The .NET Framework needs lots of information about an application to carry out several automatic func-
tions. The design of .NET requires applications to carry that information within them. That is, applica-
tions are self-describing. The collected information that describes an application is called metadata.

The concept of metadata is not new. For example, COM components use a form of it called a type library,
which contains metadata describing the classes exposed by the component and is used to facilitate OLE
Automation. A component’s type library, however, is stored in a separate file. In contrast, the metadata
in .NET is stored in one place — inside the component it describes. Metadata in .NET also contains more
information about the component and is better organized.

Chapter 6 on the CLR goes into more information about metadata. For now, the most important point
for you to internalize is that metadata is key to the easy deployment in .NET. When a component is
upgraded or moved, the necessary information about the component cannot be left behind. Metadata
can never get out of sync with a .NET component, because it is not in a separate file. Everything the
CLR needs to know to run a component is supplied with the component.

Multiple-Language Integration and Support
The CLR is designed to support multiple languages and allow unprecedented levels of integration
among those languages. By enforcing a common type system, and by having complete control over
interface calls, the CLR allows languages to work together more transparently than ever before. The
cross-language integration issues of COM simply don’t exist in .NET.

It is straightforward in the .NET Framework to use one language to subclass a class implemented in
another. A class written in Visual Basic can inherit from a base class written in C#, or in COBOL for that
matter. The VB program doesn’t even need to know the language used for the base class. .NET offers full
implementation inheritance with no problems that require recompilation when the base class changes.

Chapter 3 also includes more information on the multiple-language integration features of .NET.

7

What Is Microsoft .NET?

04_575368 ch01.qxd 10/7/05 10:50 PM Page 7

A Common Type System
A key piece of functionality that enables multiple-language support is a common type system, in which
all commonly used datatypes, even base types such as Long and Boolean, are actually implemented
as objects. Coercion among types can now be done at a lower level for more consistency between lan-
guages. Also, since all languages are using the same library of types, calling one language from another
doesn’t require type conversion or weird calling conventions.

This results in the need for some readjustment, particularly for VB developers. For example, what was
called an Integer in VB6 and earlier, is now known as a Short in VB.NET. The adjustment is worth it
to bring Visual Basic in line with everything else, though, and, as a by-product, other languages get the
same support for strings that Visual Basic has always had.

The CLR enforces the requirement that all datatypes satisfy the common type system. This has impor-
tant implications. For example, it is not possible with the common type system to get the problem
known in COM as a buffer overrun, which is the source of many security vulnerabilities. Programs writ-
ten on .NET should, therefore, have fewer such vulnerabilities, because .NET is not dependent on the
programmer to constantly check passed parameters for appropriate type and length. Such checking is
done by default.

Chapter 3 goes into detail about the new type system in .NET.

Namespaces
One of the most important concepts in Microsoft .NET is namespaces. Namespaces help organize object
libraries and hierarchies, simplify object references, prevent ambiguity when referring to objects, and
control the scope of object identifiers. The namespace for a class allows the CLR to unambiguously iden-
tify that class in the available .NET libraries that it can load.

Namespaces are discussed briefly in Chapter 3 and in more detail in Chapter 9. Understanding the con-
cept of a namespace is essential for your progress in .NET, so do not skip those sections if you are unfa-
miliar with namespaces.

The Next Layer — The .NET
Class Framework

The next layer up in the framework provides the services and object models for data, input/output,
security, and so forth. It is called the .NET Class Framework, sometimes referred to as the .NET base
classes. For example, the next generation of ADO, called ADO.NET, resides here. Some of the additional
functionality in the .NET Class Framework is listed below.

You might be wondering why .NET includes functionality that is, in many cases, duplication of existing
class libraries. There are several good reasons:

❑ The .NET Class Framework libraries are implemented in the .NET Framework, making them
easier to integrate with .NET-developed programs.

8

Chapter 1

04_575368 ch01.qxd 10/7/05 10:50 PM Page 8

❑ The .NET Class Framework brings together most of the system class libraries needed into one
location, which increases consistency and convenience.

❑ The class libraries in the .NET Class Framework are much easier to extend than older class
libraries, using the inheritance capabilities in .NET.

❑ Having the libraries as part of the .NET Framework simplifies deployment of .NET applications.
Once the .NET Framework is on a system, individual applications don’t need to install base
class libraries for functions like data access.

What Is in the .NET Class Framework?
The .NET Class Framework contains literally thousands of classes and interfaces. Here are just some of
the functions of various libraries in the .NET Class Framework:

❑ Data access and manipulation

❑ Creation and management of threads of execution

❑ Interfaces from .NET to the outside world — Windows Forms, Web Forms, Web Services, and
console applications

❑ Definition, management, and enforcement of application security

❑ Encryption, disk file I/O, network I/O, serialization of objects, and other system-level functions

❑ Application configuration

❑ Working with directory services, event logs, performance counters, message queues, and timers

❑ Sending and receiving data with a variety of network protocols

❑ Accessing metadata information stored in assemblies

Much of the functionality that a programmer might think of as being part of a language has been moved
to the base classes. For example, the old VB keyword Sqr for extracting a square root is no longer avail-
able in .NET. It has been replaced by the System.Math.Sqrt() method in the framework classes.

It’s important to emphasize that all languages based on the .NET Framework have these framework
classes available. That means that COBOL, for example, can use the same function mentioned above for
getting a square root. This makes such base functionality widely available and highly consistent across
languages. All calls to Sqrt look essentially the same (allowing for syntactical differences among lan-
guages) and access the same underlying code. Here are examples in VB.NET and C#:

‘ Example using Sqrt in Visual Basic .NET
Dim dblNumber As Double = 200
Dim dblSquareRoot As Double
dblSquareRoot = System.Math.Sqrt(dblNumber)
Label1.Text = dblSquareRoot.ToString

‘ Same example in C#
Double dblNumber = 200;
Double dblSquareRoot = System.Math.Sqrt(dblNumber);
dblSquareRoot = System.Math.Sqrt(dblNumber);
label1.Text = dblSquareRoot.ToString;

9

What Is Microsoft .NET?

04_575368 ch01.qxd 10/7/05 10:50 PM Page 9

Notice that the line using the Sqrt() function is exactly the same in both languages.

As a side note, a programming shop can create its own classes for core functionality, such as globally
available, already compiled functions. This custom functionality can then be referenced in code the same
way as built-in .NET functionality.

Much of the functionality in the base framework classes resides in a vast namespace called System. The
System.Math.Sqrt() method was just mentioned. The System namespace contains dozens of such
subcategories. The table below lists a few of the important ones, many of which you will be using in var-
ious parts of this book.

User and Program Interfaces
At the top layer, .NET provides three ways to render and manage user interfaces:

❑ Windows Forms

❑ Web Forms

❑ Console applications

Namespace What It Contains Example Classes and Subnamespaces

System.Collections Creation and management of Arraylist,
various types of collections Hashtable,

SortedList

System.Data Classes and types related to DataSet,
basic database management DataTable,
(see Chapter 11 for details) DataColumn,

System.Diagnostics Classes to debug an application Debug, Trace
and to trace the execution of code

System.IO Types that allow reading and File, FileStream, Path,
writing to and from files and StreamReader, StreamWriter
other data streams

System.Math Members to calculate common Sqrt (square root), Cos (cosine),
mathematical quantities, such as Log (logarithm), Min (minimum)
trigonometric and logarithmic
functions

System.Reflection Capability to inspect metadata Assembly, Module

System.Security Types that enable security Cryptography, Permissions,
capabilities (see Chapter 24 Policy
for details)

10

Chapter 1

04_575368 ch01.qxd 10/7/05 10:50 PM Page 10

Windows Forms
Windows Forms is a more advanced and integrated way to do standard Win32 screens. All languages
that work on the .NET Framework, including new versions of Visual Studio languages, use the Windows
Forms engine, which duplicates the functionality of the old VB forms engine. It provides a rich, unified
set of controls and drawing functions for all languages, as well as a standard API for underlying Windows
Services for graphics and drawing. It effectively replaces the Windows graphical API, wrapping it in
such a way that the developer normally has no need to go directly to the Windows API for any graphical
or screen functions.

In Chapter 14, you will look at Windows Forms in more detail and note significant changes in Windows
Forms versus older VB forms. Chapter 15 continues discussing advanced Windows Forms capabilities
such as creation of Windows Forms visual controls.

Client Applications versus Browser-Based Applications
Before .NET, many internal corporate applications were made browser-based simply because of the cost
of installing and maintaining a client application on hundreds or thousands of workstations. Windows
Forms and the .NET Framework change the economics of these decisions. A Windows Forms application
is much easier to install and update than an equivalent VB6 desktop application. With a simple XCOPY
deployment and no registration issues, installation and updating become much easier. Internet deploy-
ment via ClickOnce also makes applications more available across a wide geographic area, with auto-
matic updating of changed modules on the client.

That means that “smart client” applications with a rich user interface are more practical under .NET,
even for a large number of users. It may not be necessary to resort to browser-based applications just to
save on installation and deployment costs.

As a consequence, you should not dismiss Windows Forms applications as merely replacements for ear-
lier VB6 desktop applications. Instead, you should examine applications in .NET and explicitly decide
what kind of interface makes sense in a given case. In some cases, applications that you might have
assumed should be browser-based simply because of a large number of users and wide geographic
deployment instead can be smart-client-based, which can improve usability, security, and productivity.

Web Forms
The part of .NET that handles communications with the Internet is called ASP.NET. It includes a forms
engine, called Web Forms, which can be used to create browser-based user interfaces.

Divorcing layout from logic, Web Forms consist of two parts:

❑ A template, which contains HTML-based layout information for all user interface elements

❑ A component, which contains all logic to be hooked to the user interface

It is as if a standard Visual Basic form was split into two parts, one containing information on controls
and their properties and layout, and the other containing the code. Just as in Visual Basic, the code oper-
ates “behind” the controls, with events in the controls activating event routines in the code.

11

What Is Microsoft .NET?

04_575368 ch01.qxd 10/7/05 10:50 PM Page 11

As with Windows Forms, Web Forms will be available to all languages. The component handling logic
for a form can be in any language that supports .NET. This brings complete, flexible Web interface capa-
bility to a wide variety of languages. Chapters 16 and 17 go into detail on Web Forms and the controls
that are used on them.

If you have used ASP.NET in previous versions of .NET, you should know that ASP.NET 2.0 has dra-
matic improvements. With even more built-in functionality for common browser tasks, applications can
be written with far less code in ASP.NET 2.0 as compared to earlier versions. Capabilities such as user
authentication can now be done with prebuilt ASP.NET components, so you no longer have to write
such components yourself.

Console Applications
Although Microsoft doesn’t emphasize the ability to write character-based applications, the .NET
Framework does include an interface for such console applications. Batch processes, for example, can
now have components integrated into them that are written to a console interface.

As with Windows Forms and Web Forms, this console interface is available for applications written in
any .NET language. Writing character-based applications in previous versions of Visual Basic, for exam-
ple, has always been a struggle, because it was completely oriented around a graphical user interface
(GUI). VB.NET can be used for true console applications.

Web Services
Application development is moving into the next stage of decentralization. The oldest idea of an appli-
cation is a piece of software that accesses basic operating system services, such as the file system and
graphics system. Then we moved to applications that used lots of base functionality from other system-
level applications, such as a database — this type of application added value by applying generic func-
tionality to specific problems. The developer’s job was to focus on adding business value, not on
building the foundation.

Web Services represent the next step in this direction. In Web Services, software functionality becomes
exposed as a service that doesn’t care what the consumer of the service is (unless there are security con-
siderations). Web Services allow developers to build applications by combining local and remote
resources for an overall integrated and distributed solution.

In .NET, Web Services are implemented as part of ASP.NET (see Figure 1-1), which handles all Web inter-
faces. It allows programs to talk to each other directly over the Web, using the SOAP standard. This has
the capacity to dramatically change the architecture of Web applications, allowing services running all
over the Web to be integrated into a local application.

Chapter 23 contains a detailed discussion of Web Services.

XML as the .NET Metalanguage
Much of the underlying integration of .NET is accomplished with XML. For example, Web Services
depend completely on XML for interfacing with remote objects. Looking at metadata usually means
looking at an XML version of it.

12

Chapter 1

04_575368 ch01.qxd 10/7/05 10:50 PM Page 12

ADO.NET, the successor to ADO, is heavily dependent on XML for the remote representation of data.
Essentially, when ADO.NET creates what it calls a dataset (a more complex successor to a recordset), the
data is converted to XML for manipulation by ADO.NET. Then, the changes to that XML are posted back
to the datastore by ADO.NET when remote manipulation is finished.

Chapter 12 discusses XML in .NET in more detail, and, as previously mentioned, Chapter 11 contains a
discussion of ADO.NET. With XML as an “entry point” into so many areas of .NET, integration opportu-
nities are multiplied. Using XML to expose interfaces to .NET functions allows developers to tie compo-
nents and functions together in new, unexpected ways. XML can be the glue that ties pieces together in
ways that were never anticipated, both to Microsoft and non-Microsoft platforms.

The Role of COM
When the .NET Framework was introduced, some uninformed journalists interpreted it as the death of
COM. That is completely incorrect. COM is not going anywhere for a while. In fact, Windows will not
boot without COM.

.NET integrates very well with COM-based software. Any COM component can be treated as a .NET
component by native .NET components. The .NET Framework wraps COM components and exposes an
interface that .NET components can work with. This is absolutely essential to the quick acceptance of
.NET because it makes .NET interoperable with a tremendous amount of older COM-based software.

Going in the other direction, the .NET Framework can expose .NET components with a COM interface.
This allows older COM components to use .NET-based components as if they were developed using COM.

Chapter 20 discusses COM interoperability in more detail.

No Internal Use of COM
It is important, however, to understand that native .NET components do not interface using COM. The
CLR implements a new way for components to interface, one that is not COM-based. Use of COM is
only necessary when interfacing with COM components produced by non-.NET tools.

Over a long span of time, the fact that .NET does not use COM internally may lead to the decline of
COM, but for any immediate purposes, COM is definitely important.

Some Things Never Change . . .
Earlier, this chapter discussed the limitations of the pre-.NET programming models. However, those mod-
els have many aspects that still apply to .NET development. Tiered layers in software architecture, for
example, were specifically developed to deal with the challenges in design and development of complex
applications and are still appropriate. Many persistent design issues, such as the need to encapsulate busi-
ness rules, or to provide for multiple user interface access points to a system, do not go away with .NET.

Applications developed in the .NET Framework will still, in many cases, use a tiered architecture.
However, the tiers will be a lot easier to produce in .NET. The presentation tier will benefit from the

13

What Is Microsoft .NET?

04_575368 ch01.qxd 10/7/05 10:50 PM Page 13

new interface technologies, especially Web Forms for Internet development. The middle tier will require
far less COM-related headaches to develop and implement. And richer, more distributed middle tier
designs will be possible by using Web Services.

The architectural skills that experienced developers have learned in earlier models are definitely still
important and valuable in the .NET world.

.NET Drives Changes in Visual Basic
This chapter previously covered the limitations of Visual Basic in earlier versions. To recap, they are:

❑ No capability for multithreading

❑ Lack of implementation inheritance and other object features

❑ Poor error-handling ability

❑ Poor integration with other languages such as C++

❑ No effective user interface for Internet-based applications

Since VB.NET is built on top of the .NET Framework, all of these shortcomings have been eliminated.
In fact, Visual Basic gets the most extensive changes of any existing language in the VS.NET suite. These
changes pull Visual Basic in line with other languages in terms of datatypes, calling conventions, error
handling, and, most importantly, object orientation. Chapters 4, 5, and 7 go into detail about object-
oriented concepts in VB.NET, and Chapter 10 discusses error handling, which is known in .NET as
“exception handling.”

How .NET Affects You
One of the reasons you are probably reading this book is that you want to know how VB.NET will affect
you as an existing Visual Basic developer. Here are some of the most important implications.

A Spectrum of Programming Models
In previous Microsoft-based development tools, there were a couple of quantum leaps required to move
from simple to complex. A developer could start simply with ASP pages and VBScript, but when those
became cumbersome, it was a big leap to learn component-based, three-tier development in Visual
Basic. And it was another quantum leap to become proficient in C++, ATL, and related technologies for
system-level work.

A key benefit of VB.NET and the .NET Framework is that there exists a more gradual transition in pro-
gramming models from simple to full power. ASP.NET pages are far more structured than ASP pages,
and code used in them is often identical to equivalent code used in a Windows Forms application.
Internet development can now be done using real Visual Basic code instead of VBScript.

Visual Basic itself becomes a tool with wider applicability, as it becomes easy to do a Web interface with
Web Forms, and it also becomes possible to do advanced object-oriented designs. Even system-level

14

Chapter 1

04_575368 ch01.qxd 10/7/05 10:50 PM Page 14

capabilities, such as Windows Services can be done with VB.NET (see Chapter 25). Old reasons for using
another language, such as lack of performance or flexibility, are mostly gone. Visual Basic will do almost
anything that other .NET languages can do.

This increases the range of applicability of Visual Basic. It can be used all the way from “scripts” (which
are actually compiled on the fly) written with a text editor up through sophisticated component and
Web programming in one of the most advanced development environments available.

Reducing Barriers to Internet Development
With older tools, programming for the Internet requires a completely different programming model than
programming systems that will be run locally. The differences are most apparent in user interface con-
struction, but that’s not the only area of difference. Objects constructed for access by ASP pages, for
example, must support Variant parameters, but objects constructed for access by Visual Basic forms
can have parameters of any datatype. Accessing databases over the Internet requires using technologies
like RDS instead of the ADO connections that local programming typically uses.

The .NET Framework erases many of these differences. Programming for the Internet and programming
for local systems are much more alike in .NET than with today’s systems. Differences remain — Web
Forms still have significant differences from Windows Forms, for example, but many other differences,
such as the way data is handled, are much more unified under .NET.

A big result of this similarity of programming models is to make Internet programming more practical
and accessible. With functionality for the Internet designed in from the start, developers don’t have to
know as much or do as much to produce Internet systems with the .NET Framework.

Libraries of Prewritten Functionality
The evolution of Windows development languages, including Visual Basic, has been in the direction of
providing more and more built-in functionality so that developers can ignore the foundations and con-
centrate on solving business problems. The .NET Framework continues this trend.

One particularly important implication is that the .NET Framework extends the trend of developers
spending less time writing code and more time discovering how to do something with prewritten func-
tionality. Mainframe COBOL programmers could learn everything they ever needed to know about
COBOL in a year or two and very seldom need to consult reference materials after that. In contrast,
today’s Visual Basic developers already spend a significant portion of their time digging through refer-
ence material to figure out how to do something that they may never do again. The sheer expanse of
available functionality, plus the rapidly changing pace, makes it imperative for an effective developer to
be a researcher also. .NET accelerates this trend, and will probably increase the ratio of research time to
coding time for a typical developer.

Easier Deployment
A major design goal in Microsoft .NET is to simplify installation and configuration of software. With
DLL hell mostly gone, and with installation of compiled modules a matter of a simple file copy, develop-
ers should be able to spend less time worrying about deployment of their applications, and more time
concentrating on the functionality of their systems. The budget for the deployment technology needed
by a typical application will be significantly smaller.

15

What Is Microsoft .NET?

04_575368 ch01.qxd 10/7/05 10:50 PM Page 15

The Future of .NET
At the Professional Developer’s Conference (PDC) in Los Angeles in October of 2003, Microsoft gave the
first public look at their next-generation operating system, code-named Longhorn. It was clear from
even this early glimpse that .NET is at the heart of Microsoft’s operating system strategy going forward.

However, the naming of what is now known as .NET is going to change. While Web Services and related
technologies may still carry the .NET label going forward, the .NET Framework is called WinFX in
Longhorn. This may cause some confusion in names going forward, but be assured that what you learn
today about the .NET Framework and VB.NET will be important for years to come in the world of
Microsoft applications.

Major Differences in .NET 2.0
If you are familiar with earlier versions of .NET, you will want to pay special attention to areas that have
been significantly changed. Here is a list of some of the most important additions and changes, with the
chapter you should check for more information:

Feature Description Chapter(s)

Edit and Allows you to make changes to code while you are running it 2
Continue in the integrated development environment (IDE) and have the

changes take effect immediately. (This feature was available in
VB6 and earlier, but was not available in Visual Basic 2002
or 2003.)

Partial classes Allows code for a class to be split over multiple code modules. 4

Generics Allows generic collections to handle specific types, declared 8
when the collection is created.

Data binding There are many new controls for data binding and new 15
designer support such as drag-and-drop of data fields onto
Windows Forms.

ClickOnce New deployment technology for deploying across the Internet, 19
with automatic updating.

“My” classes Provides quick access to commonly used classes in the .NET 2
Framework.

Nullable types Allows data types that can either hold a value or be null, 3
allowing .NET types to match up to database types more
transparently.

Operator Allows you to define operations between arbitrary types, such 5
overloading as the ability to define a “+” operation for two Account objects.

IsNot keyword Simplifies If statements that check if an object is Nothing. 2

16

Chapter 1

04_575368 ch01.qxd 10/7/05 10:50 PM Page 16

Feature Description Chapter(s)

Using keyword Automates disposing of objects created in a section of code. 4

IDE Exception manager, code snippets with automatic fill-in, 2
improvements improved IntelliSense, and autocorrect are a few of the new

capabilities of the IDE.

Summary
VB.NET is not like other versions of Visual Basic. It is built with completely different assumptions, on
a new platform that is central to Microsoft’s entire product strategy. This chapter discussed the reasons
Microsoft has created this platform and how challenges in earlier, pre-Internet technologies have been
met by .NET.

This chapter has also discussed in particular how this will affect VB developers. .NET presents many
new challenges for developers but simultaneously provides them with greatly enhanced functionality.
In particular, Visual Basic developers now have the ability to develop object-oriented and Web-based
applications far more easily and cheaply.

The next chapter takes a closer look at the VS.NET IDE, and discusses the basics of doing applications
in VB.NET.

17

What Is Microsoft .NET?

04_575368 ch01.qxd 10/7/05 10:50 PM Page 17

04_575368 ch01.qxd 10/7/05 10:50 PM Page 18

Introducing Visual
Basic 2005 and

Visual Studio 2005

Chapter 1 introduced .NET and discussed how version 2.0 of the .NET Framework is the next step
in the evolution of programming on the Windows platform. This chapter takes a practical look at
.NET. It starts with the creation of the standard “Hello World” Windows application using Visual
Studio 2005 (Visual Studio). After creating the initial application, you can step through simple
additions to this first application. You can compare your code at each stage to understand the
changes that have been made.

The chapter also covers several introductory topics associated with becoming familiar with Visual
Studio and creating a simple application, including:

❑ Project templates

❑ References

❑ Code regions

❑ Forms as classes

❑ Class constructors

❑ Setting form properties

❑ Selecting a runtime environment

❑ Visual Studio environment

This chapter provides only a brief introduction to Visual Basic 2005 (VB) Windows Form applica-
tions. It will step you through creating your first .NET project and review many of the elements
that are common to every .NET application. The discussion of several other project types, such as
Web projects, will be covered in later chapters.

05_575368 ch02.qxd 10/7/05 10:48 PM Page 19

If you are familiar with Visual Studio .NET 2002 or Visual Studio 2003 and the .NET Framework ver-
sion 1.x, note that while the updates to Visual Studio 2005 and the .NET Framework version 2.0 are
significant, you may want to skim through this chapter, reviewing the changes.

Visual Studio .NET — Startup
Those of you making the move from COM to .NET will notice that Visual Studio 2005 has one entry for
the development environment in the Start menu — there are no separate entries for Visual Basic, Visual
C++, or Visual C#. All of the Visual Studio languages share the same integrated development environ-
ment (IDE). One of the changes from previous versions of Visual Studio .NET is that the environment
can now be customized by project type.

When Visual Studio 2005 is started, the window shown in Figure 2-1 is displayed to permit you to con-
figure your custom profile. Unlike previous versions of .NET, where you selected a set of preferences
that you would then use for all of your development, Visual Studio 2005 allows you to select either a
language-specific or task-specific profile. This book will use screen shots based on the Visual Basic
Developer setting.

Figure 2-1

Configuration of the settings is managed through the “Import and Export Settings . . .” menu option of
the Tools menu. This menu option opens a simple wizard, which first saves your current settings and
then allows you to select an alternate set of settings. By default, Visual Studio ships with settings for
Visual Basic, Web Development, and C# to name a few, but more importantly by exporting your settings
you can create and share your own custom settings files.

The Visual Studio settings file is an XML file that allows you to capture all of your Visual Studio configu-
ration settings. This might sound trivial, but it’s not. The fact is this feature allows for standardization of

20

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 20

Visual Studio across different team members. The advantages of a team sharing settings go beyond just
using a common look and feel. To illustrate why this can be important, let’s look at a simple example of
how standardizing a portion of Visual Studio can impact team development.

Tracking changes to source code can be made more difficult simply from the way that Visual Basic refor-
mats code layout for readability. Most source control systems track code changes on a per line basis. Taking
just the simple example of changing the default tab value associated with the Text Editor and reducing
it from four characters to two or three characters can make code more readable and less likely to wrap.
Unfortunately, if someone on the team does pick a different value, then as each engineer checks out code
and makes modifications, he or she also resets the white space on every line of the source file. Thus, when
the source file is checked back in, instead of having the code changes that are easily highlighted, all of the
lines where the tabs were adjusted show up as changed and tracking changes becomes more difficult.

The solution is to provide a common settings file that defines settings such as the correct tab and layout
for Hypertext Markup Language (HTML) elements (to name a few common settings) so that everyone
starts from the same baseline. In this way developers who work together produce code that has the same
layout. Engineers can then customize other settings that are specific to their view of Visual Studio.

Visual Studio .NET
Once you have set up your profile, the next step is to create your first project. Selecting File ➪ New
Project opens the New Project Dialog window, shown in Figure 2-2. One of the changes in Visual Studio
2005 is that once you have selected a default environment setting, you are presented with a setting-
specific project view. For Visual Basic this means that you are presented with Visual Basic project tem-
plates by default. A quick note, however: Not all project templates are listed within the New Project dia-
log. For example, if you want to create a Visual Basic Web site, you need to start that process by creating
a new Web site instead of creating a new project. Expanding the top level of the Visual Basic tree, you
may notice that this window separates project types into a series of categories. These categories include

❑ Windows — Those projects used to create code that runs as part of the standard .NET
Framework. Since such projects can run on any operating system (OS) hosting the framework,
the category “Windows” is something of a throwback.

❑ Office — The replacement for Visual Studio Tools for Office (VSTO). These are .NET applica-
tions that are hosted under Office 2003.

❑ Smart Device — These are projects that target the .NET Compact Framework. Such applications
may run on one or more handheld devices and make use of a different runtime environment
from full .NET applications.

❑ Database — This template creates a project that supports classes that will run within SQL Server
2005. All versions of SQL Server 2005 (from Express through Enterprise) support the .NET
Framework as part of their runtime, and such projects have a unique set of runtime constraints.
This is a very different project template from the Database project template provided under
Visual Studio 2003 and still available under the Other Project Types option.

Visual Studio has other categories for projects and you have access to Other development languages and
far more project types then we will cover in this one book. For now, you can select a Windows Application
project template.

21

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 21

Figure 2-2

For this example, you can use ProVB.NET as the project name and then click the OK button. Visual
Studio then takes over and uses the Windows Application template to create a new Windows Forms pro-
ject. The project contains a blank form that can be customized and a variety of other elements that you
can explore. Before you start customizing any code, let’s first look at the elements of this new project.

The Solution Explorer
Those of you new to .NET but with previous Microsoft development tool experience will find a solution
similar to a project group. However, a .NET solution can contain projects of any .NET language and
also allows inclusion of the database, testing, and installation projects as part of the overall solution.

Before discussing these files in detail, let’s take a look at the next step, which is to reveal a few additional
details about your project. Click the second button from the left in Solution Explorer to show all of the
project files, as shown in Figure 2-3. As this image shows, there are many other files that make up your
project. Some of these, such as those under the My Project grouping, don’t require you to edit them
directly. Instead, you can double-click on the My Project entry in the Solution Explorer and open the user
interface to adjust your project settings. You do not need to change any of the default settings for this
project, but those of you familiar with Visual Studio 2003 should notice many of the new capabilities
provided by this window. These include the ability to add and manage your project references. Similar
to how a traditional Windows application allows you to reference COM components, .NET allows you to
create references to other components (those implemented both with a .NET language and with COM) to
extend the capabilities of your application.

The bin and obj directories that are shown in this display are used when building your project. The obj
directory contains the first pass object files used by the compiler to create your final executable file. The
“binary” or compiled version of your application is then placed in the bin directory by default. Of course,
referring to the Microsoft Intermediate Language (MSIL) code as binary is something of a misnomer,
since the actual translation to binary does not occur until runtime when your application is compiled by
the Just in Time Compiler. However, Microsoft continues to use the bin directory as the default output
directory for your project’s compilation.

22

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 22

Figure 2-3

Additionally, Figure 2-3 shows that the project does not contain an app.config file by default. Most
experienced ASP.NET developers are readily familiar with the use of web.config files. App.config
files work on the same principal in that they contain XML, which is used to store project-specific settings
such as database connection strings and other application-specific settings. Using a .config file instead
of having your settings in the Windows Registry allows your applications to run side by side with another
version of your application without the settings from either version impacting the other. Because each
version of your application will live in its own directory, its settings will be contained in the directory
with it, which enables the different versions to run with unique settings.

Finally, the Solution Explorer includes your actual source file(s). In this case, the Form1.vb file is the pri-
mary file associated with the default Windows form. You’ll be customizing this form shortly, but before
looking at that, it seems appropriate to look at some of the settings exposed by the My Project element of
your new project.

My Project
Visual Studio displays a vertically tabbed display for editing your project settings. The My Project dis-
play shown in Figure 2-4 gives you access to several different aspects of your project. Most, such as
Signing, Security, Publishing, and so forth, will be covered in future chapters. For this chapter, it should
just be noted that this display makes it easier to carry out several tasks that once required engineers to
work outside of the Visual Studio environment. For your first application, notice that you can customize
your Assembly name from this screen as well as reset the type of application and object to be referenced
when starting your application.

23

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 23

Figure 2-4

In addition, there is a button that will be discussed shortly for changing your Assembly information as
well as the ability to define a root namespace for your application classes. Namespaces are covered in
more detail in Chapter 9 and can be nested inside other namespaces. This nesting helps to organize
classes into a logical structure, which reduces confusion and aids the developer. Just as with COM com-
ponents, it’s a good idea to create your own root namespace and then build your custom classes under
that root. Similarly, your project already references some system namespaces.

References
It’s possible to add additional references as part of your project. Select the References tab in your My
Project display. From this tab, you can select other .NET class libraries and applications, as well as COM
components. There is even a Shortcut tab for selecting classes defined within other projects of your cur-
rent solution. Similar to the default code files that are created with a new project, each project has a
default set of referenced libraries. For Windows Forms applications, the list of default namespaces is
fairly short and is shown in the following table.

Reference Description

System Often referred to as the root namespace. All the base data types
(String, Object, and so on) are contained within the System name-
space. This namespace also acts as the root for all other System classes.

System.Deployment Classes used for One Touch Deployment. This namespace is covered
in more detail in Chapter 19.

24

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 24

Reference Description

System.Drawing Provides access to the GDI+ graphics functionality.

System.Windows.Forms Classes used to create traditional Windows-based applications. This
namespace is covered in more detail in Chapter 14.

Assembly Information Screen
Selecting the Assembly Information button from within your My Project window opens the Assembly
Information dialog box. Within this dialog, shown in Figure 2-5 it is possible to define file properties,
such as your company’s name and versioning information, which will be embedded into the operating
system’s file attributes for your project’s output. The frame of the assembly file shows that by default
it contains several standard values. This dialog is new to Visual Studio 2005 and replaces the way that
engineers were forced to directly edit the XML contained in the AssemblyInfo.vb source file associated
with an application.

Figure 2-5

Assembly Attributes
The AssemblyInfo.vb file contains attribute blocks, which are used to set information about the assem-
bly. Each attribute block has an assembly modifier, for example:

<Assembly: AssemblyTitle(“”)>

All the attributes set within this file provide information that is contained within the assembly metadata.
These properties are displayed in the Assembly Information dialog. This dialog is opened from the pro-
ject’s properties page, on the Compile tab by selecting the Assembly Information button. The attributes
contained within the file are summarized in the following table.

25

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 25

Attribute Description

Title Sets the name of the assembly, which appears within the file properties of
the compiled file as the Description.

Description This attribute is used to provide a textual description of the assembly,
which is added to the Comments property for the file.

Company Sets the name of the company that produced the assembly. The name set
here appears within the Version tab of the file properties.

Product Sets the product name of the resulting assembly. The product name will
appear within the Version tab of the file properties.

Copyright The copyright information of the assembly, this value appears on the
Version tab of the file properties.

Trademark Used to assign any trademark information to the assembly. This
information appears within the Version tab of the file properties.

Assembly Version This attribute is used to set the version number of the assembly.
Assembly version numbers can be generated, which is the default setting
for .NET applications. This is covered in more detail in Chapter 25.

File Version This attribute is used to set the version number of the executable files.
This and other deployment-related settings are covered in more detail in
Chapter 25.

COM Visible This attribute is used to indicate whether this assembly should be
registered and made available to COM applications.

Guid If the assembly is to be exposed as a traditional COM object, then the
value of this attribute will become the ID of the resulting type library.

Not requiring developers to edit these settings directly at the XML level is one of the many ways that
Visual Studio 2005 has been designed to enhance developer productivity. Now that you’ve seen some of
your project settings, let’s look at the code.

The New Code Window
The Form Designer opens by default when a new project is created. If you have closed it, you can easily
reopen it by right-clicking Form1.vb in the Solution Explorer and selecting View Designer from the
pop-up menu. From this window, you can also bring up the code view for this form. This can be done
either by right-clicking Form1.vb in the Solution Explorer and selecting code view, or by right-clicking
the form in the View Designer and selecting View Code from the pop-up menu.

By default you can see that the initial display of the form looks very simple. The Code Editor window
should be familiar from previous development environments. There is no code in the Form1.vb file.
This is a change from Visual Studio 2003, where you would have a generated section of code in a col-
lapsed region in your source file. Instead, Visual Studio 2005 introduces a capability called partial
classes. Partial classes will be discussed later in Chapter 4; for now you merely need to be aware that

26

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 26

all of the generated source code for your form is located in the file Form1.Designer.vb. If you open
this file, you’ll see that there is quite a bit of custom code generated by Visual Studio already in your
project. At this point, you will have a display similar to the one shown in Figure 2-6.

Figure 2-6

Modules inside source files in Visual Studio can be hidden on the screen — a feature known as outlining.
By default there is a minus sign next to every method (sub or function). This makes it easy to hide or
show code on a method-by-method basis. If the code for a method is hidden, the method declaration is
still shown and has a plus sign next to it to indicate that the body code is hidden. This feature is very
useful when a developer is working on a few key methods in a module and wishes to avoid scrolling
through many screens of code that are not relevant to the current task.

It is also possible to hide custom regions of code. The #Region directive is used for this within the IDE,
though it has no effect on the actual application. A region of code is demarcated by the #Region directive
at the top and the # End Region directive at the end. The #Region directive used to begin a region should
include a description. The description will appear next to the plus sign shown when the code is minimized.

The outlining enhancement was probably inspired by the fact that the Visual Studio designers generate a
lot of code when a project is started. Items that were hidden in Visual Basic 6 (such as the logic that sets
initial form properties) are actually inside the generated code in Visual Studio. However, seeing all of
these functions in the code is an improvement because it is easier for the developer to understand what
is happening, and possibly to manipulate the process in special cases.

27

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 27

Outlining can also be turned off by selecting Edit ➪ Outlining ➪ Stop Outlining from the Visual Studio
menu. This menu also contains some other useful functions. A section of code can be temporarily hidden
by highlighting it and selecting Edit ➪ Outlining ➪ Hide Selection. The selected code will be replaced
with an ellipsis with a plus sign next to it, as if you had dynamically identified a region within the
source code. Clicking the plus sign displays the code again.

Tabs versus MDI
You may have noticed in Figure 2-6 that the Code View and Form Designer windows opened in a tabbed
environment. This tabbed environment is the default for working with the code windows inside Visual
Studio. However, it is possible to toggle this setting, allowing you to work with a more traditional MDI-
based interface. Such an interface opens each code window within a separate frame instead of anchoring
it to the tabbed display of the integrated development environment (IDE).

To change the arrangement that is used between the tabbed and MDI interface, use the Options dialog
box (accessible via Tools ➪ Options). You can also force the development environment to use the MDI
as opposed to the tabbed interface (for a single session) by using the command line option /mdi when
Visual Studio is started.

Customizing the Text Editor
Visual Studio has a rich set of customizations related to the Text Editor. Go to the Tools menu and select
Options to open the Options dialog box, shown in Figure 2-7. Within the dialog box, ensure that the Show
All Settings check box is selected. Next select the Text Editor folder, and then select the All Languages
folder. This section allows you to make changes to the Text Editor, which are applied across every sup-
ported development language. Additionally, you can select the Basic folder. Doing so will allow you to
make changes that are specific to how the Text Editor will behave when you are editing VB source code.

Figure 2-7

28

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 28

From this dialog box, it is possible to modify the number of spaces that each tab will insert into your source
code and to manage several other elements of your editing environment. One little-known capability of the
Text Editor that can be useful is line numbering. Checking the line numbers check box will cause the editor
to number all lines, which provides an easy way to unambiguously reference lines of code.

A new feature of Visual Studio 2005 is the ability to track your changes as you edit. Enabling the Track
Changes setting under the Text Editor options causes Visual Studio to provide a colored indicator of
where you have modified a file. This indicator is a color bar, which resides in the left margin of your
display indicating which portions of a source file have been recently edited and whether or not those
changes have been saved to disk.

Extended IntelliSense
IntelliSense has always been a popular feature of Microsoft tools and applications. IntelliSense has been
enhanced in Visual Studio, allowing you to not only work with the methods of a class but also to auto-
matically display the list of possible values associated with an enumerated list of properties when one
has been defined. IntelliSense also provides a tooltip-like list of parameter definitions when you are
making a method call. You’ll see an example of this feature later in this chapter.

Additionally, if you type Exit and a space, IntelliSense displays a drop-down list of keywords that
could follow Exit. Other keywords that have drop-down lists to present available options include Goto,
Implements, Option, and Declare. IntelliSense generally displays more tooltip information in the
environment than before and helps the developer match up pairs of parentheses, braces, and brackets.

The Properties Window
The Properties window, shown in Figure 2-8, is, by default, placed in the lower-right corner of the Visual
Studio display. Like many of the other windows in the IDE, if you close it, it can be accessed through the
View menu. Alternatively, you can use the F4 key to reopen this window. The Properties window is simi-
lar to the one with which you are probably familiar from previous development environments. It is used
to set the properties of the currently selected item control in the display.

For example, in the design view, select your form. You’ll see the Properties window adjust to display the
properties of Form1, as shown in Figure 2-8. This is the list of properties associated with your form. For
example, if you want to limit how small a user can reduce the display area of your form, you can now
define this as a property. For your sample, go to the Text property and change the default of Form1 to
Professional VB.NET Intro. You’ll see that once you have accepted the property change, the new value is
displayed as the caption of your form. Later in the section on setting form properties in code, you’ll see
that unlike other environments, where properties you edit through the user interface are hidden in some
binary or proprietary portion of the project, .NET properties are defined within your source file. Thus,
while the Properties window may look similar to that in other environments, such as Visual Basic 6,
you’ll find that it is far more powerful under Visual Studio 2005.

Each control you place on your form has its own distinct set of properties. You’ll notice that Visual Studio
displays the Toolbox tab on the left side of your display. This tab opens a pane containing a list of the
controls you can use on your form, as shown in Figure 2-9.

29

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 29

Figure 2-8

Dynamic Help
The Properties window may not have changed much from Visual Basic 6, but the Dynamic Help tab
below the Properties window is new. Dynamic Help makes a guess at what you might be interested in
looking at, based on what you have done recently. The options in the Dynamic Help window are catego-
rized into three areas. The top category, entitled Help, makes a best guess on the features that the envi-
ronment thinks you might be trying to use. This best guess is the same as if you pressed F1 while
highlighting a keyword within your code.

Just below that is a section called Samples, and it points to a Help page that lists a variety of sample
applications. The third section is a category called Getting Started, which contains a variety of help
options on introductory material. One of the options in the Getting Started category is Visual Studio
Walkthroughs. This contains step-by-step guides on how to perform the basic tasks for the different
types of projects that can be created in Visual Studio.

30

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 30

Figure 2-9

Working with Visual Basic 2005
By now, you should be reasonably familiar with some of the key windows available to you in Visual
Studio. The next step is to look at the code in your sample form. Since you’ve already seen that the
Form1.vb file is empty, let’s open the Form1.Designer.vb file. To do this, go to the toolbar located
in the Solution Explorer window and select the Show All Files button. This will change your project dis-
play and a small plus sign will appear next to the Form1.vb file. Expanding this entry displays the
Form1.Design.vb file, and you can open this file within Visual Studio. Note that the contents of this
file are generated; for now don’t try to make any changes. Visual Studio will automatically regenerate
the entire file when a property is changed, and as a result, any changes may be lost. The following lines
start the declaration for your form in the file Form1.Designer.vb:

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Public Class Form1

Inherits System.Windows.Forms.Form

31

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 31

The first line is an attribute that can be ignored. Next is the line that actually declares a new class called
Form1. In VB, you can declare classes in any source file. This is a change from versions of Visual Basic
prior to .NET, which required that classes be defined in a class module (.cls). You can also declare any
number of classes in a single source file; since classes are not defined by their source file, however, doing
so is considered a poor programming practice. This line also uses the Partial keyword. This keyword
will be covered in more detail in Chapter 5, but in short it tells the compiler that the code for this class
will exist in more than just one source file. The second line of the class declaration specifies the parent
for your class. In the preceding case, your sample Form1 class is based on the Form class, which is con-
tained in the System.Windows.Forms namespace.

Forms are classes that derive from the System.Windows.Forms.Form class. This class is used to create
dialog boxes and windows for traditional Windows-based applications. Chapters 4 and 5 focus on many
of the new object-oriented keywords, such as Shared and Inherits, that you will use when developing
more robust VB applications.

As noted, the name of your class and the file in which it exists are not tightly coupled. Thus, your form
will be referenced in the code as Form1, unless you modify the name used in the class declaration.
Similarly, you can rename the file that contains the class without changing the actual name of the class.

One of the powerful results of forms being implemented as classes is that you can now derive one form
from another form. This technique is called visual inheritance, although the elements that are actually
inherited may not be displayed. This concept is covered in much more detail in Chapters 5, 14, and 15.

Running ProVB.NET
Now that you’ve reviewed the elements of your generated project, let’s test the code before you continue.
To run an application from within Visual Studio, there are several options: The first is to click the Start
button, which looks like the play button on a tape recorder. Alternatively, you can go to the Debug menu
and select Start. Finally, the most common way of launching applications is to press F5.

Once the application starts, you will see an empty form display with the standard control buttons (in the
upper-right corner) from which you can control the application. The form name should be Professional
VB.NET Intro, which you applied earlier. At this point, the sample doesn’t have any custom code to
examine, so the next step is to add some simple elements to this application.

Form Properties Set in Code
As noted in the section discussing the Properties window, Visual Studio keeps every object’s custom
property values in the source code. To do this, Visual Studio adds a method to your form class called
InitializeComponent. As the name suggests, this method handles the initialization of the components
contained on the form. A comment before the procedure warns you that the Form Designer modifies the
code contained in the procedure and that you should not modify the code directly. This module is part
of the Form1.Designer.vb source file, and Visual Studio updates this section as changes are made
through the IDE.

‘NOTE: The following procedure is required by the Windows Form Designer
‘It can be modified using the Windows Form Designer.
‘Do not modify it using the code editor.
<System.Diagnostics.DebuggerStepThrough()> Private Sub _

InitializeComponent()

32

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 32

Me.SuspendLayout()
‘
‘Form1
‘
Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)
Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font
Me.ClientSize = New System.Drawing.Size(292, 266)
Me.Name = “Form1”
Me.Text = “Professional VB.NET Intro”
Me.ResumeLayout(False)

End Sub

The seven lines of the InitializeComponent procedure assign values to the properties of your Form1
class. All the properties of the form and controls are now set directly in code. When you change the
value of a property of the form or a control through the Properties window, an entry will be added to
InitializeComponent that will assign that value to the property. Previously, while examining the
Properties window you set the Text property of the form to Professional VB.NET Intro, which caused
the following line of code to be added automatically:

Me.Text = “Professional VB.NET Intro”

The code accessing the properties of the form uses the Me keyword. The Me keyword acts as a variable
that refers to the instance of the current class in which it is used. When you are working within a control
that is used by your form, the Me keyword will refer to the control if the method you are working on is
part of the control class’s definition, even though that method may be called by your form class. The Me
keyword isn’t necessary, but it aids in the understanding of the code, so that you immediately recognize
that the property references are not simply local variables. The properties of the form class that are set in
InitializeComponent by default are shown in the following table.

Property Description

Suspend Layout This property tells the form to not make updates to what is
displayed to the user. It is called so that as each change is made
the form doesn’t seem to come up in pieces.

AutoScaleDimensions Initializes the size of the font used to lay out the form at design time.
At runtime, the font that is actually rendered is compared with this
property, and the form is scaled accordingly.

AutoScaleMode Indicates that the form will use fonts that are autoscaled based on
the display characteristics of the runtime environment.

ClientSize Sets the area in which controls can be placed (the client area). It is the
size of the form minus the size of the title bar and form borders.

Name This property is used to set the textual name of the form.

ResumeLayout Tells the form that it should resume the normal layout and
displaying of its contents.

33

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 33

Enhancing the Sample Application
To start enhancing the application, you are going to use the control toolbox. Ensure that you have closed
the Form1.designer.vb file and switch your display to the Form1.vb [Design] tab. The Toolbox win-
dow is available whenever a form is in design mode. By default, the toolbar, shown in Figure 2-9, lives
on the left-hand side of Visual Studio as a tab. When you click this tab, the control window expands and
you can then drag controls onto your form. Alternatively, if you have closed the Toolbox tab, you can go
to the View menu and select Toolbox.

If you haven’t set up the toolbox to be permanently visible, it will slide out of the way and disappear
whenever focus is moved away from it. This is a new feature of the IDE that has been added to help
maximize the available screen real estate. If you don’t like this feature and would like the toolbox to be
permanently visible, all you need to do is click the pushpin icon on the toolbox’s title bar.

Adding a Control and Event Handler
The button you’ve dragged onto the form is ready to go in all respects. However, Visual Studio has no
way of knowing how you want to customize it. Start by going to the Properties window and changing its
text property to “Hello World.” You can then change the button’s name property to ButtonHelloWorld.
Having made these changes, double-click the button in the display view. Double-clicking tells Visual
Studio that you want to add an event handler to this control, and by default Visual Studio adds an
On_Click event handler for buttons. The IDE then shifts the display to the code view so that you can
customize this handler (see Figure 2-10).

Figure 2-10

34

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 34

While the event handler can be added through the designer, it is also possible to add event handlers
from the Code view. After you double-click the button, Visual Studio will transfer you to the Code view
and display your new event handler. Notice that in the Code view there are drop-down boxes on the top
of the Edit window. The boxes indicate the current object on the left, in this case your new button, and
the current method on the right, in this case the Click event handler. It is possible to add new handlers
for other events on your button or form using these drop-down lists.

The drop-down box on the left-hand side lists the objects for which event handlers can be added. The
drop-down box on the right-hand side lists all the events for the selected object. This is similar to the
previous versions of Visual Basic, apart from an enhancement that allows you to handle the events of
the classes that have been overridden. For now, however, you have created a new handler for your but-
ton’s click event, and it’s time to look at customizing the code associated with this event.

Customizing the Code
With the Code window open to the newly added event handler for the “Hello World” button, you can
start to customize this handler. Note that adding a control and event handler involves elements of gener-
ated code. Visual Studio adds code to the Form1.Designer.vb file By definition, the name used in the
generated file for your control also links the control for which you have added this handler to the han-
dler. These changes occur in addition to the default method implementation you see here in the editable
portion of your source code.

Before you start adding new code to this method handler, however, you may want to reduce the com-
plexity of finding some of the Windows.Forms enumerations that will be used in your custom code. To
do this, you need to import a local reference to the System.Windows.Forms namespace.

Working with the Imports Statement
Go to the very first line of your code and add Imports statements to the generated code. The Imports
statement is similar to a file-based reference for local access to the classes contained in that namespace.
By default, to reference a class you need to provide its full namespace. However, when a namespace is
imported into a source file, you can instead reference that class by its short name. This topic will be cov-
ered in more detail in Chapter 8. For now, you can just add the following reference to the top of Form1.vb:

Imports System.Windows.Forms

This line of code means that if you want the list of possible MessageBox button values all you need to
reference is the enumeration MessageBoxButtons. Without this statement, you would need to reference
System.Windows.Forms.MessageBoxButtons in order to use the same enumeration. An example of
this is shown in the next section, where you customize the event handler. The Imports statement has
additional capabilities to make it easy for you to work with the wide array of available namespaces in
.NET. The statement is covered in more detail in Chapter 9.

Adding XML Comments
One of the new features of Visual Studio 2005 is the ability to create XML comments. XML comments
are a much more powerful feature than you probably realize because they are also recognized by Visual
Studio for use in IntelliSense. To add a new XML comment to your handler, go to the line before the han-
dler and type three single quotation marks ‘’’. This will trigger Visual Studio to replace your single

35

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 35

quotation mark with the following block of comments. You can trigger these comments in front of any
method, class, or property in your code.

‘’’ <summary>
‘’’
‘’’ </summary>
‘’’ <param name=”sender”></param>
‘’’ <param name=”e”></param>
‘’’ <remarks></remarks>

Notice that Visual Studio has provided a template that offers a place to provide a summary of what this
method does. It also provides placeholders to describe each parameter that is part of this method. Not
only are the comments entered in these sections available within the source code, but also when it is
compiled, you’ll find an XML file in the project directory summarizing all of your XML comments that
can be used to generate documentation and help files for said source code.

Customize the Event Handler
Now, customize the code for the button handler. This method doesn’t actually do anything by default.
To change this, add a command to open a message box and show the “Hello World” message. Use the
System.Windows.Forms.MessageBox class. Fortunately, since you’ve imported that namespace, you
can reference the MessageBox.Show method directly. The Show method has several different parame-
ters, and as you see in Figure 2-11, not only does Visual Studio provide a tooltip for the list of parameters
on this function, but it also provides help on the appropriate value for individual parameters.

Figure 2-11

36

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 36

The completed call to show should look similar to the following code snippet. Note that the underscore
character has been used to continue the command across multiple lines. Also note that unlike previous
versions of Visual Basic, where parentheses were sometimes unnecessary, in Visual Studio 2005 the syn-
tax now expects parentheses for every method call, but the good news is that it will automatically add
them if there are no parameters required for a given call.

MessageBox.Show(“Hello World”, _
“A First Look at VB.NET”, _
MessageBoxButtons.OK, _
MessageBoxIcon.Information)

Once you have entered this line of code, you may notice a squiggly line underneath some portion of
your text. This occurs if there is an error in the line you have typed. In previous versions of Visual Basic,
the development environment would interrupt your progress with a dialog box, but with Visual
Studio, the IDE works more like the latest version of Word. Instead of interrupting your progress, it
highlights the problem and allows you to continue working on your code.

Review the Code
Now that you have created a simple Windows application, let’s review the elements of the code that have
been added by Visual Studio. Following is the entire Form1.Designer.vb source listing. Highlighted in
this listing are the lines of code that have changed since the original template was used to generate this
project.

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Public Class Form1

Inherits System.Windows.Forms.Form

‘Form overrides dispose to clean up the component list.
<System.Diagnostics.DebuggerNonUserCode()> _
Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

If disposing AndAlso components IsNot Nothing Then
components.Dispose()

End If
MyBase.Dispose(disposing)

End Sub

‘Required by the Windows Form Designer
Private components As System.ComponentModel.Icontainer
‘NOTE: The following procedure is required by the Windows Form Designer
‘It can be modified using the Windows Form Designer.
‘Do not modify it using the code editor.

<System.Diagnostics.DebuggerStepThrough()> _
Private Sub InitializeComponent()

Me. ButtonHelloWorld = New System.Windows.Forms.Button()
Me.SuspendLayout()
‘
‘ButtonHelloWorld
‘

37

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 37

Me.ButtonHelloWorld.Location = New System.Drawing.Point(112, 112)
Me.ButtonHelloWorld.Name = “ButtonHelloWorld”
Me.ButtonHelloWorld.Size = New System.Drawing.Size(75, 23)
Me.ButtonHelloWorld.TabIndex = 0
Me.ButtonHelloWorld.Text = “Hello World”

‘
‘Form1
‘
Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)
Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font Me.ClientSize =

New System.Drawing.Size(292, 273)
Me.Controls.Add(Me.ButtonHelloWorld)

Me.Name = “Form1”

Me.Text = “Professional VB.NET Intro”
Me.ResumeLayout(False)

End Sub
Friend WithEvents ButtonHelloWorld As System.Windows.Forms.Button
End Class

After the Class declaration in the generated file, the first change that has been made to the code is the
addition of a new variable to represent the new button:

Friend WithEvents ButtonHelloWorld As System.Windows.Forms.Button

When any type of control is added to the form, a new variable will be added to the form class. Controls
are represented by variables and, just as form properties are set in code, form controls are added in code.
The Button class in the System.Windows.Forms namespace implements the button control on the tool-
box. Each control that is added to a form has a class that implements the functionality of the control. For
the standard controls, these classes are usually found in the System.Windows.Forms namespace. The
WithEvents keyword has been used in the declaration of the new variable so that it can respond to
events raised by the button.

The bulk of the code changes are in the InitializeComponent procedure. Eight lines of code have
been added to help set up and display the button control. The first addition to the procedure is a line
that creates a new instance of the Button class and assigns it to the button variable:

Me.ButtonHelloWorld = New System.Windows.Forms.Button()

Before a button is added to the form, the form’s layout engine must be paused. This is done using the
next line of code:

Me.SuspendLayout()

The next four lines of code set the properties of the button. The Location property of the Button class
sets the location of the top-left corner of the button within the form:

Me.ButtonHelloWorld.Location = New System.Drawing.Point(112, 112)

38

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 38

The location of a control is expressed in terms of a Point structure. Next the Name property of the button
is set:

Me.ButtonHelloWorld.Name = “ButtonHelloWorld”

The Name property acts in exactly the same way as it did for the form, setting the textual name of the
button. The Name property has no effect on how the button is displayed on the form, but is used to
recognize the button’s context within the source code. The next two lines of code assign values to the
TabIndex and Text properties of the button:

Me.ButtonHelloWorld.TabIndex = 0
Me.ButtonHelloWorld.Text = “Hello World”

The TabIndex property of the button is used to set the order in which the control will be selected when
the user cycles through the controls on the form using the Tab key. The higher the number, the later the
control will get focus. Each control should have a unique number for its TabIndex property. The Text
property of a button sets the text that appears on the button.

Once the properties of the button have been set, it needs to be added to the form. This is accomplished
with the next line of code:

Me.Controls.Add(Me.ButtonHelloWorld)

This line of code adds the button to the collection of child controls for the form. The System.Windows
.Forms.Form class (from which your Form1 class is derived) has a property called Controls that keeps
track of all of the child controls of the form. Whenever you add a control to a form, a line similar to the
preceding one is added automatically to the form’s initialization process.

Finally, near the bottom of the initialization logic is the final code change. The form is given permission
to resume the layout logic:

Me.ResumeLayout(False)

In addition to the code that has been generated in the Form1.Designer.vb source file you have created
code that lives in the Form1.vb source file. This code is shown here:

Imports System.Windows.Forms
Public Class Form1

‘’’ <summary>
‘’’
‘’’ </summary>
‘’’ <param name=”sender”></param>
‘’’ <param name=”e”></param>
‘’’ <remarks></remarks>

Private Sub ButtonHelloWorld_Click (ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles ButtonHelloWorld.Click

MessageBox.Show(“Hello World”, _
“A First Look at VB.NET”, _

39

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 39

MessageBoxButtons.OK, _
MessageBoxIcon.Information)

End Sub
End Class

This code reflects the event handler added for the button. The code contained in the handler was already
covered, with the exception of the naming convention for event handlers. Event handlers have a naming
convention similar to that in previous versions of Visual Basic: The control name is followed by an under-
score and then the event name. The event itself may also have a standard set of parameters. At this
point, you can test the application, but first perhaps a review of build options is appropriate.

Build Configurations
Prior to .NET, a Visual Basic project had only one set of properties. There was no way to have one set of
properties for a debug build and a separate set for a release build. The result was that you had to manu-
ally change any properties that were environment-specific before you built the application. This has
changed with the introduction of build configurations, which allow you to have different sets of project
properties for debug and release builds. Visual Studio also does not limit you to only two build configu-
rations, it is possible to create additional custom configurations. The properties that can be set for a pro-
ject have been split into two groups: those that are independent of build configuration and therefore
apply to all build configurations, and those that apply only to the active build configuration. For exam-
ple, the Project Name and Project Location properties are the same irrespective of what build configura-
tion is active, whereas the code optimization options differ, depending on the active build configuration.
This isn’t a new concept and has been available to Visual C++ developers for some time, but .NET was
the first time it was available for VB developers.

Currently under Visual Studio 2005, the default settings for Visual Basic developers do not include the
two build configuration settings in the project properties page. By default, Visual Basic applications are
built in release mode, however if a project’s build type is changed, the Visual Basic developer is by default
unaware and unable to change the setting. To display these settings in Visual Studio, go to the Tools menu
and select the Options menu item. On the Options dialog, select the “Projects and Solutions” tree item,
and on the settings for projects and solutions, you need to select the “Show advanced build configura-
tions” check box. This will update the user interface to properly display the build configurations.

The advantage of multiple configurations is that it is possible to turn off optimization while an application
is in development and add symbolic debug information that will help locate and identify errors. When
you are ready to ship the application, a single switch to the release configuration results in an executable
that is optimized. The settings associated with the various build configurations are stored in the project
properties. Unlike the project’s display properties, which show up in the Assembly Information window
discussed earlier in this chapter, project properties are accessed through the Compile tab on the project’s
Property pages. To access a project’s Property Pages dialog box, double-click or right-click My Project in
the Solution Explorer and select Open from the pop-up menu. Alternatively, it is possible to open the pro-
ject’s Property Pages dialog box by selecting Properties from the Project menu in Visual Studio.

At the top of this page is a drop-down list box labeled Configuration. Typically, four options are listed in
this box. The currently selected configuration listed as Active, the Debug and Release options, and a final
option listed as All Configurations. When changes are made on this screen, they are only applied to the

40

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 40

selected configuration(s). Thus, on one hand, when Release is selected, any changes will be applied
only to the settings for the Release build. If, on the other hand, All Configurations is selected, then any
changes made will be applied to all of the configurations, Debug and Release, based on what is shown
in Figure 2-12. The second drop-down box, labeled Platform, allows the selection of a target platform
for the project.

The window below these two drop-downs displays the individual properties that are dependent on the
active build configuration. The first such setting is the location where your project’s binary files will be
sent. Notice that VB now defaults to having separate bin/debug and bin/release directories, so you can
keep separate copies of your executables. Below this is the Advanced button. This button opens a win-
dow that contains some low-level compiler optimizations. In most cases, you will never need to change
these settings, but for those working with low-level components, they are available.

Below these settings is the label All Configurations. It should be noted that this label is somewhat mis-
leading and would be better understood if it said: All of the available configuration settings. Of course
that’s a bit long, but the point is that while these settings can be different for each configuration, the grid
contains all of the primary configuration settings. Visual Basic 2005 supports the default configuration
elements Option Explicit and Option Strict, which will automatically reset several of the settings
that you see in the grid of settings. In most cases, it is recommended that you enable both Option
Explicit and Option Strict.

Figure 2-12

41

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 41

Below the grid of individual settings is a series of check boxes. The first two relate to warnings and nei-
ther is enabled. They are mutually exclusive, and the first makes warning messages disappear, which is
probably a bad idea. The alternative is to treat warnings like errors, which may cause more trouble than
it’s worth, especially when you consider some of the items that generate warnings. Next, notice that near
the bottom of Figure 2-12 is the option to generate XML comments for your assembly. These comments
are generated based on the XML comments that you enter for each of the classes, methods, and proper-
ties in your source file.

Note that all of these settings are project-specific. However, when working with a solution, it is possible
to have more than one project in the same solution. While you are forced to manage these settings inde-
pendently for each project, there is another form of project configuration related to multiple projects. You
are most likely to do this when working with integrated Setup projects, where you might only want to
build the Setup project when you are working on a release build.

To customize which projects are included in each build configuration, you need the Configuration Manager
for the solution. Projects are assigned to build configurations through the Configuration Manager. If, and
only if, your solution has multiple projects, it is possible to open the Configuration Manager from the Build
menu by selecting Configuration Manager. Alternatively, the Configuration Manager, shown in Figure 2-13,
can be opened using the drop-down list box to the right of the Run button on the Visual Studio toolbar. The
active configuration drop-down box contains the following options: Debug, Release, and Configuration
Manager. The first two default options are the currently available configurations. However, selecting the
bottom option, Configuration Manager, opens the dialog box shown in Figure 2-13.

Figure 2-13

The Configuration Manager contains an entry for each project in the current solution. It is possible to
include a project or exclude it from the selected configuration by clearing the check box in the column of
the grid labeled Build. This is a valuable capability when a solution has multiple projects so that time
isn’t spent waiting while a project that isn’t being worked on is recompiled. The build configuration is

42

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 42

commonly used when a Setup project is added to a solution. The normal plan is to rebuild only the Setup
package when a release version of the actual application project is created. It’s important to note that
regardless of the build configuration, it is possible to build any assembly by right-clicking that project
and selecting the Build option from the pop-up menu.

Building Applications
For this example, it is best to just build your sample application using the Debug build configuration.
The first step is to make certain that Debug is selected as the active configuration in the Configuration
drop-down list box discussed in the previous section. Visual Studio provides an entire Build menu with
the various options available for building an application. There are essentially two options for building
applications:

❑ Build — Use the currently active build configuration to build the project.

❑ Rebuild — Clean all intermediate files (object files) and the output directory before building the
project using the active build configuration.

The Build menu supports doing each of these for either the current configuration or for only the cur-
rently selected project. Thus, you can choose to only build a single project in your solution, to rebuild all
of the supporting files for a single project, or to use the current configuration and build or rebuild all of
the projects that have been defined as part of that configuration. Of course, anytime you choose to test
run your application, the compiler will automatically attempt to perform a compilation so that you run
the most recent version of your code.

You can either select Build from the menu or use the Ctrl-Shift-B keyboard combination to initiate a
build. When you build your application, the Output window along the bottom edge of the development
environment will open. As shown in Figure 2-14, it displays status messages associated with the build
process. This window indicates your success in building your application. Once your application has
been built successfully, you will find the executable file located in the targeted directory. By default, for
.NET applications this is the \ bin subdirectory of your project files.

If there is a problem with building your application, Visual Studio provides a separate window to help
coordinate any list of problems. If an error occurs, the Task List window will open as a tabbed window
in the same region occupied by the Output window shown in Figure 2-14. Each error that is encountered
will trigger a separate item in the Task List, and if you double-click an error, Visual Studio will automati-
cally reposition you on the line with an error. Once your application has been built successfully, you can
run it.

Figure 2-14

43

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 43

Running an Application in the Debugger
As discussed earlier, there are several ways to start your application. Starting your application launches
a series of events. First, Visual Studio looks for any modified files and saves those files automatically. It
then verifies the build status of your solution and rebuilds any project that does not have an updated
binary, including dependencies. Finally, it initiates a separate process space and starts up your applica-
tion with the Visual Studio debugger attached to that process.

Once your application is running, the look and feel of Visual Studio’s IDE changes. New windows and
button bars associated with debugging become visible. While your solution and code remain visible, the
IDE displays additional windows such as the Autos, Locals, and Watch windows shown on the lower-
right side of Figure 2-15. These windows are used by the debugger for reviewing the current value of
variables within your code. On the lower-right side of Visual Studio, the Call Stack, Breakpoints,
Command, and Output windows open to provide feedback on what your application is doing. These
windows are discussed in more detail later in this chapter.

With your application running, select Visual Studio as the active window. Then click in the border along-
side the line of code you added to open a message box when the “Hello World” button is clicked. Doing
this will create a breakpoint on the selected line. If you return to your application and click the “Hello
World” button, you will see that Visual Studio takes the active focus and that within your code window,
the line with your breakpoint is now selected.

Figure 2-15

44

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 44

While in break mode, it is possible to update the application’s running values and view the current sta-
tus of your application. Chapter 10, which focuses on error handling, delves into many of the more
advanced capabilities of the Visual Studio debugger. At this point, you should have a basic understand-
ing of how to work in the Visual Studio environment. However, there are a few other elements of this
environment that you will use as you develop more complex applications.

Other Debug-Related Windows
As noted earlier in this chapter, when you run an application in debug mode, Visual Studio .NET 2005
opens up a series of windows. Each of these windows provides a view of a limited set of the overall
environment in which your application is running. From these windows, it is possible to find things like
the list of calls used to get to the current line of code or the present value of all of the variables that are
currently available. Visual Studio has a powerful debugger that is fully supported with IntelliSense, and
these windows extend the debugger.

Output
As noted earlier, the build process puts progress messages in this window. Similarly, your program can
also place messages in it. There are several options for accessing this window, which will be discussed in
later chapters, but at the simplest level, the Console object will echo its output to this window during a
debug session. For example, the following line of code can be added to your sample application:

Console.WriteLine(“This is printed in the Output Window”)

This line of code will cause the string This is printed in the Output Window to appear in the Output
window when your application is running. You can verify this by adding this line in front of the com-
mand to open the message box and then running your application and having the debugger stop on the
line where the message box is opened. Examining the contents of the Output window, you will find that
your string has been displayed.

Anything written to the Output window is shown only while running a program from the environment.
During execution of the compiled module, no Output window is present, so nothing can be written to it.
This is the basic concept behind other objects such as the Debug and Trace objects, which are covered in
more detail in Chapter 10.

Call Stack
The Call Stack window lists the procedures that are currently calling other procedures and waiting for
their return. The call stack represents the path through your code that has led to the currently executing
command. This can be a valuable tool when you are trying to determine what code is executing a line of
code that you didn’t expect to execute. This was accessed in Visual Basic 6 with a menu option on the
View menu.

Breakpoints
The Breakpoints window is an enhanced breakpoint handler in which breakpoints can be defined and
monitored. Earlier, you saw that you can add breakpoints directly to your code simply by selecting a
line. It is also possible to add specific properties to your breakpoints, defining that a given breakpoint
should only execute if a certain value is defined (or undefined) or only after it has been executed several
times. This is useful for debugging problems that occur only after a certain number of iterations of a rou-
tine. (Note that breakpoints are saved when a solution is saved by the IDE.) The breakpoint handler in
Visual Studio 2005 is significantly enhanced from previous versions of Visual Basic.

45

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 45

Locals
The Locals window is used to monitor the value of all variables that are currently in scope. This is a
fairly self-explanatory window that shows a list of the current local variables and next to each item the
value of the variable. As in previous versions of Visual Studio, this display supports the examination of
the contents of objects and arrays via a tree-control interface.

Autos
The Autos window displays variables used in the statement currently being executed and the statement
just before it. These variables are identified and listed for you automatically, hence the window’s name.
This window will show more than just your local variables. For example, if you are in the Debugger
mode on the line to open the MessageBox in the ProVB.NET sample, you will see that the MessageBox
constants that are referenced on this line are shown in this window. This window allows you to see the
content of every variable involved in the currently executing command.

Watch Windows
There are four Watch windows, called Watch 1 to Watch 4. Each window can hold a set of variables or
expressions for which you want to monitor the value. It is also possible to modify the value of a variable
from within a Watch window. The display can be set to show variable values in decimal or hexadecimal
format. To add a variable to a Watch window, right-click the variable in the Code Editor and then select
Add Watch from the pop-up menu.

Useful Features of Visual Studio
The focus of most of this chapter has been on creating a simple application. When you are working with
a tool such as Visual Studio .NET 2003, often your task requires some features but not others. In the pre-
ceding example, there are four in particular that are worth covering:

❑ The Task List

❑ The Command window

❑ The Server Explorer

❑ Macros in Visual Studio

The Task List
The Task List is a great productivity tool that tracks not only errors but also pending changes and addi-
tions. It’s also a good way for the Visual Studio environment to communicate information that the devel-
oper needs to know, such as any current errors. The Task List is displayed by selecting the Task List from
the Other Windows option of the View menu, or if there are errors found during a build of your solu-
tion, the window opens automatically.

Although it isn’t immediately obvious, the Task List has several options. The quickest way to get a list of
these options is to go to the View menu and select the Show Tasks option. This will provide a list of the
different types of tasks that can be organized in the Task List. By default the Task List displays all tasks.
However, it is possible to change this default and screen the tasks that are displayed.

46

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 46

The Comment option is used for tasks embedded in code comments. This is done by creating a standard
comment with the apostrophe and then starting the comment with the Visual Studio keyword TODO:.
The keyword can be followed with any text that describes what needs to be done. Once entered, the text
of these comments shows up in the Task List if either the Comment option or the All option is selected.
Note that a user can create his or her own comment tokens in the options for Visual Studio via the
Tools ➪ Options ➪ Environment ➪ Task List menu.

Besides helping developers track these tasks, embedding the tasks in code results in another benefit. Just
as with errors, clicking a task in the Task List causes the Code Editor to jump right to the location of the
task without hunting through the code for it.

Finally, it is possible to enter tasks into the Task List manually. By selecting an open row of the Task List,
you can add additional tasks that might be needed but that may not be associated with a particular spot
in your source code. These user-entered tasks are displayed both when the View ➪ Show Tasks ➪ User
option is selected, and when all tasks are displayed.

The Command Window
The Command window is one of the windows that are displayed while in debug mode. It is also possi-
ble to open this window from the Other Windows section of the View menu. When opened, the window
displays a > prompt. This is a command prompt at which you can execute commands.

The Command window can be used to access Visual Studio menu options and commands by typing
them instead of selecting them in the menu structure. For example, if you type File.AddNewProject
and press Enter, the dialog box to add a new project will appear. Note that IntelliSense is available to
help you enter commands in the Command window.

The Command window also has an immediate mode in which expressions can be evaluated. This mode
is accessed by typing Immed at the prompt. In this mode, the window title changes to indicate that the
immediate mode is active. The key difference between modes of the Command window is how the
equal sign behaves. Normally, the equal sign is used as a comparison operator in the Command window.
Thus the statement a=b is used to determine whether the value a is the same as b. In immediate mode,
the statement a=b attempts to assign the value of b to a. This can be very useful if you are working in the
debugger mode and need to modify a value that is part of a running application. To return to the com-
mand mode, type >cmd.

In the immediate mode, the Command window behaves very similarly to the Immediate window in
Visual Basic 6.

The Server Explorer
As development has become more server-centric, developers have a greater need to discover and manip-
ulate services on the network. The Server Explorer is a feature in Visual Studio that makes this easier.
Visual Interdev started in this direction with a Server Object section in the Interdev toolbox. The Server
Explorer in Visual Studio is more sophisticated in that it allows you to explore and even alter your appli-
cations database or your local registry values. With the assistance of an SQL Database project template
(part of the Other Project types), it is possible to fully explore and alter an SQL Server database. You can
define the tables, stored procedures, and other database objects as you might have previously done with
the SQL Enterprise Manager.

47

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 47

However, the Server Explorer is not specific to databases. You open the Server Explorer similarly to how
you open the control toolbox. When you hover over or click the Server Explorer’s tab, the window will
expand from the left-hand side of the IDE. Once it is open, you will see a display similar to the one
shown in Figure 2-16.

It might at first seem as if this window is specific to SQL Server, but if you expand the list of available
servers, as shown in Figure 2-16, you will see that you have access to several server resources. The
Server Explorer even provides the ability to stop and restart services on the server. Notice the wide vari-
ety of server resources that are available for inspection or for use in the project. Having the Server
Explorer available means that you don’t have to go to an outside resource to find, for example, what
message queues are available.

By default, you have access to the resources on your local machine. However, if you are in a domain, it is
possible to add other machines, such as your Web server, to your display. The Add Server option allows
a new server to be selected and inspected. To explore the event logs and registry of a server, you need to
add this server to your display. Use the Add Server button shown in Figure 2-16 to open the Add Server
dialog box. In this dialog box, provide the name of your server and click the OK button. This will add
the new server to your display.

Figure 2-16

48

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 48

Recording and Using Macros in Visual Studio 2005
C++ developers have long had one feature that many VB developers craved — macros. In Visual Studio,
macros become part of the environment and are available to any language. Macro options are accessible
from the Tools ➪ Macros menu. The concept of macros is simple: The idea is to record a series of keystrokes
and/or menu actions, and then play them back by pressing a certain keystroke combination.

For example, suppose that one particular function call with a complex set of arguments is constantly
being called on in code, and the function call usually looks the same except for minor variations in the
arguments. The keystrokes to code the function call could be recorded and played back as necessary,
which would insert code to call the function, which could then be modified as necessary.

Macros can be far more complex than this, containing logic as well as keystrokes. The macro capabilities
of Visual Studio are so comprehensive that macros have their own IDE (accessed using Tools ➪ Macros ➪

Macros IDE).

Macros can be developed from scratch in this environment, but more commonly they are recorded using
the Record Temporary Macro option on the Macros menu and then renamed and modified in the above
development environment. Here is an example of recording and modifying a macro:

1. Start a new window Application project.

2. In the new project, add a button to Form1, which was created with the project.

3. Double-click the button to get to its Click event routine.

4. Select Tool_Macros_Record Temporary Macro. A small toolbar will appear on top of the IDE
with a button to control the recording of a macro (Pause, Stop, and Cancel).

5. Press the Enter key, and then type the following line of code:

Console.WriteLine(“Macro test”)

6. Press the Enter key again.

7. In the small toolbar, press the Stop button.

8. Select Tool ➪ Macros ➪ Record Temporary Macro. The Macro Explorer will appear (in the loca-
tion normally occupied by the Solution Explorer) with the new macro in it. You can name the
macro anything you like.

9. Right-click the macro and select Edit to get to the Macro Editor. You will see the following code
in your macro:

DTE.ActiveDocument.Selection.NewLine()
DTE.ActiveDocument.Selection.Text = “Console.WriteLine(“”A macro test””)”
DTE.ActiveDocument.Selection.NewLine()

The code that appears in Step 9 can vary, depending on how you typed in the line. If you made a mistake
and backspaced, for example, those actions will have their own corresponding lines of code. As a result,
after you record a macro, it is often worthwhile to examine the code and remove any unnecessary lines.

The code in a macro recorded this way is just standard VB code, and it can be modified as desired.
However, there are some restrictions on what you can do inside the macro IDE. For example, you can-
not refer to the namespace for setting up database connections because this might constitute a security
violation.

49

Introducing Visual Basic 2005 and Visual Studio 2005

05_575368 ch02.qxd 10/7/05 10:48 PM Page 49

To run a macro, you can just double-click it in the Macro Explorer or select Tools ➪ Macros ➪ Run
Macro. You can also assign a keystroke to a macro in the Keyboard dialog box in the Tools ➪ Options ➪

Environment folder.

One final note on macros is that they essentially allow you to generate code that can then be transferred
to a Visual Studio Add-In project. An Add-In project is a project designed to extend the properties of
Visual Studio. To create a new Add-In project, open the New Project dialog and then go to Other Project
Types – Extensibility. You can then create a Visual Studio Add-In project. Such a project allows you to
essentially share your macro as a new feature of Visual Studio. For example, if Visual Studio 2005 didn’t
provide a standard way to get formatted comments, you might create an add-in that would allow you to
automatically generate your comment template, so you wouldn’t need to retype it repeatedly.

Summary
In this chapter, you have created your first sample VB application. Creating this example has helped you
to explore the new Visual Studio IDE and shown how powerful the features of the IDE are. Some of the
key points that were covered in this chapter include:

❑ How to create projects and the different project templates available

❑ Code regions and how you can use them to conceal code

❑ How to import a namespace into an application source file

❑ How forms are classes and how the properties of forms are set in code

❑ Some of the new object-oriented features of Visual Basic

❑ Build configurations and how to modify the build configuration of your project

❑ Running an application in debug mode and how to set a breakpoint

With .NET, Microsoft has brought different development languages and paradigms into a single develop-
ment environment, and it is a powerful one. Users of previous versions of Visual Basic, Visual Interdev, and
Visual Studio will generally find this environment familiar. The IDE offers many new features over previ-
ous development tools to help boost developer productivity.

You’ve also seen that Visual Studio is customizable. Various windows can be hidden, docked, or undocked;
layered in tabs; and moved within the IDE. There are many tools in Visual Studio at your disposal and it’s
worth the effort to learn how to use them effectively.

50

Chapter 2

05_575368 ch02.qxd 10/7/05 10:48 PM Page 50

Variables and Type

Experienced developers generally consider integers, characters, Booleans, and strings to be the
basic building blocks of any language. In .NET, all objects share a logical inheritance from the base
Object class. One of the advantages of this common heritage is the ability to rely on certain com-
mon methods of every variable. Another is that this allows all of .NET to build on a common type
system. Having a common type system means that just as Visual Studio 2005 provides a common
development environment across .NET languages (as was discussed in the last chapter), Visual
Basic builds on a common type system shared across .NET languages.

Unlike the COM programming model, where different languages are needed to account for differ-
ences in how simple datatypes are stored, .NET languages can communicate without needing to
abstract data. Additionally, since all datatypes are based on the core Object class, every variable
can be ensured of having a set of common characteristics. However, this logical inheritance does
not require a common physical implementation for all variables. For example, what most pro-
grammers see as some of the basic underlying types, such as Integer, Long, Character, and
even Byte, are not implemented as classes. Instead .NET has a base type of object and then allows
simple structures to inherit from this base class. While everything in .NET is based on the Object
class, under the covers .NET has two major variable types: value and reference.

❑ Value types represent simple data storage located on the stack. They are what Visual Basic
6.0 developers would often refer to as datatypes.

❑ Reference types are based on complex classes with implementation inheritance from their
parent classes, and custom storage on the managed heap.

Value and reference types are treated differently within assignment statements, and their memory
management is handled differently. It is important to understand how theses differences affect the
software you will write in Visual Basic 2005 (Visual Basic). Understanding the foundations of how
data is manipulated in the .NET Framework will enable you to build more reliable and better per-
forming applications.

06_575368 ch03.qxd 10/7/05 10:49 PM Page 51

The main goal of this chapter is to familiarize you with value and reference types and to allow you to
understand some of the key differences in how variables are defined in Visual Basic as compared with
Visual Basic 6.0. The chapter begins by looking at value types, followed by providing a clear definition
of a logical grouping called primitive types. It then examines classes, how they work, and how some of
the basic classes are used. Specifically, this chapter covers:

❑ Value versus reference types

❑ Value types (structures)

❑ Primitive types

❑ Reference types (classes)

❑ Explicit conversions

❑ Option Strict and Option Explicit

❑ Parameter passing ByVal and ByRef

❑ Boxing

❑ Retired keywords and functions

Differences of Value and Reference Types
When you start looking into the .NET Framework’s underlying type systems, you often hear a conflict-
ing set of statements. On one hand, you are told that all types inherit from the Object class, and on the
other hand, you are told to beware when transitioning between value types and reference types. The key
is that while every type, whether it is a built-in structure such as an integer or string or a custom class
such as MyEmployee, does in fact inherit from the Object class. The difference between value and refer-
ence types is an underlying implementation difference.

The difference between value types and reference types is an excellent place to start, because it is a rela-
tively simple difference. More important, as a .NET developer you generally don’t need to be concerned
with this difference, except in certain performance-related situations. Value and reference types behave
differently when data is assigned to them:

❑ When data is assigned to a value type, the actual data is stored in the variable on the stack.

❑ When data is assigned to a reference type, only a reference is stored in the variable. The actual
data is stored on the managed heap.

It is important to understand the difference between the stack and the heap. The stack is a comparatively
small memory area in which processes and threads store data of fixed size. An integer or decimal value
will need the same number of bytes to store their data, regardless of their actual value. This means that
the location of such variables on the stack can be efficiently determined. (When a process needs to
retrieve a variable, it has to search the stack. If the stack contains variables that had dynamic memory
sizes, such a search could take a long time.)

52

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 52

Reference types do not have a fixed size. For example, a string could vary in size from 2 bytes to close to
all the memory available on a system. The dynamic size of reference types means that the data they con-
tain is stored on the heap rather than the stack. However, the address of the reference type (that is, the
location of the data on the heap) does have a fixed size, and so can be stored on the stack. By only stor-
ing a reference on the stack, the program as a whole runs much more quickly, since the process can
rapidly locate the data associated with a variable.

Storing the data contained in fixed and dynamically sized variables in different places results in dif-
ferences in the way that variables behave. This can be illustrated by comparing the behavior of the
System.Drawing.Point structure (a value type) and the System.Text.StringBuilder class
(a reference type).

The Point structure is used as part of the .NET graphics library that is part of the System.Drawing
namespace. The StringBuilder class is part of the System.Text namespace and is used to improve
performance when you’re editing strings. Namespaces are covered in detail in Chapter 8.

First, here is an example of how the System.Drawing.Point structure is used:

Dim ptX As New System.Drawing.Point(10, 20)
Dim ptY As New System.Drawing.Point

ptY = ptX
ptX.X = 200

Console.WriteLine(ptY.ToString())

The output from this operation will be {X = 10, Y = 20}, which seems logical. When the code copies ptX
into ptY, the data contained in ptX is copied into the location on the stack that is associated with ptY.
When later the value of ptX is changed, only the memory on the stack that is associated with ptX is
altered. Altering the value of ptX had no effect on ptY. This is not the case with reference types.
Consider the following code, which uses the System.Text.StringBuilder class:

Dim objX As New System.Text.StringBuilder(“Hello World”)
Dim objY As System.Text.StringBuilder

objY = objX
objX.Replace(“World”, “Test”)

Console.WriteLine(objY.ToString())

The output from this operation will be “Hello Test,” not “Hello World.” The previous example using
points demonstrated that when one value type is assigned to another, the data stored on the stack is
copied. Similarly, this example demonstrates that when objY is assigned to objX, the data associated
with objX on the stack is copied to the data associated with objY on the stack. However, what is copied
in this case isn’t the actual data, but rather the address on the managed heap where the data is actually
located. This means that objY and objX now reference the same data. When the data on the heap is
changed, the data associated with every variable that holds a reference to that memory is changed. This
is the default behavior of reference types and is known as a shallow copy. Later in this chapter, you’ll
see how this behavior has been overridden for strings (which perform a deep copy).

53

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 53

The differences between value types and reference types go beyond how they behave when copied,
and you’ll encounter some of the other features provided by objects later in this chapter. First though,
let’s take a closer look at some of the most commonly used value types and learn how .NET works
with them.

Value Types (Structures)
Value types aren’t as versatile as reference types, but they can provide better performance in many cir-
cumstances. The core value types (which include the majority of primitive types) are Boolean, Byte,
Char, DateTime, Decimal, Double, Guid, Int16, Int32, Int64, SByte, Single, and TimeSpan. These
are not the only value types, but rather the subset with which most Visual Basic developers will consis-
tently work. As you’ve seen, by definition value types store data on the stack.

Value types can also be referred to by their proper name: Structures. Previous versions of Visual Basic
supported the user-defined type (UDT). The UDT framework has been replaced by the ability to create
custom structures. The underlying principles and syntax of creating custom structures mirrors that of
creating classes, which will be covered in the next chapter. This section is going to focus on some of the
built-in types that are provided by the .NET Framework, and in particular, a special group of these built-
in types known as primitives.

Primitive Types
Visual Basic, in common with other development languages, has a group of elements such as integers
and strings that are termed primitive types. These primitive types are identified by keywords like
String, Long, and Integer, which are aliases for types defined by the .NET class library. This means
the line

Dim i As Long

is equivalent to the line

Dim i As System.Int64

The reason that these two different declarations are available has to do with long-term planning for your
application. In most cases (as was the case when Visual Basic transitioned to .NET), you want to use the
Short, Integer, and Long designations. When Visual Basic moved to .NET, the Integer type went
from 16 bits to 32 bits. Code written with this Integer type would automatically use the larger value if
you rewrote the code in .NET. Interestingly enough, however, the Visual Basic Migration Wizard actually
recast Visual Basic 6 Integer values to Visual Basic .NET Short values.

This is the same reason that Int16, Int32, and Int64 exist. These types specify a physical implementa-
tion, and therefore if your code is someday migrated to a version of .NET that maps the Integer value
to Int64, those values defined as Integer will reflect the new larger capacity, while those declared as
Int32 will not. This could be important if your code were manipulating part of an interface where
changing the physical size of the value could break the interface.

54

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 54

The following table lists the primitive types that Visual Basic 2005 defines and the structures or classes
that they map to.

Primitive Type .NET Class or Structure

Byte System.Byte (structure)

Short System.Int16 (structure)

Integer System.Int32 (structure)

Long System.Int64 (structure)

Single System.Single (structure)

Double System.Double (structure)

Decimal System.Decimal (structure)

Boolean System.Boolean (structure)

Date System.DateTime (structure)

Char System.Char (structure)

String System.String (class)

The String primitive type stands out from the other primitives. Strings are implemented as a class, not a
structure. More importantly strings are the one primitive type that is a reference type.

There are certain operations you can perform on primitive types that you cannot perform on other types.
For example, you can assign a value to a primitive type using a literal:

Dim i As Integer = 32
Dim str As String = “Hello”

It is also possible to declare primitive types as constant using the Const keyword. For example,

Dim Const str As String = “Hello”

The value of the variable str in the preceding line of code cannot be changed elsewhere in the applica-
tion containing this code at runtime. These two simple examples illustrate the key properties of primi-
tive types. As noted, most primitive types are, in fact, value types. So, the next step is to take a look at
the specific behavior of some of the common value types in Visual Basic.

Boolean
The .NET Boolean type has been implemented with three values, two for True, and one for False. Two
True values have been implemented for backward compatibility because, in contrast to most languages
(in which Boolean True equates to 1), Visual Basic converts a value of True to -1. This is one of the few
(but not the only) legacy carryovers from Visual Basic 6.0. This was done to save developers from having

55

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 55

to examine every Boolean expression to ensure valid return values. Of course, at the lowest level, all
.NET languages operate on the basis that 0 is False and a nonzero value will be converted to True.
Visual Basic works as part of a multilanguage environment, with metadata-defining interfaces, so the
external value of True is as important as its internal value. Fortunately, Microsoft implemented Visual
Basic such that, while -1 is supported within Visual Basic, the .NET standard of 1 is exposed from
Visual Basic methods to other languages.

Of course, this compromise involves making some decisions that add complexity to True or False eval-
uations. While a True value in a Boolean expression equates to –1, if converted to any other format, it
equates to 1. This is best illustrated by some sample Visual Basic code. Keep in mind though that this
code follows poor programming practice because it references Boolean values as integers (and does so
with implicit conversions):

Dim blnTrue As Boolean = True
Dim blnOne As Boolean = 1
Dim blnNegOne As Boolean = -1
Dim blnFalse As Boolean = False

The following condition, which is based on the implicit conversion of the Boolean, works even though
the blnOne variable was originally assigned a value of 1.

If blnOne = -1 Then
Console.WriteLine(blnTrue)
Console.WriteLine(blnOne.ToString)
Console.WriteLine(Convert.ToString(Convert.ToInt32(blnNegOne)))

End If

The key is that implicit conversions such as the one in the preceding example work differently from
explicit conversions. If you add sample code to explicitly convert the value of a Boolean type to an
Integer type, and then test the result, the integer will be a positive 1. The implicit and explicit conver-
sion of Boolean values is not consistent in Visual Basic. Converting blnNegOne to an integer results in
a positive value, regardless of what was originally assigned.

If Convert.ToInt16(blnNegOne) = 1 Then
Console.WriteLine(blnFalse)
Console.WriteLine(Convert.ToString(Convert.ToInt32(blnFalse)))

End If

This code will not compile if you are using Option Strict (more on this later), but it is a good illustra-
tion of what you should expect when casting implicitly rather than explicitly. The output from this code
is shown in Figure 3-1.

Figure 3-1 illustrates the output when the two preceding conditionals are run as part of a test program
such as the ProVisual Basic sample you created in Chapter 2. The first conditional expression demon-
strates that if casting is performed between a Boolean and an Integer value then, regardless of how
a Boolean in Visual Basic is initialized, True is implicitly evaluated as –1. The three write statements
associated with this display the string representation (True) of a Boolean, both implicitly and explicitly,
as well as the explicitly converted value.

56

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 56

Figure 3-1

The second conditional expression performs an explicit cast from a Boolean to an Integer value. Since
this condition succeeds, it demonstrates that the conversion results in a value of 1. Behind the scenes,
the reason for this is that the code used to do the explicit cast is part of the .NET Framework and, in the
Framework the value of True is 1. The result is that the code displays the string and converted values
for a Boolean False.

This demonstrates the risk involved in relying on implicitly converted values. If at some point the
default value associated with True were to change, this code would execute differently. The difference
between an explicit and implicit conversion is subtle, and there are two steps to take in order to avoid
difficulty:

❑ Always use the True and False constants in code.

❑ If there is any doubt as to how the return value from a method will be handled, it should
be assigned to a Boolean variable. That Boolean variable can then be used in conditional
expressions.

The final area where this can be an issue is across languages. Now, you need to consider the behavior
of a referenced component within your Visual Basic code. You can look at a hypothetical class called
MyCSharpClass that might have a single method TestTrue(). The method doesn’t need any parame-
ters, it simply returns a Boolean, which is always True.

From the Visual Basic example, you can create an instance of MyCSharpClass and make calls to the
TestTrue() method:

Dim objMyClass as New MyCSharpClass.MyCSharpClass()

If objMyClass.TestTrue() = 1 Then
Console.WriteLine(“CSharp uses a 1 for true but does it” & _

“ implicitly convert to a 1 in VB?”)
Else

57

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 57

Console.WriteLine(“Even classes implemented in other .NET languages” & _
“ are evaluated implicitly as -1 in Visual Basic”)

End If

If objMyClass.TestTrue() = True Then
Console.WriteLine(“CSharp True always converts to Visual Basic True.”)

End If

It’s probably unclear if the first conditional in this code will ever work; after all, C# uses a value of 1 to
represent True. However, this code is running in Visual Basic; therefore, the rules of Visual Basic apply.
Even when you return a Boolean from a .NET language that uses 1, not -1, to represent True, the
Visual Basic compiler will ensure that the value of True is implicitly interpreted as – 1. Figure 3-2 illus-
trates that the behavior of the second conditional is both clear and safe from future modifications of the
VB language. If Visual Basic is modified at some future date to no longer use -1 to equate to True, state-
ments that instead compare to the Boolean True will remain unaffected.

Figure 3-2

To create reusable code, it is always better to avoid implicit conversions. In the case of Booleans, if the
code needs to check for an integer value, you should explicitly evaluate the Boolean and create an
appropriate integer — this code will be far more maintainable and prone to fewer unexpected results.
Now that Booleans have been covered in depth, the next step is to examine the Integer types that are
part of Visual Basic.

The Integer Types
In Visual Basic 6.0, there were two types of integer values: the Integer type was limited to a maximum
value of 32767 and the Long type supported a maximum value of 2147483647. The .NET Framework
adds a new integer type, the Short. The Short is the equivalent of the Integer value from Visual Basic
6.0, the Integer has been promoted to support the range previously supported by the Long type, and
the Long type is bigger than ever. In addition, each of these types also has two alternative types. In all,
Visual Basic supports nine Integer types.

Type Allocated Memory Minimum Value Maximum Value

Short 2 bytes –32768 32767

Int16 2 bytes –32768 32767

UInt16 2 bytes 0 65535

58

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 58

Type Allocated Memory Minimum Value Maximum Value

Integer 4 bytes –2147483648 2147483647

Int32 4 bytes –2147483648 2147483647

UInt32 4 bytes 0 4294967295

Long 8 bytes –9223372036854775808 9223372036854775807

Int64 8 bytes –9223372036854775808 9223372036854775807

UInt64 8 bytes 0 184467440737095551615

Short
A Short value is limited to the maximum value that can be stored in 2 bytes. This means there are 16
bits and that the value can range between –32768 and 32767. This limitation may or may not be based on
the amount of memory physically associated with the value; it is a definition of what must occur in the
.NET Framework. This is important, because there is no guarantee that the implementation will actually
use less memory than when using an Integer value. It is possible that, to optimize memory or process-
ing, the operating system will allocate the same amount of physical memory used for an Integer type
and then just limit the possible values.

The Short (or Int16) value type can be used to map SQL smallint values.

Integer
An Integer is defined as a value that can be safely stored and transported in 4 bytes (not as a
4-byte implementation). This gives the Integer and Int32 value types a range from –2147483648 to
2147483647. This range is more than adequate to handle most tasks.

The main reason to use an Int32 in place of an integer value is to ensure future portability with inter-
faces. For example, the Integer value in Visual Basic 6.0 was limited to a 2-byte value, but is now a
4-byte value. In future 64-bit platforms, the Integer value will be an 8-byte value. Problems could
occur if an interface used a 64-bit Integer with an interface that expected a 32-bit Integer value. The
solution is to use Int32, which would remain a 32-bit value, even on a 64-bit platform.

The new Integer value type matches the size of an integer value in SQL Server, which means that you
can easily align the column type of a table with the variable type in your programs.

Long
The Long type is aligned with the Int64 value. Long’s have an 8-byte range, which means that their
value can range from –9223372036854775808 to 9223372036854775807.

This is a big range, but if you need to add or multiply Integer values, then you will often need a large
value to contain the result. It’s common while doing math operations on one type of integer to use a
larger type to capture the result if there’s a chance that the result could exceed the limit of the types
being manipulated.

The Long value type matches the bigint type in SQL.

59

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 59

Unsigned Types
Another way to gain additional range on the positive side of an integer type is to use one of the unsigned
types. The unsigned types provide a useful buffer that will hold a result that might exceed an operation
by a small amount, but that isn’t the main reason they exist. The UInt16 type happens to have the same
characteristics as the Character type, while the UInt32 type has the same characteristics as a system
memory pointer on a 32-byte system. Be forewarned that on a 64-bit system this changes to the UInt64
type. These types are used to interface with software that expects these values and are the underlying
implementation for other value types.

The Decimal Types
Just as there are a number of types to store integer values, there are three implementations of value types
to store real number values. The Single and Double types work the same way in Visual Basic as they
did in Visual Basic 6.0. The difference is the Visual Basic 6.0 Currency type (which was a specialized
version of a Double type), which is now obsolete and a new Decimal value type takes its place for very
large real numbers.

Type Allocated Negative Range Positive Range
Memory

Single 4 bytes –3.402823E38 to –1.401298E-45 1.401298E-45 to 3.402823E38

Double 8 bytes –1.79769313486231E308 to 4.94065645841247E-324 to
–4.94065645841247E-324 1.79769313486232E308

Currency Obsolete — —

Decimal 16 bytes –79228162514264337593543950335 0.0000000000000000000000000001
to to
0.0000000000000000000000000001 79228162514264337593543950335

Single
The Single type contains 4 bytes of data, and its precision can range anywhere from 1.401298E-45 to
3.402823E38 for positive values and from –3.402823E38 to –1.401298E-45 for negative values.

It can seem strange that a value that is stored using 4 bytes (the same as the Integer type) can store a
number that is larger than even the Long type. This is possible because of the way that the numbers are
stored — a real number can be stored with different levels of precision. Notice that there are six digits
after the decimal point in the definition of the Single type. When a real number gets very large or very
small, the stored value will contain fewer significant places.

For example, while it is possible to represent a Long with the value of 9223372036854775805, the Single
type rounds this value to 9.223372E18. This seems like a reasonable action to take, but it isn’t a reversible
action. The following code demonstrates how this loss of data can result in errors:

60

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 60

Dim l As Long
Dim s As Single

l = Long.MaxValue
Console.WriteLine(l)

s = Convert.ToSingle(l)
s -= 1000000000000
l = Convert.ToInt64(s)

Console.WriteLine(l)

This code creates a Long that has the maximum value possible and outputs this value. Then it stores the
value in a Single, subtracts 1000000000000, stores the value of the Single in the Long, and outputs the
results, as seen in Figure 3-3, Notice that the results aren’t consistent with what you might expect.

Figure 3-3

Double
The behavior of the previous example changes dramatically if you replace the value type of Single with
Double. A Double uses 8 bytes to store values and as a result has a greater precision and range. The
range for a Double is from 4.94065645841247E-324 to 1.79769313486232E308 for positive values and from
$-$1.79769313486231E308 to – 4.94065645841247E-324 for negative values. The precision has increased so
that a number can contain 15 digits before the rounding begins. This greater level of precision makes the
Double value type a much more reliable variable for use in math operations. It’s possible to represent
most operations with complete accuracy with this value.

Double wasn’t the only 8-byte decimal value in Visual Basic 6.0. One of the other variable types,
Currency, is now obsolete. The Currency type was a specialized version of the Double type and was
designed to support numbers using 19 available digits. While this was certainly better precision than the
15-digit precision available with the Double type, it pales in comparison to the new 28-digit Decimal
type available in the .NET Framework.

61

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 61

Decimal
The Decimal type (new in Visual Basic) is a hybrid that consists of a 12-byte integer value combined
with two additional 16-bit values that control the location of the decimal point and the sign of the
overall value. A Decimal value will consume 16 bytes in total and can store a maximum value of
79228162514264337593543950335. This value can then be manipulated by adjusting where the deci-
mal place is located. For example, the maximum value while accounting for four decimal places is
7922816251426433759354395.0335. This is because a Decimal isn’t stored as a traditional number, but is
rather stored as a 12-byte integer value, and the location of the decimal in relation to the available 28
digits. This means that a Decimal does not inherently round numbers the way a Double does.

As a result of the way values are stored, the closest precision to zero that a Decimal supports is
0.0000000000000000000000000001. And as the location of the decimal point is stored separately, it also
stores a value that indicates whether its value is positive or negative. This means that the positive and
negative ranges are exactly the same, regardless of the number of decimal places.

Thus, the system makes a tradeoff where the need to store a larger number of decimal places reduces the
maximum value that can be kept at that level of precision. This tradeoff makes a lot of sense. After all,
it’s not often that you will need to store a number with 15 digits on both sides of the decimal point, and
for those cases you can create a custom class that manages the logic and leverages one or more decimal
values as its properties.

Char and Byte
The default character set under Visual Basic is Unicode. So, when a variable is declared as type Char
Visual Basic creates a 2-byte value, since, by default, all characters in the Unicode character set require
2 bytes. Visual Basic supports the declaration of a character value in three ways. Placing a c following
a literal string informs the compiler that the value should be treated as a character, or the Chr and ChrW
methods can be used. The following code snippet shows that all three of these options work similarly,
with the difference between the Chr and ChrW methods being the range of valid input values that is
available. The ChrW method allows for a broader range of values based on wide character input.

Dim chrLtr_a As Char = “a”c
Dim chrAsc_a As Char = Chr(97)
Dim chrAsc_b as Char = ChrW(98)

To convert characters into a string that was suitable for an ASCII interface, the runtime library needed
to validate each character’s value to ensure it was within a valid range. This could have a performance
impact for certain serial arrays. Fortunately, Visual Basic supports the Byte value type. This type con-
tains a value between 0 and 255 that exactly matches the range of the ASCII character set. When inter-
facing with a system that uses ASCII, it is best to use a Byte array. The runtime knows that there is no
need to perform a Unicode-to-ASCII conversion for a Byte array, so the interface between the systems
will operate significantly faster.

In Visual Basic, the Byte value type expects a numeric value. Thus, to assign the letter “a” to a Byte, you
must use the appropriate character code. One option to get the numeric value of a letter is to use the Asc
method, as shown in the following line of code:

Dim bytLtrA as Byte = Asc(“a”)

62

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 62

DateTime
The Visual Basic Date keyword has always supported a structure of both date and time. Under Visual
Basic, the Date structure has all of the same capabilities it had in Visual Basic 6.0 but is now implemented
as part of the DateTime structure. You can, in fact, declare data values using both the DateTime and
Date types. Of note, internally Visual Basic does not store date values as Doubles, it provides key
methods for converting the new internal date representation to the Visual Basic 6.0 Double type. The
ToOADate and FromOADate methods support backward compatibility during migration from previous
versions of Visual Basic.

Visual Basic also provides a set of shared methods that provide some common dates. The concept of
shared methods is covered in more detail in the next chapter, which is on object syntax, but, in short,
shared methods are available even when you don’t create an instance of a class. For the DateTime
structure, the Now() method returns a Date value with the local date and time. This method has not
been changed from Visual Basic 6.0, but Today() and UtcNow() methods have also been added. These
methods can be used to initialize a Date object with the current local date, or the date and time based
on Universal Coordinated Time (also known as Greenwich Mean Time) respectively. You can use these
shared methods to initialize your classes, as shown in the following code sample:

Dim dteNow as Date = Now()
Dim dteToday as Date = Today()
Dim dteGMT as DateTime = DateTime.UtcNow()

Explicit Conversions
So far this chapter has focused primarily on implicit conversions. With implicit conversions it is safe, for
example, to assign the value of a smaller type into a larger type. For example, in the following code the
value of a Short is assigned to a Long.

Dim shtShort As Short = 32767
Dim lnhLong As Long = shtShort

However, the reverse of this will result in a compilation error, since the compiler doesn’t have any safe
way of handling the assignment when the larger value is outside the range of the smaller value. It is
still possible to cast a value from a larger type to a smaller type, as shown earlier in this chapter. Using
the CType method, it is possible to assign specific values. However, another of Visual Basic’s legacy
carryovers is the ability to implicitly cast across types that don’t fit the traditional implicit casting
boundaries.

The best way to understand how Visual Basic has maintained this capability is to understand one of the
new options in Visual Basic. Under Visual Basic 6.0 it was possible to define that a module should follow
the rules defined by Option Explicit. This capability remains under Visual Basic, but now Option
Explicit is the default. Similarly, Visual Basic now provides a new option called Option Strict. It
defines the support that your code should provide at compile time for implicit type conversions.

63

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 63

Compiler Options
Visual Studio 2005 includes a tab on the Project Settings page to edit the compiler settings for an entire
project. You can access this screen by right-clicking the project in the Solution Explorer and selecting
Properties from the context menu. As noted in the preceding chapter, the Project Properties dialog has a
Compiler Options tab. When you select the Compiler Options tab, you should see a window similar to
the one shown in Figure 3-4.

Figure 3-4

Aside from your default project file output directory, this page contains several compiler options. These
options are covered here because the Option Explicit and Option Strict settings directly impact
your variable usage.

❑ Option Explicit— This option has not changed from Visual Basic 6.0. When turned on it
ensures that any variable name is declared. Of course, if you are using Option Strict, then
this setting does not matter since the compiler would not recognize the type of an undeclared
variable. There is, to my knowledge, no good reason to ever turn this option off.

❑ Option Strict— When this option is turned on, the compiler must be able to determine the
type of each variable. And if an assignment between two variables requires a type conversion —
for example, from Integer to Boolean— the conversion between the two types must be
expressed explicitly. This setting can be edited in two ways. The first is by adding an Option
Strict declaration to the top of your source code file. The statement within a source file will
apply to all of the code entered in that source file, but only to the code in that file.

64

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 64

❑ Option Compare— This option determines whether strings should be compared as binary
strings or if the array of characters should be compared as text. In most cases, leaving this as
binary is appropriate. Doing a text comparison requires the system to convert the binary values
that are stored internally prior to comparison. However, the advantage of a text-based compari-
son is that the character “A” is equal to “a” because the comparison is case-insensitive. This
allows you to perform comparisons that don’t require an explicit case conversion of the com-
pared strings. In most cases, however, this conversion will still occur, so it’s better to use binary
comparison and explicitly convert the case as required.

In addition to setting Option Explicit, Option Strict, and Option Compare to either On or Off for
your project, Visual Studio 2005 allows you to customize specific compiler conditions that may occur in
your source file. Thus, unlike Visual Studio 2003, where you either turned options On or Off, with Visual
Studio 2005, it is possible to choose to leverage individual settings, such as requiring early binding as
opposed to runtime binding without limiting implicit conversions. These individual settings are part of
the table of individual compiler settings listed below the Option Strict setting.

Notice that as you change your Option Strict setting that the notifications with the top few conditions
is automatically updated to reflect the specific requirements of this new setting. In general, this table lists
a set of conditions that relate to programming practices that you might want to avoid or prevent and
should definitely be aware of. The use of warnings for the majority of these conditions is appropriate,
since there are valid reasons why you might want to use or avoid each.

The basic idea is that these conditions represent possible runtime error conditions that the compiler can’t
truly detect, except to identify that an increased possibility for error exists. When you select Warning
for a setting this is a way to avoid that practice since the compiler will warn you but allow the code to
remain. On the other hand setting a practice to error prevents compilation.

An example of why these conditions are noteworthy is the warning on accessing shared member vari-
ables, if you are unfamiliar with shared member values you will find them discussed as part of the dis-
cussion of classes in Chapter 4. At this point it’s just necessary to know that these values are shared
across all instances of a class. Thus, if a specific instance of a class is updating a shared member value, it
is appropriate to get a warning about this. Since new developers sometimes fail to realize that a shared
member value is common across all instances of a class and thus if one instance updates the value, the
new value is seen by all other instances, this action is one that can lead to errors.

While many of these conditions are only addressed as individual settings Visual Studio 2005 carries for-
ward the Option Strict setting. Most experienced developers agree that using Option Strict and
being forced to recognize when type conversions are occurring is a good thing. Certainly, when develop-
ing software that will be deployed in a production environment, anything that can be done that will
help prevent runtime errors is a good thing. However, Option Strict can slow the development of a
program because you are forced to explicitly define each conversion that needs to occur. If you are
developing a prototype or demo component that has a limited life, you might find this option limiting.

If that were the end of the argument, then many developers would simply turn the option off — the
current default — and forget about it. However, Option Strict has a runtime benefit. When type con-
versions are explicitly identified, the system does them faster. Implicit conversions require the runtime
system to first identify the types involved in a conversion and then obtain the correct handler.

65

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 65

Another advantage of Option Strict is that during implementation developers are forced to consider
everywhere a conversion might occur. Perhaps the development team didn’t realize that some of the
assignment operations resulted in a type conversion. Setting up projects that require explicit conversions
means that the resulting code tends to have type consistency to avoid conversions and, thus, reduce the
number of conversions in the final code. The result is not only conversions that run faster but, hopefully,
a smaller number of conversions as well.

Performing Explicit Conversions
The following code is an example of how to convert between different Integer types when Option
Strict is enabled.

Dim shrShort As Short
Dim shrUInt16 As UInt16
Dim shrInt16 As Int16
Dim intInteger As Integer
Dim intUInt32 As UInt32
Dim intInt32 As Int32
Dim lngLong As Long
Dim lngInt64 As Int64

shrShort = 0
shrUInt16 = Convert.ToUInt16(shrShort)
shrInt16 = shrShort
intInteger = shrShort
intUInt32 = Convert.ToUInt32(shrShort)

intInt32 = shrShort
lngInt64 = shrShort

lngLong = lngLong.MaxValue
If lngLong < Short.MaxValue Then

shrShort = Convert.ToInt16(lngLong)
End If
intInteger = CInt(lngLong)

The preceding snippet provides some excellent examples of what might not be intuitive behavior. The
first thing to note is that you can’t implicitly cast from Short to UInt16, or any of the other unsigned
types for that matter. That is because with Option Strict the compiler will not allow an implicit con-
version that might result in a value out of range or in loss of data. Your first thought is that an unsigned
Short has a maximum that is twice the maximum of a signed Short, but in this case, if the variable
shrShort contained a -1, then the value wouldn’t be in the allowable range for an unsigned type.

The second item illustrated in this code is the shared method MaxValue. All of the integer and decimal
types have this method. As the name indicates, it returns the maximum value for the specified type.
There is a matching MinValue method for getting the minimum value. As shared methods, the methods
can be called on either an instance of the class (LngLong.MaxValue) or by referencing the class
(Short.MaxValue).

One fact that isn’t apparent in the code above is that, whenever possible, conversions should be avoided.
Each of the Convert.MethodName methods has been overloaded to accept various types. However, the

66

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 66

CInt method (which most Visual Basic 6.0 programmers are familiar with) is defined to accept a param-
eter of type Object. This is important because it involves boxing the value type. As is noted later in this
chapter, repeated boxing of value types has performance implications.

Finally, although this code will compile, it will not always execute correctly. It illustrates a classic inter-
mittent error in that the final conversion statement does not check to ensure that the value being assigned
to intInteger is within the maximum range for an integer type. On those occasions when LngLong is
larger than the maximum allowed, this code will throw an exception.

Visual Basic has many ways to convert values. Some of them are updated versions of techniques that
are familiar from Visual Basic 6.0. Others, such as the ToString method, are an inherent part of every
class (although the .NET specification does not guarantee how a ToString class is implemented for
each type).

The following set of conversion methods are based on the conversions supported by Visual Basic 6.0.
They coincide with the primitive datatypes described earlier.

CBool() CByte() CChar() CDate()

CDbl() CDec() CInt() CLng()

CObj() CShort() CSng() CStr()

Each of these methods has been designed to accept the input of the other primitive datatypes (as appro-
priate) and to convert that item to the type indicated by the method name. Thus, the CStr class is used
to convert a primitive type to a String. The disadvantage of these methods is that they have been
designed to support any object. This means that if a primitive type is used, the method automatically
boxes the parameter prior to getting the new value. This results in a loss of performance. Finally, although
these are available as methods within the VB language, they are actually implemented in a class (as with
everything in the .NET Framework). Because the class uses a series of type-specific overloaded methods,
the conversions run faster when the members of the Convert class are called explicitly.

Dim intMyShort As Integer = 200
Convert.ToInt32(intMyShort)
Convert.ToDateTime(“9/9/2001”)

The classes that are part of System.Convert implement not only the conversion methods listed earlier
but also other common conversions as well. These additional methods include standard conversions for
things like unsigned integers and pointers.

All of the preceding type conversions are great for value types and the limited number of classes to
which they apply. However, these implementations are oriented around a limited set of known types.
It is not possible to convert a custom class to an Integer using these classes. More importantly, there
should be no reason to have such a conversion. Instead, a particular class should provide a method that
returns the appropriate type — no type conversion will be required. However, when Option Strict
is enabled, the compiler will require you to cast an object to an appropriate type before triggering an
implicit conversion. But the Convert method isn’t the only way to indicate that a given variable can be
treated as another type.

67

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 67

The CType Method
The CType method accepts two parameters. The first parameter is the object that is having its type cast,
and the second parameter is the name of the object to which it is being cast. This system allows us to cast
objects from parent to child or from child to parent types. There is a limitation in the second parameter
in that it can’t be a variable containing the name of the casting target. Casting occurs at compile time,
and any form of dynamic name selection must occur at runtime. An example of casting is shown as part
of the discussion of working with the Object class later in this chapter.

Support for a runtime determination of object types is based on treating variables as objects and using
the object metadata and the TypeOf operator to verify that an object supports various method and prop-
erty calls. Alternatively, in Visual Basic it is possible to turn off Option Strict and as noted later in this
chapter, your application will automatically treat objects as objects allowing for a great deal of runtime
casting.

Reference Types (Classes)
A lot of the power of Visual Basic is harnessed in objects. An object is defined by its class, which describes
what data, methods, and other attributes that an instance of that class will support. There are thousands
of classes provided in the .NET Framework class library.

When code instantiates an object from a class, the object created is a reference type. You may recall ear-
lier how the data contained in value and reference types is stored in different locations, but this is not
the only difference between them. A class (which is the typical way to refer to a reference type) has addi-
tional capabilities, such as support for protected methods and properties, enhanced event-handling
capabilities, constructors, and finalizers, and can be extended with a custom base class via inheritance.
Classes can also be used to define how operators such as “ =” and “ +” work on an instance of the class.

The intention of this chapter is to introduce you to some commonly used classes, to complement your
knowledge of the common value types already covered. Chapters 4, 5, and 7 contain a detailed look
at object orientation in Visual Basic. In this chapter, you’ll take a look at the features of the Object, String,
DBNull, and Array classes, as well as the Collection classes found in the System.Collections
namespace.

The Object Class
The Object class is the base class for every type in .NET — both value and reference types. At their core,
every variable is an object and can be treated as such. The Visual Basic 6.0 runtime environment man-
aged the interpretation of Variant objects for VB programmers. This is good in some ways because it
supported a situation in which the contents of the variant could be assumed and the developer just
worked as if they would be present. So long as the content of the memory area was an object of the
appropriate type, the call to a method on that object would succeed. While this was simple to do, it left
Visual Basic 6.0 programs open to some unusual runtime errors that are generally harder to diagnose
and debug. At the same time, in ASP pages and other scripted code, Variants were a requirement
because of the way these loosely typed languages worked. Of course, this runtime type evaluation came
with its own performance implications, but this was secondary to the ease of development.

68

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 68

You can think of the Object class (in some ways) as the replacement for the Variant type from Visual
Basic 6.0, but take care. In Visual Basic 6.0, a Variant type represents a variant memory location; in
Visual Basic, an Object type represents a reference to an instance of the Object class. In Visual Basic
6.0, a Variant was implemented to provide a reference to a memory area on the heap, but its definition
didn’t define any specific ways of accessing this data area.

The following lines can work equally well in Visual Basic 6.0 and Visual Basic (so long as Option
Strict is not enabled in your Visual Basic project):

Dim varObj
Dim objVar

Interestingly enough, when not using Option Strict, the behavior of a Visual Basic 6.0 Variant and a
Visual Basic Object is almost identical. Since the Object class is the basis of all types, you can assign any
variable to an object. Reference types will maintain their current reference and implementation but will
be generically handled, while value types will be packaged into a box and placed into the memory loca-
tion associated with the Object. The new Object supports all of the capabilities that were available
from the Variant type but it goes beyond the Visual Basic 6.0 variant type in its support for methods.
For example, there are instance methods that are available on Object, such as ToString. This method
will, if implemented, return a string representation of an instance value. Since the Object class defines
it, it can be called on any object.

Dim objMyClass as New MyClass(“Hello World”)

Console.WriteLine(objMyClass.ToString)

Which brings up the question of how does the Object class know how to convert custom classes to
String objects? The answer to this question is that it doesn’t. For this method to actually return the
data in an instance of a String, a class must override this method. Otherwise, when this code is run,
the default version of this method defined at the Object level will return the name of the current class
(MyClass) as its string representation.

The Object class continues to fill the role of the Variant class even when Object Strict is enabled.
The declaration is more explicit; anything that can be done with Object Strict disabled can be done
with it enabled. The difference is that with Option Strict code must explicitly define the type of object
whose property or method it plans to access. Thus, if you don’t want to access only those methods avail-
able from the base Object class, you need to specify the actual type of the object to be used. An example
of this using the CType variable to explicitly cast an object and call a method is as follows:

Dim objVar as Object

objVar = Me

CType(objVar, Form).Text = “New Dialog Title Text”

This snippet shows how to create a generic object under the Option Strict syntax. It is then assigns a
copy of the current instance of a Visual Basic form. The name Me is reserved in Visual Basic, and its use
will be described further in Chapter 6. Once it has been assigned, in order to access the Text property of
this class, it must be cast from its base Object definition to a type that supports a Text property. The

69

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 69

CType command (covered earlier) accepts the object as its first parameter and the class name (without
quotes) as its second parameter. In this case, the current instance variable is of type Form, and by casting
this variable, the code can reference the Text property of the current form.

The String Class
Another class that will play a large role in most development projects is the String class. Having
Strings defined as a class is more powerful than the Visual Basic 6.0 datatype of String with which
you may be familiar. The String class is special class within .NET, because it is the one primitive type
that is not a value type. To make String objects compatible with some of the underlying behavior in
.NET, they have some interesting characteristics.

The following table lists a subset of the shared methods that are available from the String class.

These methods are shared, which means that the methods are not specific to any instance of a String.
The String class also contains several other methods that are called based on an instance of a specific
String object. The methods on the String class replace the functions that Visual Basic 6.0 had as part of
the language for string manipulation and perform operations such as inserting strings, splitting strings,
and searching strings.

The String() Method
The Visual Basic 6 String() method provided a single method for the creation of a String with a set
length and populated with a specific character. This method no longer exists in .NET, although the same
capability does exist. With the transition to classes, this capability has been added to the constructor to
the String class. In fact, the String class has several different constructors for those situations in which
you aren’t simply assigning an existing value to a new string. Below you first see the most common
default, which uses the default constructor (without any argument) to create a String, which is then
assigned the constant value ‘ABC’. The second declaration uses one of the parameterized versions of the
String constructor. This constructor accepts two parameters, the first being a character and the second
being the number of times that character should be repeated in the string.

Dim strConstant as String = “ABC”
Dim strRepeat as New String(“A”c, 20)

Shared Methods Description

Empty This is actually a property. It can be used when an empty String is
required. It can be used for comparison or initialization of a String.

Compare Compares two objects of type String.

CompareOrdinal Compares two Strings, without considering the local national
language or culture.

Concat Concatenates one or more Strings.

Copy Creates a new String with the same value as an instance provided.

Equals Determines whether two Strings have the same value.

70

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 70

Shared Methods Description

Equality operator (=) An overloaded version of the equality operator that compares two
String objects.

Inequality operator A method that accepts two String objects for comparison. The
(op_Inequality) method returns True if the objects are not equal.

The second example of constructing a new string imitates the Visual Basic 6.0 String() method. Not
only have creation methods been encapsulated, but other string-specific methods, such as character and
substring searching, and case changes are now available from String objects.

The SubString Method
Although not removed, the Left, Right, and Mid methods are deprecated in Visual Basic. This is largely
due to the fact that the .NET String class has a method called SubString. This single method replaces the
three methods that Visual Basic 6.0 programmers are accustomed to using to create substrings. Thanks to
overloading, which is covered in Chapter 5, there are two versions of this method: the first accepts a start-
ing position and the number of characters to retrieve, while the second accepts simply the starting location.
The following code shows examples of using both of these methods on an instance of a String.

Dim strMyString as String = “Hello World”

Console.WriteLine(strMystring.SubString(0,5))
Console.WriteLine(strMyString.SubString(6))

The PadLeft and PadRight Methods
The LSet and RSet statements from previous versions of Visual Basic have been removed. These func-
tions have been replaced by the PadLeft and PadRight methods. These methods allow you to justify a
String so that it is left- or right-justified. As with SubString, the PadLeft, and PadRight methods are
overloaded. The first version of these methods requires only a maximum length of the String and then
uses spaces to pad the String. The other version requires two parameters, the length of the returned
String and the character that should be used to pad the original String. An example of working with
the PadLeft method is as follows:

Dim strMyString as String = “Hello World”

Console.WriteLine(strMyString.PadLeft(30))
Console.WriteLine(strMyString.PadLeft(20,”.”c))

The String Class Is Immutable
The Visual Basic String class isn’t entirely different from the String type that VB programmers have
used for years. The majority of String behaviors remain unchanged, and the majority of methods are now
available as methods. However, to support the default behavior that people associate with the String
primitive type, the String class isn’t declared the same way that several other classes are. Strings in .NET
do not allow editing of their data. When a portion of a String is changed or copied, the operating system
allocates a new memory location and copies the resulting String to this new location. This ensures that
when a String is copied to a second variable, the new variable references its own copy.

71

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 71

To support this behavior in .NET, the String class is defined as an immutable class. This means that
each time a change is made to the data associated with a String, a new instance is created, and the origi-
nal referenced memory is released for garbage collection. This is an expensive operation, but the result
is that the String class behaves as people expect a primitive type to behave. Additionally, when a copy
of a String is made, the String class forces a new version of the data into the referenced memory. This
ensures that each instance of a String will reference only its own memory. Consider the following code:

Dim strMyString as String
Dim intLoop as Integer

For intLoop = 1 to 1000
strMyString = strMyString & “A very long string “

Next
Console.WriteLine(strMyString)

This code does not perform well. For each assignment operation on the strMyString variable, the system
allocates a new memory buffer based on the size of the new string and copies both the current value of
strMyString and the new text that is to be appended. The system then frees the previous memory that
must be reclaimed by the Garbage Collector. As this loop continues, the new memory allocation requires a
larger chunk of memory. The result is that operations such as this can take a long time. However, .NET
offers an alternative in the System.Text.StringBuilder object shown in the following sample code.

Dim objMyStrBldr as New System.Text.StringBuilder()
Dim intLoop as Integer

For intLoop = 1 to 1000
ObjMyStrBldr.Append(“A very long string “)

Next
Console.WriteLine(objMyStrBldr.ToString())

The preceding code works with strings but does not use the String class. The .NET class library con-
tains a class called System.Text.StringBuilder, which performs better when strings will be edited
repeatedly. This class does not store a string in the conventional manner — editing or appending more
characters does not involve allocating new memory for the entire string. Since the preceding code snip-
pet does not need to reallocate the memory used for the entire string, each time another set of characters
is appended it performs significantly faster. In the end, an instance of the String class is never explicitly
needed because the StringBuilder class implements the ToString method to roll up all of the charac-
ters into a string. While the concept of the StringBuilder class isn’t new, the fact that it is now avail-
able as part of the Visual Basic implementation means developers no longer need to create their own
string memory managers.

The DBNull Class and IsDBNull() Function
The IsNull and IsEmpty functions from Visual Basic 6.0 are now obsolete. Visual Basic provides alterna-
tive ways of determining if a variable has not been initialized. The first is the function IsDBNull(). The
IsDBNull method accepts an object as its parameter and returns a Boolean that indicates if the variable
has been initialized. In addition to this method, Visual Basic has access to the DBNull class. The class is part
of the System namespace, and to use it you declare a local variable with the DBNull type. This variable is
then used with an is comparison operator to determine if a given variable has been initialized.

72

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 72

Dim sysNull As System.DBNull
Dim strMyString As String

If strMyString Is sysNull Then
strMyString = “Initialize my String”

End If
If Not IsDBNull(strMyString) Then

Console.WriteLine(strMyString)
End If

In this code the strMyString variable is declared but not yet initialized, making its value null (or noth-
ing). The first conditional is evaluated to True and as a result the string is initialized. The second condi-
tional then ensures that the declared variable has been initialized. Since this was accomplished in the
preceding code, this condition is also True. In both cases, the sysNull value is used not to verify the
type of the object, but to verify that it has not yet been instantiated with a value.

Arrays
When Visual Basic was first announced, a lot of significant changes were planned to the way that arrays
worked. A major reason for these changes involved getting rid of the Variant_Array structure. This
structure, introduced with COM, was hidden from most VB programmers, but was nevertheless ever
present. It was necessary because Visual Basic defined arrays in a unique way. The variant array has
been removed not only from Visual Basic but also from every .NET language. The reason it was removed
is that under .NET, arrays are handled in a consistent way. All .NET arrays at an index of zero have a
defined number of elements. However, the way that an array is declared in Visual Basic varies slightly
from other .NET languages such as C#.

When Visual Basic was announced, it was said that arrays would always begin at 0 and that they would
be defined based on the number of elements in the array. However, in Visual Basic 6.0 the Option Base
statement allowed arrays to be declared as starting at 1 or any other specified value. This meant that
arrays were defined based on their upper limit. The Visual Basic 6.0 Option Base This = statement
resulted in a problem when converting existing code to Visual Basic. To resolve this issue the engineers
at Microsoft decided on a compromise. All arrays in .NET begin at 0, but when an array is declared in
Visual Basic the definition is based on the upper limit of the array, not the number of elements. The main
result of this upper limit declaration is that arrays defined in Visual Basic have one more entry by defini-
tion than those defined with other .NET languages.

Overall, the result in the change in how arrays work means that some of the more esoteric declarations
that were available in Visual Basic 6.0, such as Dim intMyArr(15 to 30), are no longer supported. Still,
the majority of capabilities for arrays remain unchanged. It is still possible to declare an array with mul-
tiple indices. It is also possible to declare any type as an array of that type. Since an array is a modifier of
another type, the basic Array class is never explicitly declared for a variable’s type. The System.Array
class that serves as the base for all arrays is defined such that it cannot be created, but must be inherited.
As a result, to create an Integer array a set of parentheses is added to the declaration of the variable.
These parentheses indicate that the system should create an array of the type specified. The parentheses
used in the declaration may be empty or may contain the size of the array. An array can be defined as
having a single dimension using a single number, or as having multiple dimensions.

73

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 73

The following code illustrates some simple examples to demonstrate five different ways of creating
arrays, using a simple integer array as the basis for the comparison.

Dim arrMyIntArray1(20) as Integer
Dim arrMyIntArray2() as Integer = {1, 2, 3, 4}
Dim arrMyIntArray3(4,2) as Integer
Dim arrMyIntArray4(,) as Integer = _

{ {1, 2, 3, 4},{5, 6, 7, 8},{9, 10, 11, 12},{13, 14 , 15 , 16} }
Dim arrMyIntArray5() as Integer

In the first case, the code defines an array of integers that spans from arrMyIntArray1(0) to
arrMyIntArray1(20). This is a 21-element array, because all arrays start at 0 and end with the value
defined in the declaration as the upper bound. The second statement creates an array with four elements
numbered 0 through 3, containing the values 1 to 4. The third statement creates a multidimensional
array containing five elements at the first level with each of those elements containing three child ele-
ments. The challenge, of course, is that you have to remember that all subscripts go from 0 to the upper
bound, meaning that each array contains one more element than its upper bound. The result is an array
with 15 elements. The next line of code, the fourth, shows an alternative way of creating the same array,
but in this case there are four elements, each containing four elements, with subscripts from 0 to 3 at
each level. Finally, the last line demonstrates that it is possible to simply declare a variable and indicate
that the variable will be an array without specifying the number of elements in that array.

The UBound Function
Continuing to reference the arrays defined earlier, the declaration of arrMyIntArray2 actually defined
an array that spans from arrMyIntArray2(0) to arrMyIntArray1(3). This is the case because when
you declare an array by specifying the set of values it still starts at 0. However, in this case you are not
specifying the upper bound, but rather initializing the array with a set of values. If this set of values
came from a database or other source it might not be clear what the upper limit on the array was. To ver-
ify the upper bound of an array, a call can be made to the UBound function:

Console.Writeline CStr(UBound(ArrMyIntArray2))

and

ArrMyIntArray2.GetUpperBound(0)

since it is preferable when using multi-dimension arrays.

The UBound function has a companion called LBound. The LBound function computes the lower bound for
a given array. However, since all arrays in Visual Basic are 0-based, it doesn’t have much value anymore.

Multidimensional Arrays
As shown earlier in the sample array declarations, the definition of arrMyIntArray3 is a multi-
dimensional array. This declaration creates an array with 15 elements (five in the first range, each con-
taining three elements) ranging from arrMyIntArray3(0,0) through arrMyIntArray3(2,1) to
arrMyIntArray3(4,2). As with all elements of an array, when it is created without specific values,
the values of each of these elements is created with the default value for that type. This case also
demonstrates that the size of the different dimensions can vary. It is also possible to nest deeper than
two levels, but this should be done with care because such code is difficult to maintain.

74

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 74

The fourth declaration shown previously creates arrMyIntArray4(,) with predefined values. The val-
ues are mapped based on the outer set being the first dimension and the inner values being associated
with the next inner dimension. For example, the value of arrMyIntArray4(0,1) is 2, while the value
of arrMyIntArray4(2,3) is 12. The following code snippet illustrates this using a set of nested loops
to traverse the array. Additionally, it provides an example of calling the UBound method with a second
parameter to specify that you are interested in the upper bound for the second dimension of the array:

Dim intLoop1 as Integer
Dim intLoop2 as Integer
For intLoop1 = 0 to UBound(arrMyIntArray4)

For intLoop2 = 0 to UBound(arrMyIntArray4, 2)
Console.WriteLine arrMyIntArray4(intLoop1, intLoop2).ToString

Next
Next

The ReDim Statement
The final declaration demonstrated previously is for arrMyIntArray5(). This is an example of an array
that has not yet been instantiated. If an attempt were made to assign a value into this array, it would
trigger an exception. The solution to this is to use the ReDim keyword. Although ReDim was part of
Visual Basic 6.0, it has changed slightly in Visual Basic. The first change is that code must first Dim an
instance of the variable; it is not acceptable to declare an array using the ReDim statement. The second
change is that code cannot change the number of dimensions in an array. For example, an array with
three dimensions cannot grow to an array of four dimensions nor can it be reduced to only two dimen-
sions. To further extend the example, code associated with arrays, consider the following code, which
manipulates some of the arrays previously declared.

Dim arrMyIntArray5() as Integer

‘ The statement below would compile but would cause a runtime exception.
‘arrMyIntArray5(0) = 1

ReDim arrMyIntArray5(2)
ReDim arrMyIntArray3(5,4)
ReDim Preserve arrMyIntArray4(UBound(arrMyIntArray4),2)

The ReDim of arrMyIntArray5 instantiates the elements of the array so that values can be assigned to
each element. The second statement redimensions the arrMyIntArray3 variable defined earlier. Note
that it is changing the size of both the first and the second dimension. While it is not possible to change
the number of dimensions in an array, it is possible to resize any of an array’s dimensions. This capabil-
ity is required if declarations such as Dim arrMyIntArray6(, , ,) As Integer are to be legal.

By the way, while it is possible to repeatedly ReDim a variable, this is the type of action that should ide-
ally be done only rarely and never within a loop. If you intend to loop through a set of entries and add
entries to an array, attempt to determine the number of entries you’ll need before entering the loop or at
a minimum ReDim the size of your array in chunks to improve performance.

The Preserve Keyword
The last item in the code snippet in the preceding section illustrates an additional keyword associated
with redimensioning. The Preserve keyword indicates that the data that is stored in the array prior to

75

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 75

redimensioning should be transferred to the newly created array. If this keyword is not used, then the
data that was stored in an array is lost. Additionally, in the preceding example, the ReDim statement
actually reduces the second dimension of the array. While this is a perfectly legal statement, it should
be noted that this means that even though you have asked to preserve the data, the data values 4, 8,
12, and 16 that were assigned in the original definition of this array will be discarded. These are lost
because they were assigned in the highest index of the second array. Since arrMyIntArray4(1,3) is
no longer valid, the value that resided at this location has been lost.

Arrays continue to be very powerful in Visual Basic. However, the basic array class is just that, basic.
While it provides a powerful framework it does not provide a lot of other features that would allow for
more robust logic to be built into the array. To achieve more advanced features, such as sorting and
dynamic allocation, the base Array class has been inherited by the classes that make up the
Collections namespace.

Collections
The Collections namespace is part of the System namespace and provides a series of classes that
implement advanced array features. While being able to make an array of existing types is powerful,
sometimes more power is needed in the array itself. The ability to inherently sort or dynamically add
dissimilar objects in an array is provided by the classes of the Collections namespace. This namespace
contains a specialized set of objects that can be instantiated for additional features when working with a
collection of similar objects. The following table defines several of the objects that are available as part of
the System.Collections namespace.

Class Description

ArrayList Implements an array whose size increases automatically as elements are added.

BitArray Manages an array of Booleans that are stored as bit values.

Hashtable Implements a collection of values organized by key. Sorting is done based on a
hash of the key.

Queue Implements a first in, first out collection.

SortedList Implements a collection of values with associated keys. The values are sorted by
key and are accessible by key or index.

Stack Implements a last in, first out collection.

Each of the objects listed is focused on storing a collection of objects. This means that in addition to the
special capabilities each provides it also provides one additional capability not available to objects cre-
ated based on the Array class. In short, since every variable in .NET is based on the Object class, it is
possible to have a collection defined, because one of these objects contains elements that are defined
with different types. This is the case because each stores an array of objects, and since all classes are of
type Object, a string could be stored alongside an integer value. The result is that it’s possible within
the Collection classes for the actual objects being stored to be different. Consider the following exam-
ple code:

76

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 76

Dim objMyArrList As New System.Collections.ArrayList()
Dim objItem As Object
Dim intLine As Integer = 1
Dim strHello As String = “Hello”
Dim objWorld As New System.Text.StringBuilder(“World”)

‘ Add an integer value to the array list.
objMyArrList.Add(intLine)

‘ Add an instance of a string object
objMyArrList.Add(strHello)

‘ Add a single character cast as a character.
objMyArrList.Add(“ “c)

‘ Add an object that isn’t a primitive type.
objMyArrList.Add(objWorld)

‘ To balance the string, insert a break between the line
‘ and the string “Hello”, by inserting a string constant.
objMyArrList.Insert(1, “. “)

For Each objItem In objMyArrList
‘ Output the values...
Console.Write(objItem.ToString())

Next

The preceding code is an example of implementing the new ArrayList collection class. The collection
classes, as this example shows, are more versatile than any similar structures in Visual Basic 6.0. The
preceding code creates a new instance of an ArrayList, along with some related variables to support
the demonstration. The code then shows four different types of variable being inserted into the same
ArrayList. The code then inserts another value into the middle of the list. At no time has the size of the
array been declared nor has a redefinition of the array size been required.

Part of the reason for this is that the Add and Insert methods on the ArrayList class are defined to
accept a parameter of type Object. This means that the ArrayList object can literally accept any value in
.NET. This comes at a slight performance cost for those variables that are value types because of boxing.

The System.Collections.Specialized Namespace and Generics
Visual Basic has additional classes available as part of the System.Collections.Specialized name-
space. These classes tend to be oriented around a specific problem. For example, the ListDictionary class
is designed to take advantage of the fact that while a hash table is very good at storing and retrieving a
large number of items, it can be costly when there are only a few items. Similarly, the StringCollection
and StringDictionary classes are defined so that when working with strings the time spent interpreting
the type of object is reduced and overall performance is improved. The idea is that each of the classes
defined in this namespace represents a specialized implementation that has been optimized for handling
specific datatypes.

This specialization is different from the specialization provided by one of Visual Studio 2005’s new
features, Generics. The basic idea of generics is that since there is a performance cost and reliability

77

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 77

concerns when casting to and from the object type, collections should allow you to specify what specific
type they will contain. Generics not only prevent you from paying the cost of boxing for value types, but
add to the ability to create type-safe code at compile time. Generics are a powerful extension to the .NET
environment and are covered in detail in Chapter 8.

Parameter Passing
When an object’s methods or an assembly’s procedures and methods are called, it’s often appropriate
to provide input for the data to be operated on by the code. Visual Basic has changed the way that func-
tions, procedures, and methods are called and how those parameters are passed. The first change actu-
ally makes writing such calls more consistent. Under Visual Basic 6.0, the parameter list for a procedure
call didn’t require parentheses. On the other hand, a call to a method did require parentheses around the
parameter list. In Visual Basic, the parentheses are always required and the Call keyword is obsolete.

Another change in Visual Basic is the way parameters with default values are handled. As with Visual
Basic 6.0, it is possible to define a function, procedure, or method that provides default values for the
last parameter(s). This way it is possible to call a method such as PadRight, passing either with a single
parameter defining the length of the string and using a default of space for the padding character, or
with two parameters, the first still defining the length of the string but the second now replacing the
default of space with a dash.

Public Function PadRight(ByVal intSize as Integer, _
Optional ByVal chrPad as Char = “ “c)

End Function

To use default parameters, it is necessary to make them the last parameters in the function declaration.
Visual Basic also requires that every optional parameter have a default value. It is not acceptable to just
declare a parameter and assign it the Optional keyword. In Visual Basic, the Optional keyword must
be accompanied by a value that will be assigned if the parameter is not passed in.

How the system handles parameters is the most important change related to them in Visual Basic. In
Visual Basic 6.0, the default was that parameters were passed by reference. Passing a parameter by refer-
ence means that if changes are made to the value of a variable passed to a method, function, or proce-
dure call, these changes were to the actual variable and, therefore, are available to the calling routine.

Passing a parameter by reference sometimes results in unexpected changes being made to a parameter’s
value. It is partly because of this that parameters default to passing by value in Visual Basic. The advan-
tage of passing by value is that regardless of what a function might do to a variable while it is running,
when the function is completed, the calling code still has the original value.

However, under .NET passing a parameter by value only indicates how the top-level reference for that
object is passed. Sometimes referred to as a ‘shallow’ copy operation, the system only copies the top-
level reference value for an object passed by value. This is important to remember because it means
that referenced memory is not protected. Thus, while the reference passed as part of the parameter will
remain unchanged for the calling method, the actual values stored in referenced objects can be updated
even when an object is passed by reference.

78

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 78

Boxing
Normally, when a conversion (implicit or explicit) occurs, the original value is read from its current
memory location and then the new value is assigned. For example, to convert a Short to a Long, the
system reads the 2 bytes of Short data and writes them to the appropriate bytes for the Long variable.
However, under Visual Basic if a value type needs to be managed as an object, then the system will per-
form an intermediate step. This intermediate step involves taking the value that is on the stack and
copying it to the heap, a process referred to as boxing. As noted earlier, the Object class is implemented
as a reference type. Therefore, the system needs to convert value types into reference types for them to
be objects. This doesn’t cause any problems or require any special programming, because boxing isn’t
something you declare or directly control. However, it does have an impact on performance.

In a situation where you are copying the data for a single value type, this is not a significant cost.
However, if you are processing an array that contains thousands of values, the time spent moving
between a value type and a temporary reference type can be significant.

There are ways to limit the amount of boxing that occurs. One method that has been shown to work well
is to create a class based on the value type you need to work with. On first thought, this seems counter-
intuitive because it costs more to create a class. The key is how often you reuse the data that is contained
in the class. By repeatedly using this object to interact with other objects, you will save on the creation of
a temporary boxed object.

There are two important areas to examine with examples to better understand boxing. The first involves
the use of arrays. When an array is created, the portion of the class that tracks the element of the array is
created as a reference object, but each of the elements of the array is created directly. Thus, an array of
integers consists of the array object and a set of Integer value types. When you update one of these val-
ues with another Integer value there is no boxing involved:

Dim arrInt(20) as Integer
Dim intMyValue as Integer = 1

arrInt(0) = 0
arrInt(1) = intMyValue

Neither of these assignments of an Integer value into the integer array that was defined previously
requires boxing. In each case, the array object identifies which value on the stack needs to be referenced,
and the value is assigned to that value type. The point here is that just because you have referenced
an object doesn’t mean you are going to box a value. The boxing only occurs when the values being
assigned are being transitioned from value to reference types:

Dim objStrBldr as New System.Text.StringBuilder()
Dim objSortedList as New System.Collections.SortedList()
Dim intCount as Integer
For intCount = 1 to 100

objStrBldr.Append(intCount)
objSortedList.Add(intCount, intCount)

Next

79

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 79

The preceding snippet illustrates two separate calls to object interfaces. One of these calls requires box-
ing of the value intCount, while the other does not. There is nothing in the code to indicate which call
is which. The answer is that the Append method of StringBuilder has been overridden to include a
version that accepts an Integer, while the Add method of SortedList collection expects two objects.
While the Integer values can be recognized by the system as objects, doing so requires the runtime
library to box up these values so that they can be added to the sorted list.

The key to boxing isn’t that you are working with objects as part of an action, but that you are passing
a value to a parameter that expects an object or are taking an object and converting it to a value type.
However, one time that boxing does not occur is when you call a method on a value type. There is no
conversion to an object, so if you need to assign an Integer to a String using the ToString method,
there is no boxing of the integer value as part of the creation of the string. On the other hand, you are
explicitly creating a new String object, so the cost is similar.

Retired Keywords and Methods
This chapter has covered several changes from Visual Basic 6.0 that are part of Visual Basic under .NET.
They include the removal of the Currency type, String function, Rset, and Lset functions. Other
functions such as Left, Right, and Mid have been discussed as becoming obsolete, although they may
still be supported. Functions such as IsEmpty and IsNull have been replaced with new versions.
Additionally, this chapter has looked at some of the differences in how Visual Basic now works with
arrays.

Visual Basic has removed many keywords that won’t be missed. For example, the DefType statement
has been removed. This statement was a throwback to Fortran, allowing a developer to indicate, for
example, that all variables starting with the letters I, J, K, L, M, N would be integers. Most program-
mers have probably never used this function, and it doesn’t have a logical replacement in Visual Basic
under .NET.

One of the real advantages of Visual Basic under .NET is the way that it removed some of the more eso-
teric and obsolete functions from Visual Basic. The following list contains the majority of such functions.
As with others that have already been discussed, some have been replaced; for example, the math func-
tions are now part of the System.Math library, while others such as IsObject really don’t have much
more meaning than LBound in the context of .NET, where everything is an object and the lower bound
of all arrays is 0.

Elements of Visual Basic 6.0 Removed in .NET
Also as previously noted, the UDT has also been removed from the Visual Basic vocabulary. Instead, the
ability to create a user-defined set of variables as a type has been replaced with the ability to create cus-
tom structures and classes in Visual Basic.

Remember that Visual Basic wasn’t revised to work with .NET. Instead Visual Basic was rebuilt from the
ground up as an entirely new language based on the .NET Framework and the syntax of Visual Basic.

80

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 80

As Any Now function

Atn function Null keyword

Calendar property On . . . GoSub

Circle statement On . . . GoTo

Currency Option Base

Date function and statement Option Private Module

Date$ function Property Get, Property Let, and Property Set

Debug.Assert method PSet method

Debug.Print method Rnd function

DefType Round function

DoEvents function Rset

Empty Scale method

Eqv operator Set statement

GoSub statement Sgn function

Imp operator Sqr function

Initialize event String function

Instancing property Terminate event

IsEmpty function Time function and statement

IsMissing function Time$ function

IsNull function Timer function

IsObject function Type statement

Let statement Variant datatype

Line statement VarType function

Lset Wend keyword

Summary
This chapter looked at many of the basic building blocks of Visual Basic that are used throughout project
development. Understanding how they work will help you to write more stable and better performing
software. There are five specific points to take note of:

❑ Beware of array sizes; all arrays start at 0 and are defined not by size but by the highest index.

❑ Remember to use the StringBuilder class for string manipulation.

81

Variables and Type

06_575368 ch03.qxd 10/7/05 10:49 PM Page 81

❑ Use Option Strict; it’s not just about style, it’s about performance.

❑ Beware of parameters that are passed ByValue so changes are not returned.

❑ Take advantage of the new collection classes.

While this chapter covered many other items such as how the new Decimal type works and how boxing
works, these five items are really the most important. Whether you are creating a new library of methods
or a new user interface, these five items will consistently turn up in some form. While .NET provides a
tremendous amount of power, this chapter has hopefully provided information on places where that
power comes at a significant performance cost.

82

Chapter 3

06_575368 ch03.qxd 10/7/05 10:49 PM Page 82

Object Syntax Introduction

Visual Basic supports the four major defining concepts required for a language to be fully
object-oriented:

❑ Abstraction — Abstraction is merely the ability of a language to create “black box” code,
to take a concept and create an abstract representation of that concept within a program.
A Customer object, for instance, is an abstract representation of a real-world customer.
A DataTable object is an abstract representation of a set of data.

❑ Encapsulation — This is the concept of a separation between interface and implementa-
tion. The idea is that you can create an interface (Public methods, properties, fields, and
events in a class), and, as long as that interface remains consistent, the application can
interact with your objects. This remains true even if you entirely rewrite the code within
a given method — thus, the interface is independent of the implementation.

Encapsulation allows you to hide the internal implementation details of a class. For exam-
ple, the algorithm you use to compute pi might be proprietary. You can expose a simple
API to the end user, but you hide all of the logic used by the algorithm by encapsulating
it within your class.

❑ Polymorphism — Polymorphism is reflected in the ability to write one routine that can
operate on objects from more than one class — treating different objects from different
classes in exactly the same way. For instance, if both Customer and Vendor objects have
a Name property, and you can write a routine that calls the Name property regardless of
whether you’re using a Customer or Vendor object, then you have polymorphism.

Visual Basic, in fact, supports polymorphism in two ways — through late binding (much
like Smalltalk, a classic example of a true object-orientated language) and through the
implementation of multiple interfaces. This flexibility is very powerful and is preserved
within Visual Basic.

❑ Inheritance — Inheritance is the idea that a class can gain the preexisting interface and
behaviors of an existing class. This is done by inheriting these behaviors from the existing
class through a process known as subclassing.

07_575368 ch04.qxd 10/7/05 10:50 PM Page 83

We’ll discuss these four concepts in detail in Chapter 7, using this chapter and Chapter 6 to focus on the
syntax that enables us to utilize these concepts.

Visual Basic is also a component-based language. Component-based design is often viewed as a succes-
sor to object-oriented design. Due to this, component-based languages have some other capabilities.
These are closely related to the traditional concepts of object orientation.

❑ Multiple interfaces — Each class in Visual Basic defines a primary interface (also called the
default or native interface) through its Public methods, properties, and events. Classes can also
implement other, secondary interfaces in addition to this primary interface. An object based on
this class then has multiple interfaces, and a client application can choose by which interface it
will interact with the object.

❑ Assembly (component) level scoping — Not only can you define your classes and methods as
Public (available to anyone), Protected (available through inheritance), and Private (avail-
able locally only), but you can also define them as Friend— meaning that they are available
only within the current assembly or component. This is not a traditional object-oriented concept,
but is very powerful when designing component-based applications.

In this chapter, you’ll explore the creation and use of classes and objects in Visual Basic. You won’t get
too deeply into code. However, it is important that you spend a little time familiarizing yourself with
basic object-oriented terms and concepts.

Object-Oriented Terminology
To start with, let’s take a look at the word object itself, along with the related class and instance terms.
Then we’ll move on to discuss the four terms that define the major functionality in the object-oriented
world — encapsulation, abstraction, polymorphism, and inheritance.

Objects, Classes, and Instances
An object is a code-based abstraction of a real-world entity or relationship. For instance, you might have
a Customer object that represents a real-world customer, such as customer number 123, or you might
have a File object that represents C:\ config.sys on your computer’s hard drive.

A closely related term is class. A class is the code that defines an object, and all objects are created based
on a class. A class is an abstraction of a real-world concept, and it provides the basis from which you cre-
ate instances of specific objects. For example, in order to have a Customer object representing customer
number 123, you must first have a Customer class that contains all of the code (methods, properties,
events, variables, and so on) necessary to create Customer objects. Based on that class, you can create
any number of objects, each one an instance of the class. Each object is identical to the others, except that
it may contain different data.

You can create many instances of Customer objects based on the same Customer class. All of the
Customer objects are identical in terms of what they can do and the code they contain, but each one
contains its own unique data. This means that each object represents a different physical customer.

84

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 84

Composition of an Object
You use an interface to get access to an object’s data and behavior. The object’s data and behaviors are
contained within the object, so a client application can treat the object like a black box accessible only
through its interface. This is a key object-oriented concept called encapsulation. The idea is that any
program that makes use of this object won’t have direct access to the behaviors or data; rather, those
programs must make use of our object’s interface.

Let’s walk through each of the three elements in detail.

Interface
The interface is defined as a set of methods (Sub and Function routines), properties (Property routines),
events, and fields (variables) that are declared Public in scope.

You can also have Private methods and properties in your code. While these methods can be called by
code within your object, they are not part of the interface and cannot be called by programs written to
use our object. Another option is to use the Friend keyword, which defines the scope to be your current
project, meaning that any code within our project can call the method, but no code outside your project
(that is, from a different .NET assembly) can call the method. To complicate things a bit, you can also
declare methods and properties as Protected, which are available to classes that inherit from your
class. We’ll discuss Protected in Chapter 6 along with inheritance.

For example, you might have the following code in a class:

Public Function CalculateValue() As Integer

End Function

Since this method is declared with the Public keyword, it is part of the interface and can be called by
client applications that are using the object. You might also have a method such as this:

Private Sub DoSomething()

End Sub

This method is declared as being Private, and so it is not part of the interface. This method can only be
called by code within the class — not by any code outside the class, such as the code in a program that is
using one of the objects.

On the other hand, you can do something like this:

Public Sub CalculateValue()
DoSomething()

End Sub

In this case, you’re calling the Private method from within a Public method. While code using your
objects can’t directly call a Private method, you will frequently use Private methods to help structure
the code in a class to make it more maintainable and easier to read.

85

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 85

Finally, you can use the Friend keyword:

Friend Sub DoSomething()

End Sub

In this case, the DoSomething method can be called by code within the class, or from other classes or
modules within the current Visual Basic project. Code from outside the project will not have access to
the method.

The Friend scope is very similar to the Public scope in that it makes methods available for use by code
outside the object itself. However, unlike Public, the Friend keyword restricts access to code within
the current Visual Basic project, preventing code in other .NET assemblies from calling the method.

Implementation or Behavior
The code inside of a method is called the implementation. Sometimes it is also called behavior, since it is
this code that actually makes the object do useful work.

For instance, you might have an Age property as part of the object’s interface. Within that method, you
might have some code:

Private mAge As Integer

Public ReadOnly Property Age() As Integer
Get

Return mAge
End Get

End Sub

In this case, the code is returning a value directly out of a variable, rather than doing something better
like calculating the value based on a birth date. However, this kind of code is often written in applica-
tions, and it seems to work fine for a while.

The key concept here is to understand that client applications can use the object even if you change the
implementation, as long as you don’t change the interface. As long as the method name and its parameter
list and return datatype remain unchanged, you can change the implementation any way you want.

The code necessary to call our Age property would look something like this:

theAge = myObject.Age

The result of running this code is that you get the Age value returned for your use. While the client
application will work fine, you’ll soon discover that hard-coding the age into the application is a prob-
lem and so, at some point, you’ll want to improve this code. Fortunately, you can change the implemen-
tation without changing the client code:

Private mBirthDate As Date

Public ReadOnly Property Age() As Integer
Get

86

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 86

Return CInt(DateDiff(DateInterval.Year, mBirthDate, Now))
End Get

End Sub

You’ve changed the implementation behind the interface, effectively changing how it behaves, without
changing the interface itself. Now, when you run the client application, you’ll find that the Age value
returned is accurate over time, whereas in the previous implementation it was not.

It is important to keep in mind that encapsulation is a syntactic tool — it allows the code to continue to
run without change. However, it is not semantic, meaning that just because the code continues to run,
that doesn’t mean it continues to do what you actually want it to do.

In this example, the client code may have been written to overcome the initial limitations of the imple-
mentation in some way, and, thus, the client code might not only rely on being able to retrieve the Age
value but also be counting on the result of that call being a fixed value over time.

While the update to the implementation won’t stop the client program from running, it may very well
prevent the client program from running correctly.

Fields or Instance Variables
The third key part of an object is its data, or state. In fact, it might be argued that the only important part of
an object is its data. After all, every instance of a class is absolutely identical in terms of its interface and its
implementation; the only thing that can vary at all is the data contained within that particular object.

Fields are variables that are declared so that they are available to all code within the class. Typically,
fields are Private in scope, available only to the code in the class itself. They are also sometimes
referred to as instance variables or as member variables.

You shouldn’t confuse fields with properties. In Visual Basic, a Property is a type of method that is
geared to retrieving and setting values, while a field is a variable within the class that may hold the
value exposed by a Property.

For instance, you might have a class that has fields:

Public Class TheClass

Private mName As String
Private mBirthDate As Date

End Class

Each instance of the class — each object — will have its own set of these fields in which to store data.
Because these fields are declared with the Private keyword, they are only available to code within each
specific object.

While fields can be declared as Public in scope, this makes them available to any code using the objects
in a manner you can’t control. Such a choice directly breaks the concept of encapsulation, since code out-
side our object can directly change data values without following any rules that might otherwise be set
in the object’s code.

87

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 87

If you want to make the value of a field available to code outside of the object, you should use a property:

Public Class TheClass
Private mName As String
Private mBirthDate As Date

Public ReadOnly Property Name() As String
Get

Return mName
End Get

End Property

End Class

Since the Name property is a method, you are not directly exposing the internal variables to client code,
so you preserve encapsulation of the data. At the same time, through this mechanism, you are able to
safely provide access to your data as needed.

Fields can also be declared with the Friend scope, which means that they are available to all code in
your project. Like declaring them as Public, this breaks encapsulation and is strongly discouraged.

Now that you have a grasp of some of the basic object-oriented terminology, you’re ready to explore the
creation of classes and objects. First, you’ll see how Visual Basic allows you to interact with objects, and
then you’ll dive into the actual process of authoring those objects.

Working with Objects
In the .NET environment, and within Visual Basic in particular, you use objects all the time without even
thinking about it. Every control on a form — in fact, every form — is an object. When you open a file or
interact with a database, you are using objects to do that work.

Object Declaration and Instantiation
Objects are created using the New keyword, indicating that you want a new instance of a particular class.
There are a number of variations on how or where you can use the New keyword in your code. Each one
provides different advantages in terms of code readability or flexibility.

The most obvious way to create an object is to declare an object variable and then create an instance of
the object:

Dim obj As TheClass
obj = New TheClass()

The result of this code is that you have a new instance of TheClass ready for use. To interact with this
new object, you will use the obj variable that you declared. The obj variable contains a reference to the
object, a concept you’ll explore later.

88

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 88

You can shorten this by combining the declaration of the variable with the creation of the instance:

Dim obj As New TheClass()

In previous versions of Visual Basic, this was a very poor thing to do because it had both negative per-
formance and maintainability effects. However, in Visual Basic, there is no difference between the first
example and this one, other than that the code is shorter.

This code both declares the variable obj as datatype TheClass and creates an instance of the class,
immediately creating an object that you can use.

Another variation on this theme is:

Dim obj As TheClass = New TheClass()

Again, this both declares a variable of datatype TheClass and creates an instance of the class.

This third syntax example provides a great deal of flexibility while remaining compact. Though it is a
single line of code, it separates the declaration of the variable’s datatype from the creation of the object.

Such flexibility is very useful when working with inheritance or with multiple interfaces. You might
declare the variable to be of one type — say, an interface — and instantiate the object based on a class that
implements that interface. You’ll revisit this syntax when interfaces are covered in detail in Chapter 6.

So far you’ve been declaring a variable for new objects. However, sometimes you may simply need to
pass an object as a parameter to a method, in which case you can create an instance of the object right in
the call to that method:

DoSomething(New TheClass())

This calls the DoSomething method, passing a new instance of TheClass as a parameter.

This can be even more complex. Perhaps, instead of needing an object reference, your method needs an
Integer. You can provide that Integer value from a method on the object:

Public Class TheClass
Public Function GetValue() As Integer

Return 42
End Function

End Class

You can then instantiate the object and call the method all in one shot, thus passing the value returned
from the method as a parameter:

DoSomething(New TheClass().GetValue())

Obviously, you need to carefully weigh the readability of such code against its compactness. At some
point, having more compact code can detract from readability rather than enhancing it.

89

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 89

Object References
Typically, when you work with an object, you are using a reference to that object. On the other hand,
when you are working with simple datatypes, such as Integer, you are working with the actual value
rather than with a reference. Let’s explore these concepts and see how they work and interact.

When you create a new object using the New keyword, you store a reference to that object in a variable.
For instance:

Dim obj As New TheClass()

This code creates a new instance of TheClass. You gain access to this new object via the obj variable.
This variable holds a reference to the object. You might then do something like this:

Dim another As TheClass
another = obj

Now, you have a second variable, another, which also has a reference to the same object. You can use
either variable interchangeably, since they both reference the exact same object. You need to remember
that the variable you have is not the object itself but is just a reference or pointer to the object.

Dereferencing Objects
When you are done working with an object, you can indicate that you’re through with it by dereferenc-
ing the object.

To dereference an object, you need to simply set the object reference to Nothing:

Dim obj As TheClass

obj = New TheClass()
obj = Nothing

Once any or all variables that reference an object are set to Nothing, the .NET runtime can tell that you
no longer need that object. At some point, the runtime will destroy the object and reclaim the memory
and resources consumed by the object.

Between the time that you dereference the object and the time that the .NET Framework gets around to
actually destroying it, the object simply sits in the memory, unaware that it has been dereferenced. Right
before .NET destroys the object, the Framework will call the Finalize method on the object (if it has
one). The Finalize method will be discussed in Chapter 6.

Early versus Late Binding
One of the strengths of Visual Basic has long been that it provided access to both early and late binding
when interacting with objects.

Early binding means that code directly interacts with an object by directly calling its methods. Since the
Visual Basic compiler knows the object’s datatype ahead of time, it can directly compile code to invoke

90

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 90

the methods on the object. Early binding also allows the IDE to use IntelliSense to aid development
efforts; it allows the compiler to ensure that you are referencing methods that exist and you are provid-
ing the proper parameter values.

Late binding means that your code interacts with an object dynamically at runtime. This provides a
great deal of flexibility since the code doesn’t care what type of object it is interacting with as long as the
object supports the methods you want to call. Because the type of the object isn’t known by the IDE or
compiler, neither IntelliSense nor compile-time syntax checking is possible, but in exchange you get
unprecedented flexibility.

If you enable strict type checking by using Option Strict On in the project properties dialog or at
the top of the code modules, then the IDE and compiler will enforce early binding behavior. By default,
Option Strict is turned off, so you have easy access to the use of late binding within the code. Chap-
ter 4 discussed Option Strict.

Implementing Late Binding
Late binding occurs when the compiler can’t determine the type of object that you’ll be calling. This level
of ambiguity is achieved through the use of the Object datatype. A variable of datatype Object can
hold virtually any value, including a reference to any type of object. Thus, code such as the following
could be run against any object that implements a DoSomething method that accepts no parameters:

Option Strict Off

Module LateBind
Public Sub DoWork(ByVal obj As Object)
obj.DoSomething()

End Sub
End Module

If the object passed into this routine does not have a DoSomething method that accepts no parameters,
then an exception will be thrown. Thus, it is recommended that any code that uses late binding always
provide exception handling:

Option Strict Off

Module LateBind
Public Sub DoWork(ByVal obj As Object)

Try
obj.DoSomething()

Catch ex As MissingMemberException
‘ do something appropriate given failure
‘ to call this method

End Try
End Sub

End Module

Here, the call to the DoSomething method has been put in a Try block. If it works, then the code in the
Catch block is ignored, but in the case of a failure, the code in the Catch block is run. You need to write
code in the Catch block to handle the case in which the object does not support the DoSomething
method call. This Catch block only catches the MissingMemberException, which indicates that the
method doesn’t exist on the object.

91

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 91

While late binding is flexible, it can be error prone and is slower than early bound code. To make a late
bound method call, the .NET runtime must dynamically determine if the target object actually has a
method that matches the one you’re calling. It must then invoke that method on your behalf. This takes
more time and effort than an early bound call where the compiler knows ahead of time that the method
exists and can compile the code to make the call directly. With a late bound call, the compiler has to gen-
erate code to make the call dynamically at runtime.

Use of the CType Function
Whether you are using late binding or not, it can be useful to pass object references around using the
Object datatype, converting them to an appropriate type when you need to interact with them. This is
particularly useful when working with objects that use inheritance or implement multiple interfaces,
concepts that will be discussed in Chapter 6.

If Option Strict is turned off, which is the default, you can write code that allows you to use a variable
of type Object to make an early bound method call:

Module LateBind
Public Sub DoWork(obj As Object)

Dim local As TheClass
local = obj
local.DoSomething()

End Sub
End Module

This code uses a strongly typed variable, local, to reference what was a generic object value. Behind the
scenes, Visual Basic converts the generic type to a specific type so that it can be assigned to the strongly
typed variable. If the conversion can’t be done, you’ll get a trappable runtime error.

The same thing can be done using the CType function. If Option Strict is enabled, then the previous
approach will not compile, and the CType function must be used. Here is the same code making use of
CType:

Module LateBind
Public Sub DoWork(obj As Object)

Dim local As TheClass
local = CType(obj, TheClass)
local.DoSomething()

End Sub
End Module

This code declares a variable of type TheClass, which is an early bound datatype that you want to use.
The parameter you’re accepting, though, is of the generic Object datatype, and so you use the CType()
method to gain an early bound reference to the object. If the object isn’t of type TheClass, the call to
CType() will fail with a trappable error.

Once you have a reference to the object, you can call methods by using the early bound variable, local.

92

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 92

This code can be shortened to avoid the use of the intermediate variable. Instead, you can simply call
methods directly from the datatype:

Module LateBind
Public Sub DoWork(obj As Object)

CType(obj, TheClass).DoSomething()
End Sub

End Module

Even though the variable you’re working with is of type Object and, thus, any calls to it will be late
bound, you use the CType method to temporarily convert the variable into a specific type — in this case,
the type TheClass.

If the object passed as a parameter is not of type TheClass, you will get a trappable error, so it is
always wise to wrap this code in a Try . . . Catch block.

As Chapter 6 discusses, the CType function can also be very useful when working with objects that
implement multiple interfaces. When an object has multiple interfaces, you can reference a single object
variable through the appropriate interface as needed.

Use of the DirectCast Function
Another function that is very similar to CType is DirectCast. DirectCast also converts values of one
type into another type. It is more restrictive in its working than CType, but the tradeoff is that it can be
somewhat faster than CType. DirectCast is used as shown in the following code:

Dim obj As TheClass

obj = New TheClass
DirectCast(obj, ITheInterface).DoSomething()

This is similar to the last example with CType, illustrating the parity between the two functions. There
are differences, however. First, DirectCast works only with reference types, while CType accepts both
reference and value types. For instance, CType can be used in the following code:

Dim int As Integer = CType(123.45, Integer)

Trying to do the same thing with DirectCast would result in a compiler error, since the value 123.45
is a value type, not a reference type.

The other difference is that DirectCast is not as aggressive about converting types as CType. CType can
be viewed as an intelligent combination of all the other conversion functions (such as CInt, CStr, and
so on). DirectCast, on the other hand, assumes that the source data is directly convertible and it won’t
take extra steps to convert the data.

As an example, consider the following code:

Dim obj As Object = 123.45

Dim int As Integer = DirectCast(obj, Integer)

93

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 93

If you were using CType this would work, since CType would use CInt-like behavior to convert the
value to an Integer. DirectCast, however, will throw an exception because the value is not directly
convertible to Integer.

Use of the TryCast Function
A function that is similar to DirectCast is TryCast. TryCast converts values of one type into another
type, but unlike DirectCast, if it can’t do the conversion, TryCast doesn’t throw an exception. Instead,
TryCast simply returns Nothing if the cast can’t be performed. TryCast only works with reference val-
ues, it cannot be used with value types such as Integer or Boolean.

Using TryCast, you can write code like this:

Module LateBind
Public Sub DoWork(obj As Object)

Dim temp As TheClass = TryCast(obj)
If temp Is Nothing Then

‘ the cast couldn’t be accomplished
‘ so do no work

Else
temp.DoSomething()

End If
End Sub

End Module

If you aren’t sure if a type conversion is possible, it is often best to use TryCast. This function avoids the
overhead and complexity of catching possible exceptions from CType or DirectCast and still provides
you with an easy way to convert an object to another type.

Creating Classes
Using objects is fairly straightforward and intuitive. It is the kind of thing that even the most novice pro-
grammers pick up and accept rapidly. Creating classes and objects is a bit more complex and interesting,
and that is covered throughout the rest of the chapter.

Creating Basic Classes
As discussed earlier, objects are merely instances of a specific template (a class). The class contains the
code that defines the behavior of its objects, as well as defining the instance variables that will contain
the object’s individual data.

Classes are created using the Class keyword and include definitions (declaration) and implementations
(code) for the variables, methods, properties, and events that make up the class. Each object created
based on this class will have the same methods, properties, and events, and will have its own set of data
defined by the fields in the class.

94

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 94

The Class Keyword
If you want to create a class that represents a person — a Person class — you could use the Class
keyword like this:

Public Class Person
‘ implementation code goes here

End Class

As you know, Visual Basic projects are composed of a set of files with the .vb extension. Each file can
contain multiple classes. This means that, within a single file, you could have something like this:

Public Class Adult
‘ Implementation code goes here.

End Class

Public Class Senior
‘ Implementation code goes here.

End Class

Public Class Child
‘ Implementation code goes here.

End Class

The most common approach is to have a single class per file. This is because the Visual Studio .NET
(VS.NET) Solution Explorer and the code-editing environment are tailored to make it easy to navigate
from file to file to find code. For instance, if you create a single class file with all these classes, the
Solution Explorer simply displays a single entry, as shown in Figure 4-1.

Figure 4-1

95

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 95

However, the VS.NET IDE does provide the Class View window. If you do decide to put multiple classes
in each physical .vb file, you can make use of the Class View window to quickly and efficiently navigate
through the code, jumping from class to class without having to manually locate those classes in specific
code files, as shown in Figure 4-2.

Figure 4-2

The Class View window is incredibly useful even if you keep to one class per file, since it still provides
you with a class-based view of the entire application.

In this chapter, you’ll stick with one class per file, because it is the most common approach. Open
the VS.NET IDE and create a new Windows Application project. Name it ObjectIntro. Choose the
Project ➪ Add Class menu option to add a new class module to the project. You’ll be presented with the
standard Add New Item dialog box. Change the name to Person.vb and click Open. The result will
be the following code, which defines the Person class:

Public Class Person

End Class

With the Person class created, you’re ready to start adding code to declare the interface, implement the
behaviors, and declare the instance variables.

Fields
Fields are variables declared in the class that will be available to each individual object when the appli-
cation is run. Each object gets its own set of data — basically, each object gets its own copy of the fields.

96

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 96

Earlier, this chapter discussed how a class is simply a template from which you create specific objects.
Variables that you define within the class are also simply templates — and each object gets its own copy
of those variables in which to store its data.

Declaring member variables is as easy as declaring variables within the Class block structure. Add the
following code to our Person class:

Public Class Person

Private mName As String
Private mBirthDate As Date

End Class

You can control the scope of the fields by using the following keywords:

❑ Private— Available only to code within the class

❑ Friend— Available only to code within the project/component

❑ Protected— Available only to classes that inherit from the class (discussed in detail in
Chapter 6)

❑ Protected Friend— Available to code within our project/component and classes that inherit
from the class whether in the project or not (discussed in detail in Chapter 6)

❑ Public— Available to code outside the class and to any projects that reference the assembly

Typically, fields are declared using the Private keyword, making them available only to code within
each instance of the class. Choosing any other option should be done with great care, because all the
other options allow code outside the class to directly interact with the variable, meaning that the value
could be changed and your code would never know that a change took place.

One common exception to making fields Private is the use of the Protected keyword, as discussed
in Chapter 6.

Methods
Objects typically need to provide services (or functions) that can be called when working with the object.
Using their own data or data passed as parameters to the method, they manipulate information to yield
a result or to perform an action.

Methods declared as Public, Friend, or Protected in scope define the interface of the class. Methods
that are Private in scope are available to the code only within the class itself and can be used to provide
structure and organization to code. As discussed earlier, the actual code within each method is called
implementation, while the declaration of the method itself is what defines the interface.

Methods are simply routines that are coded within the class to implement the services that you want to
provide to the users of an object. Some methods return values or provide information to the calling code.
These are called interrogative methods. Others, called imperative methods, just perform an action and
return nothing to the calling code.

97

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 97

In Visual Basic, methods are implemented using Sub (for imperative methods) or Function (for inter-
rogative methods) routines within the class module that defines the object. Sub routines may accept
parameters, but they don’t return any result value when they are complete. Function routines can also
accept parameters, and they always generate a result value that can be used by the calling code.

A method declared with the Sub keyword is merely one that returns no value. Add the following code to
the Person class:

Public Sub Walk()
‘ implementation code goes here

End Sub

The Walk method presumably contains some code that performs some useful work when called but has
no result value to return when it is complete.

To use this method, you might write code such as:

Dim myPerson As New Person()
myPerson.Walk()

Once you’ve created an instance of the Person class, you can simply invoke the Walk method.

Methods That Return Values
If you have a method that does generate some value that should be returned, you need to use the
Function keyword:

Public Function Age() As Integer
Return CInt(DateDiff(DateInterval.Year, mBirthDate, Now()))

End Function

Notice that you need to indicate the datatype of the return value when you declare a Function. In this
example, you are returning the calculated age as a result of the method. You can return any value of the
appropriate datatype by using the Return keyword.

You can also return the value without using the Return keyword, by setting the value of the function
name itself:

Public Function Age() As Integer
Age = CInt(DateDiff(DateInterval.Year, mBirthDate, Now()))

End Function

This is functionally equivalent to the previous code. Either way, you can use this method with code simi-
lar to the following:

Dim myPerson As New Person()
Dim age As Integer

age = myPerson.Age()

98

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 98

The Age method returns an Integer data value that you can use in the program as required; in this case,
you’re just storing it in a variable.

Indicating Method Scope
Adding the appropriate keyword in front of the method declaration indicates the scope:

Public Sub Walk()

This indicates that Walk is a Public method and is, thus, available to code outside the class and even
outside the current project. Any application that references the assembly can use this method. Being
Public, this method becomes part of the object’s interface.

Alternately, you might choose to restrict the method somewhat:

Friend Sub Walk()

By declaring the method with the Friend keyword, you are indicating that it should be part of the
object’s interface only for code inside the project; any other applications or projects that make use of the
assembly will not be able to call the Walk method.

Private Function Age() As Integer

The Private keyword indicates that a method is only available to the code within our particular class.
Private methods are very useful to help organize complex code within each class. Sometimes the meth-
ods will contain very lengthy and complex code. In order to make this code more understandable, you
may choose to break it up into several smaller routines, having the main method call these routines in
the proper order. Moreover, you can use these routines from several places within the class, so, by mak-
ing them separate methods, you enable reuse of the code. These subroutines should never be called by
code outside the object, so you make them Private.

Method Parameters
You will often want to pass information into a method as you call it. This information is provided via
parameters to the method. For instance, in the Person class, perhaps you want the Walk method to track
the distance the person walks over time. In such a case, the Walk method would need to know how far
the person is to walk each time the method is called. Add the following code to the Person class:

Public Class Person
Private mName As String
Private mBirthDate As Date
Private mTotalDistance As Integer

Public Sub Walk(ByVal distance As Integer)
mTotalDistance += distance

End Sub

Public Function Age() As Integer
Return CInt(DateDiff(DateInterval.Year, mBirthDate, Now()))

End Function
End Class

99

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 99

With this implementation, a Person object will sum up all of the distances walked over time. Each time
the Walk method is called, the calling code must pass an Integer value, indicating the distance to be
walked. Our code to call this method would be similar to the following code:

Dim myPerson As New Person()
myPerson.Walk(12)

The parameter is accepted using the ByVal keyword. This indicates that the parameter value is a copy of
the original value. This is the default way by which Visual Basic accepts all parameters. Typically, this is
desirable because it means that you can work with the parameter inside the code, changing its value
with no risk of accidentally changing the original value back in the calling code.

If you do want to be able to change the value in the calling code, you can change the declaration to pass
the parameter by reference by using the ByRef qualifier:

Public Sub Walk(ByRef distance As Integer)

In this case, you’ll get a reference (or pointer) back to the original value rather than receiving a copy. This
means that any change you make to the Distance parameter will be reflected back in the calling code,
very similar to the way object references work, as discussed earlier in this chapter.

Using this technique can be dangerous, since it is not explicitly clear to the caller of the method that the
value will change. Such unintended side effects can be hard to debug and should be avoided.

Properties
The .NET environment provides for a specialized type of method called a property. A property is a
method specifically designed for setting and retrieving data values. For instance, you declared a variable
in the Person class to contain a name, so the Person class may include code to allow that name to be set
and retrieved. This can be done using regular methods:

Public Sub SetName(ByVal name As String)
mName = name

End Sub

Public Function GetName() As String
Return mName

End Function

Using methods like these, you write code to interact with the object, such as:

Dim myPerson As New Person()

myPerson.SetName(“Jones”)
MsgBox(myPerson.GetName())

While this is perfectly acceptable, it is not as nice as it could be with the use of a property. A Property
style method consolidates the setting and retrieving of a value into a single structure, and also makes the
code within the class smoother overall. You can rewrite these two methods into a single property. Add
the following code to the Person class:

100

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 100

Public Property Name() As String
Get

Return mName
End Get
Set(ByVal Value As String)

mName = Value
End Set

End Property

By using a property method instead, you can make the client code much more readable:

Dim myPerson As New Person()

myPerson.Name = “Jones”
MsgBox(myPerson.Name)

The Property method is declared with both a scope and a datatype:

Public Property Name() As String

In this example, you’ve declared the property as Public in scope, but it can be declared using the same
scope options as any other method —Public, Friend, Private, or Protected.

The return datatype of this property is String. A property can return virtually any datatype appropriate
for the nature of the value. In this regard, a property is very similar to a method declared using the
Function keyword.

Though a Property method is a single structure, it is divided into two parts: a getter and a setter. The
getter is contained within a Get . . . End Get block and is responsible for returning the value of the prop-
erty on demand:

Get
Return mName

End Get

Though the code in this example is very simple, it could be more complex, perhaps calculating the value
to be returned or applying other business logic to change the value as it is returned.

Likewise, the code to change the value is contained within a Set . . . End Set block:

Set(ByVal Value As String)
mName = Value

End Set

The Set statement accepts a single parameter value that stores the new value. The code in the block can
then use this value to set the property’s value as appropriate. The datatype of this parameter must match
the datatype of the property itself. Having the parameter declared in this manner allows you to change
the name of the variable used for the parameter value if needed.

101

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 101

By default, the parameter is named Value. However, if you dislike the name Value, you can change the
parameter name to something else, for example:

Set(ByVal NewName As String)
mName = NewName

End Set

In many cases, you can apply business rules or other logic within this routine to ensure that the new
value is appropriate before you actually update the data within the object.

It is also possible to restrict the scope of either the Get or Set block to be more narrow than the scope of
the property itself. For instance, you may want to allow any code to retrieve the property value, but only
allow other code in your project to alter the value. In this case, you can restrict the scope of the Set block
to Friend, while the Property itself is scoped as Public:

Public Property Name() As String
Get

Return mName
End Get
Friend Set(ByVal Value As String)

mName = Value
End Set

End Property

The new scope must be more restrictive than the scope of the Property itself. Also, either the Get or
Set block can be restricted, not both. The one you don’t restrict uses the scope of the Property method.

Parameterized Properties
The Name property you created is an example of a single-value property. You can also create property
arrays or parameterized properties. These properties reflect a range, or array, of values. As an example,
a person will often have several phone numbers. You might implement a PhoneNumber property as a
parameterized property, storing not only phone numbers, but also a description of each number. To
retrieve a specific phone number you’d write code such as:

Dim myPerson As New Person()
Dim homePhone As String

homePhone = myPerson.Phone(“home”)

Or, to add or change a specific phone number, you’d write the following code:

myPerson.Phone(“work”) = “555-9876”

Not only are you retrieving and updating a phone number property, but you’re also updating a specific
phone number. This implies a couple of things. First, you’re no longer able to use a simple variable to
hold the phone number, since you are now storing a list of numbers and their associated names. Second,
you’ve effectively added a parameter to your property. You’re actually passing the name of the phone
number as a parameter on each property call.

102

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 102

To store the list of phone numbers, you can use the Hashtable class. The Hashtable is very similar to
the standard VB Collection object, but it is more powerful — allowing you to test for the existence of a
specific element. Add the following declaration to the Person class:

Public Class Person
Private mName As String
Private mBirthDate As Date
Private mTotalDistance As Integer

Private mPhones As New Hashtable

You can implement the Phone property by adding the following code to the Person class:

Public Property Phone(ByVal location As String) As String
Get

Return CStr(mPhones.Item(Location))
End Get
Set(ByVal Value As String)

If mPhones.ContainsKey(location) Then
mPhones.Item(location) = Value

Else
mPhones.Add(location, Value)

End If
End Set

End Property

The declaration of the Property method itself is a bit different from what you’ve seen:

Public Property Phone(ByVal location As String) As String

In particular, you’ve added a parameter, location, to the property itself. This parameter will act as the
index into the list of phone numbers and must be provided both when setting or retrieving phone num-
ber values.

Since the location parameter is declared at the Property level, it is available to all code within the
property, including both the Get and Set blocks.

Within your Get block, you use the location parameter to select the appropriate phone number to
return from the Hashtable:

Get
Return mPhones.Item(location)

End Get

With this code, if there is no value stored matching the location, you’ll get a trappable runtime error.

Similarly, in the Set block, you use the location to update or add the appropriate element in the
Hashtable. In this case, you’re using the ContainsKey method of Hashtable to determine whether
the phone number already exists in the list. If it does, you’ll simply update the value in the list; other-
wise, you’ll add a new element to the list for the value:

103

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 103

Set(ByVal Value As String)
If mPhones.ContainsKey(location) Then

mPhones.Item(location) = Value
Else

mPhones.Add(location, Value)
End If

End Set

In this way, you’re able to add or update a specific phone number entry based on the parameter passed
by the calling code.

Read-Only Properties
There are times when you may want a property to be read-only, so that it can’t be changed. In the
Person class, for instance, you may have a read-write property for BirthDate, but just a read-only
property for Age. In such a case, the BirthDate property is a normal property, as follows:

Public Property BirthDate() As Date
Get

Return mBirthDate
End Get
Set(ByVal Value As Date)
mBirthDate = Value

End Set
End Property

The Age value, on the other hand, is a derived value based on BirthDate. This is not a value that should
ever be directly altered and, thus, is a perfect candidate for read-only status.

You already have an Age method implemented as a Function. Remove that code from the Person class,
because you’ll be replacing it with a Property routine instead.

The difference between a Function routine and a ReadOnly Property is quite subtle. Both return a
value to the calling code and, either way, the object is running a subroutine defined by the class module
to return the value.

The difference is less a programmatic one than a design choice. You could create all your objects without
any Property routines at all, just using methods for all interactions with the objects. However, Property
routines are obviously attributes of an object, while a Function might be an attribute or a method. By
carefully implementing all attributes as ReadOnly Property routines, and any interrogative methods as
Function routines, you will create more readable and understandable code.

To make a property read-only, use the ReadOnly keyword and only implement the Get block:

Public ReadOnly Property Age() As Integer
Get

Return CInt(DateDiff(DateInterval.Year, mdtBirthDate, Now()))
End Get

End Property

Since the property is read-only, you’ll get a syntax error if you attempt to implement a Set block.

104

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 104

Write-Only Properties
As with read-only properties, there are times when a property should be write-only, where the value can
be changed, but not retrieved.

Many people have allergies, so perhaps the Person object should have some understanding of the ambi-
ent allergens in the area. This is not a property that should be read from the Person object, since aller-
gens come from the environment rather than from the person, but it is data that the Person object needs
in order to function properly. Add the following variable declaration to the class:

Public Class Person
Private mstrName As String
Private mdtBirthDate As Date
Private mintTotalDistance As Integer
Private colPhones As New Hashtable()
Private mAllergens As Integer

you can implement an AmbientAllergens property as follows:

Public WriteOnly Property AmbientAllergens() As Integer
Set(ByVal Value As Integer)

mAllergens = Value
End Set

End Property

To create a write-only property, use the WriteOnly keyword and only implement a Set block in the
code. Since the property is write-only, you’ll get a syntax error if you attempt to implement a Get block.

The Default Property
Objects can implement a default property if desired. A default property can be used to simplify the use
of an object at times, by making it appear as if the object has a native value. A good example of this
behavior is the Collection object, which has a default property called Item that returns the value of
a specific item, allowing you to write code similar to:

Dim mData As New HashTable()

Return mData(index)

Default properties must be parameterized properties. A property without a parameter cannot be marked
as the default. This is a change from previous versions of Visual Basic, where any property could be
marked as the default.

Our Person class has a parameterized property — the Phone property you built earlier. You can make
this the default property by using the Default keyword:

Default Public Property Phone(ByVal location As String) As String
Get

Return CStr(mPhones.Item(location))
End Get
Set(ByVal Value As String)

105

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 105

If mPhones.ContainsKey(location) Then
mPhones.Item(location) = Value

Else
mPhones.Add(location, Value)

End If
End Set

End Property

Prior to this change, you would have needed code such as the following to use the Phone property:

Dim myPerson As New Person()

MyPerson.Phone(“home”) = “555-1234”

But now, with the property marked as Default, you can simplify the code:

myPerson(“home”) = “555-1234”

By picking appropriate default properties, you can potentially make the use of objects more intuitive.

Events
Both methods and properties allow you to write code that interacts with your objects by invoking
specific functionality as needed. It is often useful for objects to provide notification as certain activities
occur during processing. You see examples of this all the time with controls, where a button indicates
that it was clicked via a Click event, or a text box indicates that its contents have been changed via the
TextChanged event.

Objects can raise events of their own, providing a powerful and easily implemented mechanism by
which objects can notify client code of important activities or events. In Visual Basic, events are provided
using the standard .NET mechanism of delegates. Before discussing delegates, let’s explore how to work
with events in Visual Basic.

Handling Events
We are all used to seeing code in a form to handle the Click event of a button, such as the following
code:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

End Sub

Typically, we write our code in this type of routine without paying a lot of attention to the code created
by the VS.NET IDE. However, let’s take a second look at that code, since there are a couple of important
things to note here.

First, notice the use of the Handles keyword. This keyword specifically indicates that this method will
be handling the Click event from the Button1 control. Of course, a control is just an object, so what is
indicated here is that this method will be handling the Click event from the Button1 object.

106

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 106

Also notice that the method accepts two parameters. The Button control class defines these parameters.
It turns out that any method that accepts two parameters with these datatypes can be used to handle the
Click event. For instance, you could create a new method to handle the event:

Private Sub MyClickMethod(ByVal s As System.Object, _
ByVal args As System.EventArgs) Handles Button1.Click

End Sub

Even though you’ve changed the method name, and the names of the parameters, you are still accepting
parameters of the same datatypes, and you still have the Handles clause to indicate that this method
will handle the event.

Handling Multiple Events
The Handles keyword offers even more flexibility. Not only can the method name be anything you
choose, but also a single method can handle multiple events if you desire. Again, the only requirement
is that the method and all the events being raised must have the same parameter list.

This explains why all the standard events raised by the .NET system class library have exactly two
parameters — the sender and an EventArgs object. Being so generic makes it possible to write very
generic and powerful event handlers than can accept virtually any event raised by the class library.

One common scenario where this is useful is when you have multiple instances of an object that raises
events, such as two buttons on a form:

Private Sub MyClickMethod(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Button1.Click, Button2.Click

End Sub

Notice that the Handles clause has been modified so that it has a comma-separated list of events to han-
dle. Either event will cause the method to run, providing a central location in which to handle these
events.

The WithEvents Keyword
The WithEvents keyword tells Visual Basic that you want to handle any events raised by the object
within the code. For example:

Friend WithEvents Button1 As System.Windows.Forms.Button

The WithEvents keyword makes any events from an object available for use, while the Handles key-
word is used to link specific events to the methods so that you can receive and handle them. This is true
not only for controls on forms but also for any objects that you create.

The WithEvents keyword cannot be used to declare a variable of a type that doesn’t raise events. In
other words, if the Button class didn’t contain code to raise events, you’d get a syntax error when you
attempted to declare the variable using the WithEvents keyword.

107

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 107

The compiler can tell which classes will and won’t raise events by examining their interface. Any class
that will be raising an event will have that event declared as part of its interface. In Visual Basic, this
means that you will have used the Event keyword to declare at least one event as part of the interface
for the class.

Raising Events
Our objects can raise events just like a control, and the code using the object can receive these events by
using the WithEvents and Handles keywords. Before you can raise an event from your object, how-
ever, you need to declare the event within the class by using the Event keyword.

In the Person class, for instance, you may want to raise an event any time the Walk method is called. If
you call this event Walked, you can add the following declaration to the Person class:

Public Class Person
Private mstrName As String
Private mdtBirthDate As Date
Private mintTotalDistance As Integer
Private colPhones As New Hashtable()
Private mintAllergens As Integer

Public Event Walked()

Events can also have parameters, values that are provided to the code receiving the event. A typical but-
ton’s Click event receives two parameters, for instance. In the Walked method, perhaps you want to
also indicate the distance that was walked. You can do this by changing the event declaration:

Public Event Walked(ByVal distance As Integer)

Now that the event is declared, you can raise that event within the code where appropriate. In this case,
you’ll raise it within the Walk method. So, anytime that a Person object is instructed to walk, it will fire
an event indicating the distance walked. Make the following change to the Walk method:

Public Sub Walk(ByVal distance As Integer)
mTotalDistance += distance
RaiseEvent Walked(distance)

End Sub

The RaiseEvent keyword is used to raise the actual event. Since the event requires a parameter, that
value is passed within parentheses and will be delivered to any recipient that handles the event.

In fact, the RaiseEvent statement will cause the event to be delivered to all code that has the object
declared using the WithEvents keyword with a Handles clause for this event, or any code that has
used the AddHandler method.

If more than one method will be receiving the event, the event will be delivered to each recipient one at a
time. By default, the order of delivery is not defined — meaning that you can’t predict the order in which
the recipients will receive the event — but the event will be delivered to all handlers. Note that this is a
serial, synchronous process. The event is delivered to one handler at a time, and it is not delivered to the
next handler until the current handler is complete. Once you call the RaiseEvent method, the event will

108

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 108

be delivered to all listeners one after another until it is complete; there is no way for you to intervene
and stop the process in the middle.

Declaring and Raising Custom Events
As just noted, by default, you have no control over how events are raised. You can overcome this limita-
tion by using a more explicit form of declaration for the event itself. Rather than using the simple Event
keyword, you can declare a custom event. This is for more advanced scenarios, since it requires that you
provide the implementation for the event itself.

Later, this chapter will discuss the concept of delegates in detail, but it is necessary to cover them briefly
here in order to declare a custom event. A delegate is a definition of a method signature. When you
declare an event, Visual Basic defines a delegate for the event behind the scenes based on the signature
of the event. The Walked event, for instance, has a delegate like this:

Public Delegate Sub WalkedEventHandler(ByVal distance As Integer)

Notice how this code declares a “method” that accepts an Integer and has no return value. This is
exactly what you defined for the event. Normally, you don’t write this bit of code, because Visual Basic
does it automatically. However, if you are to declare a custom event, you need to manually declare the
event delegate.

You also need to declare a variable within the class where you can keep track of any code that is listen-
ing for, or handling, the event. It turns out that you can tap into the prebuilt functionality of delegates
for this purpose. By declaring the WalkedEventHandler delegate, you have defined a datatype that
automatically tracks event handlers, so you can declare the variable like this:

Private mWalkedHandlers As WalkedEventHandler

Then you can use this variable to store and raise the event within the custom event declaration:

Public Custom Event Walked As WalkedEventHandler
AddHandler(ByVal value As WalkedEventHandler)

mWalkedHandlers = _
CType([Delegate].Combine(mWalkedHandlers, value), WalkedEventHandler)

End AddHandler
RemoveHandler(ByVal value As WalkedEventHandler)

mWalkedHandlers = _
CType([Delegate].Remove(mWalkedHandlers, value), WalkedEventHandler)

End RemoveHandler
RaiseEvent(ByVal distance As Integer)

If mWalkedHandlers IsNot Nothing Then
mWalkedHandlers.Invoke(distance)

End If
End RaiseEvent

End Event

In this case, you’ve used the Custom Event key phrase rather than just Event to declare the event. A
Custom Event declaration is a block structure with three sub-blocks: AddHandler, RemoveHandler,
and RaiseEvent.

109

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 109

The AddHandler block is called any time a new handler wants to receive the event. The parameter
passed to this block is a reference to the method that will be handling the event. It is up to you to store
the reference to that method, which you can do however you choose. In this implementation, you’re
storing it within the delegate variable just like the default implementation provided by Visual Basic.

The RemoveHandler block is called any time a handler wants to stop receiving our event. The parameter
passed to this block is a reference to the method that was handling the event. It is up to you to remove
the reference to the method, which you can do however you choose. In this implementation, you’re
replicating the default behavior by having the delegate variable remove the element.

Finally, the RaiseEvent block is called any time the event is raised. Typically, it is invoked when code
within the class uses the RaiseEvent statement. The parameters passed to this block must match the
parameters declared by the delegate for the event. It is up to you to go through the list of methods that
are handling the event and to call each of those methods. In the example shown here, you’re allowing
the delegate variable to do that for you, which is the same behavior you get by default with a normal
event.

The value of this syntax is that you could opt to store the list of handler methods in a different type of
data structure, such as a Hashtable or collection. You could then invoke them asynchronously, or in a
specific order or based on some other behavior required by the application.

Receiving Events with WithEvents
Now that you’ve implemented an event within the Person class, you can write client code to declare an
object using the WithEvents keyword. For instance, in the project’s Form1 code module, you can write
the following code:

Public Class Form1
Inherits System.Windows.Forms.Form

Private WithEvents mPerson As Person

By declaring the variable WithEvents, you are indicating that you want to receive any events raised by
this object.

You can also choose to declare the variable without the WithEvents keyword, though, in that case, you
would not receive events from the object as described here. Instead, you would use the AddHandler
method, which is discussed after the use of WithEvents.

You can then create an instance of the object, as the form is created, by adding the following code:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

mPerson = New Person()

End Sub

At this point, you’ve declared the object variable using WithEvents and have created an instance of the
Person class, so you actually have an object with which to work. You can now proceed to write a

110

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 110

method to handle the Walked event from the object by adding the following code to the form. You can
name this method anything you like; it is the Handles clause that is important because it links the event
from the object directly to this method, so it is invoked when the event is raised:

Private Sub OnWalk(ByVal distance As Integer) Handles mPerson.Walked
MsgBox(“Person walked “ & distance)

End Sub

You’re using the Handles keyword to indicate which event should be handled by this method. You’re
also receiving an Integer parameter. If the parameter list of the method doesn’t match the list for the
event, you’ll get a compiler error indicating the mismatch.

Finally, you need to call the Walk method on the Person object. Add a button to the form and write the
following code for its Click event:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles button1.Click

mPerson.Walk(42)

End Sub

When the button is clicked, you’ll simply call the Walk method, passing an Integer value. This will
cause the code in your class to be run, including the RaiseEvent statement. The result will be an event
firing back into the form, since you declared the mPerson variable using the WithEvents keyword. The
OnWalk method will be run to handle the event, since it has the Handles clause linking it to the event.

The diagram in Figure 4-3 illustrates the flow of control.

The diagram illustrates how the code in the button’s click event calls the Walk method, causing it to add
to the total distance walked and then to raise its event. The RaiseEvent causes the OnWalk method in
the form to be invoked and, once it is done, control returns to the Walk method in the object. Since you
have no code in the Walk method after you call RaiseEvent, the control returns to the Click event back
in the form, and then you’re all done.

Many people have the misconception that events use multiple threads to do their work. This is not the
case. Only one thread is involved in this process. Raising an event is much like making a method call, in
that the existing thread is used to run the code in the event handler. This means that the application’s
processing is suspended until the event processing is complete.

Receiving Events with AddHandler
Now that you’ve seen how to receive and handle events using the WithEvents and Handles keywords,
let’s take a look at an alternative approach. You can use the AddHandler method to dynamically add
event handlers through your code and RemoveHandler to dynamically remove them.

WithEvents and the Handles clause require that you declare both the object variable and event handler
as you build the code, effectively creating a linkage that is compiled right into the code. AddHandler, on
the other hand, creates this linkage at runtime, which can provide you with more flexibility. However,
before getting too deeply into that, let’s see how AddHandler works.

111

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 111

Figure 4-3

In Form1, you can change the way the code interacts with the Person object, first, by eliminating the
WithEvents keyword:

Private mPerson As Person

and then by also eliminating the Handles clause:

Private Sub OnWalk(ByVal distance As Integer)
MsgBox(“Person walked “ & distance)

End Sub

With these changes, you’ve eliminated all event handling for the object, and the form will no longer
receive the event, even though the Person object raises it.

Now, you can change the code to dynamically add an event handler at runtime by using the AddHandler
method. This method simply links an object’s event to a method that should be called to handle that event.
Any time after you’ve created the object, you can call AddHandler to set up the linkage:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

mPerson = New Person()
AddHandler mPerson.Walked, AddressOf OnWalk

End Sub

Button1_Click()

Form1.OnWalk

Button1_Click()

Person.Walk()
Add distance

Person.Walk()
RaiseEvent

112

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 112

This single line of code does the same thing as the earlier use of WithEvents and the Handles clause,
causing the OnWalk method to be invoked when the Walked event is raised from the Person object.

However, this linkage is done at runtime, so you have more control over the process than you would
have otherwise. For instance, you could have extra code to decide which event handler to link up.
Suppose that you have another possible method to handle the event in the case that a message box is not
desirable. Add this code to Form1:

Private Sub LogOnWalk(ByVal distance As Integer)
System.Diagnostics.Debug.WriteLine(“Person walked “ & distance)

End Sub

Rather than popping up a message box, this version of the handler logs the event to the Output window
in the IDE.

Now, you can enhance the AddHandler code to decide which handler should be used dynamically at
runtime:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

mPerson = New Person()
If Microsoft.VisualBasic.Command = “nodisplay” Then

AddHandler mPerson.Walked, AddressOf LogOnWalk
Else

AddHandler mPerson.Walked, AddressOf OnWalk
End If

End Sub

If the word nodisplay is on the command line when the application is run, the new version of the event
handler will be used; otherwise, you’ll continue to use the message box handler.

The counterpart to AddHandler is RemoveHandler. RemoveHandler is used to detach an event handler
from an event. One example of when this is useful is if you ever want to set the mPerson variable to
Nothing or to a new Person object. The existing Person object has its events attached to handlers, and
before you get rid of the reference to the object, you must release those references:

If Microsoft.VisualBasic.Command = “nodisplay” Then
RemoveHandler mPerson.Walked, AddressOf LogOnWalk

Else
RemoveHandler mPerson.Walked, AddressOf OnWalk

End If
mPerson = New Person

If you don’t detach the event handlers, the old Person object will remain in memory because each event
handler will still maintain a reference to the object even after mPerson no longer points to the object.

This illustrates one key reason why the WithEvents keyword and Handles clause are preferable in
most cases. AddHandler and RemoveHandler must be used in pairs, and failure to do so can cause
memory leaks in the application, while the WithEvents keyword handles these details for you
automatically.

113

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 113

Constructor Methods
In Visual Basic, classes can implement a special method that is always invoked as an object is being cre-
ated. This method is called the constructor, and it is always named New.

The constructor method is an ideal location for such initialization code, since it is always run before any
other methods are ever invoked, and it is only ever run once for an object. Of course, you can create
many objects based on a class, and the constructor method will be run for each object that is created.

You can implement a constructor in your classes as well, using it to initialize objects as needed. This is as
easy as implementing a Public method named New. Add the following code to the Person class:

Public Sub New()
Phone(“home”) = “555-1234”
Phone(“work”) = “555-5678”

End Sub

In this example, you’re simply using the constructor method to initialize the home and work phone
numbers for any new Person object that is created.

Parameterized Constructors
You can also use constructors to allow parameters to be passed to the object as it is being created. This is
done by simply adding parameters to the New method. For example, you can change the Person class as
follows:

Public Sub New(ByVal name As String, ByVal birthDate As Date)
mName = name
mBirthDate = birthDate

Phone(“home”) = “555-1234”
Phone(“work”) = “555-5678”

End Sub

With this change, anytime a Person object is created, you’ll be provided with values for both the name
and birth date. This, however, changes how you can create a new Person object. Where you used to
have code such as:

Dim myPerson As New Person()

now you will have code such as:

Dim myPerson As New Person(“Peter”, “1/1/1960”)

In fact, since the constructor expects these values, they are mandatory — any code wishing to create an
instance of the Person class must provide these values. Fortunately, there are alternatives in the form of
optional parameters and method overloading (which allows you to create multiple versions of the same
method, each accepting a different parameter list). These topics will be discussed later in the chapter.

114

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 114

Termination and Cleanup
In the .NET environment, an object is destroyed and the memory and resources it consumes are reclaimed
when there are no references remaining for the object.

As discussed earlier in the chapter, when you are using objects, the variables actually hold a reference or
pointer to the object itself. If you have code such as:

Dim myPerson As New Person()

you know that the myPerson variable is just a reference to the Person object you created. If you also
have code like this:

Dim anotherPerson As Person
anotherPerson = myPerson

you know that the anotherPerson variable is also a reference to the same object. This means that this
specific Person object is being referenced by two variables.

When there are no variables left to reference an object, it can be terminated by the .NET runtime environ-
ment. In particular, it is terminated and reclaimed by a mechanism called garbage collection, which is
covered in detail in Chapter 3.

Unlike COM (and thus VB6), the .NET runtime does not use reference counting to determine when an
object should be terminated. Instead, it uses a scheme known as garbage collection to terminate objects.
This means that, in Visual Basic, you do not have deterministic finalization, so it is not possible to pre-
dict exactly when an object will be destroyed.

Let’s review how you can eliminate references to an object. You can explicitly remove a reference by set-
ting the variable equal to Nothing, with the following code:

myPerson = Nothing

You can also remove a reference to an object by changing the variable to reference a different object.
Since a variable can only point to one object at a time, it follows naturally that changing a variable to
point at another object must cause it to no longer point to the first one. This means that you can have
code such as in the following:

myPerson = New Person()

This causes the variable to point to a brand-new object, thus releasing this reference to the prior object.

These are examples of explicit dereferencing. Visual Basic also provides facilities for implicit derefer-
encing of objects when a variable goes out of scope. For instance, if you have a variable declared within
a method, when that method completes, the variable will be automatically destroyed, thus derefer-
encing any object to which it may have pointed. In fact, anytime a variable referencing an object goes
out of scope, the reference to that object is automatically eliminated. This is illustrated by the following
code:

115

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 115

Private Sub DoSomething()
Dim myPerson As Person

myPerson = New Person()
End Sub

Even though you didn’t explicitly set the value of myPerson to Nothing, you know that the myPerson
variable will be destroyed when the method is complete, since it will fall out of scope. This process
implicitly removes the reference to the Person object created within the routine.

Of course, another scenario in which objects become dereferenced is when the application itself com-
pletes and is terminated. At that point, all variables are destroyed, so, by definition, all object references
go away as well.

Advanced Concepts
So far, you’ve seen how to work with objects, how to create classes with methods, properties, and events,
and how to use constructors. You’ve also learned how objects are destroyed within the .NET environ-
ment and how you can hook into that process to do any cleanup required by the objects.

Now let’s move on to discuss some more complex topics and variations on what has been discussed so
far. First, you’ll cover some advanced variations of the methods you can implement in classes, including
an exploration of the underlying technology behind events.

From there, you’ll move on to delegates, the difference between components and classes, and .NET
attributes as they pertain to classes and methods.

Overloading Methods
Methods often accept parameter values. The Person object’s Walk method, for instance, accepts an
Integer parameter:

Public Sub Walk(ByVal distance As Integer)
mTotalDistance += distance
RaiseEvent Walked(distance)

End Sub

Sometimes there is no need for the parameter. To address this issue, you can use the Optional keyword
to make the parameter optional:

Public Sub Walk(Optional ByVal distance As Integer = 0)
mTotalDistance += distance
RaiseEvent Walked(distance)

End Sub

This doesn’t provide you with a lot of flexibility, however, since the optional parameter or parameters
must always be the last ones in the list. In addition, all this allows you to do is choose to pass or not to
pass the parameter. Suppose that you want to do something fancier, such as allow different datatypes, or
even entirely different lists of parameters.

116

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 116

Note that use of the Optional keyword makes the code harder to consume from C# or other .NET lan-
guages. If you are only working in Visual Basic, this may be a nonissue, but if you are working in a
multilanguage environment, it is best to avoid use of the Optional keyword.

Method overloading provides exactly those capabilities. By overloading methods, you can create several
methods of the same name, with each one accepting a different set of parameters or parameters of differ-
ent datatypes.

As a simple example, instead of using the Optional keyword in the Walk method, you could use over-
loading. You’ll keep the original Walk method, but you’ll also add another Walk method that accepts a
different parameter list. Change the code in the Person class back to:

Public Sub Walk(ByVal distance As Integer)
mTotalDistance += distance
RaiseEvent Walked(distance)

End Sub

Then you can create another method with the same name, but with a different parameter list (in this
case, no parameters). Add this code to the class, without removing or changing the existing Walk
method:

Public Sub Walk()
RaiseEvent Walked(0)

End Sub

At this point, you have two Walk methods. The only way to tell them apart is by the list of parameters
each accepts, the first requiring a single Integer parameter, the second having no parameter.

There is an Overloads keyword as well. This keyword is not needed for simple overloading of methods
as described here, but it is required when combining overloading and inheritance. This is discussed in
Chapter 6.

Now, you have the option of calling the Walk method in a couple of different ways. You can call it with a
parameter:

objPerson.Walk(42)

or without a parameter:

objPerson.Walk()

You can have any number of Walk methods in the class as long as each individual Walk method has a
different method signature.

Method Signatures
All methods have a signature, which is defined by the method name and the datatypes of its parameters.

Public Function CalculateValue() As Integer

End Sub

117

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 117

In this example, the signature is i(). The letter i is often used to indicate a method or function. It is
appropriate here, because you don’t care about the name of the function; only its parameter list is
important.

If you add a parameter to the method, the signature will change. For instance, you could change the
method to accept a Double:

Public Function CalculateValue(ByVal value As Double) As Integer

Then the signature of the method is i(Double).

Notice that in Visual Basic the return value is not part of the signature. You can’t overload a Function
routine by just having its return value’s datatype vary. It is the datatypes in the parameter list that must
vary to utilize overloading.

Also, note that the name of the parameter is totally immaterial; only the datatype is important. This
means that the following methods have identical signatures:

Public Sub DoWork(ByVal x As Integer, ByVal y As Integer)

Public Sub DoWork(ByVal value1 As Integer, ByVal value2 As Integer)

In both cases, the signature is f(Integer, Integer).

The datatypes of the parameters define the method signature, but whether the parameters are passed
ByVal or ByRef does not. Changing a parameter from ByVal to ByRef will not change the method
signature.

Combining Overloading and Optional Parameters
Overloading is more flexible than using optional parameters, but optional parameters have the advan-
tage that they can be used to provide default values as well as making a parameter optional.

You can combine the two concepts: overloading a method and also having one or more of those methods
utilize optional parameters. Obviously, this sort of thing can get very confusing if overused, since you’re
employing two types of method “overloading” at the same time.

The Optional keyword causes a single method to effectively have two signatures. This means that a
method declared as:

Public Sub DoWork(ByVal x As Integer, Optional ByVal y As Integer = 0)

has two signatures at once: f(Integer, Integer) and f(Integer).

Because of this, when you use overloading along with optional parameters, the other overloaded meth-
ods cannot match either of these two signatures. However, as long as other methods don’t match either
signature, you can use overloading as discussed earlier. For instance, you could implement methods
with the following different signatures:

118

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 118

Public Sub DoWork(ByVal x As Integer, _
Optional ByVal y As Integer = 0)

and

Public Sub DoWork(ByVal data As String)

since there are no conflicting method signatures. In fact, with these two methods, you’ve really created
three signatures:

❑ f(Integer, Integer)

❑ f(Integer)

❑ f(String)

The IntelliSense built into the VS.NET IDE will show that you have two overloaded methods, one of
which has an optional parameter. This is different from creating three different overloaded methods to
match these three signatures, in which case the IntelliSense would list three variations on the method
from which you could choose.

Overloading Constructor Methods
In many cases, you may want the constructor to accept parameter values for initializing new objects,
but you also want to have the ability to create objects without providing those values. This is possible
through method overloading, which is discussed later, or through the use of optional parameters.

Optional parameters on a constructor method follow the same rules as optional parameters for any other
Sub routine; they must be the last parameters in the parameter list, and you must provide default values
for the optional parameters.

For instance, you can change the Person class as shown here:

Public Sub New(Optional ByVal name As String = “”, _
Optional ByVal birthDate As Date = #1/1/1900#)

mName = name
mBirthDate = birthDate

Phone(“home”) = “555-1234”
Phone(“work”) = “555-5678”

End Sub

Here, you’ve changed both the Name and BirthDate parameters to be optional, and you are providing
default values for both of them. Now, you have the option of creating a new Person object with or with-
out the parameter values:

Dim myPerson As New Person(“Peter”, “1/1/1960”)

or

Dim myPerson As New Person()

119

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 119

If you don’t provide the parameter values, then the default values of an empty String and 1/1/1900
will be used and the code will work just fine.

Overloading the Constructor Method
You can combine the concept of a constructor method with method overloading to allow for different
ways of creating instances of the class. This can be a very powerful combination, because it allows a
great deal of flexibility in object creation.

You’ve already explored how to use optional parameters in the constructor. Now let’s change the imple-
mentation in the Person class to make use of overloading instead. Change the existing New method as
follows:

Public Sub New(ByVal name As String, ByVal birthDate As Date)
mName = name
mBirthDate = birthDate
Phone(“home”) = “555-1234”
Phone(“work”) = “555-5678”

End Sub

With this change, you require the two parameter values to be supplied.

Now add that second implementation as shown here:

Public Sub New()
Phone(“home”) = “555-1234”
Phone(“work”) = “555-5678”

End Sub

This second implementation accepts no parameters, meaning that you can now create Person objects in
two different ways — either with no parameters or by passing the name and birth date:

Dim myPerson As New Person()

or

Dim myPerson As New Person(“Fred”, “1/11/60”)

This type of capability is very powerful, because it allows you to define the various ways in which appli-
cations can create objects. In fact, the VS.NET IDE takes this into account, so, when you are typing the
code to create an object, the IntelliSense tooltip will display the overloaded variations on the method,
providing a level of automatic documentation for the class.

Shared Methods, Variables, and Events
So far, all of the methods you’ve built or used have been instance methods, methods that require us to
have an actual instance of the class before they can be called. These methods have used instance vari-
ables or member variables to do their work, which means that they have been working with a set of data
that is unique to each individual object.

120

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 120

Visual Basic allows us to create variables and methods that belong to the class rather than to any specific
object. Another way to say this is that these variables and methods belong to all objects of a given class
and are shared across all the instances of the class.

You can use the Shared keyword to indicate which variables and methods belong to the class rather
than to specific objects. For instance, you may be interested in knowing the total number of Person
objects created as the application is running — kind of a statistical counter.

Shared Variables
Since regular variables are unique to each individual Person object, they don’t allow you to easily track
the total number of Person objects ever created. However, if you had a variable that had a common
value across all instances of the Person class, you could use that as a counter. Add the following vari-
able declaration to the Person class:

Public Class Person
Implements IDisposable

Private Shared mCounter As Integer

By using the Shared keyword, you are indicating that this variable’s value should be shared across all
Person objects within our application. This means that if one Person object makes the value be 42, all
other Person objects will see the value as 42: It is a shared piece of data.

You can now use this variable within the code. For instance, you can add code to the constructor method,
New, to increment the variable so that it acts as a counter — adding 1 each time a new Person object is
created. Change the New methods as shown here:

Public Sub New()
Phone(“home”) = “555-1234”
Phone(“work”) = “555-5678”
mCounter += 1

End Sub

Public Sub New(ByVal name As String, ByVal birthDate As Date)
mName = name
mBirthDate = birthDate

Phone(“home”) = “555-1234”
Phone(“work”) = “555-5678”
mCounter += 1

End Sub

The mCounter variable will now maintain a value indicating the total number of Person objects created
during the life of the application. You may want to add a property routine to allow access to this value
by writing the following code:

Public ReadOnly Property PersonCount() As Integer
Get

Return mCounter
End Get

End Property

121

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 121

Notice that you’re creating a regular property that returns the value of a shared variable. This is perfectly
acceptable. As you’ll see shortly, you could also choose to create a shared property to return the value.

Now, you could write code to use the class as follows:

Dim myPerson As Person

myPerson = New Person()
myPerson = New Person()
myPerson = New Person()

MsgBox(myPerson.PersonCount)

The resulting display would show 3, since you’ve created three instances of the Person class.

Shared Methods
You can share not only variables across all instances of a class but also methods. Whereas a regular
method or property belongs to each specific object, a shared method or property is common across all
instances of the class. There are a couple of ramifications to this approach.

First, since shared methods don’t belong to any specific object, they can’t access any instance variables
from any objects. The only variables available for use within a shared method are shared variables,
parameters passed into the method, or variables declared locally within the method itself. If you attempt
to access an instance variable within a shared method, you’ll get a compiler error.

Also, since shared methods are actually part of the class rather than any object, you can write code to call
them directly from the class without having to create an instance of the class first.

For instance, a regular instance method is invoked from an object:

Dim myPerson As New Person()

myPerson.Walk(42)

but a shared method can be invoked directly from the class itself:

Person.SharedMethod()

This saves the effort of creating an object just to invoke a method and can be very appropriate for meth-
ods that act on shared variables, or methods that act only on values passed in via parameters. You can
also invoke a shared method from an object just like a regular method. Shared methods are flexible in
that they can be called with or without creating an instance of the class first.

To create a shared method, you again use the Shared keyword. For instance, the PersonCount property
created earlier could easily be changed to become a shared method instead:

Public Shared ReadOnly Property PersonCount() As Integer
Get

Return mCounter
End Get

End Property

122

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 122

Since this property returns the value of a shared variable, it is perfectly acceptable for it to be imple-
mented as a shared method. With this change, you can now find out how many Person objects have
ever been created without having to actually create a Person object first:

MsgBox(CStr(Person.PersonCount))

As another example, in the Person class, you could create a method that compares the ages of two
people. Add a shared method with the following code:

Public Shared Function CompareAge(ByVal person1 As Person, _
ByVal person2 As Person) As Boolean

Return person1.Age > person2.Age
End Function

This method simply accepts two parameters — each a Person— and returns True if the first is older
than the second. The use of the Shared keyword indicates that this method doesn’t require a specific
instance of the Person class for you to use it.

Within this code, you are invoking the Age property on two separate objects, the objects passed as
parameters to the method. It is important to recognize that you’re not directly using any instance vari-
ables within the method, rather you are accepting two objects as parameters and are invoking methods
on those objects. To use this method, you can call it directly from the class:

If Person.CompareAge(myPerson1, myPerson2) Then

Alternately, you can also invoke it from any Person object:

Dim myPerson As New Person()

If myPerson.CompareAge(myPerson, myPerson2) Then

Either way, you’re invoking the same shared method, and you’ll get the same behavior, whether you call
it from the class or a specific instance of the class.

Shared Properties
As with other types of methods, you can also have shared property methods. Properties follow the same
rules as regular methods. They can interact with shared variables, but not member variables, and they
can invoke other shared methods or properties, but can’t invoke instance methods without first creating
an instance of the class. You can add a shared property to the Person class with the following code:

Public Shared ReadOnly Property RetirementAge() As Integer
Get

Return 62
End Get

End Property

This simply adds a property to the class that indicates the global retirement age for all people. To use
this value, you can simply access it directly from the class:

MsgBox(Person.RetirementAge)

123

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 123

Alternately, you can also access it from any Person object:

Dim myPerson As New Person()

MsgBox(myPerson.RetirementAge)

Either way, you’re invoking the same shared property.

Shared Events
As with other interface elements, events can also be marked as Shared. For instance, you could declare a
shared event in the Person class, such as:

Public Shared Event NewPerson()

Shared events can be raised from both instance methods and shared methods. Regular events cannot be
raised by shared methods. Since shared events can be raised by regular methods, you can raise this one
from the constructors in the Person class:

Public Sub New()
Phone(“home”) = “555-1234”
Phone(“work”) = “555-5678”
mCounter += 1
RaiseEvent NewPerson()

End Sub

Public Sub New(ByVal name As String, ByVal birthDate As Date)
mName = Name
mBirthDate = BirthDate

Phone(“home”) = “555-1234”
Phone(“work”) = “555-5678”
mCounter += 1
RaiseEvent NewPerson()

End Sub

The interesting thing about receiving shared events is that you can get them from either an object, such
as a normal event, or from the class itself. For instance, you can use the AddHandler method in the
form’s code to catch this event directly from the Person class.

First, let’s add a method to the form to handle the event:

Private Sub OnNewPerson()
MsgBox(“new person “ & Person.PersonCount)

End Sub

Then, in the form’s Load event, add a statement to link the event to this method:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

AddHandler Person.NewPerson, AddressOf OnNewPerson

124

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 124

mPerson = New Person()
If Microsoft.VisualBasic.Command = “nodisplay” Then

AddHandler mPerson.Walked, AddressOf LogOnWalk
Else

AddHandler mPerson.Walked, AddressOf OnWalk
End If

End Sub

Notice that you are using the class rather than any specific object in the AddHandler statement. You
could use an object as well, treating this like a normal event, but this illustrates how a class itself can
raise an event.

When you run the application now, anytime a Person object is created you’ll see this event raised.

Shared Constructor
A class can also have a Shared constructor:

Shared Sub New()

End Sub

Normal constructors are called when an instance of the class is created. The Shared constructor is only
called once during the lifetime of an application, immediately before any use of the class.

This means that the Shared constructor is called before any other Shared methods, and before any
instances of the class are created. The first time any code attempts to interact with any method on the
class, or attempts to create an instance of the class, the Shared constructor is invoked.

Because you never directly call the Shared constructor, it can’t accept any parameters. Also, because it
is a Shared method, it can only interact with Shared variables or other Shared methods in the class.

Typically, a Shared constructor is used to initialize Shared fields within an object. In the Person class
for instance, you can use it to initialize the mCount variable:

Shared Sub New()
mCount = 0

End Sub

Since this method is only called once during the lifetime of the application, it is safe to do one-time ini-
tializations of values in this constructor.

Operator Overloading
Many basic datatypes, such as Integer and String, support the use of operators including +, -, =, <>,
and so forth. When you create a class, you are defining a new type, and sometimes it is appropriate for
types to also support the use of operators.

In your class, you can write code to define how each of these operators work when applied to objects.
What does it mean when two objects are added together? Or multiplied? Or compared? If you can define
what these operations mean, you can write code to implement appropriate behaviors. This is called
operator overloading, since you are overloading the meaning of specific operators.

125

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 125

Operator overloading is done by using the Operator keyword, much in the same way that you create a
Sub, Function, or Property method.

Most objects will at least provide for some type of comparison and so will often overload the compari-
son operators (=, <>, and maybe <, >, <=, and >=). You can do this in the Person class for instance, by
adding the following code:

Public Shared Operator =(ByVal person1 As Person, _
ByVal person2 As Person) As Boolean

Return person1.Name = person2.Name
End Operator

Public Shared Operator <>(ByVal person1 As Person, _
ByVal person2 As Person) As Boolean

Return person1.Name <> person2.Name
End Operator

Note that you overload both the = and <> operators. Many operators come in pairs, and this includes the
equality operator. If you overload =, then you must overload <> or a compiler error will result. Now that
you’ve overloaded these operators, you can write code in Form1 such as:

Dim p1 As New Person(“Fred”, #1/1/1960#)
Dim p2 As New Person(“Mary”, #1/1/1980#)
Dim p3 As Person = p1

Debug.WriteLine(CStr(p1 = p2))
Debug.WriteLine(CStr(p1 = p3))

Normally, it would be impossible to compare two objects using a simple comparison operator, but since
you’ve overloaded the operator, this becomes valid code. The resulting display will show False and
True.

Both the = and <> operators accept two parameters, so these are called binary operators. There are also
unary operators that accept a single parameter. For instance, you might define the ability to convert a
String value into a Person object by overloading the CType operator:

Public Shared Narrowing Operator CType(ByVal name As String) As Person
Dim obj As New Person
obj.Name = name
Return obj

End Operator

To convert a String value to a Person, you assume that the value should be the Name property. You cre-
ate a new object, set the Name property, and return the result. Since String is a broader, or less-specific,
type than Person, this is a Narrowing conversion. Were you to do the reverse, convert a Person to a
String, that would be a Widening conversion:

Public Shared Widening Operator CType(ByVal person As Person) As String
Return person.Name

End Operator

126

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 126

Few non-numeric objects will overload most operators. It is difficult to imagine the result of adding,
subtracting, or dividing two Customer objects against each other. Likewise, it is difficult to imagine per-
forming bitwise comparisons between two Invoice objects. The following chart lists the various opera-
tors that can be overloaded:

Operators Meaning

=, <> Equality and inequality. These are binary operators to support the a = b
and a <> b syntax. If you implement one, you must implement both.

>, < Greater than and less than. These are binary operators to support the a > b
and a < b syntax. If you implement one, you must implement both.

>=, <= Greater than or equal and less than or equal. These are binary operators to
support the a >= b and a <= b syntax. If you implement one, you must
implement both.

IsFalse, IsTrue Boolean conversion. These are unary operators to support the AndAlso and
OrElse statements. The IsFalse operator accepts a single object and
returns False if the object can be resolved to a False value. The IsTrue
operator accepts a single value and returns True if the object can be
resolved to a True value. If you implement one, you must implement both.

Ctype Type conversion. This is a unary operator to support the CType(a)
statement. The CType operator accepts a single object of another type and
converts that object to the type of our class. This operator must be marked
as Narrowing to indicate that the type is more specific than the original
type or Widening to indicate that the type is broader than the original type.

+, - Addition and subtraction. These operators can be unary or binary. The
unary form exists to support the a += b and a -= b syntax, while the binary
form exists to support a + b and a – b.

*, /, \, ^, Mod Multiplication, division, exponent, and Mod. These are binary operators to
support the a * b, a / b, a \ b, a ^ b, and a Mod b syntax.

& Concatenation. This binary operator supports the a & b syntax. While this
operator is typically associated with String manipulation, the & operator
is not required to accept or return String values and so can be used for
any concatenation operation that is meaningful for your object type.

<<, >> Bit shifting. These binary operators support the a << b and a >> b syntax.
The second parameter of these operators must be a value of type Integer,
which will be the integer value to be bit shifted based on our object value.

And, Or, Xor Logical comparison or bitwise operation. These binary operators support
the a And b, a Or b, and a Xor b syntax. If the operators return Boolean
results, they are performing logical comparisons. If they return results of
other datatypes, then they are performing bitwise operations.

Like Pattern comparison. This binary operator supports the a Like b syntax.

If an operator is meaningful for your datatype, you are strongly encouraged to overload that operator.

127

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 127

Defining AndAlso and OrElse
Notice that neither the AndAlso nor OrElse operators can be directly overloaded. This is so because
these operators use other operators behind the scenes to do their work. To overload AndAlso and
OrElse, you need to overload a set of other operators. Specifically:

AndAlso OrElse

Overload the And operator to accept two Overload the Or operator to accept two parameters of
parameters of your object’s type and to your object’s type and to return a result of your
return a result of your object’s type. object’s type.

Overload IsFalse for your object’s type Overload IsTrue for your object’s type (meaning
(meaning that you can return True or that you can return True or False by evaluating a
False by evaluating a single instance single instance of your object).
of your object).

If these operators are overloaded in your class, then you can use AndAlso and OrElse to evaluate state-
ments that involve instances of your class.

Delegates
There are times when it would be nice to be able to pass a procedure as a parameter to a method. The
classic case is when building a generic sort routine, where you not only need to provide the data to be
sorted, but you need to provide a comparison routine appropriate for the specific data.

It is easy enough to write a sort routine that sorts Person objects by name or to write a sort routine that
sorts SalesOrder objects by sales date. However, if you want to write a sort routine that can sort any
type of object based on arbitrary sort criteria, that gets pretty difficult. At the same time, since some sort
routines can get very complex, it would be nice to reuse that code without having to copy and paste it
for each different sort scenario.

By using delegates, you can create such a generic routine for sorting, and in so doing, you can see how
delegates work and can be used to create many other types of generic routines.

The concept of a delegate formalizes the process of declaring a routine to be called and calling that
routine.

The underlying mechanism used by the .NET environment for callback methods is the delegate. Visual
Basic uses delegates behind the scenes as it implements the Event, RaiseEvent, WithEvents, and
Handles keywords.

Declaring a Delegate
In your code, you can declare what a delegate procedure must look like from an interface standpoint.
This is done using the Delegate keyword. To see how this can work, let’s create a routine to sort any
kind of data.

128

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 128

To do this, you’ll declare a delegate that defines a method signature for a method that compares the
value of two objects and returns a Boolean indicating whether the first object has a larger value than the
second object. You’ll then create a sort algorithm that uses this generic comparison method to sort data.
Finally, you’ll create an actual method that implements the comparison, and you’ll pass the address of
that method to the sort routine.

Add a new module to the project by choosing the Project ➪ Add Module menu option. Name the mod-
ule Sort.vb, and then add the following code:

Module Sort

Public Delegate Function Compare(ByVal v1 As Object, ByVal v2 As Object) _
As Boolean

End Module

This line of code does something interesting. It actually defines a method signature as a datatype. This
new datatype is named Compare, and it can be used within the code to declare variables or parameters
that will be accepted by your methods. A variable or parameter declared using this datatype can actually
hold the address of a method that matches the defined method signature, and you can then invoke that
method by using the variable.

Any method with the signature:

f (Object, Object)

can be viewed as being of type Compare.

Using the Delegate Datatype
You can write a routine that accepts this datatype as a parameter, meaning that anyone calling your rou-
tine must pass us the address of a method that conforms to this interface. Add the following sort routine
to the code module:

Public Sub DoSort(ByVal theData() As Object, ByVal greaterThan As Compare)
Dim outer As Integer
Dim inner As Integer
Dim temp As Object

For outer = 0 To UBound(theData) — 1
For inner = outer + 1 To UBound(theData)

If greaterThan.Invoke(theData(outer), theData(inner)) Then
temp = theData(outer)
theData(outer) = theData(inner)
theData(inner) = temp

End If
Next

Next
End Sub

129

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 129

The GreaterThan parameter is a variable that holds the address of a method matching the method sig-
nature defined by the Compare delegate. The address of any method with a matching signature can be
passed as a parameter to our Sort routine.

Note the use of the Invoke method, which is the way that a delegate is called from the code. Also note
that the routine deals entirely with the generic System.Object datatype rather than with any specific
type of data. The specific comparison of one object to another is left to the delegate routine that is passed
in as a parameter.

Implementing a Delegate Method
All that remains is to actually create the implementation of the delegate routine and call the sort method.
On a very basic level, all you need to do is create a method that has a matching method signature. For
instance, you could create a method such as:

Public Function PersonCompare(ByVal person1 As Object, _
ByVal person2 As Object) As Boolean

End Function

The method signature of this method exactly matches that which you defined by our delegate earlier:

Compare(Object, Object)

In both cases, you’re defining two parameters of type Object.

Of course, there’s more to it than simply creating the stub of a method. The method needs to return a
value of True if its first parameter is greater than the second parameter. Otherwise, it should be written
to deal with some specific type of data.

The Delegate statement defines a datatype based on a specific method interface. To call a routine that
expects a parameter of this new datatype, it must pass us the address of a method that conforms to the
defined interface.

To conform to the interface, a method must have the same number of parameters with the same
datatypes as were defined in our Delegate statement. In addition, the method must provide the same
return type as defined. The actual name of the method doesn’t matter; it is the number, order, and
datatype of the parameters and the return value that count.

To find the address of a specific method, you can use the AddressOf operator. This operator returns the
address of any procedure or method, allowing you to pass that value as a parameter to any routine that
expects a delegate as a parameter.

The Person class already has a shared method named CompareAge that generally does what you want.
Unfortunately, it accepts parameters of type Person rather than of type Object as required by the
Compare delegate. You can use method overloading to solve this problem.

130

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 130

Create a second implementation of CompareAge that accepts parameters of type Object as required by
the delegate, rather than of type Person as you have in the existing implementation:

Public Shared Function CompareAge(ByVal person1 As Object, _
ByVal person2 As Object) As Boolean

Return CType(person1, Person).Age > CType(person2, Person).Age

End Function

This method simply returns True if the first Person object’s age is greater than the second’s. The routine
accepts two Object parameters rather than specific Person type parameters, so you have to use the
CType() method to access those objects as type Person. You accept the parameters as type Object
because that is what is defined by the Delegate statement. You are matching its method signature:

f(Object, Object)

Since this method’s parameter datatypes and return value match the delegate, you can use it when call-
ing the sort routine. Place a button on the form and write the following code behind that button:

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles button2.Click

Dim myPeople(4) As Person

myPeople(0) = New Person(“Fred”, #7/9/1960#)
myPeople(1) = New Person(“Mary”, #1/21/1955#)
myPeople(2) = New Person(“Sarah”, #2/1/1960#)
myPeople(3) = New Person(“George”, #5/13/1970#)
myPeople(4) = New Person(“Andre”, #10/1/1965#)

DoSort(myPeople, AddressOf Person.CompareAge)
End Sub

This code creates an array of Person objects and populates them. It then calls the DoSort routine from
the module, passing the array as the first parameter and the address of the shared CompareAge method
as the second. To display the contents of the sorted array in the IDE’s output window, you can add the
following code:

Private Sub button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles button2.Click

Dim myPeople(4) As Person

myPeople(0) = New Person(“Fred”, #7/9/1960#)
myPeople(1) = New Person(“Mary”, #1/21/1955#)
myPeople(2) = New Person(“Sarah”, #2/1/1960#)
myPeople(3) = New Person(“George”, #5/13/1970#)
myPeople(4) = New Person(“Andre”, #10/1/1965#)

DoSort(myPeople, AddressOf Person.CompareAge)

131

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 131

Dim myPerson As Person

For Each myPerson In myPeople
System.Diagnostics.Debug.WriteLine(myPerson.Name & “ “ & myPerson.Age)

Next
End Sub

When you run the application and click the button, the output window will display a list of the people,
sorted by age as shown in Figure 4-4.

Figure 4-4

What makes this whole thing very powerful is that you can change the comparison routine without
changing the sort mechanism. Simply add another comparison routine to the Person class:

Public Shared Function CompareName(ByVal person1 As Object, _
ByVal person2 As Object) As Boolean

Return CType(person1, Person).Name > CType(person2, Person).Name

End Function

and then change the code behind the button on the form to use that alternate comparison routine:

Private Sub button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles button2.Click

Dim myPeople(4) As Person

myPeople(0) = New Person(“Fred”, #7/9/1960#)
myPeople(1) = New Person(“Mary”, #1/21/1955#)
myPeople(2) = New Person(“Sarah”, #2/1/1960#)
myPeople(3) = New Person(“George”, #5/13/1970#)
myPeople(4) = New Person(“Andre”, #10/1/1965#)

DoSort(myPeople, AddressOf Person.CompareName)

Dim myPerson As Person

For Each myPerson In myPeople

132

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 132

System.Diagnostics.Debug.WriteLine(myPerson.Name & “ “ & myPerson.Age)
Next

End Sub

When you run this updated code, you’ll find that the array contains a set of data sorted by name rather
than by age, as shown in Figure 4-5.

Figure 4-5

Simply by creating a new compare routine and passing it as a parameter, you can entirely change the
way that the data is sorted. Better still, this sort routine can operate on any type of object, as long as you
provide an appropriate delegate method that knows how to compare that type of object.

Classes versus Components
Visual Basic has another concept that is very similar to a class, the component. In fact, you can pretty
much use a component and a class interchangeably, though there are some differences, which will be
discussed.

A component is really little more than a regular class, but it is one that supports a graphical designer
within the Visual Basic IDE. This means that you can use drag and drop to provide the code in the com-
ponent with access to items from the Server Explorer or from the toolbox.

To add a component to a project, select the Project ➪ Add Component menu option, give the component
a name, and click Open in the Add New Item dialog box.

When you add a class to the project, you are presented with the Code window. When you add a compo-
nent, you are presented with a graphical designer surface, much like what you’d see when adding a Web
form to the project.

If you switch to the code view (by right-clicking in the Designer view and choosing View Code), you
will see the code that is created automatically, just as it is with a Windows form, Web form, or regular
class:

Public Class Component1

End Class

133

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 133

This isn’t a lot more code than you’d see with a regular class, though there are differences behind the
scenes. A component uses the same partial class technology as Windows Forms or Web Forms. This
means that the code here is only part of the total code in the class. The rest of the code is hidden behind
the designer’s surface and is automatically created and managed by Visual Studio.

In the designer code is an Inherits statement that makes every component inherit from System
.ComponentModel.Component. While Chapters 6 and 7 discuss the concepts of inheritance, it is impor-
tant to note here that this Inherits line is what brings in all the support for the graphical designer in
VS.NET.

The designer also manages any controls or components that are dropped on the designer. Those controls
or components are automatically made available to your code. For instance, if you drag and drop a
Timer control from the Windows Forms tab of the toolbox onto the component, it will be displayed in
the designer.

From here, you can set its properties using the standard Properties window in the IDE, just as you
would for a control on a form. Using the Properties window, set the Name property to theTimer. You
now automatically have access to a Timer object named theTimer, simply by dragging and dropping
and setting some properties.

This means that you can write code within the component, just as you might in a class, to use this object:

Public Sub Start()
theTimer.Enabled = True

End Sub

Public Sub [Stop]()
theTimer.Enabled = False

End Sub

Private Sub theTimer_Tick(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles theTimer.Tick

‘ do work
End Sub

For the most part, you can use a component interchangeably with a basic class, but the use of a compo-
nent also provides some of the designer benefits of working with Windows Forms or Web Forms.

Summary
Visual Basic offers a fully object-oriented language with all the capabilities you would expect. In this
chapter, you’ve explored the basic concepts around classes and objects, as well as the separation of inter-
face from implementation and data.

You’ve seen how to use the Class keyword to create classes, and how those classes can be instantiated
into specific objects, each one an instance of the class. These objects have methods and properties that
can be invoked by the client code, and can act on data within the object stored in member or instance
variables.

134

Chapter 4

07_575368 ch04.qxd 10/7/05 10:50 PM Page 134

You also explored some more advanced concepts, including method overloading, shared or static vari-
ables and methods, and the use of delegates. Finally, the chapter wrapped up with a brief discussion
of attributes and how they can be used to affect the interaction of classes or methods with the .NET
environment.

Chapter 5 continues the discussion of object syntax as you explore the concept of inheritance and all the
syntax that enables inheritance within Visual Basic. You will also walk through the creation, implemen-
tation, and use of multiple interfaces — a powerful concept that allows objects to be used in different
ways, depending on the interface chosen by the client application.

Chapter 6 explores the .NET Common Language Runtime. Since the .NET platform and runtime are
object-oriented at their very core, this chapter looks at how objects interact with the runtime environ-
ment. This chapter looks at topics such as using and disposing of objects and memory management.

Then Chapter 7 will wrap up the discussion of objects and object-oriented programming by applying
all of this syntax. It will discuss the key object-oriented concepts of abstraction, encapsulation, polymor-
phism, and inheritance and show how they all tie together to provide a powerful way of designing and
implementing applications.

135

Object Syntax Introduction

07_575368 ch04.qxd 10/7/05 10:50 PM Page 135

07_575368 ch04.qxd 10/7/05 10:50 PM Page 136

Inheritance and Interfaces

Visual Basic is a fully object-oriented language. Chapter 4 covered the basics of creating classes
and objects, including the creation of methods, properties, events, operators, and instance vari-
ables. You’ve seen the basic building blocks for abstraction, encapsulation, and polymorphism —
concepts discussed in more detail in Chapter 7. The final major techniques you need to cover are
inheritance and the use of multiple interfaces.

Inheritance is the idea that you can create a class that reuses methods, properties, events, and vari-
ables from another class. You can create a class with some basic functionality, then use that class
as a base from which to create other, more detailed, classes. All these classes will have the same
common functionality as that base class, along with new, enhanced or even completely changed
functionality.

This chapter will cover the syntax that supports inheritance within Visual Basic. This includes
creating the base classes from which other classes can be derived, as well as creating those derived
classes.

Visual Basic also supports a related concept, multiple interfaces. You’ve already seen in Chapter 4
that all objects have a native or default interface, which is defined by the public methods, proper-
ties, and events declared in the class. In the .NET environment, an object can have other interfaces
in addition to this native interface; in other words, .NET objects can have multiple interfaces.

These secondary interfaces define alternate ways in which your object can be accessed by provid-
ing clearly defined sets of methods, properties, and events. Like the native interface, these sec-
ondary interfaces define how the client code can interact with your object, essentially providing a
“contract” that allows the client to know exactly what methods, properties, and events the object
will provide. When you write code to interact with an object, you can choose which of the inter-
faces you want to use; basically you’re choosing how you want to view or interact with that object.

You’ll be using relatively basic code examples so that you can focus on the technical and syntactic
issues surrounding inheritance and multiple interfaces. In Chapter 7, you’ll revisit these concepts
using a more sophisticated set of code as you continue to explore object-oriented programming
and how to apply inheritance and multiple interfaces in a practical manner.

08_575368 ch05.qxd 10/7/05 10:47 PM Page 137

Inheritance
Inheritance is the concept that a new class can be based on an existing class, inheriting its interface and
functionality from the original class. In Chapter 4, you explored the relationship between a class and an
object, where the class is essentially a template from which objects can be created.

While this is very powerful, it doesn’t provide all the capabilities you might like. In particular, there are
many cases where a class only partially describes what you need for your object. You may have a class
called Person, for instance, which has all the properties and methods that apply to all types of people,
things like first name, last name, and birth date. While useful, this class probably doesn’t have every-
thing you need to describe a specific type of person, such as an employee or a customer. An employee
would have a hire date and a salary, which are not included in Person, while a customer would have
a credit rating, something neither the Person nor Employee classes would need.

Without inheritance, you’d probably end up replicating the code from the Person class in both the
Employee and Customer classes so that they’d have that same functionality as well as the ability to
add new functionality of their own.

Inheritance makes it very easy to create classes for Employee, Customer, and so forth. You don’t have
to recreate that code for an employee to be a person; it automatically gets any properties, methods, and
events from the original Person class.

You can think of it this way. When you create an Employee class, which inherits from a Person class,
you are effectively merging these two classes. If you then create an object based on the Employee class,
it not only has the interface (properties, methods, and events) and implementation from the Employee
class, but also has those from the Person class.

While an Employee object represents the merger between the Employee and Person classes, it is impor-
tant to realize that the variables and code contained in each of those classes remain independent. There
are two perspectives you need to understand.

From the outside, the client code that interacts with the Employee object will see a single, unified object
that represents the merger of the Employee and Person classes.

From the inside, the code in the Employee class and the code in the Person class aren’t totally inter-
mixed. Variables and methods that are Private are only available within the class where they were
written. Variables and methods that are Public in one class can be called from the other class. Variables
and methods that are declared as Friend are only available between classes if both classes are in the
same Visual Basic project. As discussed later in the chapter, there is also a Protected scope that is
designed to work with inheritance, but again, this provides a controlled way for one class to interact
with the variables and methods in the other class.

Visual Studio 2005 includes a Class Designer tool that allows you to easily create diagrams of your
classes and their relationships. The Class Designer diagrams are a derivative of a standard notation
called the Universal Modeling Language (UML) that is typically used to diagram the relationships
between classes, objects, and other object-oriented concepts. The Class Designer diagrams more accu-
rately and completely model .NET classes, and so this is the notation that will be used in this chapter.
The relationship between the Person, Employee, and Customer classes is shown in Figure 5-1.

138

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 138

Figure 5-1

Each box in this diagram represents a class; in this case, you have Person, Employee, and Customer
classes. The line from Employee back up to Person, terminating in a triangle, indicates that Employee is
derived from, or inherits from, Person. The same is true for the Customer class.

Chapter 7 discusses in more detail when and how inheritance should be used in software design. This
chapter covers the syntax and programming concepts necessary to implement inheritance. You’ll create
a base Person class and then use that class to create both Employee and Customer classes that inherit
behavior from Person.

Before getting into the implementation, however, it’s necessary to define some basic terms associated
with inheritance. And there are a lot of terms, partly because there are often several ways to say the same
thing, and the various terms are all used quite frequently and interchangeably.

Inheritance, for instance, is also sometimes referred to as generalization. This is so because the class from
which you are inheriting your behavior is virtually always a more general form of your new class. A per-
son is more general than an employee, for instance.

The inheritance relationship is also referred to as an is-a relationship. When you create a Customer class
that inherits from a Person class, that customer is a person. The employee is a person as well. Thus, you
have this is-a relationship. As you’ll see later in this chapter, multiple interfaces can be used to imple-
ment something similar to the is-a relationship, the act-as relationship.

Though we’ll try to be consistent in the use of terminology in this book, it is impor-
tant to note that in other books and articles and online all these terms are used in all
their various permutations.

Person
Class

Customer
Class

Person

Employee
Class

Person

139

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 139

When you create a class using inheritance, it inherits behaviors and data from an existing class. That
existing class is called the base class. It is also often referred to as a superclass or a parent class.

The class you create using inheritance is based on the parent class. It is called a subclass. Sometimes, it is
also called a child class or a derived class. In fact, the process of inheriting from a base class by a subclass
is often referred to as deriving. You are deriving a new class from the base class. The process is also often
called subclassing.

Implementing Inheritance
When you set out to implement a class using inheritance, you must first start with an existing class from
which you will derive your new subclass. This existing class, or base class, may be part of the .NET sys-
tem class library framework, it may be part of some other application or .NET assembly, or you may cre-
ate it as part of your existing application.

Once you have a base class, you can then implement one or more subclasses based on that base class.
Each of your subclasses will automatically have all of the methods, properties, and events of that base
class — including the implementation behind each method, property, and event. Your subclass can
add new methods, properties, and events of its own, extending the original interface with new function-
ality. In addition, a subclass can replace the methods and properties of the base class with its own new
implementation — effectively overriding the original behavior and replacing it with new behaviors.

Essentially, inheritance is a way of merging functionality from an existing class into your new subclass.
Inheritance also defines rules for how these methods, properties, and events can be merged, including
control over how they can be changed or replaced, and how the subclass can add new methods, proper-
ties, and events of its own. This is what you’ll explore as you go forward — what these rules are and
what syntax you use in Visual Basic to make it all work.

Creating a Base Class
Virtually any class you create can act as a base class from which other classes can be derived. In fact,
unless you specifically indicate in the code that your class cannot be a base class, you can derive from it
(you’ll come back to this later).

Create a new Windows Application project in Visual Basic. Then add a class to the project using the
Project ➪ Add Class menu option and name it Person.vb.

You start with the following code:

Public Class Person

End Class

At this point, you technically have a base class, since it is possible to inherit from this class even though
it doesn’t do or contain anything.

You can now add methods, properties, and events to this class as you normally would. All of those inter-
face elements would be inherited by any class you might create based on Person. For instance, add the
following code:

140

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 140

Public Class Person
Private mName As String
Private mBirthDate As Date

Public Property Name() As String
Get

Return mName
End Get
Set(ByVal value As String)

mName = value
End Set

End Property

Public Property BirthDate() As Date
Get

Return mBirthDate
End Get
Set(ByVal value As Date)

mBirthDate = value
End Set

End Property
End Class

This provides a simple method that can be used to illustrate how basic inheritance works. This class can
be represented by the Class Diagram in Figure 5-2.

Figure 5-2

The overall box represents the Person class. In the top section, you have the name of the class. The
next section down contains a list of the instance variables, or fields, of the class with their scope marked
as Private (note the lock icon). The bottom section lists the properties exposed by the class, both
marked as Public. If the class had methods or events, they would be displayed in their own sections
in the diagram.

Creating a Subclass
To implement inheritance, you need to add a new class to your project. Use the Project ➪ Add Class
menu option and add a new class named Employee.vb. You start with the following code:

Person
Class

Fields

mBirthDate
mName

BirthDate
Name

Properties

141

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 141

Public Class Employee
Private mHireDate As Date
Private mSalary As Double

Public Property HireDate() As Date
Get

Return mHireDate
End Get
Set(ByVal value As Date)

mHireDate = value
End Set

End Property

Public Property Salary() As Double
Get

Return mSalary
End Get
Set(ByVal value As Double)

mSalary = value
End Set

End Property
End Class

This is a regular stand-alone class with no explicit inheritance. It can be represented by the following
Class Diagram (see Figure 5-3).

Figure 5-3

Again, you can see the class name, its list of instance variables, and the properties it includes as part of
its interface.

It turns out that, behind the scenes, this class inherits some capabilities from System.Object. In fact,
every class in the entire .NET platform ultimately inherits from System.Object either implicitly or
explicitly. This is why all .NET objects have a basic set of common functionality, including most notably
the GetType method. This is discussed in detail later in the chapter.

Employee
Class

Fields

mHireDate
mSalary

HireDate
Salary

Properties

142

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 142

While having an Employee object with a hire date and salary is useful, it should also have Name and
BirthDate properties just as you implemented in the Person class. Without inheritance, you’d proba-
bly just copy and paste the code from Person directly into the new Employee class, but with inheritance
you can directly reuse the code from the Person class. Let’s make the new class inherit from Person.

The Inherits Keyword
To make Employee a subclass of Person, you just need to add a single line of code:

Public Class Employee
Inherits Person

The Inherits keyword is used to indicate that a class should derive from an existing class, inheriting
interface and behavior from that class. You can inherit from almost any class in your project, or from the
.NET system class library or from other assemblies. It is possible to prevent inheritance, something we’ll
discuss later in the chapter. When using the Inherits keyword to inherit from classes outside the cur-
rent project, you need to either specify the namespace that contains that class or have an Imports state-
ment at the top of the class to import that namespace for your use.

The diagram in Figure 5-4 illustrates the fact that the Employee class is now a subclass of Person.

Figure 5-4

The line running from Employee back up to Person ends in an open triangle, which is the symbol for
inheritance. It is this line that indicates that the Employee class also includes all the functionality and the
interface from Person.

This means that an object created based on the Employee class will not only have the methods
HireDate and Salary, but will also have Name and BirthDate.

To test this, bring up the designer for Form1 (which is automatically part of your project, since you
created a Windows Application project) and add the following TextBox controls along with a button to
the form.

Person
Class

Employee
Class

Person

143

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 143

Control Type Name Text Value

TextBox txtName <blank>

TextBox txtBirthDate <blank>

TextBox txtHireDate <blank>

TextBox txtSalary <blank>

button btnOK OK

You can also add some labels to make the form more readable. The Form Designer should now look
something like Figure 5-5.

Figure 5-5

Double-click the button to bring up the code window, and enter the following code:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim emp As New Employee()

With emp
.Name = “Fred”
.BirthDate = #1/1/1960#
.HireDate = #1/1/1980#
.Salary = 30000

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, “Short date”)
txtHireDate.Text = Format(.HireDate, “Short date”)
txtSalary.Text = Format(.Salary, “$0.00”)

End With
End Sub

The best Visual Basic practice is to use the With keyword. However, be aware that this might cause
issues with portability and converting code to other languages.

144

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 144

Even though Employee doesn’t directly implement Name or BirthDate methods, they are available for
use through inheritance. If you run this application and click the button, your controls will be populated
with the values from the Employee object.

When the code in Form1 invokes the Name property on the Employee object, the code from the Person
class is executed, since the Employee class has no such method built in. However, when the HireDate
property is invoked on the Employee object, the code from the Employee class is executed, since it does
have that method as part of its code.

From the form’s perspective, it doesn’t matter whether a method is implemented in the Employee class
or the Person class, they are all simply methods of the Employee object. Also, since the code in these
classes is merged to create the Employee object, there is no performance difference between calling a
method implemented by the Employee class or a method implemented by the Person class.

Overloading Methods
Although your Employee class automatically gained the Name and BirthDate methods through inheri-
tance, it also has methods of its own —HireDate and Salary. This shows how you’ve extended the
base Person interface by adding methods and properties to the Employee subclass.

You can add new properties, methods, and events to the Employee class, and they will be part of any
object created based on Employee. This has no impact on the Person class whatsoever, only on the
Employee class and Employee objects.

You can even extend the functionality of the base class by adding methods to the subclass that have
the same name as methods or properties in the base class, as long as those methods or properties have
different parameter lists. You are effectively overloading the existing methods from the base class. It is
essentially the same thing as overloading regular methods as discussed in Chapter 4.

For example, your Person class is currently providing your implementation for the Name property.
Employees may have other names you also want to store, perhaps an informal name and a very formal
name in addition to their normal name. One way to accommodate this requirement is to change the
Person class itself to include an overloaded Name property that supports this new functionality. However,
you’re really only trying to enhance the Employee class, not the more general Person class. So, what
you want is a way to add an overloaded method to the Employee class itself, even though you’re over-
loading a method from its base class.

Overloading a method from a base class is done by using the Overloads keyword. The concept is the
same as we discussed in Chapter 4, but in this case an extra keyword is involved. To overload the Name
property, for instance, you can add a new property to the Employee class. First though, let’s define an
enumerated type using the Enum keyword. This Enum will list the different types of name you want to
store. Add this Enum to the Employee.vb file, before the declaration of the class itself:

Public Enum NameTypes
Informal = 1
Formal = 2

End Enum
Public Class Employee

145

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 145

You can then add an overloaded Name property to the Employee class itself:

Public Class Employee
Inherits Person

Private mHireDate As Date
Private mSalary As Double
Private mNames As New Generic.Dictionary(Of NameTypes, String)

Public Overloads Property Name(ByVal type As NameTypes) As String
Get

Return mNames(type)
End Get
Set(ByVal value As String)

If mNames.ContainsKey(type) Then
mNames.Item(type) = value

Else
mNames.Add(type, value)

End If
End Set

End Property

This Name property is actually a property array, allowing you to store multiple values via the same prop-
erty. In this case, you’re storing the values in a Generic.Dictionary(Of K, V) object, which is indexed
by using the Enum value you just defined. Chapter 8 will discuss generics in detail. For now, you can
view this generic Dictionary just like any collection object that stores key/value data.

If you omit the Overloads keyword here, your new implementation of the Name method will shadow
the original implementation. Shadowing is a very different thing from overloading and is a topic cov-
ered later in the chapter.

Though this method has the same name as the method in the base class, the fact that it accepts a different
parameter list allows you to use overloading to implement it here. The original Name property, as imple-
mented in the Person class, remains intact and valid, but now you’ve added a new variation with this
second Name property. This is shown by Figure 5-6.

The diagram clearly indicates that the Name method in the Person class and the Name method in the
Employee class both exist. If you hover over each Name property you’ll see a tooltip showing the method
signatures, making it very clear that each one has a different signature.

You can now change Form1 to make use of this new version of the Name property. First, add a couple of
new text box controls and associated labels. The text box controls should be named txtFormal and
txtInformal, and the form should now look like the one shown in Figure 5-7.

Now double-click the button to bring up the code window and add code to work with the overloaded
version of the Name property.

146

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 146

Figure 5-6

Figure 5-7

Person
Class

Fields

mBirthDate
mName

BirthDate
Name

Properties

Person
Class

Class

Fields

mHireDate

mNames

mSalary

HireDate

Name

Salary

Properties

NameTypes
Enum

147

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 147

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim emp As New Employee()

With emp
.Name = “Fred”
.Name (NameTypes.Formal) = “Mr. Frederick R. Jones, Sr.”
.Name (NameTypes.Informal) = “Freddy”
.BirthDate = #1/1/1960#
.HireDate = #1/1/1980#
.Salary = 30000

txtName.Text = .Name
txtFormal.Text = .Name (NameTypes.Formal)
txtInformal.Text = .Name (NameTypes.Informal)
txtBirthDate.Text = Format(.BirthDate, “Short date”)
txtHireDate.Text = Format(.HireDate, “Short date”)
txtSalary.Text = Format(.Salary, “$0.00”)

End With
End Sub

As you can see, the code still interacts with the original Name property as implemented in the Person
class, but you are now also invoking the overloaded version of the property that is implemented in the
Employee class.

Overriding Methods
So far, you’ve seen how to implement a base class and then use it to create a subclass. Finally, you extended
the interface by adding methods. You’ve also explored how to use overloading to add methods that have
the same name as methods in the base class, but with different parameters.

However, there are times when you may want not only to extend the original functionality, but also to
actually change or entirely replace the functionality from the base class. Instead of leaving the existing
functionality and just adding new methods or overloaded versions of those methods, you might want to
entirely override the existing functionality with your own.

You can do exactly this. If the base class allows it, you can substitute your own implementation of a
method in the base class — meaning that your new implementation will be used instead of the original.

The Overridable Keyword
By default, you can’t override the behavior of methods on a base class. The base class must be coded
specifically to allow this to occur by using the Overridable keyword. This is important, since you may
not always want to allow a subclass to entirely change the behavior of the methods in your base class.
However, if you do wish to allow the author of a subclass to replace your implementation, you can do so
by adding the Overridable keyword to your method declaration.

Returning to your Employee example, you may not like the implementation of the BirthDate method
as it stands in the Person class. Say, for instance, that you can’t employ anyone younger than 16 years of
age, so any birth date value more recent than 16 years ago is invalid for an employee.

148

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 148

To implement this business rule, you need to change the way the BirthDate property is implemented.
While you could make this change directly in the Person class, that would not be ideal. It is perfectly
acceptable to have a person under age 16, just not an employee.

Open the code window for the Person class and change the BirthDate property to include the
Overridable keyword.

Public Overridable Property BirthDate() As Date
Get

Return mBirthDate
End Get
Set(ByVal value As Date)

mBirthDate = value
End Set

End Property

This change allows any class that inherits from Person to entirely replace the implementation of the
BirthDate property with a new implementation.

By adding the Overridable keyword to your method declaration, you are indicating that you want to
allow any subclass to override the behavior provided by this method. This means that you are giving
permission for a subclass to totally ignore your implementation, or to extend your implementation by
doing other work before or after your implementation is run.

If the subclass doesn’t override this method, the method will work just like a regular method and will
be automatically included as part of the subclass’s interface. Putting the Overridable keyword on a
method simply allows a subclass to override the method if you choose to have it do so.

The Overrides Keyword
In a subclass, you override a method by implementing a method of the same name, and with the same
parameter list as the base class, and then using the Overrides keyword to indicate that you are overrid-
ing that method.

This is different from overloading, since when you overload a method you’re adding a new method with
the same name but a different parameter list. When you override a method, you’re actually replacing the
original method with a new implementation.

Without the Overrides keyword, you’ll get a compilation error when you implement a method with
the same name as one from the base class.

Open the code window for the Employee class and add a new BirthDate property:

Public Class Employee
Inherits Person

Private mHireDate As Date
Private mSalary As Double
Private mBirthDate As Date

Private mNames As New Generic.Dictionary(Of NameTypes, String)

149

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 149

Public Overrides Property BirthDate() As Date
Get

Return mBirthDate
End Get
Set(ByVal value As Date)

If DateDiff(DateInterval.Year, Value, Now) >= 16 Then
mBirthDate = value

Else
Throw New ArgumentException(_

“An employee must be at least 16 years old”)
End If

End Set
End Property

Since you’re implementing your own version of the property, you have to declare a variable to store that
value within the Employee class. This is not ideal, and there are a couple of ways around it, including
the MyBase keyword and the Protected scope.

Notice also that you’ve enhanced the functionality in the Set block, so it now raises an error if the new
birth date value would make the employee be less than 16 years of age. With this code, you’ve now
entirely replaced the original BirthDate implementation with a new one that enforces your business
rule. This is shown in Figure 5-8.

The diagram now includes a BirthDate method in the Employee class. While perhaps not entirely
intuitive, this is how the Class Diagram indicates that you’ve overridden the method. If you hover the
mouse over the property in the Employee class, the tooltip will show the method signature, including
the Overrides keyword.

If you now run your application and click the button on the form, everything should work as it did
before. This is so because the birth date you’re supplying conforms to your new business rule. However,
you can change the code in your form to use an invalid birth date.

With emp
.Name = “Fred”
.Name(NameTypes.Formal) = “Mr. Frederick R. Jones, Sr.”
.Name(NameTypes.Informal) = “Freddy”
.BirthDate = #1/1/2000#

When you run the application (from within Visual Studio .NET) and click the button, you’ll get an error
indicating that the birth date is invalid. This proves that you are now using the implementation of the
BirthDate method from the Employee class rather than the one from the Person class.

Change the date value in the form back to a valid value so that your application runs properly.

The MyBase Keyword
You’ve just seen how you can entirely replace the functionality of a method in the base class by overrid-
ing it in your subclass. However, this can be somewhat extreme; sometimes it would be preferable to
override methods so that you extend the base functionality rather than replacing the functionality.

150

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 150

Figure 5-8

To do this, you need to override the method using the Overrides keyword as you just did, but within
your new implementation you can still invoke the original implementation of the method. This allows
you to add your own code before or after the original implementation is invoked — meaning that you
can extend the behavior, while still leveraging the code in the base class.

To invoke methods directly from the base class, you can use the MyBase keyword. This keyword is avail-
able within any class, and it exposes all the methods of the base class for your use.

Even a base class like Person is an implicit subclass of System.Object, and so it can use MyBase to
interact with its base class as well.

This means that within the BirthDate implementation in Employee, you can invoke the BirthDate
implementation in the base Person class. This is ideal, since it means that you can leverage any existing
functionality provided by Person, while still enforcing your Employee-specific business rules.

To take advantage of this, you can enhance the code in the Employee implementation of BirthDate.
First, remove the declaration of mBirthDate from the Employee class. You won’t need this variable any
longer, since the Person implementation will keep track of the value on your behalf. Then, change the
BirthDate implementation in the Employee class as follows:

Person
Class

Fields

mBirthDate
mName

BirthDate
Name

Properties

Person
Class

Class

Fields

mHireDate

mNames

mSalary

BirthDate

HireDate

Name

Salary

Properties

NameTypes
Enum

151

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 151

Public Overrides Property BirthDate() As Date
Get

Return MyBase.BirthDate
End Get
Set(ByVal value As Date)

If DateDiff(DateInterval.Year, Value, Now) >= 16 Then
MyBase.BirthDate = value

Else
Throw New ArgumentException(_

“An employee must be at least 16 years old”)
End If

End Set
End Property

You can now run your application and you’ll see that it works just fine even though the Employee class
no longer contains any code to actually keep track of the birth date value. You’ve effectively merged the
BirthDate implementation from Person right into your enhanced implementation in Employee, creat-
ing a hybrid version of the property.

We’ll discuss the MyBase keyword in some more depth later in the chapter. Here, you’ve seen how it can
allow you to enhance or extend the functionality of the base class by adding your own code in the sub-
class but still invoking the base class method when appropriate.

Virtual Methods
The BirthDate method is an example of a virtual method. Virtual methods are those that can be over-
ridden and replaced by subclasses.

Virtual methods are more complex to understand than regular nonvirtual methods. With a nonvirtual
method, there is only one implementation that matches any given method signature, so there’s no ambi-
guity about which specific method implementation will be invoked. With virtual methods, however,
there may be several implementations of the same method, with the same method signature, so you
need to understand the rules that govern which specific implementation of that method will be called.

When working with virtual methods, you need to keep in mind that the datatype of the object is used to
determine the implementation of the method to call, rather than the type of the variable that refers to the
object.

If you look at the code you’ve written in your form, you can see that you’re declaring an object variable
of type Employee, and you are then creating an Employee object that you can reference via that object.

Dim emp As New Employee()

It is not surprising, then, that you are able to invoke any of the methods that are implemented as part of the
Employee class, and through inheritance, any of the methods implemented as part of the Person class:

With emp
.Name = “Fred”
.Name(NameTypes.Formal) = “Mr. Frederick R. Jones, Sr.”
.Name(NameTypes.Informal) = “Freddy”
.BirthDate = #1/1/1960#

152

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 152

.HireDate = #1/1/1980#

.Salary = 30000

When you call the BirthDate property, you know that you’re invoking the implementation contained
in the Employee class, which makes sense since you know that you’re using a variable of type Employee
to refer to an object of type Employee.

However, because your methods are virtual methods, you can experiment with some much more inter-
esting scenarios. For instance, suppose that you change the code in your form to interact directly with an
object of type Person instead of one of type Employee:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As New Person()

With person
.Name = “Fred”
.BirthDate = #1/1/1960#

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, “Short date”)

End With
End Sub

You can no longer call the methods implemented by the Employee class, because they don’t exist as part of
a Person object, but only as part of an Employee object. However, you can see that both the Name and
BirthDate properties continue to function as you’d expect. When you run the application now, it will
work just fine. You can even change the birth date value to something that would be invalid for Employee.

.BirthDate = #1/1/2000#

The application will now accept it and work just fine, since the BirthDate method you’re invoking is
the original version from the Person class.

These are the two simple scenarios, when you have a variable and object of type Employee or a variable
and object of type Person. However, since Employee is derived from Person, you can do something a
bit more interesting. You can use a variable of type Person to hold a reference to an Employee object.

Because of this, you can change the code in Form1 as follows:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Person
person = New Employee()
With person

.Name = “Fred”

.BirthDate = #1/1/2000#

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, “Short date”)

End With
End Sub

153

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 153

What you’re doing now is declaring your variable to be of type Person, but the object itself is an instance
of the Employee class. You’ve done something a bit complex here, since the datatype of the variable is
not the same as the datatype of the object itself. It is important to remember that a variable of a base class
type can always hold a reference to an object of any subclass.

This technique is very useful when creating generic routines and makes use of an object-oriented con-
cept called polymorphism, which is discussed more thoroughly in Chapter 7. This technique allows you
to create a more general routine that populates your form for any object of type Person. Add this code
to the form:

Private Sub DisplayPerson(ByVal thePerson As Person)
With thePerson

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, “Short date”)

End With
End Sub

Now, you can change the code behind the button to make use of this generic routine:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Person
person = New Employee()

With person
.Name = “Fred”
.BirthDate = #1/1/2000#

End With

DisplayPerson(person)
End Sub

The benefit here is that you can pass a Person object or an Employee object to DisplayPerson and the
routine will work the same either way.

When you run the application now, things get interesting. You’ll get an error when you attempt to set
the BirthDate property because it breaks your 16-year-old business rule, which is implemented in the
Employee class. How can this be when your person variable is of type Person?

This clearly demonstrates the concept of a virtual method. It is the datatype of the object, in this case
Employee, that is important. The datatype of the variable is not the deciding factor when choosing
which implementation of an overridden method is invoked.

This is the reason that a variable of type System.Object can hold a reference to lit-
erally anything in .NET Framework, because all classes are ultimately derived from
System.Object.

154

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 154

The following table shows which method is actually invoked based on the variable and object datatypes
when working with virtual methods.

Variable Type Object Type Method Invoked

Base Base Base

Base Subclass Subclass

Subclass Subclass Subclass

Virtual methods are very powerful and useful when you go to implement polymorphism using inheri-
tance. A base class datatype can hold a reference to any subclass object, but it is the type of that specific
object which determines the implementation of the method. Because of this you can write generic rou-
tines that operate on many types of object as long as they derive from the same base class. We’ll discuss
how to make use of polymorphism and virtual methods in more detail in Chapter 7.

Overriding Overloaded Methods
Earlier, you wrote code in your Employee class to overload the Name method in the base Person class.
This allowed you to keep the original Name functionality, but also extend it by adding another Name
method that accepted a different parameter list.

You’ve also overridden the BirthDate method. The implementation in the Employee class replaced the
implementation in the Person class. Overriding is a related, but different concept from overloading. It is
also possible to both overload and override a method at the same time.

In the earlier overloading example, you added a new Name property to the Employee class, while retain-
ing the functionality present in the base Person class. You may decide that you not only want to have
your second overloaded implementation of the Name method, but also want to replace the existing one
by overriding the existing method provided by the Person class.

In particular, you may want to do this so that you can store the Name value in the Hashtable object
along with your Formal and Informal names.

Before you can override the Name method, you need to add the Overridable keyword to the base
implementation in the Person class.

Public Overridable Property Name() As String
Get

Return mName
End Get
Set(ByVal value As String)

mName = value
End Set

End Property

With that done, the Name method can now be overridden by any derived classes. In the Employee class,
you can now override the Name method, replacing the functionality provided by the Person class. First,
you’ll add a Normal option to the Enum that controls the types of Name value you can store.

155

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 155

Public Enum NameTypes
Informal = 1
Formal = 2
Normal = 3

End Enum

Then, you can add code to the Employee class to implement a new Name property. This is in addition to
the existing Name property already implemented in the Employee class:

Public Overloads Overrides Property Name() As String
Get

Return Name(NameTypes.Normal)
End Get
Set(ByVal value As String)

Name(NameTypes.Normal) = value
End Set

End Property

Notice that you’re using both the Overrides keyword, to indicate that you’re overriding the Name
method from the base class, and the Overloads keyword to indicate that you’re overloading this
method in the subclass.

This new Name property merely delegates the call to the existing version of the Name property that han-
dles the parameter-based names. To complete the linkage between this implementation of the Name
property and the parameter-based version, you need to make one more change to that original over-
loaded version:

Public Overloads Property Name(ByVal type As NameTypes) As String
Get

Return mNames(Type)
End Get
Set(ByVal value As String)

If mNames.ContainsKey(type) Then
mNames.Item(type) = value

Else
mNames.Add(type, value)

End If
If type = NameTypes.Normal Then

MyBase.Name = value
End If

End Set
End Property

This way, if the client code sets the Name property by providing the Normal index, you are still updating
the name in the base class as well as in the Dictionary object maintained by the Employee class.

Shadowing
Overloading allows you to add new versions of the existing methods as long as their parameter lists are
different. Overriding allows your subclass to entirely replace the implementation of a base class method
with a new method that has the same method signature. As you’ve just seen, you can even combine

156

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 156

these concepts not only to replace the implementation of a method from the base class but also to simul-
taneously overload that method with other implementations that have different method signatures.

However, any time you override a method using the Overrides keyword, you are subject to the rules
governing virtual methods — meaning that the base class must give you permission to override the
method. If the base class doesn’t use the Overridable keyword, you can’t override the method.
Sometimes you may need to override a method that is not marked as Overridable, and shadowing
allows you to do just that.

The Shadows keyword can also be used to entirely change the nature of a method or other interface ele-
ment from the base class, although that is something which should be done with great care, since it can
seriously reduce the maintainability of your code. Normally, when you create an Employee object, you
expect that it can only act as an Employee, but also as a Person since Employee is a subclass of Person.
However, with the Shadows keyword, you can radically alter the behavior of an Employee class so that
it doesn’t act like a Person. This sort of radical deviation from what is normally expected invites bugs
and makes code hard to understand and maintain.

Shadowing methods is very dangerous and should be used as a last resort. It is primarily useful in cases
where you have a preexisting component such as a Windows Forms control that was not designed for
inheritance. If you absolutely must inherit from such a component, you may need to use shadowing to
“override” methods or properties. There are serious limits and dangers, but it may be your only option.

You’ll explore that in more detail later. First, let’s see how Shadows can be used to override nonvirtual
methods.

Overriding Nonvirtual Methods
Earlier in the chapter, we discussed virtual methods and how they are automatically created in Visual
Basic when the Overrides keyword is employed. You can also implement nonvirtual methods in
Visual Basic. Nonvirtual methods are methods that cannot be overridden and replaced by subclasses,
and so most methods you implement are nonvirtual.

In the typical case, nonvirtual methods are easy to understand. Since they can’t be overridden and
replaced, you know that there’s only one method by that name, with that method signature, so when
you invoke it there is no ambiguity about which specific implementation will be called. The reverse is
true with virtual methods, where there may be more than one method of the same name, and with the
same method signature, and you need to understand the rules governing which implementation will
be invoked.

Of course, nothing is simple, and it turns out that you can override nonvirtual methods by using the
Shadows keyword. In fact, you can use the Shadows keyword to override methods regardless of whether
or not they have the Overridable keyword in the declaration.

If you don’t use the Overridable keyword when declaring a method, it is
nonvirtual.

157

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 157

Obviously, this can be very dangerous. The designer of a base class must be careful when marking a
method as Overridable, ensuring that the base class will continue to operate properly even when that
method is replaced by another code in a subclass. Designers of base classes typically just assume that if
they don’t mark a method as Overridable it will be called and not overridden. Thus, overriding a non-
virtual method by using the Shadows keyword can have unexpected and potentially dangerous side
effects, since you are doing something that the Base Class Designer assumed would never happen.

If that isn’t enough complexity, it turns out that shadowed methods follow different rules from virtual
methods when they are invoked. In other words, they don’t act like regular overridden methods;
instead, they follow a different set of rules to determine which specific implementation of the method
will be invoked. In particular, when you call a nonvirtual method, it is the datatype of the variable that
refers to the object that indicates which implementation of the method is called, not the datatype of the
object as with virtual methods.

To override a nonvirtual method, you can use the Shadows keyword instead of the Overrides keyword.
To see how this works, let’s add a new property to the base Person class:

Public ReadOnly Property Age() As Integer
Get

Return CInt(DateDiff(DateInterval.Year, Now, BirthDate))
End Get

End Property

You’ve added a new method, called Age, to the base class, and thus automatically to the subclass.

This code has a bug, introduced on purpose for illustration. The DateDiff parameters are in the wrong
order, so you’ll get negative age values from this routine. We introduced a bug because sometimes there
are bugs in base classes that you didn’t write and can’t fix because you don’t have the source code. In
this case, you’ll walk through the use of the Shadows keyword to address a bug in your base class, act-
ing under the assumption that for some reason you can’t actually fix the code in the Person class.

Notice that you’re not using the Overridable keyword on this method, so any subclass is prevented
from overriding the method by using the Overrides keyword. The obvious intent and expectation of
this code is that all subclasses will use this implementation and will not override it with their own.

However, the base class cannot prevent a subclass from shadowing a method, and so it doesn’t matter
whether you use Overridable or not, either way works fine for shadowing.

Before you shadow the method, let’s see how it works as a regular nonvirtual method. First, you need to
change your form to use this new value. Add a text box named txtAge and a related label to the form.
Next, change the code behind the button to use the Age property. You’ll also include the code to display
the data on the form right here to keep things simple and clear:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

The Shadows keyword allows you to replace methods on the base class that the Base
Class Designer didn’t intend to be replaced.

158

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 158

Dim person As Employee = New Employee()
With person

.Name = “Fred”

.BirthDate = #1/1/1960#

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, “Short date”)
txtAge.Text = CStr(.Age)

End With

End Sub

Don’t forget to change the birth date value to something that will be valid for an Employee.

At this point, you can run the application and the age field should appear in your display as expected,
though with a negative value due to the bug we introduced. There’s no magic or complexity here. This is
basic programming with objects and basic use of inheritance as discussed at the beginning of this chapter.

Of course, you don’t want a bug in your code, but if you assume you don’t have access to the Person
class, and since the Person class doesn’t allow you to override the Age method, what are you to do? The
answer lies in the Shadows keyword, which allows you to override the method anyway.

Let’s shadow the Age method within the Employee class, overriding and replacing the implementation
in the Person class even though it is not marked as Overridable. Add the following code to the
Employee class:

Public Shadows ReadOnly Property Age() As Integer
Get

Return CInt(DateDiff(DateInterval.Year, BirthDate, Now))
End Get

End Property

In many ways, this looks very similar to what you’ve seen with the Overrides keyword, in that you’re
implementing a method in your subclass with the same name and parameter list as a method in the base
class. In this case, however, you’ll find some different behavior when you interact with the object in dif-
ferent ways.

Technically, the Shadows keyword is not required here. Shadowing is the default behavior when a sub-
class implements a method that matches the name and method signature of a method in the base class.
However, if you omit the Shadows keyword, the compiler will give you a warning indicating that the
method is being shadowed, so it is always better to include the keyword, both to avoid the warning and
to make it perfectly clear that you knew what you were doing when you chose to shadow the method.

Remember that your code in the form is currently declaring a variable of type Employee and is creating
an instance of an Employee object:

Dim person As Employee = New Employee()

This is a simple case, and, surprisingly, when you run the application now you’ll see that the value of the
age field is correct, indicating that you just ran the implementation of the Age property from the Employee
class. At this point, you’re seeing the same behavior that you got from overriding with the Overrides
keyword.

159

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 159

Let’s take a look at the other simple case where you’re working with a variable and object that are both
of datatype Person. Change the code in Form1 as follows:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Person = New Person()

With person
.Name = “Fred”
.BirthDate = #1/1/1960#

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, “Short date”)
txtAge.Text = CStr(.Age)

End With
End Sub

Now, you have a variable of type Person and an object of that same type. You would expect that the
implementation in the Person class would be invoked in this case, and that is exactly what happens; the
age field will display the original negative value, indicating that you’re invoking the buggy implementa-
tion of the method directly from the Person class. Again, this is exactly the behavior you’d expect from
a method overridden via the Overrides keyword.

This next example is where things get truly interesting. Change the code in Form1 as follows:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Person = New Employee()
With person

.Name = “Fred”

.BirthDate = #1/1/1960#

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, “Short date”)
txtAge.Text = CStr(.Age)

End With
End Sub

Now, you are declaring the variable to be of type Person, but you are creating an object that is of datatype
Employee. You did this earlier in the chapter when exploring the Overrides keyword as well, and in that
case you discovered that the version of the method that was invoked was based on the datatype of the
object. The BirthDate implementation in the Employee class was invoked.

If you run the application now, you will find that the rules are different when the Shadows keyword is
used. In this case, the implementation in the Person class is invoked, giving you the buggy negative
value. When the implementation in the Employee class is ignored, you get the exact opposite behavior
of what you got with Overrides.

The following table summarizes which method implementation is invoked based on the variable and
object datatypes when using shadowing.

160

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 160

Variable Object Method Invoked

Base Base Base

Base Subclass Base

Subclass Subclass Subclass

In most cases, the behavior you’ll want for your methods is accomplished by the Overrides keyword
and virtual methods. However, in those cases where the Base Class Designer doesn’t allow you to
override a method and you want to do it anyway, the Shadows keyword provides you with the needed
functionality.

Shadowing Arbitrary Elements
The Shadows keyword can be used not only to override nonvirtual methods, but it can be used to totally
replace and change the nature of a base class interface element. When you override a method, you are
providing a replacement implementation of that method with the same name and method signature.
Using the Shadows keyword, you can do more extreme things, such as changing a method into an
instance variable or changing a Property into a Function.

However, this can be very dangerous, since any code written to use your objects will naturally assume
that you implement all the same interface elements and behaviors as your base class, because that is the
nature of inheritance. Any documentation or knowledge of the original interface is effectively invali-
dated because the original implementation is arbitrarily replaced.

To see how you can replace an interface element from the base class, let’s entirely change the nature of
the Age property. In fact, let’s change it from being a read-only property to being a read-write property.
You could get even more extreme — changing it to a Function or Sub.

To do this, remove the Age property from the Employee class and add the following code:

Public Shadows Property Age() As Integer
Get

Return CInt(DateDiff(DateInterval.Year, BirthDate, Now))
End Get
Set(ByVal value As Integer)

BirthDate = DateAdd(DateInterval.Year, -value, Now)
End Set

End Property

With this change, the very nature of the Age method has changed. It is no longer a simple read-only
property, now it is a read-write property that includes code to calculate an approximate birth date based
on the age value supplied.

By totally changing the nature of an interface element, you can cause a great deal of
confusion for programmers who will be interacting with your class in the future.

161

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 161

As it stands, your application will continue to run just fine. This is so because you’re only using the
read-only functionality of the property in your form. You can change the form to make use of the new
read-write functionality:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Person = New Employee()

With person
.Name = “Fred”
.BirthDate = #1/1/1960#
.Age = 20

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, “Short date”)
txtAge.Text = CStr(.Age)

End With
End Sub

This will, however, leave you with a syntax error. The variable you’re working with, person, is of
datatype Person, and that datatype does not provide a writable version of the Age property. This
means that in order to use your enhanced functionality, you must be using a variable and object of type
Employee:

Dim person As Employee = New Employee()

If you now run the application and click the button, you’ll see that the Age is displayed as 20, and the
birth date is now a value calculated based on that age value, indicating that you are now running the
shadowed version of the Age method as implemented in the Employee class.

As if that weren’t odd enough, you can do some even stranger and more dangerous things. You can
change Age into a variable, and you can even change its scope. For instance, you can comment out the
Age property code in the Employee class and replace it with the following code:

Private Shadows Age As String

At this point, you’ve changed everything. Age is now a String instead of an Integer. It is a variable
instead of a Property or Function. It has Private scope instead of Public scope. Your Employee
object is now totally incompatible with the Person datatype, something that shouldn’t occur normally
when using inheritance.

This means that the code you wrote in Form1 will no longer work. The Age property is no longer accessi-
ble and can no longer be used, and so your project will no longer compile. This directly illustrates the
danger in shadowing a base class element such that its very nature or scope is changed by the subclass.

Since this change prevents your application from compiling, remove the line in the Employee class that
shadows Age as a String variable, and uncomment the shadowed Property routine:

Public Shadows Property Age() As Integer
Get

Return CInt(DateDiff(DateInterval.Year, BirthDate, Now))

162

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 162

End Get
Set(ByVal value As Integer)

BirthDate = DateAdd(DateInterval.Year, -value, Now)
End Set

End Property

This will restore your application to a working state, and you can move on.

Levels of Inheritance
So far, you’ve created a single base class and a single subclass, thus demonstrating that you can imple-
ment inheritance that is a single level deep. However, you can create inheritance relationships that are
several levels deep. These are sometimes referred to as chains of inheritance.

In reality, you’ve been creating a two-level inheritance hierarchy so far, because you know that your
base class actually derived from System.Object, but for most purposes it is easiest to simply ignore
that fact and treat only your classes as part of the inheritance hierarchy.

Multiple Inheritance
Don’t confuse multilevel inheritance with multiple inheritance, which is an entirely different concept
that is not supported by either Visual Basic or the .NET platform itself. The idea behind multiple inheri-
tance is that you can have a single subclass that inherits from two base classes at the same time.

For instance, you may have an application that has a class for Customer and another class for Vendor.
It is quite possible that some customers are also vendors, so you might want to combine the functional-
ity of these two classes into a CustomerVendor class. This new class would be a combination of both
Customer and Vendor, so it would be nice to inherit from both of them at once.

While this is a useful concept, multiple inheritance is complex and somewhat dangerous. There are
numerous problems with multiple inheritance, but the most obvious is that there can be collisions of
properties or methods from the base classes. Suppose that both Customer and Vendor have a Name
property. CustomerVendor would need two Name properties, one for each base class. Yet it only makes
sense to have one Name property on CustomerVendor, so which base class does it link to, and how will
the system operate if it doesn’t link to the other one?

These are complex issues with no easy answers. Within the object-oriented community there is contin-
ual debate as to whether the advantages of code reuse outweigh the complexity that comes along for
the ride.

Multiple inheritance is not supported by the .NET Framework, and so it is likewise not supported by
Visual Basic. However, you can use multiple interfaces to achieve an effect similar to multiple inheri-
tance, a topic we’ll discuss later in the chapter when we talk about implementing multiple interfaces.

Multilevel Inheritance
You’ve seen how a subclass derives from a base class with your Person and Employee classes. However,
there’s nothing to stop the Employee subclass from being the base class for yet another class, a sub-
subclass so to speak. This is not at all uncommon. In your example, you may find that you have differ-
ent kinds of employees, some who work in the office and others who travel.

163

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 163

To accommodate this, you may want to have OfficeEmployee and TravelingEmployee classes. Of
course, these are both examples of an employee and should share the functionality already present in the
Employee class. The Employee class already reuses the functionality from the Person class. Figure 5-9
illustrates how these classes are interrelated.

Figure 5-9

You can see that the Employee is a subclass of Person, and your two new classes are both subclasses of
Employee. While both OfficeEmployee and TravelingEmployee are employees, and thus also peo-
ple, they are each unique. An OfficeEmployee almost certainly has a cube or office number, while a
TravelingEmployee will keep track of the number of miles traveled.

Add a new class to your project and name it OfficeEmployee. To make this class inherit from your
existing Employee class, add the following code to the class:

Public Class OfficeEmployee
Inherits Employee

End Class

With this change, the new class now has Name, BirthDate, Age, HireDate, and Salary methods.
Notice that methods from both Employee and Person are inherited. A subclass always gains all the
methods, properties, and events of its base class.

You can now extend the interface and behavior of OfficeEmployee by adding a property to indicate
which cube or office number the employee occupies:

Person
Class

Employee
Class

Person

NameTypes
Enum

OfficeEmployee
Class

Employee

TravelingEmployee
Class

Employee

164

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 164

Public Class OfficeEmployee
Inherits Employee

Private mOffice As String

Public Property OfficeNumber() As String
Get

Return mOffice
End Get
Set(ByVal value As String)

mOffice = value
End Set

End Property
End Class

To see how this works, let’s enhance your form to display this value. Add a new TextBox control named
txtOffice and an associated label so that your form looks as shown in Figure 5-10.

Figure 5-10

Now, change the code behind the button to make use of the new property:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As OfficeEmployee = New OfficeEmployee()

With person
.Name = “Fred”
.BirthDate = #1/1/1960#
.Age = 20
.OfficeNumber = “A42”

txtName.Text = .Name

165

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 165

txtBirthDate.Text = Format(.BirthDate, “Short date”)
txtAge.Text = CStr(.Age)
txtOffice.Text = .OfficeNumber

End With
End Sub

You’ve changed the routine to declare and create an object of type OfficeEmployee— thus allowing
you to make use of the new property — as well as all existing properties and methods from Employee
and Person, since they’ve been “merged” into the OfficeEmployee class via inheritance.

If you now run the application, you’ll see that the name, birth date, age, and office values are displayed
in the form.

Inheritance like this can go many levels deep, with each level extending and changing the behaviors of
the previous levels. In fact, there is no specific technical limit to the number of levels of inheritance you
can implement in Visual Basic. Very deep inheritance chains are typically not recommended and are
often viewed as a design flaw, something discussed in more detail in Chapter 7.

Interacting with the Base Class, Your Class, and Your Object
You’ve already seen how you can use the MyBase keyword to call methods on the base class from within
a subclass. The MyBase keyword is one of three special keywords that allow you to interact with impor-
tant object and class representations:

❑ Me

❑ MyBase

❑ MyClass

The Me Keyword
The Me keyword provides you with a reference to your current object instance. Typically, you don’t need
to use the Me keyword, since any time you want to invoke a method within your current object you can
just call that method directly.

To see clearly how this works, let’s add a new method to the Person class that returns the data of the
Person class in the form of a String. This will be a bit interesting in and of itself, since the base System
.Object class defines the ToString method for this exact purpose. Remember that all classes in the
.NET Framework ultimately derive from System.Object, even if you don’t explicitly indicate it with an
Inherits statement.

This means that you can simply override the ToString method from the Object class within your
Person class by adding the following code:

Public Overrides Function ToString() As String
Return Name

End Function

166

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 166

This implementation will return the person’s Name property as a result when ToString is called.

By default, ToString returns the class name of the class. Up to now, if you had called the ToString
method on a Person object, you would have gotten a result of
InheritanceAndInterfaces.Person.

Notice that the ToString method is calling another method within your same class, in this case the
Name method.

You could also write this routine using the Me keyword:

Public Overrides Function ToString() As String
Return Me.Name

End Function

However, this is redundant since Me is the default for all method calls in a class. These two implementa-
tions are identical, so typically the Me keyword is simply left off to avoid that extra typing.

To see how the ToString method now works, you can change your code in Form1 to use this value
instead of the Name property:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim objPerson As OfficeEmployee = New OfficeEmployee()

With objPerson
.Name = “Fred”
.BirthDate = #1/1/1960#
.Age = 20
.OfficeNumber = “A42”

txtName.Text = .ToString
txtBirthDate.Text = Format(.BirthDate, “Short date”)
txtAge.Text = CStr(.Age)
txtOffice.Text = .OfficeNumber

End With
End Sub

When you run the application, you’ll see that the person’s name is displayed appropriately, which
makes sense since the ToString method is simply returning the result from the Name property.

Earlier, we discussed virtual methods and how they work. Since either calling a method directly or call-
ing it using the Me keyword invokes the method on the current object, this means that the method calls
conform to the same rules as an external method call. In other words, your ToString method may not
actually end up calling the Name method in the Person class if that method was overridden by a class
farther down the inheritance chain such as the Employee or OfficeEmployee classes.

For example, you could override the Name property in your OfficeEmployee class such that it always
returns the informal version of the person’s name rather than the regular name. You can override the
Name property by adding this method to the OfficeEmployee class:

167

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 167

Public Overloads Overrides Property Name() As String
Get

Return MyBase.Name(NameTypes.Informal)
End Get
Set(ByVal value As String)

MyBase.Name = value
End Set

End Property

This new version of the Name method relies on the base class to actually store the value, but instead of
returning the normal name on request, now you are always returning the informal name:

Return MyBase.Name(NameTypes.Informal)

Before you can test this, you need to enhance the code in your form to actually provide a value for the
informal name. Make the following change to the code:

Private Sub btnOK_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnOK.Click

Dim objPerson As OfficeEmployee = New OfficeEmployee()

With objPerson
.Name = “Fred”
.Name(NameTypes.Informal) = “Freddy”
.BirthDate = #1/1/1960#
.Age = 20
.OfficeNumber = “A42”

txtName.Text = .ToString
txtBirthDate.Text = Format(.BirthDate, “Short date”)
txtAge.Text = CStr(.Age)
txtOffice.Text = .OfficeNumber

End With
End Sub

When you run the application, you’ll find that the name field displays the informal name. Even though
the ToString method is implemented in the Person class, it is invoking the implementation of Name
from the OfficeEmployee class. This is because method calls within a class follow the same rules for
calling virtual methods as code outside a class, such as your code in the form.

You’ll see this behavior with or without the Me keyword, since the default behavior for method calls is to
implicitly call them via the current object.

While methods called from within a class follow the same rules for virtual methods, this is not the case
for shadowed methods. Here, you’ll find that the rules for calling a shadowed method from within your
class are different from those outside your class.

To see how this works, let’s make the Name property in OfficeEmployee a shadowed method instead of
an overridden method:

168

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 168

Public Shadows Property Name() As String
Get

Return MyBase.Name(NameTypes.Informal)
End Get
Set(ByVal value As String)

MyBase.Name = value
End Set

End Property

Before you can run your application, you’ll have to adjust some code in the form. Because you’ve shad-
owed the Name property in OfficeEmployee, you’ll find that the version of Name from Employee that
acts as a property array is now invalid.

To make your application operate, you’ll need to change the variable declaration and object creation to
declare a variable of type Employee so that you can access the property array while still creating an
instance of OfficeEmployee:

Dim person As Employee = New OfficeEmployee()

Since your variable is now of type Employee, you also need to comment out the lines that refer to the
OfficeNumber property, since it is no longer available:

With person
.Name = “Fred”
.Name(NameTypes.Informal) = “Freddy”
.BirthDate = #1/1/1960#
.Age = 20
‘.OfficeNumber = “A42”

txtName.Text = .ToString
txtBirthDate.Text = Format(.BirthDate, “Short date”)
txtAge.Text = CStr(.Age)
‘txtOffice.Text = .OfficeNumber

End With

When you run the application now, you’ll find that it displays the name Fred rather than Freddy, mean-
ing it is not calling the Name method from OfficeEmployee, instead it is calling the implementation
provided by the Employee class. Remember that the code to make this call still resides in the Person
class, but it now ignores the shadowed version of the Name method.

Shadowed implementations in subclasses are ignored when calling the method from within a class
higher in the inheritance chain.

You’ll get this same behavior with or without the Me keyword. So, the Me keyword, or calling methods
directly, follows the same rules for overridden methods as any other method call. For shadowed meth-
ods, however, any shadowed implementations in subclasses are ignored and the method is called from
the current level in the inheritance chain.

Shadowing a method replaces all implementations from higher in the inheritance
chain, regardless of their method signature.

169

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 169

So, why does the Me keyword exist? Primarily to allow you to pass a reference to the current object as a
parameter to other objects or methods. As you’ll see when you look at the MyBase and MyClass key-
words, things can get very confusing and there may be value in using the Me keyword when working
with MyBase and MyClass to ensure that it is always clear which particular implementation of a method
you intended to invoke.

The MyBase Keyword
While the Me keyword allows you to call methods on the current object instance, there are times you
might want to explicitly call into methods in your parent class. Earlier, you saw an example of this when
you called back into the base class from an overridden method in the subclass.

The MyBase keyword references only the immediate parent class, and it works like an object reference.
This means that you can call methods on MyBase, knowing that they are being called just as if you had a
reference to an object of your parent class’s datatype.

The MyBase keyword can be used to invoke or use any Public, Friend, or Protected element from
the parent class. This includes all of those elements directly on the base class, and also any elements the
base class inherited from other classes higher in the inheritance chain.

You’ve already used MyBase to call back into the base Person class as you implemented the overridden
Name property in the Employee class.

You can also use MyBase to call back into the base class implementation even if you’ve shadowed a
method. Though we didn’t remark on it at the time, you’ve already done this in your shadowed imple-
mentation of the Name property in the OfficeEmployee class. The highlighted lines indicate where
you’re calling into the base class from within a shadowed method.

Public Shadows Property Name() As String
Get

Return MyBase.Name(NameTypes.Informal)
End Get
Set(ByVal value As String)

MyBase.Name = value
End Set

End Property

Any code within a subclass can call any method on the base class by using the
MyBase keyword.

There is no way to directly navigate up the inheritance chain beyond the immediate
parent. This means that you can’t direct access the implementation of a method in a
base class if you are in a sub-subclass. Such a thing isn’t a good idea anyway, which
is why it isn’t allowed.

170

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 170

The MyBase keyword allows you to merge the functionality of the base class into your subclass code as
you deem fit.

The MyClass Keyword
As you’ve seen, when you use the Me keyword or call a method directly, your method call follows the
rules for calling both virtual and nonvirtual methods. In other words, as you discovered earlier with the
Name property, a call to Name from your code in the Person class actually invoked the overridden ver-
sion of Name located in the OfficeEmployee class.

While this behavior is useful in many cases, there are also cases where you’ll want to ensure that you
really are running the specific implementation from your class, where even if a subclass overrode your
method, you still want to ensure you’re calling the version of the method that is directly in your class.

Maybe you decide that your ToString implementation in Person should always call the Name imple-
mentation that you write in the Person class, totally ignoring any overridden versions of Name in any
subclasses.

This is where the MyClass keyword comes into play. This keyword is much like MyBase, in that it pro-
vides you with access to methods as though it was an object reference, in this case, a reference to an
instance of the class that contains the code you’re writing when using the MyClass keyword. This is true
even if the instantiated object is an instance of a class derived from your class.

You’ve seen that a call to ToString from within Person will actually invoke the implementation in
Employee or OfficeEmployee if your object is an instance of either of those types. Let’s restore the
Name property in OfficeEmployee so that it is an overridden method rather than a shadowed method
to see how this works.

Public Overloads Overrides Property Name() As String
Get

Return MyBase.Name(NameTypes.Informal)
End Get
Set(ByVal value As String)

MyBase.Name = value
End Set

End Property

With this change, and based on your earlier testing, you know that the ToString implementation in
Person will automatically call this overridden version of the Name property, since the call to the Name
method will follow the normal rules for virtual methods. In fact, if you run the application now, you’ll
find that the name field on the form displays Freddy, the informal name of the person.

You can force the use of the implementation in the current class through the use of MyClass. Change the
ToString method in Person as follows:

Public Overrides Function ToString() As String
Return MyClass.Name

End Function

171

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 171

You are now calling the Name method, but you’re doing it using the MyClass keyword. When you run
the application and click the button, you’ll find that the name field in the form displays Fred rather than
Freddy, proving that the implementation from Person was invoked even though the datatype of the
object itself is OfficeEmployee.

The ToString method is invoked from Person, since neither Employee nor OfficeEmployee provide
an overridden implementation. Then, because you’re using the MyClass keyword, the Name method is
invoked directly from Person, explicitly defeating the default behavior you’d normally expect.

Constructors
As discussed in Chapter 4, you can provide a special constructor method, named New, on a class and it
will be the first code run when an object is instantiated. You can also receive parameters via the con-
structor method, allowing the code that creates your object to pass data into the object during the cre-
ation process.

Constructor methods are affected by inheritance differently from regular methods. A normal Public
method, such as BirthDate on your Person class, is automatically inherited by any subclass. From
there you can overload, override, or shadow that method as we’ve discussed so far in this chapter.

Simple Constructors
Constructors don’t quite follow the same rules. To explore the differences, let’s implement a simple con-
structor method in your Person class:

Public Sub New()
Debug.WriteLine(“Person constructor”)

End Sub

If you now run the application, you’ll see the text displayed in the Output window in the IDE. This
occurs even though the code in your form is creating an object of type OfficeEmployee:

Dim person As Employee = New OfficeEmployee()

As you might expect, the New method from your base Person class is invoked as part of the construction
process of the OfficeEmployee object, simple inheritance at work. However, interesting things occur if
you implement a New method in the OfficeEmployee class itself:

Public Sub New()
Debug.WriteLine(“OfficeEmployee constructor”)

End Sub

Notice that you are not using the Overrides keyword, nor did you mark the method in Person as
Overridable. These keywords have no use in this context and, in fact, will cause syntax errors if you
attempt to use them on constructor methods.

When you run the application now you’d probably expect that only the implementation of New in
OfficeEmployee would be invoked. Certainly, that is what would occur with a normal overridden
method. But, of course, New isn’t overridden, so when you run the application you’ll find that both
implementations are run. Both strings are output into the Output window in the IDE.

172

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 172

It is important to note that the implementation in the Person class ran first, followed by the implemen-
tation in the OfficeEmployee class. This occurs because, as an object is created, all the constructors for
the classes in the inheritance chain are invoked, starting with the base class and working out through all
the subclasses one by one. In fact, if you implement a New method in the Employee class you can see that
it too is invoked:

Public Sub New()
Debug.WriteLine(“Employee constructor”)

End Sub

When the application is run and the button clicked, you’ll see all three strings in the Output window.
All three constructor methods were invoked, starting with the Person class and working down to the
OfficeEmployee class.

Constructors in More Depth
The rules governing constructors without parameters are pretty straightforward. However, things get a
bit more interesting if you start requiring parameters on your constructors.

To understand what is going on, you need to get a slightly better understanding of how even your sim-
ple constructors are being invoked. While you see them as being invoked from the base class down
through all subclasses to your final subclass, what is really happening is a bit different.

In particular, it is the subclass New method that is invoked first. However, Visual Basic is automatically
inserting a line of code into your routine at compile time. For instance, in your OfficeEmployee class
you have a constructor:

Public Sub New()
Debug.WriteLine(“OfficeEmployee constructor”)

End Sub

Behind the scenes, Visual Basic inserts what is effectively a call to the constructor of your parent class on
your behalf. You could do this manually by using the MyBase keyword with the following change:

Public Sub New()
MyBase.New()
Debug.WriteLine(“OfficeEmployee constructor”)

End Sub

This call must be the first line in your constructor. If you put any other code before this line, you’ll get a
syntax error indicating that your code is invalid. Since the call is always required, and since it always
must be the first line in any constructor, Visual Basic simply inserts it for you automatically.

It is also worth noting that if you don’t explicitly provide a constructor on a class by implementing a New
method, Visual Basic creates one for you behind the scenes. The automatically created method simply
has one line of code:

MyBase.New()

All classes have constructor methods, either created explicitly by you as you write a New method or cre-
ated implicitly by Visual Basic as the class is compiled.

173

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 173

A constructor method is sometimes called a ctor, short for constructor. This term is often used by tools
such as ILDASM or .NET Reflector.

By always calling Mybase.New() as the first line in every constructor, you are guaranteed that it is the
implementation of New in your top-level base class that will actually run first. Every subclass invokes the
parent class implementation all the way up the inheritance chain until only the base class remains. Then
its code runs, followed by each individual subclass, as you’ve already seen.

Constructors with Parameters
This works great when your constructors don’t require parameters. However, if your constructor does
require a parameter, then it becomes impossible for Visual Basic to automatically make that call on your
behalf. After all, how would Visual Basic know what values you want to pass as parameters?

To see how this works, let’s change the New method in the Person class to require a name parameter. You
can use that parameter to initialize the object’s Name property:

Public Sub New(ByVal name As String)
Me.Name = name
Debug.WriteLine(“Person constructor”)

End Sub

Now your constructor requires a String parameter and uses it to initialize the Name property.

You are using the Me keyword to make your code easier to read. Interestingly enough, the compiler will
actually understand and correctly compile the following code:

Name = name

But that is not at all clear to a developer reading the code. By prefixing the property name with the Me
keyword you’ve made it clear that you’re invoking a property on the object and providing it with the
parameter value.

At this point, you’ll find that your application won’t compile. This is so because there is an error in the
New method of the Employee class. In particular, Visual Basic’s attempt to automatically invoke the con-
structor on the Person class is no longer workable, since it has no idea what data value to pass for this
new name parameter.

There are three ways you can address this error:

❑ Make the name parameter Optional.

❑ Overload the New method with another implementation that requires no parameter.

❑ Manually provide the Name parameter value from within the Employee class.

If you make the Name parameter Optional, you’re indicating that the New method can be called with or
without a parameter. This means that one viable option is to call the method with no parameters. So,
Visual Basic’s default of calling it with no parameters will work just fine.

174

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 174

If you overload the New method, you can implement a second New method that doesn’t accept any
parameters, again allowing Visual Basic’s default behavior to work as you’ve seen. Keep in mind that
this solution would only invoke the overloaded version of New with no parameter; the version that
requires a parameter would not be invoked.

The final way you can fix the error is by simply providing a parameter value yourself from within the
New method of the Employee class. To do this, change the Employee class:

Public Sub New()
MyBase.New(“George”)
Debug.WriteLine(“Employee constructor”)

End Sub

By explicitly calling the New method of the parent class, you are able to provide it with the required
parameter value. At this point, your application will compile, but it won’t run.

Constructors, Overloading, and Variable Initialization
What isn’t clear from this code is that you’ve now introduced a very insidious bug. The constructor in
the Person class is using the Name property to set the value:

Public Sub New(ByVal name As String)
Me.Name = name
Debug.WriteLine(“Person constructor”)

End Sub

But the Name property is overridden by the Employee class, so it is that implementation that will be
run. Unfortunately, that implementation makes use of a Dictionary object, which isn’t available yet! It
turns out that any member variables declared in a class with the New statement, such as the Dictionary
object in Employee:

Private mNames As New Generic.Dictionary(Of NameTypes, String)

won’t be initialized until after the constructor for that class has completed. Since you are still in the con-
structor for Person, there’s no way the constructor for Employee can be complete. To resolve this, you
need to change the Employee class a bit so that it doesn’t rely on the Dictionary being created in this
manner. Instead, you’ll add code to create it when needed.

First, change the declaration of the variable in the Employee class:

Private mNames As Generic.Dictionary(Of NameTypes, String)

Then, update the Name property so that it creates the Hashtable object if needed:

Public Overloads Property Name(ByVal type As NameTypes) As String
Get

If mNames Is Nothing Then mNames = New Generic.Dictionary(Of NameTypes, String)
Return mNames(type)

End Get
Set(ByVal value As String)

175

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 175

If mNames Is Nothing Then mNames = New Generic.Dictionary(Of NameTypes, String)
If mNames.ContainsKey(type) Then

mNames.Item(type) = value
Else

mNames.Add(type, value)
End If
If type = NameTypes.Normal Then

MyBase.Name = value
End If

End Set
End Property

This will ensure that a Dictionary object is created in the Employee class code even though its con-
structor hasn’t yet completed.

More Constructors with Parameters
Obviously, you probably don’t really want to hard-code a value in a constructor as you did in the
Employee class, so you may choose instead to change this constructor to also accept a name parameter.
Change the Employee class constructor as shown:

Public Sub New(ByVal name As String)
MyBase.New(name)

Debug.WriteLine(“Employee constructor”)
End Sub

Of course, this just pushed the issue deeper, and now you’ll find that the OfficeEmployee class has a
compile error in its New method. Again, you can fix the problem by having that method accept a parameter
so that it can provide it up the chain as required. Make the following change to OfficeEmployee:

Public Sub New(ByVal name As String)
MyBase.New(name)

Debug.WriteLine(“OfficeEmployee constructor”)
End Sub

Finally, the code in the form is no longer valid. You’re attempting to create an instance of OfficeEmployee
without passing a parameter value. Let’s update that code and then you can run the application:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Employee = New OfficeEmployee(“Mary”)
With person
‘.Name = “Fred”

You’re passing a name value to the constructor of OfficeEmployee. Also, you’ve commented out the
line of code that sets the Name property directly — meaning that the value passed in the constructor will
be displayed in the form.

176

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 176

The Protected Scope
You’ve seen how a subclass automatically gains all the Public methods and properties that compose the
interface of the base class. This is also true of Friend methods and properties; they are inherited as well
and are available only to other code in the same project as the subclass.

Private methods and properties are not exposed as part of the interface of the subclass, meaning that
the code in the subclass cannot call those methods, nor can any code using your objects. These methods
are only available to the code within the base class itself. This can get confusing, since the implementa-
tions contained in the Private methods are inherited and are used by any code in the base class; it is
just that they aren’t available to be called by any other code, including code in the subclass.

There are times when you want to create methods in your base class that can be called by a subclass as
well as the base class but not by code outside of those classes. Basically, you want a hybrid between
Public and Private— methods that are private to the classes in the inheritance chain but are usable by
any subclasses that might be created within the chain. This functionality is provided by the Protected
scope.

Protected methods are very similar to Private methods in that they are not available to any code that
calls your objects. Instead, these methods are available to code within the base class and to code within
any subclass. The following table lists all the available scope options.

Scope Description

Private Available only to code within your class.

Protected Available only to classes that inherit from your class.

Friend Available only to code within your project/component.

Protected Friend Available to classes that inherit from your class (in any project) and
to code within your project/component. This is a combination of
Protected and Friend.

Public Available to code outside your class.

The Protected scope can be applied to Sub, Function, and Property methods. To see how the
Protected scope works, let’s add an Identity field to the Person class:

Public Class Person
Private mName As String
Private mBirthDate As String
Private mID As String

Protected Property Identity() As String
Get

Return mID
End Get
Set(ByVal value As String)

mID = value
End Set

End Property

177

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 177

This data field represents some arbitrary identification number or value assigned to a person. This might
be a Social Security number, an employee number, or whatever is appropriate.

The interesting thing about this value is that it is not currently accessible outside your inheritance chain.
For instance, if you try to use it from your code in the form, you’ll discover that there is no Identity
property on your Person, Employee, or OfficeEmployee objects.

However, there is an Identity property now available inside your inheritance chain. The Identity
property is available to the code in the Person class just like any other method. The interesting thing is
that even though Identity is not available to the code in your form, it is available to the code in the
Employee and OfficeEmployee classes. This is because they are both subclasses of Person. Employee
is directly a subclass, and OfficeEmployee is indirectly a subclass of Person because it is a subclass of
Employee.

Thus, you can enhance your Employee class to implement an EmployeeNumber property by using the
Identity property. To do this, add the following code to the Employee class:

Public Property EmployeeNumber() As Integer
Get

Return CInt(Identity)
End Get
Set(ByVal value As Integer)

Identity = CStr(value)
End Set

End Property

This new property exposes a numeric identity value for the employee, but it uses the internal Identity
property to manage that value.

You can override and shadow Protected elements just as you do with elements of any other scope.

Protected Variables
Up to this point, you’ve focused on methods and properties and how they interact through inheritance.
Inheritance, and, in particular, the Protected scope, also has an impact on instance variables and how
you work with them.

Though it is not recommended, you can declare variables in a class using Public scope. This makes the
variable directly available to code both within and outside of your class, allowing any code that interacts
with your objects to directly read or alter the value of that variable.

Variables can also have Friend scope, which likewise allows any code in your class or anywhere within
your project to read or alter the value directly. This is also generally not recommended because it breaks
encapsulation.

Rather than declaring variables with Public or Friend scope, it is better to expose
the value using a Property method so that you can apply any of your business rules
to control how the value is altered as appropriate.

178

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 178

Of course, you know that variables can be of Private scope, and this is typically the case. This makes
the variables accessible only to the code within your class and is the most restrictive scope.

As with methods, however, you can also use the Protected scope when declaring variables. This
makes the variable accessible to the code in your class, and to the code in any class that derives from
your class — all the way down the hierarchy chain.

There are times when this is useful, because it allows you to provide and accept data to and from sub-
classes, but to act on that data from code in the base class. At the same time, exposing variables to sub-
classes is typically not ideal, and you should use Property methods with Protected scope for this
instead, since they allow your base class to enforce any business rules that are appropriate for the value,
rather than just hoping that the author of the subclass only provides good values.

Events and Inheritance
So far, we’ve discussed methods, properties, and variables in terms of inheritance — seeing how they can
be added, overridden, extended, and shadowed. In Visual Basic, events are also part of the interface of
an object, and they are impacted by inheritance as well.

Inheriting Events
Chapter 4 discussed how to declare, raise and receive events from objects. You can add such an event to
the Person class by declaring it at the top of the class:

Public Class Person
Private mName As String
Private mBirthDate As String
Private mID As String

Public Event NameChanged(ByVal newName As String)

Then, you can raise this event within the class anytime the person’s name is changed:

Public Overridable Property Name() As String
Get

Return mName
End Get
Set(ByVal value As String)

mName = value
RaiseEvent NameChanged(mName)

End Set
End Property

At this point, you can receive and handle this event within your form any time you’re working with a
Person object. The nice thing about this is that your events are inherited automatically by subclasses —
meaning that your Employee and OfficeEmployee objects will also raise this event. Thus, you can
change the code in your form to handle the event, even though you’re working with an object of type
OfficeEmployee.

First, you can add a method to handle the event to Form1:

179

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 179

Private Sub OnNameChanged(ByVal newName As String)
MsgBox(“New name: “ & newName)

End Sub

Note that you’re not using the Handles clause here. In this case, for simplicity, you’ll use the AddHandler
method to dynamically link the event to this method. However, you could have also chosen to use the
WithEvents and Handles keywords, as described in Chapter 4 — either way works.

With the handler built, you can use the AddHandler method to link this method to the event on the object:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Employee = New OfficeEmployee(“Mary”)
AddHandler person.NameChanged, AddressOf OnNameChanged

With pPerson
.Name = “Fred”

Also note that you’re uncommenting the line that changes the Name property. With this change, you
know that the event should fire when the name is changed.

When you run the application now, you’ll see a message box, indicating that the name has changed and
proving that the NameChanged event really is exposed and available even though your object is of type
OfficeEmployee rather than of type Person.

Raising Events from Subclasses
One caveat you need to keep in mind is that while a subclass exposes the events of its base class, the
code in the subclass cannot raise the event.

In other words, you cannot use the RaiseEvent method in Employee or OfficeEmployee to raise the
NameChanged event. Only code directly in the Person class can raise the event.

To see this in action, let’s add another event to the Person class, an event that can indicate the change of
other arbitrary data values:

Public Class Person
Private mName As String
Private mBirthDate As String
Private mID As String

Public Event NameChanged(ByVal newName As String)
Public Event DataChanged(ByVal field As String, ByVal newValue As Object)

You can then raise this event when the BirthDate is changed:

Public Overridable Property BirthDate() As Date
Get

Return mBirthDate
End Get

180

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 180

Set(ByVal value As Date)
mBirthDate = value
RaiseEvent DataChanged(“BirthDate”, value)

End Set
End Property

It would also be nice to raise this event from the Employee class when the Salary value is changed.
Unfortunately, you can’t use the RaiseEvent method to raise the event from a base class, so the follow-
ing code won’t work (don’t enter this code):

Public Property Salary() As Double
Get

Return mSalary
End Get
Set(ByVal value As Double)

mSalary = value
RaiseEvent DataChanged(“Salary”, value)

End Set
End Property

Fortunately, there is a relatively easy way to get around this limitation. You can simply implement a
Protected method in your base class that allows any derived class to raise the method. In the Person
class, you can add such a method:

Protected Sub OnDataChanged(ByVal field As String, _
ByVal newValue As Object)

RaiseEvent DataChanged(field, newValue)
End Sub

Then you can use this method from within the Employee class to indicate that Salary has changed:

Public Property Salary() As Double
Get

Return mSalary
End Get
Set(ByVal value As Double)

mSalary = value
OnDataChanged(“Salary”, value)

End Set
End Property

Notice that the code in Employee is not raising the event, it is simply calling a Protected method in
Person. It is the code in the Person class that actually raises the event, meaning that all will work as
you desire.

You can enhance the code in Form1 to receive the event. First off, you need to create a method to handle
the event:

Private Sub OnDataChanged(ByVal field As String, ByVal newValue As Object)
MsgBox(“New “ & field & “: “ & CStr(newValue))

End Sub

181

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 181

Then, you can link this handler to the event using the AddHandler method:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Employee = New OfficeEmployee(“Mary”)
AddHandler person.NameChanged, AddressOf OnNameChanged
AddHandler person.DataChanged, AddressOf OnDataChanged

Finally, you need to make sure that you are changing and displaying the Salary property:

With person
.Name = “Fred”
.Name(NameTypes.Informal) = “Freddy”
.BirthDate = #1/1/1960#
.Age = 20
.Salary = 30000
txtName.Text = .ToString
txtBirthDate.Text = Format(.BirthDate, “Short date”)
txtAge.Text = CStr(.Age)
txtSalary.Text = Format(.Salary, “0.00”)

End With

When you run the application and click the button now, you’ll get message boxes displaying the changes
to the Name property, the BirthDate property (twice, once for the BirthDate property and once for the
Age property, which changes the birth date), and the Salary property.

Shared Methods
In Chapter 4, you explored shared methods and how they work, providing a set of methods that can be
invoked directly from the class rather than requiring that you create an actual object.

Shared methods are inherited just like instance methods and so are automatically available as methods
on subclasses just as they are on the base class. If you implement a shared method in BaseClass, you
can call that method using any class derived from BaseClass.

Like a regular method, shared methods can be overloaded and shadowed. They cannot, however, be
overridden. If you attempt to use the Overridable keyword when declaring a Shared method, you
will get a syntax error.

For instance, you can implement a method in your Person class to compare two Person objects:

Public Shared Function Compare(ByVal person1 As Person, _
ByVal person2 As Person) As Boolean

Return (person1.Name = person2.Name)

End Function

To test this method, let’s add another button to the form, name it btnCompare, and set its Text value to
Compare. Double-click the button to bring up the code window and enter the following code:

182

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 182

Private Sub btnCompare_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCompare.Click

Dim emp1 As New Employee(“Fred”)
Dim emp2 As New Employee(“Mary”)

MsgBox(Employee.Compare(emp1, emp2))
End Sub

This code simply creates two Employee objects and compares them. Note though, that the code uses the
Employee class to invoke the Compare method, displaying the result in a message box. This establishes
that the Compare method implemented in the Person class is inherited by the Employee class as you’d
expect.

Overloading Shared Methods
Shared methods can be overloaded using the Overloads keyword in the same manner as you overload
an instance method. This means that your subclass can add new implementations of the shared method
as long as the parameter list differs from the original implementation.

For example, you can add a new implementation of the Compare method to Employee:

Public Overloads Shared Function Compare(ByVal employee1 As Employee, _
ByVal employee2 As Employee) As Boolean

Return (employee1.EmployeeNumber = employee2.EmployeeNumber)

End Function

This new implementation compares two Employee objects rather than two Person objects, and in fact,
compares them based on the employee number rather than by name.

You can enhance the code behind btnCompare in the form to set the EmployeeNumber properties:

Private Sub btnCompare_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCompare.Click

Dim emp1 As New Employee(“Fred”)
Dim emp2 As New Employee(“Mary”)

emp1.EmployeeNumber = 1
emp2.EmployeeNumber = 1

MsgBox(Employee.Compare(emp1, emp2))
End Sub

While it might make little sense for these two objects to have the same EmployeeNumber value, it will
prove a point. When you run the application now, even though the Name values of the objects are differ-
ent, your Compare routine will return True, proving that you’re invoking the overloaded version of the
method that expects two Employee objects as parameters.

183

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 183

The overloaded implementation is available on the Employee class or any classes derived from
Employee such as OfficeEmployee. The overloaded implementation is not available if called directly
from Person, since that class only contains the original implementation.

Shadowing Shared Methods
Shared methods can also be shadowed by a subclass. This allows you to do some very interesting things,
including converting a shared method into an instance method or vice versa. You can even leave the
method as shared, but change the entire way it works and is declared. In short, just as with instance meth-
ods, you can use the Shadows keyword to entirely replace and change a shared method in a subclass.

To see how this works, you can use the Shadows keyword to change the nature of the Compare method
in OfficeEmployee:

Public Shared Shadows Function Compare(ByVal person1 As Person, _
ByVal person2 As Person) As Boolean

Return (person1.Age = person2.Age)

End Function

Notice that this method has the same signature as the original Compare method you implemented in the
Person class, but instead of comparing by name, here you’re comparing by age. With a normal method
you could have done this by overriding, but since Shared methods can’t be overridden, the only thing
you can do is shadow it.

Of course, the shadowed implementation is only available via the OfficeEmployee class. Neither the
Person nor Employee classes, which are higher up the inheritance chain, are aware that this shadowed
version of the method exists.

To use this from your Form1 code, you can change the code for btnCompare as follows:

Private Sub btnCompare_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCompare.Click

Dim emp1 As New Employee(“Fred”)
Dim emp2 As New Employee(“Mary”)

emp1.Age = 20
emp2.Age = 25
MsgBox(OfficeEmployee.Compare(emp1, emp2))

End Sub

Instead of setting the EmployeeNumber values, you’re now setting the Age values on your objects. More
importantly, notice that you’re now calling the Compare method via the OfficeEmployee class rather
than via Employee or Person. This causes the invocation of the new version of the method, and the ages
of the objects are compared.

184

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 184

Shared Events
As discussed in Chapter 4, you can create shared events, events that can be raised by shared or instance
methods in a class, whereas regular events can only be raised from within instance methods.

When you inherit from a class that defines a shared event, your new subclass automatically gains that
event just as it does with regular events, as discussed earlier in this chapter.

As with instance events, a shared event cannot be raised by code within the subclass, it can only be
raised using the RaiseEvent keyword from code in the class where the event is declared. If you want to
be able to raise the event from methods in your subclass, you need to implement a Protected method
on the base class that actually makes the call to RaiseEvent.

This is no different from what we discussed earlier in the chapter other than to note that with a shared
event you can use a method with Protected scope that is marked as shared to raise the event rather
than using an instance method.

Creating an Abstract Base Class
So far, you’ve seen how to inherit from a class, how to overload and override methods, and how virtual
methods work. In all of the examples so far, the parent classes have been useful in their own right and
could be instantiated and do some meaningful work. Sometimes, however, you want to create a class
such that it can only be used as a base class for inheritance.

MustInherit Keyword
The current Person class is not only being used as a base class, but can also be instantiated directly to
create an object of type Person. Likewise, the Employee class is also being used as a base class for the
OfficeEmployee class you created that derives from it.

If you want to make a class only act as a base class, you can use the MustInherit keyword, thereby pre-
venting anyone from creating objects based directly on the class and requiring them instead to create a
subclass and then create objects based on that subclass.

This can be very useful when you are creating object models of real-world concepts and entities. You’ll
discuss ways to leverage this capability in Chapter 7. You can change Person to use the MustInherit
keyword:

Public MustInherit Class Person

This has no effect on the code within Person or any of the classes that inherit from it. However, it does
mean that no code can instantiate objects directly from the Person class; instead you can only create
objects based on Employee or OfficeEmployee.

Keep in mind that this doesn’t prevent you from declaring variables of type Person, it merely prevents
you from creating an object by using New Person(). You can also continue to make use of Shared meth-
ods from the Person class without any difficulty.

185

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 185

MustOverride Keyword
Another option you have is to create a method (Sub, Function, or Property) that must be overridden
by a subclass. You might want to do this when you are creating a base class that provides some behaviors,
but relies on subclasses to also provide some behaviors in order to function properly. This is accomplished
by using the MustOverride keyword on a method declaration.

If a class contains any methods marked with MustOverride, the class itself must also be declared with
the MustInherit keyword or you’ll get a syntax error:

Public MustInherit Class Person

This makes sense. If you’re requiring that a method be overridden in a subclass, it only stands to reason
that your class can’t be directly instantiated; it must be subclassed to be useful.

Let’s see how this works by adding a LifeExpectancy method in Person that has no implementation
and must be overridden by a subclass:

Public MustOverride Function LifeExpectancy() As Integer

Notice that there is no End Function or any other code associated with the method.

When using MustOverride, you cannot provide any implementation for the method in your class. Such
a method is called an abstract method or pure virtual function, since it only defines the interface and no
implementation.

Methods declared in this manner must be overridden in any subclass that inherits from your base class.
If you don’t override one of these methods, you’ll generate a syntax error in the subclass, and it won’t
compile. This means that you need to alter the Employee class to provide an implementation for this
method:

Public Overrides Function LifeExpectancy() As Integer
Return 90

End Function

Your application will compile and run at this point, since you are now overriding the LifeExpectancy
method in Employee, so the required condition is met.

Abstract Base Classes
You can combine these two concepts, using both MustInherit and MustOverride, to create something
called an abstract base class. Sometimes, this is also referred to as a virtual class.

This is a class that provides no implementation, only the interface definitions from which a subclass can
be created, for example:

Public MustInherit Class AbstractBaseClass
Public MustOverride Sub DoSomething()
Public MustOverride Sub DoOtherStuff()

End Class

186

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 186

This technique can be very useful when creating frameworks or the high-level conceptual elements
of a system. Any class that inherits AbstractBaseClass must implement both DoSomething and
DoOtherStuff or a syntax error will result.

In some ways, an abstract base class is very comparable to defining an interface using the Interface
keyword. The Interface keyword will be discussed in detail later in this chapter. You could define the
same interface as shown in this example with the following code:

Public Interface IAbstractBaseClass
Sub DoSomething()
Sub DoOtherStuff()

End Interface

Any class that implements the IAbstractBaseClass interface must implement both DoSomething and
DoOtherStuff or a syntax error will result, and in that regard this technique is similar to an abstract
base class.

Preventing Inheritance
If you want to prevent a class from being used as a base class, you can use the NotInheritable key-
word. For instance, you can change your OfficeEmployee as follows:

Public NotInheritable Class OfficeEmployee

At this point, it is no longer possible to inherit from this class to create a new class. Your OfficeEmployee
class is now sealed, meaning that it cannot be used as a base from which to create other classes.

If you attempt to inherit from OfficeEmployee, you’ll get a compile error indicating that it cannot be
used as a base class. This has no effect on Person or Employee; you can continue to derive other classes
from them.

Typically, you’ll want to design your classes so that they can be subclassed, because that provides the
greatest long-term flexibility in the overall design. There are times, however, when you will want to
make sure that your class cannot be used as a base class, and the NotInheritable keyword addresses
that issue.

Multiple Interfaces
In Visual Basic, objects can have one or more interfaces. All objects have a primary or native interface,
which is composed of any methods, properties, events, or member variables declared using the Public
keyword. You can also have objects implement secondary interfaces in addition to their native interface
by using the Implements keyword.

Object Interfaces
The native interface on any class is composed of all the methods, properties, events, and even variables
that are declared as anything other than Private. Though this is nothing new, let’s quickly review what
is included in the native interface to set the stage for discussing secondary interfaces.

187

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 187

To include a method as part of your interface, you can simply declare a Public routine:

Public Sub AMethod()

End Sub

Notice that there is no code in this routine. Any code would be implementation and is not part of the
interface. Only the declaration of the method is important when discussing interfaces. This can seem
confusing at first, but it is an important distinction, since the separation of the interface from its imple-
mentation is at the very core of object-oriented programming and design.

Since this method is declared as Public, it is available to any code outside the class, including other
applications that may make use of the assembly.

If the method has a property, you can declare it as part of the interface by using the Property keyword:

Public Property AProperty() As String

End Property

You can also declare events as part of the interface by using the Event keyword:

Public Event AnEvent()

Finally, you can include actual variables, or attributes, as part of the interface:

Public AnInteger As Integer

This is strongly discouraged, because it directly exposes the internal variables for use by code outside
the class. Since the variable is directly accessible from other code, you give up any and all control over
the way the value may be changed or by which code may be accessed.

Rather than making any variable Public, it is far preferable to make use of a Property method to
expose the value. In that way you can implement code to ensure that your internal variable is only set to
valid values and that only the appropriate code has access to the value based on your application’s logic.

Using the Native Interface
In the end, the native (or primary) interface for any class is defined by looking at all the methods, prop-
erties, events, and variables that are declared as anything other than Private in scope. This includes
any methods, properties, events, or variables that are inherited from a base class.

You’re used to interacting with the default interface on most objects, so this should seem pretty straight-
forward. Consider a simple class:

Public Class TheClass
Public Sub DoSomething()

End Sub

188

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 188

Public Sub DoSomethingElse()

End Sub
End Class

This defines a class and, by extension, also defines the native interface that is exposed by any objects
you instantiate based on this class. The native interface defines two methods, DoSomething and
DoSomethingElse. To make use of these methods, you simply call them:

Dim myObject As New TheClass()

myObject.DoSomething()

myObject.DoSomethingElse()

This is the same thing you’ve done in Chapter 4 and so far in this chapter. However, let’s take a look at
creating and using secondary interfaces, because they are a bit different.

Secondary Interfaces
Sometimes, it can be helpful for an object to have more than one interface, thus allowing you to interact
with the object in different ways.

Inheritance allows you to create subclasses that are a specialized case of the base class. For example,
your Employee is a Person.

However, there are times when you have a group of objects that are not the same thing, but you want to
be able to treat them as though they were the same. You want all these objects to act as the same thing,
even though they are all different.

For instance, you may have a series of different objects in an application, product, customer, invoice, and
so forth. Each of these would have default interfaces appropriate to each individual object — and each of
them is a different class — so there’s no natural inheritance relationship implied between these classes.
At the same time, you may need to be able to generate a printed document for each type of object. So,
you’d like to make them all act as a printable object.

Chapter 7 discusses the is-a and act-as relationships in more detail.

To accomplish this, you can define a generic interface that would enable generating such a printed docu-
ment. You can call it IPrintableObject.

By convention, this type of interface is typically prefixed with a capital I to indicate that it is a formal
interface.

Each of your application objects can choose to implement the IPrintableObject interface. Every object
that implements this interface must provide code to provide actual implementation of the interface, which
is unlike inheritance, where the code from a base class is automatically reused.

189

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 189

By implementing this common interface, however, you are able to write a routine that accepts any object
that implements the IPrintableObject interface and print it — while remaining totally oblivious to
the “real” datatype of the object or the methods its native interface might expose.

Before you see how to use an interface in this manner, let’s walk through the process of actually defining
an interface.

Defining the Interface
You define a formal interface using the Interface keyword. This can be done in any code module in
your project, but a good place to put this type of definition is in a standard module. An interface defines
a set of methods (Sub, Function, or Property) and events that must be exposed by any class that
chooses to implement the interface.

Add a module to the project using Project ➪ Add Module and name it Interfaces.vb. Then, add the
following code to the module, outside the Module code block itself:

Public Interface IPrintableObject

End Interface
Module Interfaces

End Module

A code module can contain a number of interface definitions, and these definitions must exist outside
any other code block. Thus, they don’t go within a Class or Module block; they are at a peer level to
those constructs.

Interfaces must be declared using either Public or Friend scope. Declaring a Private or Protected
interface will result in a syntax error.

Within the Interface block of code, you can define the methods, properties, and events that will make
up your particular interface. Since the scope of the interface is defined by the Interface declaration
itself, you can’t specify scopes for individual methods and events, they are all scoped the same as the
interface itself.

For instance, add the following code:

Public Interface IPrintableObject
Function Label(ByVal index As Integer) As String
Function Value(ByVal index As Integer) As String
ReadOnly Property Count() As Integer

End Interface

This defines a new datatype, somewhat like creating a class or structure, that you can use when declar-
ing variables.

For instance, you can now declare a variable of type IPrintableObject:

Private printable As IPrintableObject

190

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 190

You can also have your classes implement this interface, which will require each class to provide imple-
mentation code for each of the three methods defined on the interface.

Before you implement the interface in a class, let’s see how you can make use of the interface to write a
generic routine that can print any object that does implement IPrintableObject.

Using the Interface
Interfaces define the methods and events (including parameters and datatypes) that an object is required
to implement if they choose to support the interface. This means that, given just the interface definition,
you can easily write code that can interact with any object that implements the interface, even though
you don’t know what the native datatypes of those objects will be.

To see how you can write such code, let’s create a simple routine in your form that can display data to
the Output window in the IDE from any object that implements IPrintableObject. Bring up the code
window for your form and add the following routine:

Public Sub PrintObject(obj As IPrintableObject)
Dim index As Integer

For index = 0 To obj.Count
Debug.Write(obj.Label(index) & “: “)
Debug.WriteLine(obj.Value(index))

Next
End Sub

Notice that you’re accepting a parameter of type IPrintableObject. This is how secondary interfaces
are used, by treating an object of one type as though it was actually of the interface type. As long as the
object passed to this routine implements the IPrintableObject interface, your code will work fine.

Within the PrintObject routine, you’re assuming that the object will implement three elements —
Count, Label, and Value— as part of the IPrintableObject interface. Secondary interfaces can
include methods, properties, and events, much like a default interface, but the interface itself is defined
and implemented using some special syntax.

Now that you have a generic printing routine, you need a way to call it. Bring up the designer for Form1,
add a button, and name it btnPrint. Double-click the button and put this code behind it:

Private Sub btnPrint_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrint.Click

Dim obj As New Employee(“Andy”)

obj.EmployeeNumber = 123
obj.BirthDate = #1/1/1980#
obj.HireDate = #1/1/1996#

PrintObject(obj)
End Sub

This code simply initializes an Employee object and calls the PrintObject routine.

191

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 191

Of course, this code produces compiler errors, because PrintObject is expecting a parameter that
implements IPrintableObject and Employee implements no such interface.

Let’s move on and implement that interface in Employee so that you can see how it works.

Implementing the Interface
Any class (other than an abstract base class) can implement an interface by using the Implements key-
word. For instance, you can implement the IPrintableObject interface in Employee by adding the
following line:

Public Class Employee
Inherits Person
Implements IPrintableObject

This will cause the interface to be exposed by any object created as an instance of Employee. Adding this
line of code triggers the IDE to add skeleton methods for the interface to your class. All you need to do is
provide implementations for the methods.

To implement an interface, you must implement all the methods and properties defined by that interface.

Before actually implementing the interface, however, let’s create an array to contain the labels for the
data fields so that you can return them via the IPrintableObject interface. Add the following code to
the Employee class:

Public Class Employee
Inherits Person
Implements IPrintableObject

Private mLabels() As String = {“ID”, “Age”, “HireDate”}
Private mHireDate As Date
Private mSalary As Double

To implement the interface, you need to create methods and properties with the same parameter and
return datatypes as those defined in the interface. The actual name of each method or property doesn’t
matter because you’ll be using the Implements keyword to link your internal method names to the
external method names defined by the interface. As long as the method signatures match, you are all set.

This applies to scope as well. Although the interface and its methods and properties are publicly avail-
able, you don’t have to declare your actual methods and properties as Public. In many cases, you can
implement them as Private, so they don’t become part of the native interface and are only exposed via
the secondary interface.

However, if you do have a Public method with a method signature, you can use it to implement a
method from the interface. This has the interesting side effect that this method provides implementation
for both a method on the object’s native interface and one on the secondary interface.

In this case, you’ll use a Private method, so it is only providing implementation for the
IPrintableObject interface. You can implement the Label method by adding the following
code to Employee:

192

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 192

Private Function Label(ByVal index As Integer) As String _
Implements IPrintableObject.Label

Return mLabels(index)
End Function

This is just a regular Private method that returns a String value from the preinitialized array.

The interesting thing is the Implements clause on the method declaration.

Private Function Label(ByVal index As Integer) As String _
Implements IPrintableObject.Label

By using the Implements keyword in this fashion, you’re indicating that this particular method is the
implementation for the Label method on the IPrintableObject interface. The actual name of the pri-
vate method could be anything. It is the use of the Implements clause that makes this work. The only
requirement is that the parameter datatypes and the return value datatype must match those defined by
the IPrintableObject interface.

This is very similar to using the Handles clause to indicate which method should handle an event. In
fact, like the Handles clause, the Implements clause allows you to have a comma-separated list of inter-
face methods that should be implemented by this one function.

You can then move on to implement the other two elements defined by the IPrintableObject inter-
face by adding this code to Employee:

Private Function Value(ByVal index As Integer) As String _
Implements IPrintableObject.Value

Select Case index
Case 0

Return CStr(EmployeeNumber)
Case 1

Return CStr(Age)
Case Else

Return Format(HireDate, “Short date”)
End Select

End Function

Private ReadOnly Property Count() As Integer _
Implements IPrintableObject.Count

Get
Return UBound(mLabels)

End Get
End Property

You can now run this application and click the button. The Output window in the IDE will display your
results, showing the ID, age, and hire date values as appropriate.

Any object could create a similar implementation behind the IPrintableObject interface, and the
PrintObject routine in your form would continue to work regardless of the native datatype of the
object itself.

193

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:47 PM Page 193

Reusing Common Implementation
Secondary interfaces provide a guarantee that all objects implementing a given interface will have
exactly the same methods and events, including the same parameters.

The Implements clause links your actual implementation to a specific method on an interface. For
instance, your Value method is linked to IPrintableObject.Value using the following clause:

Private Function Value(ByVal index As Integer) As String _
Implements IPrintableObject.Value

Sometimes, your method might be able to serve as the implementation for more than one method, either
on the same interface or on different interfaces.

Add the following interface definition to Interfaces.vb:

Public Interface IValues
Function GetValue(ByVal index As Integer) As String

End Interface

This interface defines just one method, GetValue. Notice that it defines a single Integer parameter and
a return type of String, the same as the Value method from IPrintableObject. Even though the
method name and parameter variable name don’t match, what counts here is that the parameter and
return value datatypes do match.

Now bring up the code window for Employee. You’ll have it implement this new interface in addition to
the IPrintableObject interface:

Public Class Employee
Inherits Person
Implements IPrintableObject
Implements IValues

You already have a method that returns values. Rather than reimplementing that method, it would be
nice to just link this new GetValues method to your existing method. You can easily do this because the
Implements clause allows you to provide a comma-separated list of method names:

Private Function Value(ByVal index As Integer) As String _
Implements IPrintableObject.Value, IValues.GetValue

Select Case Index
Case 0

Return CStr(EmployeeNumber)
Case 1

Return CStr(Age)
Case Else

Return Format(HireDate, “Short date”)
End Select

End Function

This is very similar to the use of the Handles keyword as discussed in Chapter 4. A single method
within the class, regardless of scope or name, can be used to implement any number of methods as
defined by other interfaces as long as the datatypes of the parameters and return values all match.

194

Chapter 5

08_575368 ch05.qxd 10/7/05 10:47 PM Page 194

Combining Interfaces and Inheritance
You can combine implementation of secondary interfaces and inheritance at the same time.

When you inherit from a class that implements an interface, your new subclass automatically gains the
interface and the implementation from the base class. If you specify that your base class methods are
overridable, then the subclass can override those methods. This will not only override the base class
implementation for your native interface, but will also override the implementation for the interface.
For instance, you could declare the Value method as follows:

Public Overridable Function Value(ByVal index As Integer) As String _
Implements IPrintableObject.Value, IValues.GetValue

Now it is Public, so it is available on your native interface, and it is part of both the IPrintableObject
and IValues interfaces. This means that you can access the property three ways in client code:

Dim emp As New Employee()
Dim printable As IPrintableObject = emp
Dim values As IValues = emp

Debug.WriteLine(emp.Value(0))
Debug.WriteLine(printable.Value(0))
Debug.WriteLine(values.GetValue(0))

Note that you’re also now using the Overrides keyword in the declaration. This means that a subclass
of Employee, such as OfficeEmployee, can override the Value method. The overridden method will be
the one invoked, regardless of whether you call the object directly or via an interface.

Combining the implementation of an interface in a base class along with overridable methods can pro-
vide a very flexible object design.

Summary
In this chapter and in Chapter 4, you’ve seen how Visual Basic allows you to create and work with
classes and objects. Visual Basic provides the building blocks for abstraction, encapsulation, polymor-
phism, and inheritance.

In this chapter, you’ve seen how to create both simple base classes as well as abstract base classes.
You’ve also explored how you can define formal interfaces, a concept quite similar to an abstract base
class in many ways.

You’ve also walked through the process of subclassing, creating a new class that derives both interface
and implementation from a base class. The subclass can be extended by adding new methods or altering
the behavior of existing methods on the base class.

Visual Basic provides you with all the capabilities you need to build robust and sophisticated object-
oriented applications. In the next chapter, we’ll pull this all together by discussing abstraction, encapsu-
lation, polymorphism, and inheritance as they pertain to building practical software.

195

Inheritance and Interfaces

08_575368 ch05.qxd 10/7/05 10:48 PM Page 195

08_575368 ch05.qxd 10/7/05 10:48 PM Page 196

The Common
Language Runtime

You’ve seen how to create simple applications and looked at how to create classes. Now it’s time
not only to start tying these elements together but also to start looking at how to dispose of some
of the classes that you have created. The architects of .NET realized that all procedural languages
require certain base functionality. For example, many languages ship with their own runtime that
provides features such as memory management. But what if instead of each language shipping
with its own runtime implementation, all languages used a common runtime? This would provide
languages with a standard environment and access to all of the same features. This is exactly what
the common language runtime (CLR) provides.

The CLR manages the execution of code on the .NET platform. Visual Basic developers can view
the CLR as a better Visual Basic runtime. However, this runtime, unlike the old stand-alone Visual
Basic runtime, is common across all of .NET. The functionality exposed by the CLR is available to
all .NET languages; more importantly, all of the features available to other .NET languages via the
CLR are available to Visual Basic developers.

Visual Basic developers have been asking for better support for many advanced features, includ-
ing operator overloading, implementation inheritance, threading, and the ability to marshal objects.
Building such features into a language is not trivial. What the CLR did was allow Microsoft to con-
centrate on building this plumbing one time and then reuse it across multiple different program-
ming languages. Since the CLR supports these features and because Visual Basic .NET is built on
top of the CLR, Visual Basic can use these features. The result is that going forward, Visual Basic
is the equal of every other .NET language, with the CLR eliminating many of the shortcomings of
the previous versions of Visual Basic.

This chapter gets down into the weeds of the application runtime environment to look at:

09_575368 ch06.qxd 10/7/05 10:49 PM Page 197

❑ Elements of a .NET application

❑ Versioning and deployment

❑ Memory management and the Garbage Collector (GC)

❑ Microsoft Intermediate Language (MSIL)

❑ Integration across .NET languages

Elements of a .NET Application
A .NET application is composed of four primary entities:

❑ Classes — The basic units that encapsulate data and behavior

❑ Modules — The individual files that contain the IL for an assembly

❑ Assemblies — The primary unit of deployment of a .NET application

❑ Types — The common unit of transmitting data between modules

Classes are covered in the preceding two chapters and are defined in the source files for your application
or class library. Upon compilation of your source files, you will produce a module. The code that makes
up an assembly’s modules may exist in a single executable (.exe) file or as a dynamic link library (.dll).
A module is in fact a Microsoft Intermediate Language file, which is then used by the CLR when your
application is run. However, compiling a .NET application doesn’t only produce an MSIL file; it also pro-
duces a collection of files that make up a deployable application or assembly. Within an assembly, you
will find several different types of files, including not only the actual executable but also configuration
files, signature keys, and most importantly of all, the actual code modules.

Modules
A module contains Microsoft Intermediate Language (MSIL, often abbreviated to IL) code, associated
metadata, and the assembly’s manifest. By default, the Visual Basic compiler will create an assembly that
is composed of a single module having both the assembly code and manifest.

IL is a platform-independent way of representing managed code within a module. Before IL can be exe-
cuted, the CLR must compile it into the native machine code. The default method is for the CLR to use
the JIT (Just-in-Time) compiler to compile the IL on a method-by-method basis. At runtime, as each
method is called by an application for the first time, it is passed through the JIT compiler for compilation
to machine code. Similarly, for an ASP.NET application, each page is passed through the JIT compiler the
first time that it is requested to create an in-memory representation of the machine code that represents
that page.

Additional information about the types declared in the IL is provided by the associated metadata. The
metadata contained within the module is used extensively by the CLR. For example, if a client and an
object reside within two different processes, the CLR will use the type’s metadata to marshal data
between the client and the object. MSIL is important because every .NET language compiles down to IL.
The CLR doesn’t care or need to know what the implementation language was, it only knows what the

198

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 198

IL contains. Thus, any differences in .NET languages exist at the level where the IL is generated, but once
generated, all .NET languages have the same runtime characteristics. Similarly, since the CLR doesn’t
care which language a given module was originally written in, it can leverage modules implemented in
entirely different .NET languages.

A question that constantly arises when discussing the JIT compiler and the use of a runtime environment
is: “Wouldn’t it be faster to compile the IL language down to native code before the user asks to run it?”
Although the answer is not always “yes,” Microsoft has provided a utility to handle this compilation
called Ngen.exe. Ngen (short for native image generator) allows you to essentially run the JIT compiler
on a specific assembly, and this assembly is then installed into the user’s application cache in its native
format. The obvious advantage is that now when the user asks to execute something in that assembly,
the JIT compiler is not invoked, saving a small amount of time. However, unlike the JIT compiler that
only compiles those portions of an assembly that are actually referenced, Ngen.exe needs to compile
the entire codebase, so the time required for compilation is not the same as what a user will actually
experience.

Ngen.exe is executed from the command line. The utility has been updated as part of .NET 2.0, includ-
ing what is possibly the most important feature, that it now automatically detects and includes most of
the dependent assemblies as part of the image generation process. To use Ngen.exe, you simply refer-
ence this utility followed by an action; for example, install and then your assembly reference. There are
several different options available as part of the generation process, but they go beyond the scope of this
chapter given that NGen.exe is a topic which can generate hot debate on its use and value.

So, where does the debate begin on when to use Ngen.exe? Keep in mind that in a server application,
where the same assembly will be referenced by multiple users between machine restarts, the difference
in performance on the first request is essentially lost. This means that compilation to native code is more
valuable to client-side applications. Unfortunately, using Ngen.exe requires running it on each client
machine, which can become cost-prohibitive in certain installation scenarios and in particular if you use
any form of self-updating application logic. Another issue relates to using reflection, which allows you
to reference other assemblies at runtime. Of course, if you don’t know what assemblies you will refer-
ence until runtime, then the native image generator has a problem, since it won’t know what to reference
either. The key take-aways with Ngen.exe are that there may be occasion to use it for an application that
you have created, but ensure that you fully investigate this utility and its advantages and disadvantages
before doing so, and keep in mind that even native images execute within the CLR. Native image gener-
ation only changes the compilation model, not the runtime environment.

Assemblies
An assembly is the primary unit of deployment for .NET applications — it is either a dynamic link
library (.dll) or an executable (.exe). An assembly is composed of a manifest, one or more modules, and
(optionally) other files, such as .config, .ASPX, .ASMX, images, and so on.

The manifest of an assembly contains:

❑ Information about the identity of the assembly, including its textual name and version number.

❑ If the assembly is public, the manifest will contain the assembly’s public key. The public key is
used to help ensure that types exposed by the assembly reside within a unique namespace. It
may also be used to uniquely identify the source of an assembly.

199

The Common Language Runtime

09_575368 ch06.qxd 10/7/05 10:49 PM Page 199

❑ A declarative security request that describes the assembly’s security requirements (the assembly
is responsible for declaring the security it requires). Requests for permissions fall into three cate-
gories: required, optional, and denied. The identity information may be used as evidence by the
CLR in determining whether or not to approve security requests.

❑ A list of other assemblies that the assembly depends on. The CLR uses this information to locate
an appropriate version of the required assemblies at runtime. The list of dependencies also
includes the exact version number of each assembly at the time the assembly was created.

❑ A list of all types and resources exposed by the assembly. If any of the resources exposed by the
assembly are localized, the manifest will also contain the default culture (language, currency,
date/time format, and so on) that the application will target. The CLR uses this information to
locate specific resources and types within the assembly.

The manifest can be stored in a separate file or in one of the modules, but by default for most applica-
tions, it will be part of the .dll or .exe file, which is compiled by Visual Studio. For Web applications,
you will find that although there are a collection of .ASPX pages, the actual assembly information is
located in a DLL that is referenced by those ASPX pages.

Types
The type system provides a template that is used to describe the encapsulation of data and an associated
set of behaviors. It is this common template for describing data that provides the basis for the metadata
that .NET uses when applications interoperate. There are two kinds of types: reference and value. The
differences between these two types were discussed in Chapter 3.

Unlike COM, which is scoped at the machine level, types are scoped at either a global or the assembly
level. All types are based on a common system that is used across all .NET languages. Similar to the
MSIL code, which is interpreted by the CLR based upon the current runtime environment, the CLR
uses a common metadata system to recognize the details of each type. The result is that unlike the dif-
ferent implementations of COM, which required special notation to allow translation of different
datatypes between different .exe and .dll files, all .NET languages are built around a common type
system.

A type has fields, properties, and methods:

❑ Fields — Variables that are scoped to the type. For example, a Pet class could declare a field
called Name that holds the pet’s name. In a well-engineered class, Fields are often kept private
and exposed only as properties or methods.

❑ Properties — These look like fields to clients of the type, but can have code behind them (that
usually performs some sort of data validation). For example, a Dog datatype could expose a
property to set its gender. Code could then be placed behind the property so that it could only
be set to “male” or “female,” and then this property too could be saved internally to one of the
fields in the dog class.

❑ Methods — Define behaviors exhibited by the type. For example, the Dog datatype could
expose a method called Sleep, which would suspend the activity of the Dog.

200

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 200

The preceding elements make up each application. You’ll note that this description mentions that some
types will be defined at the application level and others globally. Under COM, all components are regis-
tered globally, and certainly if you want to expose a .NET component to COM, you must register it glob-
ally. However, with .NET it is not only possible but often encouraged that the classes and types defined
in your modules are only visible at the application level. The advantage of this is that you can run sev-
eral different versions of an application side by side. Of course, once you have an application that can be
versioned, the next challenge is to know which version of that application you have.

Versioning and Deployment
Components and their clients are often installed at different times by different vendors. For example, a
Visual Basic application might rely on a third-party grid control to display data. Runtime support for
versioning is crucial in ensuring that an incompatible version of the grid control does not cause prob-
lems for the Visual Basic application.

In addition to this issue of compatibility, the deployment of applications written in previous versions of
Visual Basic was problematic. Fortunately, .NET provides major improvements over the versioning and
deployment offered by COM and the previous versions of Visual Basic.

Better Support for Versioning
Managing the version of components was challenging in the previous versions of Visual Basic. The ver-
sion number of the component could be set, but this version number was not used by the runtime. COM
components are often referenced by their ProgID, but Visual Basic does not provide any support for
appending the version number on the end of the ProgID.

For those of you who are unfamiliar with the term ProgID, suffice to know that ProgIDs are developer-
friendly strings used to identify a component. For example, Word.Application describes Microsoft
Word. ProgIDs can be fully qualified with the targeted version of the component, for example, Word
.Application.10, but this is a limited capability and relies on both the application and whether the
person consuming it chooses to use this optional addendum. As you’ll see in Chapter 8, Namespace is
built on the basic elements of a ProgID, but provides a more robust naming system.

For many applications, .NET has removed the need to identify the version of each assembly in a central
registry on a machine. However, some assemblies will be installed once and used by multiple applica-
tions. .NET provides a Global Assembly Cache (GAC), which is used to store assemblies that are intended
for use by multiple applications. The CLR provides versioning support for all components that are
loaded in the GAC.

The CLR provides two features for assemblies installed within the GAC:

❑ Side-by-side versioning — Multiple versions of the same component can be simultaneously
stored in the GAC.

❑ Automatic Quick Fix Engineering (QFE) aka hotfix support — If a new version of a compo-
nent, which is still compatible with the old version, is available in the GAC, the CLR will load
the updated component. The version number, which is maintained by the developer who cre-
ated the referenced assembly, drives this behavior.

201

The Common Language Runtime

09_575368 ch06.qxd 10/7/05 10:49 PM Page 201

The assembly’s manifest contains the version numbers of referenced assemblies. The CLR uses this list
at runtime to locate a compatible version of a referenced assembly. The version number of an assembly
takes the following form:

Major.Minor.Build.Revision

Changes to the major and minor version numbers of the assembly indicate that the assembly is no
longer compatible with the previous versions. The CLR will not use versions of the assembly that have
a different major or minor number unless it is explicitly told to do so. For example, if an assembly was
originally compiled against a referenced assembly with a version number of 3.4.1.9, the CLR will not
load an assembly stored in the GAC unless it has a major and minor number of 3 and 4.

Incrementing the revision and build numbers indicates that the new version is still compatible with the
previous version. If a new assembly that has an incremented revision or build number is loaded into the
GAC, the CLR can still load this assembly for clients that were compiled against a previous version.
Versioning is discussed in greater detail in Chapter 18.

Better Deployment
Applications written using the previous versions of Visual Basic and COM were often complicated to
deploy. Components referenced by the application needed to be installed and registered, and for Visual
Basic components, the correct version of the Visual Basic runtime needed to be available. The Component
Deployment tool helped in the creation of complex installation packages, but applications could be eas-
ily broken if the dependent components were inadvertently replaced by incompatible versions on the
client’s computer during the installation of an unrelated product.

In .NET, most components do not need to be registered. When an external assembly is referenced, the
application makes a decision on using a global copy (which must be in the GAC on the developer’s sys-
tem) or on copying a component locally. For most references, the external assemblies are referenced
locally which means they are carried in the application’s local directory structure. Using local copies of
external assemblies allows the CLR to support the side-by-side execution of different versions of the
same component. As noted earlier, to reference a globally registered assembly, that assembly must be
located in the GAC. The GAC provides a versioning system that is robust enough to allow different ver-
sions of the same external assembly to exist side by side. For example, an application could use a newer
version of ADO.NET without adversely affecting another application that relies on a previous version.

So long as the client has the .NET runtime installed (which has to be done only once), a .NET application
can be distributed using a simple command like this:

xcopy \\server\appDirectory “C:\Program Files\appDirectory” /E /O /I

The preceding command would copy all of the files and subdirectories from \\ server\appDirectory
to C:\ Program Files\ appDirectory and would also transfer the file’s Access Control Lists (ACLs).

Besides the ability to XCopy applications, Visual Studio provides a built-in tool for constructing simple
.msi installations. New with Visual Studio 2005 is the idea of a Click-Once deployment project. These
deployment settings can be customized for your project solution, allowing you to integrate the deploy-
ment project with your application output.

202

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 202

Click-Once deployment provides an entirely new method of deployment, referred to as smart client
deployment. In the smart client model, your application is placed on a central server from which the
clients access the application files. Smart client deployment builds on the XML Web services architecture
about which you are learning. It has the advantages of central application maintenance combined with a
richer client interface and fewer server communication requirements that you have become familiar with
in Windows Forms applications. Click-Once deployment is discussed in greater detail in Chapter 19.

Cross-Language Integration
Prior to .NET, interoperating with the code written in other languages was challenging. There were
pretty much two options for reusing functionality developed in other languages: COM interfaces or
DLLs with exported C functions. As for exposing functionality written in Visual Basic, the only option
was to create COM interfaces.

Because Visual Basic is now built on top of the CLR, it’s able to interoperate with the code written in
other .NET languages. It’s even able to derive from a class written in another language. To support this
type of functionality, the CLR relies on a common way of representing types, as well as rich metadata
that can describe these types.

The Common Type System
Each programming language seems to bring its own island of datatypes with it. For example, previous
versions of Visual Basic represent strings using the BSTR structure, C++ offers char and wchar datatypes,
and MFC offers the CString class. And the fact that the C++ int datatype is a 32-bit value, whereas the
Visual Basic 6 Integer datatype is a 16-bit value, makes it difficult to pass parameters between applica-
tions written using different languages.

To help resolve this problem, C has become the lowest common denominator for interfacing between
programs written in multiple languages. An exported function written in C that exposes simple C
datatypes can be consumed by Visual Basic, Java, Delphi, and a variety of other programming lan-
guages. In fact, the Windows API is exposed as a set of C functions.

Unfortunately, to access a C interface, you must explicitly map C datatypes to a language’s native
datatypes. For example, a Visual Basic 6 developer would use the following statement to map the
GetUserNameA Win32 function (GetUserNameA is the ANSI version of the GetUserName function):

‘ Map GetUserName to the GetUserNameA exported function
‘ exported by advapi32.dll.
‘ BOOL GetUserName(
‘ LPTSTR lpBuffer, // name buffer
‘ LPDWORD nSize // size of name buffer
‘);
Public Declare Function GetUserName Lib “advapi32.dll” _
Alias “GetUserNameA” (ByVal strBuffer As String, nSize As Long) As Long

This code explicitly mapped the lpBuffer C character array datatype to the Visual Basic 6 String
parameter strBuffer. This is not only cumbersome, but also error prone. Accidentally mapping a

203

The Common Language Runtime

09_575368 ch06.qxd 10/7/05 10:49 PM Page 203

variable declared as Long to lpBuffer wouldn’t generate any compilation errors. However, calling the
function would more than likely result in a difficult to diagnose, intermittent access violation at runtime.

COM provides a more refined method of interoperation between languages. Visual Basic 6 introduced a
common type system (CTS) for all applications that supported COM, that is, variant-compatible data-
types. However, variant datatypes are as cumbersome to work with for non–Visual Basic 6 developers as
the underlying C data structures that make up the variant datatypes (such as BSTR and SAFEARRAY) for
Visual Basic developers. The result is that interfacing between unmanaged languages is still more com-
plicated than it needs to be.

The CTS provides a set of common datatypes for use across all programming languages. The CTS pro-
vides every language running on top of the .NET platform with a base set of types, as well as mecha-
nisms for extending those types. These types may be implemented as classes or as structs, but in either
case they are derived from a common System.Object class definition.

Since every type supported by the CTS is derived from System.Object, every type supports a common
set of methods.

Method Description

Boolean Equals(Object) Used to test equality with another object. Reference types
should return True if the Object parameter references the
same object. Value types should return True if the Object
parameter has the same value.

Int32 GetHashCode() Generates a number corresponding to the value of an
object. If two objects of the same type are equal, then they
must return the same hash code.

Type GetType() Gets a Type object that can be used to access metadata
associated with the type. It also serves as a starting point
for navigating the object hierarchy exposed by the
Reflection API (which is discussed shortly).

String ToString() The default implementation returns the fully qualified
name of the class of the object. This method is often
overridden to output data that is more meaningful to
the type. For example, all base types return their value
as a string.

Metadata
Metadata is the information that enables components to be self-describing. Metadata is used to describe
many aspects of a .NET component including classes, methods, and fields, and the assembly itself.
Metadata is used by the CLR to facilitate all sorts of things, such as validating an assembly before it is
executed or performing garbage collection while managed code is being executed.

Visual Basic developers have used metadata for years when developing and using components within
their applications.

204

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 204

❑ Visual Basic developers use metadata to instruct the Visual Basic runtime on how to behave.
For example, you can set the Unattended Execution property to determine whether unhandled
exceptions are shown on the screen in a message box or are written to the Event Log.

❑ COM components referenced within Visual Basic applications have accompanying type libraries
that contain metadata about the components, their methods, and their properties. You can use
the Object Browser to view this information. (The information contained within the type library
is what is used to drive IntelliSense.)

❑ Additional metadata can be associated with a component by installing it within COM+.
Metadata stored in COM+ is used to declare the support a component needs at runtime, includ-
ing transactional support, serialization support, and object pooling.

Better Support for Metadata
Metadata associated with a Visual Basic 6 component was scattered in multiple locations and stored
using multiple formats:

❑ Metadata instructing the Visual Basic runtime how to behave (such as the Unattended
Execution property) is compiled into the Visual Basic–generated executable.

❑ Basic COM attributes (such as the required threading model) are stored in the registry.

❑ COM+ attributes (such as the transactional support required) are stored in the COM+ catalog.

.NET refines the use of metadata within applications in three significant ways:

❑ .NET consolidates the metadata associated with a component.

❑ Since a .NET component does not have to be registered, installing and upgrading the compo-
nent is easier and less problematic.

❑ .NET makes a much clearer distinction between attributes that should only be set at compile
time and those that can be modified at runtime.

All attributes associated with Visual Basic components are represented in a common format and consol-
idated within the files that make up the assembly.

Since much of a COM/COM+ component’s metadata is stored separately from the executable, installing
and upgrading components can be problematic. COM/COM+ components must be registered to update
the registry/COM+ catalog before they can be used and the COM/COM+ component executable can be
upgraded without upgrading its associated metadata.

The process of installing and upgrading a .NET component is greatly simplified. Since all metadata asso-
ciated with a .NET component must reside within the file that contains the component, no registration is
required. Once a new component is copied into an application’s directory, it can be used immediately.
Since the component and its associated metadata cannot get out of sync, upgrading the component
becomes much less problematic.

Another problem with COM+ is that attributes that should only be set at compile time may be reconfig-
ured at runtime. For example, COM+ can provide serialization support for neutral components. A com-
ponent that does not require serialization must be designed to accommodate multiple requests from

205

The Common Language Runtime

09_575368 ch06.qxd 10/7/05 10:49 PM Page 205

multiple clients simultaneously. You should know at compile time whether or not a component requires
support for serialization from the runtime. However, under COM+, the attribute describing whether or
not client requests should be serialized can be altered at runtime.

.NET makes a much better distinction between attributes that should be set at compile time and those
that should be set at runtime. For example, whether a .NET component is serializable is determined at
compile time. This setting cannot be overridden at runtime.

Attributes
Attributes are used to decorate entities such as assemblies, classes, methods, and properties with addi-
tional information. Attributes can be used for a variety of purposes. They can provide information,
request a certain behavior at runtime, or even invoke a particular behavior from another application.
An example of this can be shown by using the Demo class defined in the following code block:

Module Module1

<Serializable()> Public Class Demo

<Obsolete(“Use Method2 instead.”)> Public Sub Method1()
‘ Old implementation ...

End Sub

Public Sub Method2()
‘ New implementation ...

End Sub

End Class

Public Sub Main()
Dim d As Demo = New Demo()
d.Method1()

End Sub
End Module

The sample class can be added to the Form1 file that you created as part of your sample application in
Chapter 2. Then you can add the two lines, which will create an instance of this class and call Method1
to your event handler for your Hello World button.

The first attribute on the Demo class marks the class with the Serializable attribute. The base
class library will provide serialization support for instances of the Demo type. For example, the
ResourceWriter type can be used to stream an instance of the Demo type to disk.

The second attribute is associated with Method1. Method1 has been marked as obsolete, but has not
been made unavailable. When a method is marked as obsolete, there are two options, one is that Visual
Studio should prevent applications from compiling. However, a better strategy for large applications is
to first mark a method or class as obsolete and then prevent its use in the next release. The preceding
code will cause Visual Studio to display an IntelliSense warning if Method1 is referenced within the
application, as shown in Figure 6-1. Not only does the line with Method1 have a visual hint of the issue,
but a task has also been automatically added to the Task window.

206

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 206

Figure 6-1

If the developer leaves this code unchanged and then compiles it, the application will compile correctly.
As you see in Figure 6-2, the compilation is complete, but the developer is given a warning with a mean-
ingful message that you would to change this code to use the correct method.

There are also times when you might need to associate multiple attributes with an entity. The following
code shows an example of using both of the attributes from the previous code at the class level. Note
that in this case the Obsolete attribute has been modified to cause a compilation error by setting its
second parameter to True:

<Serializable(), Obsolete(“No longer used.”, True)> Public Class Demo
‘ Implementation ...

End Class

Attributes play an important role in the development of .NET applications, particularly XML Web ser-
vices. As you’ll see in Chapter 22, the declaration of a class as a Web service and of particular methods as
Web methods are all handled through the use of attributes.

207

The Common Language Runtime

09_575368 ch06.qxd 10/7/05 10:49 PM Page 207

Figure 6-2

The Reflection API
The .NET Framework provides the Reflection API for accessing metadata associated with managed
code. You can use the Reflection API to examine the metadata associated with an assembly and its types,
and even to examine the currently executing assembly.

The Assembly class in the System.Reflection namespace can be used to access the metadata in an
assembly. The LoadFrom method can be used to load an assembly, and the GetExecutingAssembly
method can be used to access the currently executing assembly. The GetTypes method can then be used
to obtain the collection of types defined in the assembly.

It’s also possible to access the metadata of a type directly from an instance of that type. Since every
object derives from System.Object, every object supports the GetType method, which returns a Type
object that can be used to access the metadata associated with the type.

208

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 208

The Type object exposes many methods and properties for obtaining the metadata associated with a
type. For example, you can obtain a collection of properties, methods, fields, and events exposed by the
type by calling the GetMembers method. The Type object for the object’s base type can also be obtained
by calling the DeclaringType property.

A good tool that demonstrates the power of Reflection is Lutz Roeder’s Reflector for .NET. Check out
www.aisto.com/roeder/dotnet.

IL Disassembler
One of the many handy tools that ships with Visual Studio is the IL Disassembler (ildasm.exe). It can
be used to navigate the metadata within a module, including the types the module exposes, as well as
their properties and methods. The IL Disassembler can also be used to display the IL contained within a
module.

The IL Disassembler can be found under your installation directory for Visual Studio 2005, with the
default path being: C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin\ILDasm.exe.
Once the IL Disassembler has been started, select File and then Open. Open mscorlib.dll, which is
located in your system directory under the default path of C:\Windows\Microsoft.NET\Framework\
V2.0.xxxx\mscorlib.dll. Once mscorlib.dll has been loaded, ILDasm will display a set of folders
for each namespace in this assembly. Expand the System namespace, then the ValueType namespace,
and finally double-click the Equals method. A window similar to the one shown in Figure 6-3 will be
displayed.

Figure 6-3

209

The Common Language Runtime

09_575368 ch06.qxd 10/7/05 10:49 PM Page 209

Figure 6-3 shows the IL for the Equals method. Notice how the Reflection API is used to navigate
through the instance of the value type’s fields in order to determine if the values of the two objects being
compared are equal.

The IL Disassembler is a very useful tool for learning how a particular module is implemented, but on
the other hand, it could jeopardize your company’s proprietary logic. After all, what is to prevent some-
one from using it to reverse engineer your code. The answer is that Visual Studio 2005, like Visual Studio
2003, ships with a third-party tool called an obfuscator. The role of the obfuscator is to make it so that the
IL Disassembler cannot build a meaningful representation of your application logic.

It is beyond the scope of this chapter to completely cover the obfuscator that ships with Visual Studio
2005. However, to access this tool, you go to the Tools menu and select Dotfuscator Community Edition.
The obfuscator runs against your compiled application, taking your IL file and stripping out many of the
items that are embedded by default during the compilation process.

Memory Management
This section looks at one of the larger underlying elements of managed code. One of the reasons that
.NET applications are referred to as “managed” is that memory deallocation is handled automatically by
the system. One of the benefits of the CLR, memory management, fixes the shortcomings of the COM’s
memory management. Developers are accustomed to only worrying about memory management in
an abstract sense. The basic rule was that every object created and every section of memory allocated
needed to be released (destroyed). The CLR introduces a Garbage Collector (GC), which simplifies this
paradigm. Gone are the days where a misbehaving component that failed to properly dispose of its
object references or allocated and never released memory could crash a Web server.

However, the use of a GC introduces new questions about when and if objects need to be explicitly
cleaned up. There are two elements to manually writing code to allocate and deallocate memory and
system resources. The first is the release of any shared resources such as file handles and database con-
nections. This type of activity needs to be managed explicitly and will be discussed shortly. The second
element of manual memory management involves letting the system know when memory is no longer
in use by your application. Visual Basic COM developers, in particular, are accustomed to explicitly dis-
posing of object references by setting variables to Nothing. On one hand, you can explicitly show your
intent to destroy the object by setting it to Nothing manually.

The fact that .NET uses a GC to automatically manage the cleanup of allocated memory means that you
don’t need to carry out memory management as an explicit action. Since the system is automatic, it’s
not up to you when resources are actually cleaned up; thus, a resource you previously used might sit in
memory beyond the end of the method where you used it. Perhaps more important is the fact that the
garbage collection mechanism will sometimes reclaim objects in the middle of your processing. The
great thing is that the system ensures that collection only happens as long as your code doesn’t reference
the object later in the method. Therefore, you could actually end up extending the amount of time an
object is kept in memory just for example by setting that object to Nothing. Thus, setting a variable to
Nothing at the end of the method will prevent the garbage collection mechanism from proactively
reclaiming objects, and is, therefore, generally discouraged. After all, if the goal is simply to document
a developer’s intention, then a comment is more appropriate.

210

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 210

Given this change in paradigms, the next few sections take you through a comparison of the challenges
of traditional memory management and a real look under the covers of how the Garbage Collector
works, the basics of some of the challenges with COM-based memory management, and then a quick
look at how the GC eliminates these challenges from your list of concerns. In particular, you need to
understand how you can interact with the Garbage Collector and why the Using command, for exam-
ple, is recommended over a finalization method in .NET.

Traditional “Garbage Collection”
The Visual Basic 6 runtime environment provides limited memory management by automatically releas-
ing objects when they are no longer referenced by any application. Once all of the references are released
on an object, the runtime will automatically release the object from memory. For example, consider the
following Visual Basic 6 code that uses the Scripting.FileSystem object to write an entry to a log file:

‘ Requires a reference to Microsoft Scripting Runtime (scrrun.dll)
Sub WriteToLog(strLogEntry As String)
Dim objFSO As Scripting.FileSystemObject
Dim objTS As Scripting.TextStream

objTS = objFSO.OpenTextFile(“C:\temp\AppLog.log”, ForAppending)
Call objTS.WriteLine(Date & vbTab & strLogEntry)

End Sub

WriteToLog creates two objects, a FileSystemObject and a TextStream, which are used to create an
entry in the log file. Because these are COM objects, they may live either within the current application
process or in their own process. Once the routine exits, the Visual Basic runtime will recognize that they
are no longer referenced by an active application and dereference the objects. This results in both objects
being deactivated. However, there are situations in which objects that are no longer referenced by an
application will not be properly cleaned up by the Visual Basic 6 runtime. One cause of this is the circu-
lar reference.

Circular References
One of the most common situations in which the Visual Basic runtime is unable to ensure that objects are
no longer referenced by the application is when objects contain a circular reference. An example of a cir-
cular reference is when object A holds a reference to object B and object B holds a reference to object A.

Circular references are problematic because the Visual Basic runtime relies on the reference counting
mechanism of COM to determine whether an object can be deactivated. Each COM object is responsible
for maintaining its own reference count and for destroying itself once the reference count reaches zero.
Clients of the object are responsible for updating the reference count appropriately, by calling the
AddRef and Release methods on the object’s IUnknown interface. However, in this scenario, object A
continues to hold a reference to object B, and vice versa, and thus the internal cleanup logic of these
components is not triggered.

In addition, problems can occur if the clients do not properly maintain the COM object’s reference count.
For example, an object will never be deactivated if a client forgets to call Release when the object is no
longer referenced (and no other clients call Release too many times). To avoid this, the Visual Basic 6
runtime takes care of updating the reference count for you, but the object’s reference count can be an

211

The Common Language Runtime

09_575368 ch06.qxd 10/7/05 10:49 PM Page 211

invalid indicator of whether or not the object is still being used by the application. As an example, con-
sider the references that objects A and B hold.

The application can invalidate its references to A and B by setting the associated variables equal to
Nothing. However, even though objects A and B are no longer referenced by the application, the Visual
Basic runtime cannot ensure that the objects get deactivated because A and B still reference each other.
Consider the following (Visual Basic 6) code:

‘ Class: CCircularRef

‘ Reference to another object.
Dim m_objRef As Object

Public Sub Initialize(objRef As Object)
Set m_objRef = objRef

End Sub

Private Sub Class_Terminate()
Call MsgBox(“Terminating.”)
Set m_objRef = Nothing

End Sub

The CCircularRef class implements an Initialize method that accepts a reference to another object
and saves it as a member variable. Notice that the class does not release any existing reference in the
m_objRef variable before assigning a new value. The following code demonstrates how to use this
CCircularRef class to create a circular reference:

Dim objA As New CCircularRef
Dim objB As New CCircularRef

Call objA.Initialize(objB)
Call objB.Initialize(objA)

Set objA = Nothing
Set objB = Nothing

After creating two instances (objA and objB) of CCircularRef, both of which have a reference count
of one, the code then calls the Initialize method on each object by passing it a reference to the other.
Now each of the object’s reference counts is equal to two: one held by the application and one held by
the other object. Next, explicitly set objA and objB to Nothing, which decrements each object’s refer-
ence count by one. However, since the reference count for both instances of CCircularRef is still
greater than zero, the objects will not be released from memory until the application is terminated. The
CLR Garbage Collector solves the problem of circular references because it looks for a reference from the
root application or thread to every class, and all classes that do not have such a reference are marked for
deletion, regardless of what other references they might still maintain.

The CLR’s Garbage Collector
The .NET garbage collection mechanism is a very complex software, and the details of its inner work-
ings are beyond the scope of this book. However, it is important to understand the principles behind

212

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 212

its operation. The GC is responsible for collecting objects that are no longer referenced. The GC takes a
completely different approach from that of the Visual Basic runtime to accomplish this. At certain times,
and based on internal rules, a task will run through all the objects looking for those that no longer have
any references from the root application thread or one of the worker threads. Those objects may then be
terminated; thus, the garbage is collected.

As long as all references to an object are either implicitly or explicitly released by the application, the
GC will take care of freeing the memory allocated to it. Unlike COM objects, managed objects in .NET
are not responsible for maintaining their reference count, and they are not responsible for destroying
themselves. Instead, the GC is responsible for cleaning up objects that are no longer referenced by the
application. The GC will periodically determine which objects need to be cleaned up by leveraging the
information the CLR maintains about the running application. The GC obtains a list of objects that are
directly referenced by the application. Then, the GC discovers all the objects that are referenced (both
directly and indirectly) by the application’s “root” objects. Once the GC has identified all the referenced
objects, it is free to clean up any remaining objects.

The GC relies on references from an application to objects, thus, when it locates an object that is unreach-
able from any of the root objects, it can clean up that object. Any other references to that object will be
from other objects that are also unreachable. Thus, the GC will automatically clean up objects that con-
tain circular references.

In some environments, such as COM, objects are destroyed in a deterministic fashion. Once the reference
count reaches zero, the object will destroy itself, which means that you can tell exactly when the object
will be terminated. However, with garbage collection, you can’t tell exactly when an object will be
destroyed. Just because you eliminate all references to an object doesn’t mean that it will be terminated
immediately. It will just remain in memory until the garbage collection process gets around to locating
and destroying it. This is called nondeterministic finalization.

This nondeterministic nature of CLR garbage collection provides a performance benefit. Rather than
expending the effort to destroy objects as they are dereferenced, the destruction process can occur when
the application is otherwise idle — often decreasing the impact on the user. Of course, if garbage collec-
tion must occur when the application is active, the system may see a slight performance fluctuation as
the collection is accomplished.

It is possible to explicitly invoke the GC by calling the System.GC.Collect method. However, this
process takes time, so it is not the sort of thing that should be done in a typical application. For example,
you could call this method each time you set an object variable to Nothing, so that the object would be
destroyed almost immediately. However, this forces the GC to scan all the objects in your application —
a very expensive operation in terms of performance.

It’s far better to design applications so that it’s acceptable for unused objects to sit in the memory for
some time before they are terminated. That way, the Garbage Collector, too, can run based on its optimal
rules — collecting many dereferenced objects at the same time. This means that you need to design objects
that don’t maintain expensive resources in instance variables. For example, database connections, open
files on disk, and large chunks of memory (such as an image) are all examples of expensive resources. If
you rely on the destruction of the object to release this type of resource, the system might be keeping the
resource tied up for a lot longer than you expect; in fact, on a lightly utilized Web server, it could literally
be days.

213

The Common Language Runtime

09_575368 ch06.qxd 10/7/05 10:49 PM Page 213

The first principle is working with object patterns that incorporate cleaning up such pending references
before the object is released. Examples of this include calling the close method on an open database con-
nection or file handle. In most cases, it is possible for applications to create classes that do not risk keep-
ing these handles open. However, certain requirements, even with the best object design, can create a
risk that a key resource will not be cleaned up correctly. In such an event, there are two occasions when
the object could attempt to perform this cleanup: when the final reference to the object is released and
immediately before the GC destroys the object.

One option is to implement the IDisposable interface. When implemented, this interface is used to
ensure that persistent resources are released. This is the preferred method for releasing resources. The
second option is to add a method to your class that the system will run immediately before an object is
destroyed. This option is not recommended for several reasons, including the fact that many developers
fail to remember that the garbage collector is nondeterministic, meaning that you can’t, for example, ref-
erence an SQLConnection object from your custom object’s finalizer.

Finally, as part of .NET 2.0, Visual Basic introduces the Using command. The Using command is
designed to change the way that you think about object cleanup. Instead of encapsulating your cleanup
logic within your object, the Using command creates a window around the code that is referencing an
instance of your object. When your application’s execution reaches the end of this window, the system
automatically calls the IDIsposable interface for your object to ensure that it is cleaned up correctly.

The Finalize Method
Conceptually, the GC calls an Object’s Finalize method immediately before it collects an object that is
no longer referenced by the application. Classes can override the Finalize method to perform any nec-
essary cleanup. The basic concept is to create a method that acts as what is in other object-oriented lan-
guages referred to as a destructor. Similarly, the Class_Terminate available in the previous versions of
Visual Basic does not have a functional equivalent in .NET. Instead, it is possible to create a Finalize
method that will be recognized by the GC and that will prevent a class from being cleaned up until after
the finalization method is completed. An example of the structure of the Finalize method is:

Protected Overrides Sub Finalize()
‘ clean up code goes here
MyBase.Finalize()

End Sub

This code uses both Protected scope and the Overrides keyword. Notice that not only does custom
cleanup code go here (as indicated by the comment), but this method also calls MyBase.Finalize(),
which causes any finalization logic in the base class to be executed as well. Any class implementing a
custom Finalize method should always call the base finalization class.

Be careful, however, not to treat the Finalize method as if it was a destructor. A destructor is based on
a deterministic system, where the method is called when the object’s last reference is removed. In the
GC system, there are key differences in how a finalizer works:

❑ Since the GC is optimized to only clean up memory when necessary, there will be a delay
between the time when the object is no longer referenced by the application and when the
GC collects it. Because of this, the same expensive resources that are released in the Finalize
method may stay open longer than they need to be.

214

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 214

❑ The GC doesn’t actually run Finalize methods. When the GC finds a Finalize method, it
queues the object up for the finalizer to execute the object’s method. This means that an object is
not cleaned up during the current GC pass. Because of how the GC is optimized, this can result
in the object remaining in memory for a much longer period.

❑ The GC will usually be triggered when the available memory is running low. As a result, execu-
tion of the object’s Finalize method is likely to incur performance penalties. Therefore, the
code in the Finalize method should be as short and quick as possible.

❑ There’s no guarantee that a service you require is still available. For example, if the system is
closing and you have a file open, .NET may have already unloaded the object required to close
the file, thus a Finalize method can’t reference an instance of any other .NET object.

All cleanup activities should be placed in the Finalize method. However, objects that require timely
cleanup should implement a Dispose method that can then be called by the client application just
before setting the reference to Nothing. For example:

Class DemoDispose
Private m_disposed As Boolean = False

Public Sub Dispose()
If (Not m_disposed) Then

‘ Call cleanup code in Finalize.
Finalize()

‘ Record that object has been disposed.
m_disposed = True

‘ Finalize does not need to be called.
GC.SuppressFinalize(Me)

End If
End Sub

Protected Overrides Sub Finalize()
‘ Perform cleanup here \dots
End Sub

End Class

The DemoDispose class overrides the Finalize method and implements the code to perform any neces-
sary cleanup. This class places the actual cleanup code within the Finalize method. To ensure that the
Dispose method only calls Finalize once, the value of the private m_disposed field is checked. Once
Finalize has been run, this value is set to True. The class then calls GC.SuppressFinalize to ensure
that the GC does not call the Finalize method on this object when the object is collected. If you need to
implement a Finalize method, this is the preferred implementation pattern.

This example implements all of the object’s cleanup code in the Finalize method to ensure that the
object will be cleaned up properly before the GC collects it. The Finalize method still serves as a safety
net in case the Dispose or Close methods were not called before the GC collects the object.

The IDisposable Interface
In some cases, the Finalize behavior is not acceptable. For an object that is using some expensive or
limited resource, such as a database connection, a file handle, or a system lock, it is best to ensure that
the resource is freed as soon as the object is no longer needed.

215

The Common Language Runtime

09_575368 ch06.qxd 10/7/05 10:49 PM Page 215

One way to accomplish this is to implement a method to be called by the client code to force the object to
clean up and release its resources. This is not a perfect solution, but it is workable. This cleanup method
must be called directly by the code using the object or via the use of the Using statement. The Using
statement allows you to encapsulate an object’s lifespan within a limited range and automate the calling
of the IDisposable interface.

The .NET Framework provides the IDisposable interface to formalize the declaration of cleanup logic.
The first thing to be aware of is that implementing the IDisposable interface also implies that the
object has overridden the Finalize method. Since there is no guarantee that the Dispose method will
be called, it is critical that Finalize trigger your cleanup code if it was not already executed.

Having a custom finalizer ensures that, once released, the garbage collection mechanism will eventually
find and terminate the object by running its Finalize method. However, when handled correctly, the
IDisposable interface ensures that any cleanup is executed immediately, so resources are not con-
sumed beyond the time they are needed.

Note that any class that derives from System.ComponentModel.Component automatically inherits the
IDisposable interface. This includes all of the forms and controls that are used in a Windows Forms
UI, as well as various other classes within the .NET Framework. Since this interface is inherited, let’s
review a custom implementation of the IDisposable interface based on the Person class defined in the
preceding chapters. The first step involves adding a reference to the interface to the top of the class:

Public Class Person
Implements IDisposable

This interface defines two methods — Dispose and Finalize — that need to be implemented in the class.
Visual Studio automatically inserts both of these methods into your code:

Private disposed As Boolean = False

‘ IDisposable
Private Overloads Sub Dispose(ByVal disposing As Boolean)

If Not Me.disposed Then
If disposing Then

‘ TODO: put code to dispose managed resources
End If

‘ TODO: put code to free unmanaged resources here
End If
Me.disposed = True

End Sub

#Region “ IDisposable Support “
‘ This code added by Visual Basic to correctly implement the disposable pattern.
Public Overloads Sub Dispose() Implements IDisposable.Dispose

‘ Do not change this code.
‘ Put cleanup code in Dispose(ByVal disposing As Boolean) above.
Dispose(True)
GC.SuppressFinalize(Me)

End Sub

216

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 216

Protected Overrides Sub Finalize()
‘ Do not change this code.
‘ Put cleanup code in Dispose(ByVal disposing As Boolean) above.
Dispose(False)
MyBase.Finalize()

End Sub
#End Region

Notice the use of the Overloads and Overrides keywords. The automatically inserted code is follow-
ing a best practice design pattern for implementation of the IDisposable interface and the Finalize
method. The idea is to centralize all cleanup code into a single method that is called by either the
Dispose() method or the Finalize() method as appropriate.

Accordingly, you can add the cleanup code as noted by the TODO: comments in the inserted code. As
mentioned in Chapter 2, the TODO: keyword is recognized by Visual Studio’s text parser, which triggers
an entry in the task list to remind you to complete this code before the project is complete. Since this
code frees a managed object (the Hashtable), the code goes as shown here:

Private Overloads Sub Dispose(ByVal disposing As Boolean)
If Not Me.disposed Then

If disposing Then
‘ TODO: put code to dispose managed resources
mPhones = Nothing

End If

‘ TODO: put code to free unmanaged resources here
End If
Me.disposed = True

End Sub

In this case, we’re using this method to release a reference to the object that the mPhones variable points
to. While not strictly necessary, this illustrates how code can release other objects when the Dispose
method is called. Generally, it is up to our client code to call this method at the appropriate time to
ensure that cleanup occurs. Typically, this should be done as soon as the code is done using the object.

This is not always as easy as it might sound. In particular, an object may be referenced by more than one
variable and just because code in one class is dereferencing the object from one variable doesn’t mean
that it has been dereferenced by all the other variables. If the Dispose method is called while other ref-
erences remain, the object may become unusable and may cause errors when invoked via those other
references. There is no easy solution to this problem, so careful design is required in the case that we
choose to use the IDisposable interface.

Using IDisposable
One way to work with the IDisposable interface is to manually insert the calls to the interface imple-
mentation everywhere you reference the class. For example, in an application’s Form1 code, you can
override the OnLoad event for the form. You can use the custom implementation of this method to
create an instance of the Person object. Then you create a custom handler for the form’s OnClosed
event, and make sure to clean up by disposing of the Person object. To do this, add the following code
to the form:

217

The Common Language Runtime

09_575368 ch06.qxd 10/7/05 10:49 PM Page 217

Private Sub Form1_Closed(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Closed

CType(mPerson, IDisposable).Dispose()

End Sub

The OnClosed method runs as the form is being closed, and so it is an appropriate place to do cleanup
work. Note that since the Dispose method is part of a secondary interface, the use of the CType()
method to access that specific interface is needed in order to call the method.

This solution works fine for the pattern where the object implementing IDisposable is used within
a form. However, it is less useful for other patterns such as when the object is used as part of a Web
Service. In fact, even for forms, this pattern is somewhat limited in that it requires the form to define the
object when the form is created, as opposed to either having the object created prior to the creation of the
form or some other scenario that occurs only on other events within the form.

For these situations, Visual Basic 2005 introduces a new command keyword: Using. The Using keyword
is a way to quickly encapsulate the lifecycle of an object that implements IDisposable and ensure that
the Dispose method is called correctly.

Dim mPerson as New Person()
Using (mPerson)
‘insert custom method calls

End Using

What the preceding statements do is allocate a new instance of the mPerson object. The Using command
then lets the compiler know to automatically clean up this object’s instance when the End Using com-
mand is executed. The result is a much cleaner way to ensure that the IDisposable interface is called.

Faster Memory Allocation for Objects
The CLR introduces the concept of a managed heap. Objects are allocated on the managed heap, and the
CLR is responsible for controlling access to these objects in a type-safe manner. One of the advantages of
the managed heap is that memory allocations on it are very efficient. When unmanaged code (such as
Visual Basic 6 or C++) allocates memory on the unmanaged heap, it typically scans through some sort of
data structure in search of a free chunk of memory that is large enough to accommodate the allocation.
The managed heap maintains a reference to the end of the most recent heap allocation. When a new
object needs to be created on the heap, the CLR allocates memory on top of memory that has previously
been allocated and then increments the reference to the end of heap allocations accordingly. Figure 3-1 is
a simplification of what takes place in the managed heap for .NET.

❑ State 1 — Shows a compressed memory heap with a reference to the end point on the heap.

❑ State 2 — Object B, although no longer referenced, remains in its current memory location. The
memory has not been freed and does not alter the allocation of memory or of other objects on
the heap.

218

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 218

❑ State 3 — Even though there is now a gap between the memory allocated for object A and object
C, the memory allocation for D still occurs on the top of the heap. The unused fragment of mem-
ory on the managed heap is ignored at allocation time.

❑ State 4 — After one or more allocations, before there is an allocation failure, the Garbage
Collector runs. It reclaims the memory that was allocated to B and repositions the remaining
valid objects. This compresses the active objects to the bottom of the heap creating more space
for additional object allocations, as shown in Figure 6-4.

This is where the power of the GC really shines. Before the CLR is unable to allocate memory on the man-
aged heap, the GC is invoked. The GC not only collects objects that are no longer referenced by the applica-
tion, but it also has a second task, compacting the heap. This is important because if all the GC did was
clean up objects, then the heap would become progressively more fragmented. When heap memory
becomes fragmented, you can wind up with a not uncommon problem of having a memory allocation fail,
not because there isn’t enough free memory, but because there isn’t enough free memory in a contiguous
section of memory. Thus, not only does the GC reclaim the memory associated with objects that are no
longer referenced, but it also compacts the remaining objects. The GC effectively squeezes out all of the
spaces between the remaining objects, freeing up a section large managed heap for new object allocations.

Figure 6-4

Object A

Reference to
top of heap
allocations

Object B

Object C

Object A

State 1: Objects A, B, and C
are allocated on the heap

State 2: Object B is no
longer referenced by the

application

Not Referenced

Object C

Reference to
top of heap
allocations

Object A

Reference to
top of heap
allocations

Not Referenced

Object C

Object D

Object A

State 3: Object D is
allocated on the heap

State 4: The GC executes,
memory from B reclaimed,
the Heap is compressed

Object C

Object D

Reference to
top of heap
allocations

219

The Common Language Runtime

09_575368 ch06.qxd 10/7/05 10:49 PM Page 219

Garbage Collector Optimizations
The GC uses a concept known as generations, the primary purpose of which is to improve its performance.
The theory behind generations is that objects that have been recently created tend to have a higher proba-
bility of being garbage collected than objects that have existed on the system for a longer time.

It is possible to understand generations in terms of a mall parking lot where cars represent objects
created by the CLR. People have different shopping patterns when they visit the mall. Some people
will spend a good portion of their day in the mall, and others will only stop long enough to pick up an
item or two. Applying the theory of generations in trying to find an empty parking space for a car yields
a situation in which the highest probability of finding a parking space is a place where other cars have
recently parked. In other words, spaces which were occupied recently are more likely to be held by
someone who just needed to quickly pick up an item or two. The longer a car has been parked in the
parking lot, the higher is the probability that they are an all-day shopper and the lower the probability
that their parking space will be freed up any time soon.

Generations provides a means for the GC to identify recently created objects versus long-lived objects.
An object’s generation is basically a counter that indicates how many times it has successfully avoided
garbage collection. In versions 1.0 and 1.1 of the .NET Framework, an object’s generation counter starts
at zero and can have a maximum value of two.

It is possible to put this to test with a simple Visual Basic application. There are two options for this sim-
ple code, you can take the code placed within the Sub Main code located below and paste it into the
event handler for the Hello World button that you created in Chapter 2. This will allow you to see how
this code works, without creating a new project. Alternatively, you can add a new Visual Basic console
application project to your solution. As you will recall from Chapter 2, when you create a new project,
there are several templates to choose from, and one of them is the console application for Visual Basic.
From the File menu, select Add Project ➪ New Project. This will open the dialog box, and after you have
created your new project, you will have a frame that looks similar to the code that follows. Then, within
the Main module, add the highlighted code below. Right-click your second project, and select the Set as
Startup Project option so that when you run your solution, your new project is automatically started.

Module Module1

Sub Main()
Dim myObject As Object = New Object()
Dim i As Integer

For i = 0 To 3
Console.WriteLine(String.Format(“Generation = {0}”, _

GC.GetGeneration(myObject)))
GC.Collect()
GC.WaitForPendingFinalizers()

Next i
End Sub

End Module

220

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 220

Regardless of the project you use, this code sends its output to the .NET console. For a Windows applica-
tion, this console defaults to the Visual Studio Output window. When you run this code, it creates an
instance of an object and then iterates through a loop four times. For each loop, it displays the current
generation count of myObject and then calls the GC. The GC.WaitForPendingFinalizers method
blocks execution until the garbage collection has been completed.

As shown in Figure 6-5, each time the GC was run, the generation counter was incremented for
myObject, up to a maximum of 2.

Figure 6-5

Each time the GC is run, the managed heap is compacted and the reference to the end of the most recent
memory allocation is updated. After compaction, objects of the same generation will be grouped together.
Generation-two objects will be grouped at the bottom of the managed heap and generation-one objects
will be grouped next. Since new generation-zero objects are placed on top of the existing allocations, they
will be grouped together as well.

This is significant because recently allocated objects have a higher probability of having shorter lives.
Since objects on the managed heap are ordered according to generations, the GC can opt to collect newer
objects. Running the GC over a limited portion of the heap will be quicker than running it over the entire
managed heap.

It’s also possible to invoke the GC with an overloaded version of the Collect method that accepts a
generation number. The GC will then collect all objects no longer referenced by the application that
belongs to the specified (or younger) generation. The version of the Collect method that accepts no
parameters collects objects that belong to all generations.

Another hidden GC optimization is that a reference to an object may implicitly go out of scope and can,
therefore, be collected by the GC. It is difficult to illustrate how the optimization occurs only if there are no
additional references to the object, and the object does not have a finalizer. However, if an object is declared
and used at the top of a module and not referenced again in a method, then in the release mode the meta-
data will indicate that the variable is not referenced in the later portion of the code. Once the last reference
to the object is made, its logical scope ends, and if the Garbage Collector runs, the memory for that object,
which will no longer be referenced, can be reclaimed before it has gone out of its physical scope.

221

The Common Language Runtime

09_575368 ch06.qxd 10/7/05 10:49 PM Page 221

Summary
This chapter introduced the CLR. It discussed the memory management features of the CLR, includ-
ing how the CLR eliminates the circular reference problem that has plagued COM developers. Next,
the chapter examined the Finalize method and understood why it should not be treated like the
Class_Terminate method. Specifically, topics covered in this chapter include:

❑ Whenever possible, do not implement the Finalize method in a class.

❑ If the Finalize method is used to perform necessary cleanup, make the code for the Finalize
method as short and quick as possible.

❑ There is no way to accurately predict when the GC will collect an object that is no longer refer-
enced by the application (unless the GC is invoked explicitly).

❑ The order in which the GC collects objects on the managed heap is nondeterministic. This
means that the Finalize method cannot call methods on other objects referenced by the object
being collected.

❑ If the Finalize method is implemented, also implement the IDisposable interface that can
be called by the client when the object is no longer needed.

❑ Leverage the Using keyword to automatically trigger the execution of the IDisposable
interface.

This chapter also examined the value of a common runtime and type system that can be targeted by
multiple languages. The chapter looked at how the CLR offers better support for metadata. Metadata
is used to make types self-describing and is used for language elements such as attributes. Included
were examples of how metadata is used by the CLR and the .NET class library and the chapter showed
you how to extend metadata by creating your own attributes. Finally, there was a brief review of the
Reflection API and the IL Disassembler utility (ildasm.exe), which can display the IL contained within
a module.

222

Chapter 6

09_575368 ch06.qxd 10/7/05 10:49 PM Page 222

Applying Objects
and Components

Chapters 4 and 5 explored the syntax provided by Visual Basic for working with objects, creating
classes, and implementing both inheritance and multiple interfaces. These are all powerful tools,
providing you with the ability to create very maintainable and readable code — even for extremely
complex applications.

However, just knowing the syntax and learning the tools is not enough to be successful. Successfully
applying the object-oriented capabilities of Visual Basic to create applications requires an under-
standing of object-oriented programming. This chapter applies Visual Basic’s object-oriented syn-
tax and shows how it allows you to build object-oriented applications. It further discusses the four
major object-oriented concepts — abstraction, encapsulation, polymorphism, and inheritance —
which were defined in Chapter 5. You’ll understand how these concepts can be applied in your
design and development to create effective object-oriented applications.

Abstraction
Abstraction is the process by which you can think about specific properties or behaviors without
thinking about a particular object that has those properties or behaviors. Abstraction is merely the
ability of a language to create “black box” code, to take a concept and create an abstract represen-
tation of that concept within a program.

A Customer object, for example, is an abstract representation of a real-world customer. A DataSet
object is an abstract representation of a set of data.

Abstraction allows you to recognize how things are similar and to ignore differences, to think in
general terms and not the specifics. A TextBox control is an abstraction, because you can place it
on a form and then tailor it to your needs by setting properties. Visual Basic allows you to define
abstractions using classes.

10_575368 ch07.qxd 10/7/05 10:46 PM Page 223

Any language that allows a developer to create a class from which objects can be instantiated meets this
criterion, and Visual Basic is no exception. You can easily create a class to represent a customer, essen-
tially providing an abstraction. You can then create instances of that class, where each object can have its
own attributes, representing a specific customer.

In Visual Basic, you implement abstraction by creating a class using the Class keyword. Bring up Visual
Studio, and create a new Visual Basic Windows Application project named 575386ch07. Once the pro-
ject is open, add a new class to the project using the Project ➪ Add Class menu option. Name the new
class Customer, and add some code to make this class represent a real-world customer in an abstract
sense:

Public Class Customer
Private mID As Guid = Guid.NewGuid
Private mName As String
Private mPhone As String

Public Property ID() As Guid
Get

Return mID
End Get
Set(ByVal value As Guid)

mID = value
End Set

End Property

Public Property Name() As String
Get

Return mName
End Get
Set(ByVal value As String)

mName = value
End Set

End Property

Public Property Phone() As String
Get

Return mPhone
End Get
Set(ByVal value As String)

mPhone = value
End Set

End Property
End Class

You know that a real customer is a lot more complex than an ID, name, and phone number. Yet at the
same time, you know that in an abstract sense, your customers really do have names and phone num-
bers, and that you assign them unique ID numbers to keep track of them. In this case, you’re using a
globally unique identifier (GUID) as a unique ID. Thus, given an ID, name, and phone number, you
know which customer you’re dealing with, and so you have a perfectly valid abstraction of a customer
within your application.

224

Chapter 7

10_575368 ch07.qxd 10/7/05 10:46 PM Page 224

You can then use this abstract representation of a customer from within your code. To do this, you’ll use
data binding to link the object to a form. Before proceeding, make sure to build the project. Now click
the Data|Show Data Sources menu option to open the Data Sources window. Then click the Add New
Data Source link in the window to bring up the Data Source Configuration Wizard. Within the wizard,
choose to add a new Object data source, and select your Customer class, as shown in Figure 7-1.

Figure 7-1

Finish the wizard and the Customer class should be displayed as an available data source as shown in
Figure 7-2.

Figure 7-2

225

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:46 PM Page 225

Click on Customer in the window. Customer should change its display to a combo box. Open the
combo box, and change the selection from DataGridView to Details. This way you’ll get a details view
of the object on your form. Open the designer for Form1 and drag the Customer class from the Data
Sources window onto the form. The result should look something like Figure 7-3.

Figure 7-3

All you need to do now is add code to create an instance of the Customer class to act as a data source for
the form. Double-click on the form to bring up its code window and add the following code:

Public Class Form1

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Me.CustomerBindingSource.DataSource = New Customer

End Sub

End Class

You’re using the ability of Windows Forms to data bind to a property on an object. You’ll learn more
about data binding in Chapter 14. For now, it is enough to know that the controls on the form are auto-
matically tied to the properties on your object.

Now, you have a simple user interface (UI) that both displays and updates the data in your Customer
object, with that object providing the UI developer with an abstract representation of the customer.
When you run the application, you’ll see a display similar to that shown in Figure 7-4.

Here, you’ve displayed the pregenerated ID value, and have entered values for Name and Phone directly
into the form.

226

Chapter 7

10_575368 ch07.qxd 10/7/05 10:46 PM Page 226

Figure 7-4

Encapsulation
Perhaps the most important of the object-oriented concepts is that of encapsulation. Encapsulation is the
concept that an object should totally separate its interface from its implementation. All the data and
implementation code for an object should be entirely hidden behind its interface. Another way to put
this is that an object should be a black box.

The idea is that you can create an interface (by creating public methods in a class) and, as long as that
interface remains consistent, the application can interact with your objects. This remains true even if you
entirely rewrite the code within a given method. The interface is independent of the implementation.

Encapsulation allows you to hide the internal implementation details of a class. For example, the algo-
rithm you use to find prime numbers might be proprietary. You can expose a simple API to the end user,
but you hide all of the logic used in your algorithm by encapsulating it within your class.

This means that an object should completely contain any data it requires and that it should also contain
all the code required to manipulate that data. Programs should interact with an object through an inter-
face, using the properties and methods of the object. Client code should never work directly with the
data owned by the object.

Programs interact with objects by sending messages to the object that indicate
which method or property they’d like to have invoked. These messages are gener-
ated by other objects or by external sources such as the user. The object reacts to
these messages through methods or properties.

227

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:46 PM Page 227

Visual Basic classes entirely hide their internal data and code, providing a well-established interface of
properties and methods, with the outside world.

Let’s look at an example. Add the following class to your project; the code defines its native interface:

Public Class Encapsulation

Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single

End Function

Public Property CurrentX() As Single
Get

End Get
Set(ByVal value As Single)

End Set
End Property

Public Property CurrentY() As Single
Get

End Get
Set(ByVal value As Single)

End Set
End Property

End Class

This creates an interface for the class. At this point, you can write client code to interact with the class,
since from a client perspective all you care about is the interface. Bring up the designer for Form1 and
add a button to the form, then write the following code behind the button:

Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnEncapsulation.Click

Dim obj As New Encapsulation
MsgBox(obj.DistanceTo(10, 10))

End Sub

Even though you have no actual code in the Encapsulation class, you can still write code to use that
class because the interface is defined.

This is a powerful idea, since it means that you can rapidly create class interfaces against which other
developers can create the UI or other parts of the application, while you are still creating the implemen-
tation behind the interface.

228

Chapter 7

10_575368 ch07.qxd 10/7/05 10:46 PM Page 228

From here, you could do virtually anything you like in terms of implementing the class. For example,
you could use the values to calculate a direct distance:

Imports System.Math
Public Class Encapsulation

Private mX As Single
Private mY As Single

Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single
Return CSng(Sqrt((x - mX) ^ 2 + (y - mY) ^ 2))

End Function

Public Property CurrentX() As Single
Get

Return mX
End Get
Set(ByVal value As Single)

mX = value
End Set

End Property

Public Property CurrentY() As Single
Get

Return mY
End Get
Set(ByVal value As Single)

mY = value
End Set

End Property
End Class

Now, when you run the application and click the button, you’ll get a meaningful value as a result.

Where encapsulation comes to the fore, however, is that you can change the implementation without
changing the interface. For example, you can change the distance calculation to find the distance
between the points (assuming that no diagonal travel is allowed).

Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single
Return Abs(x - mX) + Abs(y - mY)

End Function

This results in a different value being displayed when the program is run.

You haven’t changed the interface of the class, and so your working client program has no idea that you
have switched from one implementation to the other. You have achieved a total change of behavior with-
out any change to the client code. This is the essence of encapsulation.

Of course, the user might have a problem if you made such a change to your object. If applications were
developed expecting the first set of behaviors, and then you changed to the second, there could be some
interesting side effects. However, the key point is that the client programs would continue to function,
even if the results were quite different from when you started.

229

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:46 PM Page 229

Polymorphism
Polymorphism is often considered to be directly tied to inheritance (which is discussed next). In reality,
however, it’s largely independent. Polymorphism means that you can have two classes with different
implementations or code, but with a common set of methods, properties, or events. You can then write
a program that operates upon that interface and doesn’t care about which type of object it operates at
runtime.

Method Signatures
To properly understand polymorphism, you need to explore the concept of a method signature, some-
times also called a prototype. All methods have a signature, which is defined by the method’s name and
the datatypes of its parameters. You might have code such as this:

Public Function CalculateValue() As Integer

End Sub

In this example, the signature is:

f()
If you add a parameter to the method, the signature will change. For example, you could change the
method to accept a Double:

Public Function CalculateValue(ByVal value As Double) As Integer

Then, the signature of the method is:

f(Double)

Polymorphism merely says that you should be able to write client code that calls methods on an object,
and as long as the object provides your methods with the method signatures you expect, you don’t care
which class the object was created from. Let’s look at some examples of polymorphism within Visual
Basic.

Implementing Polymorphism
You can use several techniques to achieve polymorphic behavior:

❑ Late binding

❑ Multiple interfaces

❑ Reflection

❑ Inheritance

230

Chapter 7

10_575368 ch07.qxd 10/7/05 10:46 PM Page 230

Late binding actually allows you to implement “pure” polymorphism, although at the cost of perfor-
mance and ease of programming. Through multiple interfaces and inheritance, you can also achieve
polymorphism with much better performance and ease of programming. Reflection allows you to use
either late binding or multiple interfaces, but against objects created in a very dynamic way, even going
so far as to dynamically load a DLL into your application at runtime so that you can use its classes.

You’ll walk through each of these options to see how they are implemented and to explore their pros
and cons.

Polymorphism through Late Binding
Typically, when you interact with objects in Visual Basic, you are interacting with them through strongly
typed variables. For example, in Form1 you interacted with the Encapsulation object with the follow-
ing code:

Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnEncapsulation.Click

Dim obj As New Encapsulation
MsgBox(obj.DistanceTo(10, 10))

End Sub

The obj variable is declared using a specific type (Encapsulation) — meaning that it is strongly typed
or early bound.

You can also interact with objects that are late bound. Late binding means that your object variable has
no specific datatype, but rather is of type Object. To use late binding, you need to use the Option
Strict Off directive at the top of your code file (or in the project’s properties). This tells the Visual
Basic compiler that you want to use late binding, so it will allow you to do this type of polymorphism.
Add this to the top of the Form1 code:

Option Strict Off

With Option Strict turned off, Visual Basic treats the Object datatype in a special way, allowing you
to attempt arbitrary method calls against the object even though the Object datatype doesn’t implement
those methods.

For example, you could change the code in Form1 to be late bound as follows:

Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnEncapsulation.Click

Dim obj As Object = New Encapsulation
MsgBox(obj.DistanceTo(10, 10))

End Sub

231

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:46 PM Page 231

When this code is run, you’ll get the same result as you did before, even though the Object datatype
has no DistanceTo method as part of its interface. The late binding mechanism, behind the scenes,
dynamically determines the real type of your object and invokes the appropriate method.

When you work with objects through late binding, neither the Visual Basic IDE nor the compiler can tell
whether you are calling a valid method or not. In this case, there is no way for the compiler to know that
the object referenced by your obj variable actually has a DistanceTo method. It just assumes that you
know what you’re talking about and compiles the code.

Then at runtime, when the code is actually invoked it will attempt to dynamically call the DistanceTo
method. If that is a valid method, your code will work; if it is not, you’ll get an error.

Obviously, there is a level of danger when using late binding, since a simple typo can introduce errors
that can only be discovered when the application is actually run. However, there is also a lot of flexibil-
ity, since code that makes use of late binding can talk to any object from any class as long as those objects
implement the methods you require.

There is also a substantial performance penalty for using late binding. The existence of each method is
discovered dynamically at runtime, and that discovery takes time. Moreover, the mechanism used to
invoke a method through late binding is not nearly as efficient as the mechanism used to call a method
that is known at compile time.

To make this more obvious, you can change the code in Form1 by adding a generic routine that displays
the distance:

Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnEncapsulation.Click

Dim obj As New Encapsulation
ShowDistance(obj)

End Sub
Private Sub ShowDistance(ByVal obj As Object)

MsgBox(obj.DistanceTo(10, 10))
End Sub

Notice that the new ShowDistance routine accepts a parameter using the generic Object datatype — so
you can pass it literally any value —String, Integer, or one of your objects. It will throw an exception
at runtime, however, unless the object you pass into the routine has a DistanceTo method that matches
the required method signature.

You know that your Encapsulation object has a method matching that signature, so your code works
fine. However, let’s add another simple class to demonstrate polymorphism. Add a new class to the pro-
ject and name it Poly.vb:

Public Class Poly
Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single

Return x + y
End Function

End Class

232

Chapter 7

10_575368 ch07.qxd 10/7/05 10:46 PM Page 232

This class is about as simple as you can get. It exposes a DistanceTo method as part of its interface and
provides a very basic implementation of that interface.

You can use this new class in place of the Encapsulation class without changing the ShowDistance
method by using polymorphism. Return to the code in Form1 and make the following change:

Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnEncapsulation.Click

Dim obj As New Poly
ShowDistance(obj)

End Sub

Even though you changed the class of object you’re passing to ShowDistance to one with a different
overall interface and different implementation, the method called within ShowDistance remains consis-
tent, so your code will run.

Polymorphism with Multiple Interfaces
Late binding is flexible and easy. However, it is not ideal because it defeats the IDE and compiler type
checking that allow you to fix bugs due to typos during the development process, and because it has a
negative impact on performance.

Another way to implement polymorphism is to use multiple interfaces. This approach avoids late bind-
ing, meaning that the IDE and compiler can check your code as you enter and compile it. Also, because
the compiler has access to all the information about each method you call, your code will run much
faster.

Remove the Option Strict directive from the code in Form1. This will cause some syntax errors to be
highlighted in the code, but don’t worry — you’ll fix those soon enough.

Visual Basic not only supports polymorphism through late binding, but also implements a stricter form
of polymorphism through its support of multiple interfaces. (Chapter 5 discussed multiple interfaces,
including the use of the Implements keyword and how to define interfaces.)

With late binding you’ve seen how to treat all objects as equals by making them all appear using the
Object datatype. With multiple interfaces, you can treat all objects as equals by making them all imple-
ment a common datatype or interface.

This approach has the benefit that it is strongly typed, meaning that the IDE and compiler can help you
find errors due to typos, since the name and datatypes of all methods and parameters are known at
design time. It is also fast in terms of performance; since the compiler knows all about the methods, it
can use optimized mechanisms for calling them, especially as compared to the dynamic mechanisms
used in late binding.

Let’s return to the project and implement polymorphism with multiple interfaces. First, add a module
to the project using the Project ➪ Add Module menu option and name it Interfaces.vb. Replace the
Module code block with an Interface declaration:

233

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:46 PM Page 233

Public Interface IShared
Function CalculateDistance(ByVal x As Single, ByVal y As Single) As Single

End Interface

Now, you can make both the Encapsulation and Poly classes implement this interface. First, in the
Encapsulation class add the following code:

Public Class Encapsulation
Implements IShared

Private mX As Single
Private mY As Single

Public Function DistanceTo(ByVal x As Single, ByVal y As Single) _
As Single Implements IShared.CalculateDistance

Return CSng(Sqrt((x - mX) ^ 2 + (y - mY) ^ 2))
End Function

...

You can see that you’re implementing the IShared interface, and since the CalculateDistance
method’s signature matches that of your existing DistanceTo method, you’re simply indicating that it
should act as the implementation for CalculateDistance.

You can make a similar change in the Poly class:

Public Class Poly
Implements IShared
Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single _

Implements IShared.CalculateDistance
Return x + y

End Function
End Class

Now, this class also implements the IShared interface, and you’re ready to see polymorphism imple-
mented in your code.

Bring up the code window for Form1, and change your ShowDistance method as follows:

Private Sub ShowDistance(ByVal obj As IShared)
MsgBox(obj.CalculateDistance(10, 10))

End Sub

Note that this eliminates the compiler error you were seeing after removing the Option Strict direc-
tive from Form1.

Instead of accepting the parameter using the generic Object datatype, you are now accepting an IShared
parameter — a strong datatype known by both the IDE and the compiler. Within the code itself, you are
now calling the CalculateDistance method as defined by that interface.

234

Chapter 7

10_575368 ch07.qxd 10/7/05 10:46 PM Page 234

This routine can now accept any object that implements IShared, regardless of what class that object
was created from, or what other interfaces that object may implement. All you care about here is that the
object implements IShared.

Polymorphism through Reflection
You’ve seen how to use late binding to invoke a method on any arbitrary object, as long as that object
has a method matching the method signature you’re trying to call. You’ve also walked through the use
of multiple interfaces which allows you to achieve polymorphism through a faster, early bound tech-
nique. The challenge with these techniques is that late binding can be slow and hard to debug, and
multiple interfaces can be somewhat rigid and inflexible.

You can use the concept of reflection to overcome some of these limitations. Reflection is a technology
built into the .NET Framework that allows you to write code that interrogates an assembly to dynami-
cally determine the classes and datatypes it contains. You can then use reflection to load the assembly
into your process, create instances of those classes, and invoke their methods.

When you use late binding, Visual Basic makes use of the System.Reflection namespace behind the
scenes on your behalf. You can choose to manually use reflection as well. This allows you even more
flexibility in how you interact with objects.

For example, suppose that the class you want to call is located in some other assembly on disk — an
assembly you didn’t specifically reference from within your project when you compiled it. How can
you dynamically find, load, and invoke such an assembly? Reflection allows you to do this, assuming
that the assembly is polymorphic. In other words, it has either an interface you expect or a set of meth-
ods you can invoke via late binding.

To see how reflection works with late binding, let’s create a new class in a separate assembly (project)
and use it from within your existing application. Choose File ➪ Add ➪ New Project to add a new class
library project to your solution. Name it Objects. It will start with a single class module that you can
use as a starting point. Change the code in that class to the following:

Public Class External
Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single

Return x * y
End Function

End Class

Now, compile the assembly by choosing the Build ➪ Build Objects menu option. Next, bring up the
code window for Form1. Add an Imports statement at the top, and add back the Option Strict Off
statement:

Option Strict Off

Imports System.Reflection

Remember that since you’re using late binding, Form1 also must use Option Strict Off. Without this,
late binding is not available.

235

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:46 PM Page 235

Then add a button with the following code:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles button1.Click

Dim obj As Object
Dim dll As Assembly

dll = Assembly.LoadFrom(“..\..\Objects\bin\Objects.dll”)

obj = dll.CreateInstance(“Objects.External”)
MsgBox(obj.DistanceTo(10, 10))

End Sub

There’s a lot going on here, so let’s walk through it a bit. First, notice that you’re reverting to late bind-
ing; your obj variable is declared as type Object. You’ll take a look at using reflection and multiple
interfaces in a moment, but to start with you’ll use late binding.

Next, you’ve declared a dll variable as type Reflection.Assembly. This variable will contain a refer-
ence to the Objects assembly that you’ll be dynamically loading through your code. Note that you are
not adding a reference to this assembly via Project ➪ Add References. You’ll dynamically get access to
the assembly at runtime.

You then load the external assembly dynamically by using the Assembly.LoadFrom method:

dll = Assembly.LoadFrom(“..\..\Objects\bin\Objects.dll”)

This causes the reflection library to load your assembly from a file on disk at the location you specify.
Once the assembly is loaded into your process, you can use the myDll variable to interact with it,
including interrogating it to get a list of the classes it contains or to create instances of those classes.

You can then use the CreateInstance method on the assembly itself to create objects based on any
class in that assembly. In your case, you’re creating an object based on the External class:

obj = dll.CreateInstance(“Objects.External”)

Now, you have an actual object to work with, so you can use late binding to invoke its DistanceTo
method. At this point, your code is really no different from that in the earlier late binding example,
except that the assembly and object were created dynamically at runtime rather than being referenced
directly by your project.

At this point, you should be able to run the application and have it dynamically invoke the assembly at
runtime.

You can also use the [Assembly].Load method, which will scan the directory where
your application’s .exe file is located (and the global assembly cache) for any EXE or
DLL containing the Objects assembly. When it finds the assembly, it loads it into
memory, making it available for your use.

236

Chapter 7

10_575368 ch07.qxd 10/7/05 10:46 PM Page 236

Polymorphism through Reflection and Multiple Interfaces
You can also use both reflection and multiple interfaces together. You’ve seen how multiple interfaces
allow you to have objects from different classes implement the same interface and thus be treated identi-
cally. You’ve also seen how reflection allows you to load an assembly and class dynamically at runtime.

You can combine these concepts by using an interface that is common between your main application
and your external assembly, and also using reflection to load that external assembly dynamically at
runtime.

First, you need to create the interface that will be shared across both application and assembly. To do
this, add a new Class Library project to your solution named Interfaces. Once it is created, drag and
drop the Interfaces.vb module from your original application into the new project. This makes the
IShared interface part of that project and no longer part of your base application.

Of course, your base application still uses IShared, so you’ll want to reference the Interfaces project
from your application to gain access to the interface. Do this by right-clicking your 575386ch07 project
in the Solution Explorer window and selecting the Add Reference menu option. Then add the reference,
as shown in Figure 7-5.

Figure 7-5

Since the IShared interface is now part of a separate assembly, you’ll need to add an Imports statement
to Form1, Encapsulation, and Poly so that they are able to locate the IShared interface.

Imports Interfaces

Make sure to add this to the top of all three code modules.

237

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:46 PM Page 237

You also need to have the Objects project reference Interfaces, so right-click Objects in Solution
Explorer and choose Add Reference there as well. Add the reference to Interfaces and click OK. At
this point, both the original application and the external assembly have access to the IShared interface.
You can now enhance the code in Objects by changing the External class:

Imports Interfaces
Public Class External

Implements IShared
Public Function DistanceTo(ByVal x As Single, ByVal y As Single) _

As Single Implements IShared.CalculateDistance

Return x * y
End Function

End Class

With both the main application and external assembly using the same datatype, you are now ready to
implement the polymorphic behavior using reflection.

First, remove the Option Strict Off code from Form1. This prohibits the use of late binding, thus
ensuring that you must use a different technique for polymorphism.

Bring up the code window for Form1 and change the code behind the button to take advantage of the
IShared interface:

Private Sub btnReflection_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnReflection.Click

Dim obj As IShared
Dim dll As Assembly

dll = Assembly.LoadFrom(“..\..\Objects\bin\Objects.dll”)

obj = CType(dll.CreateInstance(“Objects.External”), IShared)
ShowDistance(obj)

End Sub

All you’ve done here is to change the code so that you can pass your dynamically created object to the
ShowDistance method, which you know requires a parameter of type IShared. Since your class imple-
ments the same IShared interface (from Interfaces) as is used by the main application, this will work
perfectly. Rebuild and run the solution to see this in action.

This technique is very nice, since the code in ShowDistance is strongly typed, providing all the perfor-
mance and coding benefits, but both the DLL and the object itself are loaded dynamically, providing a
great deal of flexibility to your application.

Polymorphism with Inheritance
Inheritance, which was discussed in Chapter 5, can also be used to enable polymorphism. The idea here
is very similar to that of multiple interfaces, since a subclass can always be treated as though it were the
datatype of the parent class.

238

Chapter 7

10_575368 ch07.qxd 10/7/05 10:46 PM Page 238

At the moment, both your Encapsulation and Poly classes are implementing a common interface
named IShared. You are able to use polymorphism to interact with objects of either class via that com-
mon interface. The same is true if these are child classes based on the same base class through inheri-
tance. Let’s see how this works.

In the 575386ch07 project, add a new class named Parent. Insert the following code into that class:

Public MustInherit Class Parent
Public MustOverride Function DistanceTo(ByVal x As Single, _

ByVal y As Single) As Single
End Class

As you discussed in Chapter 5, this is an abstract base class, a class with no implementation of its own.
The purpose of an abstract base class is to provide a common base from which other classes can be
derived.

To implement polymorphism using inheritance, you do not need to use an abstract base class. Any base
class that provides overridable methods (using either MustOverride or Overridable keywords) will
work fine, since all its subclasses are guaranteed to have that same set of methods as part of their inter-
face and yet the subclasses can provide custom implementation for those methods.

In this example, you’re simply defining the DistanceTo method as being a method that must be over-
ridden and implemented by any subclass of Parent. Now, you can bring up the Encapsulation class
and change it to be a subclass of Parent:

Public Class Encapsulation
Inherits Parent
Implements IShared

You don’t need to quit implementing the IShared interface just because you’re inheriting from Parent;
inheritance and multiple interfaces coexist nicely. You do, however, have to override the DistanceTo
method from the Parent class.

The Encapsulation class already has a DistanceTo method with the proper method signature, so you
can simply add the Overrides keyword to indicate that this method will override the declaration in the
Parent class:

Public Overrides Function DistanceTo(_
ByVal x As Single, _ByVal y As Single) _
As Single Implements IShared.CalculateDistance

At this point, the Encapsulation class not only implements the common IShared interface and its
own native interface but also can be treated as though it were of type Parent, since it is a subclass of
Parent. You can do the same thing to the Poly class:

Many people consider the concepts of inheritance and polymorphism to be tightly
intertwined. As you’ve seen, however, it is perfectly possible to use polymorphism
without inheritance.

239

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:47 PM Page 239

Public Class Poly
Inherits Parent
Implements IShared
Public Overrides Function DistanceTo(_

ByVal x As Single, ByVal y As Single) _
As Single Implements IShared.CalculateDistance

Return x + y
End Function

End Class

Finally, you can see how polymorphism works by altering the code in Form1 to take advantage of the
fact that both classes can be treated as though they were of type Parent. First, you can change the
ShowDistance method to accept its parameter as type Parent and to call the DistanceTo method:

Private Sub ShowDistance(ByVal obj As Parent)
MsgBox(obj.DistanceTo(10, 10))

End Sub

Then, you can add a new button to create an object of either type Encapsulation or Poly and pass it as
a parameter to the method:

Private Sub btnInheritance_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnInheritance.Click

ShowDistance(New Poly)
ShowDistance(New Encapsulation)

End Sub

Polymorphism Summary
Polymorphism is a very important concept in object-oriented design and programming, and Visual Basic
provides you with ample techniques through which it can be implemented.

The following table summarizes the different techniques and their pros and cons, and provides some
high-level guidelines about when to use each.

Technique Pros Cons Guidelines

Late binding Flexible, “pure” Slow, hard to debug, Use to call arbitrary methods
on polymorphism no IntelliSense literally any object, regardless

of datatype or
interfaces Useful when you can’t control

the interfaces that will be
implemented by the authors
of your classes

240

Chapter 7

10_575368 ch07.qxd 10/7/05 10:47 PM Page 240

Technique Pros Cons Guidelines

Multiple Fast, easy to debug, Not totally dynamic Use when you are creating
interfaces full IntelliSense or flexible, requires code that interacts with

class author to clearly defined methods that
implement formal can be grouped together into
interface a formal interface

Useful when you control the
interfaces that will be
implemented by the classes
used by your application

Reflection Flexible, “pure” Slow, hard to debug, Use to call arbitrary methods
and late polymorphism, no IntelliSense on objects, when you
binding dynamically loads don’t know at design

arbitrary assemblies time which assemblies
from disk you will be using

Reflection Fast, easy to debug, Not totally dynamic or Use when you are creating
and multiple full IntelliSense, flexible, requires class code that interacts with
interfaces dynamically loads author to implement clearly defined methods that

arbitrary assemblies formal interface can be grouped together into
from disk a formal interface, but when

you don’t know at design
time which assemblies you
will be using

Inheritance Fast, easy to debug, Not totally dynamic Use when you are creating
full IntelliSense, or flexible, requires objects that have an is-a
inherits behaviors class author to inherit relationship, when you
from base class from common base have subclasses that are

class naturally of the same
datatype as a base class

Polymorphism through
inheritance should occur
because inheritance makes
sense, not because you are
attempting to merely achieve
polymorphism

Inheritance
Inheritance is the concept that a new class can be based on an existing class, inheriting its interface and
functionality from the original class. Chapter 5 discussed the mechanics and syntax of inheritance, so we
won’t rehash them here. However, Chapter 5 really didn’t discuss inheritance from a practical
perspective, and that will be the focus of this section.

241

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:47 PM Page 241

When to Use Inheritance
Inheritance is one of the most powerful object-oriented features a language can support. At the same
time, inheritance is one of the most dangerous and misused object-oriented features.

Properly used, inheritance allows you to increase the maintainability, readability, and reusability
of your application by offering you a clear and concise way to reuse code, via both interface and
implementation. Improperly used, inheritance allows you to create applications that are very fragile,
where a change to a class can cause the entire application to break or require changes.

Inheritance allows you to implement an is-a relationship. In other words, it allows you to implement a
new class that is a more specific type of its base class. This means that properly used, inheritance allows
you to create child classes that really are the same as the base class.

Perhaps a quick example is in order. Take a duck. You know that a duck is a bird. However, a duck can
also be food, though that is not its primary identity. Proper use of inheritance would allow you to create
a Bird base class from which you could derive your Duck class. You would not create a Food class and
subclass Duck from Food, since a duck isn’t really just food, it merely acts as food sometimes.

This is the challenge. Inheritance is not just a mechanism for code reuse. It is a mechanism to create
classes that flow naturally from some other class. If you use it anywhere you want code reuse, you’ll end
up with a real mess on your hands. If you use it anywhere you just want a common interface, but where
the child class is not really the same as the base class, then you should be using multiple interfaces —
something we’ll discuss shortly.

For example, you might have different types of products in your organization. All of these products
will have some common data and behaviors; they’ll all have a product number, description, and price.
However, if you have an agricultural application, you might have chemical products, seed products,
fertilizer products, and retail products. These are all different — each having its own data and behaviors —
and yet there is no doubt that each one of them really is a product. You can use inheritance to create this
set of products as illustrated by the Class Diagram in Figure 7-6.

Figure 7-6

Product
Class

Seed
Class

Person

Fertilizer
Class

Person

Chemical
Class

Person

Retail
Class

Person

The question you must ask, when using inheritance, is whether the child class is a
more specific version of the base class.

242

Chapter 7

10_575368 ch07.qxd 10/7/05 10:47 PM Page 242

This diagram shows that you have an abstract base Product class, from which you derive the various
types of product your system will actually use. This is an appropriate use of inheritance, because the
child classes are obviously each a more specific form of the general Product class.

Alternately, you might try to use inheritance just as a code-sharing mechanism. For example, you may
look at your application, which has Customer, Product, and SalesOrder classes, and decide that all of
them need to be designed so that they can be printed to a printer. The code to handle the printing will all
be somewhat similar, so to reuse that printing code, you create a base PrintableObject class. This
would result in the diagram shown in Figure 7-7.

Figure 7-7

Intuitively, you know that this doesn’t represent an is-a relationship. While a Customer can be printed,
and you are getting code reuse, a customer isn’t really a specific case of a printable object. Implementing
a system following this design will result in a fragile design and application. This is a case where
multiple interfaces are a far more appropriate technology, as you’ll see later.

To illustrate this point, you might later discover that you have other entities in your organization that are
similar to a customer, but are not quite the same. Upon further analysis, you may determine that
Employee and Customer are related because they are specific cases of a Contact class. The Contact
class provides commonality in terms of data and behavior across all these other classes (see Figure 7-8).

But now your Customer is in trouble, you’ve said it is a PrintableObject, and you’re now saying it is
a Contact.

You might be able to just derive Contact from PrintableObject (see Figure 7-9).

The problem with this is that now Employee is also of type PrintableObject, even if it shouldn’t be.
But you’re stuck, since unfortunately you decided early on to go against intuition and say that a
Customer is a PrintableObject.

This is a problem that could be solved by multiple inheritance, which would allow Customer to be a
subclass of more than one base class, in this case, of both Contact and PrintableObject. However,
the .NET platform and Visual Basic don’t support multiple inheritance in this way. Your alternative is to
use inheritance for the is-a relationship with Contact, and use multiple interfaces to allow the
Customer object to act as a PrintableObject by implementing an IPrintableObject interface.

PrintableObject
MustInherit Class

Customer
Class

PrintableObject

Product
Class

PrintableObject

SalesOrder
Class

PrintableObject

243

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:47 PM Page 243

Figure 7-8

Figure 7-9

Application versus Framework Inheritance
What you’ve just seen is how inheritance can accidentally cause reuse of code where no reuse was desired.

However, you can take a different view of this model by separating the concept of a framework from
your actual application. The way you use inheritance in the design of a framework is somewhat different
from how you use inheritance in the design of an actual application.

PrintableObject
MustInherit Class

Contact
Class

PrintableObject

Customer
Class

Contact

Employee
Class

Contact

Contact
Class

Employee
Class

Contact

Customer
Class

Contact

244

Chapter 7

10_575368 ch07.qxd 10/7/05 10:47 PM Page 244

In this context, the word framework is being used to refer to a set of classes that provide base
functionality that is not specific to an application, but rather may be used across a number of
applications within the organization, or perhaps even beyond the organization. The .NET Framework
base class library is an example of a very broad framework you use when building your applications.

The PrintableObject class discussed earlier, for example, may have little to do with your specific
application, but may be the type of thing that is used across many applications. If so, it is a natural
candidate to be part of a framework, rather than being considered part of your actual application.

Framework classes exist at a lower level than application classes. For example, the .NET base class
library is a framework on which all .NET applications are built. You can layer your own framework on
top of the .NET Framework as well (see Figure 7-10).

Figure 7-10

If you take this view, then the PrintableObject class wouldn’t be part of your application at all, but
rather would be part of a framework on which your application is built. In such a case, the fact that
Customer is not a specific case of PrintableObject doesn’t matter as much, since you’re not saying
that it is such a thing, but rather that it is leveraging that portion of the framework functionality.

To make all this work requires a lot of planning and forethought in the design of the framework itself. To
see the dangers you face, consider that you might not only want to be able to print objects, you might
also want to be able to store them in a file. So, you might not only have PrintableObject but also
SavableObject as a base class.

The question then is what do you do if Customer should be both printable and savable? If all printable
objects are savable, you might have the result shown in Figure 7-11.

Or, if all savable objects are printable, you might have the result shown in Figure 7-12.

But really neither of these provides a decent solution, since the odds are that the concept of being
printable and the concept of being savable are different and not interrelated in either of these ways.

Our App

Our Framework

.NET Framework

245

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:47 PM Page 245

Figure 7-11

Figure 7-12

When faced with this sort of issue, it is best to avoid using inheritance and rather rely on multiple
interfaces.

Inheritance and Multiple Interfaces
While inheritance is powerful, it is really geared around implementing the is-a relationship. Sometimes,
you will have objects that need to have a common interface, even though they aren’t really a specific
case of some base class that provides that interface. We’ve just been exploring that issue in the discussion
of the PrintableObject, SavableObject, and Customer classes.

Sometimes, multiple interfaces are a better alternative than inheritance. The syntax for creating and
using secondary and multiple interfaces was discussed.

Multiple interfaces can be viewed as another way of implementing the is-a relationship. It is often better,
however, to view inheritance as an is-a relationship and to view multiple interfaces as a way of imple-
menting an act-as relationship.

To think about this further, we can say that the PrintableObject concept could perhaps be better
expressed as an interface —IPrintableObject.

PrintableObject
MustInherit Class

SavableObject
MustInherit Class

PrintableObject

SavableObject
MustInherit Class

PrintableObject
MustInherit Class

SavableObject

246

Chapter 7

10_575368 ch07.qxd 10/7/05 10:47 PM Page 246

When the class implements a secondary interface such as IPrintableObject, you’re not really saying
that your class is a printable object, you’re saying that it can act as a printable object. A Customer is a
Contact, but at the same time it can act as a printable object. This is illustrated in Figure 7-13.

Figure 7-13

The drawback to this approach is that you get no inherited implementation when you implement
IPrintableObject. In Chapter 5, we discussed how to reuse common code as you implement an
interface across multiple classes. While not as automatic or easy as inheritance, it is possible to reuse
implementation code with a bit of extra work.

Applying Inheritance and Multiple Interfaces
Perhaps the best way to see how inheritance and multiple interfaces interact is to look at an example.
Returning to the original 575386ch07 project, you’ll combine inheritance and multiple interfaces to
create an object that has both an is-a and act-as relationship at the same time. As an additional benefit,
you’ll be using the .NET Framework’s ability to print to a printer or Print Preview dialog.

Creating the Contact Base Class
You already have a simple Customer class in the project, so now let’s add a Contact base class. Choose
Project ➪ Add Class and add a class named Contact. Write the following code:

Public MustInherit Class Contact

Private mID As Guid = Guid.NewGuid
Private mName As String

Public Property ID() As Guid
Get

Return mID
End Get
Set(ByVal value As Guid)

mID = value
End Set

Contact
Class

Customer
ClassIPrintableObject

Contact

247

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:47 PM Page 247

End Property

Public Property Name() As String
Get

Return mName
End Get
Set(ByVal value As String)

mName = value
End Set

End Property

End Class

Subclassing Contact
Now, you can make the Customer class inherit from this base class, since it is a Contact. Also, since
your base class now implements both the ID and Name properties, you can simplify the code in
Customer by removing those properties and their related variables:

Public Class Customer
Inherits Contact

Private mPhone As String

Public Property Phone() As String
Get

Return mPhone
End Get
Set(ByVal value As String)

mPhone = value
End Set

End Property
End Class

This shows the benefit of subclassing Customer from Contact, since you’re now sharing the ID and
Name code across all other types of Contact as well.

Implementing IPrintableObject
However, you also know that a Customer should be able to act as a printable object. To do this in such a
way that the implementation is reusable requires a bit of thought. First though, you need to define the
IPrintableObject interface.

You’ll use the standard printing mechanism provided by .NET from the System.Drawing namespace.
As shown in Figure 7-14, add a reference to System.Drawing.dll to the Interfaces project.

248

Chapter 7

10_575368 ch07.qxd 10/7/05 10:47 PM Page 248

Figure 7-14

With that done, bring up the code window for Interfaces.vb in the Interfaces project and add the
following code:

Imports System.Drawing

Public Interface IPrintableObject
Sub Print()
Sub PrintPreview()
Sub RenderPage(ByVal sender As Object, _

ByVal ev As System.Drawing.Printing.PrintPageEventArgs)
End Interface

This interface ensures that any object implementing IPrintableObject will have Print and
PrintPreview methods, so you can invoke the appropriate type of printing. It also ensures the object
will have a RenderPage method, which can be implemented by that object to render the object’s data
on the printed page.

At this point, you could simply implement all the code needed to handle printing directly within the
Customer object. This isn’t ideal, however, since some of the code will be common across any objects
that want to implement IPrintableObject, and it would be nice to find a way to share that code.

To do this, let’s create a new class, ObjectPrinter. This is a framework-style class, in that it has nothing
to do with any particular application, but can be used across any application where IPrintableObject
will be used.

Add a new class named ObjectPrinter to the 575386ch07 project. This class will contain all the code
common to printing any object. It makes use of the built-in printing support provided by the .NET
Framework class library. To use this, you need to import a couple of namespaces, so add this code to the
new class:

249

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:47 PM Page 249

Imports System.Drawing
Imports System.Drawing.Printing
Imports Interfaces

You can then define a PrintDocument variable, which will hold the reference to your printer output.
You’ll also declare a variable to hold a reference to the actual object you’ll be printing. Notice that you’re
using the IPrintableObject interface datatype for this variable:

Public Class ObjectPrinter

Private WithEvents document As PrintDocument
Private printObject As IPrintableObject

Now, you can create a routine to kick off the printing process for any object implementing
IPrintableObject. This code is totally generic; you’ll write it here so it can be reused across
any number of other classes:

Public Sub Print(ByVal obj As IPrintableObject)
printObject = obj

document = New PrintDocument()
document.Print()

End Sub

Likewise, you can implement a method to show a print preview display of your object. Again, this code
is totally generic, so you’ll put it here for reuse:

Public Sub PrintPreview(ByVal obj As IPrintableObject)
Dim PPdlg As PrintPreviewDialog = New PrintPreviewDialog()

printObject = obj

document = New PrintDocument()
PPdlg.Document = document
PPdlg.ShowDialog()

End Sub

Finally, you need to catch the PrintPage event that is automatically raised by the .NET printing
mechanism. This event is raised by the PrintDocument object whenever the document determines that
it needs data rendered onto a page. Typically, it is in this routine that you’d put the code to draw text or
graphics onto the page surface. However, since this is a generic framework class, you won’t do that here;
instead, you’ll delegate the call back into the actual application object that you want to print.

Private Sub PrintPage(ByVal sender As Object, _
ByVal ev As System.Drawing.Printing.PrintPageEventArgs) _
Handles document.PrintPage

printObject.RenderPage(sender, ev)
End Sub

End Class

250

Chapter 7

10_575368 ch07.qxd 10/7/05 10:47 PM Page 250

This allows the application object itself to determine how its data should be rendered onto the output
page. Let’s see how you can do that by implementing the IPrintableObject interface on the
Customer class:

Imports Interfaces
Public Class Customer

Inherits Contact
Implements IPrintableObject

By adding this code, you require that your Customer class implement the Print, PrintPreview,
and RenderPage methods. To avoid wasting paper as you test the code, let’s make both the Print and
PrintPreview methods the same and have them just do a print preview display:

Public Sub Print() _
Implements Interfaces.IPrintableObject.Print

Dim printer As New ObjectPrinter()
printer.PrintPreview(Me)

End Sub

Notice that you’re using an ObjectPrinter object to handle the common details of doing a print
preview. In fact, any class you ever create that implements IPrintableObject will have this exact same
code to implement a print preview function, relying on your common ObjectPrinter to take care of
the details.

You also need to implement the RenderPage method, which is where you actually put your object’s
data onto the printed page:

Private Sub RenderPage(ByVal sender As Object, _
ByVal ev As System.Drawing.Printing.PrintPageEventArgs) _
Implements IPrintableObject.RenderPage

Dim printFont As New Font(“Arial”, 10)
Dim lineHeight As Single = printFont.GetHeight(ev.Graphics)
Dim leftMargin As Single = ev.MarginBounds.Left
Dim yPos As Single = ev.MarginBounds.Top

ev.Graphics.DrawString(“ID: “ & ID.ToString, printFont, Brushes.Black, _
leftMargin, yPos, New StringFormat())

yPos += lineHeight
ev.Graphics.DrawString(“Name: “ & Name, printFont, Brushes.Black, _

leftMargin, yPos, New StringFormat())

ev.HasMorePages = False

End Sub

251

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:47 PM Page 251

All of this code is unique to your object, which makes sense since you’re rendering your specific data to
be printed. However, you don’t need to worry about the details of whether you’re printing to paper or
print preview; that is handled by your ObjectPrinter class, which in turn uses the .NET Framework.
This allows you to focus just on generating the output to the page within your application class.

By generalizing the printing code in ObjectPrinter, you’ve achieved a level of reuse that you can tap
into via the IPrintableObject interface. Anytime you want to print a Customer object’s data, you can
have it act as an IPrintableObject and call its Print or PrintPreview method. To see this work, let’s
add a new button control to Form1 with the following code:

Private Sub btnPrint_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrint.Click

Dim obj As New Customer
obj.Name = “Douglas Adams”
CType(obj, IPrintableObject).PrintPreview()

End Sub

This code creates a new Customer object and sets its Name property. You then use the CType() method
to access the object via its IPrintableObject interface to invoke the PrintPreview method.

When you run the application and click the button, you’ll get a print preview display showing the
object’s data (see Figure 7-15).

Figure 7-15

How Deep to Go?
Most of the examples discussed so far have illustrated how you can create a child class based on a single
parent class. That is called single-level inheritance. However, inheritance can be many levels deep. For
example, you might have a deep hierarchy, as shown in Figure 7-16.

252

Chapter 7

10_575368 ch07.qxd 10/7/05 10:47 PM Page 252

Figure 7-16

From the root of System.Object down to NAFTACustomer you have four levels of inheritance. This can
be described as a four-level inheritance chain.

There is no hard and fast rule about how deep inheritance chains should go, but conventional wisdom
and general experience with inheritance in other languages such as Smalltalk and C++ indicate that the
deeper an inheritance chain becomes, the harder it is to maintain an application.

Object
Class

Contact
Class

Customer
Class

Contact

NAFTACustomer
Class

InternationalCustomer

InternationCustomer DomesticCustomer
Class

Customer
Class

Customer

253

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:47 PM Page 253

This happens for two reasons. First is the fragile base class or fragile superclass issue, which you’ll
discuss shortly. The second reason is that a deep inheritance hierarchy tends to seriously reduce
readability of your code by scattering the code for an object across many different classes, all of which
are combined together by the compiler to create your object.

One of the reasons for adopting object-oriented design and programming is to avoid so-called spaghetti
code, where any bit of code you might look at does almost nothing useful but instead calls various other
procedures and routines in other parts of your application. To determine what is going on with spaghetti
code, you must trace through many routines and mentally piece together what it all means.

Object-oriented programming can help you avoid this problem, but it is most definitely not a magic
bullet. In fact, when you create deep inheritance hierarchies, you are often creating spaghetti code. This
is so because each level in the hierarchy not only extends the previous level’s interface, but almost
always also adds functionality. Thus, when you look at the final NAFTACustomer class it may have
very little code. To figure out what it does or how it behaves, you have to trace through the code in the
previous four levels of classes, and you might not even have the code for some of those classes, since
they may come from other applications or class libraries you’ve purchased.

On one hand, you have the benefit that you’re reusing code, but on the other hand, you have the
drawback that the code for one object is actually scattered through five different classes.

It is important to keep this in mind when designing systems with inheritance — use as few levels in the
hierarchy as possible to provide the required functionality.

Fragile Base Class Issue
You’ve explored where it is appropriate to use inheritance and where it is not. You’ve also explored how
you can use inheritance and multiple interfaces in conjunction to implement both is-a and act-as
relationships simultaneously within your classes.

Earlier, we noted that while inheritance is an incredibly powerful and useful concept, it can also be very
dangerous if used improperly. You’ve seen some of this danger as we discussed the misapplication of the
is-a relationship, and how you can use multiple interfaces to avoid those issues.

However, one of the most classic and common problems with inheritance is the fragile base class
problem. This problem is exacerbated when you have very deep inheritance hierarchies but exists even
in a single-level inheritance chain.

The issue you face is that a change in the base class always affects all child classes derived from that base
class. This is a double-edged sword. On one hand, you get the benefit of being able to change code in
one location and have that change automatically cascade out through all derived classes. On the other
hand, a change in behavior can have unintended or unexpected consequences farther down the
inheritance chain, and that can make your application very fragile and hard to change or maintain.

Interface Changes
There are obvious changes you might make, which require immediate attention. For example, you might
change your Contact class to have FirstName and LastName instead of simply Name as a property. In
the Contact class, replace the mName variable declaration with the following code:

254

Chapter 7

10_575368 ch07.qxd 10/7/05 10:47 PM Page 254

Private mFirstName As String
Private mLastName As String

Now replace the Name property with the following code:

Public Property FirstName() As String
Get

Return mFirstName
End Get
Set(ByVal value As String)

mFirstName = value
End Set

End Property

Public Property LastName() As String
Get

Return mLastName
End Get
Set(ByVal value As String)

mLastName = value
End Set

End Property

At this point, the Task List window in the IDE will show a list of locations where you need to alter
your code to compensate for the change. This is a graphic illustration of a base class change that causes
cascading changes throughout your application. In this case, you’ve changed the base class interface,
thus changing the interface of all subclasses in the inheritance chain.

To avoid having to fix code throughout your application, you should always strive to keep as much
consistency in your base class interface as possible. In this case, you can implement a read-only Name
property that returns the full name of the Contact:

Public ReadOnly Property Name() As String
Get

Return mFirstName & “ “ & mLastName
End Get

End Property

This resolves most of the items in the Task List window. You can fix any remaining issues by using the
FirstName and LastName properties. For example, in Form1 you can change the code behind your
button to the following:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles button1.Click

Dim obj As New Customer
obj.FirstName = “Douglas”
obj.LastName = “Adams”
CType(obj, Interfaces.IPrintableObject).Print()

End Sub

Any change to a base class interface is likely to cause problems, so you must think carefully before making
such a change.

255

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:47 PM Page 255

Implementation Changes
Unfortunately, there’s another, more subtle type of change that can wreak more havoc on your application,
and that is an implementation change. This is the core of the fragile base class problem.

Encapsulation provides you with separation of interface from implementation. However, keeping your
interface consistent is merely a syntactic concept. If you change the implementation, you are making a
semantic change, a change that doesn’t alter any of your syntax but can have serious ramifications on
the real behavior of the application.

In theory, you can change the implementation of a class, and as long as you don’t change its interface,
any client applications using objects based on that class will continue to operate without change. Of
course, reality is never as nice as theory, and more often than not a change to implementation will have
some consequences in the behavior of a client application.

For example, you might use a SortedList to sort and display some Customer objects. To do this, add a
new button to Form1 with code as follows:

Private Sub btnSort_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSort.Click

Dim col As New Generic.SortedDictionary(Of String, Customer)
Dim obj As Customer

obj = New Customer()
obj.FirstName = “Douglas”
obj.LastName = “Adams”
col.Add(obj.Name, obj)

obj = New Customer()
obj.FirstName = “Andre”
obj.LastName = “Norton”
col.Add(obj.Name, obj)

Dim item As Generic.KeyValuePair(Of String, Customer)
Dim sb As New System.Text.StringBuilder
For Each item In col

sb.AppendLine(item.Value.Name)
Next
MsgBox(sb.ToString)

End Sub

This code simply creates a couple of Customer objects, sets their FirstName and LastName properties,
and inserts them into a generic SortedDictionary object from the System.Collections.Generic
namespace.

Items in a SortedDictionary are sorted based on their key value, and you are using the Name property
to provide that key, meaning that your entries will be sorted by name. Since your Name property is
implemented to return first name first and last name second, your entries will be sorted by first name.

256

Chapter 7

10_575368 ch07.qxd 10/7/05 10:47 PM Page 256

If you run the application, the dialog will display the following:

Andre Norton
Douglas Adams

However, you can change the implementation of your Contact class — not directly changing or impacting
either the Customer class or your code in Form1— to return last name first and first name second, as
shown here:

Public ReadOnly Property Name() As String
Get

Return mLastName & “, “ & mFirstName
End Get

End Property

While no other code requires changing, and no syntax errors are flagged, the behavior of the application
is changed. When you run it, the output will now be:

Adams, Douglas
Norton, Andre

Maybe this change is inconsequential. Maybe it totally breaks the required behavior of your form. The
developer making the change in the Contact class might not even know that someone was using that
property for sort criteria.

This illustrates how dangerous inheritance can be. Changes to implementation in a base class can cascade
to countless other classes in countless applications, having unforeseen side effects and consequences of
which the base class developer is totally unaware.

Summary
Over the past three chapters, you’ve seen how object-oriented programming flows from the four basic
concepts of abstraction, encapsulation, polymorphism, and inheritance. This chapter has provided some
basic discussion of each concept and demonstrated how to implement them using Visual Basic.

You now understand how (when properly applied) object-oriented design and programming can allow
you to create very large and complex applications that remain maintainable and readable over time.
However, this is no magic bullet and these technologies and concepts can, if improperly applied, create
the same hard-to-maintain code that you might create using procedural or modular design techniques.

It is not possible to fully cover all aspects of object-oriented programming in a single chapter. Before
launching into a full-blown object-oriented project, we highly recommend going through other books
specifically geared toward object-oriented design and programming.

257

Applying Objects and Components

10_575368 ch07.qxd 10/7/05 10:47 PM Page 257

10_575368 ch07.qxd 10/7/05 10:47 PM Page 258

Generics

One of the things developers often need to do is create new types to use in their programs. Early
attempts at type creation led to user-defined types, or the VB Structure statement. Another
approach is to use classes and objects to create new types. Yet another approach is to use generics.

Generics refers to the technology built into .NET 2.0 that allows you to define a code template and
then to declare variables using that template. The template defines the operations that the new
type can perform, and when you declare a variable based on the template, you are creating a new
type. The benefit of generics over structures or objects is that a generic template makes it easier for
your new types to be strongly typed. Generics also make it easier to reuse the template code in
different scenarios.

The primary motivation for adding generics to .NET was to allow the creation of strongly typed
collection types. Because generic collection types are strongly typed, they are significantly faster
than the previous inheritance-based collection model. Any place you use collection classes in your
code, you should consider revising that code to use generic collection types instead.

Visual Basic 2005 not only allows the use of preexisting generics but also the creation of your own
generic templates. Because the technology to support generics was created primarily to build
collection classes, it naturally follows that you might create a generic anytime you would other-
wise build a normal collection class. In general, anytime you use the Object datatype, consider
using generics instead.

In this chapter, you’ll start out with a brief discussion of the use of generics, followed by a
walkthrough of the syntax for defining your own generic templates.

11_575368 ch08.qxd 10/7/05 11:04 PM Page 259

Using Generics
There are many examples of generic templates in the .NET 2.0 BCL (Base Class Library). Many of them
can be found in the System.Collections.Generic namespace, but others are scattered through the
BCL as appropriate. Much focus is placed on the generic collection types, however, because it is here that
the performance gains due to generics are most notable. In other cases, generics are used less for
performance gains than for strong typing benefits.

As noted earlier, any time you use a collection datatype, you should consider using the generic equivalent
instead.

A generic is often written something like List(Of T). The type (or class) name is List. The letter T is a
placeholder, much like a parameter. It indicates where you must provide a specific type value to customize
the generic. For instance, you might declare a variable using the List(Of T) generic:

Dim data As New List(Of Date)

In this case, you’re specifying that the type parameter, T, is a Date. By providing this type, you are
specifying that the list will only contain values of type Date.

To make this clearer, let’s contrast the new List(Of T) collection with the older ArrayList type.

When you work with an ArrayList, you are working with a type of collection that can store many
types of values all at the same time.

Dim data As New ArrayList()
data.Add(“Hello”)
data.Add(5)
data.Add(New Customer())

It is loosely typed, internally always storing the values as type Object. This is very flexible, but is
relatively slow since it is late bound. There’s the advantage of being able to store any datatype, with
the disadvantage that you have no control over what’s in the collection.

The List(Of T) generic collection is quite different. It isn’t a type at all, it is just a template. A type isn’t
created until you declare a variable using the template.

Dim data As New Generic.List(Of Integer)
data.Add(5)
data.Add(New Customer())’ throws an exception
data.Add(“Hello”) ‘ throws an exception

When you declare a variable using the generic, you must provide the type of value that the new
collection will hold. The end result is that a new type is created — in this case, a collection that can
only hold Integer values.

The important thing here is that this new collection type is strongly typed for Integer values. Not only
does its external interface (its Item and Add methods, for instance) require Integer values, but its

260

Chapter 8

11_575368 ch08.qxd 10/7/05 11:04 PM Page 260

internal storage mechanism only works with type Integer. This means that it is not late bound like
ArrayList but rather is early bound. The end result is much higher performance, along with all the
type safety benefits of being strongly typed.

Generics are useful because they typically offer a higher-performance option as compared to traditional
classes. In some cases, they can also save you from writing code, since generic templates can provide
code reuse where traditional classes cannot. Finally, generics can sometimes provide better type safety as
compared to traditional classes, since a generic adapts to the specific type you require, while classes
often must resort to working with a more general type such as Object.

It is important to note that generics come in two forms: generic types and generic methods. For instance,
List(Of T) is a generic type in that it is a template that defines a complete type or class. In contrast,
some otherwise normal classes have single methods that are just method templates and that assume a
specific type when they are called. We’ll discuss both scenarios.

Generic Types
Now that you have a basic understanding of generics and how they compare to regular types, let’s get
into some more detail. To do this, you’ll make use of some other generic types provided in the .NET
Framework. A generic type is a template that defines a complete class, structure, or interface. When you
want to use such a generic, you declare a variable using the generic type, providing the real type (or
types) to be used in creating the actual type of your variable.

Basic Usage
Before proceeding, create a new Windows Application project named Generics. On Form1 add a
Button (named btnDictionary) and a TextBox control (named txtDisplay). Set the TextBox
control’s Multiline property to True and anchor it to take up most of the form. The result should
look something like Figure 8-1.

Figure 8-1

261

Generics

11_575368 ch08.qxd 10/7/05 11:04 PM Page 261

To begin, consider the Dictionary(Of K, T) generic. This is much like the List(Of T) discussed earlier,
but this generic requires that you define the types of both the key data and the values to be stored. When
you declare a variable as Dictionary(Of K, T), the new Dictionary type that is created will only
accept keys of the one type and values of the other.

Add the following code in the click event handler for btnDictionary:

txtDisplay.Clear()

Dim data As New Generic.Dictionary(Of Integer, String)
data.Add(5, “Rocky”)
data.Add(15, “Mary”)
For Each item As KeyValuePair(Of Integer, String) In data

txtDisplay.AppendText(“Data: “ & item.Key & “, “ & item.Value)
txtDisplay.AppendText(Environment.NewLine)

Next
txtDisplay.AppendText(Environment.NewLine)

As you type, watch the IntelliSense information on the Add method. Notice how the key and value
parameters are strongly typed based on the specific types provided in the declaration of the data
variable. In the same code, you can create another type of Dictionary:

Dim data As New Generic.Dictionary(Of Integer, String)

Dim info As New Generic.Dictionary(Of Guid, Date)
data.Add(5, “Rocky”)
data.Add(15, “Mary”)
For Each item As KeyValuePair(Of Integer, String) In data

txtDisplay.AppendText(“Data: “ & item.Key & “, “ & item.Value)
txtDisplay.AppendText(Environment.NewLine)

Next
info.Add(Guid.NewGuid, Now)
For Each item As KeyValuePair(Of Guid, Date) In info

txtDisplay.AppendText(“Data: “ & item.Key.ToString & “, “ & item.Value)
txtDisplay.AppendText(Environment.NewLine)

Next
txtDisplay.AppendText(Environment.NewLine)

In this code, there are two completely different types. Both have the behaviors of a Dictionary, but
they are not interchangeable because they have been created as different types.

Generic types may also be used as parameters and return types. For instance, add the following method
to Form1:

Private Function LoadData() As Generic.Dictionary(Of Integer, String)
Dim data As New Generic.Dictionary(Of Integer, String)
data.Add(5, “Rocky”)
data.Add(15, “Mary”)
Return data

End Function

262

Chapter 8

11_575368 ch08.qxd 10/7/05 11:04 PM Page 262

To call this method from the btnDictionary_Click method, add this code:

Dim results As Generic.Dictionary(Of Integer, String)
results = LoadData()
For Each item As KeyValuePair(Of Integer, String) In results

txtDisplay.AppendText(“Results: “ & item.Key & “, “ & item.Value)
txtDisplay.AppendText(Environment.NewLine)

Next
txtDisplay.AppendText(Environment.NewLine)

The results of running this code are shown in Figure 8-2.

Figure 8-2

The reason this works is that both the return type of the function and the type of the data variable are
exactly the same. Not only are they both Generic.Dictionary derivatives, but they have exactly the
same types in the declaration.

The same is true for parameters:

Private Sub DoWork(ByVal values As Generic.Dictionary(Of Integer, String))
‘ do work here

End Sub

Again, the parameter type is not only defined by the generic type but also by the specific type values
used to initialize the generic template.

Inheritance
It is possible to inherit from a generic type as you define a new class. For instance, the .NET BCL
defines the System.ComponentModel.BindingList(Of T) generic type. This type is used to create
collections that can support data binding. You can use this as a base class to create your own strongly

263

Generics

11_575368 ch08.qxd 10/7/05 11:04 PM Page 263

typed, data-bindable collection. Add new classes named Customer and CustomerList to the project
with the following code:

Public Class Customer
Private mName As String

Public Property Name() As String
Get

Return mName
End Get
Set(ByVal value As String)

mName = value
End Set

End Property

End Class

Public Class CustomerList
Inherits System.ComponentModel.BindingList(Of Customer)

Private Sub CustomerList_AddingNew(ByVal sender As Object, _
ByVal e As System.ComponentModel.AddingNewEventArgs) Handles Me.AddingNew

Dim cust As New Customer
cust.Name = “<new>”
e.NewObject = cust

End Sub

End Class

When you inherit from BindingList(Of T), you must provide a specific type — in this case
Customer. This means that your new CustomerList class extends and can customize BindingList
(Of Customer). In this case, you’re providing a default value for the Name property of any new
Customer object added to the collection.

When you inherit from a generic type, you can employ all the normal concepts of inheritance, including
overloading and overriding methods, extending the class by adding new methods, handling events, and
so forth.

To see this in action, add a new Button named btnCustomer to Form1 and add a new form named
CustomerForm to the project. Add a DataGridView control to CustomerForm and dock it full.

Behind btnCustomer, add the following code:

CustomerForm.ShowDialog()

Then add the following code behind CustomerForm:

264

Chapter 8

11_575368 ch08.qxd 10/7/05 11:04 PM Page 264

Dim list As New CustomerList

Private Sub CustomerForm_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

DataGridView1.DataSource = list

End Sub

This code creates an instance of CustomerList and makes it the DataSource for the grid control. When
you run the program and click the button to open the CustomerForm, notice that the grid contains a
newly added Customer object. As you interact with the grid, new Customer objects are automatically
added, with a default name of <New>. An example is shown in Figure 8-3.

Figure 8-3

All this functionality of adding new objects and setting the default Name value occurs because
CustomerList inherits from BindingList(Of Customer).

Generic Methods
A generic method is a single method that is called not only with conventional parameters, but also with
type information that defines the method. Generic methods are far less common than generic types. Due
to the extra syntax required to call a generic method, they are also less readable than a normal method.

A generic method may exist in any class or module; it doesn’t need to be contained within a generic
type. The primary benefit of a generic method is avoiding the use of CType or DirectCast to convert
parameters or return values between different types.

It is important to realize that the type conversion still occurs; generics merely provide an alternative
mechanism to use instead of CType or DirectCast.

Without generics, code often uses the Object type. Add the following method to Form1:

265

Generics

11_575368 ch08.qxd 10/7/05 11:04 PM Page 265

Private Function AreEqual(ByVal a As Object, ByVal b As Object) As Boolean
Return a.Equals(b)

End Function

The problem with this code is that a and b could be anything. There’s no restriction here, nothing to
ensure that they are even the same type. An alternative is to use generics. Add the following method to
Form1:

Public Function AreEqual(Of T)(ByVal a As T, ByVal b As T) As Boolean
Return a.Equals(b)

End Function

Now a and b are forced to be the same type, and that type is specified when the method is invoked.

Add a new Button named btnEqual to Form1 with the following code in its click event:

Dim result As Boolean

‘ use normal method
result = AreEqual(1, 2)
result = AreEqual(“one”, “two”)
result = AreEqual(1, “two”)

‘ use generic method
result = AreEqual(Of Integer)(1, 2)
result = AreEqual(Of String)(“one”, “two”)
‘result = AreEqual(Of Integer)(1, “two”)

But why not just declare the method as a Boolean? This code will probably cause some confusion.

The first three method calls are invoking the normal AreEqual method. Notice that there’s no problem
asking the method to compare an Integer and a String.

The second set of calls looks very odd. At first glance, they look like nonsense to many people. This is
because invoking a generic method means providing two sets of parameters to the method, rather than
the normal one set of parameters.

The first set of parameters defines the type or types required to define the method. This is much
like the list of types you must provide when declaring a variable using a generic class. In this case,
you’re specifying that the AreEqual method will be operating on parameters of type Integer.

The second set of parameters is the conventional parameters that you’d normally supply to a
method. What is special in this case is that the types of the parameters are being defined by the first set
of parameters. In other words, in the first call, the type is specified to be Integer, so 1 and 2 are valid
parameters. In the second call, the type is String, so “one” and “two” are valid. Notice that the third
line is commented out. This is because 1 and “two” aren’t the same type, so the compiler won’t compile
that line of code.

266

Chapter 8

11_575368 ch08.qxd 10/7/05 11:04 PM Page 266

Creating Generics
Now that you have a good idea how to use preexisting generics in your code, let’s take a look at how
you can create generic templates. The primary reason to create a generic template instead of a class is to
gain strong typing of your variables. Anytime you find yourself using the Object datatype, or a base
class from which multiple types inherit, you may want to consider using generics. By using generics you
can avoid the use of CType or DirectCast, which simplifies your code. If you are able to avoid the use
of the Object datatype, you’ll typically improve the performance of your code.

As discussed earlier, there are generic types and generic methods. A generic type is basically a class or
structure that assumes specific type characteristics when a variable is declared using the generic. A
generic method is a single method that assumes specific type characteristics, even though the method
might be in an otherwise totally conventional class, structure, or module.

Generic Types
As discussed earlier, a generic type is a class, structure, or interface template. You can create such templates
yourself to provide better performance, strong typing, and code reuse to the consumers of your types.

Classes
A generic class template is created in the same way that you create a normal class, with the exception that
you’ll require the consumer of your class to provide you with one or more types for use in your code. In
other words, as the author of a generic template, you have access to the type parameters provided by the
user of your generic.

For example, add a new class to the project named SingleLinkedList:

Public Class SingleLinkedList(Of T)

End Class

In the declaration of the type, you specify the type parameters that will be required:

Public Class SingleLinkedList(Of T)

In this case, you’re requiring just one type parameter. The name, T, can be any valid variable name. In
other words, you could declare the type like this:

Public Class SingleLinkedList(Of ValueType)

Make this change to the code in your project.

By convention (carried over from C++ templates), the variable names for type parameters are single
uppercase letters. This is somewhat cryptic, and you may want to use a more descriptive convention for
variable naming.

267

Generics

11_575368 ch08.qxd 10/7/05 11:04 PM Page 267

Whether you use the cryptic standard convention or more readable parameter names, the parameter is
defined on the class definition. Within the class itself, you then use the type parameter anywhere that
you would normally use a type (such as String or Integer).

To create a linked list, you need to define Node class. This will be a nested class (as discussed in Chapter 4):

Public Class SingleLinkedList(Of ValueType)
#Region “ Node class “

Private Class Node
Private mValue As ValueType
Private mNext As Node

Public ReadOnly Property Value() As ValueType
Get

Return mValue
End Get

End Property

Public Property NextNode() As Node
Get

Return mNext
End Get
Set(ByVal value As Node)

mNext = value
End Set

End Property

Public Sub New(ByVal value As ValueType, ByVal nextNode As Node)
mValue = value
mNext = nextNode

End Sub
End Class

#End Region
End Class

Notice how the mValue variable is declared as ValueType. This means that the actual type of mValue
will depend on the type supplied when an instance of SingleLinkedList is created.

Because ValueType is a type parameter on the class, you can use ValueType as a type anywhere in the
code. As you write the class, you can’t tell what type ValueType will be. That information will be provided
by the user of your generic class. Later, when someone declares a variable using your generic type, that
person will specify the type — like this:

Dim list As New SingleLinkedList(Of Double)

At this point, a specific instance of your generic class is created, and all cases of ValueType within your
code are replaced by the VB compiler with Double. Essentially, this means that for this specific instance
of SingleLinkedList, the mValue declaration ends up as:

Private mValue As Double

268

Chapter 8

11_575368 ch08.qxd 10/7/05 11:04 PM Page 268

Of course, you never get to see this code, since it is dynamically generated by the .NET JIT compiler at
runtime based on your generic template code.

The same is true for methods within the template. In your example, there’s a constructor method, which
accepts a parameter of type ValueType. It is important to remember that ValueType will be replaced by
a specific type when a variable is declared using your generic.

So, what type is ValueType when you’re writing the template itself? Since it can conceivably be any
type when the template is used, ValueType is treated like the Object type as you create the generic
template. This severely restricts what you can do with variables or parameters of ValueType within
your generic code.

The mValue variable is of ValueType, which means it is basically of type Object for the purposes of
your template code. This means you can do assignments (like you do in the constructor code), and you
can call any methods that are on the System.Object type:

❑ Equals

❑ GetHashValue

❑ GetType

❑ ToString

No operations beyond these basics are available by default. Later in the chapter, you’ll discuss the concept
of constraints, which allow you to restrict the types that can be specified for a type parameter. Constraints
have the side benefit that they expand the operations you can perform on variables or parameters defined
based on the type parameter.

However, this capability is enough to complete the SingleLinkedList class. Add the following code to
the class after the End Class from the Node class:

Private mHead As Node

Default Public ReadOnly Property Item(ByVal index As Integer) As ValueType
Get

Dim current As Node = mHead
For index = 1 To index

current = current.NextNode
If current Is Nothing Then

Throw New Exception(“Item not found in list”)
End If

Next
Return current.Value

End Get
End Property

Public Sub Add(ByVal value As ValueType)
mHead = New Node(value, mHead)

269

Generics

11_575368 ch08.qxd 10/7/05 11:04 PM Page 269

End Sub

Public Sub Remove(ByVal value As ValueType)
Dim current As Node = mHead
Dim previous As Node = Nothing
While current IsNot Nothing

If current.Value.Equals(value) Then
If previous Is Nothing Then

‘ this was the head of the list
mHead = current.NextNode

Else
previous.NextNode = current.NextNode

End If
Exit Sub

End If
previous = current
current = current.NextNode

End While

‘ You got to the end without finding the item.
Throw New Exception(“Item not found in list”)

End Sub

Public ReadOnly Property Count() As Integer
Get

Dim result As Integer = 0
Dim current As Node = mHead
While current IsNot Nothing

result += 1
current = current.NextNode

End While
Return result

End Get
End Property

Notice that the Item property and the Add and Remove methods all use ValueType either as return
types or parameter types. More importantly, note the use of the Equals method in the Remove method:

If current.Value.Equals(value) Then

The reason this compiles is that Equals is defined on System.Object and, thus, is universally available.
This code could not use the = operator, because that isn’t universally available.

To try out the SingleLinkedList class, add a button to Form1 named btnList and add the following
code to Form1:

Private Sub btnList_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnList.Click

Dim list As New SingleLinkedList(Of String)
list.Add(“Rocky”)
list.Add(“Mary”)

270

Chapter 8

11_575368 ch08.qxd 10/7/05 11:04 PM Page 270

list.Add(“Erin”)
list.Add(“Edward”)
list.Add(“Juan”)
list.Remove(“Erin”)

txtDisplay.Clear()
txtDisplay.AppendText(“Count: “ & list.Count)
txtDisplay.AppendText(Environment.NewLine)
For index As Integer = 0 To list.Count - 1

txtDisplay.AppendText(“Item: “ & list.Item(index))
txtDisplay.AppendText(Environment.NewLine)

Next

End Sub

When you run the code, you’ll see a display similar to Figure 8-4.

Figure 8-4

Other Generic Class Features
Earlier in the chapter, you used the Dictionary generic, which specifies multiple type parameters. To
declare a class with multiple type parameters, you use syntax like this:

Public Class MyCoolType(Of T, V)
Private mValue As T
Private mData As V

Public Sub New(ByVal value As T, ByVal data As V)
mValue = value
mData = data

End Sub

End Class

271

Generics

11_575368 ch08.qxd 10/7/05 11:04 PM Page 271

Also, it is possible to use regular types in combination with type parameters, like this:

Public Class MyCoolType(Of T, V)
Private mValue As T
Private mData As V
Private mActual As Double

Public Sub New(ByVal value As T, ByVal data As V, ByVal actual As Double)
mValue = value
mData = data
mActual = actual

End Sub

End Class

Other than the fact that variables or parameters of types T or V must be treated as type System.Object,
you can write virtually any code you choose. The code in a generic class is really no different from the
code you’d write in a normal class.

This includes all the object-oriented capabilities of classes, including inheritance, overloading, overriding,
events, methods, properties, and so forth.

However, there are some limitations on overloading. In particular, when overloading methods with a type
parameter, the compiler doesn’t know what that specific type might be at runtime. Thus, you can only
overload methods in ways where the type parameter (that could be any type) doesn’t lead to ambiguity.

For instance, adding these two methods to MyCoolType will result in a compiler error:

Public Sub DoWork(ByVal data As Integer)
‘ do work here

End Sub

Public Sub DoWork(ByVal data As V)
‘ do work here

End Sub

This isn’t legal because the compiler can’t know whether V will be Integer at runtime. If V was to end
up defined as Integer, then you’d have two identical method signatures in the same class. Likewise,
the following is not legal:

Public Sub DoWork(ByVal value As T)
‘ do work here

End Sub

Public Sub DoWork(ByVal data As V)
‘ do work here

End Sub

Again, there’s no way for the compiler to be sure that T and V will represent different types at runtime.

However, you can declare overloaded methods like this:

Public Sub DoWork(ByVal data As Integer)
‘ do work here

272

Chapter 8

11_575368 ch08.qxd 10/7/05 11:04 PM Page 272

End Sub

Public Sub DoWork(ByVal value As T, ByVal data As V)
‘ do work here

End Sub

This works because there’s no possible ambiguity between the two method signatures. Regardless of
what types T and V end up being, there’s no way the two DoWork methods can have the same signature.

Classes and Inheritance
Not only can you create basic generic class templates, but you can also combine the concept with
inheritance.

This can be as basic as having a generic template inherit from an existing class:

Public Class MyControls(Of T)
Inherits Control

End Class

In this case, the MyControls generic class inherits from the Windows Forms Control class, thus gaining
all the behaviors and interface elements of a Control.

Alternately, a conventional class can inherit from a generic template. Suppose that you have a simple
generic template:

Public Class GenericBase(Of T)

End Class

It is quite practical to inherit from this generic class as you create other classes:

Public Class Subclass
Inherits GenericBase(Of Integer)

End Class

Notice how the Inherits statement not only references GenericBase but also provides a specific type for
the type parameter of the generic type. Anytime you use a generic type, you must provide values for the
type parameters, and this is no exception. This means that your new Subclass actually inherits from a
specific instance of GenericBase where T is of type Integer.

Finally, you can also have generic classes inherit from other generic classes. For instance, you can create
a generic class that inherits from the GenericBase class:

Public Class GenericSubclass(Of T)
Inherits GenericBase(Of Integer)

End Class

As with the previous example, this new class inherits from an instance of GenericBase where T is of
type Integer.

273

Generics

11_575368 ch08.qxd 10/7/05 11:04 PM Page 273

But things can get far more interesting. It turns out that you can use type parameters to specify the types
for other type parameters. For instance, you could alter GenericSubclass like this:

Public Class GenericSubclass(Of V)
Inherits GenericBase(Of V)

End Class

Notice that you’re specifying that the type parameter for GenericBase is V— which is the type provided
by the caller when it declares a variable using GenericSubclass. So, if a caller does this:

Dim obj As GenericSubclass(Of String)

then V is of type String, meaning that GenericSubclass is inheriting from an instance of GenericBase
where its T parameter is also of type String. The type flows through from the subclass into the base class.

If that’s not complex enough, consider the following class definition:

Public Class GenericSubclass(Of V)
Inherits GenericBase(GenericSubclass(Of V))

End Class

In this case, the GenericSubclass is inheriting from GenericBase, where the T type in GenericBase is
actually a specific instance of the GenericSubclass type. A caller can create such an instance like this:

Dim obj As GenericSubclass(Of Date)

In this case, the GenericSubclass type has a V of type Date. It also inherits from GenericBase, which
has a T of type GenericSubclass(Of Date).

Such complex relationships are typically not useful, but it is important to recognize how types flow
through generic templates, especially when inheritance is involved.

Structures
You can also define generic Structure types. Structures were discussed in Chapter 3. The basic rules
and concepts are the same as for defining generic classes. For instance:

Public Structure MyCoolStructure(Of T)
Public Value As T

End Structure

As with generic classes, the type parameter or parameters represent real types that will be provided by
the user of the structure in actual code. Thus, anywhere you see a T in the structure, it will be replaced
by a real type such as String or Integer.

Code can use the structure in a manner similar to how a generic class is used:

Dim data As MyCoolStructure(Of Guid)

274

Chapter 8

11_575368 ch08.qxd 10/7/05 11:04 PM Page 274

When the variable is declared, an instance of the Structure is created based on the type parameter
provided. In this example, an instance of MyCoolStructure that holds Guid objects has been created.

Interfaces
Finally, you can define generic Interface types. Generic interfaces are a bit different from generic classes
or structures, because they are implemented by other types when they are used. You can create a generic
interface using the same syntax used for classes and structures:

Public Interface ICoolInterface(Of T)
Public Sub DoWork(ByVal data As T)
Public Function GetAnswer() As T

End Interface

Then the interface can be used within another type. For instance, you might implement the interface in a
class:

Public Class ARegularClass
Implements ICoolInterface(Of String)

Public Sub DoWork(ByVal data As String) _
Implements ICoolInterface(Of String).DoWork

End Sub

Public Function GetAnswer() As String _
Implements ICoolInterface(Of String).GetAnswer

End Function

End Class

Notice that you provide a real type for the type parameter in the Implements statement and
Implements clauses on each method. In each case, you’re specifying a specific instance of the
ICoolInterface interface — one that deals with the String datatype.

As with classes and structures, an interface can be declared with multiple type parameters. Those type
parameter values can be used in place of any normal type (such as String or Date) in any Sub,
Function, Property, or Event declaration.

Generic Methods
You’ve already seen examples of methods declared using type parameters such as T or V. While these are
examples of generic methods, they’ve been contained within a broader generic type such as a class,
structure, or interface.

It is also possible to create generic methods within otherwise normal classes, structures, interfaces, or
modules. In this case, the type parameter isn’t specified on the class, structure, or interface but rather is
specified directly on the method itself.

275

Generics

11_575368 ch08.qxd 10/7/05 11:04 PM Page 275

For instance, you can declare a generic method to compare equality like this:

Public Module Comparisons

Public Function AreEqual(Of T)(ByVal a As T, ByVal b As T) As Boolean
Return a.Equals(b)

End Function

End Module

In this case, the AreEqual method is contained within a module, though it could as easily be contained
in a class or structure.

Notice that the method accepts two sets of parameters. The first set of parameters are the type parameters,
in this example just T. The second set of parameters are the normal parameters that a method would
accept. In this example, the normal parameters have their types defined by the type parameter, T.

As with generic classes, it is important to remember that the type parameter is treated as a System.Object
type as you write the code in your generic method. This severely restricts what you can do with parameters
or variables declared using the type parameters. Specifically, you can do assignment and call the four
methods common to all System.Object variables.

Later in the chapter, we’ll discuss constraints, which allow you to restrict the types that can be assigned
to the type parameters and also expand the operations that can be performed on parameters and
variables of those types.

As with generic types, a generic method can accept multiple type parameters:

Public Class Comparisons

Public Function AreEqual(Of T, R)(ByVal a As Integer, ByVal b As T) As R
‘ implement code here

End Function

End Class

In this example, the method is contained within a class rather than a module. Notice that it accepts two
type parameters, T and R. The return type is set to type R, while the second parameter is of type T. Also
look at the first parameter, which is a conventional type. This illustrates how you can mix conventional
types and generic type parameters in the method parameter list and return types, and by extension
within the body of the method code.

Constraints
At this point, you’ve seen how to create and use generic types and methods. However, there have been
serious limits on what you can do when creating generic type or method templates thus far. This is
because the compiler treats any type parameters as the type System.Object within your template code.
The end result is that you can assign the values and call the four methods common to all System.Object
instances but can do nothing else. In many cases, this is too restrictive to be useful.

276

Chapter 8

11_575368 ch08.qxd 10/7/05 11:04 PM Page 276

Constraints offer a solution and at the same time provide a control mechanism.

Constraints allow you to specify rules about the types that can be used at runtime to replace a type
parameter. Using constraints, you can ensure that a type parameter is a Class or a Structure, or that it
implements a certain interface or inherits from a certain base class.

Not only do constraints let you restrict the types available for use, but they also give the VB compiler
valuable information. For example, if the compiler knows that a type parameter must always implement
a given interface, then the compiler will allow you to call the methods on that interface within your
template code.

Type Constraints
The most common type of constraint is a type constraint. A type constraint restricts a type parameter to
be a subclass of a specific class or to implement a specific interface. This idea can be used to enhance the
SingleLinkedList to sort items as they are added. First, change the declaration of the class itself to
add the IComparable constraint:

Public Class SingleLinkedList(Of ValueType As IComparable)

With this change, ValueType is not only guaranteed to be equivalent to System.Object, but it is also
guaranteed to have all the methods defined on the IComparable interface.

This means that within the Add method you can make use of any methods in the IComparable interface
(as well as those from System.Object). The end result is that you can safely call the CompareTo
method defined on the IComparable interface, because the compiler knows that any variable of type
ValueType will implement IComparable:

Public Sub Add(ByVal value As ValueType)
If mHead Is Nothing Then

‘ List was empty, just store the value.
mHead = New Node(value, mHead)

Else
Dim current As Node = mHead
Dim previous As Node = Nothing
While current IsNot Nothing

If current.Value.CompareTo(value) > 0 Then
If previous Is Nothing Then

‘ this was the head of the list
mHead = New Node(value, mHead)

Else
‘ insert the node between previous and current
previous.NextNode = New Node(value, current)

End If
Exit Sub

End If
previous = current
current = current.NextNode

End While
‘ you’re at the end of the list, so add to end
previous.NextNode = New Node(value, Nothing)

End If
End Sub

277

Generics

11_575368 ch08.qxd 10/7/05 11:04 PM Page 277

Note the call to the CompareTo method:

If current.Value.CompareTo(value) > 0 Then

This is possible because of the IComparable constraint on ValueType. If you run the code now, the
items should be displayed in sorted order, as shown in Figure 8-5.

Figure 8-5

Not only can you constrain a type parameter to implement an interface, but you can also constrain it to
be a specific type (class) or subclass of that type. For example, you could implement a generic method
that works on any Windows Forms control:

Public Shared Sub ChangeControl(Of C As Control)(ByVal control As C)

control.Anchor = AnchorStyles.Top Or AnchorStyles.Left

End Sub

The type parameter, C, is constrained to be of type Control. This restricts calling code to only specify this
parameter as Control or a subclass of Control such as TextBox.

Then the parameter to the method is specified to be of type C, which means that this method will work
against any Control or subclass of Control. Because of the constraint, the compiler now knows that the
variable will always be some type of Control object and so it allows you to use any methods, properties,
or events exposed by the Control class as you write your code.

Finally, it is possible to constrain a type parameter to be of a specific generic type. For instance:

Public Class ListClass(Of T, V As Generic.List(Of T))

End Class

278

Chapter 8

11_575368 ch08.qxd 10/7/05 11:04 PM Page 278

In this case, you’re specifying that the V type must be a List(Of T), whatever type T might be. A caller
can use your class like this:

Dim list As ListClass(Of Integer, Generic.List(Of Integer))

Earlier in the chapter, we discussed how inheritance and generics interact. If you recall, things can get
quite complex. The same is true when you constrain type parameters based on generic types.

Class and Structure Constraints
Another form of constraint allows you to be more general. Rather than enforcing the requirement for a
specific interface or class, you can specify that a type parameter must be either a reference type or value
type.

To specify that the type parameter must be a reference type, you use the Class constraint:

Public Class ReferenceOnly(Of T As Class)

End Class

This ensures that the type specified for T must be the type of an object. Any attempt to use a value type,
such as Integer or a Structure, would result in a compiler error.

Likewise, you can specify that the type parameter must be a value type such as Integer or a
Structure by using the Structure constraint:

Public Class ValueOnly(Of T As Structure)

End Class

In this case, the type specified for T must be a value type. Any attempt to use a reference type such as
String, an interface, or a class would result in a compiler error.

New Constraints
Sometimes, you’ll want to write generic code that creates instances of the type specified by a type
parameter. In order to know that you can actually create instances of a type, you need to know that
the type has a default public constructor. You can do this using the New constraint:

Public Class Factories(Of T As New)

Public Function CreateT() As T
Return New T

End Function

End Class

The type parameter, T, is constrained so that it must have a public default constructor. Any attempt to
specify a type for T that doesn’t have such a constructor will result in a compile error.

279

Generics

11_575368 ch08.qxd 10/7/05 11:04 PM Page 279

Because you know that T will have a default constructor, you are able to create instances of the type as
shown in the CreateT method.

Multiple Constraints
In many cases, you’ll need to specify multiple constraints on the same type parameter. For instance, you
might want to require that a type be both a reference type and have a public default constructor.

Essentially, you’re providing an array of constraints, so you use the same syntax you use to initialize
elements of an array:

Public Class Factories(Of T As {New, Class})

Public Function CreateT() As T
Return New T

End Function

End Class

The constraint list can include two or more constraints, letting you specify a great deal of information
about the types allowed for this type parameter.

Within your generic template code, the compiler is aware of all the constraints applied to your
type parameters, so it allows you to use any methods, properties, and events specified by any of the
constraints applied to the type.

Generics and Late Binding
One of the primary limitations of generics is that variables and parameters declared based on a type
parameter are treated as type System.Object inside your generic template code. While constraints
offer a partial solution, expanding the type of those variables based on the constraints, you are still very
restricted in what you can do with the variables.

One key example is the use of common operators. There’s no constraint you can apply that tells the
compiler that a type supports the + or – operators. This means that you can’t write generic code like this:

Public Function Add(Of T)(ByVal val1 As T, ByVal val2 As T) As T
Return val1 + val2

End Function

This will generate a compiler error, because there’s no way for the compiler to verify that variables of
type T (whatever that is at runtime) will support the + operator. Since there’s no constraint that you can
apply to T to ensure that the + operator will be valid, there’s no direct way to use operators on variables
of a generic type.

One alternative is to use Visual Basic’s native support for late binding to overcome the limitations you’re
seeing here. It is important to remember that late binding incurs substantial performance penalties,
because a lot of work is done dynamically at runtime rather than by the compiler when you build your
project. It is also important to remember the risks that come with late binding. Specifically the fact that the

280

Chapter 8

11_575368 ch08.qxd 10/7/05 11:04 PM Page 280

code can fail at runtime in ways that early bound code can’t fail. But given those caveats, late binding can
be used to solve your immediate problem.

To enable late binding, make sure to put Option Strict Off at the top of the code file containing your
generic template (or set the project property to change Option Strict project-wide). Then you can
rewrite the Add function as follows:

Public Function Add(Of T)(ByVal val1 As T, ByVal val2 As T) As T
Return CObj(value1) + CObj(value2)

End Function

By forcing the value1 and value2 variables to be explicitly treated as type Object, you’re telling the
compiler that it should use late binding semantics. Combined with the Option Strict Off setting, the
compiler assumes that you know what you’re doing and it allows the use of the + operator even though
its validity can’t be confirmed.

The compiled code uses dynamic late binding to invoke the + operator at runtime. If that operator does
turn out to be valid for whatever type T is at runtime, then this code will work great. In contrast, if the
operator is not valid, a runtime exception will be thrown.

Summary
Generics allow you to create class, structure, interface, and method templates. These templates gain specific
types based on how they are declared or called at runtime.

Generics provide you with another code reuse mechanism along with procedural and object-oriented
concepts.

They also allow you to change code that uses parameters or variables of type Object (or other general
types) to use specific datatypes. This often leads to much better performance and increases the readability
of your code.

281

Generics

11_575368 ch08.qxd 10/7/05 11:04 PM Page 281

11_575368 ch08.qxd 10/7/05 11:04 PM Page 282

Namespaces

Even if you didn’t realize it, you’ve been using namespaces since Chapter 2. For example, System,
System.Diagnostics, and System.Windows.Forms are all namespaces contained within the
.NET Framework. Namespaces are an easy concept to understand, but in this chapter, we’ll put the
ideas behind them on a firm footing — and clear up any misconceptions you might have about
how they are used and organized.

If you’re familiar with COM, you’ll find that the concept of namespaces is the logical extension of
programmatic identifier (ProgID) values. For example, the functionality of Visual Basic 6’s
FileSystemObject is now mostly encompassed in the .NET’s System.IO namespace, though
this is not a one-to-one mapping. However, namespaces are about more than a change in name;
they represent the logical extension of the COM naming structure, expanding its ease of use and
extensibility.

In addition to the traditional System and Microsoft namespaces (for example, used in the things
such as Microsoft’s Web Services Enhancements), .NET Framework 2.0 introduces a new way
to get at some tough-to-find namespaces using the new My namespace. The My namespace is a
powerful way of “speed-dialing-specific” functionalities in the base.

This chapter covers:

❑ What namespaces are

❑ Which namespaces are used in Visual Studio (Visual Studio 2005) projects by default

❑ Referencing namespaces and using the Imports statement

❑ How the compiler searches for class references

❑ How to alias namespaces

❑ Creating our own namespaces

❑ Using the new My namespace

12_575368 ch09.qxd 10/7/05 11:05 PM Page 283

Let’s begin this chapter by defining what a namespace is (and isn’t).

What Is a Namespace?
Namespaces are a way of organizing the vast number of classes, structures, enumerations, delegates, and
interfaces that the .NET Framework class library provides. Namespaces are a hierarchically structured
index into a class library, which is available to all of the .NET languages, not only Visual Basic 2005 (with
the exception of the new My namespace). The namespaces, or object references, are typically organized by
function. For example, the System.IO namespace contains classes, structures, and interfaces for working
with input/output streams and files. These classes in this namespace do not necessarily inherit from the
same base classes (apart from Object, of course).

A namespace is a combination of a naming convention and an assembly, which organizes collections of
objects and prevents ambiguity in object references. A namespace can be, and often is, implemented across
several physical assemblies, but, from the reference side, it is the namespace that ties these assemblies
together. A namespace consists of not only classes but also other (child) namespaces. For example, IO is a
child namespace of the System namespace.

Namespaces provide identification beyond the component name. With a namespace, it is possible to put
a more meaningful title (for example, System) followed by a grouping (for example, Text) to group
together a collection of classes that contain similar functions. For example, the System.Text namespace
contains a powerful class called StringBuilder. To reference this class, you can use the fully qualified
namespace reference of System.Text.StringBuilder, as shown here:

Dim sb As New System.Text.StringBuilder

The structure of a namespace is not a reflection of the physical inheritance of classes that make up a
namespace. For example, the System.Text namespace contains another child namespace called
RegularExpressions. This namespace contains several classes, but they do not inherit or otherwise
reference the classes that make up the System.Text namespace.

Figure 9-1 shows how the System namespace contains the Text child namespace, which also has a child
namespace, called RegularExpressions.

Both of these child namespaces, Text and RegularExpressions, contain a number of objects in the
inheritance model for these classes, as shown in Figure 9-1.

As you can see in the figure, while some of the classes in each namespace do inherit from
each other, and while all of the classes eventually inherit from the generic Object, the classes in
System.Text.RegularExpressions do not inherit from the classes in System.Text.

You might be wondering at this point what all the fuss is about. To emphasize the usefulness of
namespaces, we can draw another good example from this figure. If you make a reference to
System.Drawing.Imaging.Encoder in your application, you are making a reference to a completely
different Encoder class than the namespace that is shown in Figure 9-1 —System.Text.Encoder.
Being able to clearly identify classes that have the same name though very different functions and
disambiguate them is yet another advantage of namespaces.

284

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 284

Figure 9-1

If you are an experienced COM developer, you may note that unlike a ProgID, which is a one-level
relationship between the project assembly and class, a single namespace can use child namespaces to
extend the meaningful description of a class. The System namespace, imported by default as part of
every project created with Visual Studio, contains not only the default Object class, but also many other
classes that are used as the basis for every .NET language.

However, what if a class you need isn’t available in your project? The problem may be with the refer-
ences in your project. For example, by default, the System.DirectoryServices namespace, used for
getting programmatic access to the Active Directory objects, isn’t part of your project’s assembly. Using
it requires adding a reference to the project assembly. The concept of referencing a namespace is very
similar to the ability to reference a COM object in VB6.

In fact, with all this talk about referencing, it’s probably a good idea to look at an example of adding an
additional namespace to a project. Before doing that, you need to know a little bit about how a namespace
is implemented.

Namespaces are implemented in .NET assemblies. The System namespace is implemented in an
assembly called System.dll provided with Visual Studio. By referencing this assembly, the project
gains the ability to reference all of the child namespaces of System that happen to be implemented in
this assembly. Using the preceding table, the project can import and use the System.Text namespace

System.Text System.Text.RegularExpressions

Capture

Group

Encoding

CaptureCollection

GroupCollection

MatchCollection

RegEx

RegExCompilationInfo

Object

StringBuilder

UTF8Encoding

UTF7Encoding

ASCIIEncoding

Encoding

Encoder

Decoder

UnicodeEncoding

285

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 285

because its implementation is in the System.dll assembly. However, although it is listed above, the
project cannot import or use the System.Data namespace unless it references the assembly that
implements this child of the System namespace, System.Data.dll.

Let’s create a sample project so that you can examine the role that namespaces play within it. Using Visual
Studio 2005, create a new Visual Basic 2005 Windows Application project called Namespace_Sampler.

The Microsoft.VisualBasic.Compatibility.VB6 library isn’t part of Visual Basic 2005 projects by
default. To gain access to the classes that this namespace provides, you’ll need to add it to your project.
You can do this by using the Add Reference dialog box (available by right-clicking the References node
in the Solution Explorer). This dialog box has five tabs, each containing elements that can be referenced
from your project:

❑ The first tab (.NET) contains .NET assemblies that have been provided by Microsoft.

❑ The second tab (COM) contains COM components.

❑ The third tab (Projects) contains any custom .NET assemblies from any of the various projects
contained within your solution.

❑ The fourth tab (Browse) allows you to look for any component files (.dll, .tlb, .olb, .ocx, .exe, or
.manifest) that are on the network.

❑ The last and fifth tab (Recent) lists the most recently made references for quick-referencing
capabilities.

The Add Reference dialog is shown in Figure 9-2.

Figure 9-2

286

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 286

The available .NET namespaces are listed by a component name. This is the same as the namespace name.
From the dialog, you will see a few columns that supply the namespace of the component, the version
number of the component, the version of the .NET Framework that the particular component is targeted
for, and the path location of the file. You can select a single namespace to make a reference to by clicking
your mouse on the component that you are interested in. Holding down the Ctrl key and pressing
the mouse button will allow you to select multiple namespaces to reference. To select a range of
namespaces, first click on either the first or last component in the dialog that is contained in the range
choice, then complete the range selection by holding down the Shift key and using the mouse to select
the other component in the range. Once you have selected all the components that you are interested in
referencing, press the OK button.

The example in Figure 9-2 is importing some namespaces from the Microsoft.VisualBasic
namespace, even though only one selection has been made. This implementation, while a bit
surprising at first, is very powerful. First, it shows the extensibility of namespaces — the single
Microsoft.VisualBasic.Compatibility.VB6 namespace is implemented in two separate
assemblies. Second, it allows you to include only the classes that you need — in this case, those that
are related to the VB6 (Visual Basic 6) environment or to database tools, or both types. There are some
interesting points about the Microsoft.VisualBasic namespace that you should be aware of. First,
this namespace gives you access to all those functions that VB6 developers have had for years. Microsoft
has implemented these in the .NET Framework and has made them available for your use within your
.NET projects. Since these functions have been implemented in the .NET Framework, there is absolutely
no performance hit for using them, but you will most likely find the functionality that they provide
available to you in newer .NET namespaces. One big point is that contrary to what the name of the
namespace suggests, this namespace is available for use by all of the .NET languages. So, this means that
even a C# developer could also use the Microsoft.VisualBasic namespace if he or she so desired.

Namespaces and References
Highlighting their importance to every project, references (including namespaces) are no longer hidden
from view — available only after opening a dialog box as they were in VB6. As shown in the Solution
Explorer window in Figure 9-3, every new project comes with a set of referenced namespaces. (If you
don’t see the references listed in Solution Explorer, press the Show All Files button from the Solution
Explorer menu.)

Figure 9-3

287

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 287

The list of default references changes based on the type of project. The example in Figure 9-3
shows the default references for a Windows Forms project in Visual Studio 2005. If the project type
is an ASP.NET Web Application, the list of references changes appropriately — the reference to the
System.Windows.Forms namespace assembly changes and is replaced by a reference to System.Web.
If the project type is an ASP.NET Web Service (not shown), then the System.Windows.Forms namespace
is replaced by references to the System.Web and System.Web.Services namespaces.

In addition to making the namespaces available, references play a second important role in your project.
One of the advantages of .NET is using services and components built on the common language runtime
(CLR), which allow you to avoid DLL conflicts. The various problems that can occur related to DLL
versioning, commonly referred to as DLL hell, involve two types of conflict.

The first situation occurs when you have a component that requires a minimum DLL version, and an
older version of the same DLL causes your product to break. The alternative situation is when you
require an older version of a DLL, and a new version is incompatible. In either case, the result is that a
shared file, outside of your control, creates a systemwide dependency that impacts your software. As
part of .NET, it is possible, but not required, to indicate that a DLL should be shipped as part of your
project to avoid an external dependency.

To indicate that a referenced component should be included locally, you can select the reference in
Solution Explorer and then examine the properties associated with that reference. One editable property
is called Copy Local. You will see this property and its value in the Properties window within Visual
Studio 2005. For those assemblies that are part of a Visual Studio 2005 installation, this value defaults to
False. However, for custom references, this property will default to True to indicate that the referenced
DLL should be included as part of the assembly. Changing this property to True changes the path
associated with the assembly. Instead of using the path to the referenced file’s location on the system,
the project creates a subdirectory based on the reference name and places the files required for the
implementation of the reference in this subdirectory, as shown in Figure 9-4.

Figure 9-4

288

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 288

The benefit of this is that even if another version of the DLL is later placed on the system, your project’s
assembly will continue to function. However, this protection from a conflicting version comes at a price.
Future updates to the namespace assembly to fix flaws will be in the system version but not in the
private version that is part of your project’s assembly. To resolve this, Microsoft’s solution is to place
new versions in directories based on their version information. If you examine the path information for
all of the Visual Studio 2005 references, you will see that it includes a version number. As new versions
of these DLLs are released, they will be installed in a separate directory. This method allows for an
escape from DLL hell, by keeping new versions from stomping on old versions, and also allows for old
versions to be easily located for maintenance updates. For this reason, in many cases, it is better to leave
alone the default behavior of Visual Studio 2005, which is set to only copy locally custom components,
until your organization implements a directory structure with version information similar to that of
Microsoft.

The Visual Basic 2005 compiler will not allow you to add a reference to your assembly if the targeted
implementation includes a reference that isn’t also referenced in your assembly. The good news is that
the compiler will help. If, after adding a reference, that reference doesn’t appear in the IntelliSense list
generated by Visual Studio 2005, go ahead and type the reference to a class from that reference. The
compiler will flag it with one of its Microsoft Word–like spelling or grammar error underlines. Then
when you click the underlined text, the compiler will tell you which other assemblies need to be
referenced in the project in order to use the class in question.

Common Namespaces
The generated list of references shown in Solution Explorer for the newly created Namespace_Sampler
project includes most, but not all, of the namespaces that are part of your Windows Application
project. For example, one namespace not displayed as a reference is Microsoft.VisualBasic and the
accompanying Microsoft.VisualBasic.dll. Every Visual Basic 2005 project includes the namespace
Microsoft.VisualBasic. This namespace is part of the Visual Studio project templates for Visual
Basic 2005 and is, in short, what makes Visual Basic 2005 different from C# or any other .NET language.
The implicit inclusion of this namespace is the reason that you can call IsDBNull and other methods of
Visual Basic 2005 directly. The only difference in the default namespaces that are included with Visual
Basic 2005 and C# Windows Application projects is that the former use Microsoft.VisualBasic and
the latter use Microsoft.CSharp.

To see all of the namespaces that are imported automatically, such as the Microsoft.VisualBasic
namespace, right-click the project name in Solution Explorer and select Properties from the context
menu. This will open the project properties in the Visual Studio document window. Select the
References tab from the left-hand navigation, and you will see the reference Microsoft.VisualBasic
at the top of the list. This is illustrated in Figure 9-5.

When looking at the project’s global list of imports in the textarea at the bottom of the page, you can
see that in addition to the Microsoft.VisualBasic namespace, the System.Collections and
System.Diagnostics namespaces are also imported into the project. This is signified by the
checkmarks next to the namespace. Unlike the other namespaces in the list, these namespaces are
not listed as references in the textarea directly above this. That is because the implementation of the
System.Collections and System.Diagnostics namespaces is part of the referenced System.dll.
Similarly to Microsoft.VisualBasic, importing these namespaces allows references to the associated
classes, such that a fully qualified path is not required. Since these namespaces contain commonly
used classes, it is worthwhile to always include them at the project level.

289

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 289

Figure 9-5

The following listing brings together brief descriptions of some of the namespaces commonly used in
Visual Basic 2005 projects:

❑ System.Collections— Contains the classes that support various feature-rich object collections.
Included automatically, it has classes for arrays, lists, dictionaries, queues, hash tables, and so on.
As of .NET 2.0, this namespace also includes the ability to work with the new generics — a way to
build type-safe collections.

❑ System.Data— Contains the classes to support the core features of ADO.NET.

❑ System.Diagnostics— Included in all Visual Basic 2005 projects, this namespace includes the
debugging classes. The Trace and Debug classes provide the primary capabilities, but the
namespace contains dozens of classes to support debugging.

❑ System.Drawing— Simple drawing classes to support Windows Application projects.

❑ System.EnterpriseServices— Not included automatically, the System.EnterpriseServices
implementation must be referenced to make it available. This namespace contains the classes that
interface .NET assemblies with COM+.

❑ System.IO— This namespace contains important classes that allow you to read and write to
files as well as data streams.

290

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 290

❑ System.Text— This commonly used namespace allows you to work with text in a number of
different ways, usually in regard to string manipulation. One of the more popular objects that
this namespace offers is the StringBuilder object.

❑ System.Threading— This namespace contains the objects to work with and manipulate
threads within your application.

❑ System.Web— This is the namespace that deals with one of the more exciting features of the .NET
Framework — ASP.NET. This namespace provides the objects that deal with browser-server com-
munications. Two of the main objects include the HttpRequest object, which deals with the
request from the client to the server, and the HttpResponse object, which deals with the response
from the server to the client.

❑ System.Web.Services— This is the main namespace you use when you are creating XML Web
Services, one of the more powerful capabilities that is provided with the .NET Framework. This
namespace provides you with the classes that deal with SOAP messages and the manipulation of
these messages.

❑ System.Windows.Forms— The classes to create Windows Forms in Windows Application pro-
jects. This namespace contains the form elements.

Of course, to really make use of the classes and other objects in the above listing, you really need more
detailed information. In addition to resources such as Visual Studio 2005’s help files, the best source of
information is the Object Browser. It is available directly in the Visual Studio 2005 IDE. You will find it by
selecting View ➪ Object Browser if you are using Visual Studio 2005 or 2003 or View ➪ Other Windows ➪

Object Browser if you are using Visual Studio 2002. The Visual Studio 2005 Object Browser is shown in
Figure 9-6.

The Object Browser displays each of the referenced assemblies and allows you to drill down into the
various namespaces. The previous screen shot illustrates how the System.dll implements a number of
namespaces, including some that are part of the System namespace. By drilling down into a namespace, it
is possible to see some of the classes available. By further selecting a class, the browser shows not only the
methods and properties associated with the selected class but also a brief outline of what that class does.

Using the Object Browser is an excellent way to gain insight not only into which classes and interfaces
are available via the different assemblies included in your project but also into how they work. As you
can guess, the ability to actually see not only which classes are available but what and how to use them
is important in being able to work efficiently. To work effectively in the .NET CLR environment requires
finding the right class for the task.

Importing and Aliasing Namespaces
Not all namespaces should be imported at the global level. Although you have looked at the namespaces
that are included at this level, it is much better to import namespaces only in the module where they will
be used. Importing a namespace at the module level does not change setting the reference, but does
mean that you don’t add it into the list of imports on the project’s property page. Similarly to variables
used in a project, it is possible to define a namespace at the module level. The advantage of this is similar
to the use of local variables in that it helps to prevent different namespaces from interfering with each
other. As this section will show, it is possible for two different namespaces to contain classes or even
child namespaces with the same name.

291

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 291

Figure 9-6

Importing Namespaces
The development environment and compiler need a way to prioritize the order in which namespaces
should be checked when a class is referenced. It is always possible to unequivocally specify a class by
stating its complete namespace path. This is referred to as fully qualifying your declaration. Here is an
example of fully qualifying a StringBuilder object:

Dim sb As New System.Text.StringBuilder

However, if every reference to every class needed its full namespace declaration, that would make Visual
Basic 2005 and every other .NET language very difficult to program in. After all, who would want to type
System.Collections.ArrayList each time they wanted an instance of the ArrayList class. If you
review the global references, you’ll see the System.Collections namespace. Thus, you can just type
ArrayList whenever you need an instance of this class as the reference to the larger System.Collections
namespace has already been made by the application.

In theory, another way to reference the StringBuilder class is to use Text.StringBuilder, but with
all namespaces imported globally, there is a problem with this. The problem is caused by what is known
as namespace crowding. Because there is a second namespace, System.Drawing, which has a child
called Text, the compiler doesn’t have a clear location for the Text namespace and, therefore, cannot
resolve the StringBuilder class. The solution to this problem is to make it so that only a single version
of the Text child namespace is found locally. Then the compiler will use this namespace regardless of
the global availability of the System.Drawing.Text namespace.

292

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 292

Imports statements specify to the compiler those namespaces that the code will use.

Imports Microsoft.Win32
Imports System
Imports SysDraw = System.Drawing

Once they are imported into the file, you are not required to fully qualify your object declarations in
your code. For instance, if you imported the System.Data.SqlClient namespace into your file, you
would then be able to create a SqlConnection object in the following manner:

Dim conn As New SqlConnection

Each of the Imports statements from above illustrates a different facet of importing namespaces. The
first, Imports Microsoft.Win32, is a namespace that is not imported at the global level. Looking at the
reference list, you may not see the Microsoft assembly referenced directly. However, opening the Object
Browser reveals that this namespace is actually included as part of the System.dll.

As noted earlier, the StringBuilder references become ambiguous because both System.Text and
System.Drawing.Text are valid namespaces at the global level. As a result, the compiler has no way to
distinguish which Text child namespace is being referenced. Without any clear indication, the compiler
flags Text.StringBuilder declarations in the command handler. However, using the Imports System
declaration in the module tells the compiler that, before checking namespaces imported at the global
level, it should attempt to match incomplete references at the module level. Since the System namespace
is declared at this level, while System.Drawing (for the moment) is not, there is no ambiguity as to
which child namespace Text.StringBuilder belongs to.

This demonstrates how the compiler looks at each possible declaration:

❑ First, see if the item is a complete reference such as System.Text.StringBuilder.

❑ If the declaration does not match a complete reference, then the compiler tries to see if the
declaration is from a child namespace of one of the module-level imports.

❑ Finally, if a match has not been found, the compiler looks at the global-level imports to see if the
declaration can be associated with a namespace imported for the entire assembly.

While the preceding logical progression of moving from a full declaration through module- to
global-level imports does resolve the majority of issues, it does not handle all possibilities. Specifically, if
we imported System.Drawing at the module level, the namespace collision would return. This is where
the third import statement becomes important — this import statement uses an alias.

Referencing Namespaces in ASP.NET
Making a reference to a namespaces in ASP.NET is quite similar to working with Windows Forms, but
you have to take some simple, additional steps. From your ASP.NET solution, first make a reference to
the assemblies from the References folder just as you do with Windows Forms. Once there, import these
namespaces at the top of the page file in order to avoid having to fully qualify the reference each and
every time on that particular page.

293

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 293

For example, instead of using System.Collections.Generic for each instance of use, use the
<%# Import %> page directive at the top of the ASP.NET page (if the page is constructed using the inline
coding style) or use the Imports keyword at the top of the ASP.NET page’s code-behind file (just as is
done with Windows Forms applications). This is how to perform this task when using inline coding for
ASP.NET pages:

<%# Import Namespace=”System.Collections.Generic” %>

Now that this reference is in place on the page, you can gain access to everything this namespace
contains without the need to fully qualify the object you are accessing. It is important to note that the
Import keyword in the inline example is not missing an “s” at the end. When importing in this manner,
it is Import (without the “s”) instead of Imports— as it is in the ASP.NET code-behind model and in
Windows Forms.

In ASP.NET 1.0/1.1, if you used a particular namespace on each page of your application, you
would have to have the Import statement on each and every page where it was needed. ASP.NET 2.0
introduces the ability to use the web.config file to make a global reference so that you don’t need to
make further references on the pages themselves. This is done as illustrated here in the following example.

<pages>
<namespaces>

<add namespace=”System.Drawing” />
<add namespace=”Wrox.Books” />

</namespaces>
</pages>

In this example, using the <namespaces> element in the web.config file, references are made to
the System.Drawing namespace and the Wrox.Books namespace. Because these references are now
contained within the web.config file, there is no need to again reference them on any of the ASP.NET
pages that are contained within this solution.

Aliasing Namespaces
Aliasing has two benefits in .NET. The first is that aliasing allows a long namespace such as
System.EnterpriseServices to be replaced with a shorthand name such as COMPlus. The second
is that it adds a way to prevent ambiguity among child namespaces at the module level.

As noted earlier, the System and System.Drawing namespaces both contain a child namespace of Text.
Since you will be using a number of classes from the System.Drawing namespace, it follows that this
namespace should be imported into the form’s module. However, were this namespace imported along
with the System namespace, the compiler would once again find references to the Text child namespace
ambiguous. However, by aliasing the System.Drawing namespace to SysDraw, the compiler knows
that it should only check the System.Drawing namespace when a declaration begins with that alias.
The result is that although multiple namespaces with the same child namespace are now available at the
module level, the compiler knows that one (or more) of them should only be checked at this level when
they are explicitly referenced.

294

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 294

Aliasing as defined above is done in the following fashion:

Imports SysDraw = System.Drawing

Creating Your Own Namespaces
Every assembly created in .NET is part of some root namespace. By default, this logic actually mirrors
COM in that assemblies are assigned a namespace that matches the project name. However, unlike
COM, in .NET it is possible to change this default behavior. In this way, just as Microsoft has packaged
the system-level and CLR classes using well-defined names, it is possible for you to create your own
namespaces. Of course, it’s also possible to create projects that match existing namespaces and extend
those namespaces, but that is very poor programming practice.

Creating an assembly in a custom namespace can be done at one of two levels. However, unless you want
the same name for each assembly that will be used in a large namespace, you will normally reset the root
namespace for the assembly. This is done through the assembly’s project pages, reached by right-clicking
the solution name in the Solution Explorer window and working off of the first tab (Application) within
the Properties page that opens up in the Document window, as shown in Figure 9-7.

The next step is optional, but, depending on whether you want to create a class at the top level or at a
child level, you can add a Namespace command to your code. There is a trick to being able to create
top-level namespaces, or multiple namespaces within the modules that make up an assembly. Instead of
replacing the default namespace with another name, you can delete the default namespace and define
the namespaces only in the modules, using the Namespace command.

The Namespace command is accompanied by an End Namespace command. This End Namespace
command must be placed after the End Class tag for any classes that will be part of the namespace.
The following code demonstrates the structure used to create a MyMetaNamespace namespace, which
contains a single class:

Namespace MyMetaNamespace
Class MyClass1

‘Code
End Class

End Namespace

You can then utilize the MyClass1 object simply by referencing its namespace, MyMetaNamespace.
MyClass1. It is also possible to have multiple namespaces in a single file, as shown here:

Namespace MyMetaNamespace1
Class MyClass1

‘Code
End Class

End Namespace

Namespace MyMetaNamespace2
Class MyClass2

‘Code
End Class

End Namespace

295

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 295

Figure 9-7

Using this kind of structure, if you want to utilize MyClass1, you get at it through the namespace
MyMetaNamespace.MyClass1. This does not give you access to MyMetaNamespace2 and the objects
that it offers; instead, you have to make a separate reference to MyMetaNamespace2.MyClass2.

The Namespace command can also be nested. Using nested Namespace commands is how child
namespaces are defined. The same rules apply — each Namespace must be paired with an End
Namespace and must fully encompass all of the classes that are part of that namespace. In this example,
the MyMetaNamespace has a child namespace called MyMetaNamespace.MyChildNamespace.

Namespace MyMetaNamespace
Class MyClass1

‘Code
End Class

Namespace MyChildNamespace
Class MyClass2

‘Code
End Class

End Namespace
End Namespace

296

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 296

This is another point to be aware of when you make references to other namespaces within your own
custom namespaces. Let’s look at an example of this.

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace MyMetaNamespace1
Class MyClass1

‘Code
End Class

End Namespace

Namespace MyMetaNamespace2
Imports System.IO

Class MyClass2
‘Code

End Class
End Namespace

In this example, there are a number of different namespaces referenced in the file. The three namespaces
referenced at the top of the code listing — the System, System.Data, and System.Data.SqlClient
namespace references, are available to each and every namespace that is developed in the file. This is so
because these three references are sitting outside of any particular namespace declarations. However,
this is quite different for the System.IO namespace reference. Because this reference is made within the
MyMetaNamespace2 namespace, it is unavailable to any other namespace in the file.

Sometimes when you are working with custom namespaces, you might find that you have locked your-
self out of accessing a particular branch of a namespace, purely due to naming conflicts. For this reason,
Visual Basic has introduced the new Global keyword in this latest version, which can be used as the
outermost root class available in the .NET Framework class library. Figure 9-8 shows a diagram of how
the class structure looks with the new Global keyword.

This means that you can make specifications such as:

Global.System.String

or

Global.Wrox.System.Titles

When you create your own namespaces, Microsoft recommends that you use a
convention of CompanyName.TechnologyName, for example, Wrox.Books. This
helps to ensure that all libraries are organized in a consistent way.

297

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 297

Figure 9-8

My
The My keyword is a novel concept to quickly give you access to your application, your users, your
resources, the computer, or the network on which the application resides. The My keyword has been
referred to as a way of speed-dialing common but complicated resources that you need access to. Using
the My keyword, you can quickly get access to a wide variety of items such as user details or specific
settings of the requestor’s browser.

Though not really considered a true namespace, the My object declarations that you make work the same
as the .NET namespace structure you are used to working with. To give you an example, let’s first look
at how you get at the user’s machine name using the traditional namespace structure:

Environment.MachineName.ToString()

For this example, you simply need to use the Environment class and use this namespace to get at the
MachineName property. Now let’s look at how you would accomplish this same task using the new My
keyword:

My.Computer.Info.MachineName.ToString()

As you are looking at this example, you might be wondering what the point is if the example, which is
using My, is lengthier than the first example that just works off of the Environment namespace. Just
remember that it really isn’t about the length of what you type to get access to specific classes, but
instead is about a logical way to find often accessed resources without the need to spend too much time
hunting them down. Would you have known to look in the Environment class to get the machine name
of the user’s computer? Maybe, but maybe not. Using My.Computer.Info.MachineName.ToString()
is a tremendously more logical approach, and once compiled, this namespace declaration will be set to
work with the same class as previously without a performance hit.

Global

System

Web

Wrox

Text

Integer

String

Book

Text

String

System

298

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 298

If you type the My keyword in your Windows Forms application, you will notice that IntelliSense
provides you with six items to work with —Application, Computer, Forms, Resources, User, and
WebServices. Though this new keyword works best in the Windows Forms environment, there are still
things that you can use in the Web Forms world. If you are working for a Web application, then you
will have three items off of the My keyword —Application, Computer, and User. Each of these is
broken down in the following sections.

My.Application
The My.Application namespace gives you quick access to specific settings and points that deal with
your overall application. The following table details the properties and methods of the My.Application
namespace.

Property/Method Description

ApplicationContext Returns the contextual information about the thread of
the Windows Forms application.

AssemblyInfo Provides quick access to the assembly of the Windows
Forms. You can get at assembly information such as
version number, name, title, copyright information, and
more.

ChangeCurrentCulture A method that allows you to change the culture of the
current application thread.

ChangeCurrentUICulture A method that allows you to change the culture that is
being used by the Resource Manager.

CurrentCulture Returns the current culture which is being used by the
current thread.

CurrentDirectory Returns the current directory for the application.

CurrentUICulture Returns the current culture that is being used by the
Resource Manager.

Deployment Returns an instance of the ApplicationDeployment
object, which allows for programmatic access to the
application’s ClickOnce features.

IsNetworkDeployed Returns a Boolean value which indicates whether the
application was distributed via the network using
the ClickOnce feature. If True, then the application was
deployed using ClickOnce — otherwise False.

Log This property allows you to write to your application’s
event log listeners.

MainForm Allows access to properties of the main form (initial
form) for the application.

Table continued on following page

299

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 299

Property/Method Description

OpenForms Returns a FormCollection object, which allows access
to the properties of the forms which are currently open.

SplashScreen Allows you to programmatically assign the splash screen
for the application.

While there is much that can be accomplished using the My.Application namespace, for an example
of its use, let’s focus on the use of the AssemblyInfo property. This property provides access to the
information that is stored in the application’s AssemblyInfo.vb file as well as other details about
the class file. In one of your applications, you can create a message box that is displayed using the
following code:

MessageBox.Show(“Company Name: “ & My.Application.AssemblyInfo.CompanyName & _
vbCrLf & _

“Description: “ & My.Application.AssemblyInfo.Description & vbCrLf & _
“Directory Path: “ & My.Application.AssemblyInfo.DirectoryPath & vbCrLf & _
“Copyright: “ & My.Application.AssemblyInfo.LegalCopyright & vbCrLf & _
“Trademark: “ & My.Application.AssemblyInfo.LegalTrademark & vbCrLf & _
“Name: “ & My.Application.AssemblyInfo.Name & vbCrLf & _
“Product Name: “ & My.Application.AssemblyInfo.ProductName & vbCrLf & _
“Title: “ & My.Application.AssemblyInfo.Title & vbCrLf & _
“Version: “ & My.Application.AssemblyInfo.Version.ToString())

From this example, you can see that we can get at quite a bit of information concerning the assembly of
the application that is running. Running this code will produce a message box similar to the one shown
in Figure 9-9.

Figure 9-9

300

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 300

Another interesting property to look at from the My.Application namespace is the Log property. This
property allows you to work with the log files for your application. For instance, you can easily write to
the system’s Application Event Log by first changing the application’s app.config file to include the
following:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.diagnostics>
<sources>

<source name=”Microsoft.VisualBasic.MyServices.Log.WindowsFormsSource”
switchName=”DefaultSwitch”>

<listeners>
<add name=”EventLog”/>

</listeners>
</source>

</sources>
<switches>

<add name=”DefaultSwitch” value=”Information” />
</switches>
<sharedListeners>

<add name=”EventLog” type=”System.Diagnostics.EventLogTraceListener”
initializeData=”EvjenEventWriter”/>

</sharedListeners>
</system.diagnostics>

</configuration>

Once the configuration file is in place, you can then record entries to the Application Event Log as
illustrated here in the following simple example:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

My.Application.Log.WriteEntry(“Entered Form1_Load”, _
TraceEventType.Information, 1)

End Sub

You could also just as easily use the WriteExceptionEntry method in addition to the WriteEntry
method. After running this application and looking in the Event Viewer, you will see the event shown in
Figure 9-10.

The previous example showed how to write to the Application Event Log when working with the objects
that write to the event logs. In addition to the Application Event Log, there is also a Security Event Log and
a System Event Log. It is important to note that when using these objects, it is impossible to write to the
Security Event Log, and it is only possible to write to the System Event Log if the application does it under
either the Local System or Administrator accounts.

301

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 301

Figure 9-10

In addition to writing to the Application Event Log, you can also just as easily write to a text file. Just as
with writing to the Application Event Log, writing to a text file also means that you are going to need to
make changes to the app.config file.

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.diagnostics>
<sources>

<source name=”Microsoft.VisualBasic.MyServices.Log.WindowsFormsSource”
switchName=”DefaultSwitch”>

<listeners>
<add name=”EventLog”/>

<add name=”FileLog” />
</listeners>

</source>
</sources>
<switches>

<add name=”DefaultSwitch” value=”Information” />
</switches>
<sharedListeners>

<add name=”EventLog” type=”System.Diagnostics.EventLogTraceListener”
initializeData=”EvjenEventWriter”/>

<add name=”FileLog”
type=”System.Diagnostics.FileLogTraceListener, Microsoft.VisualBasic,

302

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 302

Version=8.0.1200.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
initializeData=”FileLogWriter” />

</sharedListeners>
</system.diagnostics>

</configuration>

Now with this app.config file in place, you simply need to run the same WriteEntry method as
before. Though this time, in addition to writing the Application Event Log, the information will also be
written to a new text file. You will find the text file at C:\Documents and Settings\[username]\
Application Data\[AssemblyCompany]\[AssemblyProduct]\[Version]. For instance, in my
example, the log file was found at C:\Documents and Settings\Administrator\Application Data\
Wrox\Log Writer\1.2.0.0\. In the .log file found, you will see a line such as:

Microsoft.VisualBasic.MyServices.Log.WindowsFormsSource
Information 1 Entered Form1_Load

Though split here on two lines (due to the width of the paper for this book), you will find this informa-
tion in a single line within the .log file. By default it is separated by tabs, but you can also change the
delimiter yourself by adding a delimiter attribute to the FileLog section in the app.config file. This is:

<add name=”FileLog”
type=”System.Diagnostics.FileLogTraceListener, Microsoft.VisualBasic,
Version=8.0.1200.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”

initializeData=”FileLogWriter” delimiter=”;” />

In addition to writing to event logs and text files, you can also write to XML files, console applications,
and more.

My.Computer
The My.Computer namespace can be used to work with the parameters and details of the computer in
which the application is running. The following table details the objects contained in this namespace.

Property Description

Audio This object allows you to work with audio files from
your application. This includes starting, stopping, and
looping audio files.

Clipboard This object allows you to read and write to the clipboard.

Clock This allows for access to the system clock to get at GMT
and the local time of the computer that is running the
application. You can also get at the tick count, which is
the number of milliseconds that has elapsed since the
computer was started.

Table continued on following page

303

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 303

Property Description

FileSystem This object provides a large collection of properties and
methods that allow for programmatic access to drives,
folders, and files. This includes the ability to read, write,
and delete items in the file system.

Info This provides access to the computer’s details such as
amount of memory, the operating system type, which
assemblies are loaded, and the name of the computer
itself.

Keyboard This object provides access to knowledge of which
keyboard keys are pressed by the end user. Also included
is a single method, SendKeys, which allows you to send
the pressed keys to the active form.

Mouse This provides a handful of properties that allow for
detection of the type of mouse installed, and provides
such details as whether the left and right mouse buttons
have been swapped, whether a mouse wheel exists, and
details on how much to scroll when the user uses the
wheel.

Name This is a read-only property that provides access to the
name of the computer.

Network This object provides a single property and some methods
to enable you to interact with the network to which the
computer where the application is running is connected.
With this object, you can use the IsAvailable property
to first check that the computer is connected to a
network. If this is positive, the Network object allows
you to upload or download files, and ping the network.

Ports This object can provide notify one if there are available
ports as well as allowing for access to the ports.

Printers This object allows determination of which printers are
available to the application as well as provides the ability
to define default printers and print items to any of the
printers available.

Registry This object provides programmatic access to the registry
and the registry settings. Using the Registry object, you
can determine if keys exist, determine values, change
values, and delete keys.

Screen Provides the ability to work with one or more screens
which may be attached to the computer.

304

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 304

There is a lot to the My.Computer namespace, so it is impossible to touch upon most of it. For an
example of using this namespace, let’s take a look at the FileSystem property. The FileSystem
property allows for you to easily and logically access drives, directories, and files on the computer.

To illustrate the use of this property, first start off by creating a Windows Form with a DataGridView
and a Button control. It should appear as shown in Figure 9-11.

Figure 9-11

This little application will look in the user’s My Music folder and list all of the .wma files found therein.
Once listed, the user of the application will be able to select one of the listed files, and after pressing the
Play button, the file will be launched and played inside Microsoft’s Windows Media Player.

The first step after getting the controls on the form in place is to make a reference to the Windows Media
Player DLL. You will find this on the COM tab, and the location of the DLL is C:\WINDOWS\System32\
wmp.dll. This will give you an object called WMPLib in the References folder of your solution.

You might be wondering why you would make a reference to a COM object in order to play a .wma file
from your application instead of using the My.Computer.Audio namespace that is provided to you. The
Audio property only allows for the playing of .wav files, because to play .wma, .mp3, and similar files,
the user must have the proper codecs on his or her machine. These codecs are not part of the Windows
OS, but are part of Windows Media Player.

305

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 305

Now that the reference to the wmp.dll is in place, let’s put some code in the Form1_Load event.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

For Each MusicFile As String _
In My.Computer.FileSystem.GetFiles _
(My.Computer.FileSystem.SpecialDirectories.MyMusic, True, “*.wma”)

Dim MusicFileInfo As System.IO.FileInfo = _
My.Computer.FileSystem.GetFileInfo(MusicFile.ToString())

Me.DataGridView1.Rows.Add(MusicFileInfo.Directory.Parent.Name & _
“\” & MusicFileInfo.Directory.Name & “\” & MusicFileInfo.Name)

Next

End Sub

In this example, the My.Computer.FileSystem.GetFiles method points to the My Music folder
through the use of the SpecialDirectories property. This property allows for logical and easy access
to folders such as Desktop, My Documents, My Pictures, Programs, and more. Though it is possible to
use just this first parameter with the GetFiles method, this example makes further definitions. The
second parameter defines the recurse value — which states whether the subfolders should be perused
as well. By default, this is set to False, but it has been changed to True for this example. The last
parameter defines the wildcard that should be used in searching for elements. In this case, the value of
the wildcard is *.wma, which instructs the GetFile method to get only the files that are of type .wma.
Once retrieved with the GetFile method, the retrieved file is then placed inside the DataGridView
control, again using the My.Computer.FileSystem namespace to define the value of the item placed
within the row.

Once the Form1_Load event is in place, the last event to construct is the Button1_Click event. This is
illustrated here:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim MediaPlayer As New WMPLib.WindowsMediaPlayer
MediaPlayer.openPlayer(My.Computer.FileSystem.SpecialDirectories.MyMusic & _

“\” & DataGridView1.SelectedCells.Item(0).Value)
End Sub

From this example, you can see that it is pretty simple to play one of the provided .wma files. It is as
simple as creating an instance of the WMPLib.WindowsMediaPlayer object and using the openPlayer
method, which takes as a parameter the location of the file to play. In this case, you are again using the
SpecialDirectories property. The nice thing about using this property is that it could be more
difficult to find the user’s My Music folder due to the username changing the actual location of the files
that the application is looking for, but using the My namespace allows it to figure out the exact location of
the items. When built and run, the application provides a list of available music files and allows you to
easily select one for playing in the Media Player. This is illustrated in Figure 9-12.

306

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 306

Figure 9-12

Though it would have been really cool if it were possible to play these types of files using the Audio
property from the My.Computer namespace, it is still possible to use the My.Computer.Audio name-
space for playing .wav files and system sounds.

To play a system sound, you use the following construct:

My.Computer.Audio.PlaySystemSound(SystemSounds.Beep)

The system sounds in the SystemSounds enumeration include: Asterisk, Beep, Exclamation, Hand,
and Question.

My.Forms
The My.Forms namespace is just a quick and logical way of getting at the properties and methods of the
forms that are contained within your solution. For instance, to get at the first form in your solution
(assuming that it’s named Form1), you use the following namespace construct:

My.Form.Form1

To get at other forms, you simply change the namespace so that the name of the form that you are trying
to access follows the Form keyword in the namespace construction.

307

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 307

My.Resources
The My.Resources namespace is a tremendously easy way of getting at the resources stored in your
application. If you open up the MyResources.resx file from the My Projects folder in your solution,
you can easily create as many resources as you wish. As an example, I created a single String resource
titled MyResourceString and gave it a value of St. Louis Rams.

To access the resources that you create, you use the simple reference as shown here:

My.Resources.MyResourceString.ToString()

Using IntelliSense, you will find all of your created resources listed after you type the period after the
My.Resources string.

My.User
The My.User namespace allows you to work with the IPrincipal interface. You can use the My.User
namespace to figure out if the user is authenticated or not, what the user’s name is, and more. For
instance, if you have a login form in your application, you could allow access to a particular form with
code similar to the following:

If (Not My.User.IsInRole(“Administrators”)) Then
‘ Code here

End If

You can also just as easily get at the user’s name with the following:

My.User.Identity.Name

As well, you can check if the user is authenticated by using:

If My.User.Identity.IsAuthenticated Then
‘ Code here

End If

My.WebServices
When not using the My.WebServices namespace, you access your Web Services references in a lengthier
manner. The first step in either case is to make a Web reference to some remote XML Web service in your
solution. These references will then appear in the Web References folder in Solution Explorer in Visual
Studio 2005. Before the introduction of the My namespace, you would have accessed the values that the
Web reference exposed in the following manner:

Dim ws As New ReutersStocks.GetStockDetails
Label1.Text = ws.GetLatestPrice.ToString()

This works, but now with the My namespace, you can use the following construct:

Label1.Text = My.WebServices.GetStockDetails.GetLatestPrice.ToString()

308

Chapter 9

12_575368 ch09.qxd 10/7/05 11:05 PM Page 308

Summary
The introduction of namespaces with the .NET Framework provides a powerful tool that helps to
abstract the logical capabilities from their physical implementation. While there are differences in the
syntax of referencing objects from a namespace and referencing the same object from a COM-style
component implementation, there are several similarities. This chapter introduced namespaces and their
hierarchical structure, and demonstrated

❑ That namespace hierarchies are not related to class hierarchies

❑ How to review and add references to a project

❑ How to import and alias namespaces at the module level

❑ How to create custom namespaces

❑ How to use the new My namespace

Namespaces play an important role in enterprise software development. The fact that namespaces allow
you to separate the implementation of related functional objects, while retaining the ability to group
these objects, improves the overall maintainability of your code. Everyone who has ever worked on a
large project has been put in the situation where a fix to a component has been delayed because of the
potential impact on other components in the same project. Regardless of the logical separation of
components in the same project, developers who took part in the development process worried about
testing. With totally separate implementations for related components, it is not only possible to alleviate
this concern but also easier than ever before for a team of developers to work on different parts of the
same project.

309

Namespaces

12_575368 ch09.qxd 10/7/05 11:05 PM Page 309

12_575368 ch09.qxd 10/7/05 11:05 PM Page 310

Exception Handling and
Debugging

All professional-grade programs need to handle unexpected conditions. In programming languages
before Microsoft .NET, this was often called error handling. Unexpected conditions generated error
codes, which were trapped by programming logic that took appropriate action.

The common language runtime in .NET does not generate error codes. When an unexpected
condition occurs, the CLR creates a special object called an exception. This object contains
properties and methods that describe the unexpected condition in detail and communicate various
items of useful information about what went wrong.

Because .NET deals with exceptions instead of errors, the term “error handling” is seldom used
in the .NET world. Instead, now refer to exception handling. This term refers to the techniques
used in .NET to detect exceptions and take appropriate action.

In this chapter, we will cover how exception handling works in Visual Basic .NET (VB.NET). There
are many improvements over pre-.NET versions of Visual Basic. This chapter will discuss the
common language runtime (CLR) exception handler in detail and the programming methods that
are most efficient in catching errors. Specifically, it will discuss:

❑ A brief review of error handling in Visual Basic 6 (VB6)

❑ The general principles behind exception handling

❑ The Try . . . Catch . . . Finally structure, the Exit Try statement, and nested Try
structures

❑ The exception object’s methods and properties

13_575368 ch10.qxd 10/7/05 11:02 PM Page 311

❑ Exception handling between managed and unmanaged code, and how VB.NET assists you in
that area

❑ Capabilities in Visual Studio .NET to work with exceptions

❑ Error and trace logging and how you can use these methods to obtain feedback on how your
program is working

You’ll begin with a quick review of error handling in previous versions of Visual Basic to use as a
reference point. Then you will look at the new ways of handling exceptions in .NET.

A Brief Review of Error Handling in VB6
For compatibility, Visual Basic .NET still supports the old-style syntax for error handling that was used
in Visual Basic 6 and earlier versions. That means you can still use the syntax presented in this review.
However, it is strongly recommended that you avoid using this old-style syntax in favor of the exception
handling features that are native to .NET.

The old-style syntax in VB6 was handed down from DOS versions of BASIC. The On Error construct
was created in an era when line labels and GoTo statements were commonly used. Such error handling is
difficult to use and has limited functionality compared to more modern alternatives.

In VB6, a typical routine with error handling code looks like this:

Private Function OpenFile(sFileName As String) As Boolean

On Error GoTo ErrHandler:
Open sFileName For Random As #1
OpenFile = True
Exit Sub

ErrHandler:
Select Case Err.Number

Case 53 ‘ File not found
MessageBox.Show “File not found”

Case Else
MessageBox.Show “Other error”

End Select
OpenFile = False

End Function

The top of the routine points to a section of code called an error handler, which is usually placed at the
bottom of the routine. The error handler gets control as soon as an error is detected in the routine, and
it looks at the error number to see what to do. The error number is available as a property of the Err
object, which is a globally available object that holds error information in VB6.

If the error handler can take care of the error without breaking execution, it can resume execution with
the line of code that generated the error (Resume) or the one after that (Resume Next) or at a particular
location (Resume {LineLabel}).

312

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 312

This structure becomes more complex if the error handling needs to vary in the routine. Multiple On
Error GoTo statements must be used to send errors to various error handlers, like this:

Private Function OpenFile(sFileName As String) As Boolean

On Error GoTo ErrHandler1
‘ Do calculations here
Dim i As Integer
i = Len(sFileName)
Dim j As Integer
j = 100 \ i

On Error GoTo ErrHandler2
Open sFileName For Random As #1
OpenFile = True
Exit Function

ErrHandler1:
Select Case Err.Number

Case 6 ‘ Overflow
MessageBox.Show “Overflow”

Case Else
MessageBox.Show “Other error”

End Select

OpenFile = False
Exit Function

ErrHandler2:
Select Case Err.Number

Case 53 ‘ File not found
MessageBox.Show “File not found”

Case Else
MessageBox.Show “Other error”

End Select
OpenFile = False

End Function

With this type of error handling, it is easy to get confused about what should happen under various
conditions. You must change the error handling pointer as necessary or errors will be incorrectly
processed. There is very little information available about the error during the process, except for the
error number. You can’t tell, for example, the line number on which the error was generated without
single-stepping through the code.

Such logic can rapidly become convoluted and unmanageable. There’s a much better way to manage
errors in VB.NET, called structured exception handling. The rest of this chapter will discuss this new way
to work with code errors, and you will use the term structured exception handling throughout, except
for the small sections that discuss compatibility with older error-handling techniques.

313

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 313

Exceptions in .NET
.NET implements a systemwide, comprehensive approach to exception handling. As noted in the chapter
introduction, the concept of an error is expanded to exceptions, which are objects that contain a set of
information relevant to the error. Such an object is an instance of a class that derives from a class named
System.Exception.

Important Properties and Methods of an Exception
The Exception class has properties that contain useful information about the exception.

Property Description

HelpLink A string indicating the link to help for this exception.

InnerException Returns the exception object reference to an inner (nested)
exception.

Message A string that contains a description of the error, suitable for
displaying to users.

Source A string containing the name of an object that generated the
error.

StackTrace A read-only property that holds the stack trace as a text
string. The stack trace is a list of the pending method calls
at the point that the exception was detected. That is,
if MethodA called MethodB, and an exception occurred in
MethodB, the stack trace would contain both MethodA
and MethodB.

TargetSite A read-only string property that holds the method that
threw the exception.

The two most important methods of the Exception class are:

Method Description

GetBaseException Returns the first exception in the chain

ToString Returns the error string, which might include as much
information as the error message, the inner exceptions, and
the stack trace, depending on the error

You will see these properties and methods used in the code examples given later, once you have covered
the syntax for detecting and handling exceptions.

314

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 314

How Exceptions Differ from the Err Object in VB6
Because an exception contains all of the information needed about an error, structured exception handling
does not use error numbers and the Err object. The exception object contains all the relevant information
about the error.

However, where there is only one global Err object in VB6, there are many types of exception objects in
VB.NET. For example, if a divide by zero is done in code, then an OverflowException is generated. There
are several dozen types of exception classes in VB.NET, and in addition to using the ones that are available
in the .NET Framework, you can inherit from a class called ApplicationException and then create your
own exception classes (see Chapter 6 for a discussion of inheritance).

In .NET, all exceptions inherit from System.Exception. Special-purpose exception classes can be found
in many namespaces. The following table lists four representative examples of the classes that extend
Exception:

Namespace Class Description

System InvalidOperationException Generated when a call to an object
method is inappropriate because of the
object’s state

System OutOfMemoryException Results when there is not enough
memory to carry out an operation

System.XML XmlException Often caused by an attempt to read
invalid XML

System.Data DataException Represents errors in ADO.NET
components

There are literally dozens of exception classes scattered throughout the .NET Framework namespaces. It
is common for an exception class to reside in a namespace with the classes that commonly generate the
exception. For example, the DataException class is in System.Data, with the ADO.NET components
that often generate a DataException instance.

Having many types of exceptions in VB.NET enables different types of conditions to be trapped with
different exception handlers. This is a major advance over VB6. The syntax to do that is discussed next.

Structured-Exception-Handling
Keywords in VB.NET

Structured exception handling depends on several new keywords in VB.NET. They are:

❑ Try— Begin a section of code in which an exception might be generated from a code error. This
section of code is often called a Try block. In some respects, this would be the equivalent of an
On Error statement in VB6. However, unlike an On Error statement, a Try statement does not
indicate where a trapped exception should be routed. Instead, the exception is automatically
routed to a Catch statement (discussed next).

315

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 315

❑ Catch— Begin an exception handler for a type of exception. One or more Catch code blocks come
after a Try block, with each Catch block catching a different type of exception. When an exception
is encountered in the Try block, the first Catch block that matches that type of exception will
receive control.

A Catch statement is analogous to the line label used in a VB6 On Error statement, but the
ability to route different types of exceptions to different Catch statements is a radical
improvement over VB6.

❑ Finally— Contains code that runs when the Try block finishes normally, or if a Catch
block receives control and then finishes. That is, the code in the Finally block always runs,
regardless of whether an exception was detected. Typically, the Finally block is used to close
or dispose of any resources, such as database connections, that might have been left unresolved
by the code that had a problem. There is no equivalent of a Finally in VB6.

❑ Throw— Generate an exception. This is similar to Err.Raise in VB6. It’s usually done in a
Catch block when the exception should be kicked back to a calling routine or in a routine that
has itself detected an error such as a bad argument passed in.

The Try, Catch, and Finally Keywords
Here is an example showing some typical simple structured exception handling code in VB.NET. In this
case, the most likely source of an error is the iItems argument. If it has a value of zero, this would lead
to dividing by zero, which would generate an exception.

First, create a Windows Application in Visual Basic 2005, and place a button on the default Form1 created
in the project. In the button’s click event, place the following two lines of code:

Dim sngAvg As Single
sngAvg = GetAverage(0, 100)

Then put the following function in the form’s code:

Private Function GetAverage(iItems As Integer, iTotal As Integer) as Single
‘ Code that might throw an exception is wrapped in a Try block

Try
Dim sngAverage As Single

‘ This will cause an exception to be thrown if iItems = 0
sngAverage = CSng(iTotal \ iItems)

‘ This only executes if the line above generated no error
MessageBox.Show(“Calculation successful”)
Return sngAverage

Catch excGeneric As Exception
‘ If the calculation failed, you get here
MessageBox.Show(“Calculation unsuccessful - exception caught”)
Return 0

End Try

End Function

316

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 316

In this code, you are trapping all the exceptions with a single generic exception type, and you don’t
have any Finally logic. Run the program, and press the button. You will be able to follow the sequence
better if you place a breakpoint at the top of the GetAverage function and step through the lines.

Here is a more complex example that traps the divide-by-zero exception explicitly. This second version
of the GetAverage function (notice that the name is GetAverage2) also includes a Finally block:

Private Function GetAverage2(iItems As Integer, iTotal As Integer) as Single
‘ Code that might throw an exception is wrapped in a Try block

Try
Dim sngAverage As Single

‘ This will cause an exception to be thrown.
sngAverage = CSng(iTotal \ iItems)

‘ This only executes if the line above generated no error.
MessageBox.Show(“Calculation successful”)
Return sngAverage

Catch excDivideByZero As DivideByZeroException
‘ You’ll get here with an DivideByZeroException in the Try block
MessageBox.Show(“Calculation generated DivideByZero Exception”)
Return 0

Catch excGeneric As Exception
‘ You’ll get here when any exception is thrown and not caught in
‘ a previous Catch block.
MessageBox.Show(“Calculation failed - generic exception caught”)
Return 0

Finally
‘ Code in the Finally block will always run.
MessageBox.Show(“You always get here, with or without an error”)

End Try

End Function

In this code, there are two Catch blocks for different types of exceptions. If an exception is generated,
.NET will go down the Catch blocks looking for a matching exception type. That means the Catch
blocks should be arranged with specific types first and more generic types later.

Place the code for GetAverage2 in the form, and place another button on Form1. In the Click event for
the second button, place the code:

Dim sngAvg As Single
sngAvg = GetAverage2(0, 100)

Run the program again and press the second button. As before, it’s easier to follow if you set a breakpoint
early in the code and then step through the code line by line.

317

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 317

The Throw Keyword
Sometimes a Catch block is unable to handle an error. Some exceptions are so unexpected that they
should be “sent back up the line” to the calling code, so that the problem can be promoted to code that
can decide what to do with it. A Throw statement is used for that purpose.

A Throw statement, like an Err.Raise, ends execution of the exception handler — that is, no more
code in the Catch block after the Throw statement is executed. However, Throw does not prevent code
in the Finally block from running. That code still runs before the exception is kicked back to the calling
routine.

You can see the Throw statement in action by changing the earlier code for GetAverage2 to look like this:

Private Function GetAverage3(iItems As Integer, iTotal as Integer) as Single
‘ Code that might throw an exception is wrapped in a Try block

Try
Dim sngAverage As Single

‘ This will cause an exception to be thrown.
sngAverage = CSng(iTotal \ iItems)

‘ This only executes if the line above generated no error.
MessageBox.Show(“Calculation successful”)
Return sngAverage

Catch excDivideByZero As DivideByZeroException
‘ You’ll get here with an DivideByZeroException in the Try block.
MessageBox.Show(“Calculation generated DivideByZero Exception”)

Throw excDivideByZero
MessageBox.Show(“More logic after the throw – never executed”)

Catch excGeneric As Exception
‘ You’ll get here when any exception is thrown and not caught in
‘ a previous Catch block.
MessageBox.Show(“Calculation failed - generic exception caught”)

Throw excGeneric
Finally

‘ Code in the Finally block will always run, even if
‘ an exception was thrown in a Catch block.
MessageBox.Show(“You always get here, with or without an error”)

End Try
End Function

Here is some code to call GetAverage3. You can place this code in another button’s click event to test it out.

Try
Dim sngAvg As Single
sngAvg = GetAverage3(0, 100)

Catch exc As Exception
MessageBox.Show(“Back in the click event after an error”)

Finally
MessageBox.Show(“Finally block in click event”)

End Try

318

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 318

Throwing a New Exception
Throw can also be used with exceptions that are created on the fly. For example, you might like your
earlier function to generate an ArgumentException, since you can consider a value of iItems of zero
to be an invalid value for that argument.

In such a case, a new exception must be instantiated. The constructor allows you to place your own
custom message into the exception. To show how this is done, let’s change the aforementioned example
to throw your own exception instead of the one caught in the Catch block.

Private Function GetAverage4(iItems As Integer, iTotal as Integer) as Single

If iItems = 0 Then
Dim excOurOwnException As New _

ArgumentException(“Number of items cannot be zero”)

Throw excOurOwnException
End If

‘ Code that might throw an exception is wrapped in a Try block.
Try

Dim sngAverage As Single

‘ This will cause an exception to be thrown.
sngAverage = CSng(iTotal \ iItems)

‘ This only executes if the line above generated no error.
MessageBox.Show(“Calculation successful”)
Return sngAverage

Catch excDivideByZero As DivideByZeroException
‘ You’ll get here with an DivideByZeroException in the Try block.
MessageBox.Show(“Calculation generated DivideByZero Exception”)
Throw excDivideByZero
MessageBox.Show(“More logic after the thrown - never executed”)

Catch excGeneric As Exception
‘ You’ll get here when any exception is thrown and not caught in
‘ a previous Catch block.
MessageBox.Show(“Calculation failed - generic exception caught”)
Throw excGeneric

Finally
‘ Code in the Finally block will always run, even if
‘ an exception was thrown in a Catch block.
MessageBox.Show(“You always get here, with or without an error”)

End Try
End Function

This code can be called from a button with similar code for calling GetAverage3. Just change the name
of the function called to GetAverage4.

This technique is particularly well suited to dealing with problems detected in property procedures.
Property Set procedures often do checking to make sure the property is about to be assigned a valid
value. If not, throwing a new ArgumentException (instead of assigning the property value) is a good
way to inform the calling code about the problem.

319

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 319

The Exit Try Statement
The Exit Try statement will, under a given circumstance, break out of the Try or Catch block and
continue at the Finally block. In the following example, you are going to exit a Catch block if the value
of iItems is 0, because you know that your error was caused by that problem.

Private Function GetAverage5(iItems As Integer, iTotal as Integer) As Single
‘ Code that might throw an exception is wrapped in a Try block.

Try
Dim sngAverage As Single

‘ This will cause an exception to be thrown.
sngAverage = CSng(iTotal \ iItems)

‘ This only executes if the line above generated no error.
MessageBox.Show(“Calculation successful”)
Return sngAverage

Catch excDivideByZero As DivideByZeroException
‘ You’ll get here with an DivideByZeroException in the Try block.

If iItems = 0 Then
Return 0
Exit Try

Else
MessageBox.Show(“Error not caused by iItems”)

End If

Throw excDivideByZero
MessageBox.Show(“More logic after the thrown - never executed”)

Catch excGeneric As Exception
‘ You’ll get here when any exception is thrown and not caught in
‘ a previous Catch block.
MessageBox.Show(“Calculation failed - generic exception caught”)
Throw excGeneric

Finally
‘ Code in the Finally block will always run, even if
‘ an exception was thrown in a Catch block.
MessageBox.Show(“You always get here, with or without an error”)

End Try
End Sub

In your first Catch block, you have inserted an If block so that you can exit the block given a certain
condition (in this case if the overflow exception was caused by the value of intY being 0). The Exit Try
goes immediately to the Finally block and completes the processing there:

If iItems = 0 Then
Return 0
Exit Try

Else
MessageBox.Show(“Error not caused by iItems”)

End If

320

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 320

Now, if the overflow exception is caused by something other than division by zero, you’ll get a message
box displaying Error not caused by iItems.

Nested Try Structures
In some cases, particular lines in a Try block may need special exception processing. Also, errors can
occur within the Catch portion of the Try structures and can cause further exceptions to be thrown. For
both of these scenarios, nested Try structures are available. You can alter the example under the section
“The Throw Keyword” to demonstrate the following code:

Private Function GetAverage6(iItems As Integer, iTotal as Integer) As Single
‘ Code that might throw an exception is wrapped in a Try block.
Try

Dim sngAverage As Single

‘ Do something for performance testing....
Try

LogEvent(“GetAverage”)
Catch exc As Exception

MessageBox.Show(“Logging function unavailable”)
End Try

‘ This will cause an exception to be thrown.
sngAverage = CSng(iTotal \ iItems)

‘ This only executes if the line above generated no error.
MessageBox.Show(“Calculation successful”)
Return sngAverage

Catch excDivideByZero As DivideByZeroException
‘ You’ll get here with an DivideByZeroException in the Try block.
MessageBox.Show(“Error not divide by 0”)
Throw excDivideByZero
MessageBox.Show(“More logic after the thrown - never executed”)

Catch excGeneric As Exception
‘ You’ll get here when any exception is thrown and not caught in
‘ a previous Catch block.
MessageBox.Show(“Calculation failed - generic exception caught”)
Throw excGeneric

Finally
‘ Code in the Finally block will always run, even if
‘ an exception was thrown in a Catch block.
MessageBox.Show(“You always get here, with or without an error”)

End Try
End Function

321

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 321

In this example, you are assuming that a function exists to log an event. This function would typically be in
a common library, and might log the event in various ways. We will actually discuss logging of exceptions
in detail later in the chapter, but a simple LogEvent function might look like this:

Public Function LogEvent(ByVal sEvent As String)
FileOpen(1, “logfile.txt”, OpenMode.Append)
Print(1, DateTime.Now & “-” & sEvent & vbCrLf)
FileClose(1)

End Function

In this case, you don’t want a problem logging an event, such as a “disk full” error, to crash the routine.
The code for the GetAverage function puts up a message box to indicate trouble with the logging function.

A Catch block can be empty. In that case, it has a similar effect as On Error Resume Next in VB6. The
exception is ignored. However, execution does not pick up with the line after the line that generated the
error, but instead picks up with either the Finally block or the line after the End Try if no Finally
block exists.

Using Exception Properties
The earlier examples have displayed hard-coded messages into message boxes, and this is obviously not
a good technique for production applications. Instead, a message box describing an exception should
give as much information as possible concerning the problem. To do this, various properties of the
exception can be used.

The most brutal way to get information about an exception is to use the ToString method of the
exception. Suppose that you modify the earlier example of GetAverage2 to change the displayed
information about the exception like this:

Private Function GetAverage2(ByVal iItems As Integer, ByVal iTotal As Integer) _
As Single

‘ Code that might throw an exception is wrapped in a Try block.
Try

Dim sngAverage As Single

‘ This will cause an exception to be thrown.
sngAverage = CSng(iTotal \ iItems)
‘ This only executes if the line above generated no error.
MessageBox.Show(“Calculation successful”)

Return sngAverage

Catch excDivideByZero As DivideByZeroException
‘ You’ll get here with an DivideByZeroException in the Try block.

MessageBox.Show(excDivideByZero.ToString)
Throw excDivideByZero
MessageBox.Show(“More logic after the thrown - never executed”)

Catch excGeneric As Exception
‘ You’ll get here when any exception is thrown and not caught in
‘ a previous Catch block.

322

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 322

MessageBox.Show(“Calculation failed - generic exception caught”)
Throw excGeneric

Finally
‘ Code in the Finally block will always run, even if
‘ an exception was thrown in a Catch block.
MessageBox.Show(“You always get here, with or without an error”)

End Try
End Function

When the function is accessed with iItems = 0, a message box similar to the one in Figure 10-1 will be
displayed.

Figure 10-1

The Message Property
The message in the aforementioned box is helpful to a developer, because it contains a lot of information.
But it’s not something you would typically want a user to see. Instead, the user normally needs to see a
short description of the problem, and that is supplied by the Message property.

If the previous code is changed so that the Message property is used instead of ToString, then the
message box will change to look something like Figure 10-2.

The InnerException and TargetSite Properties
The InnerException property is used to store an exception trail. This comes in handy when multiple
exceptions occur. It’s quite common for an exception to occur that sets up circumstances whereby further
exceptions are raised. As exceptions occur in a sequence, you can choose to stack your exceptions for
later reference by use of the InnerException property of your Exception object. As each exception
joins the stack, the previous Exception object becomes the inner exception in the stack.

Figure 10-2

323

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 323

For simplicity, you’ll start a new code sample, with just a subroutine that generates its own exception.
You’ll include code to add a reference to an InnerException object to the exception you are generating
with the Throw method.

Your example will also include a message box to show what’s stored in the exception’s TargetSite
property. As you’ll see in the results, TargetSite will contain the name of the routine generating the
exception, in this case HandlerExample. Here’s the code:

Sub HandlerExample()
Dim intX As Integer
Dim intY As Integer
Dim intZ As Integer
intY = 0
intX = 5
‘ First Required Error Statement.
Try

‘ Cause a “Divide by Zero”
intZ = CType((intX \ intY), Integer)

‘ Catch the error.
Catch objA As System.DivideByZeroException

Try
Throw (New Exception(“0 as divisor”, objA))

Catch objB As Exception
Messagebox.Show(objB.Message)
Messagebox.Show(objB.InnerException.Message)
Messagebox.Show(objB.TargetSite.Name)

End Try
Catch

Messagebox.Show(“Caught any other errors”)
Finally

Messagebox.Show(Str(intZ))
End Try

End Sub

As before, you catch the divide-by-zero error in the first Catch block, and the exception is stored in objA
so that you can reference its properties later.

You throw a new exception with a more general message (“0 as divisor”) that is easier to interpret,
and you build up your stack by appending objA as the InnerException object using an overloaded
constructor for the Exception object:

Throw (New Exception(“0 as divisor”, objA))

You catch your newly thrown exception in another Catch statement. Note how it does not catch a specific
type of error:

Catch objB As Exception

324

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 324

Then you display three message boxes:

Messagebox.Show(objB.Message)
Messagebox.Show(objB.InnerException.Message)
Messagebox.Show(objB.TargetSite.Name)

The message box that is produced by your custom error, which is held in the objB variable, is shown in
Figure 10-3.

Figure 10-3

The InnerException property holds the exception object that was generated first. The Message property
of the InnerException is shown in Figure 10-4.

Figure 10-4

As mentioned earlier, the TargetSite property gives you the name of the method that threw your
exception. This information comes in handy when troubleshooting and could be integrated into the
error message so that the end user could report the method name back to you. Figure 10-5 shows a
message box displaying the TargetSite from the previous example.

Figure 10-5

325

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 325

Source and StackTrace
The Source and StackTrace properties provide the user with information regarding where the error
occurred. This supplemental information can be invaluable for the user to pass on to the troubleshooter
in order to help get errors resolved more quickly. The following example uses these two properties and
shows the feedback when the error occurs:

Sub HandlerExample2()
Dim intX As Integer
Dim intY As Integer
Dim intZ As Integer
intY = 0
intX = 5
‘ First Required Error Statement.
Try

‘ Cause a “Divide by Zero”
intZ = CType((intX \ intY), Integer)

‘ Catch the error.
Catch objA As System.DivideByZeroException

objA.Source = “HandlerExample2”
Messagebox.Show(“Error Occurred at :” & _

objA.Source & objA.StackTrace)

Finally
Messagebox.Show(Str(intZ))

End Try
End Sub

The output from your Messagebox statement is very detailed and gives the entire path and line number
where your error occurred, as shown in Figure 10-6.

Figure 10-6

Notice that this information was also included in the ToString method that was examined earlier (refer
back to Figure 10-1).

GetBaseException
The GetBaseException method comes in very handy when you are deep in a set of thrown exceptions.
This method returns the originating exception, which makes debugging easier and helps keep the
troubleshooting process on track by sorting through information that can be misleading.

326

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 326

Sub HandlerExample3()
Dim intX As Integer
Dim intY As Integer
Dim intZ As Integer
intY = 0
intX = 5
‘ First Required Error Statement.
Try

‘ Cause a “Divide by Zero”
intZ = CType((intX \ intY), Integer)

‘ Catch the error.
Catch objA As System.DivideByZeroException

Try
Throw (New Exception(“0 as divisor”, objA))

Catch objB As Exception
Try

Throw (New Exception(“New error”, objB))
Catch objC As Exception

Messagebox.Show(objC.GetBaseException.Message)
End Try

End Try

Finally
Messagebox.Show(Str(intZ))

End Try
End Sub

The InnerException property provides the information that the GetBaseException method needs,
so as your example executes the Throw statements, it sets up the InnerException property. The
purpose of the GetBaseException method is to provide the properties of the initial exception in the
chain that was produced. Hence, objC.GetBaseException.Message returns the Message property
of the original OverflowException message even though you’ve thrown multiple errors since the
original error occurred:

Messagebox.Show(objC.GetBaseException.Message)

To put it another way, the code traverses back to the exception caught as objA and displays the same
message as the objA.Message property would, as shown in Figure 10-7.

Figure 10-7

327

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 327

HelpLink
The HelpLink property gets or sets the help link for a specific Exception object. It can be set to any
string value, but is typically set to a URL. If you create your own exception in code, you might want to
set HelpLink to some URL describing the error in more detail. Then the code that catches the exception
can go to that link. You could create and throw your own custom application exception with code like
the following:

Dim exc As New ApplicationException(“A short description of the problem”)
exc.HelpLink = “http://mysite.com/somehtmlfile.htm”
Throw exc

When trapping an exception, the HelpLink can be used to launch a viewer so that the user can see the
details about the problem. The following example shows this in action, using the built-in Explorer in
Windows:

Sub HandlerExample4()
Try

Dim exc As New ApplicationException(“A short description of the problem”)
exc.HelpLink = “http:// mysite.com/somehtmlfile.htm “
Throw exc

‘ Catch the error.
Catch objA As System.Exception

Shell(“explorer.exe “ & objA.HelpLink)

End Try
End Sub

This results in launching Internet Explorer to show the page specified by the URL.

Most exceptions thrown by the CLR or the .NET Framework’s classes have a blank HelpLink property.
You should only count on using HelpLink if you have previously set it to a URL (or some other type of
link information) yourself.

Interoperability with VB6-Style
Error Handling

Since VB.NET still supports the older On Error statement, it is possible that you will be using code that
handles errors that way instead of the structured exception handling. It is possible to use both techniques
in a single program. However, it is not possible to use both forms in a single routine. If you attempt to use
both On Error and Try . . . Catch in a single routine, you will get a syntax error.

However, the VB compiler allows the two techniques for handling errors to communicate with one another.
For example, suppose that you have a routine that uses On Error and then uses Err.Raise to promote the
error to the calling code. Also suppose that the calling code makes the call in a Try . . . Catch block. In
that case, the error created by Err.Raise becomes an exception in the calling code and is trapped by a
Catch block just as a normal exception would be. Here’s a code example to illustrate.

328

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 328

First, create a subroutine that creates an error with Err.Raise, like this:

Private Sub RaiseErrorWithErrRaise()
Err.Raise(53) ‘ indicates File Not Found

End Sub

Then call this routine from a button’s click event, with the call inside a Try . . . Catch block, like this:

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click
Trºy

RaiseErrorWithErrRaise()
Catch ex As Exception

MessageBox.Show(ex.Message)
End Try

End Sub

When the button is clicked, it will display a message box with File Not Found. Even though the File
Not Found error was raised by Err.Raise, it was translated to a .NET exception automatically.

Similarly, exceptions that are generated by a Throw statement in a called routine can be trapped by On
Error in a calling routine. The exception is then translated into an Err object that works like the VB6
Err object.

Error Logging
Error logging is important in many applications for thorough troubleshooting. It is common for end
users of the applications to not remember what the error said exactly. Recording specific errors in a
log allows you to get the specific error message without recreating the error.

While error logging is very important, you only want to use it to trap specific levels of errors because it
carries overhead and can reduce the performance of your application. You want to only log errors that
will be critical to your application integrity — for instance, an error that would cause the data that the
application is working with to become invalid.

There are three main approaches to error logging:

❑ Write error information in a text file or flat file located in a strategic location.

❑ Write error information to a central database.

❑ Write error information to the Event Log that is available on the Windows OS (NT, 2000, XP, and
2003). The .NET Framework includes a component that can be used to write and read from the
System, Application, and Security Logs on any given machine.

The type of logging you choose depends on the categories of errors you wish to trap and the types of
machines you will run your application on. If you choose to write to the event log, you need to categorize
the errors and write them in the appropriate log file. Resource-, hardware-, and system-level errors fit best
into the System Event Log. Data access errors fit best into the Application Event Log. Permission errors fit
best into the Security Event Log.

329

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 329

The Event Log
There are three Event Logs available: the System, Application, and Security Logs. Events in these logs
can be viewed using the Event Viewer, which is accessed from the Control Panel. Access Administrative
Tools and then select the Event Viewer subsection to view events. Typically, your applications would
use the Application event log.

Event logging is available in your program through an Event Log component. It can both read and write
to all of the available logs on a machine. The EventLog component is part of the System.Diagnostics
namespace. The component allows adding and removing custom Event Logs, reading and writing to
and from the standard Windows Event Logs, and creating customized Event Log entries.

Event Logs can get full, as they have a limited amount of space, so you only want to write critical
information to your Event Logs. You can customize each of your system Event Log’s properties by
changing the log size and determining how the system will handle events that occur when the log is
full. You can configure the log to overwrite data when it is full or overwrite all events older than a given
number of days. It is important to remember that the Event Log that is written to is based on where the
code is running from, so that if there are many tiers, you can locate the proper Event Log information to
research the error further.

There are five types of Event Log entries you can make. These five types are divided into event type
entries and audit type entries.

Event type entries are:

❑ Information — Added when events such as a service starting or stopping occurs

❑ Warning — Occurs when a noncritical event occurs that might cause future problems, such as
disk space getting low

❑ Error — Should be logged when something occurs that will prevent normal processing, such as
a startup service not being able to start

Audit type entries will usually go into the Security Log and can be either:

❑ Success audit — For example, a success audit might be a successful login through an applica-
tion to an SQL Server

❑ Failure audit — A failure audit might come in handy if a user doesn’t have access to create an
output file on a certain file system

Event logs are not available on Windows 98 or Windows ME, even though .NET
supports these systems. If you expect to support these operating systems on client
machines, you will not be able to use the built-in Event Log classes shown here.
Logging on these systems will require building your own custom log. You may want
your logging component to check the OS version and decide whether to log to an
Event Log or a custom log.

330

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 330

If you don’t specify the type of Event Log entry, an information type entry is generated.

Each entry in an Event Log has a Source property. The Source property is required and is a
programmer-defined string that is assigned to an event that helps categorize the events in a log. A new
Source must be defined prior to being used in an entry in an Event Log. The SourceExists method is
used to determine if a particular source already exists on the given computer. We recommend that you
use a string that is relevant to where the error originated, such as the component name. Packaged
software often uses the software name as the Source in the Application Log. This helps group errors
that occur by specific software package.

The EventLog component is in the System.Diagnostics namespace. To use it conveniently, you need
to include an Imports System.Diagnostics statement in the declarations section of your code.

The most common events, methods, and properties for the EventLog component are listed and
described in the following tables.

Events, Methods, and Properties
The following table describes the relevant event.

Event Description

EntryWritten Generated when an event is written to a log

The following table describes the relevant methods.

Methods Description

CreateEventSource Creates an event source in the specified log

DeleteEventSource Deletes an event source and associated entries

WriteEntry Writes a string to a specified log

Exists Can be used to determine if a specific event log exists

SourceExists Used to determine if a specific source exists in a log

GetEventLogs Retrieves a list of all event logs on a particular computer

Delete Deletes an entire Event Log — use this method with care

Certain security rights must be obtained in order to manipulate Event Logs.
Ordinary programs can read all of the Event Logs and write to the Application Event
Log. Special privileges, on the administrator level, are required to perform tasks
such as clearing and deleting Event Logs. Your application should not normally
need to do these tasks, or to write to any log besides the Application Event Log.

331

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 331

The following table describes the relevant properties.

Properties Description

Source Specifies the source of the entry to be written.

Log Used to specify a log to write to. The three logs are System,
Application, and Security. The System Log is the default if
not specified.

Here is an example that illustrates some of these methods and properties:

Sub LoggingExample1()
Dim objLog As New EventLog()
Dim objLogEntryType As EventLogEntryType
Try

Throw (New EntryPointNotFoundException())
Catch objA As System.EntryPointNotFoundException

If Not objLog.SourceExists(“Example”) Then
objLog.CreateEventSource(“Example”, “System”)

End If
objLog.Source = “Example”
objLog.Log = “System”
objLogEntryType = EventLogEntryType.Information
objLog.WriteEntry(“Error: “ & objA.Message, objLogEntryType)

End Try
End Sub

You have declared two variables — one to instantiate your log and one to hold your entry’s type
information. Note that you need to check for the existence of a source prior to creating it. These two lines
of code accomplish this:

If Not objLog.SourceExists(“Example”) Then
objLog.CreateEventSource(“Example”, “System”)

Once you have verified or created your source, you can set the Source property of the EventLog
object, set the Log property to specify which log you want to write to, and EventLogEntryType to
Information (other choices are Warning, Error, SuccessAudit, and FailureAudit). If you attempt to
write to a source that does not exist in a specific log, you will get an error. After you have set these three
properties of the EventLog object, you can then write your entry. In this example, you concatenated the
word Error with the actual exception’s Message property to form the string to write to the log:

objLog.Source = “Example”
objLog.Log = “System”
objLogEntryType = EventLogEntryType.Information
objLog.WriteEntry(“Error: “ & objA.Message, objLogEntryType)

332

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 332

Writing to Trace Files
As an alternative for platforms that don’t support event logging, or if you can’t get direct access to the
Event Log, you can write your debugging and error information to trace files. A trace file is a text-based
file that you generate in your program to track detailed information about an error condition. Trace files
are also a good way to supplement your event logging if you wish to track detailed information that
would potentially fill the Event Log.

A more detailed explanation of the variety of trace tools and uses in debugging follows in “Analyzing
Problems and Measuring Performance via the Trace Class,” but you will cover some of the techniques
for using the StreamWriter interface in your development of a trace file in this section.

The concepts involved in writing to text files include setting up streamwriters and debug listeners. The
StreamWriter interface is handled through the System.IO namespace and allows you to interface
with the files in the file system on a given machine. The Debug class interfaces with these output objects
through listener objects. The job of any listener object is to collect, store up, and send the stored output to
text files, logs, and the Output window. In your example, you will use the TextWriterTraceListener
interface.

As you will see, the StreamWriter object opens an output path to a text file, and by binding the
StreamWriter object to a listener object you can direct debug output to a text file.

Trace listeners are output targets and can be a TextWriter or an EventLog, or can send output to
the default Output window (which is DefaultTraceListener). The TextWriterTraceListener
accommodates the WriteLine method of a Debug interface by providing an output object that stores
up information to be flushed to the output stream, which you set up by the StreamWriter interface.

The following table lists some of the commonly used methods from the StreamWriter object.

Method Description

Close Closes the StreamWriter.

Flush Flushes all content of the StreamWriter to the output file
designated upon creation of the StreamWriter.

Write Writes byte output to the stream. Optional parameters allow
designation of where in the stream (offset).

WriteLine Writes characters followed by a line terminator to the current
stream object.

The following table lists some of the methods associated with the Debug object, which provides the output
mechanism for your text file example to follow.

The following example shows how you can open an existing file (called mytext.txt) for output
and assign it to the Listeners object of the Debug object so that it can catch your Debug.WriteLine
statements.

333

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 333

Method Description

Assert Checks a condition and displays a message if False

Close Executes a flush on the output buffer and closes all listeners

Fail Emits an error message in the form of an Abort/Retry/
Ignore message box

Flush Flushes the output buffer and writes it to the listeners

Write Writes bytes to the output buffer

WriteLine Writes characters followed by a line terminator to the output
buffer

WriteIf Writes bytes to the output buffer if a specific condition is
True

WriteLineIF Writes characters followed by a line terminator to the output
buffer if a specific condition is True

Sub LoggingExample2()
Dim objWriter As New _

IO.StreamWriter(“C:\mytext.txt”, True)
Debug.Listeners.Add(New TextWriterTraceListener(objWriter))

Try
Throw (New EntryPointNotFoundException())

Catch objA As System.EntryPointNotFoundException
Debug.WriteLine(objA.Message)
objWriter.Flush()
objWriter.Close()
objWriter = Nothing

End Try
End Sub

Looking in detail at this code, you first create a StreamWriter that is assigned to a file in your local file
system:

Dim objWriter As New _
IO.StreamWriter(“C:\mytext.txt”, True)

You then assign your StreamWriter to a debug listener by using the Add method:

Debug.Listeners.Add(New TextWriterTraceListener (objWriter))

334

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 334

In this example, you force an exception and catch it, writing the Message property of the Exception
object (which is Entry point was not found.) to the debug buffer through the WriteLine method:

Debug.WriteLine(objA.Message)

You finally flush the listener buffer to the output file and free your resources.

objWriter.Flush()
objWriter.Close()
objWriter = Nothing

Analyzing Problems and Measuring
Performance via the Trace Class

The trace tools in the .NET Framework revolve around the Trace class, which provides properties and
methods that help you trace the execution of your code. By default, tracing is enabled in VB.NET, so not
unlike your previous debug discussion, all you have to do is set up the output and utilize its capabilities.

You can specify the detail level you want to perform for your tracing output by configuring trace switches.
You will show an example of setting a trace switch shortly, but first you need to cover what a trace switch
can do and what the settings for trace switches mean.

Trace switches can be either BooleanSwitch or TraceSwitch. BooleanSwitch has a value of either 0 or
1 and is used to determine if tracing is off or on, respectively, while TraceSwitch allows you to specify a
level of tracing based on five enumerated values. You can manage a BooleanSwitch or TraceSwitch as
an environment variable. Once a switch is established, you can create and initialize it in code and use it
with either trace or debug.

A TraceSwitch can have five enumerated levels that can be read as 0–4 or checked with four properties
provided in the switch class interface. The four properties return a Boolean value based on whether the
switch is set to a certain level or higher. The five enumerated levels for TraceSwitch are as follows.

Level Description

0 None

1 Only error messages

2 Warning and error messages

3 Information, warning, and error messages

4 Verbose, information, warning, and error messages

335

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 335

The four properties are TraceError, TraceWarning, TraceInfo, and TraceVerbose. For example, if
your switch was set at number 2 and you asked for the TraceError or TraceWarning properties, they
would return True, while the TraceInformation and TraceVerbose properties would return False.

An environment variable is either managed via the command line or under My computer ➪ Properties ➪

Advanced within the Environment Variables button.

Within the Environment Variables button, you add a new User variable, giving it the SwitchName and
Value for that switch.

From the command line, type

Set _Switch_MySwitch = 0

The value on the left of the = symbol is the name of the switch, and the value on its right is either 0 or 1
for a BooleanSwitch or 0–4 for a TraceSwitch. Note that there is a space between the word Set and
the leading underscore of _Switch. Once you have typed this line, if you follow that by the plain SET
command at the command line, it will show your new switch as an environment variable, as shown in
Figure 10-8.

Figure 10-8

For the example that follows, you have the output directed to the default Output window:

Sub TraceExample1()
Dim objTraceSwitch As TraceSwitch
objTraceSwitch = New TraceSwitch(“ExampleSwitch”, “Test Trace Switch”)
objTraceSwitch.Level = TraceLevel.Error
Try

Throw (New EntryPointNotFoundException())
Catch objA As System.EntryPointNotFoundException

Trace.WriteLineIf(objTraceSwitch.TraceVerbose, _
“First Trace “ & objA.Source)

Trace.WriteLineIf(objTraceSwitch.TraceError, _
“Second Trace “ & objA.Message)

End Try
End Sub

336

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 336

You begin by assigning your switch to an existing registry entry and setting its level:

objTraceSwitch = New TraceSwitch(“ExampleSwitch”, “Test Trace Switch”)
objTraceSwitch.Level = TraceLevel.Error

After you throw your exception, you first cause your trace output listener to catch the Source property
of your Exception object based on whether the value of your switch is TraceVerbose or better:

Trace.WriteLineIf(objTraceSwitch.TraceVerbose, _
“First Trace “ & objA.Source)

Since the tracing level is set to Error, this line is skipped and you continue by writing a trace to the
Output window to include the message information if the level is set to Error:

Trace.WriteLineIf(objTraceSwitch.TraceError, _
“Second Trace “ & objA.Message)

As you can see in your Output window shown, you successfully wrote only the second trace line based
on the level being Error on your trace switch, as can be seen in Figure 10-9.

Figure 10-9

The other thing you want the ability to do is to determine the performance of your application. Overall,
your application might appear to be working fine, but it is always a good thing to be able to measure
the performance of your application so that environment changes or degradation over time can be
counteracted. The basic concept here is to use conditional compilation so that you can turn on and
off your performance-measuring code:

Sub TraceExample2()
Dim connInfo As New Connection()
Dim rstInfo As New Recordset()
#Const bTrace = 1
Dim objWriter As New _

IO.StreamWriter(IO.File.Open(“c:\mytext.txt”, IO.FileMode.OpenOrCreate))
connInfo.ConnectionString = “Provider = sqloledb.1” & _

“;Persist Security Info = False;” & “Initial Catalog = Northwind;” & _
“DataSource = LocalServer”

connInfo.Open(connInfo.ConnectionString, “sa”)
Trace.Listeners.Add(New TextWriterTraceListener(objWriter))
#If bTrace Then

Trace.WriteLine(“Begun db query at “ & now())
#End If
rstInfo.Open(“SELECT CompanyName, OrderID, “ & _

337

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 337

“OrderDate FROM Orders AS a LEFT JOIN Customers” & _
“ AS b ON a.CustomerID = b.CustomerID WHERE “ & _
“a.CustomerID = ‘Chops’”, connInfo, _
CursorTypeEnum.adOpenForwardOnly, _
LockTypeEnum.adLockBatchOptimistic)

#If bTrace Then

Trace.WriteLine(“Ended db query at “ & now())
#End If
Trace.Listeners.Clear()
objWriter.Close()
rstInfo.Close()
connInfo.Close()
rstInfo = Nothing
connInfo = Nothing

In this simple example, you are trying to measure the performance of a database query using a conditional
constant defined as bTrace by the following code:

#Const bTrace = 1

You establish your database connection strings, then right before you execute your query you write to a
log file based on whether you are in tracing mode or not:

#If bTrace Then
Trace.WriteLine(“Begun db query at “ & now())

#End If

Again, after your query returns you’ll write to your log only if you are in tracing mode:

#If bTrace Then
Trace.WriteLine(“Ended db query at” & now())

#End If

It is always important to remember that tracing will potentially slow the application down, so you want
to use this functionality only when troubleshooting and not let it run all the time.

Summary
As mentioned in Chapter 1, a major weakness of pre-.NET versions of Visual Basic was limited
error-handling capabilities. As you’ve seen in this chapter, this problem has been thoroughly addressed.
Errors and unexpected conditions are now packaged as exceptions, and these exception objects have
special syntax to detect and manage them. The Try . . . Catch . . . Finally . . . End Try construct
brings VB.NET’s error-handling capabilities on par with other advanced languages.

End SubThis subroutine uses ADO, so be sure to add a reference to an ADO library
and an Imports ADODB statement in the declarations section of the module.

338

Chapter 10

13_575368 ch10.qxd 10/7/05 11:02 PM Page 338

In this chapter, we reviewed the exception object and all the syntax that is available to work with
exceptions. We’ve looked at the various properties of exceptions and discussed how to use the
exposed information. We’ve also covered how to promote exceptions to consuming code using the
Throw statement, and how structured exception handling interoperates with old-style On Error.

As discussed, any new code you write should use the new exception-handling capabilities of .NET.
Avoid using the old-style On Error except for maintenance tasks in old code.

We also covered some other topics related to error handling, such as:

❑ Error logging to Event Logs and trace files

❑ Instrumentation and measuring performance

❑ Tracing techniques

Using the full capabilities for error handling that are now available in VB.NET can make the
applications more reliable and help diagnose problems faster when they do occur. Proper use of
tracing and instrumentation can also help you tune your application for better performance.

339

Exception Handling and Debugging

13_575368 ch10.qxd 10/7/05 11:02 PM Page 339

13_575368 ch10.qxd 10/7/05 11:02 PM Page 340

Data Access with
ADO.NET 2.0

ADO.NET 1.x was the successor to ActiveX Data Objects 2.6 (ADO). The main goal of ADO.NET
1.x was to allow developers to easily create distributed, data sharing applications in the
.NET Framework. The main goals of ADO.NET 2.0 are to improve the performance of existing
features in ADO.NET 1.x, to be easier to use, and to add new features with out breaking backward
compatibility.

Throughout this chapter, when ADO.NET is mentioned without a version number after it (that
is, 1.x or 2.0), this means that the statement applies to all versions of ADO.NET.

ADO.NET 1.x was built upon industry standards such as XML, and it provided a data access
interface to communicate with data sources such as SQL Server and Oracle. ADO.NET 2.0 builds
upon these concepts, while increasing performance. Applications can use ADO.NET to connect to
these data sources and retrieve, manipulate, and update data. ADO.NET 2.0 does not break any
compatibility with ADO.NET 1.x, it only adds to the stack of functionality.

In solutions that require disconnected or remote access to data, ADO.NET 2.0 uses XML to exchange
data between programs or with Web pages. Any component that can read XML can make use
of ADO.NET components. A receiving component does not even have to be an ADO.NET
component if a transmitting ADO.NET component packages and delivers a data set in an XML for-
mat. Transmitting information in XML-formatted data sets enables programmers to easily separate
the data-processing and user interface components of a data-sharing application onto separate
servers. This can greatly improve both the performance and maintainability of systems that support
many users.

For distributed applications, ADO.NET 1.x proved that the use of XML data sets provided
performance advantages relative to the COM marshaling used to transmit disconnected data sets
in ADO. Since transmission of data sets occurred through XML streams in a simple text-based
standard accepted throughout the industry, receiving components did not have to have any of the
architectural restrictions required by COM. XML data sets used in ADO.NET 1.x also avoided the

14_575368 ch11.qxd 10/7/05 11:01 PM Page 341

processing cost of converting values in the Fields collection of a Recordset to data types recognized by
COM. Virtually, any two components from different systems can share XML data sets provided that they
both use the same XML schema for formatting the data set. This continues to be true in ADO.NET 2.0,
but the story gets better. The XML integration in ADO.NET 2.0 is even stronger now, and extensive work
was done to improve the performance of the DataSet object, particularly in the areas of serialization and
memory usage.

ADO.NET also supports the scalability required by Web-based data-sharing applications. Web applications
must often serve hundreds, or even thousands, of users. By default, ADO.NET does not retain lengthy
database locks or active connections that monopolize limited resources. This allows the number of users to
grow with only a small increase in the demands made on the resources of a system.

In this chapter, we will see that ADO.NET 2.0 is a very extensive and flexible API for accessing many
types of data. And since ADO.NET 2.0 is an incremental change to ADO.NET 1.x, all previous ADO.NET
knowledge that was learned can be leveraged. In fact, to get the most out of this chapter you should be
fairly familiar with ADO.NET 1.x and also the entire .NET Framework 1.x.

In this chapter, we will understand how to use the ADO.NET 2.0 object model in order to build flexible,
fast, scalable data access objects and applications. Specifically, we will focus on:

❑ The ADO.NET 2.0 architecture

❑ Some of the new features offered in ADO.NET 2.0, specifically batch updates, DataSet
performance improvements, and asynchronous processing

❑ Working with the Common Provider Model

❑ Building a data access component

ADO.NET 2.0 Architecture Enhancements
The main design goals of ADO.NET 2.0 are the following:

❑ To add many new customer-driven features yet still remain backward compatible with
ADO.NET 1.x

❑ Improve upon performance of ADO.NET 1.x

❑ Provide more power for power users

❑ Take advantage of new SQL Server 2005 features

In distributed applications, the concept of working with disconnected data is very common. A discon-
nected model means that once you have retrieved the data that you need, the connection to the data
source is dropped — you work with the data locally. The reason why this model is so popular is that it
frees up precious database server resources, which leads to highly scalable applications. The ADO.NET
solution for disconnected data is the DataSet object.

342

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 342

ADO.NET Components
To better support the disconnected model, the ADO.NET components separate data access from data
manipulation. This is accomplished via two main components, the DataSet and the .NET Data
Provider. Figure 11-1 illustrates the concept of separating data access from data manipulation.

Figure 11-1

The DataSet is the core component of the disconnected architecture of ADO.NET. The DataSet is
explicitly designed for data access independent of any data source. As a result, it can be used with
multiple and differing data sources, with XML data, or even to manage data local to an application such
as an in-memory data cache. The DataSet contains a collection of one or more DataTable objects made
up of rows and columns of data, as well as primary key, foreign key, constraint, and relation information
about the data in the DataTable objects. It is basically an in-memory database, but the cool thing is that
it does not care whether its data is obtained from a database, an XML file, a combination of the two, or
somewhere else. You can apply inserts, updates, and deletes to the DataSet and then push the changes
back to the data source, no matter where the data source lives! We will take a more in-depth look at the
DataSet object family and its ADO.NET 2.0 enhancements later in this chapter.

The other core element of the ADO.NET architecture is the .NET Data Provider, whose components
are designed for data manipulation (as opposed to data access with the DataSet). These components are
listed in the following table.

The DataAdapter uses Command objects to execute SQL commands at the data source to both load the
DataSet with data, and also to reconcile changes made to the data in the DataSet with the data source.
We will take a closer look at this later when we cover the DataAdapter object in more detail.

.NET Framework Data Provider

Database

Connection

Transaction

DataSet

DataTableCollection

DataTable

DataAdapter

SelectCommand

InsertCommand DataRowCollection

DataColumnCollection

DataRelationCollection

ConstraintCollection

UpdateCommand

DeleteCommand

Command

Parameters

DataReader

XML

343

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 343

.NET Data Providers can be written for any data source, though this is beyond the scope of this chapter.

Object Activity

Connection Provides connectivity to a data source

Command Enables access to database commands to return and modify
data, run stored procedures, and send or retrieve parameter
information

DataReader Provides a high-performance, read-only stream of data from
the data source

DataAdapter Provides the bridge between the DataSet object and the
data source

The .NET Framework 2.0 ships with three .NET Data Providers: The SQL Server .NET Data Provider,
The Oracle .NET Data Provider, and the OLE DB .NET Data Provider.

Do not confuse the OLE DB .NET Data Provider with generic OLE DB providers.

The rule of thumb when deciding which data provider to use is to first use a .NET Relational Database
Management System (RDBMS)–specific data provider if it is available, and to use the .NET OLE DB
Provider when connecting to any other data source. So, if you were writing an application that was
using SQL Server, then you would want to use the SQL Server .NET Data Provider. The .NET OLE DB
Provider is used to access any data source that is exposed through OLE DB, such as Microsoft Access,
Open DataBase Connectivity (ODBC), and so on. We will be taking a closer look at these later on.

.NET Data Providers
.NET Data Providers are used for connecting to a RDBMS-specific database (such as SQL Server
or Oracle), executing commands, and retrieving results. Those results are either processed directly
(via a DataReader), or placed in an ADO.NET DataSet (via a DataAdapter) in order to be exposed to
the user in an ad hoc manner, combined with data from multiple sources, or passed around between
tiers. .NET Data Providers are designed to be lightweight, to create a minimal layer between the data
source and the .NET programmer’s code, and to increase performance while not sacrificing any
functionality. Currently, the .NET Framework supports three data providers: the SQL Server .NET Data
Provider (for Microsoft SQL Server 7.0 or later), the Oracle .NET Data Provider, and the OLE DB .NET
Data Provider. Most RDBMS vendors are now producing their own .NET Data Providers in order to
encourage .NET developers to use their databases.

Connection Object
To connect to a specific data source, we use a data Connection object. To connect to Microsoft SQL
Server 7.0 or later, we need to use the SqlConnection object of the SQL Server .NET Data Provider. We
need to use the OleDbConnection object of the OLE DB .NET Data Provider to connect to an OLE DB
data source, or the OLE DB Provider for SQL Server (SQLOLEDB) to connect to versions of Microsoft
SQL Server earlier than 7.0.

344

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 344

Connection String Format — OleDbConnection
For the OLE DB .NET Data Provider, the connection string format is identical to the connection string
format used in ADO with the following exceptions:

❑ The Provider keyword is required.

❑ The URL, Remote Provider, and Remote Server keywords are not supported.

Here is an example OleDbConnection connection string connecting to an Oracle database (note this is
all one line):

Provider=msdaora;Data Source=MyOracleDB;User Id=myUsername;Password=myPassword;

Connection String Format — SqlConnection
The SQL Server .NET Data Provider supports a connection string format that is similar to the OLE DB
(ADO) connection string format. The only thing that you need to leave off, obviously, is the provider
name-value pair, since we know we are using the SQL Server .NET Data Provider. Here is an example of
a SqlConnection connection string:

data source=(local);initial catalog=pubs;Integrated Security=SSPI;

Command Object
After establishing a connection, you can execute commands and return results from a data source (such as
SQL Server) using a Command object. A Command object can be created using the Command constructor, or
by calling the CreateCommand method of the Connection object. When creating a Command object using
the Command constructor, you need to specify a SQL statement to execute at the data source, and a
Connection object. The Command object’s SQL statement can be queried and modified using the
CommandText property. The following code is an example of executing a SELECT command and returning
a DataReader object:

‘ Build the SQL and Connection strings.
Dim sql As String = “SELECT * FROM authors”
Dim connectionString As String = “Initial Catalog=pubs;” _
& “Data Source=(local);Integrated Security=SSPI;”

‘ Initialize the SqlCommand with the SQL
‘ and Connection strings.
Dim command As SqlCommand = New SqlCommand(sql, _

New SqlConnection(connectionString))
‘ Open the connection.
command.Connection.Open()
‘ Execute the query, return a SqlDataReader object.
‘ CommandBehavior.CloseConnection flags the
‘ DataReader to automatically close the DB connection
‘ when it is closed.
Dim dataReader As SqlDataReader = _

command.ExecuteReader(CommandBehavior.CloseConnection)

The CommandText property of the Command object will execute all SQL statements in addition to the
standard SELECT, UPDATE, INSERT, and DELETE statements. For example, you could create tables,
foreign keys, primary keys, and so on, by executing the applicable SQL from the Command object.

345

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 345

The Command object exposes several Execute methods to perform the intended action. When returning
results as a stream of data, ExecuteReader is used to return a DataReader object. ExecuteScalar is
used to return a singleton value. In ADO.NET 2.0, the ExecuteRow method has been added which returns
a single row of data in the form of a SqlRecord object. ExecuteNonQuery is used to execute commands
that do not return rows, which usually includes stored procedures that have output parameters and/or
return values. (We’ll talk about stored procedures in a later section.)

When using a DataAdapter with a DataSet, Command objects are used to return and modify data at the
data source through the DataAdapter object’s SelectCommand, InsertCommand, UpdateCommand, and
DeleteCommand properties.

The InsertCommand, UpdateCommand, and DeleteCommand properties must be set before the Update
method is called. We will take a closer look at this when we look at the DataAdapter object.

Using Stored Procedures with Command Objects
In this section, we’ll take a quick look at how to use stored procedures, before delving into a more complex
illustration of how we can build a reusable data access component that also uses stored procedures later in
the chapter. The motivation for using stored procedures is simple. Imagine you have this code

SELECT au_lname FROM authors WHERE au_id=’172-32-1176’

If you pass that to SQL Server using ExecuteReader on SqlCommand (or any execute method, for that
matter), what happens is that SQL Server has to compile the code before it can run it, in much the same
way that VB .NET applications have to be compiled before they can be executed. This compilation takes up
SQL Server’s time, so it’s a pretty obvious leap to deduce that if you can reduce the amount of compilation
that SQL Server has to do, database performance should be increased. (Compare the speed of execution of
a compiled application against interpreted code.)

That’s what stored procedures are all about: we create a procedure, store it in the database, and because
the procedure is known of and understood ahead of time, it can be compiled ahead of time ready for use
in our application.

Stored procedures are very easy to use, but the code to access them is sometimes (in my opinion) a little
verbose. In the next section, we’ll see some code that can make accessing stored procedures a little more
straightforward, but to make things a little clearer we’ll start by building a simple application that
demonstrates how to create and call a stored procedure.

Creating a Stored Procedure
To create a stored procedure, you can either use the tools in Visual Studio .NET, or you can use the tools in
SQL Server’s Enterprise Manager if you are using SQL Server 2000 or in SQL Server Management Studio
if you are using SQL Server 2005. (Although technically you can use a third-party tool or just create the
stored procedure in a good old-fashioned SQL script.)

Note that the DataAdapter object’s SelectCommand property must be set before the
Fill method is called.

346

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 346

For our example, we’ll build a stored procedure that returns all of the columns for a given author ID.
The SQL to do this will look like this:

SELECT
au_id, au_lname, au_fname, phone,

address, city, state, zip, contract
FROM

authors
WHERE

au_id = whatever author ID we want

The whatever author ID we want part is important. When using stored procedures, we typically have
to be able to provide parameters into the stored procedure and use them from within code. This isn’t a
book about SQL Server, so I’m only going to show you in principle how to do this. There are many
resources on the Web about building stored procedures (they’ve been around a very long time, and
they’re most definitely not a .NET-specific feature).

Variables in SQL Server are prefixed by the @ symbol. So, if we have a variable called au_id, our SQL
will look like this:

SELECT
au_id, au_lname, au_fname, phone,
address, city, state, zip, contract

FROM
authors

WHERE
au_id = @au_id

In Visual Studio 2005, stored procedures can be accessed using the Server Explorer. Simply add a new
data connection (or use an existing data connection), and then drill down into the Stored Procedures
folder in the management tree. In this screenshot, you’ll see a number of stored procedures already
loaded. The byroyalty procedure is a stored procedure provided by the pubs database developers.
Figure 11-2 illustrates the stored procedures of the pubs database in Visual Studio 2005.

Figure 11-2

347

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 347

To create a new stored procedure, just right-click the Stored Procedures folder in the Server Explorer and
select Add New Stored Procedure. This will then display the Editor window.

A stored procedure can be either a single SQL statement, or a complex set of statements. T-SQL supports
branches, loops, and other variable declarations, which can make for some pretty complex stored
procedure code. However, our stored procedure is just a single line of SQL. We need to declare the
parameter that we want to pass in (@au_id), and the name of the procedure: usp_authors_Get_By_ID.
Here’s code for the stored procedure:

CREATE PROCEDURE usp_authors_Get_By_ID
@au_id varchar(11)

AS
SELECT

au_id, au_lname, au_fname, phone,
address, city, state, zip, contract

FROM
authors

WHERE
au_id = @au_id

Click OK to save the stored procedure in the database. We’re now able to access this stored procedure
from code.

Calling the Stored Procedure
Calling the stored procedure is just an issue of creating a SqlConnection object to connect to the
database and a SqlCommand object to run the stored procedure.

In the sample code for this chapter, you will see a solution called Examples.sln, and in it there will be a
project called AdoNetFeaturesTest.

For all of the data access examples in this chapter, you will need the pubs database, which can be down-
loaded from MSDN. Also, make sure to run the examples.sql file — available with the code down-
load for this chapter — in SQL Server 2005 Management Studio before running the code examples. This
will create the necessary stored procedures and function in the pubs database.

Now you have to decide what you want to return out of calling the stored procedure. In this case you
will return an instance of the SqlDataReader object. In the TestForm.vb file, there is a method called
GetAuthorSqlReader that takes an author ID and returns an instance of a SqlDataReader. Here is the
code for this method:

Private Function GetAuthorSqlReader(ByVal authorId As String) As SqlDataReader
‘ Build a SqlCommand
Dim command As SqlCommand = New SqlCommand(“usp_authors_Get_By_ID”, _

GetPubsConnection())
‘ Tell the command we are calling a stored procedure
command.CommandType = CommandType.StoredProcedure
‘ Add the @au_id parameter information to the command
command.Parameters.Add(New SqlParameter(“@au_id”, authorId))
‘ The reader requires an open connection
command.Connection.Open()
‘ Execute the sql and return the reader
Return command.ExecuteReader(CommandBehavior.CloseConnection)

End Function

348

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 348

Notice that in the SqlCommand’s constructor call we have factored out creating a connection to the pubs
database into a separate helper method. This will be used later in other code examples in your form.

Here is the code for the GetPubsConnection helper method:

Private Function GetPubsConnection() As SqlConnection
‘ Build a SqlConnection based on the config value.
Return New _

SqlConnection(ConfigurationSettings.AppSettings(“dbConnectionString”))
End Function

The most significant thing this code does is to grab a connection string to the database from the
application’s configuration file, the app.config file. Here is what the entry in the app.config file
looks like:

<appSettings>
<add key=”dbConnectionString” value=”data source=(local);initial

catalog=pubs;Integrated Security=SSPI;” />
</appSettings>

Although the helper method does not do much, it is nice to place this code in a separate method. This
way, if the code to get a connection to the databases needs to be changed, the code will only have to be
changed in one place.

Accessing a stored procedure is more verbose (but not more difficult) than accessing a normal SQL
statement through the methods discussed thus far. The approach is:

❑ Create a SqlCommand object

❑ Configure it to access a stored procedure by setting the CommandType property

❑ Add parameters that exactly match those in the stored procedure itself

❑ Execute the stored procedure using one of the SqlCommand’s Execute*** methods

There’s no real need to build an impressive UI for this application, since we’re about to move on to a far
more interesting discussion. I have simply added a Button named getAuthorByIdButton that calls the
GetAuthorSqlRecord helper method and display’s the selected author’s name. Here is the Button’s
Click event handler:

Private Sub _getAuthorByIdButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _getAuthorByIdButton.Click
Dim reader As SqlDataReader = Me. GetAuthorSqlReader (“409-56-7008”)
If reader.Read()

MsgBox(reader(“au_fname”).ToString() & “ “ _
& reader(“au_lname”).ToString())

End If

reader.Close()
End Sub

349

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 349

Here I’ve hard-coded an author ID of 409-56-7008. Run the code now and you should see the result
shown in Figure 11-3.

Figure 11-3

DataReader Object
You can use the DataReader to retrieve a read-only, forward-only stream of data from the database.
Using the DataReader can increase application performance and reduce system overhead because only
one buffered row at a time is ever in memory. With the DataReader object, you are getting as close to the
raw data as possible in ADO.NET; you do not have to go through the overhead of populating a DataSet
object, which sometimes may be expensive if the DataSet contains a lot of data. The disadvantage of
using a DataReader object is that it requires an open database connection and increases network activity.

After creating an instance of the Command object, a DataReader is created by calling the ExecuteReader
method of the Command object. Here is an example of creating a DataReader and iterating through it to
print out its values to the screen:

Private Sub TraverseDataReader()

‘ Build the SQL and Connection strings.
Dim sql As String = “SELECT * FROM authors”
Dim connectionString As String = “Initial Catalog=pubs;” _

& “Data Source=(local);Integrated Security=SSPI;”

‘ Initialize the SqlCommand with the SQL query and connection strings.
Dim command As SqlCommand = New SqlCommand(sql, _

New SqlConnection(connectionString))
‘ Open the connection.

350

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 350

command.Connection.Open()
‘ Execute the query, return a SqlDataReader object.
‘ CommandBehavior.CloseConnection flags the
‘ DataReader to automatically close the DB connection
‘ when it is closed.
Dim reader As SqlDataReader = _

command.ExecuteReader(CommandBehavior.CloseConnection)
‘ Loop through the records and print the values.
Do While reader.Read

Console.WriteLine(reader.GetString(1) & “ “ & reader.GetString(2))
Loop
‘ Close the DataReader (and its connection).
reader.Close()

End Sub

In this code snippet, we use the SqlCommand object to execute the query via the ExecuteReader
method. This method returns a populated SqlDataReader object to us, and then we loop hrough it
and print out the author names. The main difference with this code compared to looping through the
rows of a DataTable is that we have to stay connected while we loop through the data in the
DataReader object; this is so because the DataReader reads in only a small stream of data at a time
to conserve memory space.

At this point an obvious design question is whether to use the DataReader or the DataSet. The
answer to this question really depends upon performance. If you want high performance, and you are
only going to access the data that you are retrieving once, then the DataReader is the way to go. If you
need access to the same data multiple times, or if you need to model a complex relationship in memory,
then the DataSet is the way to go. As always, you will need to test each option thoroughly before
deciding which one is the best.

The Read method of the DataReader object is used to obtain a row from the results of the query. Each
column of the returned row may be accessed by passing the name or ordinal reference of the column to
the DataReader, or, for best performance, the DataReader provides a series of methods that allow you
to access column values in their native data types (GetDateTime, GetDouble, GetGuid, GetInt32, and
so on). Using the typed accessor methods when the underlying data type is known will reduce the
amount of type conversion required (converting from type Object) when retrieving the column value.

The DataReader provides a nonbuffered stream of data that allows procedural logic to efficiently process
results from a data source sequentially. The DataReader is a good choice when retrieving large amounts
of data; only one row of data will be cached in memory at a time. You should always call the Close
method when you are through using the DataReader object, as well as closing the DataReader object’s
database connection; otherwise, the connection won’t be closed until the Garbage Collector gets around to
collecting the object. Note how we used the CommandBehavior.CloseConnection enumeration value on
the SqlDataReader.ExecuteReader method. This tells the SqlCommand object to automatically close the
database connection when the SqlDataReader.Close method is called.

If your command contains output parameters or return values, they will not be available until the
DataReader is closed.

351

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 351

Executing Commands Asynchronously
In ADO.NET 2.0, additional support has been to allow Command objects to execute their commands
asynchronously. This can be a huge perceived performance gain in many applications, especially in
Windows Forms applications. This can come in really handy, especially if you ever have to execute a
long-running SQL statement. We will look at how this new functionality lets us add asynchronous
processing to enhance the responsiveness of an application.

The SqlCommand object provides three different asynchronous call options, BeginExecuteReader,
BeginExecuteNonQuery, and BeginExecuteXmlReader. Each of these methods has a corresponding
“end” method, that is, EndExecuteReader, EndExecutreNonQuery, and EndExecuteXmlReader.
Since we have just finished covering the DataReader object, let’s look at an example using the
BeginExecuteReader method to execute a long-running query.

In the AdoNetFeaturesTest project, I have added a Button and an associated Click event handler to the
form that will initiate the asynchronous call to get a DataReader instance:

Private Sub _testAsyncCallButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _testAsyncCallButton.Click

‘ Build a connection for the async call to the database.
Dim connection As SqlConnection = GetPubsConnection()
connection.ConnectionString &= “Asynchronous Processing=true;”

‘ Build a command to call the stored procedure.
Dim command As New SqlCommand(“usp_Long_Running_Procedure”, connection)

‘ Set the command type to stored procedure.
command.CommandType = CommandType.StoredProcedure

‘ The reader requires an open connection.
connection.Open()

‘ Make the asynchronous call to the database.
command.BeginExecuteReader(AddressOf Me.AsyncCallback, _
command, CommandBehavior.CloseConnection)

End Sub

The first thing we do is to reuse our helper method GetPubsConnection to get a connection to the pubs
database. The next step that we do, which is very important, is to append the statement Asynchronous
Processing=true to our Connection object’s connection string. This must be set in order for ADO.NET
2.0 to make asynchronous calls to SQL Server.

After getting the connection set, we then build a SqlCommand object and initialize it to be able to execute
the usp_Long_Running_Procedure stored procedure. This procedure uses the SQL Server 2005
WAITFOR DELAY statement to create a 20 second delay before it executes the usp_Authors_Get_All
stored procedure. As you can probably guess, the usp_authors_Get_All stored procedure simply
selects all of the authors from the authors table. The delay is put in simply to demonstrate the fact
that while this stored procedure is executing, we can performs other tasks in our Windows Forms
application. Here is the SQL code for the usp_Long_Running_Procedure stored procedure:

352

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 352

CREATE PROCEDURE usp_Long_Running_Procedure
AS
SET NOCOUNT ON

WAITFOR DELAY ‘00:00:20’
EXEC usp_authors_Get_All

The last line of code in the Button’s Click event handler is the call to BeginExecuteReader.
In this call, the first thing we are passing in is a delegate method (Me.AsyncCallback) for the
System.AsyncCallback delegate type. This is how the .NET Framework will call us back once
the method is finished running asynchronously. We then pass in our initialized SqlCommand object so
that it can be executed for us, as well as the CommandBehavior value for the DataReader. In this case,
we passed in the CommandBehavior.CloseConnection value so that the connection to the database
will be closed once the DataReader has been closed. We will cover the DataReader in more detail in
the next section.

Now that we have initiated the asynchronous call, and have defined a callback for our asynchronous
call, let’s look at the actual method that is getting called back, the AsyncCallback method:

Private Sub AsyncCallback(ByVal ar As IAsyncResult)
‘ Get the command that was passed from the AsyncState of the IAsyncResult.
Dim command As SqlCommand = CType(ar.AsyncState, SqlCommand)
‘ Get the reader from the IAsyncResult.
Dim reader As SqlDataReader = command.EndExecuteReader(ar)
‘ Get a table from the reader.
Dim table As DataTable = Me.GetTableFromReader(reader, “Authors”)
‘ Call the BindGrid method on the Windows main thread, passing in the table.
Me.Invoke(New BindGridDelegate(AddressOf Me.BindGrid), _

New Object() {table})
End Sub

The first line of the code is simply getting the SqlCommand object back from the AsyncState property of
the IAsyncResult that was passed in to you. Remember, when we called BeginExecuteReader earlier
we passed in our SqlCommand object. We need it so that we can call the EndExecuteReader method
on the next line. This method gives us our SqlDataReader. On the next line, we then transform
the SqlDataReader into a DataTable (we will cover that transformation later when we talk about the
DataSet is disussed). The last line of this method is probably the most important. If we tried to just
take our DataTable and bind it to the grid, it would not work, because right now we are executing on a
thread other than the main Windows thread. There is a helper method named BindGrid to do the data
binding, but it must be called only in the context of the Windows main thread. To bring the data back to
the main Windows thread, it has to be marshaled via the Invoke method of the Form object. Invoke
takes two arguments, the delegate of the method you want to call, and optionally any parameters for
that method. In this case I have define a delegate for the BindGrid method, called BindGridDelegate.
Here is the delegate declaration:

Private Delegate Sub BindGridDelegate(ByVal table As DataTable)

353

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 353

Notice how the signature is exactly the same as the BindGrid method shown here:

Private Sub BindGrid(ByVal table As DataTable)
‘ Clear the grid.
Me._authorsGridView.DataSource = Nothing
‘ Bind the grid to the DataTable.
Me._authorsGridView.DataSource = table

End Sub

Here is another look at the call to the form’s Invoke method:

Me.Invoke(New BindGridDelegate(AddressOf Me.BindGrid), _

New Object() {table})

In the line of code, we pass in a new instance of the BindGridDelegate delegate and initialize it with a
pointer to the BindGrid method. As a result, the .NET worker thread that was executing our query can
now safely join up with the main Windows thread.

DataAdapter Objects
Each .NET Data Provider included with the .NET Framework has a DataAdapter object. The OLE DB
.NET Data Provider includes an OleDbDataAdapter object, and the SQL Server .NET Data Provider
includes a SqlDataAdapter object. A DataAdapter is used to retrieve data from a data source and
populate DataTable objects and constraints within a DataSet. The DataAdapter also resolves
changes made to the DataSet back to the data source. The DataAdapter uses the Connection object of
the .NET Data Provider to connect to a data source, and Command objects to retrieve data from, and
resolve changes to, the data source from a DataSet object. This differs from the DataReader, in that the
DataReader uses the Connection to access the data directly, without having to use a DataAdapter.
The DataAdapter essentially decouples the DataSet object from the actual source of the data, whereas
the DataReader is tightly bound to the data in a read-only fashion.

The SelectCommand property of the DataAdapter is a Command object that retrieves data from the data
source. A nice, convenient way to set the DataAdapter’s SelectCommand property is to pass in a Command
object in the DataAdapter’s constructor. The InsertCommand, UpdateCommand, and DeleteCommand
properties of the DataAdapter are Command objects that manage updates to the data in the data source
according to the modifications made to the data in the DataSet. The Fill method of the DataAdapter is
used to populate a DataSet with the results of the SelectCommand of the DataAdapter. It also adds or
refreshes rows in the DataSet to match those in the data source. In this example, the code shows how to
fill a DataSet object with information from the authors table in the pubs database:

Private Sub TraverseDataSet()
‘ Build the SQL and Connection strings.
Dim sql As String = “SELECT * FROM authors”
Dim connectionString As String = “Initial Catalog=pubs;” _

& “Data Source=(local);Integrated Security=SSPI;”

‘ Initialize the SqlDataAdapter with the SQL
‘ and Connection strings, and then use the
‘ SqlDataAdapter to fill the DataSet with data.
Dim adapter As New SqlDataAdapter(sql, connectionString)

354

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 354

Dim authors As New DataSet
adapter.Fill(authors)

‘ Iterate through the DataSet’s table.
For Each row As DataRow In authors.Tables(0).Rows

Console.WriteLine(row(“au_fname”).ToString _
& “ “ & row(“au_lname”).ToString)

Next

‘ Print the DataSet’s XML.
Console.WriteLine(authors.GetXml())
Console.ReadLine()

End Sub

Note how we use the SqlDataAdapter’s constructor to pass in and set the SelectCommand, as well as
passing in the connection string in lieu of a SqlCommand object that already has an initialized Connection
property. We then just call the SqlDataAdapter object’s Fill method and pass in an initialized DataSet
object. If the DataSet object is not initialized, the Fill method will raise an exception
(System.ArgumentNullException).

In ADO.NET 2.0, a significant performance improvement was made in the way that the DataAdapter
updates the database. In ADO.NET 1.x, the DataAdapter’s Update method would loop through each
row of every DataTable object in the DataSet and then subsequently make a trip to the database for each
row that was being updated. In ADO.NET 2.0, batch update support was added to the DataAdapter.
This means that when the Update method is called, the DataAdapter batches all of the updates from the
DataSet in one trip to the database.

Now, let’s take a look at a more advanced example in which we use a DataAdapter to insert, update,
and delete data from a DataTable back to the pubs database:

Private Sub _batchUpdateButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _batchUpdateButton.Click

‘ Build insert, update, and delete commands.

‘ Build the parameter values.
Dim insertUpdateParams() As String = {“@au_id”, “@au_lname”, “@au_fname”, _

“@phone”, “@address”, “@city”, “@state”, “@zip”, “@contract”}

This code starts out by initializing a string array of parameter names to pass into the BuildSqlCommand
helper method.

‘ Insert command.
Dim insertCommand As SqlCommand = BuildSqlCommand(“usp_authors_Insert”, _

insertUpdateParams)

355

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 355

Next,we pass the name of the stored procedure to execute and the parameters for the stored procedure
to the BuildSqlCommand helper method. This method returns an initialized instance of the
SqlCommand class. Here is the BuildSqlCommand helper method:

Private Function BuildSqlCommand(ByVal storedProcedureName As String, _
ByVal parameterNames() As String) As SqlCommand

‘ Build a SqlCommand.
Dim command As New SqlCommand(storedProcedureName, GetPubsConnection())
‘ Set the command type to stored procedure.
command.CommandType = CommandType.StoredProcedure
‘ Build the parameters for the command.
‘ See if any parameter names were passed in.
If Not parameterNames Is Nothing Then

‘ Iterate through the parameters.
Dim parameter As SqlParameter = Nothing
For Each parameterName As String In parameterNames

‘ Create a new SqlParameter.
parameter = New SqlParameter()
parameter.ParameterName = parameterName
‘ Map the parameter to a column name in the DataTable/DataSet.
parameter.SourceColumn = parameterName.Substring(1)
‘ Add the parameter to the command.
command.Parameters.Add(parameter)

Next
End If
Return command

End Function

This method first initializes a SqlCommand class and passes in the name of a stored procedure, and it
then uses the GetPubsConnection helper method to pass in a SqlConnection object to the
SqlCommand. The next step is to set the command type of the SqlCommand to a stored procedure.
This is important to do because ADO.NET uses this to optimize how the stored procedure is called on
the database server. We then check to see if any parameter names have been passed (via the
parameterNames string array), and if there were any, We then iterate through them. While iterating
through the parameter names, We build up SqlParameter objects and add them to the SqlCommand’s
collection of parameters. The most important step in building up the SqlParameter object is to set its
SourceColumn property. This is what the DataAdapter later uses to map the name of the parameter to
the name of the column in the DataTable when its Update method is called. An example of such a
mapping is associating the @au_id parameter name with the au_id column name. As you can see in
the code, the mapping is assuming that the stored procedure parameters all have exactly the same names
as the columns, except for the mandatory @ character in front of the parameter. That is why when
assigning the SqlParameter’s SourceColumn property value, we use the Substring method to strip
off the @ character to make sure that it will map correctly.

We then call the BuildSqlCommand method two more times to build your update and delete SqlCommand
objects.

‘ Update command.
Dim updateCommand As SqlCommand = BuildSqlCommand(“usp_authors_Update”, _

356

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 356

insertUpdateParams)

‘ Delete command.
Dim deleteCommand As SqlCommand = BuildSqlCommand(“usp_authors_Delete”, _

New String() {“@au_id”})

Now that the SqlCommand objects have been created, the next step is to create a SqlDataAdapter object.
Once the SqlDataAdapter is created, we set its InsertCommand, UpdateCommand, and DeleteCommand
properties with the respective SqlCommand objects that we just built.

‘ Create an adapter.
Dim adapter As New SqlDataAdapter()

‘ Associate the commands with the adapter.
adapter.InsertCommand = insertCommand
adapter.UpdateCommand = updateCommand
adapter.DeleteCommand = deleteCommand

The next step is to get a DataTable instance of the authors table from the pubs database. You do
this by calling the GetAuthorsSqlReader helper method to first get a DataReader and then the
GetTableFromReader helper method to load a DataTable from a DataReader.

‘ Get the authors reader.
Dim reader As SqlDataReader = GetAuthorsSqlReader()
‘ Load a DataTable from the reader.
Dim table As DataTable = GetTableFromReader(reader, “Authors”)

Once we have our DataTable filled with data, the next step is to begin modifying it so we can test the new
batch update capability of the DataAdapter. The first change we will make is an insert in the DataTable.
In order to add a row, we first call the DataTable’s NewRow method to give us a DataRow initialized with
the same columns as our DataTable.

‘ Add a new author to the DataTable.
Dim row As DataRow = table.NewRow

Once that is done, we then go ahead and set the values of the columns of the DataRow:

row(“au_id”) = “335-22-0707”
row(“au_fname”) = “Tim”
row(“au_lname”) = “McCarthy”
row(“phone”) = “760-930-0075”
row(“contract”) = 0

Finally, we call the Add method of the DataTable’s DataRowCollection property and pass in the
newly populated DataRow object:

table.Rows.Add(row)

Now that there is a new row in the DataTable, the next test is to update one of the rows in the DataTable:

‘ Change an author in the DataTable.
table.Rows(0)(“au_fname”) = “Updated Name!”

357

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 357

And finally, we will delete a row from the DataTable. In this case, it will be the second to last row in
the DataTable:

‘ Delete the second to last author from the table
table.Rows(table.Rows.Count - 2).Delete()

Now that we have performed an insert, update, and delete action on our DataTable it is time to send the
changes back to the database. We do this by calling the DataAdapter’s Update method, and passing in
either a DataSet or a DataTable. Note how we are calling the GetChanges method of the DataTable;
this is important, because we only want to send the changes to the DataAdapter:

‘ Send only the changes in the DataTable to the database for updating.
adapter.Update(table.GetChanges())

To prove that the update worked, we get back a new DataTable from the server using the same tech-
nique as before, and then bind it to the grid with our helper method to see the changes that were made:

‘ Get the new changes back from the server to show that the update worked.
reader = GetAuthorsSqlReader()
table = GetTableFromReader(reader, “Authors”)
‘ Bind the grid to the new table data.
BindGrid(table)

End Sub

SQL Server .NET Data Provider
The SQL Server .NET Data Provider uses Tabular Data Stream (TDS), to communicate with the SQL Server.
This offers a great performance increase, since TDS is SQL Server’s native communication protocol. As an
example of how much of an increase you can expect, when I ran some simple tests accessing the authors
table of the pubs database we saw the SQL Server .NET Data Provider perform about 70 percent faster than
the OLE DB .NET Data Provider.

The SQL Server .NET Data Provider is lightweight and performs very well, thanks to not having to go
through the OLE DB or ODBC layer. What it actually does is that it establishes a networking connection
(usually sockets based) and drags data from this directly into managed code and vice versa.

To use this provider, you need to include the System.Data.SqlClient namespace in your application.
Also, it will only work for SQL Server 7.0 and above. I highly recommend using SQL Server .NET Data
Provider any time you are connecting to a SQL Server 7.0 and above database server. The SQL Server
.NET Data Provider requires the installation of MDAC 2.6 or later.

This is very important, since going through the OLE DB or ODBC layers means that
the CLR has to marshal (convert) all of the COM data types to .NET CLR data types
each time data is accessed from a data source. When using the SQL Server .NET Data
Provider, everything runs within the .NET CLR, and the TDS protocol is faster than
the other network protocols previously used for SQL Server.

358

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 358

OLE DB .NET Data Provider
The OLE DB .NET Data Provider uses native OLE DB through COM Interop (see Chapter 17 for more
details) to enable data access. The OLE DB .NET Data Provider supports both manual and automatic
transactions. For automatic transactions, the OLE DB .NET Data Provider automatically enlists in a
transaction and obtains transaction details from Windows 2000 Component Services. The OLE DB .NET
Data Provider does not support OLE DB 2.5 interfaces. OLE DB Providers that require support for OLE
DB 2.5 interfaces will not function properly with the OLE DB .NET Data Provider. This includes the
Microsoft OLE DB Provider for Exchange and the Microsoft OLE DB Provider for Internet Publishing.
The OLE DB .NET Data Provider requires the installation of MDAC 2.6 or later. To use this provider, you
need to include the System.Data.OleDb namespace in your application.

The DataSet Component
The DataSet object is central to supporting disconnected, distributed data scenarios with ADO.NET. The
DataSet is a memory-resident representation of data that provides a consistent relational programming
model regardless of the data source. The DataSet represents a complete set of data including related
tables, constraints, and relationships among the tables; basically, like having a small relational database
residing in memory.

Since the DataSet contains a lot of metadata in it, you need to be careful about how much data you try
to stuff into it, since it will be consuming memory.

The methods and objects in a DataSet are consistent with those in the relational database model.
The DataSet can also persist and reload its contents as XML and its schema as XSD. It is completely
disconnected from any database connections; therefore, it is totally up to you to fill it with whatever data
you need in memory.

ADO.NET 2.0 has added several new features to DataSet and DataTable classes as well as adding
enhancements to existing features. The new features we will talk about in this section are the following:

❑ The binary serialization format option.

❑ Additions to make the DataTable more of a stand-alone object.

❑ The ability to expose DataSet and DataTable data as a stream (DataReader) and also loading
stream data into a DataSet or DataTable.

DataTableCollection
An ADO.NET DataSet contains a collection of zero or more tables represented by DataTable objects.
The DataTableCollection contains all of the DataTable objects in a DataSet.

A DataTable is defined in the System.Data namespace and represents a single table of memory-resident
data. It contains a collection of columns represented by the DataColumnCollection, which defines the
schema and rows of the table. It also contains a collection of rows represented by the DataRowCollection,
which contains the data in the table. Along with the current state, a DataRow retains its original state and
tracks changes that occur to the data.

359

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 359

DataRelationCollection
A DataSet contains relationships in its DataRelationCollection object. A relationship (represented
by the DataRelation object) associates rows in one DataTable with rows in another DataTable. The
relationships in the DataSet can have constraints, which are represented by UniqueConstraint and
ForeignKeyConstraint objects. It is analogous to a JOIN path that might exist between the primary
and foreign key columns in a relational database. A DataRelation identifies matching columns in two
tables of a DataSet.

Relationships enable you to see what links information within one table to another. The essential
elements of a DataRelation are the name of the relationship, the two tables being related, and the
related columns in each table. Relationships can be built with more than one column per table,
with an array of DataColumn objects for the key columns. When a relationship is added to the
DataRelationCollection, it may optionally add ForeignKeyConstraints that disallow any
changes that would invalidate the relationship.

ExtendedProperties
DataSet (as well as DataTable and DataColumn) has an ExtendedProperties property.
ExtendedProperties is a PropertyCollection where a user can place customized information,
such as the SELECT statement that was used to generate the resultset, or a date/time stamp of when the
data was generated. Since the ExtendedProperties contains customized information, this is a good
place to store extra user-defined data about the DataSet (or DataTable or DataColumn), such as a
time when the data should be refreshed. The ExtendedProperties collection is persisted with the
schema information for the DataSet (as well as DataTable and DataColumn). The following code is
an example of adding an expiration property to a DataSet:

Private Shared Sub DataSetExtended()

‘ Build the SQL and Connection strings.
Dim sql As String = “SELECT * FROM authors”
Dim connectionString As String = “Initial Catalog=pubs;” _

& “Data Source=(local);Integrated Security=SSPI;”

‘ Initialize the SqlDataAdapter with the SQL
‘ and Connection strings, and then use the
‘ SqlDataAdapter to fill the DataSet with data.
Dim adapter As SqlDataAdapter = _

New SqlDataAdapter(sql, connectionString)
Dim authors As New DataSet
adapter.Fill(authors)

‘ Add an extended property called “expiration.”
‘ Set its value to the current date/time + 1 hour.
authors.ExtendedProperties.Add(“expiration”, _

DateAdd(DateInterval.Hour, 1, Now))

Console.Write(authors.ExtendedProperties(“expiration”).ToString)
Console.ReadLine()

End Sub

360

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 360

This code starts out by filling a DataSet with the authors table from the pubs database. We then add a
new extended property, called expiration, and set its value to the current date and time plus one hour.
We then simply read it back. As you can see, it is very easy to add extended properties to DataSet
objects. The same pattern also applies to DataTable and DataColumn objects.

Creating and Using DataSet Objects
The ADO.NET DataSet is a memory-resident representation of the data that provides a consistent
relational programming model, regardless of the source of the data it contains. A DataSet represents
a complete set of data including the tables that contain, order, and constrain the data, as well as the
relationships between the tables. The advantage to using a DataSet is that the data in a DataSet can
come from multiple sources, and it is fairly easy to get the data from multiple sources into the DataSet.
Also, you can define your own constraints between the data tables in a DataSet.

There are several methods of working with a DataSet, which can be applied independently or in
combination. You can:

❑ Programmatically create DataTables, DataRelations, and Constraints within the DataSet
and populate them with data

❑ Populate the DataSet or a DataTable from an existing RDBMS using a DataAdapter

❑ Load and persist a DataSet or DataTable using XML

❑ Load a DataSet from an XSD schema file

❑ Load a DataSet or a DataTable from a DataReader

Here is a typical usage scenario for a DataSet object:

1. A client makes a request to a Web service.

2. Based on this request, the Web service populates a DataSet from a database using a
DataAdapter and returns the DataSet to the client.

3. The client then views the data and makes modifications.

4. When finished viewing and modifying the data, the client passes the modified DataSet
back to the Web service, which again uses a DataAdapter to reconcile the changes in the
returned DataSet with the original data in the database.

5. The Web service may then return a DataSet that reflects the current values in the database.

6. (Optional) The client can then use the DataSet class’s Merge method to merge the
returned DataSet with the client’s existing copy of the DataSet; the Merge method will
accept successful changes and mark with an error any changes that failed.

The design of the ADO.NET DataSet makes this scenario fairly easy to implement. Since the DataSet is
stateless, it can be safely passed between the server and the client without tying up server resources such
as database connections. Although the DataSet is transmitted as XML, Web services and ADO.NET
automatically transform the XML representation of the data to and from a DataSet, creating a rich, yet
simplified, programming model. In addition, because the DataSet is transmitted as an XML stream,
non-ADO.NET clients can consume the same Web service as that consumed by ADO.NET clients.

361

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 361

Similarly, ADO.NET clients can interact easily with non-ADO.NET Web services by sending any client
DataSet to a Web service as XML and by consuming any XML returned as a DataSet from the Web
service. One thing to be careful of is the size of the data; if there are a large number of rows in the tables
of your DataSet, then it will eat up a lot of bandwidth.

Programmatically Creating DataSet Objects
You can programmatically create a DataSet object to use as a data structure in your programs. This could
be quite useful if you have complex data that needs to be passed around to another object’s method.
For example, when creating a new customer, instead of passing 20arguments about the new customer to
a method, you could just pass the programmatically created DataSet object with all of the customer
information to the object’s method.

Here is the code for building an ADO.NET DataSet object that is comprised of related tables:

Private Sub BuildDataSet()

Dim customerOrders As New Data.DataSet(“CustomerOrders”)
Dim customers As Data.DataTable = customerOrders.Tables.Add(“Customers”)
Dim orders As Data.DataTable = customerOrders.Tables.Add(“Orders”)
Dim row As Data.DataRow

With customers
.Columns.Add(“CustomerID”, Type.GetType(“System.Int32”))
.Columns.Add(“FirstName”, Type.GetType(“System.String”))
.Columns.Add(“LastName”, Type.GetType(“System.String”))
.Columns.Add(“Phone”, Type.GetType(“System.String”))
.Columns.Add(“Email”, Type.GetType(“System.String”))

End With

With orders
.Columns.Add(“CustomerID”, Type.GetType(“System.Int32”))
.Columns.Add(“OrderID”, Type.GetType(“System.Int32”))
.Columns.Add(“OrderAmount”, Type.GetType(“System.Double”))
.Columns.Add(“OrderDate”, Type.GetType(“System.DateTime”))

End With

customerOrders.Relations.Add(“Customers_Orders”, _
customerOrders.Tables(“Customers”).Columns(“CustomerID”), _
customerOrders.Tables(“Orders”).Columns(“CustomerID”))

row = customers.NewRow()
row(“CustomerID”) = 1
row(“FirstName”) = “Miriam”
row(“LastName”) = “McCarthy”
row(“Phone”) = “555-1212”
row(“Email”) = “tweety@hotmail.com”
customers.Rows.Add(row)

row = orders.NewRow()
row(“CustomerID”) = 1
row(“OrderID”) = 22
row(“OrderAmount”) = 0
row(“OrderDate”) = #11/10/1997#

362

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 362

orders.Rows.Add(row)

Console.WriteLine(customerOrders.GetXml())
Console.ReadLine()

End Sub

Here is what the resulting XML of the DataSet looks like:

<CustomerOrders>
<Customers>

<CustomerID>1</CustomerID>
<FirstName>Miriam</FirstName>
<LastName>McCarthy</LastName>
<Phone>555-1212</Phone>
<Email>tweety@hotmail.com</Email>

</Customers>
<Orders>

<CustomerID>1</CustomerID>
<OrderID>22</OrderID>
<OrderAmount>0</OrderAmount>
<OrderDate>1997-11-10T00:00:00.0000</OrderDate>

</Orders>
</CustomerOrders>

We start out by first defining a DataSet object (customerOrders) named CustomerOrders. We then create
two tables, one for customers (customers), and one for orders (orders), we then define the columns of the
tables. Notice how we call the Add method of the DataSet’s Tables collection. We then define the columns
of each of the tables and create a relation in the DataSet between the Customers table and the Orders table
on the CustomerID column. Finally, we create instances of Rows for the tables, add the data, and then
append the Rows to the Rows collection of the DataTable objects. If you create a DataSet object with no
name, it will be given the default name of NewDataSet.

ADO.NET DataTable Objects
A DataSet is made up of a collection of tables, relationships, and constraints. In ADO.NET, DataTable
objects are used to represent the tables in a DataSet. A DataTable represents one table of in-memory
relational data. The data is local to the .NET application in which it resides, but can be populated from a
data source such as SQL Server using a DataAdapter.

The DataTable class is a member of the System.Data namespace within the .NET Framework class
library. You can create and use a DataTable independently or as a member of a DataSet, and
DataTable objects can also be used by other the .NET Framework objects, including the DataView.
You access the collection of tables in a DataSet through the DataSet object’s Tables property.

The schema, or structure, of a table is represented by columns and constraints. You define the schema of
a DataTable using DataColumn objects as well as ForeignKeyConstraint and UniqueConstraint
objects. The columns in a table can map to columns in a data source, contain calculated values from
expressions, automatically increment their values, or contain primary key values.

363

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 363

If you populate a DataTable from a database, it will inherit the constraints from the database, so you do
not have to do all of that work manually. A DataTable must also have rows in which to contain and
order the data. The DataRow class represents the actual data contained in the table. You use the DataRow
and its properties and methods to retrieve, evaluate, and manipulate the data in a table. As you access
and change the data within a row, the DataRow object maintains both its current and original state.

You can create parent/child relationships between tables within a database, like SQL Server, using one
or more related columns in the tables. You create a relationship between DataTable objects using a
DataRelation, which can then be used to return a row’s related child or parent rows.

ADO.NET 2.0 Enhancements to the DataSet
and DataTable

One of the main complaints developers had in ADO.NET 1.x was with the performance of the DataSet
and its DataTable children, in particular when there is a large amount of data in them. The perfor-
mance hit comes in two different ways; the first way is the time it takes to actually load a DataSet with
a lot of data. As the number of rows in a DataTable increases, the time to load a new row increases
almost proportionally to the number of rows in the DataTable. The second way is when the large
DataSet is serialized and remoted. A key feature of the DataSet is the fact that it automatically knows
how to serialize itself, especially when we want to pass it between application tiers. The only problem is
that the serialization is quite verbose and takes up a lot of memory and network bandwidth. Both of
these performance problems are addressed in ADO.NET 2.0.

Indexing
The first improvement to the DataSet family was that the indexing engine for the DataTable has been
completely rewritten and it now scales much better for large datasets. The addition of the new indexing
engine results in faster basic inserts, updates, and deletes, which also means faster Fill and Merge
operations. Just as in relational database design, if you are dealing with large DataSets it really pays
big dividends now if you add unique keys and foreign keys to your DataTable. The nice part, though,
is that you do not have to change any of your code at all to take advantage of this new feature.

Serialization
The second improvement made to the DataSet family was adding new options to the way that the
DataSet and DataTable are serialized. The main complaint about retrieving DataSet objects from
Web services and remoting calls was that they were way too verbose and took up too much network
bandwidth. In ADO.NET 1.x, the DataSet serializes as XML, even when using the binary formatter. In
ADO.NET 2.0, in addition to this behavior, we can also specify true binary serialization, by setting the
newly added RemotingFormat property to SerializationFormat.Binary rather than (the default)
SerializationFormat.XML. In the AdoNetFeaturesTest project of the Examples solution I have
added a Button (_serializationButton) to the form and its associated Click event handler that
demonstrates how to serialize a DataTable in binary format:

Private Sub _serializationButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _serializationButton.Click

‘ Get the authors reader.
Dim reader As SqlDataReader = GetAuthorsSqlReader()
‘ Load a DataTable from the reader
Dim table As DataTable = GetTableFromReader(reader, “Authors”)

364

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 364

This code starts out by calling the helper methods GetAuthorsSqlReader and GetTableFromReader
to get a DataTable of the authors from the pubs database. The next code block, shown below, is where
we are actually serializing the DataTable out to a binary format:

Using fs As New FileStream(“c:\authors.dat”, FileMode.Create)
table.RemotingFormat = SerializationFormat.Binary
Dim format As New BinaryFormatter
format.Serialize(fs, table)

End Using

‘ Tell the user what happened.
MsgBox(“Successfully serialized the DataTable!”)

End Sub

This code takes advantage of the newly added Using statement for VB.NET to wrap up creating and
disposing of a FileStream instance that will hold a serialized DataTable data. The next step is to set
the DataTable’s RemotingFormat property to the SerializationFormat.Binary enumeration
value. Once that is done, simply create a new BinaryFormatter instance, and then call its Serialize
method to serialize the DataTable into the FileStream instance. Then finish by showing a message
box to the user that the data has been serialized.

DataReader Integration
Another nice feature of the DataSet and DataTable classes is the ability to both read from and write out
to a stream of data in the form of a DataReader. We’ll first take a look at how you can load a DataTable
from a DataReader. To demonstrate this, I have added a Button (_loadFromReaderButton) and its
associated Click event handler to TestForm.vb of the AdoNetFeaturesTest project in the Examples
solution:

Private Sub _loadFromReaderButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _loadFromReaderButton.Click

‘ Get the authors reader.
Dim reader As SqlDataReader = GetAuthorsSqlReader()

‘ Load a DataTable from the reader.
Dim table As DataTable = GetTableFromReader(reader, “Authors”)

‘ Bind the grid to the table.
BindGrid(table)
End Sub

This method is a controller method, meaning that it only calls helper methods. It starts out by
first obtaining a SqlDataReader from the GetAuthorsReader helper method. It then calls
the GetTableFromReader helper method to transform the DataReader into a DataTable. The
GetTableFromReader method is where we actually get to see the DatatTable’s new load functionality:

Private Function GetTableFromReader(ByVal reader As SqlDataReader, _
ByVal tableName As String) As DataTable
‘ Create a new DataTable using the name passed in.
Dim table As New DataTable(tableName)

365

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 365

‘ Load the DataTable from the reader.
table.Load(reader)
‘ Close the reader.
reader.Close()
Return table

End Function

This method starts out by first creating an instance of a DataTable and initializing it with the name passed
in from the tableName argument. Once the new DataTable has been initialized, we call the new Load
method and pass in the SqlDataReader that was passed into the method via the reader argument. This
is where the DataTable takes the DataReader and populates the DataTable instance with the column
names and data from the DataReader. The next step is to close the DataReader, since we have finished
our use of it, and finally, return the newly populated DataTable.

DataTable Independence
One of the most convenient enhancements to ADO.NET 2.0 has been the addition of several methods
from the DataSet class to the DataTable class. The DataTable is now much more versatile and useful
than it was in ADO.NET 1.x. The DataTable now supports all of the same read and write methods for
XML as the DataSet, specifically the ReadXml, ReadXmlSchema, WriteXml, and WriteXmlSchema
methods.

Also, the Merge method of the DataSet has now been added to the DataTable as well. In addition to
the existing functionality of the DataSet class, some of the new features of the DataSet class have also
been added to the DataTable class, namely the RemotingFormat property, the Load method, and the
GetDataReader method.

Working with the Common Provider Model
In ADO.NET 1.x, you could either code to the provider-specific classes, such as SqlConnection, or
the generic interfaces, such as IDbConnection. If there was the possibility that the database you were
programming against would change during your project, or if you were creating a commercial package
intended to support customers with different databases, then you had to use the generic interfaces.
You can’t call a constructor on an interface, so most generic programs included code that accomplished
the task of obtaining the original IDbConnection by means of their own factory method, such as a
GetConnection method that would return a provider-specific instance of the IDbConnection interface.

ADO.NET 2.0 has a more elegant solution for getting the provider-specific connection. Each data provider
registers a ProviderFactory class and a provider string in the .NET machine.config. There is a base
ProviderFactory class (DbProviderFactory) and a System.Data.Common.ProviderFactories
class that can return a DataTable of information about different data providers registered in
machine.config, and it can also return the correct ProviderFactory given the provider string
(called ProviderInvariantName) or a DataRow from the DataTable. Instead of writing your own
framework to build connections based on the name of the provider, ADO.NET 2.0 makes it much more
straightforward, flexible, and easier to solve this problem.

366

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 366

Let’s look at an example of using the common provider model to connect to the pubs database and display
some rows from the authors table. In the AdoNetFeaturesTest project, on the TestForm.vb Form, the
_providerButton Button’s Click event handler shows this functionality. I have broken down this code
into six steps, and we will look at each step.

The first step is get the provider factory object based on a configuration value of the provider’s invariant
name:

Private Sub _providerButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _providerButton.Click

‘ 1. Factory
‘ Create the provider factory from config value.
Dim factory As DbProviderFactory =

DbProviderFactories.GetFactory(ConfigurationSettings.AppSettings(“providerInvariant
Name”))

We are able to get the factory via the DbProviderFactories object’s GetFactory method and passing
in the string name of the provider invariant that we are storing in the project’s app.config file. Here is
the entry in the app.config file:

<add key=”providerInvariantName” value=”System.Data.SqlClient” />

In this case, we are using the SQL Server data provider. Once we have the factory object, the next step is
to use it to create a connection:

‘ 2. Connection
‘ Create the connection from the factory.
Dim connection As DbConnection = factory.CreateConnection()
‘ Get the connection string from config.
connection.ConnectionString =

ConfigurationSettings.AppSettings(“dbConnectionString”)

The connection is created by calling the DbProviderFactory’s CreateConnection method. In this case,
the factory will be giving back a SqlConnection, because we chose to use the System.Data.SqlClient
provider invariant. To keep our code generic, we will not be directly programming against any of the
classes in the System.Data.SqlClient namespace. Note how the connection class we declared was a
DbConnection class, which is part of the System.Data namespace.

The next step is to create a Command object, so we can retrieve the data from the authors table:

‘ 3. Command
‘ Create the command from the connection.
Dim command As DbCommand = connection.CreateCommand()
‘ Set the type of the command to stored procedure.
command.CommandType = CommandType.StoredProcedure
‘ Set the name of the stored procedure to execute.
command.CommandText = “usp_authors_Get_All”

Begin by declaring a generic DbCommand class variable and then using the DbConnection’s
CreateCommand method to create the DbCommand instance. Once we have done that, we set the
command type to stored procedure and then set the stored procedure name.

367

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 367

In this example, we will be using a DbDataAdapter to fill a DataTable with the author’s data. Here is
how we create and initialize the DbDataAdapter:

‘ 4. Adapter
‘ Create the adapter from the factory.
Dim adapter As DbDataAdapter = factory.CreateDataAdapter()
‘ Set the adapter’s select command.
adapter.SelectCommand = command

Just as you did when we created DbConnection instance, agai use the factory to create DbDataAdapter.
After creating it, then set the SelectCommand property’s value to the instance of the previously initialized
DbCommand instance.

After finishing these steps, the next step is to create a DataTable and fill it using the DataAdapter:

‘ 5. DataTable
‘ Create a new DataTable.
Dim authors As New DataTable(“Authors”)
‘ Use the adapter to fill the DataTable.
adapter.Fill(authors)

The final step is to bind the table to the form’s grid:

‘ 6. Grid
‘ Populate the grid with the data.
BindGrid(authors)

We already looked at the BindGrid helper method in the asynchronous example earlier. In this example,
we are simply reusing this generic method again.

Private Sub BindGrid(ByVal table As DataTable)

‘ Clear the grid.

Me._authorsGridView.DataSource = Nothing

‘ Bind the grid to the DataTable.

Me._authorsGridView.DataSource = table

End Sub

The main point to take away from this example is that we were able to easily write database-agnostic code
in just a few short lines of code. Although this was possible to do in ADO.NET 1.x, it required a lot of
lines of code to create this functionality; you had to write your own abstract factory classes and factory
methods in order to create instances of the generic database interfaces, such as IDbConnection,
IDbCommand, and so on.

368

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 368

Connection Pooling Enhancements
in ADO.NET 2.0

Pooling connections can significantly enhance the performance and scalability of your application. Both
the SQL Client .NET Data Provider and the OLE DB .NET Data Provider automatically pool connections
using Windows Component Services and OLE DB Session Pooling, respectively. The only requirement is
that you must use the exact same connection string each time if you want to get a pooled connection.

ADO.NET 2.0 enhances the connection pooling functionality offered in ADO.NET 1.x by allowing you to
close all of the connections currently kept alive by the particular managed provider that you are using. You
can clear a specific connection pool by using the shared SqlConnection.ClearPool method or clear all of
the connection pools in an application domain by using the shared SqlConnection.ClearPools method.
Both the SQL Server and Oracle managed providers implement this functionality.

Building a Data Access Component
To better demonstrate what we have learned so far about ADO.NET, we are going to build a data access
component. This component is designed to abstract the processing of stored procedures. The component
we are building will be targeted at SQL Server, and it is assumed that all data access to the database will
be through stored procedures. The idea of only using stored procedures to access data in a database
has a number of advantages, such as scalability, performance, flexibility, security, and so on. The only
disadvantage is that you have to use stored procedures, and not SQL strings. Through the process of
building this component we will see how stored procedures are implemented in ADO.NET. We will also
be building on the knowledge that we have gained from the previous chapters.

This component’s main job is to abstract stored procedure calls to SQL Server, and one of the ways we
do this is by passing in all of the stored procedure parameter metadata as XML. We will look at this XML
later in this section. The other job of the component is to demonstrate the use of some of the new objects
in ADO.NET.The code for this project is quite extensive and you will only examine the key parts of it in
this chapter. The full source is available in the code download.Let’s start with the beginning of the com-
ponent. The first thing we do is declare the class and the private members of the class:

Option Explicit On
Option Strict On

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Xml
Imports System.Collections
Imports System.Diagnostics

‘’’ <summary>
‘’’ This class wraps stored procedure calls to SQL Server. It requires that all
‘’’ stored procedures and their parameters be defined in an XML document before
‘’’ calling any of its methods. The XML can be passed in as an XmlDocument
‘’’ instance or as a string of XML. The only exceptions to this rule are
‘’’ stored procedures that do not have parameters. This class also caches

369

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 369

‘’’ SqlCommand objects. Each time a stored procedure is executed, a SqlCommand
‘’’ object is built and cached into memory so that the next time the stored
‘’’ procedure is called the SqlCommand object can be retrieved from memory.
‘’’ </summary>
Public NotInheritable Class StoredProcedureHelper

Private _connectionString As String = “”
Private _spParamXml As String = “”
Private _spParamXmlDoc As XmlDocument = Nothing
Private _spParamXmlNode As XmlNode = Nothing
Private _commandParametersHashTable As New Hashtable()

Private Const ExceptionMsg As String = “There was an error in the method. “ _
& “Please see the Windows Event Viewer Application log for details”

Start out with the Option statements. Note that when using the Option Strict statement. This helps
prevent logic errors and data loss that can occur when you work between variables of different types.
Next, import the namespaces that we need for the component. In this case, most of your dependencies
are on System.Data.SqlClient. We’ll call the class StoredProcedureHelper, to indicate that it
wraps calling stored procedures to SQL Server. Next, declare the private data members. Then use the
ExceptionMsg constant to indicate a generic error message for any exceptions that we throw.

Constructors
Now, we get to declare our constructors for the StoredProcedureHelper class. This is where we can
really take advantage of method overloading, and it gives you a way to pass data to your class upon
instantiation. First,declare a default constructor:

‘’’ <summary>
‘’’ Default constructor.
‘’’ </summary>
Public Sub New()
End Sub

The default constructor is provided in case people want to pass data to your class through public
properties instead of through constructor arguments.

The next constructor we create allows for a database connection string to be passed in. By abstracting the
database connection string out of this component, we give users of our component more flexibility in how
they decide to store and retrieve their database connection strings. Here is the code for the constructor:

‘’’ <summary>
‘’’ Overloaded constructor.
‘’’ </summary>
‘’’ <param name=”connectionString”>The connection string to the
‘’’ SQL Server database.</param>
Public Sub New(ByVal connectionString As String)

Me._connectionString = connectionString
End Sub

370

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 370

The only difference between this constructor and the default constructor is that we are passing in a
database connection string.

In the next constructor, we pass in both a database connection string and a string of XML representing the
stored procedure parameters for the stored procedures we want to call. Here is the code for the constructor:

‘’’ <summary>
‘’’ Overloaded constructor.
‘’’ </summary>
‘’’ <param name=”connectionString”>The connection string to the
‘’’ SQL Server database.</param>
‘’’ <param name=”spParamXml”>A valid XML string which conforms to
‘’’ the correct schema for stored procedure(s) and their
‘’’ associated parameter(s).</param>
Public Sub New(ByVal connectionString As String, ByVal spParamXml As String)

Me.New(connectionString)
Me._spParamXml = spParamXml
Me._spParamXmlDoc = New XmlDocument
Try

Me._spParamXmlDoc.LoadXml(spParamXml)
Me._spParamXmlNode = Me._spParamXmlDoc.DocumentElement

Catch e As XmlException
LogError(e)
Throw New Exception(ExceptionMsg, e)

End Try
End Sub

This constructor sets the database connection string by calling the first overloaded constructor. This is
a handy technique that will keep you from having to write duplicate code in your constructors. The
constructor then loads the stored procedure parameter configuration into a private XmlDocument
instance variable as well as a private XmlNode instance variable.

The remaining constructors allow you to pass in combinations of database connection strings as well as
either a valid XmlDocument instance representing the stored procedure parameters or a valid XmlNode
instance that represents the stored procedure parameters.

Properties
Now, let’s look at the properties of our class. The object contains the following properties:
ConnectionString, SpParamXml, and SpParamXmlDoc. All of the properties are provided as a courtesy
in case the user of the object did not want to supply them via a constructor call. The ConnectionString
property performs the same functionality as the first overloaded constructor we looked at. The
SpParamXml property allows the user of the object to pass in a valid XML string representing the stored
procedures parameter metadata. All of the properties are read-write. The SpParamXmlDoc property allows
the user to pass in an XmlDocument instance representing the stored procedures’ parameter metadata.

Here is the code for the SpParamXml property:

‘’’ <summary>
‘’’ A valid XML string which conforms to the correct schema for
‘’’ stored procedure(s) and their associated parameter(s).
‘’’ </summary>

371

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 371

Public Property SpParamXml() As String
Get

Return Me._spParamXml
End Get
Set(ByVal Value As String)

Me._spParamXml = Value
‘ Set the XmlDocument instance to null, since
‘ an XML string is being passed in.
Me._spParamXmlDoc = Nothing
Try

Me._spParamXmlDoc.LoadXml(Me._spParamXml)
Me._spParamXmlNode = Me._spParamXmlDoc.DocumentElement

Catch e As XmlException
LogError(e)
Throw New Exception(ExceptionMsg)

End Try
End Set

End Property

The interesting thing to note about this property is that it makes sure to reset the XmlDocument instance
to Nothing before trying to load the document. This is in case it was already set in one of the
overloaded constructors, or from a previous call to this property. It also sets the XmlNode instance to
the DocumentElement property of the XmlDocument instance, thus keeping them both in sync.

Stored Procedure XML Structure
In this case, rather than having the user of this class be responsible for populating the Parameters
collection of a Command object, we will abstract it out into an XML structure. The structure is very simple;
it basically allows you to store the metadata for one or more stored procedures at a time. This has a huge
advantage in the fact that you can change all of the parameters on a stored procedure without having to
recompile this project. The following is what the XML structure for the metadata looks like:

<StoredProcedures>
<StoredProcedure name>
<Parameters>
<Parameter name size datatype direction isNullable sourceColumn />

</Parameters>
</StoredProcedure>

</StoredProcedures>

Here is what some sample data for the XML structure looks like:

<?xml version=”1.0”?>
<StoredProcedures>
<StoredProcedure name=”usp_Get_Authors_By_States”>
<Parameters>
<Parameter name=”@states” size=”100” datatype=”VarChar”
direction=”Input” isNullable=”True” />

<Parameter name=”@state_delimiter” size=”1” datatype=”Char”
direction=”Input” isNullable=”True” />

</Parameters>
</StoredProcedure>

</StoredProcedures>

372

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 372

The valid values for the direction attribute are Input, Output, ReturnValue, and InputOutput. These
values map directly to the System.Data.Parameter enumeration values. The valid values for the
datatype attribute are BigInt, Binary, Bit, Char, DateTime, Decimal, Float, Image, Int, Money,
NChar, NText, NVarChar, Real, SmallDateTime, SmallInt, SmallMoney, Text, Timestamp, TinyInt,
UniqueIdentifier, VarBinary, VarChar, and Variant. These values map directly to the
System.Data.SqlDbType enumeration values.

Methods
We have just finished looking at the stored procedure XML structure the class expects, as well as the public
properties and public constructors for the class. Now, let’s turn our attention to the public methods of our
class.

ExecSpReturnDataSet
This public function executes a stored procedure and returns a DataSet object. It takes a stored procedure
name (String), an optional DataSet name (String), and an optional list of parameter names and values
(IDictionary). Here is the code for ExecSpReturnDataSet:

‘’’ <summary>
‘’’ Executes a stored procedure with or without parameters and returns a
‘’’ populated DataSet object.
‘’’ </summary>
‘’’ <param name=”spName”>The name of the stored procedure to execute.</param>
‘’’ <param name=”dataSetName”>An optional name for the DataSet instance.</param>
‘’’ <param name=”paramValues”>A name-value pair of stored procedure parameter
‘’’ name(s) and value(s).</param>
‘’’ <returns>A populated DataSet object.</returns>
Public Function ExecSpReturnDataSet(ByVal spName As String, _

ByVal dataSetName As String, _
ByVal paramValues As IDictionary) As DataSet

Dim command As SqlCommand = Nothing
Try

‘ Get the initialized SqlCommand instance.
command = GetSqlCommand(spName)
‘ Set the parameter values for the SqlCommand.
SetParameterValues(command, paramValues)
‘ Initialize the SqlDataAdapter with the SqlCommand object.
Dim sqlDA As New SqlDataAdapter(command)

‘ Initialize the DataSet.
Dim ds As New DataSet()

If Not (dataSetName Is Nothing) Then
If dataSetName.Length > 0 Then

ds.DataSetName = dataSetName
End If

End If

‘ Fill the DataSet.
sqlDA.Fill(ds)

‘ Return the DataSet.

373

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 373

Return ds
Catch e As Exception

LogError(e)
Throw New Exception(ExceptionMsg, e)

Finally
‘ Close and release resources.
DisposeCommand(command)

End Try
End Function

This function uses three main objects to accomplish its mission: the SqlCommand, SqlDataAdapter, and
the DataSet objects. We first wrap everything in a Try-Catch-Finally block to make sure that we trap
any exceptions that are thrown and to properly close and release the SqlCommand and SqlConnection
resources. The first thing we do is to call a helper method, GetSqlCommand, in order to get a fully
initialized SqlCommand instance, to include any SqlParameter objects the SqlCommand may have based
on our object’s internal XmlDocument. Here is the code for GetSqlCommand and its overload:

‘’’ <summary>
‘’’ Initializes a SqlCommand object based on a stored procedure name
‘’’ and a SqlTransaction instance. Verifies that the stored procedure
‘’’ name is valid, and then tries to get the SqlCommand object from
‘’’ cache. If it is not already in cache, then the SqlCommand object
‘’’ is initialized and placed into cache.
‘’’ </summary>
‘’’ <param name=”transaction”>The transaction that the stored
‘’’ procedure will be executed under.</param>
‘’’ <param name=”spName”>The name of the stored procedure to execute.</param>
‘’’ <returns>An initialized SqlCommand object.</returns>
Public Function GetSqlCommand(ByVal transaction As SqlTransaction, _

ByVal spName As String) As SqlCommand

Dim command As SqlCommand = Nothing

‘ Get the name of the stored procedure.
If spName.Length < 1 Or spName.Length > 127 Then

Throw New ArgumentOutOfRangeException(“spName”, _
“Stored procedure name must be from 1 - 128 characters.”)

End If

‘ See if the command object is already in memory.
Dim hashKey As String = Me._connectionString & “:” & spName
command = CType(_commandParametersHashTable(hashKey), SqlCommand)
If command Is Nothing Then

‘ It was not in memory.
‘ Initialize the SqlCommand.
command = New SqlCommand(spName, GetSqlConnection(transaction))

‘ Tell the SqlCommand that we are using a stored procedure.
command.CommandType = CommandType.StoredProcedure

‘ Build the parameters, if there are any.
BuildParameters(command)

‘ Put the SqlCommand instance into memory.

374

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 374

Me._commandParametersHashTable(hashKey) = command
Else

‘ It was in memory, but we still need to set the
‘ connection property.
command.Connection = GetSqlConnection(transaction)

End If

‘ Return the initialized SqlCommand instance.
Return command

End Function

‘’’ <summary>
‘’’ Overload. Initializes a SqlCommand object based on a stored
‘’’ procedure name, with no SqlTransaction instance.
‘’’ Verifies that the stored procedure name is valid, and then tries
‘’’ to get the SqlCommand object from cache. If it is not already in
‘’’ cache, then the SqlCommand object is initialized and placed into cache.
‘’’ </summary>
‘’’ <param name=”spName”>The name of the stored procedure to execute.</param>
‘’’ <returns>An initialized SqlCommand object.</returns>
Public Function GetSqlCommand(ByVal spName As String) As SqlCommand

‘ Return the initialized SqlCommand instance.
Return GetSqlCommand(Nothing, spName)

End Function

The difference between this method and its overload is that the first method takes in a SqlTransaction
instance argument, and the overload does not require the SqlTransaction instance to be passed in.
The overload simply calls the first method and passes in a value of Nothing for the SqlTransaction
argument.

This method first performs a check to make sure that the stored procedure name is between 1 and 128
characters long, in accordance with the SQL Server object naming conventions. If it is not, then we throw
an exception. The next step this method performs is to try to get an already initialized SqlCommand object
from the object’s private Hashtable variable, _commandParametersHashTable, using the object’s
database connection string and the name of the stored procedure as the key. If the SqlCommand was not
found, then go ahead and build the SqlCommand object by calling its constructor and passing in the stored
procedure name and a SqlConnection instance returned from the GetSqlConnection helper method.
The code then sets the SqlCommand’s CommandType property. We make sure that we pass in the
CommandType.StoredProcedure enumeration value, since we are executing a stored procedure.

Once the SqlCommand object is properly initialized, we pass it to the BuildParameters method. We will
take a look at this method in more detail later. After this step, the SqlCommand is fully initialized, and
then place it into the object’s internal cache (the _commandParametersHashTable Hashtable variable).
Finally, the SqlCommand is returned to the calling code.

Getting back to the ExecSpReturnDataSet method, now that the SqlCommand object has been properly
initialized, we need to set the values of the parameters. This will be done via another helper method
called SetParameterValues. SetParameterValues take two arguments, a reference to a SqlCommand
object, and an IDictionary interface. We are using an IDictionary interface instead of a class such as
a Hashtable (which implements the IDictionary interface) in order to make the code more flexible.
This is a good design practice and works quite well, for example, in the case where the user of the class
has built his or her own custom dictionary object that implements the IDictionary interface. It then

375

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 375

loops through the SqlCommand’s Parameters collection and sets each SqlParameter’s value based on
the corresponding name-value pair in the IDictionary object as long as the parameter’s direction is not
Output. Following is the code for the SetParameterValues method:

‘’’ <summary>
‘’’ Traverses the SqlCommand’s SqlParameters collection and sets the values
‘’’ for all of the SqlParameter(s) objects whose direction is not Output and
‘’’ whose name matches the name in the dictValues IDictionary that was
‘’’ passed in.
‘’’ </summary>
‘’’ <param name=”command”>An initialized SqlCommand object.</param>
‘’’ <param name=”dictValues”>A name-value pair of stored procedure parameter
‘’’ name(s) and value(s).</param>
Public Sub SetParameterValues(ByVal command As SqlCommand, _

ByVal dictValues As IDictionary)
If command Is Nothing Then

Throw New ArgumentNullException(“command”, _
“The command argument cannot be null.”)

End If
‘ Traverse the SqlCommand’s SqlParameters collection.
Dim parameter As SqlParameter
For Each parameter In command.Parameters

‘ Do not set Output parameters.
If parameter.Direction <> ParameterDirection.Output Then

‘ Set the initial value to DBNull.
parameter.Value = TypeCode.DBNull
‘ If there is a match, then update the parameter value.
If dictValues.Contains(parameter.ParameterName) Then

parameter.Value = dictValues(parameter.ParameterName)
Else

‘ There was not a match.
‘ If the parameter value cannot be null, throw an exception.
If Not parameter.IsNullable Then

Throw New ArgumentNullException(parameter.ParameterName, _
“Error getting the value for the “ _
& parameter.ParameterName & “ parameter.”)

End If
End If

End If
Next parameter

End Sub

When traversing the SqlCommand’s Parameters collection, if a SqlParameter’s value cannot be found
in the IDictionary instance, then a check is made to see whether the SqlParameter’s value is allowed
to be null or not. If it is allowed, then the value is set to DBNull; otherwise, an exception is thrown.

After setting the values of the parameters, the next step is to pass the SqlCommand object to the
SqlDataAdapter’s constructor:

‘ Initialize the SqlDataAdapter with the SqlCommand object.
Dim sqlDA As New SqlDataAdapter(command)

376

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 376

The next step is to try to set the name of the DataSet using the dataSetName method argument:

‘ Try to set the name of the DataSet.
If Not (dataSetName Is Nothing) Then

If dataSetName.Length > 0 Then
ds.DataSetName = dataSetName

End If
End If

After doing this, we then call the Fill method of the SqlDataAdapter to fill the DataSet object:

‘ Fill the DataSet.
sqlDA.Fill(ds)

Then return the DataSet object back to the caller:

‘ Return the DataSet.
Return ds

If an exception was caught, then log the exception data to the Windows Application Log via the
LogError private method, and then throw a new exception with the generic exception message. We
nest the original exception inside of the new exception via the innerException constructor parameter:

Catch e As Exception
LogError(e)
Throw New Exception(ExceptionMsg, e)

In the Finally block, close and release the SqlCommand object’s resources via the DisposeCommand
helper method:

Finally
‘ Close and release resources
DisposeCommand(command)

The DisposeCommand helper function closes the SqlCommand’s SqlConnection property and disposes
of the SqlCommand object:

‘’’ <summary>
‘’’ Disposes a SqlCommand and its underlying SqlConnection.
‘’’ </summary>
‘’’ <param name=”command”></param>
Private Sub DisposeCommand(ByVal command As SqlCommand)

If Not (command Is Nothing) Then
If Not (command.Connection Is Nothing) Then

command.Connection.Close()
command.Connection.Dispose()

End If
command.Dispose()

End If
End Sub

377

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 377

BuildParameters
This private method is the heart of this object and does the most work. It is responsible for parsing the
stored procedure parameter XML and mapping all of the SqlParameter objects into the Parameters
property of the SqlCommand object. Here is the signature of the method:

‘’’ <summary>
‘’’ Finds the parameter information for the stored procedure from the
‘’’ stored procedures XML document and then uses that information to
‘’’ build and append the parameter(s) for the SqlCommand’s
‘’’ SqlParameters collection.
‘’’ </summary>
‘’’ <param name=”command”>An initialized SqlCommand object.</param>
Private Sub BuildParameters(ByVal command As SqlCommand)

The first thing we do in this method is to see if in fact there is any XML being passed in or not. Here is
the code that checks for the XML:

‘ See if there is an XmlNode of parameter(s) for the stored procedure.
If Me._spParamXmlNode Is Nothing Then

‘ No parameters to add, so exit.
Return

End If

The last code simply checks if there is an XmlNode instance of parameter information. If the XmlNode has
not been initialized, then we exit the method. It is entirely possible that users of this object may have
stored procedures with no parameters at all. We have chosen an XmlNode object to parse the XML, as
loading all of the stored procedure XML into memory will not hurt performance; it is a small amount of
data. As an alternative, we could have used an XmlReader object to load in only what we needed into
memory at runtime.

The next step is to clear the SqlCommand object’s Parameters collection:

‘ Clear the parameters collection for the SqlCommand
command.Parameters.Clear()

We then use the name of the stored procedure as the key in the XPath query of the XML, and then exe-
cute the following XPath query to get the list of parameters for the stored procedure:

‘ Get the node list of <Parameter>’s for the stored procedure.
Dim xpathQuery As String = “//StoredProcedures/StoredProcedure[@name=’” _

& command.CommandText & “‘]/Parameters/Parameter”
Dim parameterNodes As XmlNodeList = Me._spParamXmlNode.SelectNodes(xpathQuery)

This query is executed off the XmlDocument object and returns an XmlNodeList object. We then start the
loop through the Parameter elements in the XML and retrieve all of the mandatory Parameter
attributes:

Dim parameterNode As XmlElement
For Each parameterNode In parameterNodes

‘ Get the attribute values for the <Parameter> element.

‘ Get the attribute values for the <Parameter> element.

378

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 378

‘ name
Dim parameterName As String = parameterNode.GetAttribute(“name”)
If parameterName.Length = 0 Then

Throw New ArgumentNullException(“name”, “Error getting the ‘name’ “ _
& “attribute for the <Parameter> element.”)

End If

‘ size
Dim parameterSize As Integer = 0
If parameterNode.GetAttribute(“size”).Length = 0 Then

Throw New ArgumentNullException(“size”, “Error getting the ‘size’ “ _
& “attribute for the <Parameter> element.”)

Else
parameterSize = Convert.ToInt32(parameterNode.GetAttribute(“size”))

End If

‘ datatype
Dim sqlDataType As SqlDbType
If parameterNode.GetAttribute(“datatype”).Length = 0 Then

Throw New ArgumentNullException(“datatype”, “Error getting the “ _
& “‘datatype’ attribute for the <Parameter> element.”)

Else
sqlDataType = CType([Enum].Parse(GetType(SqlDbType), _

parameterNode.GetAttribute(“datatype”), True), SqlDbType)
End If

‘ direction
Dim parameterDirection As ParameterDirection = parameterDirection.Input
If parameterNode.GetAttribute(“direction”).Length > 0 Then

parameterDirection = CType([Enum].Parse(GetType(ParameterDirection), _
parameterNode.GetAttribute(“direction”), True), ParameterDirection)

End If
End If

Since these attributes are mandatory, if any of them are missing, we throw an exception. The interesting
part of this code is that we are using the Enum.Parse static method to convert the string value from the
XML into the correct .NET enumeration data type for the sqlDataType and parameterDirection
variables. This is possible because the probable values in the XML for these attributes map directly to the
names of their respective enumeration data types in .NET. Next, get the optional attributes:

‘ Get the optional attribute values for the <Parameter> element.

‘ isNullable
Dim isNullable As Boolean = False
Try

If parameterNode.GetAttribute(“isNullable”).Length > 0 Then
isNullable = Boolean.Parse(parameterNode.GetAttribute(“isNullable”))

End If
Catch
End Try

‘ sourceColumn -- This must map to the name of a column in a DataSet.

379

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 379

Dim sourceColumn As String = “”
Try

If parameterNode.GetAttribute(“sourceColumn”).Length > 0 Then
sourceColumn = parameterNode.GetAttribute(“sourceColumn”)

End If
Catch
End Try

These attributes are optional mainly because of their data types. Since isNullable is Boolean, just go
ahead and convert it to False if it is missing, and if sourceColumn is missing, just ignore it entirely.

Now, we are ready to create the SqlParameter object and set its Direction property. We do so with
the following code:

‘ Create the parameter object. Pass in the name, datatype,
‘ and size to the constructor.
Dim sqlParameter As SqlParameter = New SqlParameter(parameterName, _

sqlDataType, parameterSize)

‘Set the direction of the parameter.
sqlParameter.Direction = parameterDirection

We then set the optional property values of the SqlParameter object:

‘ If the optional attributes have values, then set them.
‘ IsNullable
If isNullable Then

sqlParameter.IsNullable = isNullable
End If
‘ SourceColumn
sqlParameter.SourceColumn = sourceColumn

Finally, add the SqlParameter object to the SqlCommand object’s Parameters collection, complete the
loop, and finish the method:

‘ Add the parameter to the SqlCommand’s parameter collection.
command.Parameters.Add(sqlParameter)

Next parameterNode
End Sub

Next, we are going to look at ExecSpReturnDataReader. This function is almost identical to
ExecSpReturnDataSet, except that it returns a SqlDataReader object instead of a DataSet object.

ExecSpReturnDataReader
This public function executes a stored procedure and returns a SqlDataReader object. Similar to the
ExecSpReturnDataSet method, it takes a stored procedure name (String) and an optional list of
parameter names and values (IDictionary). Here is the code for ExecSpReturnDataReader:

‘’’ <summary>
‘’’ Executes a stored procedure with or without parameters and returns a
‘’’ SqlDataReader instance with a live connection to the database. It is

380

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 380

‘’’ very important to call the Close method of the SqlDataReader as soon
‘’’ as possible after using it.
‘’’ </summary>
‘’’ <param name=”spName”>The name of the stored procedure to execute.</param>
‘’’ <param name=”paramValues”>A name-value pair of stored procedure parameter
‘’’ name(s) and value(s).</param>
‘’’ <returns>A SqlDataReader object.</returns>
Public Function ExecSpReturnDataReader(ByVal spName As String, _

ByVal paramValues As IDictionary) As SqlDataReader

Dim command As SqlCommand = Nothing
Try

‘ Get the initialized SqlCommand instance.
command = GetSqlCommand(spName)

‘ Set the parameter values for the SqlCommand.
SetParameterValues(command, paramValues)

‘ Open the connection.
command.Connection.Open()

‘ Execute the sp and return the SqlDataReader.
Return command.ExecuteReader(CommandBehavior.CloseConnection)

Catch e As Exception
LogError(e)
Throw New Exception(ExceptionMsg, e)

End Try

End Function

This function uses two objects to accomplish its mission: the SqlCommand and SqlDataReader
objects. The only part where this function differs from ExecSpReturnDataSet is right after we call the
SetParameterValues private method. In this case, we have to make sure that the SqlCommand object’s
SqlConnection is opened. This is because the SqlDataReader requires an open connection. Then call
the ExecuteReader method of the SqlCommand object to get the SqlDataReader object, passing in the
CommandBehavior.CloseConnection value for the method’s behavior argument.

Since this method returns a SqlDataReader object, which requires an open database connection, do not
close the connection in this method. It is up to the caller to close the SqlDataReader and the connection
when finished. Since we used the CommandBehavior.CloseConnection value for the behavior argument,
the user of the method only has to remember to call the SqlDataReader’s Close method in order to close
the underlying SqlConnection object.

The next function we are going to look at, ExecSpReturnXmlReader, is almost identical to the last two
functions, except that it returns an XmlReader instead of a DataSet or a SqlDataReader.

ExecSpReturnXmlReader
This public function executes a stored procedure and returns an XmlReader instance. The function
requires that the stored procedure contains a FOR XML clause in its SQL statement. Once again, it takes a

381

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 381

stored procedure name (String) and an optional list of parameter names and values (IDictionary).
Here is the code for ExecSpReturnXmlReader:

‘’’ <summary>
‘’’ Executes a stored procedure with or without parameters and returns an
‘’’ XmlReader instance with a live connection to the database. It is
‘’’ very important to call the Close method of the XmlReader as soon
‘’’ as possible after using it. Only use this method when calling stored
‘’’ procedures that return XML results (FOR XML ...).
‘’’ </summary>
‘’’ <param name=”spName”>The name of the stored procedure to execute.</param>
‘’’ <param name=”paramValues”>A name-value pair of stored procedure parameter
‘’’ name(s) and value(s).</param>
‘’’ <returns>An XmlReader object.</returns>
Public Function ExecSpReturnXmlReader(ByVal spName As String, _

ByVal paramValues As IDictionary) As XmlReader

Dim command As SqlCommand = Nothing
Try

‘ Get the initialized SqlCommand instance.
command = GetSqlCommand(spName)
‘ Set the parameter values for the SqlCommand.
SetParameterValues(command, paramValues)

‘ Open the connection.
command.Connection.Open()

‘ Execute the sp and return the XmlReader.
Return command.ExecuteXmlReader()

Catch e As Exception
LogError(e)
Throw New Exception(ExceptionMsg, e)

End Try
End Function

The only difference between this method and ExecSpReturnDataReader is that you call the
ExecuteXmlReader method of the SqlCommand object instead of the ExecuteReader method. Similarly
to the ExecSpReturnDataReader method, users of this method need to close the returned XmlReader
when finished using it in order to properly release resources.This method will only work with SQL Server
2000 and aboveNext, you look at the ExecSp method which only needs the SqlCommand object to get its
work done. Its job is to execute stored procedures that do not return result sets.

ExecSp
This public method executes a stored procedure and does not return a value. It takes a stored procedure
name (String) and an optional list of parameter names and values (IDictionary) for its arguments.
Here is the code for ExecSp:

‘’’ <summary>
‘’’ Executes a stored procedure with or without parameters that
‘’’ does not return output values or a resultset.
‘’’ </summary>

382

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 382

‘’’ <param name=”transaction”>The transaction that the stored procedure
‘’’ will be executed under.</param>
‘’’ <param name=”spName”>The name of the stored procedure to execute.</param>
‘’’ <param name=”paramValues”>A name-value pair of stored procedure parameter
‘’’ name(s) and value(s).</param>
Public Sub ExecSp(ByVal spName As String, ByVal paramValues As IDictionary)

Dim command As SqlCommand = Nothing
Try

‘ Get the initialized SqlCommand instance.
command = GetSqlCommand(transaction, spName)
‘ Set the parameter values for the SqlCommand.
SetParameterValues(command, paramValues)

‘ Run the stored procedure.
RunSp(command)

Catch e As Exception
LogError(e)
Throw New Exception(ExceptionMsg, e)

Finally
‘ Close and release resources.
DisposeCommand(command)

End Try
End Sub

It is almost identical to the other Exec* functions, except when it executes the stored procedure. The
code inside of the private RunSp method opens up the SqlCommand’s SqlConnection object and then it
calls the SqlCommand object’s ExecuteNonQuery method. This ensures that the SqlCommand does not
return any type of DataReader object to read the results. This method will be mostly used to execute
INSERT, UPDATE, and DELETE stored procedures that do not return any results. This method also has an
overload that does not include the SqlTransaction argument.

Following is the code for RunSp:

‘’’ <summary>
‘’’ Opens the SqlCommand object’s underlying SqlConnection and calls
‘’’ the SqlCommand’s ExecuteNonQuery method.
‘’’ </summary>
‘’’ <param name=”command”>An initialized SqlCommand object.</param>
Private Sub RunSp(ByRef command As SqlCommand)

‘ Open the connection.
command.Connection.Open()

‘ Execute the stored procedure.
command.ExecuteNonQuery()

End Sub

Finally, the last public function you are going to create is ExecSpOutputValues.

383

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 383

ExecSpOutputValues
This last public function in the component executes a stored procedure and returns an IDictionary
object that contains output parameter name-value pairs. It is not meant for stored procedures that return
result sets. As with the previous examples, this function takes a stored procedure name (String) and an
optional list of parameter names and values (IDictionary) for its arguments. Here is the code for
ExecSpOutputValues:

‘’’ <summary>
‘’’ Executes a stored procedure with or without parameters and returns an
‘’’ IDictionary instance with the stored procedure’s output parameter
‘’’ name(s) and value(s).
‘’’ </summary>
‘’’ <param name=”transaction”>The transaction that the stored procedure
‘’’ will be executed under.</param>
‘’’ <param name=”spName”>The name of the stored procedure to execute.</param>
‘’’ <param name=”paramValues”>A name-value pair of stored procedure parameter
‘’’ name(s) and value(s).</param>
‘’’ <returns>An IDictionary object.</returns>
Public Function ExecSpOutputValues(ByVal transaction As SqlTransaction, _

ByVal spName As String, _
ByVal paramValues As IDictionary) As IDictionary

Dim command As SqlCommand = Nothing
Try

‘ Get the initialized SqlCommand instance.
command = GetSqlCommand(transaction, spName)
‘ Set the parameter values for the SqlCommand.
SetParameterValues(command, paramValues)

‘ Run the stored procedure.
RunSp(command)

‘ Get the output values.
Dim outputParams As New Hashtable()
Dim param As SqlParameter
For Each param In command.Parameters

If param.Direction = ParameterDirection.Output _
Or param.Direction = ParameterDirection.InputOutput Then
outputParams.Add(param.ParameterName, param.Value)

End If
Next param
Return outputParams

Catch e As Exception
LogError(e)
Throw New Exception(ExceptionMsg, e)

Finally
‘ Close and release resources.
DisposeCommand(command)

End Try
End Function

384

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 384

This function is almost identical to ExecSp, except that after the SqlCommand.ExecuteNonQuery
method is called we iterate through the SqlCommand object’s Parameters collection and look for all of
the parameters that are output parameters. Next, take the values of the output parameters and add the
name-value pair to the IDictionary instance that we return. This method also has an overload that
does not include the SqlTransaction argument.

Using DataSet Objects to Bind to DataGrids
Now that we have built the data access component, it is time to test it. A nice way to test it is to call the
ExecSpReturnDataSet method, take the DataSet object that was created, and then bind the DataSet
to a DataGrid. (You can find more about data binding in Chapter 14.) We also get to see how easily the
DataSet and the DataGrid control integrate together. I have created a Windows Application project
called SqlServerWrapperTestHarness and have added it to the Examples solution. It contains refer-
ences to System, System.Data, System.Drawing, System.Windows.Forms, and System.Xml, as well
as a project reference to the SqlServerWrapper project. I have added a form to the project named
TestForm.vb, with two buttons, one for testing the ExecSpReturnDataSet method and one for testing
the ExecSpReturnSqlRecord method. In this example, we will only be looking at the code for testing
the ExecSpReturnDataSet method. Figure 11-4 shows what the test form looks like.

Figure 11-4

Figure 11-5 shows what your references should look like.

Figure 11-5

385

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 385

Here is the code dare the declarations and private members of the form:

Option Explicit On
Option Strict On

Imports SqlServerWrapper
Imports System.Data.SqlClient
Imports System.Xml
Imports System.Configuration

Public Class TestForm
Inherits System.Windows.Forms.Form

Private _helper As StoredProcedureHelper = Nothing

These declarations should look pretty familiar by now. Note that we are declaring a private variable
(_helper) for the StoredProcedureHelper class that we are using so we can get to the class from other
parts of the Form instead of just a Button Click event handler.

Next, we initialize the _helper variable in the form’s Load event handler:

Private Sub TestForm_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
‘ Set the SQL connection string
Dim connectionString As String =

ConfigurationSettings.AppSettings(“dbConnectionString”)

‘ Call the SqlServer wrapper constructor and
‘ pass the DB connection string and the stored procedures config.
helper = New StoredProcedureHelper(connectionString, _

CType(ConfigurationSettings.GetConfig(“StoredProcedureSettings”), _
XmlNode))

End Sub

As in the other examples before, this code starts out by retrieving a connection string to the pubs
database from the app.config file. We then create a new instance of the StoredProcedureHelper and
assign it to the _helper class variable. During the constructor call to the StoredProcedureHelper
class, first pass in the connection string, and then pass in an XmlNode of the stored procedure metadata
for the StoredProcedureHelper class to consume. This is interesting in the fact that we are passing the
stored procedure metadata in to our class via the GetConfig method of the ConfigurationSettings
class. This is so because we have created a section inside of our app.config file called
StoredProcedureSettings, and we have configured a SectionHandler to let the .NET Framework
application configuration functionality consume our XML and give it back to us as an XmlNode.
Here is what this section looks like inside of the app.config file:

<configSections>
<section name=”StoredProcedureSettings”

type=”SqlServerWrapper.StoredProcedureSectionHandler, SqlServerWrapper” />
</configSections>
<StoredProcedureSettings>

386

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 386

<StoredProcedures>
<StoredProcedure name=”usp_Get_Authors_By_States”>

<Parameters>
<Parameter name=”@states” datatype=”VarChar” direction=”Input”

isNullable=”false” size=”100” />
<Parameter name=”@state_delimiter” datatype=”Char” direction=”Input”

isNullable=”false” size=”1” />
</Parameters>

</StoredProcedure>
<StoredProcedure name=”usp_Get_Author_By_ID”>

<Parameters>
<Parameter name=”@au_id” datatype=”VarChar” direction=”Input”

isNullable=”false” size=”11” />
</Parameters>

</StoredProcedure>
</StoredProcedures>

</StoredProcedureSettings>

This is nice because we do not need to include a separate XML file for the project; we just integrate
seamlessly into the app.config file. Note how we are defining what class in what assembly will
handle consuming the <StoredProcedureSettings> section in the <section> element. The
requirement for this to work is that the class defined must implement the System.Configuration
.IConfigurationSectionHandler interface. Here is the code for the section handler:

Option Explicit On
Option Strict On

Imports System
Imports System.Configuration
Imports System.Xml
Imports System.Xml.Serialization
Imports System.Xml.XPath

Public Class StoredProcedureSectionHandler
Implements IConfigurationSectionHandler

Public Function Create(ByVal parent As Object, _
ByVal configContext As Object, _
ByVal section As System.Xml.XmlNode) As Object _

Implements IConfigurationSectionHandler.Create
Return section(“StoredProcedures”)

End Function
End Class

This code is pretty simple; just return the XML node named StoredProcedures to the caller of the
handler.

Back to our Button’s Click event handler, once we have the StoredProcedureHelper class instance
fully initialized, we then create the parameter values for the stored procedure we want to execute and
pass these arguments to the ExecSpReturnDataSet method:

387

Data Access with ADO.NET 2.0

14_575368 ch11.qxd 10/7/05 11:01 PM Page 387

‘ Add the two parameter name-values.
Dim params As New Hashtable
params.Add(“@states”, “CA”)
params.Add(“@state_delimiter”, “^”)

‘ Execute the sp, and get the DataSet object back.
Dim ds As DataSet = _helper.ExecSpReturnDataSet(“usp_Get_Authors_By_States”, _

“”, params)

The last step is to actually bind the data to the form’s grid:

‘ Bind the DataGrid to the DataSet object.
dgdAuthors.SetDataBinding(ds.Tables(0), Nothing)

Finally, the results should look like Figure 11-6.

Figure 11-6

Summary
This chapter took a look at ADO.NET and the new features of ADO.NET 2.0. We have seen and used the
main objects in ADO.NET that you need to quickly get up and running in order to build data access into
your .NET applications. We took a fairly in-depth look at the DataSet and DataTable classes, since
these are the core classes of ADO.NET.

We looked at stored procedures; first by showing how to create them in SQL Server and then how to
access them from our code. Finally, we built our own custom data access component, which made it easy
to call stored procedures and separate data access code from the rest of business logic code in a .NET
application.

388

Chapter 11

14_575368 ch11.qxd 10/7/05 11:01 PM Page 388

Using XML in
Visual Basic 2005

In this chapter, we’ll look at how you can generate and manipulate Extensible Markup Language
(XML) using Visual Basic 2005. However, using XML in Visual Basic is a vast area to cover (more
than possibly could be covered in this chapter). The .NET Framework exposes five XML-specific
namespaces that contain over a hundred different classes. In addition, there are dozens of other
classes that support and implement XML-related technologies, such as ADO.NET, SQL Server, and
BizTalk. Consequently, we’ll concentrate on the general concepts and the most important classes.

Visual Basic relies on the classes exposed in the following XML-related namespaces to transform,
manipulate, and stream XML documents:

❑ System.Xml provides core support for a variety of XML standards (including DTD,
namespace, DOM, XDR, XPath, XSLT, and SOAP).

❑ System.Xml.Serialization provides the objects used to transform objects to and from
XML documents or streams using serialization.

❑ System.Xml.Schema provides a set of objects that allow schemas to be loaded, created,
and streamed. This support is achieved using a suite of objects that support the in-
memory manipulation of the entities that compose an XML schema.

❑ System.Xml.XPath provides a parser and evaluation engine for the XML Path Language
(XPath).

❑ System.Xml.Xsl provides the objects necessary when working with Extensible
Stylesheet Language (XSL) and XSL Transformations (XSLT).

15_575368 ch12.qxd 10/7/05 11:06 PM Page 389

The XML-related technologies utilized by Visual Basic include other technologies that generate XML
documents and allow XML documents to be managed as a data source:

❑ ADO — The legacy COM objects provided by ADO have the ability to generate XML documents
in stream or file form. ADO can also retrieve a previously persisted XML document and
manipulate it. (Although ADO will not be used in this chapter, ADO and other legacy COM
APIs can be accessed seamlessly from Visual Basic.)

❑ ADO.NET — This uses XML as its underlying data representation: the in-memory data
representation of the ADO.NET DataSet object is XML; the results of data queries are repre-
sented as XML documents; XML can be imported into a DataSet and exported from a DataSet.
(ADO.NET is covered in Chapter 11.)

❑ SQL Server 2000 — XML-specific features were added to SQL Server 2000 (FOR XML queries to
retrieve XML documents and OPENXML to represent an XML document as a rowset). Visual Basic
can use ADO.NET to access SQL Server’s XML-specific features (the documents generated
and consumed by SQL Server can then be manipulated programmatically). Recently, Microsoft
also released SQLXML, which provides an SQL Server 2000 database with some excellent XML
capabilities, such as the ability to query a database using XQuery, get back XML result sets from
a database, work with data just as if it was XML, take huge XML files and have SQLXML
convert them to relational data, and much more. SQLXML allows you to perform these
functions and more via a set of managed .NET classes. You can download SQLXML for free
from the Microsoft SQLXML Web site at http://msdn.microsoft.com/sqlxml.

❑ SQL Server 2005 — SQL Server has now been modified with XML in mind. SQL Server 2005 can
natively understand XML because it is now built into the underlying foundation of the
database. The ability to query and understand XML documents is a valuable addition to this
database server. SQL Server 2005 also comes in a lightweight (and free) version called SQL
Server Express Edition.

In this chapter, we’ll make sense of this range of technologies by introducing some basic XML concepts
and demonstrating how Visual Basic, in conjunction with the .NET Framework, can make use of XML.
Specifically, you will:

❑ Learn the rationale behind XML.

❑ Look at the namespaces within the .NET Framework class library that deal with XML and XML-
related technologies.

❑ Take a closer look at some of the classes contained within these namespaces.

❑ Gain an overview of some of the other Microsoft technologies that utilize XML, particularly
SQL Server and ADO.NET.

At the end of this chapter, you will be able to generate, manipulate, and transform XML using Visual Basic.

390

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 390

An Introduction to XML
XML is a tagged markup language similar to HTML. In fact, XML and HTML are distant cousins and
have their roots in the Standard Generalized Markup Language (SGML). This means that XML leverages
one of the most useful features of HTML — readability. However, XML differs from HTML in that XML
represents data, while HTML is a mechanism for displaying data. The tags in XML describe the data, for
example:

<?xml version=”1.0” encoding=”utf-8”?>
<Movies>

<FilmOrder name=”Grease” filmId=”1” quantity=”21”></FilmOrder>
<FilmOrder name=”Lawrence of Arabia” filmId=”2” quantity=”10”></FilmOrder>
<FilmOrder name=”Star Wars” filmId=”3” quantity=”12”></FilmOrder>
<FilmOrder name=”Shrek” filmId=”4” quantity=”14”></FilmOrder>

</Movies>

This XML document is used to represent a store order for a collection of movies. The standard used
to represent an order of films would be useful to movie rental firms, collectors, and others. This
information can be shared using XML because:

❑ The data tags in XML are self-describing.

❑ XML is an open standard and supported on most platforms today.

XML supports the parsing of data by applications not familiar with the contents of the XML document.
XML documents can also be associated with a description (a schema) that informs an application as to
the structure of the data within the XML document.

At this stage, XML looks simple — it’s just a human-readable way to exchange data in a universally
accepted way. The essential points that you should understand about XML are

❑ XML data can be stored in a plain text file.

❑ A document is said to be well formed if it adheres to the XML standard.

❑ Tags are used to specify the contents of a document, for example, <FilmOrder>.

❑ XML elements (also called nodes) can be thought of as the objects within a document.

❑ Elements are the basic building blocks of the document. Each element contains a start tag and
end tag. A tag can be both a start and an end tag, for example, <FilmOrder/>. Such a tag is said
to be empty.

❑ Data can be contained in the element (the element content) or within attributes contained in the
element.

❑ XML is hierarchical. One document can contain multiple elements, which can themselves contain
child elements, and so on. However, an XML document can only have one root element.

This last point means that the XML document hierarchy can be thought of as a tree containing nodes:

❑ The example document has a root node, <Movies>.

❑ The branches of the root node are elements of type <FilmOrder>.

❑ The leaves of the XML element, <FilmOrder>, are its attributes: name, quantity, and filmId.

391

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 391

Of course, we’re interested in the practical use of XML by Visual Basic. A practical manipulation of the
example XML is to display for the staff of the movie supplier firm a particular movie order in some
application so that this supplier could fill the order, and then save the information to a database. In this
chapter, you’ll look at how you can perform such tasks using the functionality provided by the .NET
Framework class library.

XML Serialization
The simplest way to demonstrate Visual Basic’s support for XML is not with a complicated technology,
such as SQL Server or ADO.NET. Instead, we will demonstrate a practical use of XML by serializing a class.

The serialization of an object means that it is written out to a stream, such as a file or a socket (this is also
known as dehydrating an object). The reverse process can also be performed: An object can be deserialized
(or rehydrated) by reading it from a stream.

The type of serialization you are discussing in this chapter is XML serialization, where XML is used to
represent a class in serialized form.

To help you understand XML serialization, let’s examine a class named FilmOrder (which can be found
in the code download from www.wrox.com). This class is implemented in Visual Basic and is used by the
company for processing an order for movies. This class could be instantiated on a firm’s PDA, laptop, or
even mobile phone (so long as the .NET Framework was installed).

An instance of FilmOrder corresponding to each order could be serialized to XML and sent over a
socket using the PDA’s cellular modem. (If the person making the order had a PDA which did not have a
cellular modem, the instance of FilmOrder could be serialized to a file.) The order could then be pro-
cessed when the PDA was dropped into a docking cradle and synced. What we are talking about here is
data in a propriety form, an instance of FilmOrder being converted into a generic form — XML — that
can be universally understood.

The System.Xml.Serialization namespace contains classes and interfaces that support the serialization
of objects to XML and the deserialization of objects from XML. Objects are serialized to documents or
streams using the XmlSerializer class. Let’s look at how you can use XmlSerializer. First, you need to
define an object that implements a default constructor, such as FilmOrder:

Public Class FilmOrder

‘ These are Public because we have yet to implement
‘ properties to provide program access.

Public name As String
Public filmId As Integer
Public quantity As Integer

Public Sub New()
End Sub

Public Sub New(ByVal name As String, _
ByVal filmId As Integer, _

392

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 392

ByVal quantity As Integer)
Me.name = name
Me.filmId = filmId
Me.quantity = quantity

End Sub
End Class

This class should be created in a console application. From there, let’s move onto the module. Within the
module’s Sub Main, create an instance of XmlSerializer, specifying the object to serialize and its type
in the constructor:

Dim serialize As XmlSerializer = _
New XmlSerializer(GetType(FilmOrder))

Create an instance of the same type as was passed as parameter to the constructor of XmlSerializer:

Dim MyFilmOrder As FilmOrder = _
New FilmOrder(“Grease”, 101, 10)

Call the Serialize method of the XmlSerializer instance, and specify the stream to which the
serialized object is written (parameter one, Console.Out) and the object to be serialized (parameter two,
prescription):

serialize.Serialize(Console.Out, MyFilmOrder)
Console. WriteLine()

To make reference to the XmlSerializer object, you are going to have to make reference to the
System.Xml.Serialization namespace:

Imports System.Xml
Imports System.Xml.Serialization

Running the module, the following output is generated by the preceding code:

<?xml version=”1.0” encoding=”IBM437”?>
<FilmOrder xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>

This output demonstrates the default way that the Serialize method serializes an object:

❑ Each object serialized is represented as an element with the same name as the class, in this case
FilmOrder.

❑ The individual data members of the class serialized are contained in elements named for each
data member, in this case name, filmId, and quantity.

393

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 393

Also generated are

❑ The specific version of XML generated, in this case 1.0

❑ The encoding used, in this case IBM437

❑ The schemas used to describe the serialized object, in this case www.w3.org/2001/
XMLSchema-instance and www.w3.org/2001/XMLSchema

A schema can be associated with an XML document and describe the data it contains (name, type, scale,
precision, length, and so on). Either the actual schema or a reference to where the schema resides can be
contained in the XML document. In either case, an XML schema is a standard representation that can be
used by all applications that consume XML. This means that applications can use the supplied schema to
validate the contents of an XML document generated by the Serialize method of XmlSerializer.

The code snippet that demonstrated the Serialize method of XmlSerializer displayed the XML
generated to Console.Out. Clearly, we do not expect an application to use Console.Out when it would
like to access a FilmOrder object in XML form. The basic idea shown was how serialization can be
performed in just two lines of code (one call to a constructor and one call to method). The entire section of
code responsible for serializing the instance of FilmOrder is

Try
Dim serialize As XmlSerializer = _

New XmlSerializer(GetType(FilmOrder))
Dim MyMovieOrder As FilmOrder = _

New FilmOrder(“Grease”, 101, 10)
serialize.Serialize(Console.Out, MyMovieOrder)
Console.Out.WriteLine()
Console.Readline()

Catch ex As Exception
Console.Error.WriteLine(ex.ToString())

End Try

The Serialize method’s first parameter is overridden so that it can serialize XML to a file (the file
name is given as type String), a Stream, a TextWriter, or an XmlWriter. When serializing to Stream,
TextWriter, or XmlWriter, adding a third parameter to the Serialize method is permissible. This third
parameter is of type XmlSerializerNamespaces and is used to specify a list of namespaces that qualify
the names in the XML-generated document. The permissible overrides of the Serialize method are:

Public Sub Serialize(Stream, Object)
Public Sub Serialize(TextWriter, Object)
Public Sub Serialize(XmlWriter, Object)
Public Sub Serialize(Stream, Object, XmlSerializerNamespaces)
Public Sub Serialize(TextWriter, Object, XmlSerializerNamespaces)
Public Sub Serialize(XmlWriter, Object, XmlSerializerNamespaces)

An object is reconstituted using the Deserialize method of XmlSerializer. This method is overrid-
den and can deserialize XML presented as a Stream, a TextReader, or an XmlReader. The overloads
for Deserialize are:

Public Function Deserialize(Stream) As Object
Public Function Deserialize(TextReader) As Object
Public Function Deserialize(XmlReader) As Object

394

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 394

Before demonstrating the Deserialize method, we will introduce a new class,
WXClientMultiPrescription. This class contains an array of prescriptions (an array of
WXClientPrescription objects). WXClientMultiPrescription is defined as follows:

Public Class FilmOrder_Multiple

Public multiFilmOrders() As FilmOrder

Public Sub New()
End Sub

Public Sub New(ByVal multiFilmOrders() As FilmOrder)
Me.multiFilmOrders = multiFilmOrders

End Sub
End Class

The FilmOrder_Multiple class contains a fairly complicated object, an array of FilmOrder objects.
The underlying serialization and deserialization of this class is more complicated than that of a single
instance of a class that contains several simple types. However, the programming effort involved on
your part is just as simple as before. This is one of the great ways in which the .NET Framework makes it
easy for you to work with XML data, no matter how it is formed.

To work through an example of the deserialization process, let’s start by first creating a sample order
stored as an XML file called Filmorama.xml.

<?xml version=”1.0” encoding=”utf-8” ?>
<FilmOrder_Multiple xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<multiFilmOrders>
<FilmOrder>

<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Lawrence of Arabia</name>
<filmId>102</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Star Wars</name>
<filmId>103</filmId>
<quantity>10</quantity>

</FilmOrder>
</multiFilmOrders>

</FilmOrder_Multiple>

Once the XML file is in place, the next step is to change your console application so it will take this XML
file and deserialize its contents.

395

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 395

From there, it is important to make sure that your console application has made the proper namespace
references:

Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

Then, the following code demonstrates an object of type FilmOrder_Multiple being deserialized (or
rehydrated) from a file, Filmorama.xml. This object is deserialized using this file in conjunction with
the Deserialize method of XmlSerializer:

‘ Open file, ..\Filmorama.xml
Dim dehydrated As FileStream = _

New FileStream(“..\Filmorama.xml”, FileMode.Open)

‘ Create an XmlSerializer instance to handle deserializing, ‘ FilmOrder_Multiple
Dim serialize As XmlSerializer = _

New XmlSerializer(GetType(FilmOrder_Multiple))

‘ Create an object to contain the deserialized instance of the object.
Dim myFilmOrder As FilmOrder_Multiple = _

New FilmOrder_Multiple

‘ Deserialize object
myFilmOrder = serialize.Deserialize(dehydrated)

Once deserialized, the array of prescriptions can be displayed:

Dim SingleFilmOrder As FilmOrder

For Each SingleFilmOrder In myFilmOrder.multiFilmOrders
Console.Out.WriteLine(“{0}, {1}, {2}”, _

SingleFilmOrder.name, _
SingleFilmOrder.filmId, _
SingleFilmOrder.quantity)

Next

Console.ReadLine()

This example is just code that serializes an instance of type, FilmOrder_Multiple. The output generated
by displaying the deserialized object containing an array of film orders is:

Grease, 101, 10
Lawrence of Arabia, 102, 10
Star Wars, 103, 10

XmlSerializer also implements a CanDeserialize method. The prototype for this method is:

Public Overridable Function CanDeserialize(ByVal xmlReader As XmlReader) _
As Boolean

396

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 396

If CanDeserialize returns True, then the XML document specified by the xmlReader parameter can
be deserialized. If the return value of this method is False, then the specified XML document cannot be
deserialized.

The FromTypes method of XmlSerializer facilitates the creation of arrays that contain
XmlSerializer objects. This array of XmlSerializer objects can be used in turn to process arrays of
the type to be serialized. The prototype for FromTypes is:

Public Shared Function FromTypes(ByVal types() As Type) As XmlSerializer()

Before we further explore the System.Xml.Serialization namespace, we need to take a moment to
consider the various uses of the term “attribute.”

Source Code Style Attributes
Thus far you have seen attributes applied to a specific portion of an XML document. Visual Basic has
its own flavor of attributes, as do C# and each of the other .NET languages. These attributes refer
to annotations to the source code that specify information (or metadata) that can be used by other
applications without the need for the original source code. We will call such attributes Source Code Style
attributes.

In the context of the System.Xml.Serialization namespace, Source Code Style attributes can be
used to change the names of the elements generated for the data members of a class or to generate XML
attributes instead of XML elements for the data members of a class. To demonstrate this, we will use a
class called ElokuvaTilaus, which contains data members named name, filmId, and quantity. It just
so happens that the default XML generated when serializing this class is not in a form that can be readily
consumed by an external application. As an example of this, assume that a Finnish development team
has written this external application, and hence the XML element and attribute names are in Finnish
(minus the umlauts) rather than in English.

To rename the XML generated for a data member, name, a Source Code Style attribute will be used.
This Source Code Style attribute would specify that when ElokuvaTilaus is serialized, the name data
member would be represented as an XML element, <Nimi>. The actual Source Code Style attribute that
specifies this is:

<XmlElementAttribute(“Nimi”)> Public name As String

ElokuvaTilaus also contains other Source Code Style attributes:

❑ <XmlAttributeAttribute(“ElokuvaId”)> — Specifies that filmId is to be serialized as an
XML attribute named ElokuvaId

❑ <XmlAttributeAttribute(“Maara”)> — Specifies that quantity is to be serialized as an
XML attribute named Maara

397

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 397

ElokuvaTilaus is defined as follows:

Imports System.Xml.Serialization

Public Class ElokuvaTilaus

‘ These are Public because we have yet to implement
‘ properties to provide program access.

<XmlElementAttribute(“Nimi”)> Public name As String
<XmlAttributeAttribute(“ElokuvaId”)> Public filmId As Integer
<XmlAttributeAttribute(“Maara”)> Public quantity As Integer

Public Sub New()
End Sub

Public Sub New(ByVal name As String, _
ByVal filmId As Integer, _
ByVal quantity As Integer)

Me.name = name
Me.filmId = filmId
Me.quantity = quantity

End Sub

End Class

ElokuvaTilaus can be serialized as follows:

Dim serialize As XmlSerializer = _
New XmlSerializer(GetType(ElokuvaTilaus))

Dim MyMovieOrder As ElokuvaTilaus = _
New ElokuvaTilaus(“Grease”, 101, 10)

serialize.Serialize(Console.Out, MyMovieOrder)

The output generated by this code reflects the Source Code Style attributes associated with class
ElokuvaTilaus:

<?xml version=”1.0” encoding=”IBM437”?>
<ElokuvaTilaus xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
ElokuvaId=”101” Maara=”10”>

<Nimi>Grease</Nimi>
</ElokuvaTilaus>

The value of filmId is contained in an XML attribute, ElokuvaId, and the value of quantity is contained
in an XML attribute, Maara. The value of name is contained in an XML element, Nimi.

The example has only demonstrated the Source Code Style attributes exposed by the
XmlAttributeAttribute and XmlElementAttribute classes in the System.Xml .Serialization
namespace. A variety of other Source Code Style attributes exist in this namespace that also control the

398

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 398

form of XML generated by serialization. The classes associated with such Source Code Style attributes
include XmlTypeAttribute, XmlTextAttribute, XmlRootAttribute, XmlIncludeAttribute,
XmlIgnoreAttribute, and XmlEnumAttribute.

System.Xml Document Support
The System.Xml namespace implements a variety of objects that support standards-based XML process-
ing. The XML-specific standards facilitated by this namespace include XML 1.0, Document Type
Definition (DTD) support, XML namespaces, XML schemas, XPath, XQuery, XSLT, DOM Level 1 and
DOM Level 2 (Core implementations), as well as SOAP 1.1, SOAP 1.2, SOAP Contract Language, and
SOAP Discovery. The System.Xml namespace exposes over 30 separate classes in order to facilitate this
level of XML standard’s compliance.

With respect to generating and navigating XML documents, there are two styles of access:

❑ Stream-based — System.Xml exposes a variety of classes that read XML from and write XML
to a stream. This approach tends to be a fast way to consume or generate an XML document
because it represents a set of serial reads or writes. The limitation of this approach is that it does
not view the XML data as a document composed of tangible entities, such as nodes, elements,
and attributes. An example of where a stream could be used is when receiving XML documents
from a socket or a file.

❑ Document Object Model (DOM)–based — System.Xml exposes a set of objects that access
XML documents as data. The data is accessed using entities from the XML document tree
(nodes, elements, and attributes). This style of XML generation and navigation is flexible but
may not yield the same performance as stream-based XML generation and navigation. DOM is
an excellent technology for editing and manipulating documents. For example, the functionality
exposed by DOM might make merging your checking, savings, and brokerage accounts simpler.

XML Stream-Style Parsers
When demonstrating XML serialization, you alluded to XML stream-style parsers. After all, when
an instance of an object was serialized to XML, it had to be written to a stream, and when it was
deserialized, it was read from a stream. When an XML document is parsed using a stream parser, the
parser always points to the current node in the document. The basic architecture of stream parsers is
shown in Figure 12-1.

The classes that access a stream of XML (read XML) and generate a stream of XML (write XML) are
contained in the System.Xml namespace and are

❑ XmlWriter — This abstract class specifies a noncached, forward-only stream that writes an
XML document (data and schema).

❑ XmlReader — This abstract class specifies a noncached, forward-only stream that reads an XML
document (data and schema).

399

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 399

Figure 12-1

Your diagram of the classes associated with the XML stream-style parser referred to one other class,
XslTransform. This class is found in the System.Xml.Xsl namespace and is not an XML stream-style
parser. Rather, it is used in conjunction with XmlWriter and XmlReader. This class will be reviewed in
detail later.

The System.Xml namespace exposes a plethora of additional XML manipulation classes in addition to
those shown in the architecture diagram. The classes shown in the diagram include

❑ XmlResolver — This abstract class resolves an external XML resource using a Uniform
Resource Identifier (URI). XmlUrlResolver is an implementation of an XmlResolver.

❑ XmlNameTable — This abstract class provides a fast means by which an XML parser can access
element or attribute names.

Writing an XML Stream
An XML document can be created programmatically in .NET. One way to perform this task is by writing
the individual components of an XML document (schema, attributes, elements, and so on) to an XML
stream. Using a unidirectional write-stream means that each element and its attributes must be written in
order — the idea is that data is always written at the head of the stream. To accomplish this, you use a
writable XML stream class (a class derived from XmlWriter). Such a class ensures that the XML document
you generate correctly implements the W3C Extensible Markup Language (XML) 1.0 specification and the
Namespaces in XML specification.

But why would this be necessary since you have XML serialization? You need to be very careful here to
separate interface from implementation. XML serialization worked for a specific class, ElokuvaTilaus.
The class is a proprietary implementation and not the format in which data is exchanged. For this one
specific case, the XML document generated when ElokuvaTilaus is serialized just so happens to be the
XML format used when placing an order for some movies. ElokuvaTilaus was given a little help from
Source Code Style attributes so that it would conform to a standard XML representation of a film order
summary.

Document
Object

Model [DOM]

StreamingXML

XmlDocument

XmlReader

XmlWriter

XsITransform

XSL/T

other classes

XmlDocument

XmlDocument

400

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 400

In a different application, if the software used to manage an entire movie distribution business wants to
generate movie orders, it will have to generate a document of the appropriate form. The movie distribution
management software will achieve this by using the XmlWriter object.

Before reviewing the subtleties of XmlWriter, it is important to note that this class exposes over 40
methods and properties. The example presented in this section will provide an overview that touches on
a subset of these methods and properties. This subset will allow an XML document that corresponds to a
movie order to be generated.

For this example, let’s build a module that generates an XML document corresponding to a movie order.
You will use an instance of XmlWriter, FilmOrdersWriter, which will actually be a file on disk. This
means that the XML document generated is streamed to this file. Since the FilmOrdersWriter variable
represents a file, it must be

❑ Created — The instance of XmlWriter FilmOrdersWriter is created using the Create method
as well as by assigning all the properties of this object with the XmlWriterSettings object.

❑ Opened — The file the XML is streamed to, FilmOrdersProgrammatic.xml, is opened by
passing the file name to the constructor associated with XmlWriter.

❑ Generated — The process of generating the XML document is described in detail at the end of
this section.

❑ Closed — The file (the XML stream) is closed using the Close method of XmlWriter or by
simply using the Using keyword.

Before you go about creating the XmlWriter object, you will first need to customize how the object will
operate by using the XmlWriterSettings object. This object, which is new to .NET 2.0, allows you to
configure the behavior of the XmlWriter object before you instantiate it.

Dim myXmlSettings As New XmlWriterSettings
myXmlSettings.Indent = True
myXmlSettings.NewLineOnAttributes = True

The XmlWriterSettings object allows for a few settings on how the XML creation will be handled by
the XmlWriter object. The following table details the properties of the XmlWriterSettings class.

Property Initial Value Description

CheckCharacters True This property, if set to True, will
perform a character check upon the
contents of the XmlWriter object. Legal
characters can be found at www.w3.org/
TR/REC-xml#charsets.

CloseOutput False This property will get or set a value
indicating whether the XmlWriter should
also close the underlying stream or
System.IO.TextWriter when the
XmlWriter.Close method is called.

Table continued on following page

401

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 401

Property Initial Value Description

ConformanceLevel ConformanceLevel Allows the XML to be checked to make
Document sure that it follows certain specified rules.

Possible conformance level settings
include Document, Fragment, and
Default.

Encoding Encoding.UTF8 Defines the encoding of the XML
generated.

Indent False Defines whether the XML generated
should be indented or not. Setting this
value to True will properly indent child
nodes from parent nodes.

IndentChars Two spaces Specifies the number of spaces by which
child nodes will be indented from parent
nodes. This setting only works when the
Indent property is set to True.

NewLineChars \r\n Assigns the characters that are used to
define line breaks.

NewLineHandling System.Xml This property gets or sets a value
.NewLineHandling indicating whether to normalize line
.Replace breaks in the output.

NewLineOnAttributes False Defines whether a node’s attributes
should be written to a new line in the
construction. This will occur if set to
True.

OmitXmlDeclaration False Defines whether an XML declaration
should be generated in the output. This
omission only occurs if set to True.

OutputMethod System.Xml This property gets the method used to
.XmlOutputMethod serialize the System.Xml.XmlWriter
.Xml output.

Once the XmlWriterSettings object has been instantiated and assigned the values you deem necessary,
the next steps are to invoke the XmlWriter object as well as make the association between the
XmlWriterSettings object and the XmlWriter object.

The basic infrastructure for managing the file (the XML text stream) and applying the settings class is:

Dim FilmOrdersWriter As XmlWriter = _
XmlWriter.Create(“..\FilmOrdersProgrammatic.xml”, myXmlSettings)

FilmOrdersWriter.Close()

402

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 402

or the following, if you are utilizing the Using keyword, which is new to the .NET Framework 2.0 and
highly recommended:

Using FilmOrdersWriter As XmlTextWriter = _
XmlWriter.Create(“..\FilmOrdersProgrammatic.xml”, myXmlSettings)

End Using

With the preliminaries completed (file created and formatting configured), the process of writing the
actual attributes and elements of your XML document can begin. The sequence of steps used to generate
your XML document is:

❑ Write an XML comment using the WriteComment method. This comment describes from
whence the concept for this XML document originated and generates the following code:

<!-- Same as generated by serializing, ElokuvaTilaus -->

❑ Begin writing the XML element, <ElokuvaTilaus>, by calling the WriteStartElement
method. You can only begin writing this element because its attributes and child elements must
be written before the element can be ended with a corresponding </ElokuvaTilaus>. The
XML generated by the WriteStartElement method is:

<ElokuvaTilaus>

❑ Write the attributes associated with <ElokuvaTilaus> by calling the WriteAttributeString
method twice. The XML generated by calling the WriteAttributeString method twice adds
to the ElokuvaTilausXML element that is currently being written to:

<ElokuvaTilaus ElokuvaId=”101” Maara=”10”>

❑ Using the WriteElementString method, write the child XML element <Nimi> contained in the
XML element, <ElokuvaTilaus>. The XML generated by calling this method is:

<Nimi>Grease</Nimi>

❑ Complete writing the <ElokuvaTilaus> parent XML element by calling the WriteEndElement
method. The XML generated by calling this method is:

</ElokuvaTilaus>

Let’s now put all this together in the Module1.vb file shown here:

Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

Module Module1

Sub Main()

Dim myXmlSettings As New XmlWriterSettings

403

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 403

myXmlSettings.Indent = True
myXmlSettings.NewLineOnAttributes = True

Using FilmOrdersWriter As XmlWriter = _
XmlWriter.Create(“..\FilmOrdersProgrammatic.xml”, myXmlSettings)

FilmOrdersWriter.WriteComment(“ Same as generated “ & _
“by serializing, ElokuvaTilaus “)

FilmOrdersWriter.WriteStartElement(“ElokuvaTilaus”)
FilmOrdersWriter.WriteAttributeString(“ElokuvaId”, “101”)
FilmOrdersWriter.WriteAttributeString(“Maara”, “10”)
FilmOrdersWriter.WriteElementString(“Nimi”, “Grease”)
FilmOrdersWriter.WriteEndElement() ‘ End ElokuvaTilaus

End Using

End Sub

End Module

Once this is run, you will then find the XML file FilmOrdersProgrammatic.xml created in the same
folder as the Module1.vb file. The content of this file is:

<?xml version=”1.0” encoding=”utf-8”?>
<!-- Same as generated by serializing, ElokuvaTilaus -->
<ElokuvaTilaus

ElokuvaId=”101”
Maara=”10”>
<Nimi>Grease</Nimi>

</ElokuvaTilaus>

The previous XML document is the same in form as the XML document generated by serializing the
ElokuvaTilaus class. Notice how in the previous XML document the <Nimi> element is indented two
characters and that each attribute is on a different line in the document? This was achieved using the
XmlWriterSettings class.

The sample application covered only a small portion of the methods and properties exposed by the XML
stream-writing class, XmlWriter. Other methods implemented by this class include methods that
manipulate the underlying file, such as the Flush method, and methods that allow XML text to be
written directly to the stream, such as the WriteRaw method.

The XmlWriter class also exposes a variety of methods that write a specific type of XML data to the
stream. These methods include WriteBinHex, WriteCData, WriteString, and WriteWhiteSpace.

You can now generate the same XML document in two different ways. You have used two different
applications that took two different approaches to generating a document that represents a standardized
movie order. However, there are even more ways to generate XML, depending on the circumstances. For
example, you could receive a movie order from a store, and this order would have to be transformed
from the XML format used by the supplier to your own order format.

404

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 404

Reading an XML Stream
In .NET, XML documents can be read from a stream as well. The way a readable stream works is that data
is traversed in the stream in order (first XML element, second XML element, and so on). This traversal is
very quick because the data is processed in one direction, and features, such as write and move backward
in the traversal, are not supported. At any given instance, only data at the current position in the stream
can be accessed.

Before exploring how an XML stream can be read, you need to understand why it should be read in
the first place. To answer this question, let’s return to your movie supplier example. Imagine that the
application that manages the movie orders can generate a variety of XML documents corresponding to
current orders, preorders, and returns. All the documents (current orders, preorders, and returns) can be
extracted in stream form and processed by a report-generating application. This application prints up the
orders for a given day, the preorders that are going to be due, and the returns that are coming down back
to the supplier. The report-generating application processes the data by reading in and parsing a stream
of XML.

One class that can be used to read and parse such an XML stream is XmlReader. Other classes in the .NET
Framework are derived from XmlReader, such as XmlTextReader, which can read XML from a file
(specified by a string corresponding to the file’s name), a Stream, or an XmlReader. For demonstration
purposes, you will use an XmlReader to read an XML document contained in a file. Reading XML from a
file and writing it to a file is not the norm when it comes to XML processing, but a file is the simplest way
to access XML data. This simplified access allows you to focus more on XML-specific issues.

In creating a sample, the fist step is to make the proper imports into the Module1.vb file:

Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

From there, the next step in accessing a stream of XML data is to create an instance of the object that will
open the stream (the readMovieInfo variable of type XmlReader) and then to open the stream itself. Your
application performs this as follows (where MovieManage.xml will be the name of the file containing the
XML document):

Dim myXmlSettings As New XmlReaderSettings()
Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)

You will notice that like the XmlWriter has a settings class, the XmlReader also has a settings class.
Though you can make assignments to the XmlReaderSettings object, in this case you do not. Later,
this chapter will detail the XmlReaderSettings object.

The basic mechanism for traversing each stream is to traverse from node to node using the Read
method. Node types in XML include element and white space. Numerous other node types are defined,
but for the sake of this example you will focus on traversing XML elements and the white space that is
used to make the elements more readable (carriage returns, linefeeds, and indentation spaces). Once the
stream is positioned at a node, the MoveToNextAttribute method can be called to read each attribute
contained in an element. The MoveToNextAttribute method will only traverse attributes for nodes
that contain attributes (nodes of type element). An example of an XmlReader traversing each node and
then traversing the attributes of each node follows:

405

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 405

While readMovieInfo.Read()
‘ Process node here.
While readMovieInfo.MoveToNextAttribute()

‘ Process attribute here.
End While

End While

This code, which reads the contents of the XML stream, does not utilize any knowledge of the stream’s
contents. However, a great many applications know exactly how the stream they are going to traverse is
structured. Such applications can use XmlReader in a more deliberate manner and not simply traverse
the stream without foreknowledge.

Once the example stream has been read, it can be cleaned up using the End Using call:

End Using

This ReadMovieXml subroutine takes the file name containing the XML to read as a parameter. The code
for the subroutine is as follows and is basically the code just outlined:

Private Sub ReadMovieXml(ByVal fileName As String)
Dim myXmlSettings As New XmlReaderSettings()
Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)

While readMovieInfo.Read()
ShowXmlNode(readMovieInfo)
While readMovieInfo.MoveToNextAttribute()

ShowXmlNode(readMovieInfo)
End While

End While
End Using

Console.ReadLine()
End Sub

For each node encountered after a call to the Read method, ReadMovieXml calls the ShowXmlNode sub-
routine. Similarly, for each attribute traversed, the ShowXmlNode subroutine is called. This subroutine
breaks down each node into its subentities.

❑ Depth — The Depth property of XmlReader determines the level at which a node resides in the
XML document tree. To understand depth, consider the following XML document composed
solely of elements: <A><C><D></D></C>. Element <A> is the root element and
when parsed would return a Depth of 0. Elements and <C> are contained in <A> and are
hence a Depth value of 1. Element <D> is contained in <C>. The Depth property value associ-
ated with <D> (depth of 2) should, therefore, be one more than the Depth property associated
with <C> (depth of 1).

❑ Type — The type of each node is determined using the NodeType property of XmlReader. The
node returned is of enumeration type, XmlNodeType. Permissible node types include
Attribute, Element, and Whitespace. (Numerous other node types can also be returned
including CDATA, Comment, Document, Entity, and DocumentType.)

❑ Name — The type of each node is retrieved using the Name property of XmlReader. The name
of the node could be an element name, such as <ElokuvaTilaus>, or an attribute name, such as
ElokuvaId.

406

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 406

❑ Attribute Count — The number of attributes associated with a node is retrieved using the
AttributeCount property of XmlReader’s NodeType.

❑ Value — The value of a node is retrieved using the Value property of XmlReader. For example,
the element node <Nimi> contains a value of Grease.

Subroutine ShowXmlNode is implemented as follows:

Private Sub ShowXmlNode(ByVal reader As XmlReader)

If reader.Depth > 0 Then
For depthCount As Integer = 1 To reader.Depth

Console.Write(“ “)
Next

End If

If reader.NodeType = XmlNodeType.Whitespace Then

Console.Out.WriteLine(“Type: {0} “, reader.NodeType)

ElseIf reader.NodeType = XmlNodeType.Text Then

Console.Out.WriteLine(“Type: {0}, Value: {1} “, _
reader.NodeType, _
reader.Value)

Else

Console.Out.WriteLine(“Name: {0}, Type: {1}, “ & _
“AttributeCount: {2}, Value: {3} “, _
reader.Name, _
reader.NodeType, _
reader.AttributeCount, _
reader.Value)

End If

End Sub

Within the ShowXmlNode subroutine, each level of node depth adds two spaces to the output generated:

If reader.Depth > 0 Then
For depthCount As Integer = 1 To reader.Depth

Console.Write(“ “)
Next

End If

You add these spaces in order to make the output generated human-readable (so you can easily deter-
mine the depth of each node displayed). For each type of node, ShowXmlNode displays the value of the
NodeType property. The ShowXmlNode subroutine makes a distinction between nodes of type
Whitespace and other types of nodes. The reason for this is simple: A node of type Whitespace does
not contain a name or attribute count. The value of such a node is any combination of white-space char-
acters (space, tab, carriage return, and so on). Therefore, it does not make sense to display the properties
if the NodeType is XmlNodeType.WhiteSpace. Nodes of type Text have no name associated with them

407

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 407

and so for this type, subroutine ShowXmlNode only displays the properties NodeType and Value. For all
other node types, the Name, AttributeCount, Value, and NodeType properties are displayed.

For the finalization of this module, add a Sub Main as follows:

Sub Main(ByVal args() As String)
ReadMovieXml(“..\MovieManage.xml”)

End Sub

An example construction of the MovieManage.xml file is:

<?xml version=”1.0” encoding=”utf-8” ?>
<MovieOrderDump>

<FilmOrder_Multiple>
<multiFilmOrders>

<FilmOrder>
<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Lawrence of Arabia</name>
<filmId>102</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Star Wars</name>
<filmId>103</filmId>
<quantity>10</quantity>

</FilmOrder>
</multiFilmOrders>

</FilmOrder_Multiple>

<PreOrder>
<FilmOrder>

<name>Shrek III – Shrek Becomes a Programmer</name>
<filmId>104</filmId>
<quantity>10</quantity>

</FilmOrder>
</PreOrder>

<Returns>
<FilmOrder>

<name>Star Wars</name>
<filmId>103</filmId>
<quantity>2</quantity>

</FilmOrder>
</Returns>

</MovieOrderDump>

408

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 408

Running this module produces the following output (a partial display since it would be rather lengthy):

Name: xml, Type: XmlDeclaration, AttributeCount: 2, Value: version=”1.0”
encoding=”utf-8”
Name: version, Type: Attribute, AttributeCount: 2, Value: 1.0
Name: encoding, Type: Attribute, AttributeCount: 2, Value: utf-8
Type: Whitespace
Name: MovieOrderDump, Type: Element, AttributeCount: 0, Value:
Type: Whitespace
Name: FilmOrder_Multiple, Type: Element, AttributeCount: 0, Value:
Type: Whitespace
Name: multiFilmOrders, Type: Element, AttributeCount: 0, Value:
Type: Whitespace
Name: FilmOrder, Type: Element, AttributeCount: 0, Value:
Type: Whitespace
Name: name, Type: Element, AttributeCount: 0, Value:
Type: Text, Value: Grease

This example managed to use three methods and five properties of XmlReader. The output generated
was informative but far from practical. XmlReader exposes over 50 methods and properties, which means
that you have only scratched the surface of this highly versatile class. The remainder of this section will
look at the XmlReaderSettings class, introduce a more realistic use of XmlReader, and demonstrate
how the classes of System.Xml handle errors.

The XmlReaderSettings Class
Just like the XmlWriter object, the XmlReader object requires settings to be applied for instantiation of
the object. This means that you can apply settings for how the XmlReader object behaves for when it is
reading whatever XML that you might have for it. This includes settings for how to deal with white
space, schemas, and more. The following table details these settings.

Property Initial Value Description

CheckCharacters True This property, if set to True, will
perform a character check upon the
contents of the retrieved object. Legal
characters can be found at www.w3.org/
TR/REC-xml#charsets.

CloseInput False This property gets or sets a value indicat-
ing whether the underlying stream or
System.IO.TextReader should be
closed when the reader is closed.

ConformanceLevel ConformanceLevel Allows for the XML to be checked to
.Document make sure that it follows certain specified

rules. Possible conformance level settings
include Document, Fragment, and
Default.

DtdValidate False Defines whether the XmlReader should
perform a DTD validation.

Table continued on following page

409

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 409

Property Initial Value Description

IgnoreComments False Defines whether comments should be
ignored or not.

IgnoreInlineSchema True Defines whether any inline schemas
should be ignored or not.

IgnoreProcessing False Defines whether processing instructions
Instructions contained within the XML should be

ignored.

IgnoreSchema True Defines whether the xsi:
Location schemaLocation or xsi:

noNamespaceSchemaLocation
attributes should be ignored or not.

IgnoreValidation True Defines whether the XmlReader object
Warnings should ignore all validation warnings.

IgnoreWhitespace False Defines whether the XmlReader object
should ignore all insignificant white
space.

LineNumberOffset 0 Defines the line number which the
LineNumber property starts counting
within the XML file.

LinePositionOffset 0 Defines the line number which the
LineNumber property starts counting
with the XML file.

NameTable An empty Allows the XmlReader to work with a
XmlNameTable specific XmlNameTable object that is used
object for atomized string comparisons.

ProhibitDtd True This property gets or sets a value indi-
cating whether to prohibit document
type definition (DTD) processing.

Schemas An empty Allows the XmlReader to work
XmlSchemaSet with an instance of the XmlSchemaSet
object class.

ValidationFlags This property gets or sets a value
indicating the schema validation settings.

ValidationType ValidationType This property gets or sets a value
.None indicating whether the System.Xml

.XmlReader will perform validation or
type assignment when reading.

XmlResolver A new XmlResolver This property sets the XmlResolver to
with no credentials access external documents.

410

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 410

An example of using this setting class to modify the behavior of the XmlReader class is:

Dim myXmlSettings As New XmlReaderSettings()
myXmlSettings.IgnoreWhitespace = True
myXmlSettings.IgnoreComments = True

Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)
‘ Use XmlReader object here.

End Using

In this case, the XmlReader object that is created will behave in that it will ignore the white space that it
encounters as well as ignoring any of the XML comments. These settings, once established with the
XmlReaderSettings object are then associated to the XmlReader object through its Create method.

Traversing XML Using XmlTextReader
An application can easily use XmlReader to traverse a document that is received in a known format. The
document can thus be traversed in a deliberate manner. You implemented a class that serialized arrays
of movie orders. The next example will take an XML document containing multiple XML documents of
that type and traverse them. Each movie order will be forwarded to the movie supplier by sending a fax.
The document will be traversed as follows:

Read root element: <MovieOrderDump>
Process each <FilmOrder_Multiple> element

Read <multiFilmOrders> element
Process each <FilmOrder>

Send fax for each movie order here

The basic outline for the program’s implementation is to open a file containing the XML document to
parse and to traverse it from element to element.

Dim myXmlSettings As New XmlReaderSettings()

Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)
readMovieInfo.Read()
readMovieInfo.ReadStartElement(“MovieOrderDump”)

Do While (True)

‘**
‘* Process FilmOrder elements here *
‘**

Loop

readMovieInfo.ReadEndElement() ‘ </MovieOrderDump>

End Using

The previous code opened the file using the constructor of XmlReader, and the End Using statement
takes care of shutting everything down for you. The previous code also introduced two methods of the
XmlReader class:

411

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 411

❑ ReadStartElement(String) — This verifies that the current in the stream is an element
and that the element’s name matches the string passed to method ReadStartElement. If the
verification is successful, the stream is advanced to the next element.

❑ ReadEndElement() — This verifies that the current element is an end tab, and if the verification
is successful the stream is advanced to the next element.

The application knows that an element, <MovieOrderDump>, will be found at a specific point in the
document. The ReadStartElement method verifies this foreknowledge of the document format. Once
all the elements contained in element <MovieOrderDump> have been traversed, the stream should point
to the end tag </MovieOrderDump>. The ReadEndElement method verifies this.

The code that traverses each element of type <FilmOrder> similarly uses the ReadStartElement and
ReadEndElement methods to indicate the start and end of the <FilmOrder> and <multiFilmOrders>
elements. The code that ultimately parses the list of prescription and faxes the movie supplier (using the
FranticallyFaxTheMovieSupplier subroutine) is:

Dim myXmlSettings As New XmlReaderSettings()

Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)
readMovieInfo.Read()
readMovieInfo.ReadStartElement(“MovieOrderDump”)

Do While (True)
readMovieInfo.ReadStartElement(“FilmOrder_Multiple”)
readMovieInfo.ReadStartElement(“multiFilmOrders”)

Do While (True)
readMovieInfo.ReadStartElement(“FilmOrder”)
movieName = readMovieInfo.ReadElementString()
movieId = readMovieInfo.ReadElementString()
quantity = readMovieInfo.ReadElementString()
readMovieInfo.ReadEndElement() ‘ clear </FilmOrder>

FranticallyFaxTheMovieSupplier(movieName, movieId, quantity)

‘ Should read next FilmOrder node
‘ else quits
readMovieInfo.Read()

If (“FilmOrder” <> readMovieInfo.Name) Then
Exit Do

End If
Loop

readMovieInfo.ReadEndElement() ‘ clear </multiFilmOrders>
readMovieInfo.ReadEndElement() ‘ clear </FilmOrder_Multiple>

‘ Should read next FilmOrder_Multiple node
‘ else you quit
readMovieInfo.Read() ‘ clear </MovieOrderDump>

If (“FilmOrder_Multiple” <> readMovieInfo.Name) Then
Exit Do

End If

412

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 412

Loop

readMovieInfo.ReadEndElement() ‘ </MovieOrderDump>

End Using

Three lines within the previous code contain a call to the ReadElementString method:

movieName = readMovieInfo.ReadElementString()
movieId = readMovieInfo.ReadElementString()
quantity = readMovieInfo.ReadElementString()

While parsing the stream, it was known that an element named <name> existed and that this element
contained the name of the movie. Rather than parsing the start tag, getting the value, and parsing
the end tag, it was easier just to get the data using the ReadElementString method. This method
retrieves the data string associated with an element and advances the stream to the next element. The
ReadElementString method was also used to retrieve the data associated with the XML elements
<filmId> and <quantity>.

The output of this example was a fax, which we won’t show because the emphasis of this example is on
showing that it is simpler to traverse a document when its form is known. The format of the document is
still verified by XmlReader as it is parsed.

The XmlReader class also exposes properties that give more insight into the data contained in the XML
document and the state of parsing: IsEmptyElement, EOF, and IsStartElement. This class also allows
data in a variety of forms to be retrieved using methods such as ReadBase64, ReadHex, and ReadChars.
The raw XML associated with the document can also be retrieved, using ReadInnerXml and
ReadOuterXml. Once again, you have only scratched the surface of the XmlReader class. You will find
this class to be quite rich in functionality.

Handling Exceptions
XML is text and could easily be read using mundane methods such as Read and ReadLine. A key
feature of each class that reads and traverses XML is inherent support for error detection and handling.
To demonstrate this, consider the following malformed XML document found in the file named
malformed.XML:

<?xml version=”1.0” encoding=”IBM437” ?>
<ElokuvaTilaus ElokuvaId=”101”, Maara=”10”>

<Nimi>Grease</Nimi>
<ElokuvaTilaus>

This document may not immediately appear to be malformed. By wrapping a call to the method you
developed (movieReadXML), you can see what type of exception is raised when XmlReader detects the
malformed XML within this document:

Try
movieReadXML(“..\Malformed.xml”)

Catch xmlEx As XmlException
Console.Error.WriteLine(“XML Error: “ + xmlEx.ToString())

Catch ex As Exception
Console.Error.WriteLine(“Some other error: “ + ex.ToString())

End Try

413

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 413

The methods and properties exposed by the XmlReader class raise exceptions of type System
.Xml.XmlException. In fact, every class in the System.Xml namespace raises exceptions of type
XmlException. Although this is a discussion of errors using an instance of type XmlReader, the con-
cepts reviewed apply to all errors generated by classes found in the System.Xml namespace.

The properties exposed by XmlException include

❑ LineNumber — The number of the line within an XML document where the error occurred.

❑ LinePosition — The position within the line specified by LineNumber where the error
occurred.

❑ Message — The error message that corresponds to the error that occurred. This error took place
at the line in the XML document specified by LineNumber and within the line at the position
specified by LinePostion.

❑ SourceUri — Provides the URI of the element or document in which the error occurred.

The error displayed when subroutine movieReadXML processes malformed.xml is:

XML Error: System.Xml.XmlException: The ‘,’ character, hexadecimal value 0x2C,
cannot begin a name. Line 2, position 49.

Looking closely at the document, there is a comma separating the attributes in element, <FilmOrder>
(ElokuvaTilaus=”101”, Maara=”10”). This comma is invalid. Removing the comma and running the
code again gives the following output:

XML Error: System.Xml.XmlException: This is an unexpected token. Expected
‘EndElement’. Line 5, position 27.

Once again, you can recognize the precise error. In this case, you do not have an end element,
</ElokuvaTilaus>, but you do have an opening element, <ElokuvaTilaus>.

The properties provided by the XmlException class (LineNumber, LinePosition, and Message)
provide a useful level of precision when tracking down errors. The XmlReader class also exposes a level
of precision with respect to the parsing of the XML document. This precision is exposed by the
XmlReader through properties such as LineNumber and LinePosition.

Using the MemoryStream Object
A very useful class that can greatly help you when working with XML is System.IO.MemoryStream.
Rather than needing a network or disk resource backing the stream (as in System.Net.Sockets
.NetworkStream and System.IO.FileStream), MemoryStream backs itself onto a block of memory.
Imagine that you want to generate an XML document and email it. The built-in classes for sending email
rely on having a System.String containing a block of text for the message body. But, if you want to
generate an XML document, you need a stream.

If the document is reasonably sized, you should write the document directly to memory and copy that
block of memory to the email. This is good from a performance and reliability perspective because you
don’t have to open a file, write it, rewind it, and read the data back in again. However, you must con-
sider scalability in this situation because if the file is very large, or you have a great number of smaller
files, you could run out of memory (in which case you’ll have to go the “file” route).

414

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 414

In this section, you’ll see how to generate an XML document to a MemoryStream object. You’ll read the
document back out again as a System.String value and email it. What you’ll do is create a new class
called EmailStream that extends MemoryStream. This new class will contain an extra method called
CloseAndSend that, as its name implies, will close the stream and send the email message.

First, you’ll create a new console application project called EmailStream. The first job is to create a basic
Customer object that contains a few basic members and that can be automatically serialized by .NET
through use of the SerializableAttribute attribute:

<Serializable()> Public Class Customer

‘ members...
Public Id As Integer
Public FirstName As String
Public LastName As String
Public Email As String

End Class

The fun part now is the EmailStream class itself. This needs access to the System.Web.Mail namespace,
so you’ll need to add a reference to the System.Web assembly. The new class should also extend
System.IO.MemoryStream, as shown here:

Imports System.IO
Imports System.Web.Mail

Public Class EmailStream
Inherits MemoryStream

The first job of CloseAndSend is to start putting together the mail message. This is done by creating a
new System.Web.Mail.MailMessage object and configuring the sender, recipient, and subject.

‘ CloseAndSend - close the stream and send the email...
Public Sub CloseAndSend(ByVal fromAddress As String, _

ByVal toAddress As String, _
ByVal subject As String)

‘ Create the new message...
Dim message As New MailMessage
message.From = fromAddress
message.To = toAddress
message.Subject = subject

This method will be called once the XML document has been written to the stream, so you can assume at
this point that the stream contains a block of data. To read the data back out again, you have to rewind the
stream and use a System.IO.StreamReader. Before you do this, the first thing you should do is call
Flush. Traditionally, streams have always been buffered, that is, the data is not sent to the final destination
(the memory block in this case, but a file in the case of a FileStream and so on) each and every time the
stream is written. Instead, the data is written in (pretty much) a nondeterministic way. Because you need all
the data to be written, you call Flush to ensure that all the data has been sent to the destination and that
the buffer is empty.

415

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 415

In a way, EmailStream is a great example of buffering. All of the data is held in a memory “buffer” until
you finally send the data on to its destination in a response to an explicit call to this method:

‘ Flush and rewind the stream...

Flush()
Seek(0, SeekOrigin.Begin)

Once you’ve flushed and rewound the stream, you can create a StreamReader and dredge all the data
out into the Body property of the MailMessage object:

‘ Read out the data...

Dim reader As New StreamReader(Me)
message.Body = reader.ReadToEnd()

After you’ve done that, you close the stream by calling the base class method:

‘ Close the stream...

Close()

Finally, you send the message:

‘ Send the message...

SmtpMail.Send(message)

End Sub

To call this method, you need to add some code to the Main method. First, you create a new Customer
object and populate it with some test data:

Imports System.Xml.Serialization

Module Module1

Sub Main()

‘ Create a new customer...
Dim customer As New Customer
customer.Id = 27
customer.FirstName = “Bill”
customer.LastName = “Gates”
customer.Email = “bill.gates@microsoft.com”

After you’ve done that, you can create a new EmailStream object. You then use XmlSerializer to
write an XML document representing the newly created Customer instance to the block of memory that
EmailStream is backing to:

416

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 416

‘ Create a new email stream...
Dim stream As New EmailStream

‘ Serialize...
Dim serializer As New XmlSerializer(customer.GetType())
serializer.Serialize(stream, customer)

At this point, the stream will be filled with data, and after all the data has been flushed, the block
of memory that EmailStream backs on to will contain the complete document. Now, you can call
CloseAndSend to email the document.

‘ Send the email...
stream.CloseAndSend(“evjen@yahoo.com”, _

“evjen@yahoo.com”, “XML Customer Document”)

End Sub

End Module

You probably already have Microsoft SMTP Service properly configured — this service is necessary
to send email. You also need to make sure that the email addresses used in your code goes to your
email address! Run the project, check your email, and you should see something, as shown in Figure 12-2.

Figure 12-2

417

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 417

Document Object Model (DOM)
The classes of the System.Xml namespace that support the Document Object Model (DOM) interact as
illustrated in Figure 12-3.

Figure 12-3

Within this diagram, an XML document is contained in a class named XmlDocument. Each node within
this document is accessible and managed using XmlNode. Nodes can also be accessed and managed
using a class specifically designed to process a specific node’s type (XmlElement, XmlAttribute, and
so on). XML documents are extracted from XmlDocument using a variety of mechanisms exposed
through such classes as XmlWriter, TextWriter, Stream, and a file (specified by file name of type
String). XML documents are consumed by an XmlDocument using a variety of load mechanisms
exposed through the same classes.

Where a DOM-style parser differs from a stream-style parser is with respect to movement. Using DOM,
the nodes can be traversed forward and backward. Nodes can be added to the document, removed from
the document, and updated. However, this flexibility comes at a performance cost. It is faster to read or
write XML using a stream-style parser.

The DOM-specific classes exposed by System.Xml include

❑ XmlDocument — Corresponds to an entire XML document. A document is loaded using the
Load method. XML documents are loaded from a file (the file name specified as type String),
TextReader, or XmlReader. A document can be loaded using LoadXml in conjunction with a
string containing the XML document. The Save method is used to save XML documents. The
methods exposed by XmlDocument reflect the intricate manipulation of an XML document.
For example, the following self-documenting creation methods are implemented by this class:
CreateAttribute, CreateDataSection, CreateComment, CreateDocumentFragment,
CreateDocumentType, CreateElement, CreateEntityReference, CreateNode,
CreateProcessingInstruction, CreateSignificantWhitespace, CreateTextNode,
CreateWhitespace, and CreateXmlDeclaration. The elements contained in the document
can be retrieved. Other methods support the retrieving, importing, cloning, loading, and
writing of nodes.

❑ XmlNode — Corresponds to a node within the DOM tree. This class supports datatypes,
namespaces, and DTDs. A robust set of methods and properties are provided to create, delete,
and replace nodes: AppendChild, CloneNode, InsertAfter, InsertBefore, PrependChild,

XmlMode XmlElement XmlAttribute

XmlDocument

XML DocumentObjectModel [DOM]

XmlWriter, TextWriter
file, Stream

XmlReader, TextReader
file, Stream

418

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 418

RemoveAll, RemoveChild, and ReplaceChild. The contents of a node can similarly be
traversed in a variety of ways: FirstChild, LastChild, NextSibling, ParentNode, and
PreviousSibling.

❑ XmlElement — Corresponds to an element within the DOM tree. The functionality
exposed by this class contains a variety of methods used to manipulate an element’s attributes:
GetAttribute, GetAttributeNode, RemoveAllAttributes, RemoveAttributeAt,
RemoveAttributeNode, SetAttribute, and SetAttributeNode.

❑ XmlAttribute— Corresponds to an attribute of an element (XmlElement) within the DOM tree.
An attribute contains data and lists of subordinate data. For this reason, it is a less complicated
object than an XmlNode or an XmlElement. An XmlAttribute can retrieve its owner document
(property, OwnerDocument), retrieve its owner element (property, OwnerElement), retrieve its
parent node (property, ParentNode), and retrieve its name (property, Name). The value of an
XmlAttribute is available via a read-write property named Value.

Given the diverse number of methods and properties (and there are many more than those listed here)
exposed by XmlDocument, XmlNode, XmlElement, and XmlAttribute, it should be clear that any XML
1.0–compliant document can be generated and manipulated using these classes. In comparison to their
XML stream counterparts, these classes afford more flexible movement within and editing of XML
documents.

A similar comparison could be made between DOM and data serialized and deserialized using XML.
Using serialization, the type of node (for example, attribute or element) and the node name are specified
at compile time. There is no on-the-fly modification of the XML generated by the serialization process.

Other technologies that generate and consume XML are not as flexible as DOM. This includes ADO.NET
and ADO, which generate XML of a particular form. Out of the box, SQL Server 2000 does expose a
certain amount of flexibility when it comes to the generation (FOR XML queries) and consumption of XML
(OPENXML) . SQL Server 2005 has more support from XML and even supports an XML datatype. SQL
Server 2005 also expands upon the FOR XML query with FOR XML TYPE. The choice between using classes
within DOM and a version of SQL Server is a choice between using a language, such as Visual Basic, to
manipulate objects or installing SQL Server and performing most of the XML manipulation in SQL.

DOM Traversing Raw XML Elements
The first DOM example will load an XML document into an XmlDocument object using a string that
contains the actual XML document. This scenario is typical of an application that uses ADO.NET to
generate XML but then uses the objects of DOM to traverse and manipulate this XML. ADO.NET’s
DataSet object contains the results of ADO.NET data access operations. The DataSet class exposes a
GetXml method. This method retrieves the underlying XML associated with the DataSet. The following
code demonstrates how the contents of the DataSet are loaded into the XmlDocument:

Dim xmlDoc As New XmlDocument
Dim ds As New DataSet

‘ Set up ADO.NET DataSet() here
xmlDoc.LoadXml(ds.GetXml())

419

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 419

This example will simply traverse each XML element (XmlNode) in the document (XmlDocument) and
display the data accordingly. The data associated with this example will not be retrieved from a DataSet
but will instead be contained in a string, rawData. This string is initialized as follows:

Dim rawData As String = _
“<multiFilmOrders>” & _
“ <FilmOrder>” & _
“ <name>Grease</name>” & _
“ <filmId>101</filmId>” & _
“ <quantity>10</quantity>” & _
“ </FilmOrder>” & _
“ <FilmOrder>” & _
“ <name>Lawrence of Arabia</name>” & _
“ <filmId>102</filmId>” & _
“ <quantity>10</quantity>” & _
“ </FilmOrder>” & _
“</multiFilmOrders>”

The XML document in rawData is a portion of the XML hierarchy associated with a prescription
written at your dental office. The basic idea in processing this data is to traverse each <FilmOrder>
element in order to display the data it contains. Each node corresponding to a <FilmOrder> element
can be retrieved from your XmlDocument using the GetElementsByTagName method (specifying a tag
name of FilmOrder). The GetElementsByTagName method returns a list of XmlNode objects in the form
of a collection of type XmlNodeList. Using the For Each statement to construct this list, the XmlNodeList
(movieOrderNodes) can be traversed as individual XmlNode elements (movieOrderNode). The code for
handling this is as follows:

Dim xmlDoc As New XmlDocument
Dim movieOrderNodes As XmlNodeList
Dim movieOrderNode As XmlNode

xmlDoc.LoadXml(rawData)

‘ Traverse each <FilmOrder>
movieOrderNodes = xmlDoc.GetElementsByTagName(“FilmOrder”)

For Each movieOrderNode In movieOrderNodes

‘**
‘ Process <name>, <filmId> and <quantity> here
‘**

Next

Each XmlNode can then have its contents displayed by traversing the children of this node using the
ChildNodes method. This method returns an XmlNodeList (baseDataNodes) that can be traversed one
XmlNode list element at a time:

Dim baseDataNodes As XmlNodeList
Dim bFirstInRow As Boolean

baseDataNodes = movieOrderNode.ChildNodes
bFirstInRow = True
For Each baseDataNode As XmlNode In baseDataNodes

420

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 420

If (bFirstInRow) Then
bFirstInRow = False

Else
Console.Out.Write(“, “)

End If
Console.Out.Write(baseDataNode.Name & “: “ & baseDataNode.InnerText)

Next
Console.Out.WriteLine()

The bulk of the previous code retrieves the name of the node using the Name property and the InnerText
property of the node. The InnerText property of each XmlNode retrieved contains the data associated
with the XML elements (nodes) <name>, <filmId>, and <quantity>. The example displays the contents
of the XML elements using Console.Out. The XML document is displayed as follows:

name: Grease, filmId: 101, quantity: 10
name: Lawrence of Arabia, filmId: 102, quantity: 10

Other, more practical, methods for using this data could have been implemented, including:

❑ The contents could have been directed to an ASP.NET Response object. The data retrieved
could have been used to create an HTML table (<table> table, <tr> row, and <td> data) that
would be written to the Response object.

❑ The data traversed could have been directed to a ListBox or ComboBox Windows Forms control.
This would allow the data returned to be selected as part of a GUI application.

❑ The data could have been edited as part of your application’s business rules. For example, you
could have used the traversal to verify that the <filmId> matched the <name>. For example, if
you really wanted to validate the data entered into the XML document in any manner.

The example in its entirety is:

Dim rawData As String = _
“<multiFilmOrders>” & _
“ <FilmOrder>” & _
“ <name>Grease</name>” & _
“ <filmId>101</filmId>” & _
“ <quantity>10</quantity>” & _
“ </FilmOrder>” & _
“ <FilmOrder>” & _
“ <name>Lawrence of Arabia</name>” & _
“ <filmId>102</filmId>” & _
“ <quantity>10</quantity>” & _
“ </FilmOrder>” & _
“</multiFilmOrders>”

Dim xmlDoc As New XmlDocument
Dim movieOrderNodes As XmlNodeList
Dim movieOrderNode As XmlNode
Dim baseDataNodes As XmlNodeList
Dim bFirstInRow As Boolean

xmlDoc.LoadXml(rawData)
‘ Traverse each <FilmOrder>
movieOrderNodes = xmlDoc.GetElementsByTagName(“FilmOrder”)

421

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 421

For Each movieOrderNode In movieOrderNodes
baseDataNodes = movieOrderNode.ChildNodes
bFirstInRow = True
For Each baseDataNode As XmlNode In baseDataNodes

If (bFirstInRow) Then
bFirstInRow = False

Else
Console.Out.Write(“, “)

End If
Console.Out.Write(baseDataNode.Name & “: “ & baseDataNode.InnerText)

Next
Console.Out.WriteLine()

Next

DOM Traversing XML Attributes
This next example will demonstrate how to traverse data contained in attributes and how to update the
attributes based on a set of business rules. In this example, the XmlDocument object is populated by
retrieving an XML document from a file. After the business rules edit the object, the data will be persisted
back to the file.

Dim xmlDoc As New XmlDocument

xmlDoc.Load(“..\MovieSupplierShippingListV2.xml”)

‘***
‘ Business rules process document here

‘***
xmlDoc.Save(“..\MovieSupplierShippingListV2.xml”)

The data contained in the file, MovieSupplierShippingListV2.xml, is a variation of the dental
prescription. You have altered your rigid standard (for the sake of example) so that the data associated
with individual movie orders is contained in XML attributes instead of XML elements. An example of
this movie order data is:

<FilmOrder name=”Grease” filmId=”101” quantity=”10” />

You have already seen how to traverse the XML elements associated with a document, so let’s assume
that you have successfully retrieved the XmlNode associated with the <FilmOrder> element.

Dim attributes As XmlAttributeCollection
Dim filmId As Integer
Dim quantity As Integer

attributes = node.Attributes()
For Each attribute As XmlAttribute In attributes

If 0 = String.Compare(attribute.Name, “filmId”) Then
filmId = attribute.InnerXml

ElseIf 0 = String.Compare(attribute.Name, “quantity”) Then
quantity = attribute.InnerXml

End If
Next

422

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 422

The previous code traverses the attributes of an XmlNode by retrieving a list of attributes using the
Attributes method. The value of this method is used to set the attributes object (datatype,
XmlAttributeCollection). The individual XmlAttribute objects (variable, attribute) contained in
attributes are traversed using a For Each loop. Within the loop, the contents of the filmId and the
quantity attribute are saved for processing by your business rules.

Your business rules execute an algorithm that ensures that the movies in the company’s order are
provided in the correct quantity. This rule is that the movie associated with filmId=101 must be sent to
the customer in batches of six at a time due to packaging. In the event of an invalid quantity, the code for
enforcing this business rule keeps removing a single order from the quantity value until the number is
divisible by six. Then this number is assigned to the quantity attribute. The Value property of the
XmlAttribute object is used to set the correct value of the order’s quantity. The code performing this
business rule is:

If filmId = 101 Then
‘ This film comes packaged in batches of six.
Do Until (quantity / 6) = True

quantity -= 1
Loop

Attributes.ItemOf(“quantity”).Value = quantity
End If

What is elegant about this example is that the list of attributes was traversed using For Each. Then
ItemOf was used to look up a specific attribute that had already been traversed. This would not have
been possible by reading an XML stream with an object derived from the XML stream reader class,
XmlReader.

You can use this code as follows:

Sub TraverseAttributes(ByRef node As XmlNode)
Dim attributes As XmlAttributeCollection
Dim filmId As Integer
Dim quantity As Integer

attributes = node.Attributes()
For Each attribute As XmlAttribute In attributes

If 0 = String.Compare(attribute.Name, “filmId”) Then
filmId = attribute.InnerXml

ElseIf 0 = String.Compare(attribute.Name, “quantity”) Then
quantity = attribute.InnerXml

End If
Next

If filmId = 101 Then
‘ This film comes packaged in batches of six
Do Until (quantity / 6) = True

quantity -= 1
Loop

Attributes.ItemOf(“quantity”).Value = quantity

423

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 423

End If

End Sub

Sub WXReadMovieDOM()

Dim xmlDoc As New XmlDocument
Dim movieOrderNodes As XmlNodeList
xmlDoc.Load(“..\MovieSupplierShippingListV2.xml”)

‘ Traverse each <FilmOrder>
movieOrderNodes = xmlDoc.GetElementsByTagName(“FilmOrder”)

For Each movieOrderNode As XmlNode In movieOrderNodes
TraverseAttributes(movieOrderNode)

Next

xmlDoc.Save(“..\MovieSupplierShippingListV2.xml”)

End Sub

XSLT Transforms
XSLT is a language that is used to transform XML documents so that they can be presented visually.
You have performed a similar task before. When working with XML serialization, you rewrote the
FilmOrder class. This class was used to serialize a movie order object to XML using nodes that
contained English-language names. The rewritten version of this class, ElokuvaTilaus, serialized
XML nodes containing Finnish names. Source Code Style attributes were used in conjunction with the
XmlSerializer class to accomplish this transformation. Two words in this paragraph send chills down
the spine of any experienced developer: rewrote and rewritten. The point of an XSL Transform is to
use an alternate language (XSLT) to transform the XML rather than rewriting the source code, SQL
commands, or some other mechanism used to generate XML.

Conceptually, XSLT is straightforward. A file with an .xslt extension describes the changes
(transformations) that will be applied to a particular XML file. Once this is completed, an XSLT
processor is provided with the source XML file and the XSLT file, and performs the transformation. The
System.Xml.Xsl.XslTransform class is such an XSLT processor. A new processor in .NET 2.0 is the
XslCompiledTransform object found at System.Xml.XslCompiledTransform. You will take a look at
using both of these processors.

The XSLT file is itself an XML document, although certain elements within this document are XSLT-
specific commands. There are dozens of XSLT commands that can be used in writing an XSLT file. In the
first example, you will explore the following XSLT elements (commands):

❑ stylesheet — This element indicates the start of the style sheet (XSL) in the XSLT file.

❑ template — This element denotes a reusable template for producing specific output. This
output is generated using a specific node type within the source document under a specific
context. For example, the text <xsl: template match=”/”> selects all root notes (“/”) for the
specific transform template.

424

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 424

❑ for-each — This element applies the same template to each node in the specified set. Recall that
you demonstrated a class (FilmOrder_Multiple) that could be serialized. This class contained
an array of prescriptions. Given the XML document generated when a FilmOrder_Multiple is
serialized, each prescription serialized could be processed using <xsl:for-each select =
“FilmOrder_Multiple/multiFilmOrders/FilmOrder”>.

❑ value-of — This element retrieves the value of the specified node and inserts it into the
document in text form. For example, <xsl:value-of select=”name” /> would take the value
of XML element, <name>, and insert it into the transformed document.

The FilmOrder_Multiple class when serialized generates XML such as the following (where ...
indicates where additional <FilmOrder> elements may reside):

<?xml version=”1.0” encoding=”you-ascii” ?>
<FilmOrder_Multiple>

<multiFilmOrders>
<FilmOrder>

<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
...

</multiFilmOrders>
</FilmOrder_Multiple>

The previous XML document is used to generate a report that is viewed by the manager of the movie
supplier. This report is in HTML form, so that it can be viewed via the Web. The XSLT elements you
previously reviewed (stylesheet, template, and for-each) are all the XSLT elements required to
transform the XML document (in which data is stored) into an HTML file (show that the data can be
displayed). An XSLT file DisplayThatPuppy.xslt contains the following text that is used to transform
a serialized version, FilmOrder_Multiple:

<?xml version=”1.0” encoding=”UTF-8” ?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>
<xsl:template match=”/”>

<HTML>
<TITLE>What people are ordering</TITLE>
<BODY>

<TABLE BORDER=”1”>
<TR>

<TD>Film Name</TD>
<TD>Film ID</TD>
<TD>Quantity</TD>

</TR>
<xsl:for-each select=
“FilmOrder_Multiple/multiFilmOrders/FilmOrder”>

<TR>
<TD><xsl:value-of select=”name” /></TD>
<TD><xsl:value-of select=”filmId” /></TD>
<TD><xsl:value-of select=”quantity” /></TD>

</TR>
</xsl:for-each>

425

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 425

</TABLE>
</BODY>

</HTML>
</xsl:template>

</xsl:stylesheet>

In the previous XSLT file, the XSLT elements are marked in boldface. These elements perform operations
on the source XML file containing a serialized FilmOrder_Multiple object and generate the appropriate
HTML file. Your file contains a table (marked by the table tag, <TABLE>) that contains a set of rows (each
row marked by a table row tag, <TR>). The columns of the table are contained in table data tags, <TD>. The
previous XSLT file contains the header row for the table:

<TR>
<TD>Film Name</TD>
<TD>Film ID</TD>
<TD>Quantity</TD>

</TR>

Each row containing data (an individual prescription from the serialized object, FilmOrder_Multiple)
is generated using the XSLT element, for-each, to traverse each <FilmOrder> element within the
source XML document:

<xsl:for-each select=
“FilmOrder_Multiple/multiFilmOrders/FilmOrder”>

The individual columns of data are generated using the value-of XSLT element, in order to query the
elements contained within each <FilmOrder> element (<name>, <filmId>, and <quantity>):

<TR>
<TD><xsl:value-of select=”name” /></TD>
<TD><xsl:value-of select=”filmId” /></TD>
<TD><xsl:value-of select=”quantity” /></TD>

</TR>

The code to create a displayable XML file using the XslTransform object is:

Dim myXslTransform As XslTransform = New XslTransform

Dim destFileName As String = “..\ShowIt.html”

myXslTransform.Load(“..\DisplayThatPuppy.xslt”)
myXslTransform.Transform(“..\FilmOrders.xml”, destFileName)

System.Diagnostics.Process.Start(destFileName)

This consists of only seven lines of code with the bulk of the coding taking place in the XSLT file. Your
previous code snippet created an instance of a System.Xml.Xsl.XslTransform object named
myXslTransform. The Load method of this class is used to load the XSLT file you previously reviewed,
DisplayThatPuppy.xslt. The Transform method takes a source XML file as the first parameter, which
in this case was a file containing a serialized FilmOrder_Multiple object. The second parameter is the

426

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 426

destination file that will be created by the transform (file name ShowIt.html). The Start method of the
Process class is used to display the HTML file. The Start method launches a process that is most
suitable for displaying the file provided. Basically, the extension of the file dictates which application
will be used to display the file. On a typical Windows machine, the program used to display this file is
Internet Explorer, as shown in Figure 12-4.

Figure 12-4

Do not confuse displaying this HTML file with ASP.NET. Displaying an HTML file in this manner
takes place on a single machine without the involvement of a Web server. Using ASP.NET is more
complex than displaying an HTML page in the default browser.

As was demonstrated, the backbone of the System.Xml.Xsl namespace is the XslTransform class.
This class uses XSLT files to transform XML documents. XslTransform exposes the following methods
and properties:

❑ XmlResolver— This get/set property is used to specify a class (abstract base class, XmlResolver)
that is used to handle external references (import and include elements within the style sheet).
These external references are encountered when a document is transformed (method, Transform,
is executed). The System.Xml namespace contains a class, XmlUrlResolver, which is derived
from XmlResolver. The XmlUrlResolver class resolves the external resource based on a URI.

❑ Load— This overloaded method loads an XSLT style sheet to be used in transforming XML
documents. It is permissible to specify the XSLT style sheet as a parameter of type
XPathNavigator, file name of XSLT file (specified as parameter type, String), XmlReader,
or IXPathNavigable. For each of type of XSLT supported, an overloaded member is
provided that allows an XmlResolver to also be specified. For example, it is possible to call
Load(String, XmlResolver) where String corresponds to a file name and XmlResolver is
an object that handles references in the style sheet of type xsl:import and xsl:include. It
would also be permissible to pass in a value of Nothing for the second parameter of the Load
method (so that no XmlResolver would be specified). Note that there have been considerable
changes to the parameters that the Load method takes between versions 1.0 and 1.1 of the .NET
Framework. Look at the SDK documentation for details on the breaking changes that you might
encounter when working with the XslTransform class.

427

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 427

❑ Transform— This overloaded method transforms a specified XML document using the
previously specified XSLT style sheet and an XmlResolver. The location where the transformed
XML is to be output is specified as a parameter to this method. The first parameter of each
overloaded method is the XML document to be transformed. This parameter can be
represented as an IXPathNavigable, XML file name (specified as parameter type, String), or
XPathNavigator. Note that there have been considerable changes to the parameters that the
Transform method takes between versions 1.0 and 1.1 of the .NET Framework. Look at the SDK
documentation for details on the breaking changes that you might encounter when working with
the XslTransform class.

The most straightforward variant of the Transform method is Transform(String, String,
XmlResolver). In this case, a file containing an XML document is specified as the first parameter,
and a file name that receives the transformed XML document is specified as the second parameter, and
the XmlResolver used as the third parameter. This is exactly how the first XSLT example utilized the
Transform method:

myXslTransform.Transform(“..\FilmOrders.xml”, destFileName)

The first parameter to the Transform method can also be specified as IXPathNavigable or
XPathNavigator. Either of these parameter types allows the XML output to be sent to an object of
type Stream, TextWriter, or XmlWriter. When these two flavors of input are specified, a parameter
containing an object of type XsltArgumentList can be specified. An XsltArgumentList object
contains a list of arguments that are used as input to the transform.

When working with a .NET 2.0 project, it is preferable to use the XslCompiledTransform object instead
of the XslTransform object, because the XslTransform object is considered obsolete. When using the
new XslCompiledTransform object, you construct the file using the following code:

Dim myXsltCommand As New XslCompiledTransform()
Dim destFileName As String = “..\ShowIt.html”
myXsltCommand.Load(“..\DisplayThatPuppy.xslt”)
myXsltCommand.Transform(“..\FilmOrders.xml”, destFileName)
System.Diagnostics.Process.Start(destFileName)

Just like the XslTransform object, the XslCompiledTransform object uses the Load and Transform
methods. The Load method provides the following signatures:

XslCompiledTransform.Load (IXPathNavigable)
XslCompiledTransform.Load (String)
XslCompiledTransform.Load (XmlReader)
XslCompiledTransform.Load (IXPathNavigable, XsltSettings, XmlResolver)
XslCompiledTransform.Load (String, XsltSettings, XmlResolver)
XslCompiledTransform.Load (XmlReader, XsltSettings, XmlResolver)

In this case, String is a representation of the .xslt file that should be used in the transformation.
XmlResolver has already been explained and XsltSettings is an object that allows you to define
which XSLT additional options to permit. The previous example used a single parameter, String, which
showed the location of the style sheet:

myXsltCommand.Load(“..\DisplayThatPuppy.xslt”)

428

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 428

The XslCompiledTransform object’s Transform method provides the following signatures:

XslCompiledTransform.Transform (IXPathNavigable, XmlWriter)
XslCompiledTransform.Transform (String, String)
XslCompiledTransform.Transform (String, XmlWriter)
XslCompiledTransform.Transform (XmlReader, XmlWriter)
XslCompiledTransform.Transform (IXPathNavigable, XsltArgumentList, Stream)
XslCompiledTransform.Transform (IXPathNavigable, XsltArgumentList, TextWriter)
XslCompiledTransform.Transform (IXPathNavigable, XsltArgumentList, XmlWriter)
XslCompiledTransform.Transform (String, XsltArgumentList, Stream)
XslCompiledTransform.Transform (String, XsltArgumentList, TextWriter)
XslCompiledTransform.Transform (String, XsltArgumentList, XmlWriter)
XslCompiledTransform.Transform (XmlReader, XsltArgumentList, Stream)
XslCompiledTransform.Transform (XmlReader, XsltArgumentList, TextWriter)
XslCompiledTransform.Transform (XmlReader, XsltArgumentList, XmlWriter)
XslCompiledTransform.Transform (XmlReader, XsltArgumentList, XmlWriter, XmlResolver)

In this case, String represents the location of specific files (whether it is source files or output files).
Some of the signatures also allow for output to XmlWriter objects, streams, and TextWriter objects.
These can be done by also providing additional arguments using the XsltArgumentList object. In the
previous example, you used the second signature XslCompiledTransform.Transform(String,
String), which asked for the source file and the destination file (both string representations of the
location of said files).

myXsltCommand.Transform(“..\FilmOrders.xml”, destFileName)

The XslCompiledTransform object example will produce the same table as was generated using the
XslTransform object.

XSLT Transforming between XML Standards
The first example used four XSLT elements to transform an XML file into an HTML file. Such an example
has merit, but it does not demonstrate an important use of XSLT. Another major application of XSLT is to
transform XML from one standard into another standard. This may involve renaming elements/attributes,
excluding elements/attributes, changing datatypes, altering the node hierarchy, and representing elements
as attributes and vice versa.

A case of differing XML standards could easily happen to your software that automates movie orders
coming into a supplier. Imagine that the software, including its XML representation of a movie order, is
so successful that you sell 100,000 copies. However, just as you’re celebrating, a consortium of the largest
movie supplier chains announces that they will no longer be accepting faxed orders and that they are
introducing their own standard for the exchange of movie orders between movie sellers and buyers.

Rather than panic, you simply ship an upgrade that comes complete with an XSLT file. This upgrade (a
bit of extra code plus the XSLT file) transforms your XML representation of a movie order into the XML
representation dictated by the consortium of movie suppliers. Using an XSLT file allows you to ship the
upgrade immediately. If the consortium of movie suppliers revises their XML representation, you are not
obliged to change your source code. Instead, you can simply ship the upgraded XSLT file that will
ensure that each movie order document is compliant.

429

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 429

Using XML in Visual Basic 2005
The specific source code that executes the transform is:

Dim myXsltCommand As New XslCompiledTransform()
myXsltCommand.Load(“..\ConvertLegacyToNewStandard.xslt”)
myXsltCommand.Transform(“..\MovieOrdersOriginal.xml”, “..\MovieOrdersModified.xml”)

The three lines of code are

1. Create an XslCompiledTransform object.

2. Use the Load method to load an XSLT file (ConvertLegacyToNewStandard.xslt).

3. Use the Transform method to transform a source XML file (MovieOrdersOriginal.xml) into
a destination XML file (MovieOrdersModified.xml).

Recall that the input XML document (MovieOrdersOriginal.xml) does not match the format required
by your consortium of movie supplier chains. The content of this source XML file is:

<?xml version=”1.0” encoding=”you-ascii” ?>
<FilmOrder_Multiple>

<multiFilmOrders>
<FilmOrder>

<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
...

</multiFilmOrders>
</FilmOrder_Multiple>

The format exhibited in the previous XML document does not match the format of the consortium of
movie supplier chains. To be accepted by the collective of suppliers, you must transform the document
as follows:

❑ Rename element <FilmOrder_Multiple> to <Root>.

❑ Remove element <multiFilmOrders>.

❑ Rename element <FilmOrder> to <DvdOrder>.

❑ Remove element <name> (the film’s name is not to be contained in the document).

❑ Rename element <quantity> to HowMuch and make HowMuch an attribute of <DvdOrder>.

❑ Rename element <filmId> to FilmOrderNumber and make FilmOrderNumber an attribute of
<DvdOrder>.

❑ Display attribute HowMuch before attribute FilmOrderNumber.

A great many of the steps performed by the transform could have been achieved using an alternative
technology. For example, you could have used Source Code Style attributes with your serialization to
generate the correct XML attribute and XML element name. If you had known in advance that a
consortium of suppliers was going to develop a standard, you could have written your classes to be

430

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 430

serialized based on the standard. The point was that you didn’t know and now one standard (your
legacy standard) has to be converted into a newly adopted standard of the movie suppliers’ consortium.
The worst thing you could do would be to change your working code and then force all users working
with the application to upgrade. It is vastly simpler to add an extra transformation step to address the
new standard.

The XSLT file that facilitates the transform is named ConvertLegacyToNewStandard.xslt. A portion
of this file is implemented as follows:

<xsl:template match=”FilmOrder”>
<!-- rename <FilmOrder> to <DvdOrder> -->
<xsl:element name=”DvdOrder”>

<!-- Make element ‘quantity’ attribute HowMuch
Notice attribute HowMuch comes before attribute FilmOrderNumber -->

<xsl:attribute name=”HowMuch”>
<xsl:value-of select=’quantity’></xsl:value-of>

</xsl:attribute>
<!-- Make element filmId attribute FilmOrderNumber -->
<xsl:attribute name=”FilmOrderNumber”>

<xsl:value-of select=’filmId’></xsl:value-of>
</xsl:attribute>

</xsl:element>
<!-- end of DvdOrder element -->

</xsl:template>

In the previous snippet of XSLT, the following XSLT elements are used to facilitate the transformation:

❑ <xsl:template match=”FilmOrder”>— All operations in this template XSLT element will
take place on the original document’s FilmOrder node.

❑ <xsl:element name=”DvdOrder”>— The element corresponding to the source document’s
FilmOrder element will be called DvdOrder in the destination document.

❑ <xsl:attribute name=”HowMuch”>— An attribute named HowMuch will be contained in the
previously specified element. The previously specified element is <DvdOrder>. This attribute
XSLT element for HowMuch comes before the attribute XSLT element for FilmOrderNumber.
This order was specified as part of your transform to adhere to the new standard.

❑ <xsl:value-of select=’quantity’>— Retrieve the value of the source document’s
<quantity> element and place it in the destination document. This instance of XSLT element,
value-of, provides the value associated with attribute HowMuch.

Two new XSLT elements have crept into your vocabulary: element and attribute. Both of these XSLT
elements live up to their names. Specifying the XSLT element named element places an element in the
destination XML document. Specifying the XSLT element named attribute places an attribute in the
destination XML document. The XSLT transform found in ConvertLegacyToNewStandard.xslt is too
long to review completely. When reading this file in its entirety, you should remember that this XSLT file
contains inline documentation to specify precisely what aspect of the transformation is being performed
at which location in the XSLT document. For example, the following XML code comments inform you
about what the XSLT element attribute is about to do:

<!-- Make element ‘quantity’ attribute HowMuch
Notice attribute HowMuch comes before attribute FilmOrderNumber -->

<xsl:attribute name=”HowMuch”>

431

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 431

<xsl:value-of select=’quantity’></xsl:value-of>
</xsl:attribute>

The previous example spanned several pages but contained just three lines of code. This demonstrates
that there is more to XML than learning how to use it in Visual Basic and the .NET Framework. Among
other things, you also need a good understanding of XSLT, XPath, and XQuery.

Other Classes and Interfaces in System.Xml.Xsl
We just took a good look at XSLT and the System.Xml.Xsl namespace, but there is a lot more to it than
that. The other classes and interfaces exposed by System.Xml.Xsl namespace include

❑ IXsltContextFunction— This interface accesses at runtime a given function defined in the
XSLT style sheet.

❑ IXsltContextVariable— This interface accesses at runtime a given variable defined in the
XSLT style sheet.

❑ XsltArgumentList— This class contains a list of arguments. These arguments are XSLT
parameters or XSLT extension objects. The XsltArgumentList object is used in conjunction
with the Transform method of XslTransform and XslCompiledTransform.

❑ XsltContext— This class contains the state of the XSLT processor. This context information
allows XPath expressions to have their various components resolved (functions, parameters,
and namespaces).

❑ XsltException, XsltCompileException— These classes contain the information pertaining
to an exception raised while transforming data. XsltCompileException is derived from
XsltException.

ADO.NET
ADO.NET allows Visual Basic applications to generate XML documents and to use such documents to
update persisted data. ADO.NET natively represents its DataSet’s underlying datastore in XML.
ADO.NET also allows SQL Server — specific XML support to be accessed. In this chapter, your focus is
on those features of ADO.NET that allow the XML generated and consumed to be customized.
ADO.NET is covered in detail in Chapter 11.

The DataSet properties and methods that are pertinent to XML include Namespace, Prefix, GetXml,
GetXmlSchema, InferXmlSchema, ReadXml, ReadXmlSchema, WriteXml, and WriteXmlSchema. An
example of code that uses the GetXml method is:

Dim adapter As New _
SqlDataAdapter(“SELECT ShipperID, CompanyName, Phone “ & _

“FROM Shippers”, _
“SERVER=localhost;UID=sa;PWD=sa;Database=Northwind;”)

Dim ds As New DataSet

adapter.Fill(ds)
Console.Out.WriteLine(ds.GetXml())

432

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 432

The previous code uses the sample Northwind database (which comes with SQL Server and MSDE) and
retrieves all rows from the Shippers table. This table was selected because it contains only three rows
of data. The XML returned by GetXml is as follows (where ... signifies that <Table> elements were
removed for the sake of brevity):

<NewDataSet>
<Table>

<ShipperID>1</ShipperID>
<CompanyName>Speedy Express</CompanyName>
<Phone>(503) 555-9831</Phone>

</Table>
...

</NewDataSet>

What you are trying to determine from the previous XML document is how to customize the XML gen-
erated. The more customization you can perform at the ADO.NET level, the less need there will be later.
With this in mind, you notice that the root element is <NewDataSet> and that each row of the DataSet
is returned as an XML element, <Table>. The data returned is contained in an XML element named for
the column in which the data resides (<ShipperID>, <CompanyName>, and <Phone>, respectively).

The root element, <NewDataSet>, is just the default name of the DataSet. This name could have been
changed when the DataSet was constructed by specifying the name as a parameter to the constructor:

Dim ds As New DataSet(“WeNameTheDataSet”)

If the previous version of the constructor was executed, then the <NewDataSet> element would be
renamed <WeNameTheDataSet>. After the DataSet has been constructed, you can still set the property
DataSetName, thus changing <NewDataSet> to a name such as <WeNameTheDataSetAgain>:

ds.DataSetName = “WeNameTheDataSetAgain”

The <Table> element is actually the name of a table in the DataSet’s Tables property. Programmatically,
you can change <Table> to <WeNameTheTable>.

ds.Tables(“Table”).TableName = “WeNameTheTable”

You can customize the names of the data columns returned by modifying the SQL to use alias names. For
example, you could retrieve the same data but generate different elements using the following SQL code:

SELECT ShipperID As TheID, CompanyName As CName, Phone As TelephoneNumber FROM
Shippers

Using the previous SQL statement, the <ShipperID> element would become the <TheID> element. The
<CompanyName> element would become <CName> and <Phone> would become <TelephoneNumber>.
The column names can also be changed programmatically by using the Columns property associated
with the table in which the column resides. An example of this follows, where the XML element
<TheID> is changed to <AnotherNewName>.

ds.Tables(“WeNameTheTable”).Columns(“TheID”).ColumnName = “AnotherNewName”

433

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 433

This XML could be transformed using System.Xml.Xsl. This XML could be read as a stream
(XmlTextReader) or written as a stream (XmlTextWriter). The XML returned by ADO.NET could even
be deserialized and used to create an object or objects using XmlSerializer. What is important is to
recognize what ADO.NET-generated XML looks like. If you know its format, then you can transform it
into whatever you like.

ADO.NET and SQL Server 2000’s Built-In XML Features
Those interested in fully exploring the XML-specific features of SQL Server should take a look at
Professional SQL Server 2000 Programming (Wrox Press, ISBN 0764543792). However, since the content of
that book is not .NET-specific, the next example will form a bridge between Professional SQL Server 2000
Programming and the .NET Framework.

Two of the major XML-related features exposed by SQL Server are

❑ FOR XML— The FOR XML clause of an SQL SELECT statement allows a rowset to be returned as an
XML document. The XML document generated by a FOR XML clause is highly customizable with
respect to the document hierarchy generated, per-column data transforms, representation of
binary data, XML schema generated, and a variety of other XML nuances.

❑ OPENXML— The OPENXML extension to Transact-SQL allows a stored procedure call to manipulate
an XML document as a rowset. Subsequently, this rowset can be used to perform a variety of tasks,
such as SELECT, INSERT INTO, DELETE, and UPDATE.

SQL Server’s support for OPENXML is a matter of calling a stored procedure call. A developer who can
execute a stored procedure call using Visual Basic in conjunction with ADO.NET can take full advantage
of SQL Server’s support for OPENXML. FOR XML queries have a certain caveat when it comes to ADO.NET.
To understand this caveat, consider the following FOR XML query:

SELECT ShipperID, CompanyName, Phone FROM Shippers FOR XML RAW

Using SQL Server’s Query Analyzer, this FOR XML RAW query generated the following XML:

<row ShipperID=”1” CompanyName=”Speedy Express” Phone=”(503) 555-9831”/>
<row ShipperID=”2” CompanyName=”United Package” Phone=”(503) 555-3199”/>
<row ShipperID=”3” CompanyName=”Federal Shipping” Phone=”(503) 555-9931”/>

The same FOR XML RAW query can be executed from ADO.NET as follows:

Dim adapter As New _
SqlDataAdapter(“SELECT ShipperID, CompanyName, Phone “ & _

“FROM Shippers FOR XML RAW”, _
“SERVER=localhost;UID=sa;PWD=sa;Database=Northwind;”)

Dim ds As New DataSet

adapter.Fill(ds)
Console.Out.WriteLine(ds.GetXml())

The caveat with respect to a FOR XML query is that all data (the XML text) must be returned via a result set
containing a single row and a single column named XML_F52E2B61-18A1-11d1-B105- 00805F49916B.

434

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 434

The output from the previous code snippet demonstrates this caveat (where ... represents similar data
not shown for reasons of brevity):

<NewDataSet>
<Table>

<XML_F52E2B61-18A1-11d1-B105-00805F49916B>
<row ShipperID=”1” CompanyName= “Speedy Express” Phone=”(503)
555-9831”/>

...
</XML_F52E2B61-18A1-11d1-B105-00805F49916B>

</Table>
</NewDataSet>

The value of the single row and single column returned contains what looks like XML, but it contains
/< instead of the less-than character, and /> instead of the greater-than character. The symbols <
and > cannot appear inside XML data. For this reason, they must be entity-encoded (that is, represented
as /> and /<). The data returned in element <XML_F52E2B61-18A1-11d1-B105- 00805F49916B>
is not XML but is data contained in an XML document.

To fully utilize FOR XML queries, the data must be accessible as XML. The solution to this quandary is the
ExecuteXmlReader method of the SQLCommand class. When this method is called, an SQLCommand
object assumes that it is executed as a FOR XML query and returns the results of this query as an
XmlReader object. An example of this follows (again found in VBNetXML05):

Dim connection As New _
SqlConnection(“SERVER=localhost;UID=sa;PWD=sa;Database=Northwind;”)

Dim command As New _
SqlCommand(“SELECT ShipperID, CompanyName, Phone “ & _

“FROM Shippers FOR XML RAW”)
Dim memStream As MemoryStream = New MemoryStream
Dim xmlReader As New XmlTextReader(memStream)

connection.Open()
command.Connection = connection
xmlReader = command.ExecuteXmlReader()
‘ Extract results from XMLReader

The XmlReader created in this code is of type XmlTextReader, which derives from XmlReader. The
XmlTextReader is backed by a MemoryStream, hence it is an in-memory stream of XML that can be
traversed using the methods and properties exposed by XmlTextReader. Streaming XML generation
and retrieval has been discussed earlier.

Using the ExecuteXmlReader method of the SQLCommand class, it is possible to retrieve the result of
FOR XML queries. What makes FOR XML style of queries so powerful is that it can configure the data
retrieved. The three types of FOR XML queries support the following forms of XML customization:

❑ FOR XML RAW— This type of query returns each row of a result set inside an XML element
named <row>. The data retrieved is contained as attributes of the <row> element. The attributes
are named for the column name or column alias in the FOR XML RAW query.

❑ FOR XML AUTO— By default, this type of query returns each row of a result set inside an XML
element named for the table or table alias contained in the FOR XML AUTO query. The data

435

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 435

retrieved is contained as attributes of this element. The attributes are named for the column
name or column alias in the FOR XML AUTO query. By specifying FOR XML AUTO, ELEMENTS it is
possible to retrieve all data inside elements rather than inside attributes. All data retrieved must
be in attribute or element form. There is no mix-and-match capability.

❑ FOR XML EXPLICIT— This form of the FOR XML query allows the precise XML type of each
column returned to be specified. The data associated with a column can be returned as an
attribute or an element. Specific XML types, such as CDATA and ID, can be associated with a
column returned. Even the level in the XML hierarchy in which data resides can be specified
using a FOR XML EXPLICIT query. This style of query is fairly complicated to implement.

FOR XML queries are flexible. Using FOR XML EXPLICIT and the dental database, it would be possible to
generate any form of XML medical prescription standard. The decision that needs to be made is where
XML configuration takes place. Using Visual Basic, a developer could use XmlTextReader and
XmlTextWriter to create any style of XML document. Using the XSLT language and an XSLT file, the
same level of configuration can be achieved. SQL Server and, in particular, FOR XML EXPLICIT allow
the same level of XML customization, but this customization takes place at the SQL level and may even
be configured to stored procedure calls.

XML and SQL Server 2005
As a representation for data, XML is ideal in that it is a self-describing data format that allows you to
provide your datasets as complex datatypes as well as providing order to your data. SQL Server 2005
embraces this direction.

More and more developers are turning to XML as a means of data storage. For instance, Microsoft
Office allows documents to be saved and stored as XML documents. As more and more products and
solutions are turning toward XML as a means of storage, this allows for a separation between the
underlying data and the presentation aspect of what is being viewed. XML is also being used as a
means of communicating datasets across platforms and across the enterprise. The entire XML Web
services story is a result of this new capability. Simply said, XML is a powerful alternative to your data
storage solutions.

Just remember that the power of using XML isn’t only about storing data as XML somewhere (whether
that is XML files or not), but is also about the ability to quickly get at this XML data and to be able to
query the data that is retrieved.

SQL Server 2005 makes a big leap toward XML in adding an XML datatype. This allows you to unify the
relational data aspects of the database and the new desires to work with XML data.

FOR XML has also been expanded from within this latest edition of SQL Server. This includes a new TYPE
directive which returns an XML datatype instance. Also, from the Framework, .NET 2.0 adds a new
namespace —System.Data.SqlXml— which allows you to easily work with the XML data that comes
from SQL Server 2005. The SqlXml object is an XmlReader-derived type. Another addition is the use of
the SqlDataReader object’s GetXml method.

436

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 436

Summary
Ultimately, XML could be the underpinnings of electronic commerce, banking transactions, and data
exchange of almost every conceivable kind. The beauty of XML is that it isolates data representation
from data display. Technologies, such as HTML, contain data that is tightly bound to its display format.
XML does not suffer this limitation, yet at the same time has the readability of HTML. Accordingly,
the XML facilities available to a Visual Basic application are vast, and there are a large number of
XML-related features, classes, and interfaces exposed by the .NET Framework.

In this chapter, you saw how to use System.Xml.Serialization.XmlSerializer to serialize classes.
Source Code Style attributes were introduced in conjunction with serialization. This style of attributes
allows the customization of the XML serialized to be extended to the source code associated with a
class. What is important to remember about the direct of serialization classes is that a required change
in the XML format becomes a change in the underlying source code. Developers should resist the
temptation to rewrite the serialized classes in order to conform to some new XML data standard (such
as the prescription format endorsed by your consortium of pharmacies). Technologies, such as XSLT,
exposed via the System.Xml.Query namespace should be examined first as alternatives. You saw how to
use XSLT style sheets to transform XML data using the classes found in the System.Xml.Xsl namespace.

The most useful classes and interfaces in the System.Xml namespace were reviewed, including those
that support document-style XML access: XmlDocument, XmlNode, XmlElement, and XmlAttribute.
The System.Xml namespace also contains classes and interfaces that support stream-style XML access:
XmlReader and XmlWriter.

Finally, you looked at using XML with Microsoft’s SQL Server.

437

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 437

15_575368 ch12.qxd 10/7/05 11:06 PM Page 438

Security in the
.NET Framework 2.0

This chapter will cover the basics of security and cryptography. We’ll begin with a brief discussion
of the .NET Framework’s security architecture, because this will have an impact on the solutions
that we may choose to implement.

The .NET Framework provides us with additional tools and functionality with regard to security.
We now have the System.Security.Permissions namespace, which allows us to control code
access permissions along with role-based and identity permissions. Through our code, we can
control access to objects programmatically, as well as receive information on the current permis-
sions of objects. This security framework will assist us in finding out if we have permissions to run
our code, instead of getting halfway through execution and having to deal with permission-based
exceptions. In this chapter we will cover:

❑ Concepts and definitions

❑ Permissions

❑ Roles

❑ Principals

❑ Code access permissions

❑ Role based permissions

❑ Identity permissions

❑ Managing permissions

❑ Managing policies

❑ Cryptography

16_575368 ch13.qxd 10/7/05 11:04 PM Page 439

440

Chapter 13

Cryptography is the cornerstone of the .NET Web Services security model, so in the second half of this
chapter we discuss the basis of cryptography and how to implement it. Specifically, we will cover:

❑ Hash algorithms

❑ SHA

❑ MD5

❑ Secret key encryption

❑ Public key cryptography standard

❑ Digital signatures

❑ Certification

❑ Secure Sockets Layer communications

Let’s begin the chapter by taking a look at some security concepts and definitions.

Security Concepts and Definitions
Before going on, let’s detail the different types of security that we will be illustrating in this chapter and
how they can relate to real scenarios.

Related Concept in
Security.Permissions

Security Type Namespace or Utility Purpose

NTFS None Allows for detailing of object rights
(e.g. locking down of specific files)

Security Policies Caspol.exe utility, Set up overall security policy for
PermView.exe utility a machine or user from an

operating system level.

Cryptographic Strong name and Use of Public key infrastructure
assembly, generation, and Certificates
SignCode.exe utility

Programmatic Groups and permission sets For use in pieces of code that are
being called into. Provides extra
security to prevent users of calling
code from violating security measures
implemented by the program that are
not provided for on a machine level

As always, the code for this chapter is available for download from www.wrox.com,
which you’ll need in order to follow along.

16_575368 ch13.qxd 10/7/05 11:04 PM Page 440

There are many approaches to providing security on our machines where our shared code is hosted.
If multiple shared code applications are on one machine, each piece of shared code can get called
from many front-end applications. Each piece of shared code will have its own security requirements
for accessing environment variables — such as the registry, the file system, and other items — on the
machine that it is running on. From an NTFS perspective, the administrator of our server can only
lock down those items on the machine that are not required to be accessed from any piece of shared
code running on it. Therefore, some applications will want to have additional security built in to prevent
any calling code from doing things it is not supposed to do. The machine administrator can further assist
the programmers by using the utilities provided with .NET to establish additional machine and/or user
policies that programs can implement. As a further step along this line, the .NET environment has given
us programmatic security through Code Access security, Role Based security, and Identity security. As a
final security measure, we can use the cryptographic methods provided to require the use of certificates
in order to execute our code.

Security in the .NET infrastructure has some basic concepts that we will discuss here. Code security is
managed and accessed in the .NET environment through the use of security policies. Security policies have
a relationship that is fundamentally tied to either the machine that code is running on, or to particular
users under whose context the code is running. To this end, any modifications to the policy are done either
at the machine or user level.

We establish the security policy on a given set of code by associating it with an entity called a group.
A group is created and managed within each of the machine- and user-based policies. These group
classifications are set up so that we can place code into categories. We would want to establish new
code groups when we are ready to categorize the pieces of code that would run on a machine, and assign
the permissions that users will have to access the code. For instance, if we wanted to group all Internet
applications and then group all non-Internet applications together, we would establish two groups
and associate each of our applications with its respective group. Now that we’ve got the code separated
into groups, we can define different permission sets for each group. If we wanted to limit our Internet
applications’ access to the local file system, we could create a permission set that limits that access and
associates the Internet application group with the new permission set. By default, the .NET environment
gives us one code group named All Code that is associated with the FullTrust permission set.

Permission sets are unique combinations of security configurations that determine what each user
with access to a machine can do on that machine. Each set determines what a user has access to, for
instance, whether they can read environment variables, the file system, or execute other portions of
code. Permission sets are maintained at the machine and user levels through the utility Caspol.exe.
Through this utility, we can create our own permission sets, though there are seven permission sets that
ship with the .NET infrastructure that are also useful, as shown in the following table.

Permission Set Explanation

FullTrust Allows full access to all resources — adds assembly
to a special list that has FullTrust access

Everything Allows full access to everything covered by default
named permission sets, only differs from Full-
Trust in that the group does not get added to the
FullTrust Assembly List

Table continued on following page

441

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 441

Permission Set Explanation

Nothing Denies all access including Execution

Execution Allows execution-only access

SkipVerification Allows objects to bypass all security verification

Internet Grants default rights that are normal for Internet
applications

LocalInternet Grants rights that are not as restricted as Internet,
but not full trust

Security that is used within the programming environment also makes use of permission sets. Through
code we can control access to files in a file system, environment variables, file dialogs, isolated storage,
reflections, registry, sockets, and UI. Isolated storage and virtual file systems are new operating system
level storage locations that can be used by programs and are governed by the machine security policies.
These file systems keep a machine safe from file system intrusion by designating a regulated area for file
storage. The main access to these items is controlled through code access permissions.

Although many methods that we use in Visual Basic 2005 give an identifiable return value, the only
return value that we will get from security methods is if the method fails. If a security method succeeds,
it will not give a return value. If it fails, it will return an exception object reflecting the specific error that
occurred.

Permissions in the
System.Security.Permissions Namespace

The System.Security.Permissions namespace is the namespace that we will use in our code to
establish and use permissions to access many things such as the file system, environment variables, and
the registry within our programs. The namespace controls access to both operating system level objects
as well as code objects. In order to use the namespace in our project, we need to include the Imports
System.Security.Permissions line with any of our other Imports statements in our project. Using
this namespace gives us access to using the CodeAccessPermission and PrincipalPermission classes
for using role-based permissions and also utilizing information supplied by Identity permissions.
CodeAccessPermission is the main class that we will use as it controls access to the operating system
level objects our code needs in order to function. Role-based permissions and Identity permissions
grant access to objects based on the identity that the user of the program that is running carries with them.

In the following table, those classes that end with Attribute, such as
EnvironmentPermissionAttribute, are the classes that allow us to modify the security
level at which our code is allowed to interact with each respective object. The attributes that we
can specify reflect either Assert, Deny, or PermitOnly permissions.

If permissions are asserted, we have full access to the object, while if we have specified Deny permissions
we are not allowed to access the object through our code. If we have PermitOnly access, only objects
within our program’s already determined scope can be accessed, and we cannot add any more resources

442

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 442

beyond that scope. In our table, we also deal with security in regard to Software Publishers. A Software
Publisher is a specific entity that is using a digital signature to identify itself in a Web-based application.
The following is a table of the namespace members that apply to Windows Forms programming with an
explanation of each.

Class Description

CodeAccessSecurityAttribute Specifies security access to objects such as the
registry and file system

DataProtectionPermission Controls ability to access data and memory. This is
a new class in the .NET Framework 2.0.

DataProtectionPermissionAttribute Allows security actions to be added for data pro-
tections via code

EnvironmentPermission Controls ability to see and modify system and user
environment variables

EnvironmentPermissionAttribute Allows security actions for environment variables
to be added via code

FileDialogPermission Controls ability to open files via a file dialog

FileDialogPermissionAttribute Allows security actions to be added for File
Dialogs via code

FileIOPermission Controls ability to read and write files in the file
system

FileIOPermissionAttribute Allows security actions to be added for file access
attempts via code

GacIdentityPermission Defines the identity permissions for files which
come from the Global Assembly Cache (GAC). This
is a new class in the .NET Framework 2.0.

GacIdentityPermissionAttribute Allows security actions to be added for files which
originate from the GAC

IsolatedStorageFilePermission Controls ability to access a private virtual file system
within the isolated storage area of an application

IsolatedStorageFilePermission Allows security actions to be added for private
Attribute virtual file systems via code

IsolatedStoragePermission Controls ability to access the isolated storage area
of an application

IsolatedStoragePermission Allows security actions to be added for the isolated
Attribute storage area of an application

KeyContainerPermission Controls ability to access key containers. This is a
new class in the .NET Framework 2.0.

Table continued on following page

443

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 443

Class Description

KeyContainerPermissionAccess Defines the access rights for particular key
Entry containers

KeyContainerPermissionAccess Represents a collection of KeyContainer-
EntryCollection PermissionAccessEntry objects

KeyContainerPermissionAccess Represents the enumerators for
EntryEnumerator the objects contained in the

KeyContainerPermissionAccess
EntryCollection object

KeyContainerPermissionAttribute Allows security actions to be added for key
containers

PermissionSetAttribute Allows security actions to be added for a
permission set

PrincipalPermission Controls the ability to make checks against an
active principal

PrincipalPermissionAttribute Allows for checking against a specific user.
Security principals are a user and role combination
used to establish security identity

PublisherIdentityPermission Allows for ability to access based on the identity of
a software publisher

PublisherIdentityPermission Allows security actions to be added for a software
Attribute publisher

ReflectionPermission This controls the ability to access nonpublic
members of a given type

ReflectionPermissionAttribute Allows for security actions to be added for public
and nonpublic members of a given type

RegistryPermission Controls the ability to access registry keys and
values

RegistryPermissionAttribute Allows security actions to be added for registry
keys and values

ResourcePermissionBase Controls the ability to work with the code access
security permissions

ResourcePermissionBaseEntry Allows you to define the smallest part of a code
access security permission set

SecurityAttribute Controls which security attributes are representing
code, used to control the security when creating an
assembly

SecurityPermission The set of security permission flags for use by
.NET; this collection is used when we want to
specify a permission flag in our code

444

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 444

Class Description

SecurityPermissionAttribute Allows security actions for the security permission
flags

StorePermission Controls ability to access stores which contain
X509 certificates. This is a new class in the .NET
Framework 2.0.

StorePermissionAttribute Allows security actions to be added for access
stores which contain X509 certificates

UIPermission Controls ability to access user interfaces and use
the windows clipboard

UIPermissionAttribute Allows security actions to be added for UI
Interfaces and the use of the clipboard

Code Access Permissions
Code access permissions are controlled through the CodeAccessPermission class within the
System.Security namespace, and its members make up the majority of the permissions we’ll use in
our attempt to secure our code and operating environment. The following is a table of the class methods
and an explanation of their use.

Method Description

RevertAll Reverses all previous assert, deny or
permit-only methods

RevertAssert Reverses all previous assert methods

RevertDeny Reverses all previous deny methods

RevertPermitOnly Reverses all previous permit-only methods

Assert Sets the permission to full access so that the
specific resource can be accessed even if the caller
hasn’t been granted permission to access the
resource

CheckAsset Checks the validity of accessing the asserted
resource through a permission object. This method
can be overridden.

CheckDemand Checks the validity of accessing the demanded
resource through a permission object. This method
can be overridden.

CheckDeny Checks the validity of accessing the denied
resource through a permission object. This method
can be overridden.

Table continued on following page

445

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 445

Method Description

CheckPermitOnly Checks the validity of accessing permitted
resources through a permission object. This
method can be overridden.

Copy Copies a permission object

Demand Returns whether or not all callers in the call chain
have been granted the permission to access the
resource in a given manner

Deny Denies all callers access to the resource

Equals Determines if a given object is the same instance of
the current object

FromXml Establishes a permission set given a specific XML
encoding. This parameter is an XML encoding

GetHashCode Returns a hash code associated with a given object

GetType Returns the type of a given object

Intersect Returns the permissions two permission objects
have in common

IsSubsetOf Returns result of whether the current permission
object is a subset of a specified permission

PermitOnly Determines that only those resources within this
permission object can be accessed even if code has
been granted permission to other objects

ToString Returns a string representation of the current per-
mission object

ToXml Creates an XML representation of the current per-
mission object

Union Creates a permission that is the union of two per-
mission objects

Role-Based Permissions
Role-based permissions are permissions granted based on the user and the role that code is being
called with. Users are generally authenticated within the operating system platform and hold a Security
Identifier (SID) that is associated within a security context. The SID can further be associated with a role,
or a group membership that is established within a security context. The .NET role functionality supports
those users and roles associated within a security context and also has support for generic and custom
users and roles through the concept of principals. A principal is an object that holds the current caller
credentials, which is termed the identity of the user. Principals come in two types: Windows principals
and non-Windows principals. Windows-based Principal objects are objects that store the Windows SID

446

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 446

information regarding the current user context associated with the code that is calling into the module
where we are using role-based permissions. NonWindows Principals are principal objects that are created
programmatically via a custom login methodology which are made available to the current thread.

Role-based permissions are not set against objects within our environment like code access permissions.
They are instead a permission that is checked within the context of the current user and role that a
user is part of. Within the System.Security.Permissions namespace, the concept of the principals
and the PrincipalPermission class of objects are used to establish and check permissions. If a
programmer passes the user and role information during a call as captured from a custom login, the
PrincipalPermission class can be used to verify this information as well. During the verification, if
the user and role information is Null, then permission is granted, regardless of the user and role. The
PrincipalPermission class does not grant access to objects, but has methods that determine if a caller
has been given permissions according to the current permission object through the Demand method. If a
security exception is generated then the user does not have sufficient permission.

The following table lists the methods in the PrincipalPermission class and a description of each.

Method Description

Copy Copies a permission object

Demand Returns whether or not all callers in the call chain
have been granted the permission to access the
resource in a given manner

Equals Determines if a given object is the same instance of
the current object

FromXml Establishes a permission set given a specific XML
encoding

GetHashCode Returns a hash code associated with a given object

GetType Returns the type of a given object

Intersect Returns the permissions two permission objects
have in common specified in the parameter

IsSubsetOf Returns the result of whether the current permission
object is a subset of a specified permission

IsUnrestricted Returns the result of whether the current permission
object is unrestricted

ToString Returns a string representation of the current
permission object

ToXml Creates an XML representation of the current
permission object

Union Creates a permission that is the union of two
permission objects

447

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 447

As an example of how we might use these methods, here is a code snippet which captures the current
Windows principal information and displays it on the screen in the form of a message box output. Each
element of the principal information could be used in a program to validate against, and thus, restrict
code execution based on the values in the principal information. In our example, we have inserted an
Imports System.Security.Principal line at the top of our module so we could use the identity and
principal objects:

Imports System.Security.Principal
Imports System.Security.Permissions

Private Sub btnRoleBasedPermissions_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnRoleBasedPermissions.Click

Dim objIdentity As WindowsIdentity = WindowsIdentity.GetCurrent
Dim objPrincipal As New WindowsPrincipal(objIdentity)
MessageBox.Show(objPrincipal.Identity.IsAuthenticated.ToString())
MessageBox.Show(objIdentity.IsGuest.ToString())
MessageBox.Show(objIdentity.ToString())
objIdentity = Nothing
objPrincipal = Nothing

End Sub

In this code we have illustrated a few of the properties that could be used to validate against when a
caller wants to run our code. Sometimes we want to make sure that the caller is an authenticated user,
and not someone who bypassed the security of our machine with custom login information. This is
achieved through the following line of code:

MessageBox.Show(objPrincipal.Identity.IsAuthenticated.ToString())

and will output in the MessageBox as either True or False depending on whether the user is
authenticated or not.

Another piece of information to ensure that our caller is not bypassing system security would be to
check and see if the account is operating as a guest. We do this by the following line of code:

MessageBox.Show(objIdentity.IsGuest.ToString())

Once again, the IsGuest returns either True or False, based on whether the caller is authenticated as a
guest.

The final MessageBox in our example displays the ToString value for the identity object. This is a
value that tells us what type of identity it is, either a Windows Identity or non-Windows Identity. The
line of code that executes it is:

MessageBox.Show(objIdentity.ToString())

The output from the IsString() method is shown in the screen shot in Figure 13-1.

Again, the principal and identity objects are used in verifying the identity or aspects of the identity of
the caller that is attempting to execute our code. Based on this information, we can lock down or release
certain system resources. We will show how to lock down and release system resources through our
code access permissions examples coming up.

448

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 448

Figure 13-1

Identity Permissions
Identity permissions are pieces of information, also called evidence, by which a piece of code can be
identified. Examples of the evidence would be the strong name of the assembly or the digital signature
associated with the assembly.

A strong name is a combination of the name of a program, its version number, and its associated
cryptographic key and digital signature files.

Identity permissions are granted by the runtime based on information received from the trusted host, or
someone who has permission to provide the information. Therefore, they are permissions that we don’t
specifically request. Identity permissions provide additional information to be used by the runtime when
we configure items in the Caspol.exe utility. The additional information that the trusted host can supply
includes the digital signature, the application directory, or the strong name of the assembly.

Managing Code Access Permissions
In this section, we’ll be looking at the most common type of permissions — that of programmatic access —
and how they are used. As our example, we created a Windows Form and placed four buttons on it. This
Windows Form will be used to illustrate the concept we previously mentioned, namely that, if a method
fails, an exception object is generated which contains our feedback. Note at this point, that in the case of a
real-world example we would be setting up permissions for a calling application. In many instances we
don’t want a calling application to be able to access the registry, or we want a calling application to be able
to read memory variables, but not change them. However, in order to demonstrate the syntax of our com-
mands, in our examples that follow, we have placed the attempts against the objects we have secured in
the same module. In our examples, we first set up the permission that we want and grant the code the
appropriate access level we wish it to be able to utilize. Then we use code that accesses our security object
to illustrate the effect our permissions have on the code that accesses the objects. We’ll also be tying
together many of the concepts discussed so far by way of these examples.

To begin with, let’s look at an example of trying to access a file in the file system, which will illustrate
the use of the FileIOPermission class in our Permissions namespace. In the first example, the file
C:\testsecurity\testing.txt has been secured at the operating system level so that no one can
access it. In order to do this, the system administrator would set the operating system security on the file
to no access:

Imports System.Security.Principal
Imports System.Security.Permissions
Imports System.IO

Private Sub btnFileIO_Click(ByVal sender As System.Object, _

449

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 449

ByVal e As System.EventArgs) Handles btnFileIO.Click

Dim oFp As FileIOPermission = New _
FileIOPermission(FileIOPermissionAccess.Write, “C:\testsecurity\testing.txt”)

oFp.Assert()

Try
Dim objWriter As New IO.StreamWriter _

(File.Open(“C:\testsecurity\testing.txt”, IO.FileMode.Open))
objWriter.WriteLine(“Hi there!”)
objWriter.Flush()
objWriter.Close()
objWriter = Nothing

Catch objA As System.Exception
MessageBox.Show(objA.Message)

End Try

End Sub

Let’s walk through the code. In this example, we are going to attempt to open a file in the C:\
testsecurity directory called testing.txt. We set the file access permissions within our code so
that the method, irrespective of who called it, should be able to get to it with the following lines:

Dim oFp As FileIOPermission = New _
FileIOPermission(FileIOPermissionAccess.Write, “C:\testsecurity\testing.txt”)

oFp.Assert()

We used the Assert method, which declares that the resource should be accessible even if the caller has
not been granted permission to access the resource. However, in this case, since the file is secured at the
operating system level (by the system administrator), we get the following error, as illustrated in Figure
13-2, that was caught in our exception handling.

Figure 13-2

Now, let’s look at that example again with full operating system rights, but the code permissions set
to Deny:

Protected Sub btnFileIO_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Dim oFp As FileIOPermission = New _
FileIOPermission(FileIOPermissionAccess.Write, _

450

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 450

“C:\testsecurity\testing.txt”)

oFp.Deny()

Try
Dim objWriter As New IO.StreamWriter _

(File.Open(“C:\testsecurity\testing.txt”, _
IO.FileMode.Open))

objwriter.WriteLine(“Hi There”)
objWriter.Flush()
objWriter.Close()
objWriter = Nothing

Catch objA As System.Exception
messagebox.Show(objA.Message)

End Try

End Sub

The Deny method denies all callers access to the object, regardless of whether the operating system granted
them permission. This is usually a good thing to put into place as not every method you implement needs
full and unfettered access to system resources. This helps prevent accidental security vulnerabilities which
your method may expose. With the Deny method, we catch the following error in our exception handler as
shown in Figure 13-3.

Figure 13-3

As you can see, this error differs from the first by reflecting a System.Security.Permissions
.FileIOPermission failure as opposed to an operating system level exception.

Now, let’s look at an example of how we would use the EnvironmentPermission class of the namespace
to look at EnvironmentVariables.

Protected Sub btnTestEnvironmentPermissions_Click _
(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles btnTestEnvironmentPermissions.Click

Dim oEp As EnvironmentPermission = New EnvironmentPermission _
(EnvironmentPermissionAccess.Read, “Temp”)

Dim sEv As String

451

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 451

oEp.Assert()

Try
sEv = Environment.GetEnvironmentVariable(“Temp”)
MessageBox.Show(“Assert was a success”)

Catch objA As System.Exception
MessageBox.Show(“Assert failed”)

End Try

System.Security.CodeAccessPermission.RevertAssert()
oEp.Deny()

Try
sEv = Environment.GetEnvironmentVariable(“Temp”)
MessageBox.Show(“Deny was a success”)

Catch objA As System.Exception
MessageBox.Show(“Deny failed”)

End Try

MessageBox.Show(oEp.ToString)

End Sub

There is a lot going on in this example, so let’s look at it carefully. We first establish an environment
variable permission and use the Assert method to ensure access to the code that follows:

Dim oEp As EnvironmentPermission = New EnvironmentPermission _
(EnvironmentPermissionAccess.Read, “Temp”)

Dim sEv As String
oEp.Assert()

We then try to read the environment variable into a string. If the string read succeeds, we then pop up a
message box to reflect the success. If the read fails, a message box is shown reflecting the failure:

Try
sEv = Environment.GetEnvironmentVariable(“Temp”)
MessageBox.Show(“Assert was a success”)

Catch objA As System.Exception
MessageBox.Show(“Assert failed”)

End Try

Next, we revoke the assert we previously issued by using the RevertAssert method and establish Deny
permissions:

System.Security.CodeAccessPermission.RevertAssert()
oEp.Deny()

We then try again to read the variable, and write the appropriate result to a message box:

Try
sEv = Environment.GetEnvironmentVariable(“Temp”)
MessageBox.Show(“Deny failed”)

452

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 452

Catch objA As System.Exception
MessageBox.Show(“Deny was a success”)

End Try

We finally write the ToString of the method to another message box. Following is the output of all
three message boxes as a result of running our subroutine. The first two message box messages give us
the feedback from our Assert and Deny code, followed by the output of our ToString method:

Assert was a success

Deny failed

<IPermission class=”System.Security.Permissions.EnvironmentPermission, mscorlib,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
version=”1” Read=”Temp” />

As you can see, the ToString method is an XML representation of the permission object that is currently
in effect. The first and second message boxes that are output are the system information of the version of
the Visual Basic security environment that was running at the time the button was clicked. The third
message box is the environment variable name surrounded by the Read tags, which was the permission
in effect at the time the ToString method was executed.

Let’s look at one more example of where the permissions would affect us in our program functionality,
that of accessing the registry. We would generally access the registry on the computer that was the central
server for a component in our Windows Forms application.

When we use the EventLog methods to create entries in the machine Event Logs, we access the registry.
To illustrate this concept, in the following code example we’ll deny permissions to the registry and see
the result:

Protected Sub btnTestRegistryPermissions_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnTestRegistryPermissions.Click

Dim oRp As New _
RegistryPermission(Security.Permissions.PermissionState.Unrestricted)

oRp.Deny()

Dim objLog As New EventLog
Dim objLogEntryType As EventLogEntryType

Try
Throw (New EntryPointNotFoundException)

Catch objA As System.EntryPointNotFoundException
Try

If Not System.Diagnostics.EventLog.SourceExists(“Example”) Then
System.Diagnostics.EventLog.CreateEventSource(“Example”, “System”)

End If

objLog.Source = “Example”
objLog.Log = “System”

453

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 453

objLogEntryType = EventLogEntryType.Information
objLog.WriteEntry(“Error: “ & objA.message, objLogEntryType)

Catch objB As System.Exception
MessageBox.Show(objB.Message)

End Try
End Try

End Sub

As we walk through our code, we start with setting up the registry permission and setting it to Deny
access:

Dim oRp As New _
RegistryPermission(Security.Permissions.PermissionState.Unrestricted)

oRp.Deny()

Next, we set up to Throw an exception on purpose in order to set up writing to an Event Log:

Throw (New EntryPointNotFoundException)

When the exception is caught, it checks the registry to make sure a specific type of registry entry source
is already in existence:

If Not System.Diagnostics.EventLog.SourceExists(“Example”) Then
System.Diagnostics.EventLog.CreateEventSource(“Example”, “System”)

End If

And at this point our code fails with the following error message as shown in Figure 13-4.

Figure 13-4

These examples can serve as a good basis for use in developing classes that access the other objects
within the scope of the Permissions namespace, such as reflections and UI permissions.

Managing Security Policy
As we stated in the introduction to the chapter, we have two new command-line utilities (Caspol.exe and
Permview.exe) that help us configure and view security policy at both machine and user levels. When
we manage security policy at this level we are doing so as an administrator of a machine or user policy for

454

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 454

a machine that is hosting code that will be called from other front-end applications. Caspol.exe is a
command-line utility that has many options to give us the ability to configure our security policies
(Caspol stands for Code Access Security Policy). User and machine policy are associated with groups and
permission sets. There is one group that is provided for us, the AllCode Group.

The Caspol utility has two categories of commands for us to review. The first category listed in the
following table is the set of commands that give us feedback on the current security policy.

Short
Command Command Parameters Effect

–List –l None This lists the combination of the fol-
lowing three options

–ListGroups –lg None This will list only groups

–ListPset –lp None This will list only permission sets

–ListFulltrust –lf None This will list only assemblies which
have full trust privileges

–Reset –rs None This will reset the machine and user
policies to the default for .NET.
This is handy if a policy creates a
condition that is not recoverable.
Use this command carefully as you
will lose all changes made to the
current policies

-–ResolveGroup –rsg Assembly File This will list what groups are
associated with a given assembly
file

-–ResolvePerm –rsp Assembly File This will list what permission
sets are associated with a given
assembly file

This is not the list in its entirety, but a listing of some of the more important commands. Now let’s look
at some examples of output from our previous listed commands.

If we wanted to list the groups active on our local machine at the Visual Studio Command Prompt, we
would type the following:

Caspol -Machine -ListGroups

The output will look similar to the following, as illustrated in Figure 13-5 (though it will differ slightly
depending upon the machine you are working on).

455

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 455

Let’s talk about the previous screen, so that we know some of the other things that are listed besides
what we specifically requested. On the third line, we see that code access security checking is ON. On the
following line we see that the machine is checking for the user’s right to execute the Caspol utility, since
Execution checking is ON. The Policy change prompt is ON, so if the user executes a Caspol command
that will change system policy, there will be an “Are You Sure?” style prompt which appears to confirm
that this is really intentional.

Figure 13-5

The level is also listed on our screen prior to our requested output, which is detailed at the bottom
listing the groups present on the machine. There are two levels that the policies pertain to, those being
the machine and the user. When changing policy, if the user is not an administrator, the user policy is
affected unless the user specifically applies the policy to the machine through use of the -machine
switch, as illustrated in our screenshot. If the user is an administrator, the machine policy is affected
unless the user specifically applies the policy to the user level through the use of the -user switch.

Let’s now look at another request result example. This time we will ask for a listing of all of the permission
sets on our machine. At the Command Prompt we would type the following:

Caspol -machine -listpset

And we would see the output similar to the following screen shot. The following output has been
shortened for space considerations, but the output would contain a listing of all of the code explicitly set
to execute against the seven permission sets that we mentioned in our definitions section. Also, note that
the output is an XML representation of a permission object. The listing details the named permission sets

456

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 456

and what each one has as active rights. For instance, the fifth permission set is named LocalIntranet,
while the next lines detail the Permission class, being an environment permission with read access to
the environment variable - USERNAME. The next class detail is regarding FileDialogpermissions, and
it lists those as being unrestricted. The screen shot shown in Figure 13-6 then goes on to detail the
effective settings for IsolatedStorage and others.

Figure 13-6

Let’s now look at the second category of commands that go with the Caspol utility as shown in the
following table. These commands are those that we will use to actually modify policy.

457

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 457

Short
Command Command Parameters Effect

-AddFullTrust -af Assembly File Adds a given Assembly file to the full
Name trust permission set

-AddGroup -ag Parent Label, Adds a code group to the code group
Membership, hierarchy
Permission
Set Name

-AddPSet -ap Permission Set Adds a new named permission set
Path, Permission to the policy; the permission set should
Set Name be an XML file

-ChgGroup -cg Membership, Changes a code group’s information
Permission
Set Name

-ChgPset& -cp File Name, Changes a named permission set’s
Permission information
Set Name

-Force& -f& This option is not recommended. It
forces Caspol to accept policy changes
even if the change could cause Caspol
itself not to be able to be executed

-Recover -r& Recovers policy information from a
backup file that is controlled by the
utility

-RemFullTrust -rf Assembly Removes a given Assembly file from
File Name the full trust permission set

-RemGroup -rg Label Removes a code group

-RemPSet -rp Permission Removes a permission set. The seven
Set Name default sets cannot be removed

Again, this is not a comprehensive list of all the available commands, therefore you should consult the
MSDN documentation for the complete listing, if needed. Let’s begin our discussion of these commands
with a few more definitions that will help us understand the parameters that go with our commands. An
assembly file is created within Visual Basic each time we do a build where our version is a release ver-
sion. An assembly needs to have a strong name associated with it in order to be used in our permissions
groupings. An assembly gets a strong name from being associated with a digital signature uniquely
identifying the assembly. We carry out this association in addition to providing other pieces of evidence
to be used with the strong name within the AssemblyInfo.vb file of our project. To do this, open up the
AssemblyInfo.vb file within Visual Studio 2005. This file is automatically created for you by Visual
Studio when you create a project. Simply add a new assembly attribute to the list as shown here:

<Assembly: AssemblyKeyFileAttribute(“myKey.snk”)>

458

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 458

This associates our assembly with an existing originating key file in order for Visual Studio to generate a
strong name during the build process. Be sure that you place the key file in the project directory as this is
where Visual Studio will be looking for it during the build process.

During the build, Visual Studio has generated the strong name, and then we can add our assembly to
our security configuration. Place the executable, SecurityApp.exe (your executable will be the name of
your project), which was created from our build, into the C:\testsecurity directory on the local
machine for use with our policy method illustrations.

If we wanted to add our assembly to the fulltrust permission set, we would type

Caspol -addfulltrust C:\testsecurity\SecurityApp.exe

The following is a screen shot of the outcome of our command (Figure 13-7).

Figure 13-7

As we can see, we were prompted before our command altered our security policy, and then our new
application was added to the fulltrust assembly list. We can confirm it was added by issuing the
following command:

Caspol -listfulltrust

The excerpt of output from our command that includes our new assembly would look like what is
shown in Figure 13-8.

In the screen shot, we can see our application name, version, and key information that was associated
with our .exe file when we did our build.

Now, let’s look at the creation and addition of a permission set to our permission sets in our security pol-
icy. Permission sets can be created by hand, in any text editor, in an XML format and saved as an .xml
file (for this example we have saved it as securityexample.xml). Following is a listing from one such
file that was created for this example:

<PermissionSet class=”System.Security.NamedPermissionSet” version=”1”>
<Permission class=”System.Security.Permissions.FileIOPermission, mscorlib,

SN=03689116d3a4ae33” version=”1”>
<Read> C:\TestSecurity </Read>

</Permission>

459

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 459

<Permission class=”System.Security.Permissions.EnvironmentPermission,
mscorlib, SN=03689116d3a4ae33” version=”1”>

<Read> [TEMP] </Read>
</Permission>
<Name>SecurityExample</Name>
<Description>Gives Full File Access</Description>

</PermissionSet>

Figure 13-8

The listing has multiple permissions within the permission set. The listing sets up read file permissions
within one set of tags as shown:

<Permission class=”System.Security.Permissions.FileIOPermission, mscorlib,
SN=03689116d3a4ae33” version=”1”>

<Read> C:\TestSecurity </Read>
</Permission>

460

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 460

We then set up read access to our Temp environment variable in the second set of permission tags:

<Permission class=”System.Security.Permissions.EnvironmentPermission,
mscorlib, SN=03689116d3a4ae33” version=”1”>

<Read> [TEMP] </Read>
</Permission>

The listing also gives our custom permission set the name of SecurityExample with a description:

<Name>SecurityExample</Name>
<Description>Gives Full File Access</Description>

When we want to add our permission set to our policy, we would type the following command:

Caspol -addpset C:\testsecurity\securityexample.xml securityexample

In the last command, we are issuing the -addpset flag to indicate that we want to add a permission set,
followed by the XML file containing our permission set, followed finally by the name of our permission
set. The outcome of our command looks like the following screen shot (Figure 13-9).

Figure 13-9

We can then list our security permission sets by typing Caspol -listpset. Here is the excerpt (Figure
13-10) that shows our new security permission set.

As you can see, typing Caspol -listpset gives a listing of just the permission sets within our policy.
Our named permission set SecurityExample shows up under the Named Permission Sets heading,
and its description is listed just after its name.

Now that we have a permission set, we can add a group that our assembly object fits into and
which enforces our new permission set. We add this group by using the AddGroup switch in Caspol.
The AddGroup switch has a couple of parameters that need more explanation. The first parameter is
parent_label. When we look at the group screen shot that follows, we can see our All code group has
a 1. before it. The labels within code groups have a hierarchy that gets established when we add groups,
and so we need to specify what our parent label would be. In our case, since the only one that exists is
1., that is what we’ll be designating.

461

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 461

Figure 13-10

Since we designate 1, the new group will become a child of 1. The second parameter is membership. The
membership parameter has a certain list of options that we can put in based on the following table. Each
option designates a piece of information we are providing about the pieces of code that we will add to
our group. For instance, we would state that we will only be adding code that had a specific signature
with the -Pub option, or add only code in a certain application directory with the -AppDir option.

Option Description

-All All code

-Pub Code that has a specific signature on a certificate
file

-Strong Code that has a specific strong name, as designated
by a file name, code name, and version

-Zone Code that fits into the following zones:
MyComputer, Intranet, Trusted, Internet, or
Untrusted

-Site Originating on a Web site

462

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 462

Option Description

-Hash Code that has a specific assembly hash

-AppDir A specific application directory

-SkipVerif Code that requests the skipverification
permission

-URL Originating at a specific URL

-Custom Code that requires a custom membership
condition.

The third parameter to the AddGroup command is the permission set name that we want to be associated
with our group. The group that we will create will be under parent label 1, and we will designate
the -Zone parameter as being MyComputer since our code lives on a local drive. We will also associate
the new group with our SecurityExample permission set by typing the following command:

Caspol -addgroup 1. -Zone MyComputer SecurityExample

We can see that our output from the command was successful in the screen shot shown in Figure 13-11.

In our screen shot (Figure 13-12), we use the -listgroups command to list our new group.

In the screen shot, we can see that a 1.6 level was added with our SecurityExample permission set
attached to all code that fits into the MyComputer Zone. Now, let’s verify that our assembly object fits
into the MyComputer Zone by using our resolveperm command. This is illustrated in Figure 13-13.

As we can see at the bottom of the screen shot, it lists which ZoneIdentityPermission the assembly
object has been associated with — MyComputer. In addition, each assembly will get a
URLIdentityPermission specifying the location of the executable.

Figure 13-11

463

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 463

Figure 13-12

Not only do we have the utility that helps us with managing security permission sets and groups, but
we also have a utility that views the security information regarding an assembly called Permview.exe.
(Permview stands for Permissions Viewer.)

Permview is not as complex as Caspol because its main purpose is to give a certain type of feedback
regarding the security requests of assemblies. In fact, the Permview utility only has two switches, one for
the output location, and one for declarative security to be included in the output. In order to specify an
output location the switch is /Output and then a file path is appended to the command line after the
switch. The Permview utility brings up another concept we have yet to cover, that of declarative security.

Declarative security is displayed in the Permview utility with the /Decl switch, and is security that a
piece of code requests at an assembly level. Since it is at the assembly level, the line which requests the
security is at the top of the Visual Basic module, even before our Imports statements. We can request
one of three levels of security, as shown in the following table.

Level Description

RequestMinimum Permissions the code must have in order to run

RequestOptional Permissions that code may use, but could run without

RequestRefused Permissions that you want to ensure are never granted to
the code

464

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 464

Figure 13-13

Requesting permissions at the assembly level will help ensure that the code will be able to run, and not
get permission-based security exceptions. Since we have users calling our code, the declarative security
ensures the callers have proper security to do all that our code requires, otherwise a security exception will
be thrown. The following is an example of the syntax of how we would request minimum permissions,
and the code would be placed at the top of our procedure. This example also illustrates syntax as described
in the table at the beginning of our chapter regarding permissions in the Security.Permissions
namespace. It also illustrates the use of a security constant, SecurityAction.RequestMinimum for the
type of security we are requesting:

<Assembly: SecurityPermissionAttribute(SecurityAction.RequestMinimum)>

Once this line is added to our assembly by means of the AssemblyInfo.vb file, Permview will report
on what the assembly requested by listing minimal, optional, and refused permission sets, including our
security permission set under the minimal set listing.

Figuring the Minimum Permissions Required for Your
Application

Before the .NET Framework 2.0, one of the big requests from developers who were building and deploying
applications was the need for understanding which permissions were required for the application to run.
This was sometimes a difficult task as developers would build their applications under Full Trust and then
the applications would be deployed to a machine where it wouldn’t have those kinds of privileges.

465

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 465

The .NET Framework 2.0 introduces a new tool that can be used to fully understand which permissions
your application is going to need in order to run on another machine. This command-line tool, PermCalc
.exe, does this by emulating the complete path of your assembly and all the permissions that it would
require.

To use PermCalc.exe, open up the Visual Studio Command Prompt and navigate to the location of the
assembly you want to check. PermCalc.exe takes the following command structure:

PermCalc.exe [Options] <assembly>

Or you can also have PermCalc.exe evaluate more than a single assembly.

PermCalc.exe [Options] <assembly> <assembly>

As an example of this, we ran the PermCalc.exe tool on the SecurityApp.exe and were given the
following results:

Microsoft (R) .NET Framework Permissions Calculator.
Copyright (C) Microsoft Corporation 2003. All rights reserved.

<Assembly Name=”C:\Documents and Settings\Administrator\My Documents\Visual
Studio\Projects\SecurityApp\SecurityApp\obj\Debug\securityapp.exe”>

<PermissionSet class=”System.Security.PermissionSet”
version=”1”>

<IPermission class=”System.Security.Permissions.EnvironmentPermission, mscorlib,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
version=”1”
Unrestricted=”true”/>

<IPermission class=”System.Security.Permissions.FileIOPermission, mscorlib,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
version=”1”
Unrestricted=”true”/>

<IPermission class=”System.Security.Permissions.RegistryPermission, mscorlib,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
version=”1”
Unrestricted=”true”/>

<IPermission class=”System.Security.Permissions.SecurityPermission, mscorlib,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
version=”1”
Flags=”UnmanagedCode, Execution, ControlEvidence, ControlPrincipal,
RemotingConfiguration”/>

<IPermission class=”System.Net.SocketPermission, System, Version=2.0.3600.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089”
version=”1”
Unrestricted=”true”/>

<IPermission class=”System.Diagnostics.PerformanceCounterPermission, System,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
version=”1”

466

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 466

Unrestricted=”true”/>
<IPermission class=”System.Net.NetworkInformation.NetworkInformationPermission,
System, Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
version=”1”
Access=”Read”/>

</PermissionSet>

</Assembly>

From this output, you can see the permissions that would be required for the application to run on
someone’s machine. These results were generated using the command:

PermCalc.exe -under SecurityApp.exe

The option -Under should be used when you are unsure of the exact permissions as PermCalc.exe
actually always overestimates the permissions by default. Using -Under forces PermCalc.exe to
underestimate the permissions instead.

Using Visual Studio to Figure Minimum Permissions
Looking at the properties of your solution in Visual Studio, you will notice that there is a new Security
tab. One of the problems in testing your application’s security and permissioning situations in the
past was that as a developer, you were always forced to develop your programs under Full Trust. This
means that you have access to the system’s resources in a very open and free manner. This was an issue
because the programs that you build typically cannot run under Full Trust and you still have to test the
application’s abilities to tap into the system’s resources in which the program is being run.

The new Security tab is a new GUI face to the PermCalc.exe tool and allows you to run your applications
under different types of zones. Figure 13-14 shows a screen shot of this new page from the solution
property page.

After checking the Enable ClickOnce Security Settings check box, you will be able to select whether the
application will be running on the client machine under full trust or whether the application will only
have a partial trust status. You will also be able to select the zone in which your application will run. The
options include

❑ Local Intranet

❑ Internet

❑ Custom

After selecting the zone type you are wishing to test the application in, you can then examine all of the
various permissions that are required by the application in order to run.

Pressing the Calculate Permissions button on the form will do just that (shown in Figure 13-15). Visual
Studio will examine the assembly and provide you with information on what permissions for which
assemblies would be required to run the application in the zone specified.

467

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 467

Figure 13-14

Figure 13-15

468

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 468

Once analyzed, Visual Studio will present information on what is needed from each of the assemblies in
order for the application to function. This is illustrated in Figure 13-16.

Figure 13-16

What makes this section of the application’s property pages even better is that from the textbox of
assemblies listed, you can highlight selected assemblies and fine-tune their permissions even further —
granulizing the permissions the assemblies are allowed to work with. For instance, highlighting the
FileIOPermission line in the textbox and pressing the Properties button allows you to fine-tune how
the permissioning around this assembly will function. The dialog that appears in this situation is shown
in Figure 13-17.

Figure 13-17

469

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 469

From this screen shot, you can see that the FileIOPermission part of the permission settings allows
you to specify the file path that the assembly is allowed to access as well as the actions that the assembly
is allowed to take in the path defined.

The ability to examine assemblies is not only provided through the new command-line tool, PermCalc
.exe, but even Visual Studio joins the fray and allows for easy management and understanding of your
applications.

Security Tools
Microsoft provides many security tools in its .NET SDK. Most of these tools are console-based utility
applications. These can be used to help implement the security processes outlined above. We won’t be
discussing the use of these tools in great detail.

There are two groups of tools provided with the SDK:

❑ Permissions and assembly management tools

❑ Certificate management tools

Permissions and Assembly Management Tools

Program Name Function

Caspol.exe Stands for Code Access Security Policy tool. Lets you
view and modify security settings

Signcode.exe File signing tool; lets you digitally sign your executable
files

Storeadm.exe Administration tool for isolated storage management.
Restricts code access to filing system

Permcalc.exe Emulates the complete path of your assembly and all of
the permissions that it would require. It can also evaluate
assemblies and provide information on the permissions
an end user would require to run the program. This is a
new command-line tool provided by the .NET Frame-
work 2.0.

Permview.exe Displays assembly’s requested access permissions

Peverify.exe Checks if the executable file will pass the runtime test for
type-safe coding

Secutil.exe Extracts a public key from a certificate and puts it in a
format that is usable in your source code

Sn.exe Creates assemblies with strong names; that is, digitally
signed namespace and version info

470

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 470

Certificate Management Tools

Program Name Function

Makecert.exe Creates an X.509 certificate for testing purposes

Certmgr.exe Assembles certificates into a CTL (Certificate Trust List).
Can also be used for revoking

Chktrust.exe Validates a signed file containing data, its PKCS#7 hash,
and a X.509 certificate

Cert2spc.exe Creates an SPC (Software Publisher Certificate) from an
X.509 certificate

Dealing with Exceptions Using the SecurityException Class
In this latest release of the .NET Framework , the SecurityException class has been greatly expanded in
order to provide considerably more detailed information on the types of exceptions that are encountered in
a security context.

In the past, using .NET Framework versions 1.0/1.1, the SecurityException class provided very
little information in the way of actually telling you what was wrong and why the exception was
thrown. Due to this limitation, the .NET Framework 2.0 has added a number of new properties to the
SecurityException class. The following table details the properties of the SecurityException class.

Properties Description

Action Retrieves the security action which caused the exception
to occur

Demanded Returns the permissions, permission sets, or permission
set collections which caused the error to occur

DenySetInstance Returns the denied permissions, permissions sets, or
permission set collections which caused the security
actions to fail

FailedAssemblyInfo Returns information about the failed assembly

FirstPermissionThatFailed Returns the first permission contained in the permission
set or permission set collection which failed

GrantedSet Returns the set of permissions that caused the security
actions to fail

Method Returns information about the method that is connected
to the exception

Table continued on following page

471

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 471

Properties Description

PermissionState Returns the state of the permission that threw the exception

PermissionType Returns the type of the permission that threw the exception

PermitOnlySetInstance Returns a permission set or permission set collection
which is part of the permit-only stack frame if a security
action has failed

RefusedSet Returns the permissions that were refused by the
assembly

Url Returns the URL of the assembly which caused the
exception

Zone Returns the zone of the assembly which caused the
exception

As you can see, there is a lot of information that you can get your hands on if there is a security exception
that is thrown in your application. For instance, you can use something similar to the following Catch
section of code to check for security errors:

Dim myFile as FileStream

Try
myFile = My.Computer.FileSystem.GetFileInfo(“C:\testingsecurity\testing.txt”)

Catch ex As Security.SecurityException
MessageBox.Show(ex.Method.Name.ToString())

End Try

One nice addition to the SecurityException class is in how Visual Studio so easily works with it. If
you encounter a SecurityException error while working in the debug mode of your solution, you will
see something similar to the following warning directly in the IDE as shown in Figure 13-18.

The nice thing is the detailed error notification that is shown in Figure 13-14. Also, it is possible to get
Visual Studio to provide a detailed view of the error by breaking down the SecurityException object
in the Locals window of Visual Studio when you catch the error using a Try-Catch statement.

Now that we’ve covered the permissions side of .NET security, let’s take a look at cryptography.

472

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 472

Figure 13-18

Cryptography Basics
Rather than being a general exposition of cryptography, this section is meant to familiarize you with basic
techniques required to deal with .NET security and protecting your Web Services through encryption. The
three building blocks we need are hashing algorithms, secret key encryption, and an understanding of
the Public Key Cryptographic System (PKCS).

Hashing algorithms digest long sequences of data into short footprints, the most popular being 64-bit
hash keys. The two most popular hashing algorithms are SHA (Secured Hash Algorithm) and MD5
(Message Digest version 5). These hash keys are used for signing digital documents; in other words,
the hash is generated and encrypted using a private key.

Secret key encryption is commonly used to protect data through passwords and pass phrases (long
phrases that would be difficult to guess). Secret key encryption is suitable for situations where the
encrypted data needs to be accessed by the same person who protected it.

473

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 473

Public Key Cryptography is most widely used in protecting the data through encryption. It is also used
for digital signatures. Public Key Cryptography is based on asymmetric keys. This means that you always
have a pair of keys. One is known to all and is called the public key. The other key of the pair is kept secret
and is known only to the owner. This is called the private key. If we use the public key to encrypt data, it
can only be decrypted using the corresponding private key of the key pair, and vice versa.

The public key is known to all, so any one can decrypt the information. However, the private key is
known only to the owner, so this process acts as a digital signature. In other words, if the public key
decrypts the message, we know that the sender was the owner of the private key. As we hinted, rather
than encrypting the whole document using the private key, a hash algorithm is used to digest the data
into a compact form, and this is then encrypted using the private key. The result of this process is called
the digital signature of the digital document.

If the data is encrypted using the public key, it can then only be decrypted by the corresponding private
key, which means that only the owner of the private key will be able to read the unencrypted data. This
can be used for encryption purposes.

The cryptographic namespace of the .NET Framework is System.Security.Cryptography.

Hash Algorithms
Hash algorithms are also called one-way functions. This is because of their mathematical property of
nonreversibility. The hash algorithms reduce large binary strings into a fixed-length binary byte array.
This fixed-length binary array is used for computing digital signatures, as explained earlier.

To verify a piece of information, the hash is recomputed and compared against a previously computed
hash value. If both the values match, the data has not been altered. The cryptographic hashing algorithms
map a large stream of binary data to a much shorter fixed length, so it is theoretically possible to have two
different documents having the same hash key.

Although, in theory, it is possible that two documents may have the same MD5 hash key and a different
check sum, it is computationally impossible to create a forged document having the same hash key as
the original hash value. Take the case of a virus attack on an executable code. In the late eighties, the
state-of-art was to create a check sum or a CRC (Cyclic Redundancy Check) as a protection measure
against accidental or malicious damage to the code integrity.

Virus makers drew cunning designs to create viruses that added padding code to the victim’s files
so that the check sum and CRC remained unchanged in spite of the infection. However, using MD5
hash values, this kind of stealth attack is rendered unfeasible.

Windows Meta Files (WMF) still use check sums in the file header. For example, the .NET Framework
class System.Drawing.Imaging.WmfPlaceableFileHeader has a read/write property of type
short called Checksum. However, due to ease of computation, this check sum is used as a cheap mode
of protection against accidental damage rather than against malicious attacks.

474

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 474

Here is a simple program to calculate a check sum:

‘ Cryptography/Checksum.vb

Imports System
Imports System.IO

Module Module1

This is the entry point for the program. Here, we check to see if we’ve received the correct argument
from the command line to run the program, and stop the program if we haven’t:

Public Sub Main(ByVal CmdArgs() As String)
If (CmdArgs.Length <> 1) Then

Console.WriteLine(“usage: Checksum <filename>”)
End

End If

First, we open the file for which the check sum is to be computed:

Dim fs As FileStream = File.OpenRead(CmdArgs(0))

We then compute the check sum and close the file, and then output the result to the screen:

Dim sum As Short = compute(fs)
fs.Close()
Console.WriteLine(sum)

End Sub

The following method computes the check sum:

Function compute(ByVal strm As Stream)
Dim sum As Long = 0
Dim by As Integer
strm.Position = 0
by = strm.ReadByte
While (by <> -1)

sum = (((by Mod &HFF) + sum) Mod &HFFFF)
by = strm.ReadByte

End While
Return CType((sum Mod &HFFFF), Short)

End Function
End Module

Compile this program with:

vbc Checksum.vb

and run it with:

Checksum <filename>

475

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 475

Due to their unsafe nature, check sum and CRC are sometimes termed as poor cousins of cryptographic
hash algorithms. We will now look into classes provided by the .NET Framework to cater for cryptographic
grade algorithms.

Cryptographic Hash Algorithms
The abstract class System.Security.Cryptography.HashAlgorithm represents the concept of
cryptographic hash algorithms within the .NET Framework. The framework provides eight classes
which extend the HashAlgorithm abstract class. These are

❑ MD5CryptoServiceProvider (extends abstract class MD5)

❑ RIPEMD160Managed (extends abstract class RIPEMD160)

❑ SHA1CryptoServiceProvider (extends abstract class SHA1)

❑ SHA256Managed (extends abstract class SHA256)

❑ SHA384Managed (extends abstract class SHA384)

❑ SHA512Managed (extends abstract class SHA512)

❑ HMACSHA1 (extends abstract class KeyedHashAlgorithm)

❑ MACTripleDES (extends abstract class KeyedHashAlgorithm)

The last two classes belong to a class of algorithm called keyed hash algorithms. The keyed hashes
extend the concept of cryptographic hash with the use of a shared secret key. This is used for computing
the hash of data transported over an unsecured channel.

The following is an example of computing a hash value of a file:

‘ Cryptography/TestKeyHash.vb

Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text
Imports System.Runtime.Serialization.Formatters

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If (CmdArgs.Length <> 1) Then
Console.WriteLine(“usage: TestKeyHash <filename>”)
End

End If

Here, we create the object instance of the .NET SDK Framework class with a salt (a random secret to
confuse a potential snooper):

Dim key() As Byte = Encoding.ASCII.GetBytes(_
“My Secret Key”.ToCharArray())
Dim hmac As HMACSHA1 = New HMACSHA1(key)
Dim fs As FileStream = File.OpenRead(CmdArgs(0))

476

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 476

The next four lines compute the hash, convert the binary hash into a printable base 64 format, close the
file, and then print the base 64 encoded string as the result of hashing to the screen:

Dim hash() As Byte = hmac.ComputeHash(fs)
Dim b64 As String = Convert.ToBase64String(hash)
fs.Close()
Console.WriteLine(b64)

End Sub
End Module

The code can be compiled at the command line using the following:

vbc TestKeyHash.vb

To execute the code, give the following command at the console prompt:

TestKeyHash TestKeyHash.vb

This should produce a hashed output:

IOEj/D0rOxjEqCD8qHoYm+yWw6I=

The previous example uses an instance of the HMACSHA1 class. The output displayed is a Base64
encoding of the binary hash result value. Base64 encoding is widely used in MIME and XML file
formats to represent binary data. To recover the binary data from a Base64 encoded string, we could
use the following code fragment:

Dim orig() As Byte = Convert.FromBase64String(b64)

The XML parser, however, does this automatically. We will come across this in later examples.

SHA
SHA (Secured Hashing Algorithm) is a block cipher and operates on a block size of 64 bits. However, the
subsequent enhancements of this algorithm have bigger key values, thus increasing the value range and
therefore enhancing the cryptographic utility. We must note that the bigger the key value sizes, the
longer it takes to compute the hash. Moreover, for relatively smaller data files, smaller hash values are
more secure. To put it another way, the hash algorithm’s block size should be less than or equal to the
size of the data itself.

The hash size for the SHA1 algorithm is 160 bits. Here is how to use it, which is similar to the HMACSHA1
code discussed previously:

‘ Cryptography/TestSHA1.vb

Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text
Imports System.Runtime.Serialization.Formatters

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If (CmdArgs.Length <> 1) Then

477

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 477

Console.WriteLine(“usage: TestSHA1 <filename>”)
End

End If
Dim fs As FileStream = File.OpenRead(CmdArgs(0))

Dim sha As SHA1 = New SHA1CryptoServiceProvider
Dim hash() As Byte = sha.ComputeHash(fs)

Dim b64 As String = Convert.ToBase64String(hash)
fs.Close()
Console.WriteLine(b64)

End Sub
End Module

The .NET Framework provides bigger key size algorithms as well, namely SHA256, SHA384, and
SHA512. The numbers at the end of the name indicate their block size.

The class SHA256Managed extends the abstract class SHA256, which in turn extends the abstract class
HashAlgorithm. The Forms Authentication module of ASP.NET security (System.Web.Security
.FormsAuthenticationModule) uses SHA1 as one of its valid formats to store and compare user
passwords.

MD5
MD5 stands for Message Digest version 5. It is a cryptographic, one-way hash algorithm. The MD5
algorithm competes well with SHA. MD5 is an improved version of MD4, devised by Ron Rivest of RSA
fame. In fact, FIPS PUB 180-1 states that SHA-1 is based on similar principles to MD4. The salient
features of this class of algorithms are

❑ It is computationally unfeasible to forge an MD5 hash digest.

❑ MD5 is not based on any mathematical assumption such as the difficulty of factoring large
binary integers.

❑ MD5 is computationally cheap, and therefore suitable for low latency requirements.

❑ It is relatively simple to implement.

The MD5 is the de facto standard for hash digest computation, due to the popularity of RSA.

The .NET Framework provides an implementation of this algorithm through the class
MD5CryptoServiceProvider in the System.Security.Cryptography namespace. This class
extends the MD5 abstract class, which in turn extends the abstract class HashAlgorithm. This
class shares a common base class with SHA1, so the examples previously discussed can be modified
easily to accommodate this:

Dim fs As FileStream = File.OpenRead(CmdArgs(0))

Dim md5 As MD5 = New MD5CryptoServiceProvider
Dim hash() As Byte = md5.ComputeHash(fs)

478

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 478

Dim b64 As String = Convert.ToBase64String(hash)
fs.Close()
Console.WriteLine(b64)

RIPEMD-160
Based on MD5, RIPEMD-160 started as a project in Europe called RIPE (RACE Integrity Primitives
Evaluation) in 1996. By 1997, the design of RIPEMD-160 was finalized. RIPEMD-160 is a 160-bit hash
algorithm and is meant to be a replacement for MD4 and MD5.

The .NET Framework 2.0 introduces the RIPEMD160 class to work with this latest iteration of encryption
techniques. The following code demonstrates the use of this class:

Dim fs As FileStream = File.OpenRead(CmdArgs(0))

Dim myRIPEMD As New RIPEMD160Managed
Dim hash() As Byte = myRIPEMD.ComputeHash(fs)

Dim b64 As String = Convert.ToBase64String(hash)
fs.Close()
Console.WriteLine(b64)

Secret Key Encryption
Secret key encryption is widely used to encrypt data files using passwords. The simplest technique is to
seed a random number using a password, and then encrypt the files with an XOR operation using this
random number generator.

The .NET Framework represents the secret key by an abstract base class SymmetricAlgorithm. Four
concrete implementations of different secret key algorithms are provided by default:

❑ DESCryptoServiceProvider (extends abstract class DES)

❑ RC2CryptoServiceProvider (extends abstract class RC2)

❑ RijndaelManaged (extends abstract class Rijndael)

❑ TripleDESCryptoServiceProvider (extends abstract class TripleDES)

Let’s explore the SymmetricAlgorithm design. As will be clear from the following example code,
two separate methods are provided to access encryption and decryption. Here is a console application
program that encrypts and decrypts a file given a secret key:

‘ Cryptography/SymEnc.vb

Imports System.Security.Cryptography
Imports System.IO
Imports System.Text
Imports System

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

479

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 479

If (CmdArgs.Length <> 4) Then
UsageAndExit()

End If

Here, we compute the index of the algorithm that we’ll use:

Dim algoIndex As Integer = CmdArgs(0)
If (algoIndex < 0 Or algoIndex >= algo.Length) Then

UsageAndExit()
End If

We open the input and output files (the file name represented by CmdArgs(3) is the output file, and
CmdArgs(2) is the input file):

Dim fin As FileStream = File.OpenRead(CmdArgs(2))
Dim fout As FileStream = File.OpenWrite(CmdArgs(3))

We create the symmetric algorithm instance using the .NET Framework class SymmetricAlgorithm.
This will use the algorithm name indexed by the CmdArgs(0) parameter. After this, we’ll set the key
parameters, and display them on-screen for information:

Dim sa As SymmetricAlgorithm = _
SymmetricAlgorithm.Create(algo(algoIndex))

sa.IV = Convert.FromBase64String(b64IVs(algoIndex))
sa.Key = Convert.FromBase64String(b64Keys(algoIndex))
Console.WriteLine(“Key “ + CType(sa.Key.Length, String))
Console.WriteLine(“IV “ + CType(sa.IV.Length, String))
Console.WriteLine(“KeySize: “ + CType(sa.KeySize, String))
Console.WriteLine(“BlockSize: “ + CType(sa.BlockSize, String))
Console.WriteLine(“Padding: “ + CType(sa.Padding, String))

At this point, we check to see which operation is required, and execute the appropriate static method:

If (CmdArgs(1).ToUpper().StartsWith(“E”)) Then
Encrypt(sa, fin, fout)

Else
Decrypt(sa, fin, fout)

End If
End Sub

Here is where the encryption itself takes place:

Public Sub Encrypt(ByVal sa As SymmetricAlgorithm, _
ByVal fin As Stream, _
ByVal fout As Stream)

Dim trans As ICryptoTransform = sa.CreateEncryptor()
Dim buf() As Byte = New Byte(2048) {}
Dim cs As CryptoStream = _

New CryptoStream(fout, trans, CryptoStreamMode.Write)
Dim Len As Integer
fin.Position = 0

Len = fin.Read(buf, 0, buf.Length)

480

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 480

While (Len > 0)
cs.Write(buf, 0, Len)
Len = fin.Read(buf, 0, buf.Length)

End While
cs.Close()
fin.Close()

End Sub

Here’s the decryption method:

Public Sub Decrypt(ByVal sa As SymmetricAlgorithm, _
ByVal fin As Stream, _
ByVal fout As Stream)

Dim trans As ICryptoTransform = sa.CreateDecryptor()
Dim buf() As Byte = New Byte(2048) {}
Dim cs As CryptoStream = _

New CryptoStream(fin, trans, CryptoStreamMode.Read)
Dim Len As Integer
Len = cs.Read(buf, 0, buf.Length)
While (Len > 0)

fout.Write(buf, 0, Len)
Len = cs.Read(buf, 0, buf.Length)

End While
fin.Close()
fout.Close()

End Sub

This next method prints usage information:

Public Sub UsageAndExit()
Console.Write(“usage SymEnc <algo index> <D|E> <in> <out> “)
Console.WriteLine(“D =decrypt, E=Encrypt”)
For i As Integer = 0 To (algo.Length - 1)

Console.WriteLine(“Algo index: {0} {1}”, i, algo(i))
Next i
End

End Sub

The static parameters used for object creation are indexed by CmdArgs(0). How we arrive at these
magic numbers will be discussed shortly:

Dim algo() As String = {“DES”, “RC2”, “Rijndael”, “TripleDES”}
Dim b64Keys() As String = {_

“YE32PGCJ/g0=”, _
“vct+rJ09WuUcR61yfxniTQ==”, _
“PHDPqfwE3z25f2UYjwwfwg4XSqxvl8WYmy+2h8t6AUg=”, _
“Q1/lWoraddTH3IXAQUJGDSYDQcYYuOpm”}

Dim b64IVs() As String = {_
“onQX8hdHeWQ=”, _
“jgetiyz+pIc=”, _
“pd5mgMMfDI2Gxm/SKl5I8A==”, _
“6jpFrUh8FF4=”}

End Module

481

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 481

After compilation, this program can encrypt and decrypt using all four of the symmetric key
implementations provided by the .NET Framework. The secret keys and their initialization vectors
(IV) have been generated by a simple source code generator, which we will examine shortly.

The following commands encrypt and decrypt files using the DES algorithm. With the first command,
we take a text file, 1.txt, and use the DES algorithm to create an encrypted file called 2.bin. The next
command decrypts this file back and stores it into 3.bin:

SymEnc 0 E 1.txt 2.bin
SymEnc 0 D 2.bin 3.bin

The first parameter of the SymEnc program is an index to the string array, which determines the algorithm
to be used:

Dim algo() As String = {“DES”, “RC2”, “Rijndael”, “TripleDES”}

The string defining the algorithm is passed as a parameter to the static Create method of the abstract
class SymmetricAlgorithm. This class has an abstract factory design pattern:

Dim sa As SymmetricAlgorithm = _
SymmetricAlgorithm.Create(algo(algoIndex))

To encrypt, we get an instance of the ICryptoTransform interface by calling the CreateEncryptor
method of the SymmetricAlgorithm class extender:

Dim trans As ICryptoTransform = sa.CreateEncryptor()

Similarly, for decryption, we get an instance of the ICryptoTransform interface by calling the
CreateDecryptor method of the SymmetricAlgorithm class instance:

Dim trans As ICryptoTransform = sa.CreateDecryptor()

We use the class CryptoStream for both encryption and decryption. However, the parameters to the
constructor differ. For encryption we use the following code:

Dim cs As CryptoStream = _
New CryptoStream(fout, trans, CryptoStreamMode.Write)

Similarly, for decryption we use the following code:

Dim cs As CryptoStream = _
New CryptoStream(fin, trans, CryptoStreamMode.Read)

We call the Read and Write methods of the CryptoStream for decryption and encryption, respectively.
For generating the keys, we use a simple code generator listed as follows:

‘ Cryptography/SymKey.vb

Imports System.Security.Cryptography
Imports System.Text
Imports System.IO

482

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 482

Imports System
Imports Microsoft.VisualBasic.ControlChars

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

Dim keyz As StringBuilder = New StringBuilder
Dim ivz As StringBuilder = New StringBuilder
keyz.Append(“Dim b64Keys() As String = { _” + VbCrLf)
ivz.Append(VbCrLf + “Dim b64IVs() As String = { _” + VbCrLf)

The algorithm names for symmetric keys used by .NET SDK are given the correct index values here:

Dim algo() As String = {“DES”, “RC2”, “Rijndael”, “TripleDES”}

For each of the algorithms, we generate the keys and IV:

Dim comma As String = “, _” + VbCrLf

For i As Integer = 0 To 3
Dim sa As SymmetricAlgorithm = SymmetricAlgorithm.Create(algo(i))

sa.GenerateIV()
sa.GenerateKey()

Dim Key As String
Dim IV As String

Key = Convert.ToBase64String(sa.Key)
IV = Convert.ToBase64String(sa.IV)
keyz.AppendFormat(tab + “””” + Key + “””” + comma)
ivz.AppendFormat(tab + “””” + IV + “””” + comma)
If i = 2 Then comma = “ “

Next i

Here, we print or emit the source code:

keyz.Append(“}”})
ivz.Append(“}”})
Console.WriteLine(keyz.ToString())
Console.WriteLine(ivz.ToString())

End Sub
End Module

The preceding program creates a random key and an initializing vector for each algorithm. This output
can be inserted directly into the SymEnc.vb program. The simplest way to do this is to type

SymKey > keys.txt

This will redirect the information into a file called keys.txt, which you can then use to cut and paste
the values into your program. We use the StringBuilder class along with the control character crlf
(carriage return and line feed) to format the text so that it can be inserted directly into your program. We
then convert the binary data into Base64 encoding using the public instance method ToBase64String

483

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 483

of the class Convert. Kerberos, the popular network authentication protocol supported by Windows
Server 2003, Windows 2000, and all of the UNIX flavors, uses secret key encryption for implementing
security.

In this next section, we will look into public key encryption.

PKCS
The Public Key Cryptographic System is a type of asymmetric key encryption. This system uses two
keys, one private and the other public. The public key is widely distributed whereas the private key is
kept secret. One cannot derive or deduce the private key by knowing the public key, so the public key
can be safely distributed.

The keys are different, yet complementary. That is, if you encrypt data using the public key, only the
owner of the private key can decipher it, and vice versa. This forms the basis of PKCS encryption.

If the private key holder encrypts a piece of data using their private key, any person having access to the
public key can decrypt it. The public key, as the name suggests, is available publicly. This property of
the PKCS is exploited along with a hashing algorithm, such as SHA or MD5, to provide a verifiable
digital signature process.

The abstract class System.Security.Cryptography.AsymmetricAlgorithm represents this concept in
the .NET Framework. Two concrete implementations of this class are provided by default, and they are

❑ DSACryptoServiceProvider, which extends the abstract class DSA

❑ RSACryptoServiceProvider, which extends the abstract class RSA

DSA (Digital Signature Algorithm) was specified by NIST (National Institute of Standards and Technology)
in January 2000. The original DSA standard was, however, issued by NIST, way back in August 1991. DSA
cannot be used for encryption and is good for only digital signature. We will discuss digital signature in
more detail in the next subsection.

RSA algorithms can also be used for encryption as well as digital signatures. RSA is the de facto standard
and has much wider acceptance than DSA. RSA is a tiny bit faster than DSA as well.

RSA algorithm is named after its three inventors: Rivest, Shamir, and Adleman. It was patented in the
USA, but the patent expired on September 20, 2000. RSA can be used for both digital signature and data
encryption. It is based on the assumption that large numbers are extremely difficult to factor. The use of
RSA for digital signatures is approved within the FIPS PUB 186-2 and defined in the ANSI X9.31 standard
document.

To gain some practical insights into RSA implementation of the .NET Framework, consider the
following code:

‘ Cryptography/TestRSAKey.vb

Imports System.Security.Cryptography.Xml

Module Module1

484

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 484

Sub Main()
Dim RSA As RSAKeyValue = New RSAKeyValue
Dim str As String = RSA.Key.ToXmlString(True)
System.Console.WriteLine(str)

End Sub
End Module

This code creates a pair of private and public keys and prints it out at the command line in XML format.
To compile the preceding code, simply open a console session, run corvar.bat (if necessary), set the
.NET SDK paths, and compile the program by typing the following command:

TestRSAKey.vb

This should produce a file called TestRSAKey.exe. Execute this program and redirect the output to a
file such as key.xml:

TestRSAKey > key.xml

The file key.xml contains all the private and public members of the generated RSA key object. You
can open this XML file in Internet Explorer 5.5 or above. If you do so, you will notice that the private
member variables are also stored in this file. The binary data representing the large integers is encoded
in Base64 format.

The program listed above uses an RSAKeyValue instance to generate a new key pair. The class
RSAKeyValue is contained in the System.Security.Cryptography.Xml namespace. This
namespace can be thought of as the XML face of the .NET cryptographic framework. It contains a
specialized, lightweight implementation of XML for the purpose of cryptography, and the model allows
XML objects to be signed with a digital signature.

The System.Security.Cryptography.Xml namespace classes depend upon the classes contained in
the System.Security.Cryptography namespace for the actual implementation of cryptographic
algorithms.

The key.xml file, generated by redirecting the output of the Visual Basic test program TestRSAKey,
contains both private and public keys. However, we need to keep the private key secret while making
the public key widely available. Therefore, we need to separate out the public key from the key pair.
Here is the program to do it:

‘ Cryptography/TestGetPubKey.vb

Imports System.Text
Imports System.Security.Cryptography
Imports System.IO
Imports System.Security.Cryptography.Xml
Imports System

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If (CmdArgs.Length <> 1) Then
Console.WriteLine(“usage: TestGetPubKey <key pair xml>”)
End

End If
Dim xstr As String = File2String(CmdArgs(0))

485

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 485

The following code creates an instance of the RSA implementation and reinitializes the internal variables
through the XML formatted string:

Dim rsa As RSACryptoServiceProvider = New RSACryptoServiceProvider
rsa.FromXmlString(xstr)
Dim x As String = rsa.ToXmlString(False)
Console.WriteLine(x)

End Sub

Public Function File2String(ByVal fname As String)
Dim finfo As FileInfo = New FileInfo(fname)
Dim buf() As Byte = New Byte(finfo.Length) {}
Dim fs As FileStream = File.OpenRead(fname)
fs.Read(buf, 0, buf.Length)
Return (New ASCIIEncoding).GetString(buf)

End Function
End Module

This program is logically similar to TestRSAKey.vb, except that it has to read the key file and pass a
different parameter in the ToXmlString method.

The cryptography classes use a lightweight XML implementation, thus avoiding the elaborate ritual of
parsing the fully-formed generic XML data containing serialized objects. This has another advantage
of speed because it bypasses the DOM parsers. To compile the previous code, type:

vbc /r:System.Security.dll TestGetPubKey.vb

This should produce the file TestGetPubKey.exe. Run this file, giving key.xml as the name of the
input file, and redirect the program’s output to pub.xml. This file will contain an XML formatted public
key. The binary data, basically binary large integers, are Base64 encoded. You may recall that key.xml
contains both the public and private key pairs, and was generated by redirecting the output of
TestRSAKey.exe. The following line will redirect key.xml’s public key to pub.xml:

TestGetPubKey key.xml > pub.xml

Now, let’s write a program to test the encrypt and decrypt feature of the RSA algorithm:

‘ Cryptography/TestCrypt.vb

Imports System
Imports System.IO
Imports System.Security.Cryptography.Xml
Imports System.Security.Cryptography
Imports System.Text

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If (CmdArgs.Length <> 4) Then
Console.WriteLine(“usage: TestCrypt <key xml> <E|D> <in> <out>”)
Console.WriteLine(“ E= Encrypt, D= Decrypt (needs private key)”)
End

End If

486

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 486

Here, we read the public or private key into memory:

Dim xstr As String = File2String(CmdArgs(0))

We create an instance of an RSA cryptography service provider and initialize the parameters based on
the XML lightweight file name passed in CmdArgs(0):

Dim RSA As New RSACryptoServiceProvider
RSA.FromXmlString(xstr)

We display the key file name:

Console.WriteLine(“Key File: “ + CmdArgs(0))
Dim op As String= “Encrypted”

We read the input file and store it into a byte array:

Dim info As FileInfo = New FileInfo(CmdArgs(2))
Dim inbuflen As Integer = CType(info.Length, Integer)
Dim inbuf() As Byte = New Byte(inbuflen-1) {}
Dim outbuf() As Byte
Dim fs As FileStream = File.OpenRead(CmdArgs(2))
fs.Read(inbuf, 0, inbuf.Length)
fs.Close()

We either encrypt or decrypt depending on CmdArgs(1) option:

If (CmdArgs(1).ToUpper().StartsWith(“D”)) Then
op = “Decrypted”
outbuf = rsa.Decrypt(inbuf, False)

Else
outbuf = rsa.Encrypt(inbuf, False)

End If

We’ll write back the result in the output buffer into the file and display the result:

fs = File.OpenWrite(CmdArgs(3))
fs.Write(outbuf, 0, outbuf.Length)
fs.Close()
Console.WriteLine(op + “ input [“ + CmdArgs(2) + “] to output [“ _

+ CmdArgs(3) + “]”)
End Sub

Here’s a helper method to read the file name passed as an argument and convert the content to string:

Public Function File2String(ByVal fname As String)
Dim finfo As FileInfo = New FileInfo(fname)
Dim buf() As Byte = New Byte(finfo.Length) {}
Dim fs As FileStream = File.OpenRead(fname)
fs.Read(buf, 0, buf.Length)
fs.Close()
Return (New ASCIIEncoding).GetString(buf)

End Function
End Module

487

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 487

This test program encrypts or decrypts a short file depending on the parameters supplied to it. It takes
four parameters, the XML formatted private or public key file, option E or D standing for encrypt or
decrypt options, respectively, and input and output file names.

This program can be compiled with the following command:

vbc /r:System.Security.dll TestCrypt.vb

The previous command will produce a PE file TestCrypt.exe. To test the encrypt and decrypt functions,
we’ll create a small plain-text file called 1.txt. Recall that we had also created two other files, key.xml
and pub.xml. The file key.xml contains a key pair and pub.xml contains the public key extracted from
the file key.xml.

Let’s encrypt the plain-text file plain.txt. To do so, use the following command:

TestCrypt pub.xml E 1.txt rsa.bin

Note that we have used the public key file to encrypt it. You can type the output on the console, but this
won’t make any sense to us because it contains binary data. You could use a binary dump utility to
dump out the file’s content. If you do this, you will notice that the total number of bytes is 128 compared
to the input of 13 bytes. This is because the RSA is a block cipher algorithm and the block size equals the
key size, so the output will always be in multiples of the block size. You may wish to rerun the preceding
examples with larger files to see the resulting encrypted file length.

Let us now decrypt the file to get back the original text. Use the following command to decrypt:

TestCrypt key.xml D rsa.bin decr.txt

Note that we used the key.xml file, which also contains the private key, to decrypt. That’s because we
use the public key to encrypt and private key to decrypt. In other words, anyone may send encrypted
documents to you if they know your public key, but only you can decrypt the message. The reverse is
true for digital signatures, which we will cover in the next section.

Digital Signature Basics
Digital signature is the encryption of a hash digest (for example, MD5 or SHA-1) of data using a public
key. The digital signature can be verified by decrypting the hash digest and comparing it against a hash
digest computed from the data by the verifier.

As noted earlier, the private key is known only to the owner, so the owner can sign a digital document by
encrypting the hash computed from the document. The public key is known to all, so anyone can verify
the signature by recomputing the hash and comparing it against the decrypted value, using the public key
of the signer.

The .NET Framework provides DSA and RSA digital signature implementations by default. We will
consider only DSA, as RSA was covered in the previous section. Both of the implementations extend the
same base class, so all programs for DSA discussed below will work for RSA as well.

We will go through the same motions of producing a key pair and a public key file and then sign and
verify the signature:

488

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 488

‘ Cryptography/GenDSAKeys.vb

Imports System
Imports System.Security.Cryptography
Imports FileUtil

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

Dim dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider
Dim prv As String = dsa.ToXmlString(True)
Dim pub As String = dsa.ToXmlString(False)
Dim fileutil As FileUtil = New FileUtil
fileutil.SaveString(“dsa-key.xml”, prv)
fileutil.SaveString(“dsa-pub.xml”, pub)
Console.WriteLine(“Created dsa-key.xml and dsa-pub.xml”)

End Sub
End Module

This code generates two XML formatted files dsa-key.xml and dsa-pub.xml, containing private and
public keys, respectively. Before we can run this, however, we need to create the FileUtil class used to
output our two files:

‘ Cryptography/FileUtil.vb

Imports System.IO
Imports System.Text

Public Class FileUtil
Public Sub SaveString(ByVal fname As String, ByVal data As String)

SaveBytes(fname, (New ASCIIEncoding).GetBytes(data))
End Sub

Public Function LoadString(ByVal fname As String)
Dim buf() As Byte = LoadBytes(fname)
Return (New ASCIIEncoding).GetString(buf)

End Function

Public Function LoadBytes(ByVal fname As String)
Dim finfo As FileInfo = New FileInfo(fname)
Dim length As String = CType(finfo.Length, String)
Dim buf() As Byte = New Byte(length) {}
Dim fs As FileStream = File.OpenRead(fname)
fs.Read(buf, 0, buf.Length)
fs.Close()
Return buf

End Function

Public Sub SaveBytes(ByVal fname As String, ByVal data() As Byte)
Dim fs As FileStream = File.OpenWrite(fname)
fs.SetLength(0)
fs.Write(data, 0, data.Length)
fs.Close()

End Sub
End Class

489

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 489

The following code signs the data:

‘ Cryptography/DSASign.vb

Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text
Imports FileUtil

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If CmdArgs.Length <> 3 Then
Console.WriteLine(“usage: DSASign <key xml> <data> <sign>”)
End

End If
Dim fileutil As FileUtil = New FileUtil
Dim xkey As String = fileutil.LoadString(CmdArgs(0))
Dim fs As FileStream = File.OpenRead(CmdArgs(1))

The DSA provider instance is created and the private key is reconstructed from the XML format using
the following two lines of code:

Dim dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider
dsa.FromXmlString(xkey)

The next line signs the file:

Dim sig() As Byte = dsa.SignData(fs)
fs.Close()
fileutil.SaveString(CmdArgs(2), Convert.ToString(sig))
Console.WriteLine(“Signature in {0}} file”, CmdArgs(2))

End Sub
End Module

To verify the signature, we’ll use the following sample code:

‘ Cryptography/DSAVerify.vb

Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text
Imports FileUtil

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If CmdArgs.Length <> 3 Then
Console.WriteLine(“usage: DSAVerify <key xml> <data> <sign>”)
End

End If
Dim fileutil As FileUtil = New FileUtil
Dim xkey As String = fileutil.LoadString(CmdArgs(0))

490

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 490

Dim data() As Byte = fileutil.LoadBytes(CmdArgs(1))
Dim xsig As String = fileutil.LoadString(CmdArgs(2))
Dim dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider
dsa.FromXmlString(xkey)
Dim xsigAsByte() As Byte = New Byte(xsig) {}
Dim verify As Boolean
verify = dsa.VerifyData(data, xsigAsByte)
Console.WriteLine(“Signature Verification is {0}”, verify)

End Sub
End Module

The actual verification is done using the highlighted code fragment.

The next four commands listed compile the source files:

vbc /target:library FileUtil.vb
vbc /r:FileUtil.dll GenDSAKeys.vb
vbc /r:FileUtil.dll DSASign.vb
vbc /r:FileUtil.dll DSAVerify.vb

There are many helper classes within the System.Security.Cryptography and the System. Security
.Cryptography.Xml namespaces, which provide many features to help deal with digital signatures and
encryption, and, at times, provide overlapping functionality. Therefore, there is more than one way of
doing the same thing.

X509 Certificates
X509 is a public key certificate exchange framework. A public key certificate is a digitally signed statement
by the owner of a private key, trusted by the verifier (usually a certifying authority) that certifies the
validity of the public key of another entity. This creates a trust relationship between two unknown
entities. This is an ISO standard specified by the document ISO/IEC 9594-8. X.509 certificates are also
used in SSL (Secure Sockets Layer), which is covered in the next section.

There are many certifying authority services available over the Internet. VeriSign (www.verisign.com)
is the most popular one. This company was also founded by the RSA trio themselves. You can also run
your own Certificate Authority (CA) service over an Intranet using Microsoft Certificate Server.

The Microsoft .NET Framework SDK also provides tools for generating certificates for testing purposes.

makecert -n CN=Test test.cer

This command generates a test certificate. You can view it by double-clicking the test.cer file from
Windows Explorer. The certificate is shown in Figure 13-19.

From the same dialog box, you could also install this certificate on your computer by clicking the Install
Certificate button at the bottom of the dialog box.

Three classes dealing with X509 certificates are provided in the .NET Framework in the namespace
System.Security.Cryptography.X509Certificates. Here is a program that loads and manipulates
the certificate created earlier:

491

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 491

Figure 13-19

‘ Cryptography/LoadCert.vb

Imports System
Imports System.Security.Cryptography.X509Certificates

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If CmdArgs.Length <> 1 Then
Console.Write(“usage loadCert <cert file> “)
End

End If
Dim cert As X509Certificate = _

X509Certificate.CreateFromCertFile(CmdArgs(0))
Console.WriteLine(“hash= {0}”, cert.GetCertHashString())
Console.WriteLine(“effective Date= {0}”, _

cert.GetEffectiveDateString())
Console.WriteLine(“expire Date= {0}”, _

cert.GetExpirationDateString())
Console.WriteLine(“Issued By= {0}”, cert.GetIssuerName())
Console.WriteLine(“Issued To= {0}”, cert.GetName())
Console.WriteLine(“algo= {0}”, cert.GetKeyAlgorithm())
Console.WriteLine(“Pub Key= {0}”, cert.GetPublicKeyString())

End Sub
End Module

492

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 492

The static method loads CreateFromCertFile (the certificate file) and creates a new instance of the
class X509Certificate.

The next section deals with SSL, which uses X509 certificates for establishing the trust relationship.

Secure Sockets Layer
SSL (Secure Sockets Layer) protocol provides privacy and reliability between two communicating
applications over the Internet. SSL is built over the TCP layer. In January 1999, IETF (Internet
Engineering Task Force) adopted an enhanced version of SSL 3.0 and called it TLS, which stands for
Transport Layer Security. TLS is backwardly compatible with SSL, and is defined in RFC 2246. However,
the name SSL stayed due to wide acceptance of this Netscape protocol name.

SSL provides connection-oriented security and has the following four properties:

❑ Connection is private and encryption is valid for that session only.

❑ Symmetric key cryptography, like DES, is used for encryption. However, the session secret key
is exchanged using public key encryption.

❑ Digital certificates are used to verify the identities of the communicating entities.

❑ Secure hash functions, like SHA and MD5, are used for message authentication code (MAC).

The SSL protocol sets the following goals for itself:

❑ Cryptographic security — Uses symmetric key for session and public key for authentication

❑ Interoperability — Interpolates OS and programming languages

❑ Extensibility — Adds new protocols for encrypting data which are allowed within the SSL
framework

❑ Relative efficiency — Reduces computation and network activity by using caching techniques

The following is a simplified discussion of the SSL algorithm sequence.

Two entities communicating using SSL protocols must have a public-private key pair, optionally with
digital certificates validating their respective public keys.

At the beginning of a session, the client and server exchange information to authenticate each other. This
ritual of authentication is called the Handshake Protocol. During this, a session ID, the compression
method, and the cipher suite to be used are negotiated. If the certificates exist, they are then exchanged.
Although certificates are optional, either the client or the server may refuse to continue with the connec-
tion and end the session in the absence of a certificate.

After receiving each other’s public keys, a set of secret keys based on a randomly generated number is
exchanged by encrypting it with each other’s public keys. After this, the application data exchange can
commence. The application data will be encrypted using a secret key, and a signed hash of the data is
sent to verify the data integrity.

493

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:04 PM Page 493

Microsoft implements the SSL client in the .NET Framework classes. However, the server-side SSL can
be used by deploying your service through the IIS Web server.

The following code fragment can be used to access SSL protected Web servers from the .NET platform:

Dim req As WebRequest = WebRequest.Create(“https://www.reuters.com”)
Dim result As WebResponse = req.GetResponse()

Note that the preceding URL starts with https, which signals the WebRequest class (part of System
.Net) to use SSL protocol. Interestingly, the same code is useful for accessing unsecured URLs as well.

The following is a program for accessing a secured URL. It takes care of the minor details, such as
encoding, for us:

‘ Cryptography/GetWeb.vb

Imports System
Imports System.IO
Imports System.Net
Imports System.Text

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If CmdArgs.Length <> 1 Then
Console.WriteLine(“usage: GetWeb url”)
Console.WriteLine(“example: GetWeb https://www.reuters.com”)
End

End If
Dim ms As String

We call the Create() method (which we’ll see in a moment) with a URL and an encoding format:

Try
ms = Create(CmdArgs(0), “utf-8”)

Catch x As Exception
Console.WriteLine(x.StackTrace)
Console.WriteLine(“Bad URL: {0}”, CmdArgs(0))

End Try
Console.WriteLine(ms)

End Sub

Now, we come to the Create() method. Using the .NET Framework WebRequest object, we create an
HTTP secured request object and get its response stream:

Function Create(ByVal url As String, ByVal encod As String) As String
Dim req As WebRequest = WebRequest.Create(url)
Dim result As WebResponse = req.GetResponse()
Dim ReceiveStream As Stream = result.GetResponseStream()

We create an encoding instance from the .NET Framework object, Encoding:

Dim enc As Encoding = System.Text.Encoding.GetEncoding(encod)

494

Chapter 13

16_575368 ch13.qxd 10/7/05 11:04 PM Page 494

Here, we’ll create the stream reader:

Dim sr As StreamReader = New StreamReader(ReceiveStream, enc)

We read the stream fully — the entire Web page or serialized object is read into the responseString:

Dim response As String = sr.ReadToEnd()
Return response

End Function
Dim MaxContentLength As Integer = 16384 ‘ 16k

End Module

The preceding console application gets a secured (SSL) protected URL and displays the content on the
console. To compile the code, give the following command:

vbc /r:System.dll GetWeb.vb

Summary
In this chapter, we covered the basics of security and cryptography. We started with an overview of the
security architecture of the .NET Framework, and looked at four types of security: NTFS, security policies,
cryptographic, and programmatic.

We went on to examine the security tools and functionality that the .NET Framework provides. We examined
the System.Security.Permissions namespace, and learned how we can control code access permissions,
role-based permissions, and identity permissions. We looked at how we can manage code access permissions
and manage security policies for our code. We used two tools —Caspol.exe and Permview.exe— that help
us to configure and view security at both the machine and user levels.

In the second half of the chapter, we turned our attention to cryptography, both the underlying theory
and how it can be applied within our applications. We looked at the different types of cryptographic
hash algorithms, including SHA, MD5, Secret Key Encryption, and PKCS. We also understood how we
can use digital certificates (specifically, X509 certificates) and Secure Socket Layers.

495

Security in the .NET Framework 2.0

16_575368 ch13.qxd 10/7/05 11:05 PM Page 495

16_575368 ch13.qxd 10/7/05 11:05 PM Page 496

Windows Forms

Windows Forms is the part of the .NET Framework base classes used to create user interfaces
for local applications, often called Win32 clients. It is dramatically improved over the forms and
controls available in pre-.NET versions of Visual Basic. Although some familiar controls have been
retired, no significant functionality has been lost, and lots of new capabilities have been added.

Windows Forms uses the version number of the related .NET Framework. Thus, the version in
Visual Basic 2005 is Windows Forms 2.0. This chapter will sometimes refer to the version number
to emphasize differences from the versions included in Visual Basic 2002 and 2003. Those versions
are Windows Forms 1.0 and 1.1, respectively.

After explaining why Windows Forms is an important user interface option for .NET applications,
this chapter will start its technical content by summarizing the changes in Windows Forms 2.0.
This will allow those with some experience in previous versions of Windows Forms to quickly
identify key changes.

Then the chapter will look at forms, controls, and their behaviors, with emphasis on those
elements that are most important for routine application development. Windows Forms is one
of the larger namespaces in .NET, and there is too much there to discuss everything. Instead, this
chapter highlights those things developers need to know first.

The next chapter (Chapter 15) includes more advanced treatment of certain aspects of Windows
Forms. After gaining a basic understanding of the key capabilities in this chapter, you’ll be ready
to go on to the more advanced concepts in that chapter.

17_575368 ch14.qxd 10/7/05 11:01 PM Page 497

The Importance of Windows Forms
The first versions of .NET emphasized ASP.NET and Web Forms because of the popularity of browser-
based development. However, as discussed in Chapter 1, “smart client” applications are becoming more
prevalent under .NET because it offers cheaper and more flexible deployment than older COM-based
client software. (Deployment is discussed in detail in Chapter 19.)

This transition to “smart client” applications results in Windows Forms gaining greater importance.
Windows Forms applications can even be “Internet-enabled” by using Web services to access and manage
data on remote Internet servers.

It’s also more practical in .NET-based systems to support both browser-based and smart-client user
interfaces in the same system. Middle-tier components can easily be designed to work with both. So it’s
not an “either or” choice — Windows Forms interfaces may be mixed with browser-based Web Forms
interfaces.

Summary of Changes in Windows Forms
version 2.0

If you have already used Windows Forms 1.0 or 1.1, much of the material in this chapter will be familiar
to you. To help you zero in on the new capabilities in Windows Forms 2.0, here is a summary of changes
and additions.

Default Instances of Forms
In VB6 and earlier, a form named Form1 could be shown by merely including the line:

Form1.Show

The capability was not available in Visual Basic 2002 and 2003. Instead, a form was treated the same as
any other class, and had to be instantiated before use. Typical code to show a form in Windows Forms
1.0 and 1.1 looked like this:

Dim f As New Form1
f.Show

The second form is still recommended because it fits object-oriented conventions. However, the first
form is again available in Visual Basic. It is slightly changed, because method calls in .NET normally
have parentheses at the end, so the new form looks like this:

Form1.Show()

However, the editor inserts those parentheses automatically.

Showing a form without instancing it, as in the first form above, is referred to as using the default instance
of the form. That default instance is available from anywhere in a project containing a form. There is only
one default instance, and any reference to it will bring up the same underlying instance of the form.

498

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 498

Another way to get to the default instance of a form is through the new My namespace. The following
line has exactly the same effect of showing the default instance of a form:

My.Forms.Form1.Show()

Changes in Existing Controls
The base Control class, which is a base class for all Windows Forms controls, has some new properties
in Windows Forms 2.0. Since all controls inherit from this class, all Windows Forms controls gain these
new properties and the new functionality that goes along with them.

Two of the new properties, Padding and Margin, are most useful when used in conjunction with some
new controls, TableLayoutPanel and FlowLayoutPanel. Those two properties are discussed later, in
the section discussing these new controls. The other new properties are discussed here.

MaximumSize and MinimumSize Properties
The MaximumSize and MinimumSize properties specify the maximum and minimum height and width
of a control. Forms had these properties in Windows Forms 1.0 and 1.1, but now all controls have them.

If the maximum height and width are both set to the default value of 0, then there is no maximum.
Similarly, if the minimum height and width are set to zero, there is no minimum. The form or control can
be any size.

If these properties are set to anything else, the settings become limits on the size of the control. For
example, if the MaximumSize height and width are both set to 100, then the control cannot be bigger than
100 × 100 pixels. The visual designer will not make the control any larger on the form design surface.
Attempting to set the height or width of the control in code at runtime to a value greater than 100 will
cause it to be set to 100 instead.

The MaximumSize and MinimumSize properties can be reset at runtime to enable sizing of the controls out-
side the limits imposed at design time. However, the properties have a return type of Point, so resetting
either property requires creating a Point structure. For example, you can reset the MinimumSize property
for a button named Button1 with the following line of code:

Button1.MinimumSize = New Point(20, 20)

This sets the new minimum width and height to 20 pixels.

UseWaitCursor Property
Windows Forms interfaces can make use of threading or asynchronous requests to allow tasks to happen
in the background. If a control is waiting for some asynchronous request to finish, it is helpful to indicate
that to the user by changing the mouse cursor when the mouse is inside the control. Normally, the cursor
used is the familiar hourglass, which is called the WaitCursor in Windows Forms.

For any control, setting the UseWaitCursor property to True causes the cursor to change to the hour-
glass (or whatever is being used for the WaitCursor) while the mouse is positioned inside the control.
This allows a control to visually indicate that it is waiting for something. The typical usage is to set
UseWaitCursor to True when an asynchronous process is begun and then set it back to false when the
process is finished and the control is ready for normal operation again.

499

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 499

AutoCompletion in Text Boxes and Combo Boxes
Text boxes and combo boxes get new properties for autocompletion of text entries. This capability was
often added manually or with third-party controls in previous versions, but is now built in. The
AutoCompleteMode controls how autocompletion works in the control, while the AutoCompleteSource
and AutoCompleteCustomSource properties tell the control where to get entries for autocompletion.

An example of autocompletion in action is shown later, in the section entitled “Advanced Capabilities
for Data Entry.”

New Controls
Windows Forms 2.0 includes a number of new controls. Some are brand new and offer completely new
functionality. Others are replacements for existing controls, offering additional functionality.

WebBrowser Control
Even smart client applications often need to display HTML or browse Web sites. Windows Forms 1.0 or 1.1
did not include a true Windows Forms control for browsing. The legacy ActiveX browsing control built
into Windows could be used via interoperability, but this had drawbacks for deployment and versioning.

The legacy ActiveX control is still the ultimate foundation for browsing capability, but Windows Forms
2.0 includes an intelligent Windows Forms wrapper that makes it much easier to use and deploy the
control.

MaskedTextbox control
Windows Forms 1.0 offered replacements for almost all of the controls available in Visual Basic 6, but one
notable exception was the MaskedEdit control. In Windows Forms 1.0 and 1.1, masked edit capabilities
were available only through third-party controls or by doing your own custom development.

That omission has now been rectified. The MaskedTextbox control resembles the old MaskedEdit control
in functionality. It allows a mask for input and a variety of useful properties to control user interaction with
the control. More information on this control is available in the section entitled “Advanced Capabilities for
Data Entry.”

TableLayoutPanel and FlowLayoutPanel Controls
Browser-based user interfaces are good at dynamically arranging controls at runtime, because browser
windows can be different sizes for different users. Forms-based interfaces have traditionally lacked
such capabilities. Dynamic positioning can be done in forms, but it requires writing a lot of sizing and
positioning logic.

Two new controls in Windows Forms 2.0 mimic layout capabilities in a browser, giving better options for
dynamic positioning of controls.

500

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 500

❑ The TableLayoutPanel creates a virtual table, with cells for each control. The position of controls
in the panel is thereby determined by the position of the enclosing cell.

❑ The FlowLayoutPanel allows the position of each control to be relative to the position of the
previous control in the panel. This allows a set of controls to be added to a panel without worrying
about detailed positioning, while still assuring that the controls will be accessible to the user and
not hidden by other controls.

Just about any control can be placed in these containers. To gain control over how controls are arranged
in a TableLayoutPanel or a FlowLayoutPanel, all Windows Forms controls now include a Margin
property. This property allows extra space to be included around a control when the automatic layout
is done.

The containers themselves have a Padding property that specifies the amount of extra space to leave
around the inside edge of the control. This also affects dynamic layout of contained controls.

An example illustrating usage of both controls, plus the Padding and Margin properties, is included in
the section entitled “Dynamic Sizing and Positioning of Controls.”

Replacements for Older Windows Forms Controls
The Toolbar, MainMenu, ContextMenu, and StatusBar controls in Windows Forms 1.0 and 1.1 offered
basic functionality, and these controls are still available in Windows Forms 2.0. But in most cases, you
will not want to use these controls because there are new replacements with significantly enhanced
capabilities. Since the old versions are still available, the new versions have different names. The table
that follows summarizes these replacements.

Old Control New Control Most Important New Capabilities

Toolbar ToolStrip Allows many new types of controls on the
toolbar.
Supports “rafting,” which allows the tool-
bar to be detached by the user and float
over the application.
Allows user to add or remove buttons or
other toolbar elements.
Includes new cosmetics, allowing toolbars
to look like those in Office 2003.

MainMenu MenuStrip The new menu controls both inherit from
ToolStrip, which allows new cosmetics
and more flexible placement.

ContextMenu ContextMenuStrip

StatusBar StatusStrip Inherits from ToolStrip, which allows
new cosmetics and makes it easier to
embed other controls in a status bar.

501

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 501

The old versions no longer show up by default in the toolbox. If you want to use them in new projects,
you must add them to the toolbox by right-clicking on the Windows Forms Toolbox tab and selecting
Choose Items. Then place a checkmark on the older control that you want added to the toolbox.
However, you’ll probably only want to use the older controls for compatibility with older projects and
use the improved versions for new development.

These controls are covered in more detail, including examples, in the sections entitled “Toolbars and the
New ToolStrip Control” and “Menus.”

The System.Windows.Forms Namespace
You’ve already seen how namespaces are used to organize related classes in the .NET Framework. The
main namespace used for Windows Forms classes is System.Windows.Forms. The classes in this
namespace are contained in the System.Windows.Forms.dll assembly.

If your application needs to have user interface support, it must contain a reference to the System
.Windows.Forms.dll assembly. If you choose a Windows Application project or Windows Control
Library project in VS.NET, that reference is added by default. In some other cases, such as creating a
library that will work with controls, you will need to add that reference manually. (You can see more
about creating controls in Windows Forms in Chapter 15.)

Using Forms
Before .NET, forms in Visual Basic were special types of modules, with a special section containing layout
information. That changed with the advent of VB.NET and Windows Forms. A form is just another class
in VB.NET. There is a special section of code maintained by the Visual Forms Designer, but the code in
that section is the same as any other VB.NET code.

A class becomes a form based on inheritance. A form must have the System.Windows.Forms class in its
inheritance tree. That causes the form to have the behavior and object interface a form requires.

In the previous section on changes in Windows Forms 2.0, we discussed that forms can be used by
referring to a default instance. However, the preferred technique is to treat a form the same as any other
class, which means creating an instance of the form and using the instance. Typical code would look
like this:

Dim f As New Form1
f.Show()

There is one circumstance in which loading a form the same way as a class instance yields undesirable
results. Let’s cover that next.

502

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 502

Showing Forms via Sub Main
When a form is instanced via the technique above, it is referenced by an object variable, which estab-
lishes an object reference to the instance. References are covered in detail in Chapter 3.

References can go away as object variables go out of scope or are set to other references or to Nothing.
When all object references to a form are gone, the form is disposed of, and therefore, vanishes. This is
particularly apparent if you want to start your application with a Sub Main, and then show your first
form inside Sub Main. You might think this code would work:

‘ This code will not work in VB.NET!!
Sub Main()

‘ Do start up work here
‘ After start up work finished, show the main form...
Dim f As New Form1
f.Show()

End Sub

What happens if you try this, however, is that Form1 briefly appears and then immediately vanishes, and
the application quits. That’s because the object variable f went out of scope, and it was the only refer-
ence to the form that was shown. So, the form was destroyed because it had no references pointing to it.

To get around this behavior, you could use the default instance as the startup form. However, there’s a
better way that stays within good object-oriented conventions. Replace the line that shows the form, as
shown in the following code:

‘ This code will not work in VB.NET!!
Sub Main()

‘ Do start up work here
Dim f As New Form1

Application.Run(f)

End Sub

Now Sub Main will transfer control to the form, and the form will not vanish when Sub Main ends.

Setting the Startup Form
Instead of using Sub Main as your application entry point, you can also define a startup form, which is the
form that will be loaded first when your application begins. To define the startup form, you need to open
the Properties dialog box for the project and set the Startup object setting. Do this using the Project ➪

Properties menu. You can also invoke the window by right-clicking the project name in Solution Explorer,
and selecting Properties from the context menu. The Properties dialog box for a Windows Application is
shown in Figure 14-1.

503

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 503

If the Properties menu item doesn’t appear under your Project menu, open the Solution Explorer (Ctrl-
Alt-L), highlight the project name (it will be in bold font), then try again.

Figure 14-1

Startup Location
Often, you’ll want a form to be centered on the screen when it first appears. VB.NET does this
automatically for you when you set the StartPosition property. The following table shows the
settings and their meanings.

StartPosition Value Effect

Manual Show the form positioned at the values defined by the
form’s Location property

CenterScreen Show the form centered on the screen

WindowsDefaultLocation Show the form at the windows default location

WindowsDefaultBounds Show the form at the windows default location, with the
windows default bounding size

CenterParent Show the form centered in its owner

504

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 504

Form Borders
Forms have a number of border options in Windows Forms. The FormBorderStyle property is used to
set the border option, and the options can affect the way a form can be manipulated by the user. The
options available for FormBorderStyle include:

❑ None— No border, and the user cannot resize the form

❑ FixedSingle— Single 3-D border, and the user cannot resize the form

❑ Fixed3D— 3-D border, and the user cannot resize the form

❑ FixedDialog— Dialog box style border, and the user cannot resize the form

❑ Sizeable— Same as FixedSingle, except that the user can resize the form

❑ FixedToolWindow— Single border, and the user cannot resize the form

❑ SizeableToolWindow— Single border, and the user can resize the form

Each of these has a different effect on the buttons that appear in the title bar of the form. For details,
check the help topic for the FormBorderStyle property.

Always on Top — The TopMost Property
Some forms need to remain visible at all times, even when they do not have the focus. Examples are
floating toolbars and tutorial windows. In VB.NET, forms have a property called TopMost. Set it to True
to have a form overlay others even when it does not have the focus.

Note that a form with TopMost set to True will be on top of all applications, not just the hosting
application. If you need a form to only be on top of other forms in the application, this capability is
provided by an owned form.

Owned Forms
As with the TopMost property, an owned form floats above the application, but does not interfere with
using the application. An example is a search-and-replace box. However, an owned form is not on top of
all forms, just the form that is its owner.

When a form is owned by another form, it is minimized and closed with the owner form. Owned forms
are never displayed behind their owner form, but they do not prevent their owner form from gaining the
focus and being used. However, if you want to click on the area covered by an owned form, the owned
form has to be moved out of the way first.

A form can only have one “owner” at a time. If a form that is already owned by Form1 is added to the
owned forms collection for Form2, then the form is no longer owned by Form1.

There are two ways to make a form owned by another form. It can be done in the owner form or in the
owned form.

505

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 505

AddOwnedForm() Method
In the owner form, another form can be made owned with the AddOwnedForm() method. Here is code to
make an instance of Form2 become owned by Form1. This code would reside somewhere in Form1 and
would typically be placed just before the line that shows the instance of Form2 to the screen.

Dim frm As New Form2
Me.AddOwnedForm(frm)

Owner Property
The relationship can also be set up in the owned form. This is done with the Owner property of the
form. Here is a method that would work inside Form2 to make it owned by a form that is passed in as
an argument to the function:

Public Sub MakeMeOwned(frmOwner As Form)
Me.Owner = frmOwner

End Sub

Since this technique requires a reference to the owner inside the owned form, it is not used as often as
using the AddOwnedForm() method in the Owner form.

OwnedForms Collection
The owner form can access its collection of owned forms with the OwnedForms property. Here is code to
loop through the forms owned by a form:

Dim frmOwnedForm As Form
For Each frmOwnedForm In Me.OwnedForms

Console.WriteLine(frmOwnedForm.Text)
Next

The owner form can remove an owned form with the RemoveOwnedForm property. This could be done in
a loop like the previous one, with code like the following:

Dim frmOwnedForm As Form
For Each frmOwnedForm In Me.OwnedForms

Console.WriteLine(frmOwnedForm.Text)

Me.RemoveOwnedForm(frmOwnedForm)
Next

This loop would cause an owner form to stop owning all of its slaved forms. Note that those deslaved
forms would not be unloaded, they would simply no longer be owned.

Notice that no matter how a form becomes an owned form, a reference to it is placed in the OwnedForms
collection. This can have an undesirable side effect. If you close a form and remove all other references to
it from your application, you might expect it to disappear entirely from your application. But the extra
reference in the OwnedForms collection can cause the form to hang around, taking up resources. To
prevent that, it’s a good idea to remove an owned form from the OwnedForms collection before closing it.

506

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 506

Making Forms Transparent and Translucent
Windows Forms offers advanced capabilities to make forms translucent or parts of a form transparent.
You can even change the entire shape of a form.

The Opacity Property
The Opacity property measures how opaque or transparent a form is. A value of 0 percent makes the
form fully transparent. A value of 100 percent makes the form fully visible. Any value greater than 0 and
less than 100 makes the form partially visible, as if it was a ghost. Note that an opacity value of 0 percent
disables the ability to click the form.

Very low levels of opacity, in the range of 1 or 2 percent, make the form effectively invisible, but still allow
the form to be clickable. This means that the Opacity property has the potential to create mischievous
applications that sit in front of other applications and “steal” their mouse clicks and other events.

Percentage values are used to set the Opacity in the Property Window. However, if you want to set the
Opacity property in code, you must use values between 0 and 1 instead, with 0 being equivalent to 0
percent and 1 being equivalent to 100 percent.

Tool and dialog windows that should not completely obscure their background are one example of a
usage for Opacity. Setting expiration for a “free trial” by gradually fading out the application’s user
interface is another.

The following block of code shows how to fade a form out and back in when the user clicks a button
named Button1. You may have to adjust the Step value of the array, depending on the performance of
your computer:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Button1.Click

Dim i As Double
For i = -1 To 1 Step 0.005

‘ Note - opacity is a value from 0.0 to 1.0 in code
Me.Opacity = System.Math.Abs(i)

Next i
End Sub

The TransparencyKey Property
Instead of making an entire form translucent or transparent, the TransparencyKey property allows you
to specify a color that will become transparent on the form. This allows you to make some sections of a
form transparent, while other sections are unchanged.

For example, if TransparencyKey is set to a red color, and some areas of the form are that exact shade
of red, they will be transparent. Whatever is behind the form will show through in those areas, and if
you click in one of those areas, you will actually be clicking the object behind the form.

507

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 507

TransparencyKey can be used to create irregularly shaped “skin” forms. A form can have its
BackgroundImage property set with an image, and by just painting a part of the image with the
TransparencyKey color, you can make parts of the form disappear.

The Region Property
Another way to gain the capability of “skins” is by using the Region property of a form. The Region
property allows a shape for a form to be encoded as a “graphics path,” thereby changing the shape from
the default rectangle to another shape. A path can contain line segments between points, curves and
arcs, and outlines of letters, in any combination.

Let’s do an example that will change the shape of a form to an arrow. Create a new Windows application.
Set the FormBorderStyle property of Form1 to None. Then place the following code in the Load event
for Form1:

Dim PointArray(6) As Point
PointArray(0) = New Point(0, 40)
PointArray(1) = New Point(200, 40)
PointArray(2) = New Point(200, 0)
PointArray(3) = New Point(250, 100)
PointArray(4) = New Point(200, 200)
PointArray(5) = New Point(200, 160)
PointArray(6) = New Point(0, 160)
Dim myGraphicsPath As _
System.Drawing.Drawing2D.GraphicsPath = _

New System.Drawing.Drawing2D.GraphicsPath

myGraphicsPath.AddPolygon(PointArray)
Me.Region = New Region(myGraphicsPath)

When the program is run, Form1 will appear in the shape of a right-pointing arrow. If you lay out the
points in the array, you will see that they have become the vertices of the arrow.

Visual Inheritance
By inheriting from System.Windows.Forms.Form, any class automatically gets all the properties,
methods, and events that a form based on Windows Forms is supposed to have. However, a class does
not have to inherit directly from the System.Windows.Forms.Form class to become a Windows form.
It can become a form by inheriting from another form, which itself inherits from System.Windows
.Forms.Form. In this way, controls originally placed on one form can be directly inherited by a second
form. Not only is the design of the original form inherited, but also any code associated with these
controls (the processing logic behind an Add New button, for example). This means that it is possible to
create a base form with processing logic required in a number of forms, and then create other forms
which inherit the base controls and functionality.

VB.NET provides an Inheritance Picker tool to aid in this process. It should be noted at this point,
however, that a form must be compiled into either an .exe or .dll file before it can be used by the

508

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 508

Inheritance Picker. Once that is done, the addition of a form that inherits from another form in the
project can be performed via the Project ➪ Add Inherited Form.

Scrollable Forms
Some applications need countless (or so it seems) fields on a single screen. Try as you may, no amount of
reorganizing and reducing spaces between the fields helps the situation. While you could split the data
entry into multiple screens, it is often done with regret. (Imagine what the Web surfing would be like if
scrolling a Web page was impossible.)

Forms in VB.NET are based on a class called ScrollableControl. This base class will give you, free of
charge, scrollbars to pull controls into view that are off the edge of your forms.

The scrollable control class on which a form is based automatically gives a form scrollbars when it is
sized smaller than the child controls sited on it. To enable this feature, set the AutoScroll property of
your form to True. When you run your program, resize the form to make it smaller than the controls
require and presto — instant scrolling.

Forms at Runtime
The lifecycle of a form is like that of all objects. It is created, and later destroyed. Forms have a visual
component, so they use system resources, such as handles. These are created and destroyed at interim
stages within the lifetime of the form. Forms can be created and will hold state as a class, but will not
appear until they are activated. Likewise, closing a form doesn’t destroy its state.

The following table summarizes the states of a form’s existence, how you get the form to that state, the
events that occur when the form enters a state, and a brief description of each.

Code Events Fired Description

MyForm = New Form1 Load The form’s New() method will be called (as
will InitializeComponent).

MyForm.Show() or HandleCreated Use Show() for modeless display.

MyForm.ShowDialog() Load Use ShowDialog() for modal display.

VisibleChanged The HandleCreated event only fires the first
time the form is shown or after it has
previously been closed.

Activated

Table continued on following page

You cannot have both Autoscroll and IsMdiContainer set to True at the same time.

509

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 509

Code Events Fired Description

MyForm.Activate() Activated A form can be activated when it is visible but
does not have the focus.

MyForm.Hide() Deactivate Hides the form (sets the Visible property to
False).

VisibleChanged

MyForm.Close() Deactivate Closes the form and calls Dispose to release
the window’s resources.

Closing During the Closing event, you can set the
CancelEventArgs.Cancel property to
True to abort the close.

Closed

VisibleChanged

HandleDestroyed Also called when the user closes the form
using the control box or X button.

Disposed The Deactivate event will only fire if the
form is currently active.

Note: There is no longer an Unload event.
Use the Closing or Closed event instead.

MyForm.Dispose() None Use the Close() method to finish using
your form.

MyForm = Nothing None Releasing the reference to the form flags it
for garbage collection. The Garbage Collector
will call the form’s Finalize() method.

Controls
The controls included in Windows Forms provide basic functionality for a wide range of applications.
The controls in Windows Forms 2.0 are very similar to those previous versions of Windows Forms, but
there are some significant differences to the controls in VB6. This section will cover the features that all
controls use (such as docking) and then address each of the standard controls available to you.
Important changes from older versions of Visual Basic (VB6 and earlier) will be briefly mentioned.

510

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 510

Control Tab Order
The VS2005 design environment allows you to set the tab order of the controls on a form simply by
clicking them in sequence. To activate the feature, open a form in the designer and select the View ➪ Tab
Order menu item. This will show a small number in the upper-left corner of each control on your form
representing the tab index of that control.

To set the values, simply click on each control in the sequence you want the tab flow to operate. The
screen shot in Figure 14-2 shows a simple form with the tab order feature enabled.

Figure 14-2

In VB.NET, it is possible to have two or more controls with the same tab index value. At runtime,
Visual Basic will break the tie by using the z-order of the controls. The control that is highest in the z-
order will receive the focus first. The z-order is a ranking number that determines which controls are in
front of or behind other controls. (The term comes from the z-axis, which is an axis that is perpendicular
to the traditional x- and y-axes.) The z-order can be changed by right-clicking the control and selecting
Bring to Front.

Control Arrays
Control arrays, which were a feature of VB6 and earlier versions, are not present in VB.NET. There were
two capabilities for which they were needed:

❑ To have a single method handle the events of multiple controls

❑ To dynamically add new controls to your form at runtime

Both of these capabilities can also be accomplished in VB.NET, but the techniques used are different. The
.NET Framework allows for any type of control to be created on the fly and for events to be attached
dynamically to controls at runtime.

Since control arrays don’t exist in VB.NET, you can no longer assign the same name to multiple controls
on your form. Furthermore, the Index property is gone from the standard set of control properties.

511

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 511

To get the control array effect, you need to connect a single method to multiple control events. Then,
since you are without the Index property, your handler will need a way to determine what control fired
the event. To do this, simply use the Sender parameter of the event.

A simple example is helpful to see how to set this up. First, create a new Windows application, and set
the Text property of the blank Form1 to Add Dynamic Control Demo. Then add two buttons to the
form, as shown in Figure 14-3.

Figure 14-3

Double-click Button1 to switch over to the code that handles the Button1.Click event. To make this
method respond to the Button2.Click event as well, simply add the Button2.Click event handler to
the end of the Handles list, and then add some simple code to display a message box indicating what
button triggered the event:

‘ Note the change in the method name from Button1_Click. Since
‘ two objects are hooked up, it’s a good idea to avoid having the
‘ method specifically named to a single object.
Private Sub Button_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _
Handles Button1.Click, Button2.Click

Dim buttonClicked As Button
buttonClicked = CType(sender, Button)
‘ Tell the world what button was clicked
MessageBox.Show(“You clicked “ & buttonClicked.Text)

End Sub

Run the program and click the two buttons. Each one will trigger the event and display a message box
with the appropriate text from the button that was clicked.

Next, you’ll enhance the program to add a third button dynamically at runtime. First, add another button
to your form that will trigger the addition of Button3, as shown in Figure 14-4.

Figure 14-4

512

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 512

Name the new button AddNewButton and add the following code to handle its Click event:

Private Sub AddNewButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles addNewButton.Click

Dim newButton As Button

‘ Create the new control
newButton = New Button()

‘ Set it up on the form
newButton.Location = New System.Drawing.Point(184, 16)
newButton.Size = New System.Drawing.Size(75, 23)
newButton.Text = “Button3”

‘ Add it to the form’s controls collection
Me.Controls.Add(newButton)

‘ Hook up the event handler.
AddHandler newButton.Click, AddressOf Me.Button_Click

End Sub

When the AddNewButton button is clicked, the code creates a new button, sets its size and position, and
then does two essential things. First, it adds the button to the form’s controls collection, and second, it
connects the Click event of the button to the method that will handle it.

With this done, run the program and click the addNewButton button. Button3 will appear. Then, simply
click Button3 to prove that the click event is being handled. You should get the result, as shown in
Figure 14-5.

Figure 14-5

Automatic Resizing and Positioning of Controls
Windows Forms 2.0 includes a variety of ways to allow user interfaces to be dynamic. Controls can be set
to automatically stretch and reposition themselves as a form is resized. Controls can also be dynamically
arranged inside some special container controls intended for that purpose. This section covers all these
ways of allowing dynamic sizing and positioning of controls.

513

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 513

Docking
Docking refers to gluing a control to the edge of a parent control. If the parent control moves or is stretched,
the docked control will do the same. Good examples of docked controls are menu bars and status bars,
which are typically docked to the top and bottom of a form, respectively. Docking is similar to the Align
property of controls such as the VB6 status bar, but in VB.NET, all visual controls have a Dock property.

To work through an example, create a new Windows application and place a label on a form. Then set
the background color of the label to white, make its font bold, place a solid border around it, and set its
TextAlign to MiddleCenter. If you also set the Text property of the form to AutoResize_Demo and
the Text property of the label to Automatic Resizing Rocks!, then the result when you show the form
should look something like Figure 14-6.

Figure 14-6

Suppose that you need to glue this label to the top of the form. To do this, view the Dock property of the
label. If you pull it down you’ll see a small graphic like that in Figure 14-7.

Figure 14-7

Simply click the top section of the graphic to tell the label to stick to the top of the form. The other sections
give you other effects. (A status bar would use the bottom section, for example. Clicking the box in the
middle causes the control to fill the form.) The label control will immediately “stick” to the top of your
form. When you run your program and stretch the window sideways, you’ll get the effect, as shown in
Figure 14-8.

Figure 14-8

514

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 514

If you want a gap between the edge of your form and the docked controls, set the DockPadding property
of the parent control. You can set a different value for each of the four directions (Left, Right, Top,
Bottom). You can also set all four properties to the same value using the All setting.

Anchoring
Anchoring is similar to docking, except that you can specifically define the distance each edge of your
control will maintain from the edges of a parent. To see it in action, add a button to the form in the
docking example. The result should look like Figure 14-9.

Figure 14-9

Dropping down the Anchor property of the button gives you the graphic in Figure 14-10.

Figure 14-10

The four rectangles surrounding the center box allow you to toggle the anchor settings of the control.
The graphic shows the default anchor setting of Top, Left for all controls.

When the setting is on (dark gray), the edge of your control will maintain its starting distance from the
edge of the parent as the parent is resized. If you set the anchor to two opposing edges (such as the left
and right edges), the control will stretch to accommodate this, as shown in Figure 14-11.

If you attempt to dock multiple controls to the same edge, VB.NET must decide how
to break the tie. Precedence is given to controls in reverse z-order. In other words,
the control that is furthest back in the z-order will be the first control that is next to
the edge. If you dock two controls to the same edge and want to switch them, right-
click the control you want docked first and select Send to Back.

515

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 515

Figure 14-11

One of the most common uses of anchoring is to set the Anchor property for buttons in the lower-right
portion of a form. Setting the Anchor property of a button to Bottom, Right will cause the button to
maintain a constant distance to the bottom-right corner of the form.

Note that you should set the Anchor properties of your controls after you have designed the entire form
since the anchoring effect occurs at design time as well. It can be very frustrating at design time when
you need to adjust the size of your form but don’t want the controls to move around.

You can also set the Anchor property in code. The most common time this would be needed would be
for a control created on the fly. To set the Anchor property in code, you must add together the anchor
styles for all the sides to which you need to anchor. For example, to set the Anchor property to Bottom,
Left would require a line of code like this:

MyControl.Anchor = AnchorStyles.Bottom + AnchorStyles.Right

The Splitter Control
The splitter control is a great new tool that helps with resizing as well. A splitter lets a user decide the
width (or height) of sections that make up a form. Windows Explorer uses a splitter to divide the folder
tree view and folder content windows.

Placing a splitter on your form at design time is a bit tricky if you’re new to the feature. To save yourself
some frustration, follow this basic sequence of steps:

❑ Place one panel on the form that will act as the left half of the form, and set its Dock property
to Left.

❑ Place the splitter control on the form; it will automatically dock. Be sure the splitter is sited on
the form itself, and not within the panel. Place a button in the panel, and set the button’s
Anchor property to Top, Left, Right.

❑ Your form should now look something like Figure 14-12 (you’ve made the splitter extra fat and
turned on their borders so you can see them).

516

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 516

Figure 14-12

❑ Next, add another panel that will act as the right panel, and set its dock property to Fill. This
tells it to take up the remaining space on the form

❑ Add a button to the right panel, and as with the first, set its Anchor property to Top, Left,
Right.

When you run the form, the splitter will automatically operate and adjust sizes of the two panels, and in
turn, the size of the two buttons, as shown in Figure 14-13.

Figure 14-13

It’s a good idea to change the back color of the splitter to a bright color like red at design time. This will
make it easier to see and select. At runtime, change the color to something less vibrant.

FlowLayoutPanel Control
The summary of new features mentioned a new control for Windows Forms 2.0 called the
FlowLayoutPanel control. This control allows dynamic layout of controls contained within the
FlowLayoutPanel, based on the size of the FlowLayoutPanel. The following walkthrough will
demonstrate this control in action.

Start a new Windows application project. On the blank Form1 included in the new project, place a
FlowLayoutPanel control toward the top of the form, and make it a bit less than the width of the form.
Set the Anchor property for the FlowLayoutPanel to Top, Left, and Right.

517

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 517

Place a button in the bottom-right corner of the form, and set the Anchor property for the button to
Bottom and Right. Then place two text boxes in the FlowLayoutPanel, keeping their default sizes. The
form you have created should now look much like that in Figure 14-14.

Figure 14-14

Now run the application. The initial layout will be similar to the design-time layout. However, if you
resize the form to about half of its original width, the layout of the text boxes will change. Since there is
no longer enough room for them to be arranged side by side, the arrangement will automatically switch,
and the form will look more like that in Figure 14-15.

Figure 14-15

Padding and Margin properties
To assist in positioning controls in the FlowLayoutPanel, all controls have a new property called Margin.
There are settings for Margin.Left, Margin.Right, Margin.Top, and Margin.Bottom. These settings
determine how much space is reserved around a control when calculating its automatic position in a
FlowLayoutPanel.

You can see the Margin property in action by changing the Margin property for one or more of the text
boxes in the previous example. If you change all the Margin settings for the first Textbox to 20 pixels,
for example, and run the application, the form will look like Figure 14-16.

518

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 518

Figure 14-16

The first text box now has a 20 pixel separation from all the other controls in the FlowLayoutPanel,
as well as a 20 pixel separation from the edges of the FlowLayoutPanel itself.

The Padding property is for the FlowLayoutPanel or other container control. When a control is
embedded into a FlowLayoutPanel, the Padding.Left, Padding.Right, Padding.Top, and
Padding.Bottom properties of the FlowLayoutPanel determine how far away from the inside edge
of the container to position the control.

You can see the Padding property in action by changing the Padding property for the FlowLayoutPanel
in the previous example. If you set all Padding settings to 20 pixels, and reset the Margin property for the
first Textbox back to the default, then the form will look like Figure 14-17 in the visual designer.

Figure 14-17

519

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 519

Notice that all the controls in the FlowLayoutPanel are now at least 20 pixels from the edges.

The Padding property is also applicable for other container controls, if the contained controls have their
Dock property set. If the settings for Padding are not zero, a docked control will be offset from the edge
of the container by the amount specified by the Padding property.

TableLayoutPanel Control
The other new control for dynamic layout is the TableLayoutPanel. This control consists of a table of
rows and columns, resulting in a rectangular array of cells. You can place one control in each cell.

The dimensions of the columns and rows can be controlled by setting some key properties. For columns,
set the number of columns with the ColumnCount property, and then control each individual column
with the ColumnStyles collection. When you click on the button for the ColumnStyles collection,
you’ll get a designer window that allows you to set two key properties for each column — the SizeType
and Width properties.

SizeType can be set to one of the following enumerations:

❑ Absolute— Sets the column width to a fixed size in pixels

❑ AutoSize— Indicates that the size of the column should be managed by the
TableLayoutPanel, which will allocate width to the column depending on the widest
control contained in the column

❑ Percent— Sets the percentage of the TableLayoutPanel to use for the width of the column

The Width property is only applicable if you do not choose a SizeType of AutoSize. It sets either the
number of pixels for the width of the column (if the SizeType is Absolute) or the percentage width for
the column (if the SizeType is set to Percent).

Similarly, for rows, there is a RowCount property to set the number of rows, and a RowStyles collection
to manage the size of the rows. Each row in RowStyles has a SizeType, which works the same way as
SizeType does for Columns, except that it manages the height of the row instead of the width of a col-
umn. The Height property is used for rows instead of a Width property, but it works in a corresponding
way. Height is either the number of pixels (if SizeType is Absolute) or a percentage of the height of
the TableLayoutPanel (if SizeType is Percent). If SizeType is AutoSize, then a row is sized to the
height of the tallest control in the row.

Extender Provider Controls
There is a new family of controls in Windows Forms that can only be used in association with other
controls. Each of these controls, called extender provider controls, causes new properties to appear for
every other control on the form.

Extender provider controls have no visible manifestation, so they appear in the component tray. The
three extender provider controls currently available are the HelpProvider, the ToolTip, and the
ErrorProvider. All three controls work in basically the same way. Each extender provider control

520

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 520

implements the properties that are “attached” to other controls. The best way to see how this works is
to go through an example, so let’s do that with a ToolTip control.

ToolTip
The ToolTip control is the simplest of the extender providers. It adds just one property to each control,
named ToolTip on ToolTip1 (assuming the ToolTip control has the default name of ToolTip1). This
property works exactly the same way the ToolTipText property works in VB6, and in fact, replaces it.

To see this in action, create a Windows Forms application. On the blank Form1 that is created for the
project, place a couple of buttons. Take a look at the properties window for Button1. Notice that it does
not have a ToolTip property of any kind.

Drag over the ToolTip control, which will be placed in the component tray. Go back to the properties
window for Button1. A property named ToolTip on ToolTip1 is now present. Set any string value
you like for this property.

Now run the project, and hover the mouse pointer over Button1. You will see a tooltip containing the
string value you entered for the ToolTip on ToolTip1 property.

HelpProvider
The HelpProvider control allows controls to have associated context-sensitive help available by pressing
F1. When a HelpProvider control (named HelpProvider1 by default) is added to a form, all controls on
the form get these new properties, which show up in the controls’ Properties window.

Property Usage

HelpString on HelpProvider1 Provides a pop-up tooltip for the control when shape
F1 is pressed while the control has the focus. If the
HelpKeyword and HelpNavigator properties (see later)
are set to provide a valid reference to a help file, then the
HelpString value is ignored in favor of the information
in the help file.

HelpKeyword on Provides a keyword or other index to use in a help
HelpProvider1 file for context-sensitive help for this control. The

HelpProvider1 control has a property that indicates
the help file to use. This replaces the HelpContextID
property in VB6.

HelpNavigator on Contains an enumerated value that determines how the
HelpProvider1 value in HelpKeyword is used to refer to the help file.

There are several possible values for displaying such
elements as a topic, an index, or a table of contents in the
help file.

ShowHelp on Determines whether the HelpProvider control is active
HelpProvider1 for this control.

521

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 521

Filling in the HelpString property immediately causes the control to provide tooltip help when F1 is
pressed while the control has the focus. The HelpProvider control has a property to point to a help file
(either an HTML help file or a Win32 help file), and the help topic in the HelpTopic property points to a
topic in this file.

ErrorProvider
The ErrorProvider control presents a simple, visual way to indicate to a user that a control on a form has
an error associated with it. The added property for controls on the form when an ErrorProvider control
is used is called Error on ErrorProvider1 (assuming the ErrorProvider has the default name of
ErrorProvider1). Setting this property to a string value causes the error icon to appear next to a control,
and for the text to appear in a tooltip if the mouse hovers over the error icon.

Here is a screen with several text boxes, and an error icon next to one (with a tooltip). The error icon and
tooltip are displayed and managed by the ErrorProvider control, as shown in Figure 14-18.

The ErrorProvider control’s default icon is the red circle with an exclamation point. When the Error
property for the text box is set, the icon will blink for a few moments, and hovering over the icon will
cause the tooltip to appear. The code for this behavior in the example screen is explained in the next
topic.

Figure 14-18

Properties of Extender Providers
In addition to providing other controls with properties, extender provider controls also have properties
of their own. For example, the ErrorProvider control has a property named BlinkStyle. When it is
set to NeverBlink, the blinking of the icon is stopped for all controls that are affected by the
ErrorProvider.

522

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 522

Other properties of the ErrorProvider allow you to change things such as the icon used, and where
the icon will appear in relation to the field that has the error. For instance, you might want the icon to
show up beneath a field, instead. You can also have multiple error providers on your form. For example,
you may wish to give the user a warning rather than an error. A second error provider with a yellow
icon could be used to provide this feature.

Working with Extender Provider Controls in Code
Setting the Error property in the previous example can be done with the Property window, but this is not
very useful for on-the-fly error management. However, setting the Error property in code is not done with
typical property syntax. By convention, extender provider controls have a method for each property they
need to set, and the arguments for the method include the associated control and the property setting. To
set the Error property in the previous example, the following code was used:

ErrorProvider1.SetError(txtName, “You must provide a location!”)

The name of the method to set a property is the word Set prefixed to the name of the property. This line
of code shows that the Error property is set with the SetError (), method of the ErrorProvider.

There is a corresponding method to get the value of the property, and it is named with Get prefixed to
the name of the property. To find out what the current Error property setting for txtName is, you would
use the following line:

sError = ErrorProvider1.GetError(txtName)

Similar syntax is used to manipulate any of the properties managed by an extender provider control.
The discussion of the tooltip provider earlier talked about setting the tooltip property in the Properties
window. To set that same property in code, the syntax would be

ToolTip1.SetToolTip(Button1, “New tooltip for Button1”)

Advanced Capabilities for Data Entry
New for Windows Forms 2.0 are a couple of advanced capabilities for data entry. Textbox and
Combobox controls now have autocompletion capabilities, and a new MaskedTextbox allows entry of
formatted input such as phone numbers.

Autocompletion
Responsive user interfaces help users accomplish their purposes, thereby making them more productive.
One classic way to do this is with autocompletion.

An example of autocompletion is IntelliSense in Visual Studio. Using IntelliSense, the user only has to
type in a few letters, and Visual Studio presents a list of probable entries matching those letters. If what
the user wants is in the list, the user need only indicate that, rather than typing the entire entry.

523

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 523

Autocompletion is available in Windows Forms 2.0 with text boxes and combo boxes. Both use a set of
properties to control how autocompletion works and where the list of entries available to the user
comes from.

To see autocompletion in action, create a Windows Application project. Drag a text box from the toolbox
onto the blank Form1 created for the project.

Set the AutocompleteMode for the text box to Suggest in the Property window. Then set the
AutocompleteSource to CustomSource. Finally, click the button in the setting window for
AutoCompleteCustomSource. You’ll see a window for entering entries that is very similar to the
window for entering items for a list box or combo box.

Enter the following items into the dialog:

Holder
Holland
Hollis
Holloway
Holly
Holstein
Holt

Now, start the project, and type “Hol” into the text box. As soon as you start typing, a drop-down will
appear that contains entries matching what you’ve typed, which includes all seven elements in the list. If
you then type another 1, the list will decrease to four elements that begin with Holl. (See Figure 14-19.)
If you then type an o, the list will contain only the entry Holloway.

The AutoCompleteMode has two other modes. The Append mode does not automatically present a
drop-down, but instead appends the rest of the closest matching entry to the text in the Textbox or
ComboBox, and highlights the untyped characters. This allows the closest matching entry to be placed in
the textarea without the user explicitly selecting an entry.

The SuggestAppend mode combines Suggest and Append. The current best match is displayed in the
textarea, and the drop-down with other possibilities is automatically displayed. This mode is the one
most like IntelliSense.

You can also set the list of items to be included in the autocompletion list at runtime, and this would be
the most common usage scenario. A list of items from a database table would typically be loaded for
autocompletion.

MaskedTextbox Control
The new features summary discussed the addition of a MaskedTextbox control, which fills in for the old
VB6 MaskedEdit control. If you have used MaskedEdit in VB6, the MaskedTextbox will feel quite
familiar.

After dragging a MaskedTextbox control to a form, you will typically want to first set the mask associated
with the control. You can do this in the property window by selecting the Mask property, but you can also
click the right-pointing arrow on the right side of the MaskedTextbox. In either case, you can either
construct a mask manually or select one of the commonly used masks from a list.

524

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 524

If you need to create your own mask, you will need to design it based on a set of formatting characters:

Mask Character Description

Digit placeholder.

. Decimal placeholder. The actual character used is the one
specified as the decimal placeholder in your international
settings. This character is treated as a literal for masking
purposes.

, Thousands separator. The actual character used is the one
specified as the thousands separator in your international
settings. This character is treated as a literal for masking
purposes.

: Time separator. The actual character used is the
one specified as the time separator in your international
settings. This character is treated as a literal for masking
purposes.

/ Date separator. The actual character used is the one
specified as the date separator in your international settings.
This character is treated as a literal for masking purposes.

\ Treat the next character in the mask string as a literal.
This allows you to include the #, &, A, and ? characters in
the mask. This character is treated as a literal for masking
purposes.

& Character placeholder. Valid values for this placeholder are
ANSI characters in the following ranges: 32–126 and
128–255.

> Convert all the characters that follow to uppercase.

< Convert all the characters that follow to lowercase.

A Alphanumeric character placeholder (entry required). For
example: a–z, A–Z, or 0–9.

a Alphanumeric character placeholder (entry optional).

9 Digit placeholder (entry optional). For example: 0–9.

C Character or space placeholder (entry optional). This operates
exactly like the & placeholder, and ensures compatibility with
Microsoft Access.

? Letter placeholder. For example: a–z or A–Z.

Literal All other symbols are displayed as literals; that is, as
themselves.

525

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 525

Literal characters are simply inserted automatically by the MaskedTextbox control. If you have literal
characters for the parentheses in a phone number, for example, the user need not type these for them to
show up in the textarea of the control.

As an example of a mask, suppose that you have an account number that must consist of exactly two
uppercase letters and five digits. You could construct a mask of >??00000. The first character forces all
letters to uppercase. The two question marks specify two required alphabetic characters, and the five
zeros specify five required digits.

Once you have set the Mask for the MaskedTextbox, all entries into the control will be coerced to the
Mask pattern. Keystrokes that don’t fit will be thrown away.

You have two options for fetching the text information entered by the user in a MaskedTextbox. The
InputText property will get the entry without any of the literal placeholder characters. For example, if
you are using a mask for phone number, InputText will just return the ten digits in the phone number.
If you want the text exactly as it appears in the control, then you should use the normal Text property.

Validating Data Entry
Most controls that you place on a form require that their content be validated in some way. A text box
might require a numeric value only or simply require that the user provide any value and not leave it
blank.

The ErrorProvider control just covered makes this task significantly easier than it was in previous
versions. To illustrate the use of this control in data validation, create a new Windows application project
and change the Text property for the blank Form1 to Validating Demo. Then place two text boxes on
the form that will hold a username and password, as shown in Figure 14-19.

Figure 14-19

526

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 526

Name the first text box UserNameTextBox and the second text box PasswordTextBox. You also need to
drag an ErrorProvider control onto the form, which will cause it to appear in the Component Tray. In
the next section, you’ll add the code that will simply verify that the user has filled in both text boxes and
given a visual indication, via the ErrorProvider, if either of the fields has been left blank.

The Validating Event
The Validating event fires when your control begins its validation. It is here that you need to place
your code that will validate your control, and set a visual indication for the error. Insert the following
code to see this in action:

Private Sub UserNameTextBox_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles UserNameTextBox.Validating

If userNameTextbox.Text = “” Then
ErrorProvider1.SetError(UserNameTextBox, “User Name cannot be blank”)

Else
ErrorProvider1.SetError(UserNameTextBox, “”)

End If
End Sub
Private Sub PasswordTextBox_Validating(ByVal sender As Object, _

ByVal e As System.ComponentModel.CancelEventArgs) _
Handles PasswordTextBox.Validating

If passwordTextbox.Text = “” Then
ErrorProvider1.SetError(PasswordTextBox, “Password cannot be blank”)

Else
ErrorProvider1.SetError(PasswordTextBox, “”)

End If
End Sub

Run the program and the tab between the controls without entering any text to get the error message.
You’ll see an icon blink next to each of the text box controls, and if you hover over an error icon, you’ll
see the appropriate error message.

There is also a Validated event that fires after a control’s Validating event. It can be used, for example,
to do a final check after other events have manipulated the contents of the control.

The CausesValidation Property
The CausesValidation property determines if the control will participate in the validation events on the
form. A control with a CausesValidation setting of True (it is True by default) will have two effects:

❑ The control’s Validating/Validated events will fire when appropriate.

❑ The control will trigger the Validating/Validated events for other controls.

It is important to understand that the validation events fire for a control not when the focus is lost but
when the focus shifts to a control that has a CausesValidation value of True.

527

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 527

To see this effect, set the CausesValidation property of the password text box in your application to
False (be sure to leave it True for the username and OK button). When you run the program, tab off
the username text box and again to the OK button. Notice that it isn’t until the focus reaches the OK
button that the validating event of the username text box fires. Also, notice that the validating event of
the password field never fires.

Ultimately, if you determine that the control is not valid, you need to decide how to act. That may
include setting the focus to the control that needs attention (as well as indicating the error with an
ErrorProvider).

Toolbars and the New ToolStrip Control
As mentioned in the summary of new features in Windows Forms 2.0, the ToolStrip control replaces
the Toolbar control from Windows Forms 1.0 and 1.1. ToolStrip has many improvements. It supports
movement to other sides of a form than the place it was laid out, and you have much more flexibility
in placing items on the toolbar. It also integrates better with the IDE to assist in creating toolbars and
manipulating the many settings available.

The ToolStrip does not sit alone on a form. When a ToolStrip is dragged onto a form, the container
that actually sits on the form is called a RaftingContainer. This container handles the positioning, so
that the toolbar created by a ToolStrip can be dragged to other parts of the form.

The ToolStrip sits inside the RaftingContainer and is the container for toolbar elements. It handles
the sizing of the toolbar, movement of toolbar elements, and other general toolbar functions.

The items on the toolbar must be from a set of controls specially designed to serve as toolbar items. All
of these items inherit from the ToolStripItem base class. The controls available for toolbar items are:

Control Description

ToolStripButton Replicates the functionality of a regular Button for a toolbar

ToolStripLabel Replicates the functionality of a regular Label for a toolbar

ToolStripSeparator A visual toolbar element that displays a vertical bar to
separate other groups of elements (no user interaction)

ToolStripComboBox Replicates the functionality of a regular ComboBox for a
toolbar. This item must be contained within a ToolStrip-
ControlHost (see below).

ToolStripTextBox Replicates the functionality of a regular TextBox for a
toolbar. This item must be contained within a ToolStrip-
ControlHost (see below)

ToolStripControlHost A hosting container for other controls that reside on a
ToolStrip. It can host any of the following controls:
ToolStripComboBox, ToolStripTextBox, other Windows
Forms controls, or user controls.

528

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 528

Control Description

ToolStripDropDownItem A hosting container for toolbar elements that feature drop-
down functionality. Can host a ToolStripMenuItem, a
ToolStripSplitButton, or a ToolStripDropDownButton.

ToolStripDropDownButton A button that supports drop-down functionality. Clicking
the button shows a list of options, and the user must then
click the one desired. This item is used when the user needs
to select from a group of options, no one of which is used a
large majority of the time.

ToolStripSplitButton A combination of a regular button and a drop-down button.
This item is often used when there is a frequently used
option to click, but you also need to offer the user other
options that are less frequently used.

ToolStripMenuItem A selectable option displayed on a menu or context menu.
This item is typically used with the menu controls that
inherit from the ToolStrip, and which are discussed in the
section later in this chapter entitled “Menus.”

Notice that almost any control can be hosted on a toolbar using the ToolStripControlHost. However,
for buttons, text boxes, labels, and combo boxes, it is much easier to use the ToolStrip version instead
of the standard version.

Creating a ToolStrip and Adding Toolbar Elements
Let’s do an example to see how to build a toolbar using the ToolStrip control. Create a new Windows
application. Add a ToolStrip control to the blank Form1 that is included with the new project. Make
the form about twice its default width, so that you have plenty of room to see the ToolStrip as you
work on it.

The ToolStrip will be positioned at the top of the form by default. It will not contain any elements,
though if you highlight the ToolStrip control in the component tray, a “menu designer” will appear in
the ToolStrip.

The easiest way to add multiple elements to the ToolStrip is to use the designer dialog for the
ToolStrip. Highlight the ToolStrip in the component tray and click the button in the properties
window for the Items property. You’ll see a designer dialog that looks like Figure 14-20.

529

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 529

Figure 14-20

The drop-down in the upper left contains the different types of items that can be placed on the toolbar.
Add one each of the following types, with the setting specified:

ToolStripButton Set the Text property to Go.

ToolStripComboBox Set the Text property to blank.
Set DropDownStyle to DropDownList.
Open the Items dialog and add the names of some colors.

ToolStripSplitButton Set the Text property to Options.

ToolStripTextBox Set the Text property to blank.

Then click OK in the dialog, and the ToolStrip will look like the one in Figure 14-21.

Figure 14-21

You can now handle events on any of these toolbar elements the same way you would any other controls.
You can double-click to get a Click event routine or access the event routines through the drop-downs in
the Code Editor.

Run your program and, using the mouse, grab the dotted handle on the far-left edge of the toolbar. If
you drag this to the right, the toolbar will be repositioned. If you drag it to other positions on the form,
the entire toolbar will dock to different edges of the form.

530

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 530

Allowing the User to Move Toolbar Elements
By default, the AllowReorder property of the ToolStrip is set to False. If you change that to True,
then the elements on the toolbar can be moved around in relation to one another at runtime (reordered).

Change the AllowReorder property to True for the ToolStrip, and run your program again. Hold down
the Alt key, and drag elements on the toolbar around. They will assume new positions on the toolbar when
you drop them.

Creating a Standard Set of Toolbar Elements
If you need a toolbar that has the typical visual elements for cut, copy, paste, and so on, it is not necessary
for you to create the elements. The designer will do it for you.

Create a new form in your project, and drag a ToolStrip onto the form. As before, it will be positioned
at the top and will not contain any elements.

With the ToolStrip highlighted in the component tray, click the Item property. Below the properties in
the Property window, a link named Insert Standard Items will appear. Click that link, and elements will
be inserted into the ToolStrip to make it look like the one in Figure 14-22.

Figure 14-22

Altering Toolbar Elements in the Designer
When a ToolStrip or element with a ToolStrip is highlighted in the Visual Designer, a small
right-pointing arrow is displayed on the right-hand side of the element. If you click this arrow, you will
see a dialog that allows you to change the most commonly used properties of the element. This is just a
convenience feature — the properties window can also be used to change these properties, along with
any other properties of the element.

Menus
Menus are added to a form in VB.NET 2005 by dragging controls called MenuStrip or
ContextMenuStrip onto your form. MenuStrip implements a standard Windows-style menu
at the top of the form. ContextMenuStrip allows a pop-up menu with a right mouse button click.

These controls are actually subclasses of the ToolStrip, so much of the information you learned earlier
in this chapter for working with the ToolStrip also applies to the MenuStrip and ContextMenuStrip.

531

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 531

When dragged onto the form, these controls appear in the component tray just as the ToolStrip does,
and you access the designer for these controls the same way as you do for the ToolStrip. However,
because these are menus, the most common way of adding items is to type items directly into the menu
designer that appears when the control is highlighted.

The menu designer is extremely intuitive — the menu appears on your form just as it would at runtime,
and you simply fill in the menu items you need. Each item can be renamed, and each can have a Click
event associated with it.

Adding Standard Items to a Menu
If your form’s menu needs to have the standard top-level options (File, Edit, and so on) and the typical
options under these items, then you can have all these typical options inserted for you automatically.

To see this capability in action, drag a MenuStrip to a form, and then click the right arrow at the right
edge of the MenuStrip to bring up the designer dialog. Click the link at the bottom of the dialog that
says Insert Standard Items.

Icons and Checkmarks for Menu Items
Each item on a menu has an Image property. Setting this property to an image causes the image to
appear on the left side of the text for the menu option. You can see this property in use by looking at the
standard items inserted in the example just above. The File ➪ Save option has an icon of a diskette,
which was produced by setting the image property of that item.

Items can also have checkmarks beside them. This is done by changing the Checked property of the item
to True. This can be done at design time or runtime, allowing you to manipulate the checkmarks on
menus as necessary.

Context Menus
To implement a context menu for a form or any control on a form, drag a ContextMenuStrip to the
form, and add the menu items. Items are added and changed the same way as with the MenuStrip.

To hook a context menu to a control, set the control’s ContextMenuStrip property to the
ContextMenuStrip menu control you want to use. Then, when your program runs and you
right-click in the control, the context menu will pop up.

Dynamically Manipulating Menus at Runtime
Menus can be adjusted at runtime using code. Context menus, for instance, may need to change
depending on the state of your form. The following walkthrough shows how to add a new menu
item to a context menu and also how to clear the menu items.

First, create a new Windows application. On the blank Form1 for the project, drag over a MenuStrip
control. Using the menu designer, type in a top-level menu option of File. Under that option, type in
options for Open and Save.

Now place a button on the form. Double-click the button to get its Click event, and place the following
code into the event:

532

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 532

Dim NewItem As New ToolStripMenuItem
NewItem.Text = “Save As”
‘ Set any other properties of the menu item you like.

FileToolStripMenuItem.DropDownItems.Add(NewItem)
AddHandler NewItem.Click, _

AddressOf Me.NewMenuItem_Click

Then add the event handler referenced in this code at the bottom of the form’s code:

Private Sub NewMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

MessageBox.Show(“New menu item clicked!”)
End Sub

If you now run the program and look at the menu, it will only have File and Save options. Clicking the
button will cause a new Save As item to be added to the menu, and it will be hooked to the event routine
called NewMenuItem_Click.

Common Dialogs
VB.NET provides you with seven common dialog controls. Each is a control that will open a predefined
form that is identical to the one used by the operating system. The next sections outline the use and basic
properties of each control that customizes their use.

OpenFileDialog and SaveFileDialog
These two controls will open the standard dialog control that allows a user to select files on the system.
They are virtually identical, except for the buttons and labels that appear on the actual dialog box when
it is shown to the user. Each prompts the user for a file on the system, by allowing the user to browse the
files and folders available.

Use the following properties to set up the dialog boxes.

Property Comments

InitialDirectory Defines the initial location that will be displayed when the
dialog box opens. For example: OpenFileDialog1
.InitialDirectory = “C:\Program Files”

Filter String that defines the Files of type list. Separate items using
the pipe character. Items are entered in pairs with the first of
each pair being the description of the file type, and the
second half as the file wildcard. For example:
OpenFileDialog1.Filter = “All Files$|*.* |Text
Files|*.txt|Rich Text Files|*.rtf”

Table continued on following page

533

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 533

Property Comments

FilterIndex Integer that specifies the default filter item to use when the
dialog box opens.
For example, with the above filter used, default to text files
as follows: OpenFileDialog1.FilterIndex = 2

RestoreDirectory Boolean value that, if True, will force the system’s default
directory to be restored to the location it was in when the
dialog box was first opened. This is False by default.

Filename Holds the full name of the file that the user selected,
including the path.

ShowDialog() Displays the dialog.

The following code will open the standard dialog box asking the user to select a file that currently exists
on the system, and will simply display the choice in a message box upon return:

OpenFileDialog1.InitialDirectory = “C:\”
OpenFileDialog1.Filter = “Text files|*.txt|All files|*.*”
OpenFileDialog1.FilterIndex = 1
OpenFileDialog1.RestoreDirectory = True
OpenFileDialog1.ShowDialog()
MessageBox.Show(“You selected “”” & OpenFileDialog1.FileName & “”””)

ColorDialog Control
As the name implies, this control gives the user a dialog box from which to select a color. Use the
following properties to set up the dialogs boxes.

Using these properties looks something like this:

ColorDialog1.Color = TextBox1.BackColor
ColorDialog1.AllowFullOpen = True
ColorDialog1.ShowDialog()
TextBox1.BackColor = ColorDialog1.Color

Property Comments

Color The System.Drawing.Color that the user selected. You
can also use this to set the initial color selected when the
user opens the dialog.

AllowFullOpen Boolean value that, if True, will allow the user to select any
color. If False, the user is restricted to the set of default colors.

ShowDialog() Displays the dialog.

534

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 534

FontDialog Control
This control will display the standard dialog box, allowing a user to select a font. Use the following
properties to set up the dialog boxes.

Property Comments

Font The System.Drawing.Font that the user selected. Also
used to set the initial font.

ShowEffects Boolean value that, if True, will make the dialog box
display the text effects options of underline and strikeout.

ShowColor Boolean value that, if True, will make the dialog box
display the combo box of the font colors. The ShowEffects
property must be True for this to have an effect.

FixedPitchOnly Boolean value that, if True, will limit the list of font choices
to only those that have a fixed pitch (such as Courier, or
Lucida console).

ShowDialog() Displays the dialog.

Using these properties looks like this:

FontDialog1.Font = TextBox1.Font
FontDialog1.ShowColor = True
FontDialog1.ShowEffects = True
FontDialog1.FixedPitchOnly = False
FontDialog1.ShowDialog()
TextBox1.Font = FontDialog1.Font

Printer Dialog Controls
There are three more common dialog controls: PrintDialog, PrintPreviewDialog, and
PageSetupDialog. They can all be used to control the output of a file to the printer. You can use
these in conjunction with the PrintDocument component to run and control print jobs.

Drag and Drop
Implementing a drag-and-drop operation in the .NET Framework is accomplished by a short sequence
of events. Typically, it begins in a MouseDown event of one control, and always ends with the DragDrop
event of another.

To demonstrate the process, you’ll begin with a new Windows Application. Add two list boxes to your
form, and add three items to the first using the Items Property Designer. This application will allow you
to drag the items from one list box into the other.

535

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 535

The first step in making drag and drop work is specifying whether or not a control will accept a drop. By
default, all controls will reject such an act and not respond to any attempt by the user to drop something
onto them. In your case, set the AllowDrop property of the second list box (the one without the items
added) to True.

The next item of business is to invoke the drag-and-drop operation. This is typically done in the
MouseDown event of the control containing the data you want to drag (although you’re not restricted to
it). The DoDragDrop method is used to start the operation. This method defines the data that will be
dragged, and the type of dragging that will be allowed. In the present situation, you’ll drag the text of
the selected list box item, and you’ll permit both a move and a copy of the data to occur.

Switch over to the code window of your form and add the following code to the MouseDown event of
ListBox1:

Private Sub ListBox1_MouseDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) _}
Handles ListBox1.MouseDown

Dim DragDropResult As DragDropEffects
If e.Button = MouseButtons.Left Then

DragDropResult = ListBox1.DoDragDrop(_
ListBox1.Items(ListBox1.SelectedIndex), _
DragDropEffects.Move Or DragDropEffects.Copy)

‘ Leave some room here to check the result of the operation
‘ (You’ll fill it in next).

End If
End Sub

You’ll notice the comment here about leaving room to check the result of the operation. You’ll fill that in
shortly. For now, calling the DoDragDrop method has got you started.

The next step involves the recipient of the data, in your case, ListBox2. There are two events here that
will be important to monitor — the DragEnter and DragDrop events.

As can be predicted by the name, the DragEnter event will occur when the user first moves over the
recipient control. The DragEnter event has a parameter of type DragEventArgs that contains an
Effect property and a KeyState property.

The Effect property allows you to set the display of the drop icon for the user to indicate if a move or a
copy will occur when the mouse button is released. The KeyState property allows you to determine the
state of the Ctrl, Alt, and Shift keys. It is a Windows standard that when both a move or a copy can
occur, a user is to indicate the copy action by holding down the Ctrl key. Therefore, in this event, you
will check the KeyState property and use it to determine how to set the Effect property.

Add the following code to the DragEnter event of ListBox2:

536

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 536

Private Sub ListBox2_DragEnter(ByVal sender As Object, _
ByVal e As DragEventArgs) _
Handles ListBox2.DragOver

If e.KeyState = 9 Then ‘ Control key
e.Effect = DragDropEffects.Copy

Else
e.Effect = DragDropEffects.Move

End If
End Sub

Note that you can also use the DragOver event if you want, but it will fire continuously as the mouse
moves over the target control. In this situation, you only need to trap the initial entry of the mouse into
the control.

The final step in the operation occurs when the user lets go of the mouse button to drop the data at its
destination. This is captured by the DragDrop event. The parameter contains a property holding the
data that is being dragged. It’s now a simple process of placing it into the recipient control as follows:

Private Sub ListBox2_DragDrop(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) _
Handles ListBox2.DragDrop

ListBox2.Items.Add(e.Data.GetData(DataFormats.Text))
End Sub

One last step — you can’t forget to manipulate ListBox1 if the drag and drop was a move. Here’s where
you’ll fill in the hole you left in the MouseDown event of ListBox1. Once the DragDrop has occurred, the
initial call that invoked the procedure will return a result indicating what ultimately happened. Go back
to the ListBox1_MouseDown event and enhance it to remove the item from Listbox1 if it was moved
(and not simply copied):

Private Sub ListBox1_MouseDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) _
Handles ListBox1.MouseDown

Dim DragDropResult As DragDropEffects

If e.Button = MouseButtons.Left Then
DragDropResult = ListBox1.DoDragDrop(_

ListBox1.Items(ListBox1.SelectedIndex), _
DragDropEffects.Move Or DragDropEffects.Copy)

‘ If operation is a move (and not a copy), then remove then
‘ remove the item from the first list box.
If DragDropResult = DragDropEffects.Move Then

ListBox1.Items.RemoveAt(ListBox1.SelectedIndex)
End If

End If
End Sub

537

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 537

When you’re done, run your application and drag the items from Listbox1 into Listbox2. Try a copy
by holding down the control key when you do it. The screen shot in Figure 14-23 shows the result after
Item1 has been moved and Item3 has been copied a few times.

Figure 14-23

Panel and GroupBox Container Controls
In VB6, a Frame control can be used as a container to group controls. A set of option buttons (the VB6
version of radio buttons) placed in a frame control automatically becomes related as one option group.
Frames are also often used in VB6 to separate areas of a form into functional areas, or to group controls
for showing and hiding. If a frame is hidden, all the controls in it are hidden. Sometimes, frames in VB6
are used with a border (with or without a title for the frame) and other times without a border.

The functionality in the frame control for VB6 is divided into two controls in VB.NET. They are called
the GroupBox control and the Panel control.

Each is like the VB6 frame control in the following ways:

❑ They can serve as a container for other controls.

❑ If they are hidden or moved, the action affects all the controls in the container.

The GroupBox control is the one that most closely resembles a frame control visually. It acts just like a
VB6 frame control, with one significant exception. There is no way to remove its border. It always has a
border, and it can have a title, if needed. The border is always set the same way. Figure 14-24 shows a
form with a GroupBox control containing three RadioButtons.

Figure 14-24

538

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 538

The Panel control has three major differences from GroupBox:

❑ It has options for displaying its border in the BorderStyle property, with a default of no border.

❑ It has the capability to scroll if its AutoScroll property is set to True.

❑ It has no ability to set a title or caption.

Figure 14-25 shows a form containing a Panel control with its border set to FixedSingle, with scrolling
turned on, and with a CheckedListBox that is too big to display all at once (which forces the Panel to
show a scrollbar).

Figure 14-25

Summary of Standard Windows.Forms Controls
VB.NET of course contains most of the controls that you are accustomed to using in pre-.NET versions.
The following few pages list the basic controls that are generally quite intuitive and don’t warrant a full
example to explain. Where appropriate, the important differences from pre-.NET versions of Visual Basic
are stated.

❑ Button

❑ Known as CommandButton in VB6 and earlier.

❑ Now uses the Text property instead of Caption.

❑ Can now display both an icon and text simultaneously. The image is set using the
Image property (instead of Picture). The image position can be set using the
ImageAlign property (left, right, center, and so on).

❑ Text on the button can be aligned using the TextAlign property.

❑ Can now have different appearances using the FlatStyle property.

❑ No longer has the Default and Cancel properties. These are now managed by the
form itself using the AcceptButton and CancelButton properties.

539

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 539

❑ CheckBox

❑ Now uses the Text property instead of Caption.

❑ Can now appear as a toggle button using the Appearance property.

❑ Check box and text can now be positioned within the defined area using the
CheckAlign and TextAlign properties.

❑ Uses the CheckState property instead of Value.

❑ Has a FlatStyle property controlling the appearance of the check box.

❑ CheckedListBox

❑ A list box that has check boxes beside each item (see Listbox).

❑ ComboBox

❑ As with the new ListBox control, can now hold a collection of objects instead of an
array of strings (see ListBox).

❑ Now has a MaxDropDownItems property that specifies how many items to display
when the list opens.

❑ DataGrid

❑ This has been significantly upgraded from its predecessor in VB6. In essence, the
DataGrid is a front-end user interface to the data objects in the .NET Framework.

❑ You can find more information on this control in Chapter 16.

❑ DateTimePicker

❑ Formerly known as a DTPicker.

❑ DomainUpDown— New!

❑ A simple one-line version of a list box.

❑ Can hold a collection of objects and will display the ToString() result of an item in the
collection.

❑ Can wrap around the list to give a continuous scrolling effect using the Wrap property.

❑ HScrollBar

❑ Unchanged.

❑ ImageList

❑ Same as previous versions, but with an improved window for managing the images
within the list. The MaskColor property is now TransparentColor.

❑ Label

❑ Essentially the same as previous versions.

❑ Caption is now Text.

❑ Can now display an image and text.

540

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 540

❑ The TextAlign property is especially useful. The text of a label beside a text box in VB6
would always be a few pixels higher than the text in the text box. Now by setting the
label’s TextAlign property so that the vertical alignment is Middle, this problem is
solved.

❑ Can now specify if a mnemonic should be interpreted (if UseMnemonic is True, the first
ampersand (&) in the Text property will indicate to underline the following character
and have it react to the Alt key shortcut, placing the focus on the next control in the tab
order that can hold focus, such as a text box).

❑ LinkLabel— New!

❑ Identical to a label, but behaves like a hyperlink with extra properties such as
LinkBehavior (for example, HoverUnderline), LinkColor, and ActiveLinkColor.

❑ ListBox

❑ A list box can now hold a collection of objects, instead of an array of strings. Use the
DisplayMember property to specify what property of the objects to display in the list,
and the ValueMember property to specify what property of the objects to use as the
values of the list items. (This is similar to the ItemData array from previous versions.)
For example, the combo box can store a collection of, say, employee objects, and display
to the user the Name property of each, as well as retrieve the EmployeeId as the value of
the item currently selected.

❑ Can no longer be set to display check boxes using a Style property. Use the
CheckedListBox control instead.

❑ ListView

❑ Same functionality as the VB6 version but with an improved Property Editor that
allows you to define the list view item collection and its subitems at design time.

❑ Subitems can have their own font display properties.

❑ New HeaderStyle property instead of HideColumnHeaders.

❑ MonthCalendar

❑ Formerly known as MonthView.

❑ NotifyIcon— New!

❑ Great new control that gives you an icon in the system tray.

❑ Tooltip of the icon is set by the Text property of the control.

❑ Pop-up menus are set using a ContextMenu control (see the “Menus” section earlier in
chapter).

❑ NumericUpDown— New!

❑ A single-line text box that displays a number and up/down buttons that increment/
decrement the number when clicked.

❑ PictureBox

❑ Image property defines the graphic to display instead of Picture.

❑ Use the SizeMode property to autostretch or center the picture.

541

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 541

❑ ProgressBar

❑ Now has a Step() method that automatically increments the value of the progress bar
by the amount defined in the Step property.

❑ RadioButton

❑ Formerly known as OptionButton.

❑ Use Checked property to specify value (formerly Value).

❑ Use CheckAlign and TextAlign to specify where the radio button and text appear in
relation to the area of the control.

❑ RichTextBox

❑ Essentially the same control as before with a few new properties such as ZoomFactor,
WordWrap, DetectURLs, and AutoWordSelection.

❑ Use the Lines() array to get or set specific individual lines of text of the control.

❑ StatusBar

❑ Has a Panels collection and a ShowPanels property. If False, the status bar will dis-
play only the Text property. This would be equivalent to setting the VB6 status bar
control Style property to sbrSimple.

❑ The StatusBar control docks to the bottom of the parent control by default. (See the
section on docking.) You could change this if you wanted to (although it’s not apparent
how intuitive a floating status bar would be).

❑ TabControl

❑ Formerly known as the TabStrip control.

❑ Now has a TabPages collection of TabPage objects. A TabPage object is a subclass of
the Panel control specialized for use in the TabControl.

❑ Uses the Appearance property to display the tabs as buttons, if desired (formerly the
Style property of the TabStrip control).

❑ TextBox

❑ Now has a CharacterCasing property that can automatically adjust the text entered
into upper- or lowercase.

❑ ReadOnly property now used to prevent the text from being edited. This used to be the
Locked property. (The Locked property now determines if the control can be moved or
resized.)

❑ Now has Cut, Copy, Paste, Undo, and ClearUndo methods.

❑ Timer

❑ Essentially unchanged from previous versions.

❑ The timer is now disabled by default.

❑ You cannot set the interval to zero to disable it.

542

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 542

❑ TrackBar

❑ Formerly known as the Slider control, it is essentially unchanged.

❑ TreeView

❑ Has the same functionality as in VB6 but with a new Node Tree Editor that allows you
to visually design the tree.

❑ VScrollBar

❑ Unchanged.

Retired Controls
The following list outlines the controls from VB6 that you won’t find in VB.Net and how to reproduce
their functionality:

❑ Spinner

❑ Use the DomainUpDown or NumericUpDown control.

❑ Line and Shape

❑ VB.NET has no Line or Shape control, nor any immediate equivalent. A “cheap” way
of reproducing a horizontal or vertical line is to use a label control. Set its background
color to that of the line you want, and then either the Size.Height or Size.Width
value to 1.

❑ Diagonal lines and shapes must be drawn using GDI+ graphics methods.

❑ DirListBox, FileListBox, DriveListBox

❑ You would typically use these controls to create a file system browser similar to
Windows Explorer. VB.NET has no equivalent controls. You can use the
OpenFileDialog and SaveFileDialog (see previous section) to accomplish your
needs in most circumstances.

❑ Image

❑ Use the PictureBox control.

Using ActiveX Controls
While VB.NET is optimized to use Windows Forms controls, you can certainly place an ActiveX control
on your form and use it as well. You’ll see how to do this in Chapter 20.

Other Handy Programming Tips
Here are some other handy programming tips for using Windows Forms:

❑ Switch the focus to a control — Use the .Focus() method. To set the focus to TextBox1, for
example, use the following code:

TextBox1.Focus()

543

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 543

❑ Change the cursor — To switch the cursor to an hourglass, for example, use the Cursor object
as follows:

Cursor.Current = Cursors.WaitCursor ‘ hourglass
Cursor.Current = Cursors.Default ‘ pointer

❑ Quickly determine the container control or parent form — With the use of group boxes and
panels, controls are often contained many times removed from the ultimate form. You can now
use the FindForm method to immediately get a reference to the form. Use the
GetContainerControl method to access the immediate parent of a control.

❑ Traversing the tab order — Use the GetNextControl method of any control to get a reference
to the next control on the form in the tab order.

❑ Convert client coordinates to screen coordinates (and back) — Want to know where a control is
in screen coordinates? Use the PointToScreen method. Convert back using the
PointToClient method.

❑ Change the z-order of controls at runtime — Controls now have both BringToFront and
SendToBack methods.

❑ Locate the mouse pointer — The control class now exposes a MousePosition property that
returns the location of the mouse in screen coordinates.

❑ Managing child control — Container controls, such as a group box or panel, can use the
HasChildren property and Controls property to determine the existence of, and direct refer-
ences to, child controls, respectively.

❑ Maximize, minimize, restore a form — Use the form’s WindowState property.

MDI Forms
MDI (Multiple Document Interface) forms are forms that are created to hold other forms. The MDI
form is often referred to as the parent, and the forms displayed within the MDI parent are often called
children. Figure 14-26 shows a typical MDI parent with several children displayed within it.

Figure 14-26

544

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 544

Creating an MDI Parent Form
In VB.NET, a regular form is converted to an MDI parent form by setting the IsMDIContainer property
of the form to True. This is normally done in the Properties window at design time.

A form can also be made into an MDI parent at runtime by setting the IsMDIContainer property to
True in code. However, the design of an MDI form is usually rather different from that of a normal
form, so this approach is not often needed.

Differences in MDI Parent Forms between VB6 and VB.NET
In VB6, an MDI parent form can only contain controls that have a property called Align. This property
determines to which side of the MDI parent form the control is supposed to be docked. Typical controls
like buttons and text boxes cannot be added directly to an MDI parent form. They must be added to a
container control, such as a PictureBox, which has an Align property.

In VB.NET, an MDI parent can contain any control that a regular form can contain. Buttons, labels, and
the like can be placed directly on the MDI surface. Such controls will appear in front of any MDI child
forms that are displayed in the MDI client area.

It is still possible to use controls like PictureBoxes to hold other controls on a VB.NET MDI parent,
and these controls can be docked to the side of the MDI form. In fact, every control in VB.NET has the
equivalent of the Align property, called Dock. The Dock property was previously discussed in the
section on changes to controls in VB.NET.

MDI Child Forms
In VB.NET, a form becomes an MDI child at runtime by setting the form’s MDIParent property to point
to an MDI parent form. This makes it possible to use a form as either a stand-alone form or an MDI child
in different circumstances. In fact, the MDIParent property cannot be set at design time — it must be set
at runtime to make a form an MDI child. (Note that this is completely different from VB6, where it was
necessary to make a form an MDI child at design time.)

It is possible to have any number of MDI child forms displayed in the MDI parent client area. The
currently active child form can be determined with the ActiveForm property of the MDI parent form.

An MDI Example in VB.NET
To see these changes to MDI forms in action, you can do the following step-by-step exercise. It shows the
basics of creating an MDI parent and making it display an MDI child form.

1. Create a new Windows Application. It will have an empty form named Form1. Change both the
name of the form and the form’s Text property to MDIParentForm.

2. In the Properties window, set the IsMDIContainer property for MDIParentForm to True. This
designates the form as an MDI container for child windows. (Setting this property also causes
the form to have a different default background color.)

3. From the toolbox, drag a MainMenu control to the form. Create a top-level menu item called File
with submenu items called New MDI Child and Quit. Also create a top-level menu item called
Window. The File ➪ New MDI Child menu option will create and show new MDI child forms

545

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 545

at runtime, and the Window menu will keep track of the open MDI child windows. (For more
information on working with MainMenu controls, see the section on menu controls earlier in the
chapter.)

4. In the Menu Option Editor at the top of the form, right-click the Window menu item and select
Properties. In the Properties window, set the MDIList property to True. This will enable the
Window menu to maintain a list of open MDI child windows with a checkmark next to the
active child window.

5. Now, you need to create an MDI child form to use as a template for multiple instances. To do
this, select Project ➪ Add Windows Form and then Open in the Add New Item dialog box. That
will result in a new blank form named Form2. Place any controls you like on the form. As an
alternative, you can reuse any of the forms created in previous exercises in this chapter.

6. Now go back to MDIParentForm. In the menu editing bar, double-click the New MDI Child
option under File. The Code Editor will appear, with the cursor in the event routine for that
menu option. Place the following code in the event:

Protected Sub MenuItem2_Click(ByVal sender As Object,
ByVal e As System.EventArgs)

‘ This line may change if you are using a form with a different name.
Dim NewMDIChild As New Form2()
‘Set the Parent Form of the Child window.
NewMDIChild.MDIParent = Me
‘Display the new form.
NewMDIChild.Show()

End Sub

7. In the menu editing bar for MDIParentForm, double-click the Quit option under File. The Code
Editor will appear, with the cursor in the event routine for that menu option. Place the following
code in the event:

Protected Sub MenuItem3_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

End
End Sub

8. Now run and test the program. Use the File ➪ New MDI Child option to create several child
forms. Note how the Window menu option automatically lists them with the active one checked
and allows you to activate a different one.

Arranging Child Windows
MDI parent forms have a method called LayoutMDI that will automatically arrange child forms in the
familiar cascade or tile layout. For the example above, add a menu item to your Windows menu called
Tile Vertical and insert the following code into the menu item’s Click event to handle it:

Me.LayoutMdi(MDILayout.TileVertical)

546

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 546

To see an example of the rearrangement, suppose that the MDI form in Figure 14-26 is rearranged with
the MDILayout.TileVertical option. It would then look similar to the image in Figure 14-27.

Figure 14-27

Dialog Forms
In VB6 and earlier, forms were shown with the Show method, and this technique is still used in VB.NET.
In both VB6 and VB.NET, the Show method by default displays modeless forms, which are forms that
allow the user to click off them onto another form in the application.

In VB6, dialog boxes were displayed with the vbModal parameter (or a hard-coded value of 1) after the
form’s Show method. This caused the form to be a modal form, which meant that it was the only active
form in the application until it was exited.

Showing a form modally is done differently in VB.NET. A Windows Form has a ShowDialog() method
that takes the place of the Show method with the vbModal parameter. Here is code for showing a modal
dialog in VB.NET:

Dim frmDialogForm As New DialogForm
frmDialogForm.ShowDialog()

DialogResult
It is common when showing a dialog form to need to get information about what action the user
selected. This was often done with a custom property in VB6, but VB.NET has a built-in property for
that purpose. When a form is shown with the ShowDialog() method, the form has a property called
DialogResult to indicate its state.

The DialogResult property can take the following enumerated results:

❑ DialogResult.Abort

❑ DialogResult.Cancel

❑ DialogResult.Ignore

❑ DialogResult.No

❑ DialogResult.None

547

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 547

❑ DialogResult.OK

❑ DialogResult.Retry

❑ DialogResult.Yes

When the DialogResult property is set, as a by-product, the dialog is hidden. That is, setting the
DialogResult property causes an implicit call to the Hide method of the dialog form, so that control is
released back to the form that called the dialog.

The DialogResult property of a dialog box can be set in two ways. The most common way is to
associate a DialogResult value with a button. Then, when the button is pressed, the associated value is
automatically placed in the DialogResult property of the form.

To set the DialogResult value associated with a button, the DialogResult property of the button is
used. If this property is set for the button, it is unnecessary to set the DialogResult in code when the
button is pressed. Here is an example that uses this technique.

In VS.NET, start a new VB.NET Windows Application. On the automatic blank form that comes up
(named Form1), place a single button and set its Text property to Dialog.

Property Value for First Button Value for Second Button

Name BtnOK btnCancel

Text OK Cancel

DialogResult OK Cancel

Now, add a new Windows Form using the Project ➪ Add Windows Form... menu, and name it
DialogForm.vb. Place two buttons on DialogForm and set the following properties for the buttons:

Do not put any code in DialogForm at all. The form should look like the one shown in Figure 14-28.

Figure 14-28

On the first form, Form1, place the following code in the Click event for Button1:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

548

Chapter 14

17_575368 ch14.qxd 10/7/05 11:01 PM Page 548

Dim frmDialogForm As New DialogForm()
frmDialogForm.ShowDialog()

‘ You’re back from the dialog - check user action.
Select Case frmDialogForm.DialogResult

Case DialogResult.OK
MsgBox(“The user pressed OK”)

Case DialogResult.Cancel
MsgBox(“The user pressed cancel”)

End Select

frmDialogForm = Nothing

End Sub

Now, run and test the code. When a button is pressed on the dialog form, a message box should be dis-
played (by the calling form) indicating the button that was pressed.

The second way to set the DialogResult property of the form is in code. In a Button_Click event, or
anywhere else in the dialog form, a line like this can be used to set the DialogResult property for the
form, and simultaneously hide the dialog form, giving control back to the calling form.

Me.DialogResult = DialogResult.Ignore

This particular line sets the dialog result to DialogResult.Ignore, but setting the dialog result to any
of the permitted values will also hide the dialog form.

Summary
The new features and improvements to Windows Forms in VS.NET simplify development of rich client
and smart client interfaces, and allow new capabilities that user interface designers did not have in ear-
lier versions of Visual Basic. Coupled with the easy deployment of .NET applications, you can expect a
resurgence in forms-based programs.

Becoming a capable Windows Forms developer requires becoming familiar with the controls that are
available, and their properties, events, and methods. This takes time. If you are coming from the VB6
world, much of your expertise will continue to be useful with Windows Forms, and this chapter has
highlighted the most important differences you need to know about. If you are less familiar with form-
based interfaces, you can expend a fair amount of time using the reference documentation to find the
control capabilities you need.

However, many professional Windows Forms developers need to go beyond just creating forms and lay-
ing out controls. Complex applications often also require creation of new controls or enhancement of
built-in controls. The capabilities for doing this were limited in the earlier versions of Visual Basic, but
are much more impressive in VB.NET. Accordingly, the next chapter will discuss how to create and mod-
ify Windows Forms controls.

549

Windows Forms

17_575368 ch14.qxd 10/7/05 11:01 PM Page 549

17_575368 ch14.qxd 10/7/05 11:01 PM Page 550

Windows Forms
Advanced Features

The previous chapter discussed the basics of Windows Forms 2.0. Using the capabilities presented
in that chapter, you can create straightforward user interfaces for systems written in VB.NET along
with the built-in capabilities of forms and controls available in Windows Forms 2.0.

However, as applications become larger, and require more and more forms to present information
to the user, it becomes more important to use the advanced capabilities of the .NET environment
to better structure the application. The main defect of large systems that you should strive to avoid
is redundant code. Repeated code patterns end up being used (in slightly different variations) in
many, many places in an application.

Examples of functions that often result in repeated code include making sure that fields are
entered by the user, that the fields are formatted correctly, and that null fields in the database
are handled correctly (and don’t cause runtime errors). Writing similar code many times for such
functions has a number of drawbacks:

❑ It takes longer to write the application because there is more code to be handled.

❑ It is more difficult to debug, again because of having more code.

❑ The application is less reliable, because when a bug is found, it is difficult to find all the
places to fix it.

❑ The application is more difficult to enhance, again because it is necessary to go to many
places in the code to enhance the same basic functionality.

In VB6 and earlier systems, the techniques available to reduce redundant code were limited.
You could write functions to be accessed from various places, for example, and you could write
UserControls to encapsulate some functionality.

18_575368 ch15.qxd 10/7/05 11:02 PM Page 551

Your options in Visual Basic .NET are much broader. Using the full object-oriented capabilities of the
.NET environment, plus additional capabilities specific to Windows Forms programming, you can
componentize your logic, allowing the same code to be used in lots of places in your application.

This chapter discusses techniques for componentizing code in Windows Forms applications. It is
assumed that you have already read Chapters 5 and 7 on inheritance and other object-oriented tech-
niques available in .NET before working with this chapter.

Packaging Logic in Visual Controls
As we saw in the last chapter, Windows Forms user interfaces are based on using controls. A control is sim-
ply a special type of .NET class (just as forms are). As a fully object-oriented programming environment,
VB.NET gives us the capability to inherit and extend classes, and controls are no exception. It is, therefore,
possible to create new controls that go beyond what the built-in controls can do.

There are four primary sources of controls for use on Windows Forms interfaces:

❑ Controls packaged with the .NET Framework (referred to in this chapter as built-in controls)

❑ Existing ActiveX controls that are imported into Windows Forms (these were mentioned in
Chapter 14, and are also discussed in Chapter 20)

❑ Third-party .NET-based controls from a software vendor

❑ Custom controls that are created for a specific purpose in a particular project or organization

If you are able to build your application with controls from the first three categories, so much the better.
Using prewritten functionality that serves the purpose is generally a good idea. However, this chapter
assumes you need to go beyond such prepackaged functionality.

If you are primarily familiar with versions of Visual Basic before the .NET era (VB6 and earlier), then the
only technique available for such packaging was UserControls. While UserControls are also available
in Visual Basic .NET (and are much improved), they are only one of several techniques available for
writing visual controls.

Developing Custom Controls in .NET
There are three basic techniques for the creation of custom Windows Forms controls in .NET, corre-
sponding to three different starting points. This range of options gives the flexibility to choose a tech-
nique that allows an appropriate balance between simplicity and flexibility. You can:

❑ Inherit from an existing control

❑ Build a composite control (using the UserControl class as your starting point)

❑ Write a control from scratch (using the very simple Control class as your starting point)

These are in rough order of complexity, from simplest to most complex. Let’s look at each of these with a
view to understanding the scenarios in which each one is useful.

552

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 552

Inherit from an Existing Control
The simplest technique starts with a complete Windows Forms control that is already developed. A new
class is created that inherits the existing control. (See Chapter 5 for a complete discussion of inheritance
in .NET.) This new class has all the functionality of the base class from which it inherits and the new
logic can be added to create additional functionality in this new class or, indeed, to override functional-
ity from the parent (when permitted).

Most of the built-in Windows Forms controls can be used as the base class for such an inherited control.
There are a few exceptions, such as the NotifyIcon control, and the ProgressBar. If you are in doubt
about any particular control, you can check the Visual Studio Help. The declaration for a class that can-
not be inherited will have the NotInheritable keyword included at the beginning.

Third-party controls may also be candidates for extension into new custom controls through inheritance.
As with Windows Forms controls, some third-party controls can be inherited and others cannot.

Here are some typical examples where it might make sense to extend an existing Windows Forms control:

❑ A text box with built-in validation for specific types of information

❑ A self-loading list box, combo box, or data grid

❑ A menu control that varies its options based on the current user

❑ A NumericUpDown control that generates a special event when it reaches 80 percent of its maxi-
mum allowed value

Each of these scenarios starts with an existing control that simply needs some additional functionality.
The more often such functionality is needed in your project, the more sense it makes to package it in a
custom control. If a text box that needs special validation or editing will be used in only one place, it
probably doesn’t make sense to create an inherited control. In that case, simply adding some logic in the
form where the control is used to handle the control’s events and manipulating the control’s properties
and methods is probably sufficient. But where such functionality is needed in many locations in an
application, packaging the functionality in an inherited control can centralize the logic and facilitate
reuse, thereby removing maintenance headaches.

Build a Composite Control
In some cases, a single existing control does not furnish the needed functionality, but a combination of
two or more existing controls does. Here are some typical examples:

❑ A set of buttons with related logic that are always used together (such as “Save,” “Delete,” and
“Cancel” buttons on a file maintenance form)

❑ A set of text boxes to hold a name, address, and phone number, with the combined information
formatted and validated in a particular way

❑ A set of option buttons with a single property exposed as the chosen option

❑ A data grid together with buttons that alter its appearance or behavior in specific ways

553

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 553

As with inherited controls, composite controls are only appropriate for situations that require the same
functionality in multiple places. If the functionality is only needed once, then simply placing the relevant
controls on the form and including appropriate logic right in the form is usually better.

Composite controls are the closest relative to VB6 UserControls, and because of that, they are some-
times referred to as UserControls. In fact, the base class used to create composite controls is the
UserControl class in .NET.

Write a Control from Scratch
If a control needs to have special functionality not related to any existing control, then it can be written
from scratch to draw its own visual interface and implement its own logic. This option requires more
work, but allows us to do just about anything that is possible within .NET and Windows Forms, includ-
ing very sophisticated drawing of a user interface.

To write a control from scratch, it is necessary to inherit from the Control class, which gives basic func-
tionality such as properties for colors and size. With this basic functionality already built in, the main
tasks to be performed to get a custom control working are to add on any specific properties and methods
needed for this control, to write the rendering logic that will paint the control to the screen, and to han-
dle mouse and keyboard input to the control.

Inheriting from an Existing Control
With this background on the options for creating custom controls, the next step is to look in depth at the
procedures used for their development. First up is creating a custom control by inheriting from an exist-
ing control and extending it with new functionality. This is the simplest method for the creation of new
controls, and the best way to introduce generic techniques that apply to all new controls.

After describing the general steps needed to create a custom control via inheritance, two examples will
illustrate the details. It is important to understand that many of the techniques described for working
with a control created through inheritance also apply to the other ways that a control can be created.
Whether inheriting from the Control class, the UserControl class, or from an existing control, a con-
trol is a .NET class. Creating properties, methods, and events, and coordinating these members with the
VS.NET designers, is done in a similar fashion, regardless of the starting point.

Overview of the Process
Here are the general stages involved in the creation of a custom control via inheritance from an existing
control. This is not a step-by-step recipe, but just an overview. An example follows that goes into more
detail on specific steps, but those steps will carry out the following stages:

1. For the first stage, it is necessary to create or open a Windows Control Library project, and add a
new UserControl to the project using the option on the Project menu. The class that is created
will inherit from the System.Windows.Forms.UserControl namespace. The line that specifies
the inherited class must be changed to inherit from the control that is being used as the starting
point.

554

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 554

2. The class file then gets new logic added as necessary to add new functionality, before the project
is compiled with a Build operation in order to create a DLL containing the new control’s code.

3. The control is now ready to be used. It can be placed in the Windows Forms toolbox with the
Add/Remove Items option in Visual Studio 2003 (or the Customize Toolbox option in Visual
Studio 2002). From that point forward, it can be dragged onto forms like any other control.

Step 2, of course, is where the effort lies. New logic for the custom control may include new properties,
methods, and events. It may also include intercepting events for the base control and taking special
actions as necessary. All of this logic relies on basic object-oriented capabilities of the .NET Framework.

However, there are several coding techniques that are specific to developing Windows Forms controls.
While our example will include adding routine properties and events, we will focus on these special
techniques for programming controls.

Adding Additional Logic to a Custom Control
This section discusses how to place new logic in an inherited control, with special emphasis on techniques
that go beyond basic object orientation. A detailed example using the techniques follows this section.

Creating a Property for a Custom Control
Creating a property for a custom control is just like creating a property for any other class. It is necessary
to write a property procedure, and to store the value for the property somewhere, most often in a module-
level variable.

Properties typically need a default value, that is, a value the property will take on automatically when a
control is instantiated. As you might expect, you can use your own internal logic in a control to set a
default value for a property. Typically, this means setting the module-level variable that holds the prop-
erty value to some initial value. That can be done when the module-level variable is declared, or it can
be done in the constructor for the control.

Using the constructor to initialize the value is especially useful if the default value is different for differ-
ent instantiations of the control, as in the case where the default Text property for a button is the name
of the button.

Here’s the code for a typical simple property for a custom control:

Dim mnMaxItemsSelected As Integer = 10
Public Property MaxItemsSelected() As Integer

Get
Return mnMaxItemsSelected

End Get
Set(ByVal Value As Integer)

If Value < 0 Then
Throw New ArgumentException(“Property value cannot be negative”)

Else
mnMaxItemsSelected = Value

End If
End Set

End Property

555

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 555

Once a property is created for a control, it automatically shows up in the Properties window for the con-
trol. However, there are some additional capabilities that you can use to make the property work better
with the designers and the Property window in VS.NET.

Coordinating a Property with the Visual Studio IDE
The Visual Studio IDE needs to work with the default value of a property in two important ways:

❑ To reset the value of the property (done when a user right-clicks the property in the Property
Window and selects Reset)

❑ To decide whether to set the property in code. A property that is at its default value normally
does not need to be explicitly set in the designer-generated code.

There are two ways to accomplish these tasks. For properties that take simple values, such as integers,
Booleans, floating point numbers, or strings, .NET provides an attribute. For properties that take com-
plex types, such as structures, enumerated types, or object references, there are two methods that need
to be implemented.

Attributes
You can learn more about attributes in Chapter 6. However, let’s go over a couple of important notes
since this may be the first time you have needed to use them.

Attributes reside in namespaces, just as components do. The attributes used in this chapter are in the
System.ComponentModel namespace. To use attributes, the project must have a reference to the assem-
bly containing the namespace for the attributes. For System.ComponentModel, that’s no problem — the
project will automatically have the reference.

However, the project will not automatically have an “Imports” for that namespace. This could be done
without this by using a full namespace path for each attribute. That would mean referring to a
DefaultValue attribute in code like this:

<System.ComponentModel.DefaultValue(4)> Public Property
MyProperty() As Integer

This is a bit clumsy. To make it easy to refer to the attributes in code, you should put this line at the
beginning of all the modules that will need to use the attributes discussed in this chapter:

Imports System.ComponentModel

Then, the preceding line can be written more simply as

< DefaultValue(4)> Public Property MyProperty() As Integer

All of the examples in this chapter will assume that the Imports statement has been placed at the top of the
class, so all attributes will be referenced by their short name. If you get a compile error on an attribute, it’s
likely that you’ve left off that line.

556

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 556

Finally, note that an attribute for a property must be on the same line of code as the property declaration.
Of course, line continuation characters can be used so that an attribute is on a separate physical line but
still on the same logical line in the program. For example, the last example could also be written as

< DefaultValue(4)> _
Public Property MyProperty() As Integer

Setting a Default Value with an Attribute
There are various attributes of the .NET Framework that can be assigned in metadata to classes, proper-
ties, and methods. The one for creating a default value is called, appropriately enough, DefaultValue.
Let’s change the last code for a simple property to include a DefaultValue attribute:

Dim mnMaxItemsSelected As Integer = 10
<DefaultValue(10)> Public Property MaxItemsSelected() As Integer
Get

Return mnMaxItemsSelected
End Get
Set(ByVal Value As Integer)

If Value < 0 Then
Throw New ArgumentException(“Property value cannot be negative”)

Else
mnMaxItemsSelected = Value

End If
End Set

End Property

Including the DefaultValue attribute allows the Property window to reset the value of the property
back to the default value. That is, if you right-click the property in the Property window, and select Reset
off of the pop-up context menu, the value of the property will return to 10 from any other value to which
it happens to be set.

Another effect of the attribute can be seen in the code generated by the visual designer. If the property
above is set to any value that is not the default, a line of code appears in the designer-generated code to
set the property value. This is called serializing the property.

That is, if the value of MaxItemsSelected is set to 5, then a line of code something like this appears in
the designer-generated code:

MyControl.MaxItemsSelected = 5

If the property has the default value of 10 (because it was never changed, or because it was reset to 10),
the line to set the property value is not present in the designer-generated code. That is, the property does
not need to be serialized in code if the value is at the default.

To see serialized code, you need to look in the partial class that holds the Windows Forms Designer gen-
erated code. This partial class will not be visible in the Solution Explorer by default. To see it, you’ll
need to press the Show All Files button in the Solution Explorer.

557

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 557

Alternate Techniques for Working with the IDE
The last sample property returned an Integer. Some custom properties return more complex types,
such as structures, enumerated types, or object references. These properties cannot use a simple
DefaultValue attribute to take care of resetting and serializing the property. An alternate technique
is needed.

For complex types, designers check to see if a property needs to be serialized by using a method on the
control containing the property. The method returns a Boolean value that indicates whether a property
needs to be serialized (True if it does, False if it does not)

If a property is named MyProperty, then the method to check serialization is called
ShouldSerializeMyProperty. It would typically look something like the following code:

Public Function ShouldSerializeMyProperty() As Boolean
If mnMyProperty = mnMyPropertysDefaultValue Then

Return False
Else

Return True
End If

End Function

If a property in a custom control does not have a related ShouldSerializeXXX method or a
DefaultValue attribute, then the property is always serialized. Code for setting the property’s value
will always be included by the designer in the generated code for a form. For that reason, it’s a good
idea to always include either a ShouldSerializeXXX method or a DefaultValue attribute for every
new property created for a control.

If you include both a DefaultValue attribute and a ShouldSerializeXXX method, the DefaultValue
attribute takes precedence and the ShouldSerializeXXX method is ignored.

Providing a Reset Method for a Control Property
The alternate way to reset a property’s value to the default is a special reset method. As an example of
this, in the case of a property named MyProperty, the reset method is named ResetMyProperty. It typ-
ically looks something like the following code:

Public Sub ResetMyProperty()
mnMyProperty = mnMyPropertysDefaultValue

End Sub

To allow the Property window to reset the value of a property, either a DefaultValue attribute or a
reset method must be present. If you include both a DefaultValue attribute and a reset method, the
DefaultValue attribute takes precedence and the reset method is ignored.

As with the ShouldSerializeXXX method, the default property value can be called from an attribute if
one has been included with the property declaration.

558

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 558

Other Useful Attributes
DefaultValue is not the only attribute that is useful for properties. The Description attribute is also
one that should be used with most properties. It contains a text description of the property that shows
up in the Properties windows when a property is selected. To include a Description attribute, the
declaration of the preceding property would look like the following code:

<DefaultValue(100), _
Description(“This is a description for my property”)> _
Public Property MyProperty() As Integer

Such a property will look like Figure 15-1 when highlighted in the Property window.

Figure 15-1

Another attribute you will sometimes need is the Browsable attribute. As mentioned earlier, a new
property appears in the Properties window automatically. In some cases, you may need to create a prop-
erty for a control that you do not want to show up in the Properties window. In that case, you use a
Browsable attribute set to False. Here is code similar to the last one, making a property nonbrowsable
in the Properties window:

<Browsable(False)> _
Public Property MyProperty() As Integer

A final attribute you may want to use is the Category attribute. Properties can be grouped by category
in the Properties window by pressing a button at the top of the window. Standard categories include
Behavior, Appearance, etc. You can have your property appear in any of those categories, or you can
make up a new category of your own. To assign a category to a property, use code like this:

<Category(“Appearance”)> _
Public Property MyProperty() As Integer

559

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 559

Defining a Custom Event for the Inherited Control
Adding events to classes was covered in Chapter 4. In summary, the process is as follows:

❑ Declare the event in the control. The event can have any arguments that are appropriate, but
they cannot have named arguments, optional arguments, or arguments that are ParamArrays.
Here is code for declaring a generic event:

Public Event MyEvent(ByVal MyFirstArgument As Integer, _
ByVal MySecondArgument As String)

❑ Elsewhere in the control’s code, implement code to raise the event. The location and circum-
stances of this code vary depending on the nature of the event, but a typical line that raises the
preceding event looks like the following code:

RaiseEvent MyEvent(nValueForMyFirstArgument, sValueForMySecondArgument)

❑ Often this code will be in a method that raises the event. This allows the raising of the event
to be done in a uniform fashion. If the event will be raised from several places in your control,
doing it with a method is preferred. If the event will only be raised in one place, the code to do
it can just be placed in that location.

❑ The form that contains the control can now handle the event. The process for doing that is the
same as handling an event for a built-in control.

You may recall that the standard convention in .NET is to use two arguments for an event —Sender,
which is the object raising the event, and e, which is an object of type EventArgs or of a type that inher-
its from EventArgs. This is not a requirement of the syntax (you can actually use any arguments you
like when you declare your event), but it’s a consistent convention throughout the .NET Framework, so
it will be followed in this chapter.

Now, it’s time to illustrate the concepts on creating properties and events for a control. The following
example creates a new control that contains a custom property and a custom event. The property uses
several of the attributes discussed above.

Creating a CheckedListBox that Limits
the Number of Selected Items

This example inherits the built-in CheckedListBox control, and extends its functionality. If you are not
familiar with this control, it works just like a normal ListBox control, except that selected items are
indicated with a check in a check box at the front of the item rather than highlighting the item.

To extend the functionality of this control, the example will include the creation of a property called
MaxItemsSelected. This property will hold a maximum value for the number of items that a user can
select. The event that fires when a user checks on an item is then monitored to see if the maximum has
already been reached.

If selection of another item would exceed the maximum number, the selection is prevented, and an event
is fired to let the consumer form know that the user has tried to exceed the maximum limit. The code
that handles the event in the form can then do whatever is appropriate. In our case, a message box is
used to tell the user that no more items can be selected.

560

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 560

The DefaultValue, Description, and Category attributes are placed on the MaxItemsSelected
property to assist in the designer.

Here is the step-by-step construction of our example:

1. Start a new Windows Control Library project in Visual Studio .NET (VS.NET). Give it the name
LimitedCheckedListBox. In the Solution Explorer, select the UserControl1.vb file, right-
click it, and select Rename. Name the module LimitedCheckedListBox.vb, before bringing
up the code window for this class. Then bring up the code window and place the following line
in the declarations at the top of the class (before the line declaring the class):

Imports System.ComponentModel

This allows us to utilize the attributes required from the System.ComponentModel namespace.

2. Next we need to specify the actual class we want to inherit from. The designer will have
inserted the UserControl class as the base class, but we need to change that to the
CheckedListBox class.

The line inserted by the designer is in the file LimitedCheckedListBox.Designer.vb.
This is a partial class to hold the designer code. The partial class code file
LimitedCheckedListBox.Designer.vb will not be shown by default.

To see this code file, click the button in the Solution Explorer to show All Files (it’s the middle but-
ton at the top of the Solution Explorer. Double click the LimitedCheckedListBox.Designer.vb
to open it in the code window. Then alter the class declaration so that it reads as follows:

Partial Public Class LimitedCheckedListBox
Inherits System.Windows.Forms.CheckedListBox

3. Now, go back to the LimitedCheckedListBox.vb module and begin adding code specifically for
this control. First, we need to implement the MaxSelectedItems property. A module level vari-
able is needed to hold the property’s value, so insert this line just under the class declaration line:

Private mnMaxSelectedItems As Integer = 4

4. Now create the code for the property itself. Insert the following code into the class just above
the line that says End Class:

<DefaultValue(4), Category(“Behavior”), _
Description(“The maximum number of items allowed to be checked”)> _
Public Property MaxSelectedItems() As Integer

Get
Return mnMaxSelectedItems

End Get
Set(ByVal Value As Integer)

If Value < 0 Then
Throw New ArgumentException(“Property value cannot be negative”)

Else
mnMaxSelectedItems = Value

End If
End Set

End Property

561

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 561

This code sets the default value of the MaxSelectedItems property to 4, and sets a description
for the property to be shown in the Properties window when the property is selected there. It
also specifies that the property should appear in the Behavior category when properties in the
Properties window are sorted by category.

5. Next, declare the event that will be fired when a user selects too many items. The event will be
named MaxItemsExceeded. Just under the code for Step 3, insert the following line:

Public Event MaxItemsExceeded(Sender As Object, e As EventArgs)

6. Next, insert code into the event routine that fires when the user clicks on an item. For the
CheckedListBox base class, this is called the ItemCheck property. Open the left-hand drop-
down box in the code window and select the option LimitedCheckedListBox Events. Then,
select the ItemCheck event in the right-hand drop-down box of the code window. The follow-
ing code will be inserted to handle the ItemCheck event:

Private Sub LimitedCheckedListBox_ItemCheck(ByVal sender As Object, _
ByVal e As System.Windows.Forms.ItemCheckEventArgs) _
Handles MyBase.ItemCheck

End Sub

7. The following code should be added to the ItemCheck event to monitor it for too many items:

Private Sub LimitedCheckedListBox_ItemCheck(ByVal sender As Object, _
ByVal e As System.Windows.Forms.ItemCheckEventArgs) _
Handles MyBase.ItemCheck

If (Me.CheckedItems.Count >= mnMaxSelectedItems) _
And (e.NewValue = CheckState.Checked) Then
RaiseEvent MaxItemsExceeded(Me, New EventArgs)
e.NewValue = CheckState.Unchecked

End If
End Sub

8. Build the project to create a DLL containing the LimitedCheckedListBox control.

9. Add a new Windows Application project to the solution (using the File ➪ Add Project ➪ New
Project menu) to test the control. Name the new project anything you like. Right-click the project
in the Solution Explorer, and select Set as Startup Project in the pop-up menu. This will cause
your Windows application to run when you press F5 in Visual Studio.

10. In the new Windows Forms project, right-click the Windows Forms tab in the toolbox, and select
Choose Items. In the dialog box that appears, click the tab for .NET Framework Components,
and browse to select the LimitedCheckedListBox.dll file. Return to the Choose Items dialog,
and click the OK button.

11. Scroll to the bottom of the controls on the Windows Forms tab. The LimitedCheckedListBox
control should be there.

12. The Windows Application will have a Form1 that was created automatically. Drag a
LimitedCheckedListBox control onto Form1, just as you would a normal list box. Change
the CheckOnClick event for the LimitedCheckedListBox to True (to make testing easier).
This property was inherited from the base CheckedListBox control.

562

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 562

13. In the Items property of the LimitedCheckedListBox, click the button to add some items.
Insert the following list of colors: Red, Yellow, Green, Brown, Blue, Pink, and Black. At this point,
your Windows Application Project should have a Form1 that looks something like Figure 15-2.

Figure 15-2

14. Bring up the code window for Form1. In the left-hand drop-down box above the code window,
select LimitedCheckedListBox1 to get to its events. Then, in the right-hand drop-down box,
select the MaxItemsExceeded event. The empty event will look like the following code:

Private Sub LimitedCheckedListBox1_MaxItemsExceeded(_
ByVal sender As System.Object, e As System.EventArgs) _
Handles LimitedCheckedListBox1.MaxItemsExceeded

End Sub

15. Now insert the following code to handle the event:

MsgBox(“You are attempting to select more than “ & _
LimitedCheckedListBox1.MaxSelectedItems & _
“ items. You must uncheck some other item “ & _
“ before checking this one.”)

16. Now start the Windows Application project. Check and uncheck various items in the list box to
see that the control works as it is supposed to. You should get a message box whenever you
attempt to check more than four items. (Four items is the default maximum, and it was not
changed.) If you uncheck some items, then you can check items again until the maximum is
once again exceeded. When finished, close the form to stop execution.

17. If you want to check the serialization of the code, look at the designer-generated code in the partial
class for Form1 (named LimitedCheckedListBox.Designer.vb), and examine the properties
for LimitedCheckedListBox1. Note how there is no line of code that sets MaxSelectedItems.
Remember, if you don’t see the partial class in the Solution Explorer, you’ll need to press the Show
All button at the top of the Solution Explorer.

18. Go back to the design mode for Form1 and select LimitedCheckedListBox1. In the Properties
window, change the MaxSelectedItems property to 3.

19. Now, return to the partial class and look again at the code that declares the properties for
LimitedCheckedListBox1. Note that there is now a line of code that sets MaxSelectedItems
to the value of 3.

563

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 563

20. Go back to the design mode for Form1 and select LimitedCheckedListBox1. In the Properties
window, right-click the MaxSelectedItems property. In the pop-up menu, select Reset. The
property will change back to a value of 4, and the line of code that sets the property that you
looked at in the last step will be gone.

These last few steps showed that the DefaultValue attribute is working as it should.

The Control and UserControl Base Classes
In the earlier example, a new control was created by inheriting from an existing control. As is standard
with inheritance, this means the new control began with all the functionality of the control from which it
inherited. Then new functionality was added.

This chapter didn’t discuss the base class for this new control (CheckedListBox), because you probably
already understand a lot about the properties, methods, events, and behavior of that class. However, you
are not likely to be as familiar with the base classes used for the other techniques for control creation, so
it’s appropriate to discuss them now.

There are two generic base classes that are used as a starting point to create a control. It is helpful to
understand something about the structure of these classes to see when the use of each is appropriate.

The classes discussed in this chapter are all in the System.Windows.Forms namespace. There are simi-
larly named classes for some of these in the System.Web.UI namespace (which is used for Web forms),
but these classes should not be confused with anything discussed in this chapter. Chapter 17 will cover
the creation of Web controls.

The Control Class
The Control class is contained within the System.Windows.Forms namespace and contains base func-
tionality to define a rectangle on the screen, provide a handle for it, and process routine operating sys-
tem messages. This gives the class the ability to perform such functions as handling user input through
the keyboard and mouse. The Control class serves as the base class for any component that needs a
visual representation on a Win32-type graphical interface. Besides built-in controls and custom controls
that inherit from the Control class, the Form class also ultimately derives from the Control class.

In addition to these low-level windowing capabilities, the Control class also includes such visually
related properties as Font, ForeColor, BackColor, and BackGroundImage. The Control class also has
properties that are used to manage layout of the control on a form, such as docking and anchoring.

The Control class does not contain any logic to paint to the screen except to paint a background color or
show a background image. While it does offer access to the keyboard and mouse, it does not contain any
actual input processing logic except for the ability to generate standard control events such as Click and
KeyPress. The developer of a custom control based on the Control class must provide all of the functions
for the control beyond the basic capabilities provided by the Control class.

Here are some of the most important members of the Control class (from the perspective of a VB
developer).

564

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 564

Property Description

AllowDrop If set to True then this control will allow drag-and-drop operations and events
to be used

Anchor Determines which edges of the control are anchored to the container’s edges

BackColor Visual properties which are the same as corresponding properties in
Font Visual Basic 6 and earlier
ForeColor

CanFocus A read-only property that indicates whether the control can receive focus

Causes Indicates whether entering the control causes validation on the control

Validation itself or on controls contained by this control that require validation

Controls A collection of child controls which this control contains

Dock Controls to which edge of the container this control is docked to

Enabled Property indicating whether the control is currently enabled

Location Properties that relate to the size and position of the control
Size

Visible Property that indicates whether the control is currently visible on the screen

BringToFront Brings this control to the front of the z-order

DoDragDrop Begins a drag-and-drop operation

Focus Attempts to set focus to this control

Hide Hides the control by setting the visible property to False

Refresh Forces the control to repaint itself, and to force a repaint on any of its child controls

Show Makes the control display by setting the visible property to True

Update Forces the control to paint any currently invalid areas

A standard set of events is also furnished by the Control class, including events for clicking the control
(Click, DoubleClick), events for keystroke handling (KeyUp, KeyPress, KeyDown), events for mouse
handling (MouseUp, MouseHover, MouseDown, etc.), and events for handling drag-and-drop operations
(DragEnter, DragOver, DragLeave, DragDrop). Also included are standard events for managing focus
and validation in the control (GotFocus, Validating, Validated). See the help files on the Control
class for details on these events and a comprehensive list.

The UserControl Class
The built-in functionality of the Control class is a great starting point for controls that will be built from
scratch, with their own display and keyboard handling logic. However, there is limited capability in the
Control class to use it as a container for other controls.

565

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 565

That means that composite controls do not typically use the Control class as a starting point.
Composite controls combine two or more existing controls, so the starting point must be able to manage
contained controls. The class that meets this requirement is the UserControl class. Since it ultimately
derives from the Control class, it has all of the properties, methods, and events listed earlier.

However, the UserControl class does not derive directly from the Control class. It derives from the
ContainerControl class, which, in turn, derives from the ScrollableControl class.

As the name suggests, the ScrollableControl class adds support for scrolling the client area of the
control’s window. Almost all the members implemented by this class relate to scrolling. They include
AutoScroll, which turns scrolling on or off, and controlling properties such as AutoScrollPosition,
which gets or sets the position within the scrollable area.

The ContainerControl class derives from ScrollableControl and adds the ability to support and
manage child controls. It manages the focus and the ability to tab from control to control. It includes
properties such as ActiveControl to point to the control with the focus, and Validate, which vali-
dates the most recently changed control that has not had its validation event fired.

Neither ScrollableControl nor ContainerControl are usually inherited from directly; they add
functionality that is needed by their more commonly used child classes: Form and UserControl.

The UserControl class can contain other child controls, but the interface of UserControl does not
automatically expose these child controls in any way. Instead, the interface of UserControl is designed
to present a single, unified interface to outside clients such as forms or container controls. Any object
interface that is needed to access the child controls must be specifically implemented in your custom
control. The following example demonstrates this.

The external interface of the UserControl class consists exclusively of members inherited from other
classes, though it does overload many of these members to gain functionality suitable for its role as a
base class for composite controls.

A Composite UserControl
Our earlier examples showed inheriting an existing control, which was the first of the three techniques
for created custom controls. The next step up in complexity and flexibility is to combine more than one
existing control to become a new control. This is similar to the process of creating a UserControl in
VB6, but it is easier to do in VB.NET.

The main steps in the process of creating a UserControl are:

❑ Start a new Windows Control Library project, and assign names to the project and the class rep-
resenting the control.

❑ The project will contain a design surface that looks a lot like a form. You can drag controls onto
this surface just as you would a form. Write logic loading and manipulating the controls as nec-
essary, very much like you would with a form. It is usually particularly important to handle
resizing when the UserControl is resized. This can be done by using the Anchor and Dock
properties of the constituent controls, or you can create resize logic that will reposition and
resize the controls on your UserControl when it is resized on the form containing it.

566

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 566

❑ Create properties of the UserControl to expose functionality to a form that will use it. This typ-
ically means creating a property to load information into and get information out of the control.
Sometimes properties to handle cosmetic elements are also necessary.

❑ Build the control and refer to it in a Windows Application exactly as was done for the inherited
controls discussed earlier.

There is a key difference between this type of development and inheriting a control, as we did in the pre-
ceding examples. A UserControl will not by default expose the properties of the controls it contains. It
will expose the properties of the UserControl class plus any custom properties that we give it. If you
want properties for contained controls to be exposed, you must explicitly create logic to expose them.

Creating a Composite UserControl
To demonstrate the process of creating a composite UserControl, the next exercise will build one that is
similar to what is shown in Figure 15-3.

Figure 15-3

This type of layout is common in wizards and in other user interfaces that require selection from a long
list of items. The control has one list box holding a list of items that can be chosen (on the left), and
another list box containing the items chosen so far (on the right). Buttons allow items to be moved back
and forth.

Loading this control means loading items into the left list box, which we call lstSource and refer to as
the source list box. Getting selected items back out will involve exposing the items that are selected in
the right list box, named lstTarget and referred to in our discussion as the target list box.

The buttons in the middle that transfer elements back and forth will be called btnAdd, btnAddAll,
btnRemove, and btnClear, from top to bottom, respectively.

There are lots of ways to handle this kind of interface element in detail. A production-level version
would have the following characteristics:

❑ Buttons would gray out (disable) when they are not appropriate. For example, btnAdd would
not be enabled unless an item was selected in lstSource.

❑ Items that have been transferred from lstSource to lstTarget would not be shown in
lstSource. If they are removed from lstTarget, they should show in lstSource again.

567

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 567

❑ Items could be dragged and dropped between the two list boxes.

❑ Items could be selected and moved with a single double-click.

Such a production-type version contains too much code to discuss in this chapter. For simplicity, the
exercise will have the following limitations:

❑ Buttons do not gray out when they should be unavailable.

❑ Items transferred from lstSource will not disappear from the list. This means that it will be
possible to add duplicate items to lstTarget.

❑ Drag-and-drop is not supported. (Implementation of drag-and-drop was discussed in Chapter 14,
if you are interested in adding it to the example.)

❑ No double-clicking is supported.

This leaves the following general tasks to make the control work:

❑ Create a UserControl project.

❑ Add the list boxes and buttons to the UserControl design surface.

❑ Add logic to resize the controls when the UserControl changes size.

❑ Add logic to transfer elements back and forth between the list boxes when buttons are pressed.
(More than one item may be selected for an operation, so several items may need to be trans-
ferred when a button is pressed.)

❑ Expose properties to allow the control to be loaded and selected items to be fetched by the form
that contains the control.

How Does Resize Work?
The steps outlined above are fairly straightforward. Even the resize logic is made easy by using the
built-in capabilities of Windows Forms controls. The list boxes can be docked to the sides to help man-
age their resizing, then only their width needs to be managed. The buttons need to have an area set aside
for them and then be properly positioned within the area.

Setting a Minimum Size
Since we need the buttons to always be visible, our UserControl needs to have a minimum size. To
take care of that, we will need to set the MinimumSize property for the UserControl in the designer.
The MinimumSize property is inherited from the Control class, and was discussed in the previous
chapter.

Exposing Properties of Subcontrols
Most of the controls contained in the composite control in this exercise do not need to expose their inter-
faces to the form that will be using the composite control. The buttons, for example, are completely private
to the UserControl— none of their properties or methods need to be exposed.

568

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 568

The easiest way to load up the control is to expose the appropriate properties of the source list box.
Similarly, the easiest way to allow access to the selected items is to expose the appropriate properties of
the target list box. In this way, the UserControl will expose a limited number of their properties.

As an example, the exercise also includes a Clear method that clears both list boxes simultaneously.
This allows the control to be flushed and reused by a form that consumes it.

Stepping Through the Example
Here is the step-by-step procedure to build our composite UserControl:

1. Start a new Windows Control Library project. Name it SelectComboControl.

2. Right-click on the UserControl1.vb module that is generated for the project, and select
Rename. Change the name of the module to SelectCombo.vb. This will automatically also
change the name of your class to SelectCombo.

3. Go to the design surface for the control. Drag two list boxes and four buttons onto the control
and arrange them so that they look something like Figure 15-4.

Figure 15-4

4. Change the names and properties of these controls as shown in the following table.

Original Name New Name Properties to Set for Control

Listbox1 lstSource Dock = Left

Listbox2 lstTarget Dock = Right

Button1 btnAdd Text = “Add >”

Button2 btnAddAll Text = “Add All >>”

Button3 btnRemove Text = “< Remove”

Button4 btnClear Text = “<< Clear”

5. Click on an unoccupied area of the UserControl so that the properties for the UserControl
itself appear in the Properties window. Set the MinimumSize height and width to 200 twips
each. We will also need to know how wide the area for the buttons should be. Set up a variable

569

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 569

to hold the size of the area for the buttons. That code should go just under the class declaration
lines, and should look like the following code:

‘ Make the width of the area for the buttons 100 twips
Dim mnButtonAreaWidth As Integer = 100

6. Set up resize logic to arrange these controls when the composite control is resized. Go to the
code window for the class. Get an empty Resize event by selecting SelectCombo Events in the
left-hand drop-down box, and then Resize in the right-hand box. Place this code in the Resize
event:

Private Sub SelectCombo_Resize(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Resize

‘Set source and target list boxes to appropriate width. Note that
‘docking the list boxes makes their height the right size automatically.
Dim nListboxWidth As Integer
nListboxWidth = CInt(0.5 * (Me.Size.Width - mnButtonAreaWidth))
lstSource.Size = New Size(nListboxWidth, lstSource.Size.Height)
lstTarget.Size = New Size(nListboxWidth, lstSource.Size.Height)

‘Now position the buttons between the list boxes.
Dim nLeftButtonPosition As Integer
nLeftButtonPosition = nListboxWidth + _

((mnButtonAreaWidth - btnAdd.Size.Width) \2)
btnAdd.Location = New Point(nLeftButtonPosition, btnAdd.Location.Y)
btnAddAll.Location = New Point(nLeftButtonPosition, _

btnAddAll.Location.Y)
btnRemove.Location = New Point(nLeftButtonPosition, _

btnRemove.Location.Y)
btnClear.Location = New Point(nLeftButtonPosition, btnClear.Location.Y)

End sub

7. Put logic in the class to transfer items back and forth between the list boxes and clear the target
list box when btnClear is pressed. This logic is surprisingly short because it involves manipu-
lating the collections of items in the list boxes. Here are the click events for each of the buttons:

Private Sub btnAdd_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnAdd.Click

Dim objItem As Object
For Each objItem In lstSource.SelectedItems

lstTarget.Items.Add(objItem)
Next objItem

End Sub

Private Sub btnAddAll_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnAddAll.Click

Dim objItem As Object
For Each objItem In lstSource.Items

lstTarget.Items.Add(objItem)
Next objItem

End Sub

570

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 570

Private Sub btnClear_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnClear.Click

lstTarget.Items.Clear()
End Sub

Private Sub btnRemove_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnRemove.Click

‘ Have to go through the collection in reverse
‘ because we are removing items.

Dim nIndex As Integer
For nIndex = lstTarget.SelectedItems.Count - 1 To 0 Step -1

lstTarget.Items.Remove(lstTarget.SelectedItems(nIndex))
Next nIndex

End Sub

The logic in the Click event for btnRemove has one oddity to take into account, which concerns
items being removed from the collection. It is necessary to go through the collection in reverse.
Otherwise the removal of items will cause the looping enumeration to be messed up and a run-
time error will be generated.

8. Create the public properties and methods of the composite control. In our case, we need the fol-
lowing members.

Member Purpose

Clear method Clears both list boxes of their items

Add method Adds an item to the source list box

AvailableItem property An indexed property to read the items in the source list box

AvailableCount property Exposes the number of items in the source list box

SelectedItem property An indexed property to read the items in the target list box

SelectedCount property Exposes the number of items available in the target list box

The code for these properties and methods is as follows:

Public ReadOnly Property SelectedItem(ByVal iIndex As Integer) As Object
Get

Return lstTarget.Items(iIndex)
End Get

End Property

Public ReadOnly Property SelectedCount() As Integer
Get

Return lstTarget.Items.Count
End Get

End Property

Public ReadOnly Property AvailableCount() As Integer
Get

571

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 571

Return lstSource.Items.Count
End Get

End Property

Public Sub Add(ByVal objItem As Object)
lstSource.Items.Add(objItem)

End Sub

Public ReadOnly Property AvailableItem(ByVal iIndex As Integer) As Object
Get

Return lstSource.Items(iIndex)
End Get

End Property

Public Sub Clear()
lstSource.Items.Clear()
lstTarget.Items.Clear()

End Sub

9. Build the control. Then create a Windows Application project to test it in. As in previous exam-
ples, it will be necessary to refer to the control using Choose Items. Then it can be dragged from
the toolbox, have items added in code (via the Add method), be resized, and so on. When the
project is run, the buttons can be used to transfer items back and forth between the list boxes,
and the items in the target list box can be read with the SelectedItem property.

Keep in mind that you can also use the techniques for inherited controls in composite controls too. You
can create custom events, apply attributes to properties, and create ShouldSerialize and Reset meth-
ods to make properties work better with the designer. (That wasn’t necessary here because most of our
properties were ReadOnly.)

Building a Control from Scratch
If your custom control needs to draw its own interface, you should use the Control class as your start-
ing point. Such a control gets a fair amount of base functionality from the Control class. A partial list of
properties and methods of the Control class was included earlier in the chapter. These properties
arrange for the control to automatically have visual elements such as background and foreground colors,
fonts, window size, and so on.

However, such a control does not automatically use any of that information to actually display anything
(except for a BackgroundImage, if that property is set). A control derived from the Control class must
implement its own logic for painting the control’s visual representation. In all but the most trivial exam-
ples, such a control also needs to implement its own properties and methods to gain the functionality
it needs.

The techniques used in the earlier example for default values and the ShouldSerialize and Reset
methods all work fine with the controls created from the Control class, so that capability will not be
discussed again. Instead, this section will focus on the capability that is very different in the Control
class — the logic to paint the control to the screen.

572

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 572

Painting a Custom Control with GDI+
The base functionality used to paint visual elements for a custom control is in the part of .NET called
GDI+. A complete explanation of GDI+ is too complex for this chapter, but here is an overview of some
of the main concepts needed.

GDI+
GDI+ is an updated version of the old GDI (Graphics Device Interface) functions provided by the Windows
API. GDI+ provides a new API for graphics functions, which then takes advantage of the Windows graph-
ics library.

The GDI+ functions can be found in the System.Drawing namespace. Some of the classes and members
in this namespace will look familiar if you have used the Win32 GDI functions. Classes are available for
such items as pens, brushes, and rectangles. Naturally, the System.Drawing namespace makes these
capabilities much easier to use than the equivalent API functions.

The System.Drawing namespace enables you to manipulate bitmaps and indeed utilize various struc-
tures for dealing with graphics such as Point, Size, Color, and Rectangle. In addition to this, there
are a number of classes available to developers, including:

❑ Cursors— Contains the various cursors that you would need to set in your application, such as
an hourglass or an insertion I-beam cursor

❑ Font— Includes capabilities like font rotation

❑ Graphics— Contains methods to perform routine drawing constructs, including lines, curves,
ellipses, and so on.

❑ Icon, Pen, and Brush

❑ The Pen and Brush classes

The System.Drawing Namespace
The System.Drawing namespace includes many classes and it also includes some subsidiary names-
paces. We will be using one of those in our example: System.Drawing.Text. First, let’s look at impor-
tant classes in System.Drawing.

The System.Drawing.Graphics Class
Many of the important drawing functions are members of the System.Drawing.Graphics class. Methods
like DrawArc, DrawEllipse, and DrawIcon have self-evident actions. There are over 40 methods that pro-
vide drawing-related functions in the class.

Many drawing members require one or more points as arguments. A point is a structure in the
System.Drawing namespace. It has X and Y values for horizontal and vertical positions, respectively.
When a variable number of points are needed, an array of points may be used as an argument. The next
example uses points.

573

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 573

The System.Drawing.Graphics class cannot be directly instantiated. That is, you can’t just enter code
like this to get an instance of the Graphics class:

Dim grfGraphics As New System.Drawing.Graphics() ‘ This does not work!!

That’s because the constructor for the class is private. It is only supposed to be manipulated by objects
that can set the Graphics class up for themselves. There are several ways to get a reference to a Graphics
class, but the one most commonly used in the creation of Windows controls is to get one out of the argu-
ments in a Paint event. That technique is used in our example further down. For now, to understand the
capabilities of GDI+ a little better, let’s do a quick example on a standard Windows Form.

Using GDI+ Capabilities in a Windows Form
Here is an example of a form that uses the System.Drawing.Graphics class to draw some graphic ele-
ments on the form surface. The example code runs in the Paint event for the form, and draws an ellipse,
an icon (which it gets from the form itself), and two triangles, one in outline and one filled.

Start a Windows Application project in VB.NET. On the Form1 that is automatically created for the pro-
ject, place the following code in the Paint event for the form:

Dim grfGraphics As System.Drawing.Graphics
grfGraphics = e.Graphics

‘ Need a pen for the drawing. We’ll make it violet.
Dim penDrawingPen As New _

System.Drawing.Pen(System.Drawing.Color.BlueViolet)

‘ Draw an ellipse and an icon on the form
grfGraphics.DrawEllipse(penDrawingPen, 30, 150, 30, 60)
grfGraphics.DrawIcon(Me.Icon, 90, 20)

‘ Draw a triangle on the form.
‘ First have to define an array of points.
Dim pntPoint(2) As System.Drawing.Point

pntPoint(0).X = 150
pntPoint(0).Y = 150

pntPoint(1).X = 150
pntPoint(1).Y = 200

pntPoint(2).X = 50
pntPoint(2).Y = 120

grfGraphics.DrawPolygon(penDrawingPen, pntPoint)

‘ Do a filled triangle.
‘ First need a brush to specify how it is filled.
Dim bshBrush As System.Drawing.Brush
bshBrush = New SolidBrush(Color.Blue)

574

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 574

‘ Now relocate the points for the triangle.
‘ We’ll just move it 100 twips to the right.
pntPoint(0).X += 100
pntPoint(1).X += 100
pntPoint(2).X += 100
grfGraphics.FillPolygon(bshBrush, pntPoint)

Then, start the program and, when it comes up, the form will look something like Figure 15-5.

Figure 15-5

As you can see, the graphics functions are not difficult to use. The hardest part is figuring out how to ini-
tialize the objects needed, such as the graphics object itself, and the necessary brushes and pens.

For an example, you will create a custom control that displays a “traffic light,” with red, yellow, and
green signals that can be displayed via a property of the control. GDI+ classes will be used to draw the
traffic light graphics in the control.

First, start a new project in VB.NET of the Windows Control Library type, and name it “TrafficLight”.
The created module will have a class in it named UserControl1. We want a different type of control
class, so you need to get rid of this one. Right-click on this module in the Solution Explorer and select
Delete.

Now right-click on the project, and select Add New Item. Select the item type of Custom Control, and
name it TrafficLight.vb.

As with the other examples in this chapter, it is necessary to include the Imports statement for the
namespace containing the attribute we will use. This line should go at the very top of the code module
for TrafficLight.vb:

Imports System.ComponentModel

575

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 575

The TrafficLight control needs to know which “light” to display. There are three states the control can
be in: red, yellow, and green. An enumerated type will be used for these states. Add the following code
just below the last code:

Public Enum TrafficLightStatus
statusRed = 1
statusYellow = 2
statusGreen = 3

End Enum

The example will also need a module-level variable and a property procedure to support changing and
retaining the state of the light. The property will be named Status.

To handle the Status property, first place a declaration right under the last enumeration declaration
that creates a module level variable to hold the current status:

Private mStatus As TrafficLightStatus = TrafficLightStatus.statusGreen

Then, insert the following property procedure in the class to create the Status property:

<Description(“Status (color) of the traffic light”)> _
Public Property Status() As TrafficLightStatus

Get
Status = mStatus

End Get
Set(ByVal Value As TrafficLightStatus)

If mStatus <> Value Then
mStatus = Value
Me.Invalidate()

End If
End Set

End Property

The Invalidate method of the control is used when the Status property changes, and it forces a com-
plete redraw of the control. Ideally, this type of logic should be placed in all of the events that affect the
rendering of the control.

Now, add procedures to make the property serialize and reset properly. These routines look like this:

Public Function ShouldSerializeStatus() As Boolean
If mStatus = TrafficLightStatus.statusGreen Then

Return False
Else

Return True
End If

End Function

Public Sub ResetStatus()
Me.Status = TrafficLightStatus.statusGreen

End Sub

576

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 576

Now, place code to handle the Paint event, that is, to draw the “traffic light” when the control repaints.
We will use some code similar to that in the section on drawing with the GDI+ (above). The code gener-
ated for the new custom control will already have a blank Paint event inserted. You just need to insert
the highlighted code below into that event, below the comment line that says “Add your custom paint
code here”:

Protected Overrides Sub OnPaint(ByVal pe As _
System.Windows.Forms.PaintEventArgs)

MyBase.OnPaint(pe)

‘Add your custom paint code here
Dim grfGraphics As System.Drawing.Graphics
grfGraphics = pe.Graphics

‘ Need a pen for the drawing the outline. We’ll make it black.
Dim penDrawingPen As New _

System.Drawing.Pen(System.Drawing.Color.Black)

‘ Draw the outline of the traffic light on the control.
‘ First have to define an array of points.
Dim pntPoint(3) As System.Drawing.Point

pntPoint(0).X = 0
pntPoint(0).Y = 0

pntPoint(1).X = Me.Size.Width - 2
pntPoint(1).Y = 0

pntPoint(2).X = Me.Size.Width - 2
pntPoint(2).Y = Me.Size.Height - 2

pntPoint(3).X = 0
pntPoint(3).Y = Me.Size.Height - 2

grfGraphics.DrawPolygon(penDrawingPen, pntPoint)

‘ Now ready to draw the circle for the “light”
Dim nCirclePositionX As Integer
Dim nCirclePositionY As Integer
Dim nCircleDiameter As Integer
Dim nCircleColor As Color

nCirclePositionX = Me.Size.Width * 0.02
nCircleDiameter = Me.Size.Height * 0.3
Select Case Me.Status

Case TrafficLightStatus.statusRed
nCircleColor = Color.OrangeRed
nCirclePositionY = Me.Size.Height * 0.01

Case TrafficLightStatus.statusYellow
nCircleColor = Color.Yellow
nCirclePositionY = Me.Size.Height * 0.34

Case TrafficLightStatus.statusGreen
nCircleColor = Color.LightGreen
nCirclePositionY = Me.Size.Height * 0.67

End Select

577

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 577

Dim bshBrush As System.Drawing.Brush
bshBrush = New SolidBrush(nCircleColor)
‘ Draw the circle for the signal light
grfGraphics.FillEllipse(bshBrush, nCirclePositionX, _

nCirclePositionY, nCircleDiameter, nCircleDiameter)
End Sub

Now, build the control library by selecting Build from the Build menu. This will create a DLL in the /bin
directory where the control library solution is saved.

Then, start a new Windows Application project and right-click the Windows Forms tab in the toolbox. In
the Add/Remove Items dialog box, first make sure that the .NET Components tab is selected, and then
use the Browse button to point to the deployed DLL for the control library. The toolbox should now con-
tain the TrafficLight control.

Drag a TrafficLight control onto the form in the Windows Application project. Notice that its prop-
erty window includes a Status property. Set that to statusYellow. Note that the rendering on the con-
trol on the form’s design surface changes to reflect this new status. Also, change the background color of
the TrafficLight control to a darker gray to improve its cosmetics. (The BackColor property for
TrafficLight was inherited from the Control class.)

At the top of the code for the form, place the following line to make the enumerated value for the traffic
light’s status available.

Imports TrafficLight.TrafficLight

Add three buttons (named btnRed, btnYellow, and btnGreen) to the form to make the traffic light control
display as red, yellow, and green. The logic for the buttons will look something like the following code:

Private Sub btnRed_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnRed.Click

TrafficLight1.Status = TrafficLightStatus.statusRed
End Sub

Private Sub btnYellow_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnYellow.Click

TrafficLight1.Status = TrafficLightStatus.statusYellow
End Sub

Private Sub btnGreen_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGreen.Click

TrafficLight1.Status = TrafficLightStatus.statusGreen
End Sub

In the Solution Explorer, right-click your test Windows Application, and select “Set as Startup Project.”
Then press F5 to run.

When your test form comes up, you can change the “signal” on the traffic light by pressing the buttons.
Figure 15-6 shows a sample screen.

578

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 578

Figure 15-6

Of course, you can’t see the color in a black-and-white screen shot, but as you might expect from its posi-
tion, the circle above is yellow. The “red light” displays at the top of the control, and the “green light”
displays at the bottom. These positions are all calculated in the Paint event logic, depending on the
value of the Status property.

Attaching an Icon for the Toolbox
By default, the icon that appears in the toolbox next to your control’s name is a gear-shaped icon. However,
you can use an attribute on the class declaration that defines your control to specify a different icon to place
in the toolbox.

The attribute needed is the ToolboxBitmap attribute. It can be used in several ways.

If the icon you want to use is already defined for another control, you can have your control get the icon
out of the existing control. Suppose, for example, you want to use the icon for a Textbox as the icon for
our TrafficLight control. In that case, the line that declares the class

Public Class TrafficLight

should be changed to add the attribute as follows:

<ToolboxBitmap(GetType(System.Windows.Forms.TextBox))> _
Public Class TrafficLight

You can also use an icon that resides in a graphic file. There are a lot of these included with VS.NET in
the “Common7\backslash Graphics\backslash Icons” subdirectory of the VS.NET directory (which
is usually under “Program Files” on your main system drive). Or, you can define your own icons in the
Paint accessory of Windows by defining an image size of 16 x 16 pixels, and then painting the icon.

In either case, the ToolboxBitmap attribute is used to refer to the file containing the icon you want, as
shown below.

<ToolboxBitmap(“C:\TestData\RedLightIcon.bmp”)> _
Public Class TrafficLight

579

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 579

After adding the attribute, just rebuild the control to incorporate the icon in the control’s DLL. Note that
you must remove the control from the toolbox and read it to see the changed icon.

It’s also possible to get a toolbox bitmap out of an arbitrary resource compiled into an assembly, but dis-
cussing all the concepts required to do that is beyond the scope of this chapter.

Embedding Controls in Other Controls
Another technique that is valuable for creating custom controls is to use embedding of other controls. In
a sense, the UserControl does this. However, when a UserControl is used as the base class, it only
exposes by default the properties of the UserControl class. Instead, you may want to use a control such
as a Textbox or Grid as the starting point, but embed a Button in the Textbox or Grid to get some
new functionality.

The embedding technique relies on the fact that in Windows Forms, all controls can be containers for
other controls. Visual Basic developers are familiar with the idea that Panels and GroupBoxes can be
containers, but in fact a TextBox or Grid can also be a container of other controls.

This technique is best presented with an example. The standard ComboBox control does not have a way
for the user to reset to a “no selection” state. Once an item is selected, setting to that state requires code
that sets the SelectedIndex to -1.

We will create a ComboBox that has a button to reset the selection state back to “no selection.” That
allows the user to access that capability directly.

Now that we have done several controls in examples, rather than proceed step-by-step, we’ll just show
the code for such a ComboBox, and discuss how the code works.

Public Class SpecialComboBox
Inherits ComboBox

Dim WithEvents btnEmbeddedButton As Button

Public Sub New()

Me.DropDownStyle = ComboBoxStyle.DropDownList

‘ Fix up the embedded button.
btnEmbeddedButton = New Button
btnEmbeddedButton.Width = SystemInformation.VerticalScrollBarWidth
btnEmbeddedButton.Top = 2
btnEmbeddedButton.Height = Me.Height - 8
btnEmbeddedButton.BackColor = SystemColors.Control
btnEmbeddedButton.FlatStyle = FlatStyle.System
btnEmbeddedButton.Text = “t”
Dim fSpecial As New Font(“Wingdings 3”, Me.Font.Size - 1)
btnEmbeddedButton.Font = fSpecial

btnEmbeddedButton.Left = Me.Width - btnEmbeddedButton.Width - _
SystemInformation.VerticalScrollBarWidth - 5

580

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 580

Me.Controls.Add(btnEmbeddedButton)
btnEmbeddedButton.Anchor = CType(AnchorStyles.Right _

Or AnchorStyles.Top Or AnchorStyles.Bottom, AnchorStyles)
btnEmbeddedButton.BringToFront()

End Sub

Private Sub btnEmbeddedButton_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnEmbeddedButton.Click

Me.SelectedIndex = -1
Me.Focus

End Sub

Private Sub BillysComboBox_DropDownStyleChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.DropDownStyleChanged

If Me.DropDownStyle <> ComboBoxStyle.DropDownList Then
Me.DropDownStyle = ComboBoxStyle.DropDownList
Throw New _

InvalidOperationException(“DropDownStyle must be DropDownList”)
End If

End Sub
End Class

As in our first example in the chapter, this example inherits from a built-in control. Thus it immediately
gets all of the capabilities of the standard ComboBox. All we need to add is the ability to reset the selected
state.

To do that, we need a button for the user to press. The class declares the button as a private object named
btnEmbeddedButton. Then, in the constructor for the class, the button is instantiated, and its properties
are set as necessary. The size and position of the button need to be calculated. This is done using the size of
the ComboBox and a special system parameter called SystemInformation.VerticalScrollBarWidth.
This parameter is chosen because it is also used to calculate the size of the button used to drop down a
combo box. Thus our new embedded button will be exactly the same width as the button that the regular
ComboBox displays for dropping down the list.

Of course, we need to display something in the new button to indicate its purpose. For simplicity, the
code above displays a lower case “t” using the WingDings 3 font (which all Windows systems should
have installed). This will cause a left-pointing triangle to appear, as seen in Figure 15-6, which is a screen
shot of the control in use.

The button is then added to the Controls collection of the ComboBox. You may be surprised to find out
that a ComboBox even has a Controls collection for embedded controls, but all controls in Windows
Forms have one.

Finally, the Anchor property of the new button is set to maintain the position if the SpecialComboBox is
resized by its consumer.

Besides the constructor, only a couple of small routines are needed. The click event for the button must
be handled, and in it the SelectedIndex must be set to -1. And, since this functionality is only for
combo boxes with a style of DropDownList, the DropDownStyleChanged event of the ComboBox must
be trapped, and the style prevented from being set to anything else.

581

Windows Forms Advanced Features

18_575368 ch15.qxd 10/7/05 11:02 PM Page 581

Summary
This chapter discussed the creation of custom controls in VB.NET, and illustrated how much easier it is
to do this in comparison with the previous versions of Visual Basic. The advent of full inheritance capa-
bilities in VB.NET means that it is a lot easier for developers to utilize functionality simply by inheriting
from the namespaces built into the .NET Framework. It is probably best to start by overriding these
existing controls in order to learn the basics of creating properties and coordinating them with the
designer, building controls and testing them, and so on. These techniques can then be extended by the
creation of composite controls, as we have illustrated with worked examples within this chapter.

You have seen how to create controls by:

❑ Inheriting from another control

❑ Building a composite control

❑ Writing a control from scratch, based on the Control class, although this took more work than
the other two methods

In the course of writing a control from scratch, it was necessary to discuss the basics of GDI+. However,
if you are going to do extensive work with GDI+, you will need to seek out additional resources to aid in
that effort.

The key concept that you should take away from this chapter is that Windows Forms controls are a great
way to package functionality that will be reused across many forms, and to create more dynamic,
responsive user interfaces much more quickly with much less code.

582

Chapter 15

18_575368 ch15.qxd 10/7/05 11:02 PM Page 582

Building Web Applications

Shipping as part of Visual Studio 2005 (VS.Net 2005), Microsoft introduced ASP.Net version 2.0,
an enhanced version of its Web Application development technology. Almost every aspect of Web
development with ASP.Net has undergone improvements asked for by end users. ASP.Net 2.0
introduces a new feature, a host of new controls, and an improved code-behind model. In this
chapter you will take a quick look at building Web applications with Visual Studio 2005, using
ASP.Net version 2.0. In the next chapter, you will find information about some advanced features
of ASP.Net version 2.0

ASP.Net first provided a visual metaphor for creating Web forms with code behind controls in a
manner very similar to windows-based forms. In addition, ASP.Net introduced a number of server
controls that enabled a programmer to drag and drop onto a design surface and obtain complex
HTML-based UI elements such as grids and calendars without having to write complex code.
ASP.Net also provided automatic state management and saving of control properties across round
trips from the browser to the Web server. Now, ASP.Net version 2 goes beyond to provide addi-
tional productivity, performance, and feature enhancements.

A Web Site in Action
In VS.Net 2005, a Web application is called a Web Site. This is to distinguish it from the previous
version where a Web application was bound to Internet Information Server (IIS) and to physical
folders in the IIS root. Web sites in Visual Studio 2005 can exist within a file system, within a local
IIS Web site, or on a remote Web site. The easiest way to learn about Web sites is to see them in
action, and then take them apart to see how they are constructed. Let’s look at a very simple Web
form — the quintessential “Hello World” example.

This chapter explores Web forms and how you can benefit from their use, but it is
only meant to whet your appetite. If you want to learn more, read Beginning
ASP.NET 2.0 and Databases (Wiley, 2006).

19_575368 ch16.qxd 10/7/05 11:03 PM Page 583

Setting Up the Environment
To be able to create ASP.NET applications with VS.Net 2005, you do not need to be running Internet
Information Server (IIS). Visual Studio 2005 ships with its own lightweight Web server application that
can be used as a temporary Web server while developing ASP.Net Web applications. Once you finish
development, you can deploy an ASP.Net application to a production server. On the production server,
you will need to be running IIS.

The HelloWorld Web Form
Create a new ASP.NET Web site in VS.NET by selecting File ➪ New ➪ Web Site. Click “Visual Basic,”
and then click the “ASP.Net Web site” template. You may choose a location for your Web site or accept
the default C:\WebSites\ as your location. Name the Web site HelloWorld, thereby making your loca-
tion C:\WebSites\HelloWorld, as shown in Figure 16-1.

Figure 16-1

Click OK and you will be presented with a new solution. VS.NET has created a new Web form for you,
called default.aspx (aspx is the extension for ASP.NET Web pages).

By default, this version of Visual Studio .Net opens up a Web form in source view — you get to see the
HTML that makes up the Web page. You can also set it to open up in design view by setting an option
under Tools ➪ Options. In design view, you work with a WYSIWYG (What You See Is What You Get)
Web page editor.

Switch to design view by clicking the Design tab at the bottom of the page. You can treat the Web form
in front of you as a normal VB form, dropping controls onto it by dragging them from the toolbox. For
now, drag a Label control from the toolbox and drop it onto the top left of the form. Use the Properties
window to set its caption (its Text property) to “Hello World.” Your screen will look like Figure 16-2.

584

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 584

Figure 16-2

For this example, that’s all you need to do. You can now execute your application. Remember, you
have created your Web page within a folder called C:\WebSites. It is not linked to your local Internet
Information Server (even if you have one). In previous versions of ASP.Net, when you created a new
ASP.Net project, VS.Net automatically linked it to your local Web server, and created an application
within the IIS root enabling it to be executed.

In ASP.Net 2.0, VS.Net 2005 executes your ASP.Net Web site by using a special lightweight Web server
that ships with VS.Net 2005. This lightweight Web server — the Visual Web Developer Web Server —
enables you to execute ASP.Net applications on your development machine even if you do not have IIS
installed. It also enables you to develop file system-based Web sites as opposed to developing Web sites
that are within the IIS root alone.

Normally, VS.NET executes applications in a special debug mode that allows you to monitor the
progress of your application. For now, you simply want to execute your application in the release mode
or the production mode, so select Debug ➪ Start Without Debugging from the menu, or press Control +
F5. If all goes well, your browser will open the default.aspx file and you will see an image similar to
Figure 16-3.

585

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 585

Figure 16-3

If you are running Windows XP with Service Pack 2, chances are, you will not see the page displayed in
Figure 16-3. Instead, you will probably see an error image similar to Figure 16-4.

The error message you see appears because Windows XP’s firewall blocks the Visual Web Developer
Web Server that VS.Net uses to launch your Web application. To fix this, click the Unblock button to
allow Windows XP’s firewall to consider the Visual Web Developer WebServer to be a “friendly” appli-
cation, and then refresh your browser to view your page. You will need to do this only once since XP
remembers your settings.

586

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 586

Figure 16-4

Right-click the browser and select View Source to see what the output produced by your solution looks
like. You will see that it is pure HTML, generated at runtime by your aspx file (tidied up a bit here):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head><title>
Untitled Page

</title></head>
<body>

<form method=”post” action=”default.aspx” id=”form1”>
<div>
<input type=”hidden” name=”__VIEWSTATE”
value=”/wEPDwUJODExMDE5NzY5ZGTQYknpxOG8TrYU95K/Cp6yZZc6Lg==” />
</div>

<div>

587

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 587

Hello World

</div>
</form>

</body>
</html>

Notice that there is an HTML form within your page, even though you did not ask for one. You’ll look at
this more closely later on in this chapter. Your label is included within the span tag:

Hello World

The span tag acts as a container to hold your Label. Close the browser and return to your VS.NET solu-
tion to see what makes this Web form tick. Web forms are very similar to Windows Forms, and you’ll see
how much alike they are with this next example.

Within your application, you have a single Web form, default.aspx. Let’s enhance it further.

Back in VS.Net designer, position your mouse at the end of the HelloWorld Label and press Shift+Enter
to proceed to the next line. (In VS.Net 2005, asp.net pages use flow-layout by default. You cannot drag
and position a label to an absolute position. To proceed to the next line, you have to press Shift+Enter at
the end of the line. If you press Enter at the end of the line, you will proceed to the next paragraph, just
like in Microsoft Word.). Drag and drop another Label to your form underneath the first one, and again,
position your mouse at its end and press Shift+Enter to proceed to the next line. Add a Button control
to the form underneath the new Label. Widen the width of the label by clicking on it and dragging its
resizing handles.

From the Properties window, set the ID property of the Label (which defines its name) to be lblText.
Leave its Text property as Label. Then, click the Button and set its ID property to btnSubmit and its
Text property to Submit. By this time, your screen looks similar to Figure 16-5.

Now, double-click the button and watch what happens. You will be taken to the code behind the form,
and your cursor will blink within the btnSubmit_Click event code, just like in Visual Basic 6! Wait a
minute, though. This isn’t a Windows Form, so how can buttons have code behind them?

In ASP.NET, controls do have code behind them. As you can see, you have a subroutine called
btnSubmit_Click that will be executed when the button is clicked. This code is executed — on the
server, not the client browser — whenever the form is submitted to the server. You’ll see more details
later on. For now, enter the following as the code for the click event:

Sub btnSubmit_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _

lblText.Text = “Hello World from Button Submit Code.”
End Sub

588

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 588

Figure 16-5

Notice how IntelliSense works when you type this line. Although ASP programmers had this functional-
ity with InterDev, VS.NET’s IntelliSense provides more HTML elements for use in your code.

Close the code window (saving any changes you have made), and return to the design mode for the form.
Then execute the ASP.Net Web application by pressing Ctrl-F5 again. The Web form —default.aspx—
opens up in the browser, displaying two labels and a button. The second label has the default caption of
Label. Click the Submit button and the text “Hello World from Button Submit Code” will appear within
the second label as shown in Figure 16-6.

When you click the Submit button, the code behind the button is executed, just like a Windows Form.

589

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 589

Figure 16-6

The Anatomy of a Web Form
Web forms bridge the gap between VB programming and traditional ASP programming. By offering a
visual technique to drag and drop controls onto a page, and code for events behind the controls, Web
forms bring a very familiar metaphor to Web development.

A Web form is made up of two components: the visual elements that you can see in the design view and
the code behind the controls and the page. The visual elements form the template for the presentation of
the Web page in the end user’s browser. The code is executed on the server when the page loads and in
response to other events that you have coded for.

ASP.Net provides two models for managing these two separate components:

❑ Single-file page model

❑ Code-behind page model

Single-File Page Model
In the single-file page model, both components reside within the same physical .aspx file. The code com-
ponents are enclosed within a <script> </script> block that contains an attribute runat=”server”.
This attribute separates script blocks that execute within a browser (client-side code) from script blocks
that execute on the server (server-side code). You can use any text editor to create a single-file page

590

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 590

model .aspx page. In fact, if your default.aspx page was built using a single-file page model, it would
look like this:

<%@ Page Language=”VB” %>

<script runat=server>
Sub btnSubmit_Click(ByVal sender As Object, ByVal e As System.EventArgs)

lblText.Text = “Hello World from Button Submit Code.”
End Sub

</script>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label ID=”Label1” Runat=”server” Text=”Hello World”></asp:Label>

<asp:Label ID=”lblText” Runat=”server” Text=”Label” Width=”278px”

Height=”19px”></asp:Label>

<asp:Button ID=”btnSubmit” Runat=”server” Text=”Submit”

OnClick=”btnSubmit_Click” />

</div>
</form>

</body>
</html>

Notice that the page does not contain an explicit class declaration. However, at runtime, the single-file
page is treated as a class that derives from the System.Web.UI.Page class and includes all controls on
the page as members of the derived class. The server-side script code within the page becomes part of
this derived class.

Code-Behind Page Model
When you create a Web form in VS.Net 2003, by default it separates the code component from the
markup responsible for the visual elements into two separate physical files. In the case of your
default.aspx page, the HTML responsible for the visual elements was within the aspx page, while the
code for the controls was placed in a separate default.aspx.vb page. This is what the default.aspx
page is comprised of:

<%@ Page Language=”VB” AutoEventWireup=”false” CompileWith=”Default.aspx.vb”
ClassName=”Default_aspx” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

591

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 591

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label ID=”Label1” Runat=”server” Text=”Hello World”></asp:Label>

<asp:Label ID=”lblText” Runat=”server” Text=”Label” Width=”278px”

Height=”19px”></asp:Label>

<asp:Button ID=”btnSubmit” Runat=”server” Text=”Submit”

OnClick=”btnSubmit_Click” />

</div>
</form>

</body>
</html>

And the default.aspx.vb page consists of the following:

Partial Class Default_aspx

Sub btnSubmit_Click(ByVal sender As Object, ByVal e As System.EventArgs)
lblText.Text = “Hello World from Button Submit Code.”

End Sub
End Class

Notice that there is no server-side <script></script> block with a runat=server attribute in the
aspx page. Also notice that the .aspx page has a @ Page directive that indicates the location of the sepa-
rate code-behind page.

<%@ Page Language=”VB” AutoEventWireup=”false” CompileWith=”Default.aspx.vb”
ClassName=”Default_aspx” %>

The code-behind .vb page contains all the code for the page. However, notice that the code is declared
within a class declared with the Partial keyword indicating that it is part of a class and not the com-
plete class definition.

Partial Class Default_aspx

At runtime, the compiler reads in the .aspx page and the file it references within the @Page directive,
combines the two into a single class, and compiles them as a unit into a single class.

Single-file page models and code-behind page models are functionally identical. There is no benefit or
performance difference between the two models. Which one you choose will depend solely upon your
style. For pages that do not contain much code, a single-file page model will be more efficient in manag-
ing code pieces. For a cleaner separation of code and markup, a code-behind page model is more effi-
cient. Besides, the code behind an aspx page can be used in more than one aspx page in the code-behind
page model.

592

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 592

Figure 16-7 shows the two components that make up your default.aspx Web form within your exam-
ple Web application.

Figure 16-7

By dividing the components into separate files and, therefore, within the VS.NET environment, into sep-
arate views, Web forms provide a very familiar environment for the VB programmer. With traditional
Visual Basic, you first paint the form by dragging and dropping controls, and then write the code for the
events that the controls expose. When developing Web forms, you first create the look of your Web page
by dragging and dropping controls onto the page, and then you write code for the events exposed by
the controls.

The Template for Presentation
The .aspx file forms the user interface component of the Web form and serves as a template for its presen-
tation in the browser. This .aspx file is the Page and it contains HTML markup and Web forms specific
elements. You can drag and drop several types of controls onto a Web form, including:

❑ HTML controls

❑ Web form controls

❑ Validation controls

❑ Data related controls

Default.aspx.vb

Class WebForm2

... code ... code ...

... code ... code ...

... code ... code ...

... code ... code ...

... code ... code ...

Default.aspx

http://webserver/HelloWorld/Default.aspx

593

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 593

❑ COM and .NET components registered on your machine

❑ Items from your clipboard

You’ll look at these different kinds of controls later on in this chapter.

Before going on to look at the processing flow of ASP.NET pages, let’s take a look at another example
that will drive home the point that Web forms make Web development uncannily like VB development.

A More Complex Example
Suppose that you wish to display a calendar for the current month in a Web page. Generating a dynamic
calendar for a traditional ASP page involves writing at least 50 to 100 lines of code. You have to create a
table to host the calendar, figure out the month and the year, and output the days of the week header.
Then, you need to figure out what day the current month begins with and how many days there are in
the month. Finally, you can output the days of the month starting with 1 and going on till the end of the
month. When you output the days, you need to make sure that you are placing each week horizontally
in one row (a <TR> tag) of a table. When you reach the end of one week, you need to close the row (a
</TR> tag) and begin a new one. Finally, when you are done with the days of the month, you probably
need to output a few blank days to make the table appear even and look good on the screen. All this
takes up a lot of ASP code, especially if you want the calendar to be generated dynamically.

There was an alternative before Web forms. You could simply use a client-side ActiveX control — a
Calendar control in your Web page. However, this had its own problems.

ActiveX controls are not supported by all browsers; in fact, only IE on Windows really supports them.
The Calendar control may not exist on your users’ computers, so you have to worry about distributing
it. Also, an ActiveX control will only work on the Windows platform, so your Web site users on Macs,
for example, will not be able to view the page properly.

In your HelloWorld Web site, add a new Web form. From the menu, select Website ➪ Add New Item. In
the dialog box that pops up, select Web Form, and name it Calendar.aspx. Remember to open up the
Web form in the design view. From your toolbox, look for the Calendar control under the Web forms
group. Double-click or drag it onto the form. That’s it, you now have a fully functional calendar in your
Web page, albeit a very plain looking one, as shown in Figure 16-8.

Before you run this Web form, let’s make it look a little better. Click on the Calendar control on the
page. On the top-right corner of the control you should see a little right-pointing arrow. Click it to open
up the “Common Calendar Tasks” menu. Select the Auto Format menu option. You can now use the
Auto Format dialog box to select from a number of predefined visual formats for your calendar. Click on
each format to view a preview. Finally, select the Colorful 2 option and click OK. Your Calendar con-
trol is instantly transformed visually using the styles defined in the Auto Format option.

Web forms bring the ease of development with an ActiveX control to the world of
ASP and Web development, but they output standard HTML on demand.

594

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 594

Figure 16-8

We now need to make sure that the Calendar.aspx page opens up when we run the application. To
ensure this, right click on the Calendar.aspx page in the Solution Explorer and select Set as Start
Page from the context menu. Run the Web site by pressing Ctrl-F5.

All you did was drag and drop a calendar control onto a Web page in your design environment and set
a few properties to make it look different. In your browser, you should have a Web page that looks like
Figure 16-9.

This is not a static calendar painted on the browser. It is fully interactive. Click any day and it becomes
highlighted in green. Click another day and the selection changes. Click the other months listed at the
top of the calendar and the month view automatically changes. Your Web form contains the Calendar
control that is being executed at runtime.

The Calendar control is a Web form server control that is outputting plain HTML to be viewed in the
browser (IE and Netscape version 4.0 or above). And you developed it using Visual Basic .NET (VB.NET),
just like developing and deploying a VB.NET Windows Form.

595

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 595

Figure 16-9

The Processing Flow of ASP.NET Web Forms
Traditional Web development, especially ASP development, has always involved generating an HTML
page and adding script code to it. An ASP page in traditional ASP (ASP versions prior to ASP.NET) was
therefore a plain text file separated into blocks of ASP code and HTML code. When a browser requested
an ASP page from the Web server, the ASP engine kicked in and parsed the page, before its output was
sent back to the browser. At runtime, the ASP engine would interpret the ASP code one line at a time. It
would execute each line that contained ASP script code, and would output unchanged every line that
contained plain HTML text. The traditional ASP Web development model was therefore one of HTML
pages with code added to them.

Figure 16-10 shows a simplistic view of how the processing flow takes place in traditional ASP.

Web forms turn this paradigm of Web development upside down. With Web forms, every page is actu-
ally an executable program. The page’s execution results in HTML text being outputted. You can there-
fore focus on developing with controls and code elements that output HTML, instead of worrying about
interspersing code around HTML text.

596

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 596

Figure 16-10

So, what exactly is a Web form? Well, a VB.NET Web form is an ASP.NET page. As you’ve already seen,
Web forms (or ASP.NET pages) are text files with an .aspx extension. On a .NET server (or indeed any
IIS server where the .NET Framework has been installed), when a browser requests an .aspx file, the
ASP.NET runtime parses and compiles the page. This process is similar to the way that the ASP engine
in ASP 3.0 and below parsed the page. The main difference is that the ASP.NET runtime compiles the
page into a .NET class file. The code is compiled and not interpreted line by line each time the page is
executed using a script engine. This results in improved runtime performance since the Web page code
is compiled and stored in cache for reuse.

A typical Web application Web site (that is, a Web site that contains Web forms) developed in VB.NET
will have at least one .aspx file. If you incorporate controls and code on the form, the code itself is placed
in the .vb file. That is, if your Web form is called Default, you will end up with Default.aspx and
Default.aspx.vb. The .aspx file corresponds to the traditional ASP .asp file and contains primarily
HTML code that defines your Web page. The .aspx.vb file contains the code-behind-the-Web-page
VB code.

<% () LANGUAGE="VBSCRIPT" %>
<% Option Explicit %>
<%
 Some code here
 Some code here
 Some code here
%>

<HTML>
<HEAD>
 <TITLE>Page Title</TITLE>
</HEAD>
<BODY>

<%
 Some code here
 Some code here
 Some code here
%>
<TABLE><TR>
 <TD>text here</TD>
 <TD>text here</TD>
</TR>
<%
 Some code here
%>
<TR>
<TD COLSPAN="2">Some Text</TD>
</TR></TABLE>
<%
 Some code here
%>

Script code - Executed
Output sent to Browser

Page Processing Begins

HTML Text
Sent directly to Browser

Script code - Executed
Output sent to Browser

HTML Text
Sent directly to Browser

And so on...

Page Processing Ends

597

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 597

In addition, a Web application Web site usually has a Global.asax and a Web.config file. The
Global.asax file is the .NET counterpart of the Global.asa file used in ASP Web applications. It con-
tains code for event handlers that fire when the application and the session begin and end. A complete
description of this file and its uses is available in Professional ASP.NET 1.0 Special Edition (Wiley, 2002).

The Web.config file is new to .NET. It is an XML-formatted file that stores the configuration settings for
your Web application. This includes features such as debug mode and compiling options.

The Controls Available in Web Forms
Using a paradigm very similar to the earlier versions of Visual Basic, Microsoft has introduced the con-
cept of adding controls to a Web form visually. Every control you need to use in a Web form, whether it
is a text box or a button control, you can simply drag and drop from a controls toolbox. Remember,
however, that this is not the same as dragging and dropping controls in an application like FrontPage.
The controls are dragged and dropped onto a Web form, but they do not manifest themselves as ActiveX
Controls in Web pages. That would limit the Web applications you create to Internet Explorer alone,
since a browser like Netscape does not support ActiveX Controls. Instead, the ASP.Net controls you drag
and drop onto a Web form are rendered at runtime as pure HTML, allowing them to be used within all
browsers.

Web form controls are different from controls used in VB.NET Windows Forms. This is because Web
form controls operate within the ASP.NET page framework. There are four kinds of controls for use in
Web forms:

❑ HTML server controls

❑ ASP.NET server controls

❑ Validation controls

❑ User controls

Before you take a look at these types, let’s examine the idea behind server-side controls.

The Concept of Server-Side Controls
Like in traditional ASP, you can use the <%and the %> tags to separate ASP code from plain HTML code.
However, if you rely on these tags to delimit ASP code, you will be responsible for the maintaining state
when the page is submitted back to the server.

This means that, if you want to create an interactive Web application, you will be responsible for obtain-
ing the data from the Request object, passing it back to the browser when the page returns, and keeping
track of it. This task — maintaining state — has been a big worry for ASP programmers up till now.

For example, consider the case where you have a form with a single text box and a button that submits
the form, as shown in Figure 16-11.

598

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 598

Figure 16-11

When the form is submitted, assume that it returns with the value of the text box intact. To be able to do
this, you will need to code a form in this manner:

<html>
<head>

<title>A Form</title>
</head>

<body>
<form action=”testForm.asp”>

What is your name?
<input type=”text” name=”nm” value=”<%= Request(“nm”) %>” size=”40”

maxlength=”40”>

<input type=”submit” name=”cmd” value=” Submit “>

</form>
</body>
</html>

The programmer is responsible for maintaining the value of the text entered in the text box and return-
ing it back to the browser.

value=”<%= Request(“nm”) %>”

You do this by obtaining the value of the text box (named “nm”) from the Request object, and using that
value as the value attribute of the text box. The first time around, since the Request object does not
have a value named nm, it will be blank and so the user will see a blank text box. When the user enters a
value and presses the Submit button, the same form is returned, but this time, with the value of the text
box filled in.

599

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 599

With Web forms, Microsoft has introduced a new concept that takes care of managing state automati-
cally without having to write any incremental code. Web forms allow you to indicate that a particular
form control needs to automatically maintain state when submitted by the user. You do this by using the
runat=”server” attribute for the form controls as well as for the form. This one line change makes
your form controls behave like server-side controls rather than just client-side controls. To take your
example from above, you can change the code to the following example:

<html>
<head>

<title>A Form</title>
</head>

<body>

<form action=”testForm.aspx” runat=”server”>
What is your name?
<asp:textbox runat=”server” name=”nm”

size=”40” maxlength=”40” />

<input type=”submit” name=”cmd” value=” Submit “>

</form>
</body>
</html>

Save the file with an .aspx extension (to make sure that the ASP.NET runtime handles its processing
correctly) and you will get automatic state maintenance without writing any further code. Notice the dif-
ferences. First, it is an .aspx file. Second, the FORM tag itself has an indication runat=”server”:

<form action=”testForm.aspx” runat=”server”>

This causes the ASP.NET runtime to create additional code to handle the state. This is done via a hidden
form field that is appended to your form. If you chose to view the source of your file in the browser, this
is what you would see in place of the form tag code:

<form name=”_ctl0” method=”post” action=”testForm.aspx” id=”_ctl0”>
<input type=”hidden” name=”__VIEWSTATE”
value=”dDwyMTA1NTI4MTE3Ozs++XTC7CS2N3CQ7xiWjEu4Q5P+URk=” />

The ASP.NET runtime has added additional code, including a form NAME and an ID, as well as a hidden
field called_VIEWSTATE. ASP.NET uses this hidden field to transfer state information between the browser
and the Web server. It compresses the information needed into a cryptic field value. All controls on the
Web page that need their state information maintained are automatically tagged within this single hidden
field value.

Notice too that, instead of using a simple INPUT tag for your text box, you used the special asp:textbox
tag. This is required to make sure that the text box behaves like a server-side control.

HTML Server Controls
HTML Server Controls are HTML elements exposed to the server by using the runat=”server”
attribute. In VS.NET, HTML Server Controls are included within the Web forms group of the toolbox.
The regular HTML Form Controls (TextBox, CheckBox, Listbox, and so on) are available within the
HTML group.

600

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 600

HTML Server Controls are identical to regular HTML Form controls in look, feel, and behavior, except
that the presence of the runat=”server” enables you to program them within the Web forms page
framework.

HTML Server Controls are available for the HTML elements most commonly used on a Web page to
make it interactive, such as the FORM tag, the HTML <input> elements (TextBox, CheckBox, and
Submit button), ListBox (select), Table, and Image. These predefined HTML Server Controls share
the basic properties of the generic controls, and, each control typically provides its own set of properties
and its own event.

In the VS.NET environment, you can create a regular HTML control by clicking the HTML group within
your toolbox and then dragging a Text Field control onto the Web form. Then give it the name txt
First_Name by changing its ID property. This will result in a regular HTML control with something like
the following code:

<input style=”Z-INDEX: 102; LEFT: 221px; POSITION: absolute; TOP: 249px”
type=”text”>

To convert a regular HTML control to an HTML Server Control (and vice versa), simply right-click the
control in the design mode and select (or uncheck) the menu option Run As Server Control. If you select
it, you will see the following code:

<input style=”Z-INDEX: 102; LEFT: 221px; POSITION: absolute; TOP: 249px”
type=”text”

id=”Text1” name=”Text1” runat=”server”>

Notice the difference between the above two sections of code, the final attribute that denotes that this is
a server control.

HTML controls are created from classes in the .NET Framework class library’s System.Web
.UI.HtmlControls namespace. Regular HTML controls are parsed and rendered simply as HTML
elements. For example, a regular Text Field HTML control will be parsed and rendered as an HTML
text box.

By converting HTML controls to HTML Server Controls, you gain the ability to:

❑ Write code for events generated on the control that are executed on the server side, rather than
on the client side. For example, you can respond with server-side code to the Click event of a
Button.

❑ Write code for events in client script. Since they are displayed as standard HTML form controls,
they retain the ability to handle client-side script as always.

❑ Automatically maintain the values of the control on a round-trip when the browser submits the
page to the server.

❑ Bind the value of the control to a field, property, method, or expression in your server-side code.

HTML Server Controls are included for backward compatibility with existing ASP applications. They make
it easier to convert traditional ASP applications to ASP.NET (Web forms) applications. However, everything
that can be done with HTML Server Controls can be done — with more programmatic control — by using
the new ASP.NET Server Controls.

601

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 601

ASP.NET Server Controls
HTML controls are just wrappers around regular HTML tags and do not offer any programmatic advan-
tage in terms of controlling their look and feel. ASP.NET Server Controls, on the other hand, do not nec-
essarily map to a single HTML element and provide a much richer UI output. You have already seen this
with your Calendar ASP.NET Server Control.

VB.NET ships with over 20 ASP.NET Server Controls, ranging from simple controls like TextBox,
Button, and Label, to more complex Server Controls such as AdRotator, Calendar, and DataGrid.
These controls can all be found in the System.Web.UI.WebControls namespace.

When you drag and drop each of these controls onto your Web form, they display their own distinctive
UI. For example, a TextBox may simply be visible as a text box, but the Calendar control or the
DataGrid control will appear as a tabular construct.

Behind the scenes, these controls are prefixed with the asp: tag. For example, in Default.aspx, when
you placed a Label on the page and set its Text property to “Hello World”, your Label uses the fol-
lowing code to define it:

<asp:label id=”Label1” runat=”server”>Hello World</asp:label>

You can view the HTML source of any control by right-clicking anywhere on the page and selecting
View HTML Source from the context menu. Similarly, when you drag a Button onto the form, instead of
obtaining the normal HTML INPUT TYPE=”SUBMIT” text, you get the following code:

<asp:button id=”btnSubmit”
runat=”server”
text=”Submit”></asp:button>

Notice that the code does not represent a regular HTML control, but rather, an ASP.NET control. The
attributes refer to the ASP.NET control’s properties. At runtime, the ASP.NET control is rendered on the
Web page by using plain HTML, which depends on the browser type as well as the settings on the con-
trol. For example, the button above may be rendered on the target browser either as an INPUT
TYPE=”SUBMIT” HTML element, or as a <BUTTON> tag, depending on the browser type.

The following ASP Server Controls ship with VB.NET and are available for use in a Web form, and are
found in the Standard section of the toolbox.

Control Purpose

Label Displays noneditable text

TextBox Displays editable text in a box

Button Displays a button, usually used to carry out an action

LinkButton Behaves like a button, but appears like a hyperlink

ImageButton Displays a button with an image rather than with text

602

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 602

Control Purpose

HyperLink Creates a hyperlink for navigation

DropDownList Presents a list in a drop-down combo box

ListBox Presents a list of items in a scrollable box

CheckBox Displays a single check box allowing users to check on or off

CheckBoxList Displays a set of check boxes as a group; useful when you want
to bind it to data from a database

RadioButton Displays a single radio button

RadioButtonList Displays a group of radio buttons where only one radio button
from the group can be selected

Image Displays an image

DynamicImage (New in Ver 2) Displays an image generated by a .Net component or .aspx page

ImageMap (New in Ver 2) Displays an image with hot spots that can be used as an image
map for navigation in a page

Table Creates a table

BulletedList (New in Ver 2) Data aware list generated in the form of an bulleted list

TreeView (New in Ver 2) Displays information in a treeview format

Panel Creates a bounding box on the Web form that acts as a
container for other controls

Calendar Displays an interactive calendar

AdRotator Displays a sequence of images, either in predetermined or
random order

FileUpload (New in Ver 2) Creates a control capable of allowing a user to select a file and
have it uploaded to the server

ContentPage (New in Ver 2) Provides Previous, Next page links

Wizard (New in Ver 2) Creates a wizard interface

MultiView and View Displays information within a container control allowing the
(New in Ver 2) developer to programmatically present different views of a page

GridView (New in Ver 2) Displays information (usually from a database) in a tabular for-
mat with rows and columns

DataList Displays information from a database, very similar to the
Repeater control

Repeater Displays information from a database using HTML elements
that you specify, repeating the display once for each record

DetailsView (New in Ver 2) Displays detail information in tabular format

FormsView (New in Ver 2) Displays single record view of data

603

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 603

Validation Controls
Validation Controls are different from HTML or ASP.NET Server Controls in that they do not possess a
visual identity. Their purpose is to provide easy client-side or server-side validation for other controls.
For example, you may have a text box that you need the user to fill in, and you may need to only
accept certain entries. For example, it could be a text box that requires a date in a certain format, like
DD/MM/YY. Validation Controls allow you to generate validation scripts (client- or server-side) with
a few clicks.

To use Validation Controls, you first attach the Validation Control to an input control and then set its
parameters, so as to test for things like:

❑ Data entry in a required field

❑ Specific values or patterns of characters

❑ Entries between ranges

VB.NET ships with the following Validation Controls, also in the Web forms section of the toolbox.

Control Purpose

RequiredFieldValidator Ensures that the user does not leave a field blank

CompareValidator Compares the user’s entry against another value — a constant,
the property of another control, or even a database value

RangeValidator Makes sure that the user’s entry is between the lower and
upper boundary values specified

RegularExpressionValidator Checks to make sure that the entry matches a pattern defined
by the developer

CustomValidator Checks the user’s entry against validation logic that you code

The easiest way to understand the power and capability of Validation Controls is to see them in action.

Add a new Web form to your HelloWorld solution (call it Validation.aspx). Switch to design view
and drag a TextBox control onto the Web form and change its ID property to txtName. Then drag a
RequiredFieldValidator control from your toolbox onto the Web form, right next to the TextBox.
Proceed to the next line and add a Button control onto the form, below the TextBox, and set its Text
property to Submit.

Now, let’s set the properties for the Validation Control. Change its ID to rfvTxtName, to signify to our-
selves that it is going to be bound to the TextBox you just created. Then, click the ControlToValidate
property and select the txtName TextBox from the drop-down list that appears. By doing so, you have
bound the Validation Control to the txtName TextBox ASP.NET Server Control. Finally, change the
ErrorMessage property to the text that you want to display if the user is in error: “Required Field.
Please enter your name.”

When you are done, your screen should look like Figure 16-12.

604

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 604

Figure 16-12

Set Validation.aspx as the startup page and press Ctrl-F5 to run your Web site. You should see the
page in the browser with just a text box and a button visible. Do not type anything into the text box.
Just click the button to simulate a user submitting the form without entering a required field: Your form
submission is not accepted and you get a red error message reminding you that the field is required, as
shown in Figure 16-12.

If you check the code behind this page, you will find that the Validation Controls write a lot of client-
side JavaScript code to handle the data validation. However, you did not have to worry about it, you just
dragged and dropped the Validation Control. The other Validation Controls also work in the same way:
drop a Validation Control, attach it to a Server Control, and set the validation parameters.

User Controls
The final set of controls available are the User Controls. Similar to traditional VB User Controls, these are
Web forms that you create and then use within other Web forms (see Figure 16-13). This allows you to
build visual components for your Web forms — useful when creating toolbars, template UI elements,
and so on. (User Controls are covered in the next chapter.)

605

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 605

Figure 16-13

Events in Web Forms
Events in the world of Windows Forms are triggered by one of three different circumstances. An event
can occur when the user makes an action: moves the mouse, uses the keyboard, and so on. An event can
occur when the system makes an action: loads a page, reacts to another process or application, and so
on. Finally, an event can occur without the engagement of either users or system, simply being caused
by the passage of time.

In the world of the Web, however, the very stateless nature of the HTTP protocol forces Web pages to
have different event handling strategies. Consider the following:

❑ A browser requests a Web page.

❑ The Web server serves the page by processing its code in a linear fashion.

❑ The output of the server processing is sent back to the browser as HTML.

❑ The browser renders the page on the screen based on the HTML output.

❑ At this point, the page no longer exists on the server.

❑ The user takes some action on the Web page.

606

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 606

❑ If the server has to react to this action, the page has to be posted back to the Web server before
the Web server can react to the action.

❑ This process continues over and over.

Web forms expose events to the Web developer, allowing you to write code for the events. This code is
different from client-side script. The code for the event is evaluated and executed on the server.

If a Web form can trigger an event for the mouse activity on a button, for instance, in such a way that the
server can take action on the event, then the form will need to be posted every time the user moves the
mouse. This is not practical, and because of this, Web forms expose very limited events for different con-
trols (usually only the Click event).

The Web Form’s Lifecycle
VB developers trying to create Web forms face a few shocks, the first of which is the concept of a Web
form’s lifecycle. Imagine developing a traditional VB form that goes through the following event code
each time you display it on-screen:

1. Form_Initialize: No problem.

2. Form_Load: No problem.

3. Form_QueryUnload: Huh?

4. Form_Unload: What?

5. Form_Terminate: No kidding?

This is the VB6 form’s equivalent of the ASP.NET Web form’s cycle. This would be nonsensical for a VB6
form because it would load itself and then unload immediately afterwards.

In the case of Web forms, when a browser requests a page, the Web form is first loaded, then its events
are handled, and finally it is discarded or unloaded from memory before the HTML output is sent to the
browser. So, a Web form goes through the cycle of load and unload each time that a browser makes a
request for it.

Let’s take a look at the stages in the life of a Web form on the Web server before its output is sent to the
browser:

❑ Configuration — This is very similar to the Form_Initalize and the Form_Load stages of a
VB6 form. This is the first stage of a Web form’s lifecycle on the Web server. During this stage,
the page and control states are restored and then the page’s Page_Load event is raised.

The Page_Load event is built into every page. Since it occurs in the first stage of a Web form’s
processing, this event is a useful tool for the Web developer. The Page_Load event can be used
to modify control properties, set up data binding or database access, and restore information
from previously saved values before the page is visible on the browser.

❑ Event handling — If this is the first time that the browser has requested the page, no further
events need to be handled. However, if this page is called in response to a form event, then the
corresponding event handler in the page is called during this stage. Code within the event han-
dler is then executed.

607

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 607

❑ Cleanup — This is the final stage in the page’s lifecycle. It is the equivalent of the Form_Unload
and Form_Terminate events of traditional Visual Basic. Remember, in the case of a Web form,
at the end of its processing, the page is discarded. The cleanup stage handles the destruction
by closing files and database connections by invoking the Page_Unload event. Like the
Page_Load event, the Page_Unload event is built into every page. It can be used to clean up —
delete variables and arrays from memory, remove objects from memory, close database connec-
tions, and so on.

Event Categories
If you have written HTML code, you know that controls on a Web page can have events associated with
them. These are client-side events raised within a browser. The controls on ASP.NET Web forms also
support the HTML client-side events, but in addition expose more events that you as a developer can
utilize in your code. In fact, the controls in ASP.NET Web forms expose events in a manner very similar
to standard Visual Basic controls on a windows form.

Events in Web forms can be classified into different categories:

❑ Intrinsic events

❑ Client-side events versus server-side events

❑ Postback versus non-postback events

❑ Bubbled events

❑ Application and session events

Intrinsic Events
Most Web form controls support a click-type event. This is necessitated by the fact that, in order for an
event to be processed, the Web form needs to be posted back to the server. Some Web form controls also
support an OnChange event that is raised when the control’s value changes.

Client-Side versus Server-Side Events
ASP.NET Server Controls only support server-side events. However, the HTML elements that are out-
putted by these Server Controls support client-side events themselves. For example, the MouseOver
event is used to change the source of an Image control and display a different image when the user rolls
the mouse over the control. If you decide to use the ASP.NET ImageButton Server Control, you will be
able to write code for the ImageButton’s Click event, which will be processed on the server. However,
you can also write client-side code for the MouseOver event of the ImageButton to handle the rollover.
If you write code for both the client- and server-side events, only the server-side event will be processed.

Postback versus Non-Postback Events
Server-side event processing happens when the form is posted back to the server. By default, these click-
type events are postback events. The OnChange event is raised when a control’s value changes. For exam-
ple, if you write code for the OnChange event of a TextBox, when the user changes its value, the event is
not fired immediately. Instead, these changes are cached by the control until the next time that a post
occurs. When the Web form is posted back to the server, all the pending events are raised and processed.

608

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 608

On the server side, all of the OnChange events that were cached and raised before the Click event that
posted the form are processed before the posting Click event.

Client-side events are automatically processed in the client browser without making a round trip to the
browser. So, for example, validation client-side scripts do not need a postback to the server.

Bubbled Events
ASP.NET server controls such as the Repeater, DataList, and DataGrid controls can contain child
controls that themselves raise events. For example, each row in a DataGrid control can contain one or
more buttons. Events from the nested controls are bubbled; that is, they’re sent to the container. The con-
tainer in turn raises a generic event called ItemCommand with parameters that allow you to discover
which individual control raised the original event. By responding to this single event, you can avoid
having to write individual event handlers for child controls.

Application and Session Events
Continuing the tradition of ASP application and session events, VB.NET Web forms support the same
high-level events. These events are not specific to a single page, but, rather, work at the user and/or Web
application level. These events include the ApplicationStart and ApplicationEnd events for the
application-level scope, and the SessionStart and SessionEnd events for the session-level (individual
user) scope. You can write code for these special events within the Global.asax file.

Web Forms versus ASP
It is very easy to think of Web forms (ASP.NET) as the next version of ASP, that Microsoft has released a
new version of ASP and is just calling it ASP.NET to equate it to the other .NET initiatives. ASP 3.0, for
instance, was basically the previous version (ASP 2.0) but with new functionality, performance improve-
ments, and one new object. This is most definitely not the case with ASP.NET and ASP 3.0.

While Web forms are the next version of ASP (ASP ceases to exist as a separate offering from Microsoft
with the introduction of ASP.NET, though it will continue to be supported), it is not just an update. It is
vastly different.

Let’s consider the differences between ASP.NET and ASP 3.0:

❑ ASP was an interpreted application. This leads to poor performance, as compared to executable
Windows desktop applications.

Web forms are compiled into class .dll files and are invoked as “applications” on the Web
server. This leads to vastly improved performance. The performance drop you see when you
test your application for the very first time is, in fact, indicative of this change. ASP.NET checks
to see if the source code for the page has changed in any way. If it has (like in your testing
mode), it recompiles the page and saves the compiled output for all subsequent requests.

❑ In ASP, you are entirely responsible for managing view state and control state via code. If you
want a form control to display the value entered by the user before the form is posted, you have
to obtain the value from the Request object and use it as part of the VALUE attribute of the con-
trol. The onus is entirely on the Web developer.

609

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 609

Web forms provide automatic maintenance of view state and control state. By simply using
server-side controls, you automatically obtain the ability to retain state for the control during
server round trips.

❑ With ASP, you can only write code with scripting languages such as VBScript and JScript. These
languages do not support typed variables or early binding on objects.

Web forms support VB.NET code as well as C# code. You can use a coding language that sup-
ports typed variables (Dim x As Integer) as well as early binding on objects (Dim objRS As
ADODB.Recordset). This results in additional benefits, like IntelliSense making it easier to
assign property values and invoke methods on objects.

❑ With ASP, you are responsible for generating client-side validation code. When you have forms
with large numbers of controls that need validation, this can be a cumbersome task, even if you
have created custom routines that can simply be copied and pasted. You still need to write the
code yourself to invoke these routines.

Web forms provide a very robust, drag-and-drop, validation control feature. Not only can you
drag and drop your way to setting up validation parameters — required fields, types of accepted
input, range of accepted input, and so on — Web forms also write the client-side validation rou-
tines for you.

❑ If you have used COM components with ASP applications, you know that every time you need
to change and update the COM component on the Web server, you need to release the compo-
nent from the Web server (or COM+) before you can overwrite it with the new component. ASP
programmers are used to bringing down the Web server or stopping and starting the COM+
services to allow such changes.

With Web forms, because of just-in-time compiling to native code, components can be updated
without having to stop and start the Web services.

❑ ASP configuration settings are stored in the metabase (meta information database) of the IIS
Web server. This makes it difficult to port the ASP application from one server to another. The
metabase configuration settings have to be set up individually on the new Web server each time
you move the ASP application.

With Web forms, all configuration settings are stored in an XML-formatted text file that can be
easily moved from one Web application directory to another. The XML-formatted Config.web
file allows you to create portable configuration settings.

❑ Debugging of ASP applications has always been a daunting task. The only surefire way to debug
ASP applications running on a Web server is to pepper the ASP page with response.write
statements, to output the values of variables in your code. This is similar to peppering a VB form
with Debug.Print statements.

Web forms provide an automatic tracing capability. When you set the Trace and the TraceMode
properties of a Web form, ASP.NET automatically maintains a log of actions performed, and
their timestamp. When the page is rendered on the browser, ASP.NET automatically appends
an HTML table listing all of the trace activity. You can also write your own tracing code to be
appended to this log.

610

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 610

Transferring Control among Web Forms
Earlier in this chapter, it was mentioned that VB developers would get a shock when they try to create
Web forms, because the familiar metaphor of VB development is turned upside down in the world of
Web form development. Well, get ready for shock number two!

In a traditional VB application, suppose you have two forms, Form1 and Form2. If you want the applica-
tion to transfer control from Form1 (which is currently open on the screen) to Form2, all it takes is the
following code:

Load Form2
Form2.show

Of the two lines above, the first line is optional. You can use the first line if you plan to set some proper-
ties for Form2’s controls, or invoke a subroutine within Form2 before showing it.

How do you do the same with a Web form? Can you “show” WebForm2 from WebForm1? The answer
will surprise you. No, you can’t. Not in the way that you can with traditional Visual Basic.

There are two ways to transfer control from one Web form to another:

❑ Hyperlink — In WebForm1, you can create a hyperlink to allow the user to navigate to
WebForm2 by using a Hyperlink HTML tag (<A>). If you wish, you can pass additional argu-
ments to the second form when navigating to it, by using the Query String (the portion of the
URL that appears after the question mark in a browser’s address bar). This technique of trans-
ferring control is very fast, since it transfers control to the second page directly without having
to post the first page and process its events/contents.

❑ Redirecting — The second technique is to use the server-side Response.Redirect method to
transfer control to a second page. The Response.Redirect issues an Object Moved command
to the browser, forcing the browser to request the second page via a client-side request. Another
similar technique is to use the Server.Transfer method to transfer control to a second page.
The Server.Transfer method directly transfers control and session state to the second page
without making a client round trip.

A Final Example
You’ll wrap up this chapter by building a small Web Forms application. Your application is a Loan Slicer
application. Consider the scenario — you have a current home mortgage loan and you pay a certain sum
of money as your monthly payment towards the loan. However, by simply making one additional pay-
ment per year towards the principal repayment, you can drastically reduce the life of the loan and pay it
off faster. This is loan slicing. You want to build a Web form application that will allow an end user to
figure out not only what the monthly payment for a mortgage loan will be (that would be a wimpy little
application), but also to see how the loan gets sliced off if the user wishes to pay an additional sum each
month towards the principal.

611

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 611

You begin by asking the user to enter the principal loan amount, the interest rate per annum, and the
number of years for which the loan will be taken.

You then calculate the monthly payment due for the loan, and display a table of how the payments
slowly eat their way through the loan till the loan is fully paid off. If the user wishes to view the “loan
slicing” effect, he can specify a new monthly payment value higher than the original amount, and see
how quickly the loan gets paid off.

You’ll build this loan slicer using the US mortgage loan formula.

So, let’s begin. Start VS.NET and select New website. Select the template type to be ASP.NET Web site
and give it the name LoanSlicer.

VS.NET creates a default Web form, Default.aspx.

Drag a Label control onto this form and position it at the top left (you can move it around by inserting
or deleting paragraph marks, just as you would move an inserted object in a Microsoft Word file). Set its:

❑ ID property to be lblTitle

❑ Text property to be “Acme Loan Slicer”

❑ Font, Size property to Large

❑ Font, Bold property to True

❑ Font, Name property to Verdana

Press Enter to the right of the Label to create a new paragraph. Then, in sequence, insert a Label con-
trol, a TextBox control, and a RequiredFieldValidator control. Your Web form should look like
Figure 16-14.

Set the properties for these controls as shown in the following table.

Control Property Value

Label ID Leave this unchanged.
Text Principal amount ($)
Font, Bold True
Font, Name Verdana

TextBox ID TxtPrincipal

RequiredFieldValidator ID RfvPrincipal
ControlToValidate TxtPrincipal
ErrorMessage (Required. Please try again.)

Insert two more rows of Label, TextBox, and RequiredFieldValidator controls, placing each set
underneath the one above. To move to the next line without creating a new paragraph, use Shift+Enter
to create a soft return (
 tag).

612

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 612

Figure 16-14

Set the properties for the second row of controls as shown in the following table.

Control Property Value

Label ID Leave this unchanged
Text Interest rate (%)
Font, Bold True
Font, Name Verdana

TextBox ID TxtInterest

RequiredFieldValidator ID RfvInterest
ControlToValidate TxtInterest
ErrorMessage (Required. Please try again.)

613

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 613

Set the properties for the third row of controls as shown in the following table.

Control Property Value

Label ID Leave this unchanged
Text Period (years)
Font, Bold True
Font, Name Verdana

TextBox ID TxtYears

RequiredFieldValidator ID RfvYears
ControlToValidate TxtYears
ErrorMessage (Required. Please try again.)

Underneath these three sets of controls, place another row with a Label and a TextBox control, with
these properties.

Control Property Value

Label ID Leave this unchanged.
Text Loan slicer monthly amount ($)
Font, Bold True
Font, Name Verdana

TextBox ID TxtSlicerAmount

Underneath these four rows of controls, place a Button with these properties.

Control Property Value

Button ID BtnCalculate
Text Calculate

Next, place a Label control beneath the Button and set its properties.

Control Property Value

Label ID LblMonthlyPayment
Text Monthly payment
Font, Bold True

Control Property Value
Font, Name Verdana
BackColor Light blue (#C0FFFF)

614

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 614

And, finally, underneath the label, place a GridView control. For the GridView control, first set the fol-
lowing minimal but very important properties.

Control Property Value

DataGrid ID grdValues
Visible False

To set the appearance of the DataGrid control, instead of setting individual properties, click the
AutoFormat link at the bottom of the Properties window. From the list, experiment with the look you
want. Figure 16-15 shows Mocha.

Figure 16-15

Before you go any further, let’s test out this Web form. You have not placed any code in it and so it
shouldn’t do much, but at least you can make sure that it looks fine.

615

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 615

Press Ctrl-F5 to run the Web site. You should get the Web form displayed in a browser. The GridView
and the RequiredFieldValidator controls should be invisible. Go ahead and click the Calculate
button without entering any values in any of the text boxes. You should get the red error messages next
to each text box as shown in Figure 16-16.

Figure 16-16

You are all set. Now let’s proceed to write code for the form.

Calculating the monthly payment for a mortgage loan is a little convoluted to explain, but very simple to
code. Here is the formula:

MP = P * (MI / 1 -- (1 + MI)\ (--N))

Assuming the following (where * is multiply, / is divide, and ^, is “raise to the power of”).

Variable Name Represents

MP Monthly payment

P Principal loan amount (the amount borrowed)

MI Monthly interest rate in decimals (that is, the annual interest rate
divided by 1,200)

N Number of months in the loan

616

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 616

This is the formula that you will be using for calculating your monthly payment. Once you calculate the
monthly payment, it is simple to construct a grid containing the following information.

A B C D E F G H I

Month/ Loan Original Interest Principal Balance New New New
year amount Payment paid paid loan payment principal balance

paid loan

Let’s begin by adding code to your Calculate button. Double-click the button to add a call to a subrou-
tine you will be building as part of the next step:

Sub btnCalculate_Click(ByVal sender As Object, ByVal e As System.EventArgs)
CalculateValues()

End Sub

At the bottom of the Default.aspx.vb class, before the End Class statement, add this
CalculateValues subroutine:

Private Sub CalculateValues()
Dim dblPrincipal As Double
Dim dblInterest As Double
Dim lngYears As Long
Dim dblMonthlyPayment As Double
Dim dblMonthlyInterest As Double
Dim lngN As Long

‘ -- Get values from the text boxes
dblPrincipal = CDbl(Me.txtPrincipal.Text)
dblInterest = CDbl(Me.txtInterest.Text)
lngYears = CLng(Me.txtYears.Text)
‘ -- Calculated intermediary values
dblMonthlyInterest = (dblInterest / (12 * 100))
lngN = lngYears * 12
‘ -- Monthly Payment calculation:
dblMonthlyPayment = (dblPrincipal * (dblMonthlyInterest / (1 - (1 + _

dblMonthlyInterest) _ (-lngN))))

‘ -- Assign the value to the Blue label
Me.lblMonthlyPayment.Text = “Monthly Payment: “ & _

format(dblMonthlyPayment, “$#,##0.00”)

End Sub

After declaring all the variables you will be using, you first obtain your values from the text boxes on the
form, converting them to appropriate data types along the way:

dblPrincipal = CDbl(Me.txtPrincipal.Text)
dblInterest = CDbl(Me.txtInterest.Text)
lngyears = CLng(Me.txtYears.Text)

617

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 617

You then calculate the intermediary variable values:

dblMonthlyInterest = (dblInterest / (12 * 100))
lngN = lngYears * 12

Finally, you are ready to calculate the monthly payment:

dblMonthlyPayment = (dblPrincipal * (dblMonthlyInterest / (1 - (1 + _
dblMonthlyInterest) ^ (-lngN))))

You store this in the variable dblMonthlyPayment. You output this value as the Text property of the
blue label on the screen, performing some formatting so that it is presented as a dollar amount:

Me.lblMonthlyPayment.Text = “Monthly Payment: “ & _
format(dblMonthlyPayment, “$#,##0.00”)

That was the easy part. Let’s test it again by running your application. Enter the following values:
Principal = 100,000; Interest Rate = 6.75; Years = 10. You should get the output shown in Figure 16-17.

Figure 16-17

Now comes the more difficult part — populating the GridView with your values.

618

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 618

Before you look at the code, let’s understand what you are trying to do. You need to display a GridView
full of rows and columns that represent your loan payouts. You want to display the current loan amount,
the monthly payment, the interest paid, the principal paid, and the balance loan amount for every
month of every year in the loan period.

In addition, if the user has entered a Loan Slicer Monthly Amount — an amount that he/she is willing
to pay that is larger than the monthly payment due — you need to also figure out how the new monthly
payment will pay off the loan faster, and therefore “slice” it.

Normally, a GridView is bound to a database. You don’t have a database in this scenario. You could
dump the values into a database and have the GridView then read the database. But that would be very
inefficient. A better way would be to create your own “database” on the fly. You can do that by creating a
DataTable object and populating it with values. Your GridView can be bound to a DataView object at
runtime. To do so, you need to write code as follows:

OurGridViewObject.DataSource = OurDataViewObject

A DataView object can be created and initialized by an existing DataTable object. Therefore, you can
create a DataView object by using a DataTable object, as follows:

OurDataViewObject = New DataView(OurDataTableObject)

A DataTable object in turn consists of rows and columns, or rather DataRow objects and DataColumn
objects. To create a row for a table, you use a DataRow object as follows:

OurDataTable.Rows.Add OurDataRow

The DataColumn objects can also be created at runtime by using the following code:

OurDataTable.Columns.Add OurDataColumn

And finally, you can create a DataColumn object by passing the Column definition as follows:

OurDataColumn = New DataColumn(strColumnName, ColumnDataType)

You can put all of this code together in the following BuildPayoutGrid subroutine. Add the following
code to the bottom of the CalculateValues subroutine, immediately before the End Sub:

BuildPayoutGrid(dblPrincipal, dblMonthlyInterest, dblMonthlyPayment)

Since we will be referencing data objects from the System.Data namespace, add the following line at
the very top of your Default.aspx.vb page above the Partial Class Default_aspx declaration:

Imports System.Data
Partial Class Default_aspx

619

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 619

Then, add the code for the BuildPayOutGrid subroutine itself to the bottom of the page:

Private Sub BuildPayoutGrid(ByVal dblP As Double, ByVal dblMI As Double, _
ByVal dblM As Double)

‘ -- Variables to hold our output data
Dim dtPayout As DataTable
Dim drPayout As DataRow
Dim datMonthYear As Date
Dim dblSlicerAmount As Double
Dim dblNewBalance As Double
Dim dblMonthlyInterestPaid As Double

‘ -- Make sure we have the new “Loan Slicer” monthly amount
dblSlicerAmount = CDbl(Me.txtSlicerAmount.Text)
‘ -- if the user has not entered one, add one additional payment
‘ -- per year as the new slicer amount
If dblSlicerAmount = 0 Then

dblSlicerAmount = dblM + (dblM / 12)
End If
Me.txtSlicerAmount.Text = CStr(dblSlicerAmount)
‘ -- Create a new DataTable
dtPayout = New DataTable()
‘ -- Create nine string columns
dtPayout.Columns.Add(New DataColumn(“Month/Year”, GetType(String)))
dtPayout.Columns.Add(New DataColumn(“Loan Amount”, GetType(String)))
dtPayout.Columns.Add(New DataColumn(“Original Payment”, _

GetType(String)))
dtPayout.Columns.Add(New DataColumn(“Interest Paid”, GetType(String)))
dtPayout.Columns.Add(New DataColumn(“Principal Paid”, GetType(String)))
dtPayout.Columns.Add(New DataColumn(“Balance Amount”, GetType(String)))
dtPayout.Columns.Add(New DataColumn(“New Payment”, GetType(String)))

dtPayout.Columns.Add(New DataColumn(“New Principal Paid”, _
GetType(String)))

dtPayout.Columns.Add(New DataColumn(“New Balance Amount”, _
GetType(String))) dblNewBalance = dblP

‘ -- Populate it with values
‘ -- Start with current Month/Year
datMonthYear = Now()
Do While dblP > 0

‘ -- Create a new row for our table
drPayout = dtPayout.NewRow() drPayout(0) =

MonthName(Month(datMonthYear)) & “, “ & _
Year(datMonthYear)

drPayout(1) = Format(dblP, “$ #,##0.00”)
drPayout(2) = Format(dblM, “$ #,##0.00”)
dblMonthlyInterestPaid = (dblP * dblMI)
drPayout(3) = Format(dblMonthlyInterestPaid, “$ #,##0.00”)
drPayout(4) = Format(dblM - dblMonthlyInterestPaid, “$ #,##0.00”)
drPayout(5) = Format(dblP - (dblM - dblMonthlyInterestPaid), _

“$ #,##0.00”)
‘ -- new values
If dblNewBalance >= 0 Then

drPayout(6) = Format(dblSlicerAmount, “$ #,##0.00”)

620

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 620

drPayout(7) = Format(dblSlicerAmount - dblMonthlyInterestPaid, _
“$ #,##0.00”)

drPayout(8) = Format(dblNewBalance - (dblSlicerAmount - _
dblMonthlyInterestPaid), “$ #,##0.00”)

Else
drPayout(6) = “PAID”
drPayout(7) = “IN”
drPayout(8) = “FULL”

End If
‘ -- Add the row to the table
dtPayout.Rows.Add(drPayout)
‘ -- Next month
datMonthYear = DateAdd(DateInterval.Month, 1, datMonthYear)
‘ -- Starting Loan Amount is previous month’s Ending balance
dblP = (dblP - (dblM - dblMonthlyInterestPaid))
dblNewBalance = (dblNewBalance - (dblSlicerAmount - _

dblMonthlyInterestPaid))
Loop
‘ -- Create a new DataView and bind it to the GridView
With me.grdValues

.Visible = True

.DataSource = New DataView(dtPayout)

.DataBind()
End With

End Sub

Let’s examine this code piece by piece. You begin by declaring the variables you will need:

Dim dtPayout As DataTable
Dim drPayout As DataRow
Dim datMonthYear As Date
Dim dblSlicerAmount As Double
Dim dblNewBalance As Double
Dim dblMonthlyInterestPaid As Double

The code first makes sure that there is a valid “Loan Slicer” amount in the text box on the screen. If not,
it simply adds one additional monthly payment per year to calculate a new, larger monthly payment.
Finally, the text box is updated with the new “slicer” amount:

dblSlicerAmount = CDbl(Me.txtSlicerAmount.Text)
‘ -- if the user has not entered one, add one additional payment
‘ -- per year as the new slicer amount
If dblSlicerAmount = 0 Then

dblSlicerAmount = dblM + (dblM / 12)
End If
Me.txtSlicerAmount.Text = CStr(dblSlicerAmount)

You then create a blank DataTable:

dtPayout = New DataTable()

621

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 621

You make sure that the DataTable has the columns you will need. You do this by adding DataColumns
to the DataTable. These DataColumns are created on the fly by passing column definition arguments to
the DataColumn that is being created:

dtPayout.Columns.Add(New DataColumn(“Month/Year”, GetType(String)))
dtPayout.Columns.Add(New DataColumn(“Loan Amount”, GetType(String)))
dtPayout.Columns.Add(New DataColumn(“Original Payment”, _

GetType(String)))
dtPayout.Columns.Add(New DataColumn(“Interest Paid”, GetType(String)))
dtPayout.Columns.Add(New DataColumn(“Principal Paid”, GetType(String)))
dtPayout.Columns.Add(New DataColumn(“Balance Amount”, GetType(String)))

dtPayout.Columns.Add(New DataColumn(“New Payment”, GetType(String)))
dtPayout.Columns.Add(New DataColumn(“New Principal Paid”, _

GetType(String)))
dtPayout.Columns.Add(New DataColumn(“New Balance Amount”, _

GetType(String)))

The code then stores the loan amount in a new variable to calculate the effect of the new “slicer” amount
also:

dbNewBalance = dbIp

You are now ready to populate the DataTable columns with values, and the DataTable with rows. To
do so, you begin with the current month:

datMonthYear = Now()

You need to dump the output as long as there is an outstanding balance on the loan. Therefore, you use a
Do...While...Loop till the loan amount reduces to zero:

Do While dblP > 0

The code then begins the process of creating a “database on the fly” by creating a new row for the
DataTable. This new row will automatically have nine columns addressed by the column numbers
0 to 8:

drPayout = dtPayout.NewRow()

You set the values for each column in the current row. This is relatively simple. You know the initial loan
amount and the monthly payment. You can then calculate the monthly interest on the outstanding loan
amount and, from that, figure out how much of the monthly payment is interest and how much is the
payoff of the principal itself. The balance is the amount of the loan left:

drPayout(0) = MonthName(Month(datMonthYear)) & “, “ & _
Year(datMonthYear)

drPayout(1) = Format(dblP, “$ #,##0.00”)
drPayout(2) = Format(dblM, “$ #,##0.00”)

dblMonthlyInterestPaid = (dblP * dblMI)

622

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 622

drPayout(3) = Format(dblMonthlyInterestPaid, “$ #,##0.00”)
drPayout(4) = Format(dblM - dblMonthlyInterestPaid, “$ #,##0.00”)
drPayout(5) = Format(dblP - (dblM - dblMonthlyInterestPaid), _

“$ #,##0.00”)

The last three columns of figures are calculated based on the new “slicer” amount using the same logic
as the original amount. What this means is that the first six columns will show the loan being paid out
month after month, based on the bank’s monthly payment figure, while the last three columns will show
the loan getting sliced and paid off much faster because of the larger monthly payment. Since you know
that the loan will get sliced, you also add logic to display a text “PAID IN FULL”, instead of negative
numbers when the loan balance reaches zero:

If dblNewBalance >= 0 Then
drPayout(6) = Format(dblSlicerAmount, “$ #,##0.00”)
drPayout(7) = Format(dblSlicerAmount - dblMonthlyInterestPaid, _

“$ #,##0.00”)
drPayout(8) = Format(dblNewBalance - (dblSlicerAmount - _

dblMonthlyInterestPaid), “$ #,##0.00”)
Else

drPayout(6) = “PAID”
drPayout(7) = “IN”
drPayout(8) = “FULL”

End If

Once you have filled nine columns with figures, you are ready to add the row to the DataTable:

dtPayout.Rows.Add(drPayout)

Since you are in a loop, you need to get your data ready for the next pass. The code increments the date
by one month and updates the value of the loan amount to the balance amount remaining. You do the
same for the new sliced loan balance and then complete the loop:

datMonthYear = DateAdd(DateInterval.Month, 1, datMonthYear)
‘ -- Starting Loan Amount is previous month’s Ending balance

dblP = (dblP - (dblM - dblMonthlyInterestPaid))
dblNewBalance = (dblNewBalance - (dblSlicerAmount - _

dblMonthlyInterestPaid))

Loop

When you finish processing the loop, you will have a DataTable filled with values. The code then cre-
ates a DataView based on the DataTable and assigns it to the DataSource property of the GridView,
all in one swoop. You also make sure that the GridView is visible (remember, in design mode, you had
set it to be invisible). Finally, invoke the Bind method to actually bind the GridView to the DataView
created on the fly:

With dgValues
.Visible = True
.DataSource = New DataView(dtPayout)
.DataBind()

End With

623

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 623

That’s it, you will get a neat HTML table filled with rows and columns of output from the GridView.
Run the application and enter a Principal Amount of 100,000, an Interest Rate of 6.75, a Period value of
10, and a Loan Slicer Amount value of 1,500. (See Figure 16-18.)

Figure 16-18

If you scroll down the page, you can see that your calculations are on the mark. At the end of 10 years,
you have completely paid off your loan amount. However, because of your Loan Slicing feature, you see
that, by simply paying (about) an additional $350 per month, one can cut down the loan from 10 years to
around 7.5 years. The GridView ends when the principal loan amount reduces to zero. Long before that,
the Loan Slicer indicates that you have PAID IN FULL your loan (see Figure 16-19).

And there you have it. A simple Web Forms application with a slight twist. You also saw how to bind a
GridView to a non-database source that you are calculating on the fly.

624

Chapter 16

19_575368 ch16.qxd 10/7/05 11:03 PM Page 624

Figure 16-19

Summary
Web forms are the future for Web development in the Microsoft .NET Framework and this chapter gave
you an overview of what you can accomplish with them in VB.NET. Web forms provide you with the
power of Rapid Application Development for developing Web applications. They are to Web applica-
tions what Visual Basic was to Windows applications when it was first released.

Web forms are built on the common language runtime and provide all the benefits of those technologies,
including a managed execution environment, type safety, inheritance, and dynamic compilation for
improved performance. Web forms provide a familiar “code behind forms” design metaphor for Visual
Basic programmers. They automatically manage state and values for controls when a Web page is posted
back to the server. Additionally, Web forms can generate an enormous amount of HTML code and client-
side JavaScript code for data validation with a few clicks of your mouse.

625

Building Web Applications

19_575368 ch16.qxd 10/7/05 11:03 PM Page 625

19_575368 ch16.qxd 10/7/05 11:03 PM Page 626

ASP.NET 2.0
Advanced Features

ASP.NET is an exciting technology. It allows for the creation and delivery of remotely generated
applications (Web applications) accessible via a simple browser — a container that many are rather
familiar with. The idea of Web-based applications (in our case, ASP.NET applications) is that there is
only a single instance of the application that is delivered out to the end user over HTTP. This means
that the end users viewing your application will always have the latest and greatest version at their
disposal. Because of this, many companies today are looking at ASP.NET to not only deliver the
company’s Web site, but to deliver some of their latest applications for their employees, partners,
and customers.

The last chapter took a look at some of the basics of ASP.NET 2.0. This chapter will continue on the
path and show you some additional and exciting technologies that you will find in ASP.NET 2.0
including master pages, configuration, data access, and more.

This will be a chapter where we will attempt to touch upon many topics as ASP.NET has become a
rather large offering with many possibilities and capabilities. Sit back, pull up that keyboard, and
enjoy!

Applications and Pages
The previous chapter took a look at the structure of ASP.NET pages and their lifecycle. There is
quite a bit you can do with the applications and pages in ASP.NET to change how they behave or
to change how you compile and deliver them. This section will look at some of these possibilities.

20_575368 ch17.qxd 10/7/05 11:07 PM Page 627

Cross-Page Posting
The way in which Active Server Pages 2.0/3.0 (also called classic ASP) worked was that values from
forms were usually posted to other pages. These pages were usually steps in a process that the end user
worked through. With the introduction of ASP.NET on the other hand, pages in this environment posted
back results to themselves in a step called a postback. One of the biggest requests of Web developers in
the ASP.NET world has been the ability to do postbacks not only to the page from whence the values
originated, but also the ability to do postbacks to other pages within the application. This new feature is
something that has been provided with the release of ASP.NET 2.0.

Cross-page posting (as it is referred) is an easy functionality to achieve now. It gives you the ability to
post page values from one page (Page1.aspx) to an entirely different page (Page2.aspx). Normally,
when posting to the same page (as with ASP.NET 1.0/1.1), you could capture the postback in a postback
event as shown here:

If Page.IsPostBack Then
‘ do work here

End If

Now, let’s take a look at Page1.aspx and see how you accomplish cross-page posting with ASP.NET 2.0.

<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Label1.Text = “Your name is: “ & TextBox1.Text & “
” & _
“Your appointment is on: “ & Calendar1.SelectedDate.ToLongDateString()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Cross-Page Posting</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

What is your name?

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>

When is your appointment?

<asp:Calendar ID=”Calendar1” Runat=”server”>
</asp:Calendar>

<asp:Button ID=”Button1” OnClick=”Button1_Click” Runat=”server”
Text=”Do a PostBack to this Page” />

<asp:Button ID=”Button2” Runat=”server”
Text=”Do a PostBack to Another Page” PostBackUrl=”~/page2.aspx” />

628

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 628

<asp:Label ID=”Label1” Runat=”server”></asp:Label>

</div>
</form>

</body>
</html>

With Page1.aspx, you can see that there is nothing really different about this page — except for the
Button2 server control. This page contains a new attribute which you will find with the Button,
ImageButton, and LinkButton controls — the PostBackUrl attribute. The value of this attribute points
to the location of the file that this page should post to. In this case, the PostBackUrl attribute states that
this page should post to Page2.aspx. You can see that this is the only thing needed on the Page1.aspx
to cause it to post back to another page. As for Button1, you can see that this is a simple button which
will cause the page to post back to itself. This is nothing new as this has been the case even in ASP.NET
1.x. You can see the event handler for this postback in the OnClick attribute within the Button1 control.
Pressing this button will cause the page to post back to itself and to populate the Label1 control that is
at the bottom of the page.

Clicking on the second button, though, will post to the second page, which is shown here:

<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim pp_TextBox1 As TextBox
Dim pp_Calendar1 As Calendar

pp_TextBox1 = CType(PreviousPage.FindControl(“TextBox1”), TextBox)
pp_Calendar1 = CType(PreviousPage.FindControl(“Calendar1”), Calendar)

Label1.Text = “Your name is: “ & pp_TextBox1.Text & “
” & _
“Your appointment is on: “ & _
pp_Calendar1.SelectedDate.ToLongDateString()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Second Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label ID=”Label1” Runat=”server”></asp:Label>
</div>
</form>

</body>
</html>

In this page, the first step is that in the Page_Load event, instances of both the TextBox and Calendar
controls are created. From here, these instances are populated with the values of these controls on the
previous page (Page1.aspx) by using the PreviousPage.FindControl() method. The String value

629

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 629

assigned to the FindControl method is the Id value of the ASP.NET server control from the originating
page (in our case, TextBox1 and Calendar1). Once you have assigned the values to these control
instances, you can then start working with the new controls and their values as if they were posted
from the same page.

You can also expose the server controls and other items as properties from Page1.aspx. This is illustrated
here in this partial code sample:

<%@ Page Language=”VB” %>

<script runat=”server”>
Public ReadOnly Property pp_TextBox1() As TextBox

Get
Return TextBox1

End Get
End Property

Public ReadOnly Property pp_Calendar1() As Calendar
Get

Return Calendar1
End Get

End Property

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Label1.Text = “Your name is: “ & TextBox1.Text & “
” & _
“Your appointment is on: “ & Calendar1.SelectedDate.ToLongDateString()

End Sub
</script>

Once you have exposed the properties you want from Page1.aspx, then you can easily get at these
properties in the cross-page postback by then using the new PreviousPageType page directive. This is
illustrated here in the following example:

<%@ Page Language=”VB” %>
<%@ PreviousPageType VirtualPath=”~/Page1.aspx” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Your name is: “ & PreviousPage.pp_TextBox1.Text & “
” & _
“Your appointment is on: “ & _
PreviousPage.pp_Calendar1.SelectedDate.ToLongDateString()

End Sub
</script>

After your properties on Page1.aspx, you can access them easily by strongly typing the PreviousPage
property on Page2.aspx by the use of the PreviousPageType directive. The PreviousPageType
directive specifies the page the post will come from. Using this directive allows you to specifically point
at Page1.aspx. This is done using the VirtualPath attribute of the PreviousPageType directive. The
VirtualPath attribute takes a String value whose value is the location of the directing page.

630

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 630

Once this association has been made, you can then use the PreviousPage property and you will see
that the pp_TextBox1 and pp_Calendar1 properties that were created on Page1.aspx are now present
in Visual Studio 2005’s IntelliSense. You will find that working with the PreviousPage property is a bit
easier and is less error prone than using weak-typing. This is shown here in Figure 17-1.

Figure 17-1

One thing to be careful of is to guard against browsers hitting a page that is expecting information from
a cross-page post and this action causing errors if the information the second page is expecting isn’t
there. Pages that were looking for postback information was something you always had to guard
against before — even when dealing with ASP.NET pages (1.0/1.1) that performed postbacks to them-
selves. With standard pages that aren’t cross-page posting, you would protect your code from this post-
back behavior through the use of the Page.IsPostBack property as shown here:

If Page.IsPostBack Then
‘ code here

End If

631

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 631

When cross-page posting, you will want to use the Page.IsCrossPagePostBack property.

<%@ Page Language=”VB” %>
<%@ PreviousPageType VirtualPath=”~/Page1.aspx” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

If Page.IsCrossPagePostBack Then
Label1.Text = “Your name is: “ & PreviousPage.pp_TextBox1.Text & “
” & _

“Your appointment is on: “ & _
PreviousPage.pp_Calendar1.SelectedDate.ToLongDateString()

Else
Server.Transfer(“Page1.aspx”)

End If
End Sub

</script>

In this example, if someone hits this page without going to Page1.aspx first to get cross-posted to
Page2.aspx, then the request will be checked to see if the request is a cross-post. If it is (checked using
the Page.IsCrossPagePostBack property), then the code is run, otherwise the request is redirected to
Page1.aspx.

ASP.NET Advanced Compilation
The last chapter, Chapter 16, covered how the compilation process works in ASP.NET. You can notice
this compilation process and how it works when you hit one of the ASP.NET pages you have built for
the first time in the fact that it takes a few seconds for the page to be generated. This is due to the fact
that the ASP.NET application is being compiled into intermediate code when you first hit that page. One
thing that makes this situation even less enjoyable is that each and every page will have this lag when
that particular page is first requested.

In a page’s first request, ASP.NET compiles the page class into a DLL and then this is written to the disk
of the Web server. The great thing about ASP.NET is that on the second request, instead of need to com-
pile the page again, the DLL is accessed instead — making the request for the page far quicker than oth-
erwise. You will notice this yourself if you hit the refresh button on your browser to re-request the same
page. You will notice a new snappiness to the page.

Due to how the pages are compiled in ASP.NET, whenever you make changes to your pages within your
application, the application is recompiled again and each and every page will again have this initial drag
as it is compiled. This can be quite a pain if you are working with larger sites and you really can’t afford
this kind of pause to page generation (even if it is only one time).

ASP.NET 2.0 includes a couple of precompilation tools so that you don’t have to experience this cost of
page-by-page compilation. Both of these processes precompile your entire application at once. The first
precompilation option is to invoke precompile.axd directly in the browser as if it was a page of your
application. If you are using the Web server that is built into Visual Studio 2005, your request would be
structured in the following format:

http://[host]:[port]/[application name]/precompile.axd

632

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 632

Though if you are using Microsoft’s Internet Information Server, your request would be structured in the
following format:

http://[host]/[application name]/precompile.axd

Once run, and if successful, you will be notified in large bold text:

The application was successfully precompiled.

If there is an error on any of the pages of your application, you will be notified of this through this com-
pilation process which will make note of the page and line of the error. If successful, this precompilation
process will have gone through each element of your application and will have successfully compiled it
all into a DLL, thereby removing the churn you would normally experience hitting each of your pages
for the first time.

The other method of precompilation is for when you are going to need to precompile your applications
that are meant to be deployed. Contained within the .NET Framework 2.0, you will find a tool —
aspnet_compiler. You will find this tool at C:\Windows\Microsoft.NET\Framework\v2.0.[xxxxx]\.

This is a command-line tool and you will simply need to navigate the aforementioned location to use it.
In the simplest case, you would use the following structure to precompile your ASP.NET application.

aspnet_compiler –v [Application Name] –p[Physical Location] [Target]

For an example of using this compiler, let’s suppose that you are compiling an application called Wrox
which is located at C:\Websites\Wrox. For this, you would use the following construction:

aspnet_compiler –v /Wrox –p C:\Websites\Wrox c:\Wrox

If successful, the application will be compiled. The output of a successful compilation is shown here in
Figure 17-2.

Figure 17-2

The nice thing about this compilation process is that it hides your code for you by packaging it into a
DLL where it will be quite hidden for casually prying eyes. If you look at the target location of the com-
pilation process, you will still see the same structure and files as you had before, but if you look at the
contents of the .aspx files, you will see the following:

This is a marker file generated by the precompilation tool,
And should not be deleted!

633

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 633

If you look at what was compiled by the aspnet_compiler tool, you will find a Code.dll in the bin
folder. This is where all the code from the pages is located. To deploy this precompiled application, you
will not only need to move the Code.dll file, but each folder and placer file which was generated by the
compiler. Move everything that was generated by the compiler to the target server and the ASP.NET
application will be able to run without any concerns.

One important point about this second precompilation process is that it doesn’t precompile each and
every file that is contained within your application. The files that are excluded from the precompilation
process include:

❑ HTML files

❑ XML files

❑ XSD files

❑ Web.config files

❑ Text files

If you want these types of files also precompiled along with the rest of your files, one trick is to change
the file extensions of the files that allow for it to be an .aspx extension. Doing this will cause these files’
contents to also be batched in with the content from the other pages in the compilation process, thereby
obfuscating their contents.

Master Pages
Many Web applications are built so that each of the pages of the application has some similarities. For
instance, there might be a common header that is used on each and every page of your applications
There also may be other common page elements including navigation sections, advertisements, footers,
and more. It really isn’t so common to have your Web pages each have their own unique look and feel to
them. What people are looking for in their applications is some kind of commonality to give the end user
what works through a multipaged application.

What is really needed for these types of applications is a way to provide a template that can be used by
your pages — a sort of visual inheritance (as can be done with Windows Forms). With a new feature in
ASP.NET 2.0 called master pages, you can now employ visual inheritance in your Web applications.

The use of master pages means that you are working with a template file (the master page) which has a
.master extension. Once a .master page is created, you can then take a content page, with an .aspx exten-
sion, and make an association between the two files. Doing this will allow ASP.NET to take these two
files and combine them into a single Web page to display in a browser. Figure 17-3 shows a diagram of
how this works.

634

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 634

Figure 17-3

Let’s now take a look at how we would make this work by first creating the master page.

Creating a Master Page
The first step is to create a template that will end up being our master page. You can build a master page
using any text editor (such as Notepad), but you will find it far easier to use Visual Studio 2005 or Visual
Web Developer, as I will show you here.

Start within the Solution Explorer. Right-click on the solution and select Add New Item. In the Add New
Item dialog, you will find the option to add a master page to the solution. This is illustrated here in
Figure 17-4.

Your master page options are quite similar to that of working with a standard .aspx page. You can either
create master pages to be inline or you can have master pages which utilize the code-behind model. If
you wish to use the code-behind model, make sure that you have the ‘Place code in separate file’ check
box checked in the dialog — otherwise leave it blank. Creating an inline master page will produce a single
.master file. Using the code-behind model produces a .master file in addition to a .master.vb or
.master.cs file.

Master Page

MyMaster.master

M

Content Page

Default.aspx

C

Combined Page

Default.aspx

MC

635

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 635

Figure 17-4

A master page should be built so that it contains one or more content regions that are utilized by the con-
tent pages. The following master page example (named Wrox.master) contains two of these content areas:

<%@ Master Language=”VB” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Wrox</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<table cellpadding=”3” border=”1”>
<tr bgcolor=”silver”>

<td colspan=”2”><h1>The Wrox Company Homepage</h1></td>
</tr>
<tr>

<td>
<asp:ContentPlaceHolder ID=”ContentPlaceHolder1”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>

636

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 636

<td>
<asp:ContentPlaceHolder ID=”ContentPlaceHolder2”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>

</tr>
<tr>

<td colspan=”2”>Copyright 2006 - Wrox</td>
</tr>

</table>
</div>
</form>

</body>
</html>

The first thing to notice is the <% Master %> directive at the top of the page instead of the standard <%
Page %> directive. This specifies that this is a master page and cannot be generated without a content
page associated with it. It isn’t a page that you can pull up in the browser. In this case, the Master direc-
tive simply uses the Language attribute and nothing more, but you will find that it has a number of
other attributes at its disposal to fine-tune the behavior of the page.

The idea is to code the master page as you would any other .aspx page. This master page contains a
simple table and two areas that are meant for the content pages. These areas are defined with the use of
the ContentPlaceHolder server control. This page contains two ContentPlaceHolder controls. It will
be only in these two specified areas where content pages will be allowed to interject content into the
dynamically created page (as you will shortly see).

The nice thing about working with master pages is that you don’t only have to work with them in the
code view of the IDE, but Visual Studio 2005 also allows for you to work with them in the design view
as well. This is illustrated here in Figure 17-5.

You can see that in this view, you can work with the master page by simply dragging and dropping con-
trols onto the design surface just as you would with any typical .aspx page.

Creating the Content Page
Now that there is a master page in your project that you can utilize, the next step is to create a content
page which will do just that. To do this, again right-click on the solution from within the Solution
Explorer of Visual Studio 2005 and select Add New Item. This time though, we are going to add a typical
Web Form to the project. Though, before you hit the Add button, be sure that you check the Select a
Master Page check box in the dialog. This informs VS2005 that we are going to be building a content
page that will be associated with a master page. Doing this will then pull up a new dialog, which will
allow you to select a master page to associate this new file with. This is shown here in Figure 17-6.

637

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 637

Figure 17-5

Figure 17-6

638

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 638

In this case, if you have been following along with the example, you should only have a single master
page available in the dialog, though it is possible to have as many different master pages as you wish in
a single project. Select the Wrox.master page and press the OK button.

The page created will have only a single line of code to it:

<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” Title=”Untitled Page” %>

There is quite a bit that is different with this file than a typical .aspx page. First off, there is none of the
default HTML code, script tags, and DOCTYPE declarations that are the norm. The other change is the
addition of the MasterPageFile attribute in the Page directive. This new attribute makes the associa-
tion to the master page which will be used for this content page. In this case, it is the Wrox.master file
that we created earlier.

Though there isn’t much to show while in the Source view of Visual Studio when looking at a content
page, the real power of master pages can be seen when you switch to the Design view of the same page.
This is shown here in Figure 17-7.

Figure 17-7

639

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 639

This view shows you the entire template and the two content areas that this content page is allowed to
deal with. All the grayed-out areas are off limits and do not allow for any changes from the content
page — while the lighted areas allow for you to deal with any type of content you wish. For instance, not
only can you place raw text in these content areas, but anything that you would normally place into a
typical .aspx page can also be placed in these content areas as well. For an example of this, let’s create a
simple form in one of the content areas and place an image in the other. This code is shown here:

<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” Title=”My Content Page” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Hello “ & Textbox1.Text
End Sub

</script>

<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”server”>

Enter in your name:

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
<asp:Button ID=”Button1” Runat=”server” Text=”Submit” OnClick=”Button1_Click” />

<asp:Label ID=”Label1” Runat=”server”></asp:Label>

</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder2”
Runat=”server”>

<asp:Image ID=”Image1” Runat=”server” ImageUrl=”wrox_logo.gif” />
</asp:Content>

Even looking at this example here, you can see the differences between a content page and a regular
.aspx page. Most importantly, this page doesn’t contain any <form> element or any of the <html> struc-
ture that you would normally see in a typical Web form. All of this content instead is stored inside the
master page itself.

This content page contains two Content server controls. Each of these Content server controls map to a
specific <asp:ContentPlaceHolder> control from the master page. This association is made through
the use of the ContentPlaceHolderID attribute of the Content control.

<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”> ... </asp:Content>

Just like typical .aspx pages, you can create any event handlers you might need for your content page.
This particular example uses a button-click event for when the end user submits the form. Running this
example would produce the following results as shown in Figure 17-8.

640

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 640

Figure 17-8

Declaring the Master Page Application-Wide
As shown in our examples thus far, we have been declaring the master page from the content page
through the use of the MasterPageFile attribute of the Page directive.

<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” Title=”My Content Page” %>

You can apply this attribute to each and every one of your content pages or you can make this declara-
tion in the web.config file of your application as shown here:

<configuration>
<system.web>

<pages masterPageFile=”~/Wrox.master”></pages>
</system.web>

</configuration>

From the <pages> node in the web.config file, you make the declaration that all your content pages
will use a specific master page through the use of the masterPageFile attribute. Doing this means that
your content pages can simply use the following Page directive construction:

<%@ Page Language=”VB” Title=”My Content Page” %>

The nice thing with making the master page declaration in the web.config file is you don’t have to
make this declaration on any of your solution’s content pages, and if you decide to change the template
and associate all the content pages to a brand new master page, it is a simple change in one spot to
change each and every content page instantaneously.

Doing this will have no effect on the regular .aspx pages in your solution. They will still function as normal.
Also, if you have a content page that you wish to associate to a different master page than the one that is
specified in the web.config file, then you simply need to use the MasterPageFile attribute in the Page
directive of the page. This will override any declaration that you might have in the web.config file.

641

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 641

Providing Default Content in Your Master Page
Earlier, we showed how to use a basic ContentPlaceHolder control. In addition to using it as it was
shown, you also create ContentPlaceHolder controls that contain default content. This is illustrated here:

<asp:ContentPlaceHolder ID=”ContentPlaceHolder1” Runat=”server”>
Here is some default content!

</asp:ContentPlaceHolder>

For default content, you can again use whatever you want, including any other ASP.NET server controls.
A content page that uses a master page that contains one of these ContentPlaceHolder controls can
then either override the default content — by just specifying content (which overrides the original con-
tent declared in the master page) — or just keep the default content contained in the control.

Data-Driven Applications
ASP.NET 2.0 provides some unique data access server controls that make it easy for you to get at the
data you need. As data for your applications finds itself in more and more types of data stores, it can
sometimes be a nightmare to figure out how to get at and aggregate these information sets onto a Web
page in a simple and logical manner. ASP.NET data source controls are meant to work with a specific
type of data store by connecting to the data store and performing operations such as Inserts, Updates,
and Deletes — all on your behalf. The following table details the new data source controls at your
disposal.

Data Source Control Description

SqlDataSource Enables you to work with any SQL-based database, such as Microsoft
SQL Server or even Oracle

AccessDataSource Enables you to work with a Microsoft Access file (.mbd)

ObjectDataSource Enables you to work with a business object or a Visual Studio 2005
data component

XmlDataSource Enables you to work with the information from an XML file or even a
dynamic XML source (for example, an RSS feed)

SiteMapDataSource Enables you to work with the hierarchical data represented in the site
map file (.sitemap)

ASP.NET itself provides a number of server controls that you can use for data-binding purposes. That
means that you can use these data source controls as the underlying data systems for a series of controls
with very little work on your part. These data-bound controls in ASP.NET include:

642

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 642

The newest and most thought of control in the bunch is the GridView control. This control was intro-
duced in ASP.NET 2.0 and makes the DataGrid control more or less obsolete. The GridView control
allows paging, sorting, and editing with very little work on your part. This next section takes a look at
using the GridView control with SQL Server and allowing for these advanced features.

Using the GridView and SqlDataSource Controls
For an example of using these two controls together to display some information, let’s turn to Visual
Studio 2005. Start a new page and drag and drop a GridView control onto the design surface of the
page. Pulling up the smart tag for the control on the design surface, you can click the Auto Format link
to give your GridView control a better look and feel rather than the default look of the control.

Next, drag and drop an SqlDataSource control onto the design surface. This control is a middle-tier
component, and therefore, it will appear as a gray box on the design surface. The first step is to config-
ure the SqlDataSource control to work with the data we want from our Microsoft SQL Server instance.
This is shown in Figure 17-9.

Figure 17-9

Working through the configuration process for the SqlDataSource control, you must choose your data
connection and then whether you want to store this connection in the web.config file (shown in Figure
17-10). This is highly advisable.

643

ASP.NET 2.0 Advanced Features

❑ <asp:GridView>

❑ <asp:DataGrid>

❑ <asp:DetailsView>

❑ <asp:TreeView>

❑ <asp:Menu>

❑ <asp:DataList>

❑ <asp:Repeater>

❑ <asp:DropDownList>

❑ <asp:BulletedList>

❑ <asp:CheckBoxList>

❑ <asp:RadioButtonList>

❑ <asp:ListBox>

❑ <asp:AdRotator>

20_575368 ch17.qxd 10/7/05 11:07 PM Page 643

Figure 17-10

From this configuration process, you also get to choose the table that you are going to work with, and
test out the queries that the wizard will generate. For our example, select the Customers table and select
every row by checking the * check box. This is illustrated in Figure 17-11.

Once you work through the configuration process, you will then notice that your web.config file has
changed to now include the connection string.

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>

<connectionStrings>
<add name=”NorthwindConnectionString”
connectionString=”Server=.;Integrated Security=True;Database=Northwind”
providerName=”System.Data.SqlClient” />

</connectionStrings>

<system.web>
...

</system.web>
</configuration>

644

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 644

Figure 17-11

Once you have configured the SqlDataSource control, the next step is to tie the GridView control to
this SqlDataSource control instance. This can be done through the GridView control’s smart tag as
shown here in Figure 17-12. You can also enable paging and sorting for the control in the same form.

Figure 17-12

645

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 645

The code generated by the wizard (it would also be how you would code it yourself) is shown here:

<%@ Page Language=”VB” %>

<script runat=”server”>

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>GridView Example</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:GridView ID=”GridView1” Runat=”server” BorderWidth=”1px”
BackColor=”White” GridLines=”Vertical”
CellPadding=”3” BorderStyle=”Solid” BorderColor=”#999999”
ForeColor=”Black” DataSourceID=”SqlDataSource1”
DataKeyNames=”CustomerID” AutoGenerateColumns=”False” AllowPaging=”True”
AllowSorting=”True”>

<FooterStyle BackColor=”#CCCCCC”></FooterStyle>
<PagerStyle ForeColor=”Black” HorizontalAlign=”Center”
BackColor=”#999999”></PagerStyle>

<HeaderStyle ForeColor=”White” Font-Bold=”True”
BackColor=”Black”></HeaderStyle>

<AlternatingRowStyle BackColor=”#CCCCCC”></AlternatingRowStyle>
<Columns>

<asp:BoundField ReadOnly=”True” HeaderText=”CustomerID”
DataField=”CustomerID”
SortExpression=”CustomerID”></asp:BoundField>

<asp:BoundField HeaderText=”CompanyName” DataField=”CompanyName”
SortExpression=”CompanyName”></asp:BoundField>

<asp:BoundField HeaderText=”ContactName” DataField=”ContactName”
SortExpression=”ContactName”></asp:BoundField>

<asp:BoundField HeaderText=”ContactTitle” DataField=”ContactTitle”
SortExpression=”ContactTitle”></asp:BoundField>

<asp:BoundField HeaderText=”Address” DataField=”Address”
SortExpression=”Address”></asp:BoundField>

<asp:BoundField HeaderText=”City” DataField=”City”
SortExpression=”City”></asp:BoundField>

<asp:BoundField HeaderText=”Region” DataField=”Region”
SortExpression=”Region”></asp:BoundField>

<asp:BoundField HeaderText=”PostalCode” DataField=”PostalCode”
SortExpression=”PostalCode”></asp:BoundField>

<asp:BoundField HeaderText=”Country” DataField=”Country”
SortExpression=”Country”></asp:BoundField>

<asp:BoundField HeaderText=”Phone” DataField=”Phone”
SortExpression=”Phone”></asp:BoundField>

<asp:BoundField HeaderText=”Fax” DataField=”Fax”
SortExpression=”Fax”></asp:BoundField>

</Columns>

646

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 646

<SelectedRowStyle ForeColor=”White” Font-Bold=”True”
BackColor=”#000099”></SelectedRowStyle>

</asp:GridView>
<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT * FROM [Customers]”
ConnectionString=”<%$ ConnectionStrings:NorthwindConnectionString %>”>

</asp:SqlDataSource>
</div>
</form>

</body>
</html>

Let’s first examine this code by looking at the SqlDataSource control. This control has some important
attributes to pay attention to. The first is the SelectCommand attribute. This is the SQL query that you
will be using. In our case, it is a Select * From [Customers] query (meaning that we are grabbing
everything from the Customers table of the Northwind database). The second attribute to pay
attention to is the ConnectionString attribute. The interesting thing with this attribute is the use of
<%$ ConnectionStrings:NorthwindConnectionString %> to get at the connection string. This value
points at the settings that are placed inside the web.config file for those that don’t want to hard-code
their connection strings directly in the code of their pages. If you did want to do this, you would use
something similar to the following construction:

ConnectionString=”Server=(local);Trusted_Connection=True;Integrated Security=SSPI;
Persist Security Info=True;Database=Northwind”

Now looking to the GridView control, you can see how simple it was to add the ability to perform pag-
ing and sorting capabilities to the control. It was simply a matter of adding the attributes AllowPaging
and AllowSorting to the control and setting their values to True (they are set to False by default).

<asp:GridView ID=”GridView1” Runat=”server” BorderWidth=”1px”
BackColor=”White” GridLines=”Vertical”
CellPadding=”3” BorderStyle=”Solid” BorderColor=”#999999”
ForeColor=”Black” DataSourceID=”SqlDataSource1”
DataKeyNames=”CustomerID” AutoGenerateColumns=”False” AllowPaging=”True”
AllowSorting=”True”>

<!-- Inner content removed for clarity -->
</asp:GridView>

Each of the columns from the Customers table of the Northwind database are defined in the control
through the use of the <asp:BoundField> control, a subcontrol of the GridView control. The BoundField
control allows you to specify the header text of the column through the use of the HeaderText attribute.
The DataField attribute actually ties the values that are displayed in this column to a particular value
coming from the Customers table, and the SortExpression attribute should use the same values for
sorting — unless you are sorting on a different value than what is being displayed.

In the end, your page should look something similar to the following as shown here in Figure 17-13.

647

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 647

Figure 17-13

Allowing for Editing and Deleting of Records
with the GridView

Now let’s expand upon the previous example by allowing for the editing and deleting of records that are
displayed in the GridView. If you are using the Visual Studio 2005 SqlDataSource configuration wiz-
ard to accomplish these tasks, then you are going to have to take some extra steps beyond what was pre-
viously shown in the preceding GridView example.

Go back to the SqlDataSource control on the design surface of your Web page and pull up the control’s
smart tag. You will find the option to Configure Data Source. Select this option to reconfigure the
SqlDataSource control to allow for the editing and deletion of the data from the Customers table of
the Northwind database.

When you come to the screen in the Configure Select Statement dialog (see Figure 17-14), click the
Advanced Options button.

648

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 648

Figure 17-14

This will pull up a new dialog titled Advanced SQL Generation Options as shown here in Figure 17-15.

Figure 17-15

As shown in this dialog, make sure you select the Generate Insert, Update, and Delete statements check
box. This will construct the SqlDataSource control to be able to not only handle the simple Select
query, but will also add the Update and Delete queries to the control as well. After this, press OK and
then work through the rest of the wizard until you are finished.

649

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 649

The next step is to go back to the GridView control’s smart tag and select the Refresh Schema. You will
also find check boxes in the smart tag now for editing and deleting rows of data. Make sure both of these
check boxes are checked. This is illustrated in Figure 17-16.

Figure 17-16

Now let’s look at what changed in the code. First off, the SqlDataSource control has now changed to
allow for the updating and deletion of data.

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT * FROM [Customers]”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”
DeleteCommand=”DELETE FROM [Customers] WHERE [CustomerID] = @original_CustomerID”
InsertCommand=”INSERT INTO [Customers] ([CustomerID], [CompanyName],

[ContactName], [ContactTitle], [Address], [City], [Region], [PostalCode],
[Country], [Phone], [Fax]) VALUES (@CustomerID, @CompanyName, @ContactName,
@ContactTitle, @Address, @City, @Region, @PostalCode, @Country, @Phone, @Fax)”

UpdateCommand=”UPDATE [Customers] SET [CompanyName] = @CompanyName, [ContactName]
= @ContactName, [ContactTitle] = @ContactTitle, [Address] = @Address, [City] =
@City, [Region] = @Region, [PostalCode] = @PostalCode, [Country] = @Country,
[Phone] = @Phone, [Fax] = @Fax WHERE [CustomerID] = @original_CustomerID”>

<DeleteParameters>
<asp:Parameter Type=”String” Name=”CustomerID”></asp:Parameter>

</DeleteParameters>
<UpdateParameters>

<asp:Parameter Type=”String” Name=”CompanyName”></asp:Parameter>
<asp:Parameter Type=”String” Name=”ContactName”></asp:Parameter>
<asp:Parameter Type=”String” Name=”ContactTitle”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Address”></asp:Parameter>
<asp:Parameter Type=”String” Name=”City”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Region”></asp:Parameter>
<asp:Parameter Type=”String” Name=”PostalCode”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Country”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Phone”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Fax”></asp:Parameter>
<asp:Parameter Type=”String” Name=”CustomerID”></asp:Parameter>

</UpdateParameters>

650

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 650

<InsertParameters>
<asp:Parameter Type=”String” Name=”CustomerID”></asp:Parameter>
<asp:Parameter Type=”String” Name=”CompanyName”></asp:Parameter>
<asp:Parameter Type=”String” Name=”ContactName”></asp:Parameter>
<asp:Parameter Type=”String” Name=”ContactTitle”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Address”></asp:Parameter>
<asp:Parameter Type=”String” Name=”City”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Region”></asp:Parameter>
<asp:Parameter Type=”String” Name=”PostalCode”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Country”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Phone”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Fax”></asp:Parameter>

</InsertParameters>
</asp:SqlDataSource>

From this code, you can see that there are now other queries that have been added to the control. Using
the DeleteCommand, InsertCommand, and UpdateCommand attributes of the SqlDataSource control,
these functions can now be performed just as Select queries were enabled through the use of the
SelectCommand attribute. As you can see in the queries, there are a lot of parameters defined within
them. These parameters are then assigned through the <DeleteParameters>, <UpdateParameters>,
and <InsertParameters> elements. Within each of these subsections, the actual parameters are
defined through the use of the <asp:Parameter> control where you also assign the datatype of the
parameter (through the use of the Type attribute) and the name of the parameter.

Besides these changes to the SqlDataSource control, there is only one small change that has been made
to the GridView control as shown here:

<Columns>
<asp:CommandField ShowDeleteButton=”True”
ShowEditButton=”True”></asp:CommandField>

<asp:BoundField ReadOnly=”True” HeaderText=”CustomerID” DataField=”CustomerID”
SortExpression=”CustomerID”></asp:BoundField>

<asp:BoundField HeaderText=”CompanyName” DataField=”CompanyName”
SortExpression=”CompanyName”></asp:BoundField>

<asp:BoundField HeaderText=”ContactName” DataField=”ContactName”
SortExpression=”ContactName”></asp:BoundField>

<asp:BoundField HeaderText=”ContactTitle” DataField=”ContactTitle”
SortExpression=”ContactTitle”></asp:BoundField>

<asp:BoundField HeaderText=”Address” DataField=”Address”
SortExpression=”Address”></asp:BoundField>

<asp:BoundField HeaderText=”City” DataField=”City”
SortExpression=”City”></asp:BoundField>

<asp:BoundField HeaderText=”Region” DataField=”Region”
SortExpression=”Region”></asp:BoundField>

<asp:BoundField HeaderText=”PostalCode” DataField=”PostalCode”
SortExpression=”PostalCode”></asp:BoundField>

<asp:BoundField HeaderText=”Country” DataField=”Country”
SortExpression=”Country”></asp:BoundField>

<asp:BoundField HeaderText=”Phone” DataField=”Phone”
SortExpression=”Phone”></asp:BoundField>

<asp:BoundField HeaderText=”Fax” DataField=”Fax”
SortExpression=”Fax”></asp:BoundField>

</Columns>

651

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 651

The only change that is needed for the GridView control is the addition of a new column that will
allow for editing and deleting commands to be initiated from. This is done through the use of the
<asp:CommandField> control. From this control, you can see that we also enabled the Edit and Delete
buttons through a Boolean value.

Once built and run, your new page will look like the following as shown here in Figure 17-17.

Figure 17-17

Don’t Stop There!
This chapter has limited space, so there is only room to go through this one example, but it is important
to realize that there are so many other DataSource controls at your disposal. The ObjectDataSource
control is rather powerful for those that wish to enforce a strict n-tier model and separate the data
retrieval logic into an object that the GridView and other data-bound controls can work with. The
XmlDataSource control is one control that you will most likely find yourself using a lot as more and
more data is getting stored as XML — including dynamic data (such as Web logs via RSS). These
DataSource controls are fine-tuned for the type of data stores for which they are targeted and you will
find a lot of benefit in exploring their capabilities in detail.

652

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 652

Navigation
People rarely build Web applications that are made up of just a single page instance. Instead, applications
are usually made up of multiple pages that are all related to each other in some fashion. Some applica-
tions have a workflow on how end users can work from page to page, while other applications have a
navigation structure that allows for free roaming throughout. Sometimes a navigation structure of a site
can get rather complex, and managing this complexity is something that can get rather cumbersome.

ASP.NET 2.0 includes a way of managing the navigational structure of your Web applications. This new
system, which allows you to completely manage your application’s navigation, allows for you to first
define your navigational structure through an XML file and can then be bound to a couple of different
server controls which are focused on navigation.

This makes it rather easy when you have to introduce changes either to the structure of your navigation
or even name changes to pages which are contained within this structure. Instead of going from page to
page throughout your entire application, changing titles or page destinations, you can now make these
changes in one place — an XML file — and the changes will be instantaneously reflected throughout your
entire application.

The first step in working with the ASP.NET navigation system is to first reflect your navigational structure
in the web.sitemap file — which is basically the XML file that will contain the complete site structure.

For instance, let’s suppose that you want to have the following site structure:

Home
Books
Magazines

U.S. Magazines
European Magazines

This site structure has three levels to it and multiple items in the lowest level. With this structure, you
can then reflect this in the web.sitemap file as follows:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >

<siteMapNode url=”default.aspx” title=”Home” description=”The site homepage”>
<siteMapNode url=”books.aspx” title=”Books”
description=”Books from our catalog” />

<siteMapNode url=”magazines.aspx” title=”Magazines”
description=”Magazines from our catalog”>

<siteMapNode url=”magazines_us.aspx” title=”U.S. Magazines”
description=”Magazines from the U.S.” />

<siteMapNode url=”magazines_eur.aspx” title=”European Magazines”
description=”Magazines from Europe” />

</siteMapNode>
</siteMapNode>

</siteMap>

653

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 653

To create a web.sitemap file in Visual Studio 2005, get to the Add New Items dialog and you will see
the option of adding a Site Map. In this file, you can place the above content. To move a level down in
the hierarchy, you would nest <siteMapNode> elements within other <siteMapNode> elements. A
<siteMapNode> element can contain a couple of different attributes. These attributes are defined in the
following table.

Attribute Description

Title The title attribute provides a textual description of the link. The String
value used here is the text used for the link.

Description The description attribute not only reminds you what the link is for, but is
also used for the ToolTip attribute on the link. The ToolTip attribute is the
yellow box that shows up next to the link when the end user hovers the cursor
over the link for a couple of seconds.

Url The url attribute describes where the file is located in the solution. If the file
is in the root directory, simply use the file name, such as default.aspx. If the
file is located in a subfolder, be sure to include the folders in the String value
used for this attribute. For example, MySubFolder/MyFile.aspx.

Roles If ASP.NET security trimming is enabled, you can use the roles attribute
to define which roles are allowed to view and click the provided link in the
navigation.

Using the SiteMapPath Server Control
One of the available server controls that work with a web.sitemap file is the SiteMapPath control. This
control provides a popular structure which you will find on many Web sites on the Internet. Some folks
call this feature breadcrumb navigation, but whatever you call it, you will find it very easy to implement in
ASP.NET.

To see an example of this control at work, let’s create a page that would be at the bottom of the site map
structure. So, within the project that contains your web.sitemap file, create an ASP.NET page named
magazines_us.aspx. On this page, simply drag and drop a SiteMapPath control onto the page. You
will find this control under the Navigation section in the Visual Studio Toolbox. This control’s code looks
as follows:

<asp:SiteMapPath ID=”SiteMapPath1” Runat=”server”></asp:SiteMapPath>

What else do you need to do to get this control to work? Well, nothing! Simply build and run the page
and you will then see the following results as shown here in Figure 17-18.

From this example, you can see that the SiteMapPath control defines the end user’s place in the appli-
cation’s site structure. It shows the current page the user is on (U.S. Magazines) as well as the two pages
that are above it in the hierarchy.

654

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 654

Figure 17-18

The SiteMapPath control requires no DataSource control, as it will automatically bind itself to any
.sitemap file that it finds in the project, and nothing is required on your part to make this happen. The
SiteMapPath’s smart tag allows you to customize the look and feel of the control as well so you can
produce other results in how it displays as illustrated in Figure 17-19.

Figure 17-19

The code for this version of the SiteMapPath control is as follows:

<asp:SiteMapPath ID=”SiteMapPath1” Runat=”server” PathSeparator=” : “
Font-Names=”Verdana” Font-Size=”0.8em”>

<PathSeparatorStyle Font-Bold=”True” ForeColor=”#507CD1”></PathSeparatorStyle>
<CurrentNodeStyle ForeColor=”#333333”></CurrentNodeStyle>
<NodeStyle Font-Bold=”True” ForeColor=”#284E98”></NodeStyle>
<RootNodeStyle Font-Bold=”True” ForeColor=”#507CD1”></RootNodeStyle>

</asp:SiteMapPath>

From this example, you can see a lot of style elements and attributes that can be used with the
SiteMapPath control. There are many options at your disposal in order to give you the ability to
create breadcrumb navigation that is unique.

655

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 655

Menu Server Control
Another navigation control allows for end users of your application to navigate throughout the pages
your application offers based upon the information that is stored within the web.sitemap file. The Menu
server control produces a compact navigation system which pops out suboptions when the end user
hovers their mouse over an option. The end result of the Menu server control when bound to the site
map is as shown here in Figure 17-20.

Figure 17-20

To build this, you must be working off of the web.sitemap file that we created earlier. After the
web.sitemap file is in place, place a Menu server control on the page along with a SiteMapDataSource
control.

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”SiteMapDataSource1”>
</asp:Menu>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” />

The SiteMapDataSource control will automatically work with the application’s web.sitemap file. In
addition to the SiteMapDataSource control, the other item included is the Menu server control, which
uses the typical ID and Runat attributes in addition to the DataSourceID attribute to connect this con-
trol with what is retrieved from the SiteMapDataSource control.

Like the other controls provided by ASP.NET, you can easily modify the look and feel of this control.
Clicking on the Auto Format link in the control’s smart tag, you can give the control the ‘Classic’ look
and feel. This setting would produce the following result as shown here in Figure 17-21.

Figure 17-21

656

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 656

Like the other controls, you can see that there are a lot of subelements that contribute to the changing of
the control’s style. This is illustrated here in the following code example:

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”SiteMapDataSource1”
Font-Names=”Verdana” Font-Size=”0.8em” BackColor=”#B5C7DE” ForeColor=”#284E98”
StaticSubMenuIndent=”10px” DynamicHorizontalOffset=”2”>

<StaticSelectedStyle BackColor=”#507CD1”></StaticSelectedStyle>
<StaticMenuItemStyle HorizontalPadding=”5”
VerticalPadding=”2”></StaticMenuItemStyle>

<DynamicMenuStyle BackColor=”#B5C7DE”></DynamicMenuStyle>
<DynamicSelectedStyle BackColor=”#507CD1”></DynamicSelectedStyle>
<DynamicMenuItemStyle HorizontalPadding=”5”
VerticalPadding=”2”></DynamicMenuItemStyle>

<DynamicHoverStyle ForeColor=”White” Font-Bold=”True”
BackColor=”#284E98”></DynamicHoverStyle>

<StaticHoverStyle ForeColor=”White” Font-Bold=”True”
BackColor=”#284E98”></StaticHoverStyle>

</asp:Menu>

The TreeView Server Control
The last navigation server control that we will look at is the TreeView server control. This control allows
you to render a hierarchy of data. The TreeView control is not only meant for displaying what is con-
tained within the .sitemap file, but you can also use this control to represent other forms of hierarchal
data — such as data that you might store in a standard XML file.

You may have encountered a similar TreeView control in .NET when using the IE Web Controls, which
also contained a TreeView control. That previous TreeView control was limited to working only in
Microsoft’s Internet Explorer, while this new TreeView control will work in a wide variety of browsers.

The TreeView control is similar to that of the Menu control in that it won’t bind automatically to the
web.sitemap file, but instead requires an underlying DataSource control. The code for displaying the
contents of the .sitemap file is shown here in the following example:

<asp:TreeView ID=”TreeView1” Runat=”server” DataSourceID=”SiteMapDataSource1”>
</asp:TreeView>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” />

As with the Menu control example, a SiteMapDataSource is needed. After a basic SiteMapDataSource
control is in place, position a TreeView control on the page and set the DataSourceId property to
SiteMapDataSource1. This simple construction produces the result as shown here in Figure 17-22.

Remember that by using the Auto Format link from the control’s smart tag, you can format the
TreeView control with a wide variety of looks and feels.

657

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 657

Figure 17-22

The TreeView is not only meant for site maps, but instead (as stated) it can build upon any underlying
hierarchal data set. For instance, you can display a hierarchal data structure from a standard XML file
just as easily. Let’s suppose you have an XML file as follows:

<?xml version=”1.0” encoding=”utf-8” ?>
<Hardware>

<Item Category=”Motherboards”>
<Option Choice=”Asus” />
<Option Choice=”Abit” />

</Item>
<Item Category=”Memory”>

<Option Choice=”128mb” />
<Option Choice=”256mb” />
<Option Choice=”512mb” />

</Item>
<Item Category=”Hard Drives”>

<Option Choice=”40GB” />
<Option Choice=”80GB” />
<Option Choice=”100GB” />

</Item>
<Item Category=”Drives”>

<Option Choice=”CD” />
<Option Choice=”DVD” />
<Option Choice=”DVD Burner” />

</Item>
</Hardware>

It’s quite obvious that this XML file is not meant for site navigation purposes, but instead it is meant for
an end user to make selections from. As stated, the TreeView control is quite extensible. For an example
of this, let’s create a page that uses the above XML file. The code for the page is shown here:

<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

If TreeView1.CheckedNodes.Count > 0 Then
Label1.Text = “We are sending you information on:<p>”

658

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 658

For Each node As TreeNode In TreeView1.CheckedNodes
Label1.Text += node.Text & “ “ & node.Parent.Text & “
”

Next
Else

label1.Text = “You didn’t select anything. Sorry!”
End If

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>The TreeView Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

Please select the following items that you are interesting in:

<asp:TreeView ID=”TreeView1” Runat=”server”
DataSourceID=”XmlDataSource1” ShowLines=”True”>

<DataBindings>
<asp:TreeNodeBinding TextField=”Category”
DataMember=”Item”></asp:TreeNodeBinding>

<asp:TreeNodeBinding ShowCheckBox=”True” TextField=”Choice”
DataMember=”Option”></asp:TreeNodeBinding>

</DataBindings>
</asp:TreeView>

<asp:Button ID=”Button1” Runat=”server”
Text=”Submit Choices” OnClick=”Button1_Click” />

<asp:Label ID=”Label1” Runat=”server”></asp:Label>
<asp:XmlDataSource ID=”XmlDataSource1” Runat=”server”
DataFile=”~/Hardware.xml”>

</asp:XmlDataSource>
</div>
</form>

</body>
</html>

In this example, we are using an XmlDataSource control instead of the SiteMapDataSource control.
The XmlDataSource control associates itself with the XML file from earlier (Hardware.xml) through the
use of the DataFile attribute.

The TreeView control then binds itself to the XmlDataSource control through the use of the
DataSourceID attribute which here is pointed to XmlDataSource1. Another interesting addition in
the root TreeView node is the addition of the ShowLines attribute being set to True. This feature of the
TreeView will cause each of the nodes in the hierarchy to show their connection to their parent node
through a visual line.

659

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 659

When working with XML files, which can basically be of any construction, you are actually going to
have to bind the nodes of the TreeView control to specific values that come from the XML file. This is
done through the use of the <DataBindings> element. The <DataBindings> element encapsulates
one or more TreeNodeBinding objects. Two of the more important available properties of a
TreeNodeBinding object are the DataMember and TextField properties. The DataMember property
points to the name of the XML element that the TreeView control should look for. The TextField prop-
erty specifies the XML attribute of that particular XML element. If you do this correctly with the use of
the <DataBindings> construct, you get the result shown here in Figure 17-23.

Figure 17-23

In the button click event from our example, you can see how easy it is to iterate through each of the
checked nodes from the TreeView selection by creating instances of TreeNode objects. These selections
are made from one of the TreeNodeBinding objects which sets the ShowCheckBox property to True.

660

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 660

Membership and Role Management
ASP.NET contains a built-in membership and role management system that can be initiated through
either code or through the ASP.NET Web Site Administration Tool. This is an ideal system to use to
authenticate users to access a page or even your entire site. This management system not only provides a
new API suite for managing users, but it also gives you some server controls that interact with this API.

The first set in setting up your site’s security and the user roles, open up the ASP.NET Web Site
Administration Tool. You will be able to launch this tool through a button in the Visual Studio 2005
Solution Explorer or by clicking Build ➪ Configuration Manager in the Visual Studio menu. From the
tool, which will open up in the Document window, click on the Security tab. Figure 17-24 shows what
this tab of the tool looks like.

Figure 17-24

The first step is to click the link to start up the Security Setup Wizard. This launched wizard is shown
here in Figure 17-25.

661

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 661

Figure 17-25

The first question asked from the wizard is whether your application will be available on the public
Internet or if it will be hosted on an intranet. If you select Internet, then your Web site will be enabled
with forms authentication. If you select Intranet, then your site will be configured to work with
Windows Integrated Authentication. For our demonstration purposes, select the Internet option.

Working through the wizard, you will also be asked if you are going to work with role management.
Enable role management by checking the appropriate check box and add a role titled Manager. After this
step, you will actually be able to enter users into the system. Fill out information for each user you want
in the system. This is shown in Figure 17-26.

The next step is to then create the access rules for your site. You can pick specific folders and apply the
rules for the folder. For this example, I made it so that anyone in the Manager role would have access to
the site, while anonymous users would be denied access. This is shown here in Figure 17-27.

662

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 662

Figure 17-26

Figure 17-27

663

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 663

Clicking the Finish button will of course finish the wizard. If you refresh the Solution Explorer in Visual
Studio, you will notice that there is a new data store (an SQL Server Express Edition .mdb file) in the
App_Data folder. This is where all of the user and role information is being stored. It is important to note
that you can configure both of the systems (the membership and role management systems) to work
with other data stores besides these SQL Express data files. For example, you can configure these sys-
tems to work with a full-blown version of Microsoft’s SQL Server. You will also notice in the Solution
Explorer, that if you didn’t already have a web.config file, you have one now. The contents added to
the web.config file include:

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<authorization>

<allow roles=”Manager” />
<deny users=”?” />

</authorization>
<roleManager enabled=”true” />
<authentication mode=”Forms” />

</system.web>
</configuration>

From this you can see all the settings that we enabled. In the <authorization> section, we allow for users
that are in the role of Manager, while we also deny all anonymous users (defined with a question mark).
The <roleManager> element turns on the role management system, while the <authentication> ele-
ment turns on forms authentication. Now, let’s utilize these configurations.

The next step is to create a login page as everyone will be hitting any page in this application as an
anonymous user first. The login page will allow for people to enter in their credentials in order to be
authorized in the Manager role that we created earlier.

ASP.NET includes a slew of controls that make working with the membership and role management sys-
tems easier. On the login page (Login.aspx), let’s place a simple Login server control on the page.

<asp:Login ID=”Login1” Runat=”server”></asp:Login>

The nice thing here is that you have to do absolutely nothing to tie this Login control to the .mdf
database that was created earlier through the wizard. Now go back to another page in the application
(besides the Login.aspx page) and start up that page. In my case, I started up Default.aspx (which
only contains a simple text statement), but from Figure 17-28 you can see (by looking at the URL speci-
fied in the browser) that I was redirected to Login.aspx instead as I wasn’t yet authenticated.

The Login.aspx page allows me to enter my credentials, which then authorize me in the Manager role.
Hitting the Login button causes the browser to redirect me to the appropriate page. I am now authenti-
cated and authorized for the site!

664

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 664

Figure 17-28

Personalization
Many Web applications have features that allow for personalization of some kind. This might be as sim-
ple as greeting the users by name or it might deal with more advanced issues such as content placement.
Whatever the case, personalization techniques have always had a tricky approach. Developers used any-
thing from cookies, sessions, or database entries to control the personalization that users placed on their
pages.

ASP.NET 2.0 includes a simple to use and configure personalization system. It is as simple as making
entries in the web.config file to get the personalization system started. Like the membership and role
management systems, the personalization system also uses an underlying data store. In our example, we
will continue to work with the SQL Server Express Edition .mdb file.

For our example, we are going to create two properties —FirstName and LastName, both of type
String. For this, we will need to alter the web.config file. The changed web.config file is shown here:

<?xml version=”1.0”?>
<configuration>

<system.web>
<profile>

<properties>
<add name=”FirstName” type=”System.String” />
<add name=”LastName” type=”System.String” />

</properties>
</profile>

</system.web>
</configuration>

Now that the profile properties we are going to store for each user are configured in the web.config
file, the next step is to build a simple ASP.NET page that utilizes these property settings. Create a simple
page that contains two TextBox controls that ask the end user for their first and last name. We will then
input the values collected into the personalization engine via a button click event. The code for this
page is as follows:

665

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 665

<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Profile.FirstName = TextBox1.Text
Profile.LastName = TextBox1.Text

Label1.Text = “First name: “ & Profile.FirstName & _
“
Last name: “ & Profile.LastName

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Welcome Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

First name:

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>

Last name:

<asp:TextBox ID=”TextBox2” Runat=”server”></asp:TextBox>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit Information”
OnClick=”Button1_Click” />

<asp:Label ID=”Label1” Runat=”server”></asp:Label>

</div>
</form>

</body>
</html>

With this page, when the page is posted back to itself, the values placed into the two text boxes are
placed into the personalization engine and associated with this particular user through the use of the
Profile object. When working with the Profile object in Visual Studio, you will notice that the cus-
tom properties you created are provided to you through IntelliSense. Once stored in the personalization
engine, they are then available to you on any page within the application through the use of the same
Profile object.

Configuring ASP.NET
Configuring ASP.NET is something that has been greatly enhanced in this release of ASP.NET. Instead
of purely working with various XML configuration files to manage how ASP.NET works and performs,
you can now use an MMC ASP.NET Snap-In. To get at this new ASP.NET configuration tool, open up IIS

666

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 666

(5.0 or 6.0) and expand the Web Sites folder. This folder shows a list of all the Web sites configured to
work with IIS. Remember that not all of your Web sites are configured to work in this manner. It is also
possible that you have built your Web application so that it is making use of the new ASP.NET built-in
Web server.

After you find the application you are looking for in the Web Sites folder, right-click that application and
select Properties from the list

Selecting the Properties option brings up the MMC console. The far-right tab is the ASP.NET tab. Click
this tab to get the results shown here in Figure 17-29.

Figure 17-29

You should also note that selecting one of the application folders lets you edit the web.config file
from the MMC snap-in; selecting Properties for the default Web site (the root node) lets you edit the
machine.config file as well.

In addition to being able to edit the ASP.NET features that are shown in Figure 17-29, the ASP.NET tab
also includes an Edit Configuration button that provides a tremendous amount of modification capabili-
ties to use in the web.config file. When you click this button, you will then be provided with a multi-
tabbed GUI titled ASP.NET Configuration Settings (shown here in Figure 17-30).

667

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 667

Figure 17-30

Summary
This and the previous chapter provided a quick whirlwind tour of ASP.NET 2.0 and some of the applica-
tion features that you can give to the projects you develop. ASP.NET is really focused around the area of
developer productivity and works very hard at providing you access to features and functions that most
Web sites need to employ today. This chapter took a look at the following ASP.NET technologies:

❑ Cross-page posting

❑ ASP.NET compilation techniques

❑ Master page

❑ The datasource controls

❑ The new navigation system and some of the navigation server controls

❑ Membership and role management

668

Chapter 17

20_575368 ch17.qxd 10/7/05 11:07 PM Page 668

The nice thing with the features presented is that you can utilize the wizards that are built into the
underlying technology, or you can simply avoid these wizards and employ the technologies yourself.
Either way is fine. The other nice feature about the technologies introduced is that they all allow for a
huge amount of customization. You can alter the behavior and output of these technologies so that in the
end, you get exactly what you are looking for. If you want to dig deeper into ASP.NET, be sure to take a
look at Wrox’s Professional ASP.NET 2.0.

669

ASP.NET 2.0 Advanced Features

20_575368 ch17.qxd 10/7/05 11:07 PM Page 669

20_575368 ch17.qxd 10/7/05 11:07 PM Page 670

Assemblies

By now, you’ve probably developed some programs in .NET, so you’ve seen the modules pro-
duced by the .NET compilers, which have file extensions of .dll or .exe. Most .NET modules are
DLLs, including class libraries and those that serve as code-behind for ASP.NET. Windows appli-
cations, console applications, and Windows Services are examples of .NET modules that are exe-
cutables and thus have an extension of .exe.

These .NET compiled modules, both DLLs and EXEs, are referred to as assemblies. Assemblies are
the unit of deployment in .NET, containing both compiled code and metadata that is needed by
the .NET Common Language Runtime (CLR) to run the code. Metadata includes information such
as the code’s identity and version, dependencies on other assemblies, and a list of types and
resources exposed by the assembly.

Basic development in .NET doesn’t require you to know any more than that. However, as your
applications become more complex, and as you begin considering such issues as deployment and
maintenance of your code, you need to understand more about assemblies. This chapter addresses
that need. This chapter looks at:

❑ What assemblies are and how they are used

❑ The general structure of an assembly

❑ How assemblies can be versioned

❑ The Global Application Cache (GAC), including how and when to use it

❑ How assemblies are located and loaded by the CLR

Once this chapter has covered these essentials, Chapter 19 will use this information to discuss
deployment in depth.

21_575368 ch18.qxd 10/7/05 11:24 PM Page 671

Assemblies
The assembly is used by the CLR as the smallest unit for:

❑ Deployment

❑ Version control

❑ Security

❑ Type grouping

❑ Code reuse

An assembly must contain a manifest, which tells the CLR what else is in the assembly. The other ele-
ments can be any of the following three categories:

❑ Type metadata

❑ Microsoft Intermediate Language (MSIL) code

❑ Resources

An assembly can be just one file. Figure 18-1 details the contents of a single-file assembly.

Figure 18-1

Assembly.dll

Manifest

Type Metadata

MSIL Code

Resources

672

Chapter 18

21_575368 ch18.qxd 10/7/05 11:24 PM Page 672

Alternatively, the structure can be split across multiple files, as shown in Figure 18-2. This is just one
example of a multiple-file assembly configuration.

Figure 18-2

An assembly can only have one manifest section across all the files that make up the assembly. There is
nothing stopping you, however, from having a resource section (or any of the other sections of type
Metadata and MSIL code) in each of the files that make up an assembly. The ability to split an assembly
across multiple files can help with deployment and specifically on-demand downloading.

The Manifest
The manifest is the part of the assembly that contains a list of the other elements contained in the assem-
bly and basic identification information for the assembly. The manifest contains the largest part of the
information that allows the assembly to be self-describing. Elements listed in the manifest are placed in
appropriate sections. The manifest includes the sections displayed in Figure 18-3. We’ll cover these sec-
tions later in the chapter.

To look at the manifest for a particular assembly, you can use the IL Disassembler (Ildasm.exe), which
is part of the .NET Framework SDK. When Ildasm.exe loads up, you can browse for an assembly to
view by selecting Open from the File menu. Once an assembly has been loaded into Ildasm.exe, it will
disassemble the metadata contained within the assembly and present you with a tree view layout of the
data. Initially, the tree view shows only top-level elements, as illustrated in Figure 18-4.

Assembly.dll AssemblyRes.dll

Manifest Resources

Type Metadata

MSIL Code

673

Assemblies

21_575368 ch18.qxd 10/7/05 11:24 PM Page 673

Figure 18-3

Figure 18-4

The full path of the assembly you are viewing will represent the root node. You will notice that the first
node below the root is called MANIFEST and, as you’ve probably have guessed, it contains all the infor-
mation about the assembly’s manifest. If you double-click this node, a new window will be displayed,
containing the information contained within the manifest, as shown in Figure 18-5.

Identity Culture
(Optional)

Version

Strong Name
(Optional)

File List
(Optional)

Referenced
Assemblies

Custom
Assembly
Attributes
(Optional)

Description

...

Name

674

Chapter 18

21_575368 ch18.qxd 10/7/05 11:24 PM Page 674

Figure 18-5

The Identity Section
The identity section of the manifest is what is used to uniquely identify this particular assembly. This
section contains some standard information, such as the version number, and may also contain some
optional elements, such as a strong name for the assembly (which we’ll discuss below). There are certain
restrictions on the information that must appear in the identity section, depending on the type of assem-
bly. Assemblies come in two types: application-private and shared. (We will cover the differences
between the two types shortly.)

The identity section of an assembly can be found by looking for the .assembly (without a following
extern) directive in the Manifest window of Ildasm.exe. In Figure 18-5, the line that denotes the
beginning of the identity section is:

.assembly Microsoft.VisualBasic

675

Assemblies

21_575368 ch18.qxd 10/7/05 11:24 PM Page 675

From the earlier figure of the manifest, you can see that the identity section can contain a number of sub-
sections. Every assembly has a name that is declared as part of the .assembly directive; in the case of
the last line, you can see the assembly is called Microsoft.VisualBasic. The name of the assembly is
very important, because this is what the CLR uses to locate the actual file that contains the assembly. The
extension .dll is appended to the assembly name to give the name of the file that contains the assembly
manifest.

The Version Number
The identity section must also contain an entry that describes what version of the assembly it is. A ver-
sion number for an assembly is presented by the .ver directive in Ildasm.exe and by looking through
the output you can see that the Microsoft.VisualBasic assembly has a version number of 8:0:0:0, as
indicated by the following entry in the .assembly section:

.ver 8:0:0:0

As you can see, there are four parts to a version number:

Major : Minor : Build : Revision

Assemblies that have the same name but different version numbers are treated as completely different
assemblies. If you have an assembly on your machine that has a version number of 1.5.2.3 and another
version of the same assembly with a version number of 1.6.0.1, then the CLR will treat them as different
assemblies. The version number of an assembly is part of what is used to define dependencies between
assemblies.

Strong Names
The identity section can also contain an optional strong name. The strong name is not a name as such but
is, in fact, a public key that has been generated by the author of the assembly to uniquely identify the
assembly. A strong name is used to ensure that your assembly has a unique signature compared to other
assemblies that may have the same name. Strong names were introduced to combat DLL hell by provid-
ing an unambiguous way to differentiate among assemblies.

A strong name is based on public-private key encryption and creates a unique identity for your assem-
bly. You can create a key pair that is used to create a strong name by using the SN tool included in the
.NET Framework SDK (there is an example of how to do this in Chapter 21). The public key is stored in
the identity section of the manifest. A signature of the file containing the assembly’s manifest is created
and stored in the resulting PE file. The .NET Framework uses these two signatures when resolving type
references to ensure that the correct assembly is loaded at runtime. A strong name is indicated in the
manifest by the .publickey directive in the .assembly section.

The Culture
The final part of an assembly’s identity is its culture, which is optional. Cultures are used to define what
country/language the assembly is targeted for.

The combination of name, strong name, version number, and culture is used by the CLR to enforce ver-
sion dependencies. So, you could create one version of your assembly targeted at English users another
for German users, another for Finnish users, and so on.

676

Chapter 18

21_575368 ch18.qxd 10/7/05 11:24 PM Page 676

Cultures can be general as in the case of English or more specific as in the case of US-English. Cultures
are represented by a string that can have two parts to it: primary and secondary (optional). The culture
for English is en, and the culture for US-English is en-us.

If a culture is not indicated in the assembly, it is then assumed that the assembly can be used for any
culture. Such an assembly is said to be culture-neutral.

A culture can be assigned to an assembly by including the attribute AssemblyCulture from the
System.Reflection namespace in your assembly’s code (usually within the AssemblyInfo.vb file):

<Assembly: AssemblyCulture(“en”)>

The culture of an assembly is represented in the manifest by the .locale directive in the .assembly
section:

.locale = (65 00 6E 00 00 00) // e.n...

Referenced Assemblies
The next section of the manifest that you are going to look at is the referenced assemblies section. As the
name suggests, this section is where information is recorded about all the assemblies that you reference.
An assembly reference is indicated in the manifest by the use of the .assembly extern directive, as
shown in Figure 18-6.

Figure 18-6

You can see in Figure 18-6 that various pieces of information are stored about an assembly when it is ref-
erenced. The first piece of information stored is the name of the assembly. This is included as part of the
.assembly extern directive. The screenshot shows a reference to the mscorlib assembly. This name of
the reference is used to determine the name of the file that contains the implementation of the assembly.
The CLR takes the name of the assembly reference and appends .dll. So, in the last example, the CLR
will look for a file called mscorlib.dll when it resolves the type references. The assembly mscorlib is
a special assembly in .NET that contains all the definitions of the base types used in .NET and is refer-
enced by all assemblies. The process that the CLR goes through to resolve a type reference is discussed
later in this chapter.

The .publickeytoken Directive
If the assembly being referenced contains a strong name, then a hash of the public key of the referenced
assembly is stored as part of the record to the external reference. This hash is stored in the manifest using
the .publickeytoken directive as part of the .assembly extern section. The assembly reference

677

Assemblies

21_575368 ch18.qxd 10/7/05 11:24 PM Page 677

shown in Figure 18-6 contains a hash of the strong name of the mscorlib assembly. The stored hash of
the strong name is compared at runtime to a hash of the strong name (.publickey) contained within
the referenced assembly to help ensure that the correct assembly is loaded. The value of the .public
keytoken is computed by taking the lower 8 bytes of a hash (SHA1) of the strong name of the referenced
assemblies.

The .Ver Directive
The version of the assembly being referenced is also stored in the manifest. This version information is
used with the rest of the information stored about a reference to ensure that the correct assembly is loaded;
this will be discussed later. If an application references version 1.1.0.0 of an assembly, it will not load ver-
sion 2.1.0.0 of the assembly unless a version policy (discussed later) exists to say otherwise. The version of
the referenced assembly is stored in the manifest using the .ver directive as part of a .assembly extern
section.

The .Locale Directive
If an assembly that is being referenced has a culture, then the culture information will also be stored in
the external assembly reference section using the .locale directive. The combination of name, strong
name (if it exists), version number, and culture are what make up a unique version of an assembly.

Assemblies and Deployment
The information in the manifest allows reliable determination of the identity and version of an assembly.
This is the basis for the deployment options available in .NET, and for the side-by-side execution of
assemblies that helps .NET overcome DLL hell. This section looks at these issues in detail.

Application-Private Assemblies
We mentioned earlier that assemblies can be of two types. The first is an application-private assembly.
As the name implies, this type of assembly is used by one application only and is not shared. This is the
default style of assembly in .NET and is the main mechanism by which an application can be indepen-
dent of changes to the system.

Application-private assemblies are deployed into the application’s own directory. Because application-
private assemblies are not shared, they do not need a strong name. This means that, at a minimum, they
only need to have a name and version number in the identity section of the manifest. Because the assem-
blies are private to the application, the application does not perform version checks on the assemblies,
since the application developer has control over the assemblies that are deployed to the application
directory. If strong names exist, however, the CLR will check that they match.

If all the assemblies that an application uses are application-private and the CLR is already installed on
the target machine, then deployment is quite simple. Chapter 19 discusses this implication in more detail.

We’ll discuss shared assemblies and the global application cache next.

678

Chapter 18

21_575368 ch18.qxd 10/7/05 11:24 PM Page 678

Shared Assemblies
The second type of assembly is the shared assembly and, as the name suggests, this type of assembly can
be shared among several different applications that reside on the same server. This type of assembly
should only be used when it is important to share assemblies among many applications. For example, a
Windows Forms control purchased as part of a package may be used in many of your applications, and
thus it is better to install a shared version of the assembly rather than copies of it for each application.
The .NET Framework assemblies themselves are also examples of shared assemblies.

There are certain requirements that are placed upon shared assemblies. The assembly needs to have a
globally unique name, which is not a requirement of application-private assemblies. As mentioned earlier,
strong names are used to create a globally unique name for an assembly. As the assembly is shared, all ref-
erences to the shared assembly are checked to ensure the correct version is being used by an application.

Shared assemblies are stored in the (GAC), which is usually located in the assembly folder in the
Windows directory (for example in Windows XP, C:\Windows\Assembly). However, it’s not enough to
just copy an assembly into that directory. The process for placing an assembly in the GAC is similar in
concept to registering a COM DLL. That process is discussed in detail later.

No other changes to the code of the assembly are necessary to differentiate it from that of an application-
private assembly. In fact, just because an assembly has a strong name does not mean that it has to be
deployed as a shared assembly; it could just as easily be deployed in the application directory as an
application-private assembly.

Installing a shared assembly into the GAC requires administrator rights on the machine. This is another
factor complicating deployment of shared assemblies. Because of the extra effort involved in the creation
and deployment of shared assemblies, you should avoid this type of assembly unless you really need it.

The Global Assembly Cache (GAC)
Each computer that has the .NET runtime installed has a GAC. However, assemblies in the GAC are
always stored in the same folder, no matter which version of .NET you have. The folder is a subfolder
of your main Windows folder, and it is named Assembly. If you have multiple versions of the .NET
Framework, assemblies in the GAC for all of them are stored in this directory.

As previously noted, a strong name is required for an assembly placed in that GAC. That strong name is
used to identify a particular assembly in the GAC. However, another piece of metadata is also used for
verification of an assembly. When an assembly is created, a hash of the assembly is placed in the meta-
data. If an assembly is changed (with a binary editor, for example), the hash of the assembly will no
longer match the hash in the metadata. The metadata hash is checked against the actual hash when an
assembly is placed in the GAC with the gacutil.exe utility described later. If the two hash codes do
not match, the installation cannot be completed.

The strong name is also used when an application resolves a reference to an external assembly. It checks
that the public key stored in the assembly is equal to the hash of the public key stored as part of the ref-
erence in the application. If the two do not match, then the application knows that the external assembly
has not been created by the original author of the assembly.

679

Assemblies

21_575368 ch18.qxd 10/7/05 11:24 PM Page 679

You can view the assemblies that are contained within the GAC by navigating to the directory using the
Windows Explorer. This is shown in Figure 18-7.

Figure 18-7

The gacutil.exe utility that ships with .NET is used to add and remove assemblies from the GAC. To
add an assembly into the GAC using the gacutil.exe tool, use the following command line:

gacutil.exe /i myassembly.dll

Recall that the assembly being loaded must have a strong name.

To remove an assembly, use the /u option like this:

gacutil.exe /u myassembly.dll

gacutil.exe has a number of other options. You can examine them and see examples of their usage by
typing in the command:

gacutil.exe /?

680

Chapter 18

21_575368 ch18.qxd 10/7/05 11:24 PM Page 680

Versioning Issues
Although COM was a landmark achievement in Windows programming history, it left much to be
desired when it came to maintaining backward compatibility. COM used type libraries to describe its
interfaces and each interface was represented by a GUID. Each interface ID was stored in the registry
along with other related entries which made for a complex set of interrelated registry entries. The sepa-
ration between the registry entries and the actual DLL on disk made it extremely easy for things to go
wrong. A wrong registry entry or simply a mismatched GUID rendered the DLL useless.

The problem is that COM DLLs are not self-describing. They rely heavily on the registry having the cor-
rect entries. Another problem lies with the operating system not being able to best resolve differences
between different DLL versions. Prior versions of Visual Basic relied on the Server.coClass and not
the actual version of the DLL. This means it’s not possible to require a certain version of a COM DLL as
a dependency. A different DLL with the same nominal version number may be indistinguishable from
the one desired.

.NET’s versioning scheme was specifically designed to alleviate the problems of COM. The major capa-
bilities of .NET that solve versioning issues are:

❑ Application isolation

❑ Side-by-side execution

❑ Self-describing components

Application Isolation
For an application to be isolated it should be self-contained and independent. This means that the appli-
cation should rely on its own dependencies for ActiveX controls, components, or files, and not have
those files shared with other applications. The option of having application isolation is essential for a
good solution to versioning problems.

If an application is isolated, components are owned, managed by, and used by the parent application
alone. If a component is used by another application, even if it is the same version, the other application
must have its very own copy. This ensures that each application can install and uninstall dependencies
and not interfere with other applications.

The .NET Framework caters to application isolation by allowing us to create application-private assem-
blies that are for individual applications and are repeated physically on disk for each client. This means
that each client is independent from the other. This isolation works best for many scenarios. It is some-
times referred to as a “zero-impact” deployment because there is no chance of causing problems for any
other application by either installing or uninstalling such an application.

Does this sound familiar? This is what most early Windows and DOS applications
did until COM required registration of DLLs in the registry and placement of shared
DLLs in the system directory. The wheel surely does turn!

681

Assemblies

21_575368 ch18.qxd 10/7/05 11:24 PM Page 681

Side-by-Side Execution
Side-by-side execution occurs when multiple versions of the same assembly can run at the same
time. Side-by-side execution is performed by the CLR. Components that are to execute side-by-side must
be installed within the application directory or a subdirectory of it. This ensures application isolation (as
discussed earlier).

With application assemblies, versioning is not much of an issue. The interfaces are dynamically resolved
by the CLR. You can replace an application assembly with a different version, and the CLR will load it
and make it work with the other assemblies in the application, as long as the new version does not have
any interface incompatibilities. The new version may even have elements of the interface that are new
and that don’t exist in the old version (new properties or methods). As long as the existing class interface
elements used by the other application assemblies are unchanged, the new version will work fine. When
we discuss exactly how the CLR locates a referenced assembly below, you’ll see more about how this
works.

Self-Describing
In the earlier section on the manifest, the self-describing nature of .NET assemblies was mentioned.
The term self-describing means that all the information the CLR needs to know to load and execute an
assembly is inside the assembly itself.

Self-describing components are essential to .NET’s side-by-side execution. Once the extra version is
known by the CLR to be needed, everything else about the assembly needed to run side-by-side is in the
assembly itself. Each application can get its own version of an assembly, and all the work to coordinate
the versions in memory is performed transparently by the CLR.

Versioning becomes more important with shared assemblies. Without good coordination of versions,
.NET applications with shared assemblies are subject to some of the same problems as COM applica-
tions. In particular, if a new version of a shared assembly is placed in the GAC, there must be a means to
control which applications get which version of a shared assembly. This is accomplished with versioning
policy.

Version Policies
As discussed earlier, a version number comprises four parts: major, minor, build, and revision. The ver-
sion number is used as part of the identity of the assembly. When a new version of a shared assembly is
created and placed in the GAC, any of these parts can change. Which ones change affects how the CLR
views compatibility for the new assembly.

When the version number of a component only changes by its build and revision parts, it is compatible.
This is often referred to as Quick Fix Engineering (QFE). It’s only necessary to place the new assembly in
the GAC, and it will automatically be considered compatible with applications that were created to use
the older version that had different numbers for the build and revision.

If either the major or minor build number changes, however, compatibility is not assumed by the CLR.
In that case, there are manual ways to indicate compatibility if necessary, and these are covered later in
this section.

682

Chapter 18

21_575368 ch18.qxd 10/7/05 11:24 PM Page 682

When an application comes across a type that is implemented in an external reference, the CLR has to
determine what version of the referenced assembly to load. What steps does the CLR go through to
ensure the correct version of an assembly is loaded? To answer this question, you need to look at version
policies and how they affect what version of an assembly is loaded.

The Default Versioning Policy
Let’s start by looking at the default versioning policy. This policy is what is followed in the absence of any
configuration files on the machine that modify the versioning policy. The default behavior of the runtime
is to consult the manifest for the name of the referenced assembly and the version of the assembly to use.

If the referenced assembly does not contain a strong name, it is assumed that the referenced assembly is
application-private and is located in the application directory. The CLR takes the name of the referenced
assembly and appends .dll to create the file name that contains the referenced assembly’s manifest. The
CLR then searches in the application’s directory for the file name and, if it’s found, it will use the version
that was found even if the version number is different from the one specified in the manifest. Therefore,
the version numbers of application-private assemblies are not checked, because the application devel-
oper, in theory, has control over which assemblies are deployed to the application’s directory. If the file
cannot be found, the CLR will raise a System.IO.FileNotFoundException.

Automatic Quick Fix Engineering Policy
If the referenced assembly contains a strong name, the process by which an assembly is loaded is different:

1. The three different types of assembly configuration files (discussed later) are consulted, if they
exist, to see if they contain any settings that will modify which version of the assembly the CLR
should load.

2. The CLR will then check to see if the assembly has been requested and loaded in a previous call.
If it has, it will use the loaded assembly.

3. If the assembly is not already loaded, the GAC is then queried for a match. If a match is found,
then this assembly will be used by the application.

4. If any of the configuration files contains a codebase (discussed later) entry for the assembly, the
assembly is looked for in the location specified. If the assembly cannot be found in the location
specified in the codebase, a TypeLoadException is raised to the application.

5. If there are no configuration files or if there are no codebase entries for the assembly, the CLR
then moves on to probe for the assembly starting in the application’s base directory.

6. If the assembly still hasn’t been found, the CLR will ask the Windows Installer service if it has
the assembly in question. If it does, then the assembly is installed and the application uses this
newly installed assembly. This is a feature called on-demand installation.

If the assembly hasn’t been found by the end of this entire process, a TypeLoadException will be raised.

Although a referenced assembly contains a strong name, this does not mean that it has to be deployed
into the GAC. This allows application developers to install a version with the application that is known to
work. The GAC is consulted to see if it contains a version of an assembly with a higher build.revision
number to enable administrators to deploy an updated assembly without having to reinstall or rebuild the
application. This is known as the Automatic Quick Fix Engineering Policy.

683

Assemblies

21_575368 ch18.qxd 10/7/05 11:24 PM Page 683

Configuration Files
The default versioning policy described earlier may not be the most appropriate policy for your require-
ments. Fortunately, you can modify this policy through the use of XML configuration files to meet your
specific needs. There are three types of configuration files that can be created:

❑ The first is an application configuration file, and it is created in the application directory. As the
name implies, this configuration file applies to a single application only. To do this, you need to
create the application configuration file in the application directory with the same name as the
application file name and appending .config. For example, suppose that you have a Windows
Forms application called HelloWorld.exe installed in the C:\ HelloWorld directory. The
application configuration file would be: C:\HelloWorld\HelloWorld.exe.config.

❑ The second type of configuration file is called the machine configuration file. It is named
machine.config and can be found in the C:\Windows\ Microsoft.NET\ Framework
\v2.0.xxxx\ CONFIG directory. The machine.config file overrides any other configuration
files on a machine and can be thought of as containing glo.bal settings.

❑ The third type of configuration file is the security configuration file, and it contains information
regarding the code access security system. The code access security system allows you to
grant/deny access to resources by an assembly. This configuration file must be located within
the Windows directory.

The main purpose of the configuration file is to provide binding-related information to the developer or
administrator who wishes to override the default policy handling of the CLR.

Specifically, the configuration file, as it’s written in XML, has a root node named <configuration> and
must have the end node of </configuration> present to be syntactically correct.

The configuration file is divided into specific types of nodes that represent different areas of control.
These areas are:

❑ Startup

❑ Runtime

❑ Remoting

❑ Crypto

❑ Class API

❑ Security

Although all of these areas are important, in this chapter you will look only at the first two.

All of the settings that are going to be discussed can be added to the application configuration file. Some
of the settings (these will be pointed out) can also be added to the machine configuration file. If a setting
in the application configuration file conflicts with that of one in the machine configuration file, then the
setting in the machine configuration is used. When we talk about assembly references in the following
discussion of configuration settings, we are talking exclusively about shared assemblies (which implies
that the assemblies have a strong name, since assemblies in the GAC are required to have one).

684

Chapter 18

21_575368 ch18.qxd 10/7/05 11:24 PM Page 684

Startup Settings
The <startup> node of the application and machine configuration files has a <requiredRuntime>
node that specifies the runtime version required by the application. This is so because different versions
of the CLR can run on a machine side by side. The following example shows how you would specify the
version of the .NET runtime inside the configuration file:

<configuration>
<startup>

<requiredRuntime version =”2.0.xxxx” safemode =”true”/>
</startup>

</configuration>

Runtime Settings
The runtime node, which is written as <runtime> (not to be confused with <requiredRuntime>), spec-
ifies the settings that manage how the CLR handles garbage collection and versions of assemblies. With
these settings, you can specify which version of an assembly the application requires or redirect it to
another version entirely.

Loading a Particular Version of an Assembly
The application and machine configuration files can be used to ensure that a particular version of an
assembly is loaded. You can indicate whether this version should be loaded all the time or only to
replace a specific version of the assembly. This functionality is supported through the use of the
<assemblyIdentity> and <bindingRedirect> elements in the configuration file. For example:

<configuration>
<runtime>

<assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1”>
<dependentAssembly>

<assemblyIdentity name=”AssemblyName”
publickeytoken=”b77a5c561934e089”
culture=”en-us”/>

<bindingRedirect oldVersion=”*”
newVersion=”2.0.50.0”/>

</dependentAssembly>
</assemblyBindings>

</runtime>
</configuration>

The <assemblyBinding> node is used to declare settings for the locations of assemblies and redirections
via the <dependentAssembly> node and also the <probing> node (which you will look at shortly).

In the last example, when the CLR resolves the reference to the assembly named AssemblyName, it will
load version 2.0.50.0 instead of the version that appears in the manifest. If you would like to only load
version 2.0.50.0 of the assembly when a specific version is referenced, then you can replace the value of
the oldVersion attribute with the version number that you would like to replace (for example, 1.5.0.0).
The publickeytoken attribute is used to store the hash of the strong name of the assembly to replace.
This is used to ensure that the correct assembly is identified. The same is true of the culture attribute.

685

Assemblies

21_575368 ch18.qxd 10/7/05 11:24 PM Page 685

Defining the Location of an Assembly
The location of an assembly can also be defined in both the application and machine configuration files.
You can use the <codeBase> element to inform the CLR of the location of an assembly. This enables you
to distribute an application and have the externally referenced assemblies downloaded the first time
they are used. This is called on-demand downloading. For example:

<configuration>
<runtime>

<assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1”>
<dependentAssembly>

<assemblyIdentity name=”AssemblyName”
publickeytoken=”b77a5c561934e089”
culture=”en-us”/>

<codeBase version=”2.0.50.0”
href=”http://www.wrox.com/AssemblyName.dll/>

</dependentAssembly>
</assemblyBindings>

</runtime>
</configuration>

From the previous example, you can see that whenever a reference to version 2.0.50.0 of the assembly
AssemblyName is resolved (and the assembly isn’t already on the users computer), the CLR will try to
load the assembly from the location defined in the href attribute. The location defined in the href
attribute is a standard URL and can be used to locate a file across the Internet or locally.

If the assembly cannot be found or the details in the manifest of the assembly defined in the href
attribute do not match those defined in the configuration file, the loading of the assembly will fail and
you will receive a TypeLoadException. If the version of the assembly in the preceding example is actu-
ally 2.0.60.0, then the assembly will load, because the version number is only different by build and revi-
sion number.

Providing the Search Path
The final use of configuration files that you will look at is that of providing the search path for use when
locating assemblies in the application’s directory. This setting only applies to the application configura-
tion file. By default, the CLR will only search for an assembly in the application’s base directory — it will
not look in any subdirectories. You can modify this behavior by using the <probing> element in an
application configuration file. For example:

<configuration>
<runtime>

<assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1”>
<probing privatePath=”regional”/>

</assemblyBinding>
</runtime>

</configuration>

The privatePath attribute can contain a list of directories relative to the application’s directory (sepa-
rated by a semicolon) that you would like the CLR to search in when trying to locate an assembly. The
privatePath attribute cannot contain an absolute pathname.

686

Chapter 18

21_575368 ch18.qxd 10/7/05 11:24 PM Page 686

As part of an assembly reference being resolved, the CLR will check in the application’s base directory
for it. If it cannot find it, it will look through in order all the subdirectories specified in the privatePath
variable, as well as looking for a subdirectory with the same name as the assembly. If the assembly being
resolved is called AssemblyName, the CLR will also check for the assembly in a subdirectory called
AssemblyName, if it exists.

This isn’t the end of the story, though. If the referenced assembly being resolved contains a culture set-
ting, the CLR will also check for culture-specific subdirectories in each of the directories it searches in.
For example, if the CLR is trying to resolve a reference to an assembly named AssemblyName with a
culture of en and a privatePath equal to that in the last example, and the application being run has a
home directory of C:\ExampleApp, the CLR will look in the following directories (in the order they are
shown):

❑ C:\ ExampleApp

❑ C:\ ExampleApp \ en

❑ C: \ ExampleApp\ en\ AssemblyName

❑ C: \ ExampleApp\ regional\ en

❑ C: \ ExampleApp\ regional\ en\AssemblyName

As you can see, the CLR can probe quite a number of directories to locate an assembly.

When an external assembly is resolved by the CLR, it consults the configuration files first to see if it
needs to modify the process by which it resolves an assembly. As discussed, the resolution process can
be modified to suit your needs.

Dynamic Loading of Assemblies
The discussion above about locating and loading assemblies refers to assemblies that are known at com-
pile time through the application’s references. There is an alternative method of locating and loading an
assembly that is useful for certain scenarios.

In this technique, the location of the assembly is supplied by the application, using a URL or file name.
The normal rules for locating the assembly do not apply — only the location specified by the application
is used.

The location is just a string variable, and so it may come from a configuration file or database. In fact, the
assembly to be loaded may be newly created, and perhaps did not even exist when the original applica-
tion was compiled. Because the information to load the assembly can be passed into the application on
the fly at runtime, this type of assembly loading is called dynamic loading.

The Assembly Class
References to assemblies, and operations to be performed on assemblies in code are mostly contained in
a .NET Framework class called the Assembly class. It is part of the System.Reflection namespace. In

687

Assemblies

21_575368 ch18.qxd 10/7/05 11:24 PM Page 687

the code examples that follow, assume that the following Imports statement is at the top of the code
module:

Imports System.Reflection

The Assembly class has a shared method called LoadFrom, which takes a URL or file name, and returns
a reference to the assembly at that location. Here’s a code example of LoadFrom in action:

Dim asmDynamic As [Assembly]
asmDynamic = [Assembly].LoadFrom(“http://www.dotnetmasters.com/loancalc2.dll”)

The brackets around Assembly are needed because it is a reserved keyword in Visual Basic. The brackets
indicate that the word applies to the Assembly class, and the keyword is not being used.

After these lines are executed, the code contains a reference to the assembly at the given location. That
allows other operations on the assembly to take place. One such operation is to get a reference to a par-
ticular type (which could be a class, structure, or enumeration) in the assembly. The reference to a type
is needed to instantiate the type when an assembly is loaded dynamically. The GetType method of the
Assembly class is used to get the reference, using a string that represents the identification of the type.
The identification consists of the full namespace path that uniquely identifies the type within the current
application.

For example, suppose that you wanted to get an instance of a certain form that was in the assembly, with
a namespace path of MyProject.Form1. The following line of code would get a reference to the type for
that form:

Dim typMyForm As Type = formAsm.GetType(“MyProject.Form1”)

The type reference can then be used to generate an instance of the type. To do this you need another
class in System.Reflection called the Activator class. This class has a shared method called
CreateInstance, which takes a type reference, and returns an instance of that type. (If you are familiar
with Active Server Pages and older versions of Visual Basic, CreateInstance is functionally similar to
the CreateObject function in those environments.) You could, thus, get an instance of the form with
these lines:

Dim objForm As Object
objForm = Activator.CreateInstance(typeMyForm)

CreateInstance always returns a generic object. That means it may be necessary to coerce the returned
reference to a particular type to gain access to the type’s interface. For example, assuming that you
knew the object was actually a Windows Form, you could coerce the instance above into the type of
System.Windows.Forms.Form and then do normal operations that are available on a form:

Dim FormToShow As Form = CType(objForm, System.Windows.Forms.Form)
FormToShow.MdiParent = Me
FormToShow.Show()

At this point, the form will operate normally. It will behave no differently from a form that was in a ref-
erenced assembly.

688

Chapter 18

21_575368 ch18.qxd 10/7/05 11:24 PM Page 688

If the newly loaded form needs to load other classes that are in the dynamic assembly, nothing special
needs to be done. For example, suppose that the form just shown needs to load an instance of another
form, named Form2, that resides in the same dynamically loaded assembly. The standard code to instan-
tiate a form will work fine. The CLR will automatically load the Form2 type because it already has a ref-
erence to the assembly containing Form2.

Furthermore, suppose that the dynamically loaded form needs to instantiate a class from another DLL
that is not referenced by the application. For example, suppose that the form needs to create an instance
of a Customer object, and the Customer class is in a different DLL. As long as that DLL is in the same
folder as the dynamically loaded DLL, the CLR will automatically locate and load the second DLL.

Putting Assemblies to Work
The previous code examples include hard-coded strings for the location of the assembly and the identifi-
cation of the type. There are uses for such a technique, such as certain types of Internet deployment of an
application. However, when using dynamic loading, it is common for these values to be obtained from
outside the code. For example, a database table or an XML-based configuration file can be used to store
the information.

This enables you to add new capabilities to an application on the fly. A new assembly with new func-
tionality can be written, and then the location of the assembly and the identity of the type to load from
the assembly can be added to the configuration file or database table.

Unlike application assemblies automatically located by the CLR, which must be in the application’s direc-
tory or a subdirectory of it, dynamically loaded assemblies can be anywhere the application knows how
to get to. Possibilities include:

❑ A Web site (as in the example above)

❑ A directory on the local machine

❑ A directory on a shared network machine

However, the security privileges available to code do vary, depending on where the assembly was
loaded from. Code loaded from a URL via HTTP, as shown earlier, has a very restricted set of privileges
by default compared to code loaded from a local directory. Chapter 13 has details on code access secu-
rity, default security policies, and how default policies can be changed.

Summary
Assemblies are the basic unit of deployment and versioning in .NET. Simple applications can be written
and installed without knowing much about assemblies. More complex applications require an in-depth
understanding of the structure of assemblies, the metadata they contain, and how assemblies are located
and loaded by the CLR.

You have looked at how the identity of an assembly is used to allow multiple versions of an assembly to
be installed on a machine and run side by side. This chapter covered how an assembly is versioned, and
the process by which the CLR resolves an external assembly reference and how you can modify this pro-
cess through the use of configuration files.

689

Assemblies

21_575368 ch18.qxd 10/7/05 11:24 PM Page 689

You also looked at how an assembly stores information such as version number, strong name, and cul-
ture about any external assemblies that it references. You also saw how this information is checked at
runtime to ensure that the correct version of the assembly is referenced and how you can use versioning
policies to override this in the case of a buggy assembly. The assembly is the single biggest aid in reduc-
ing the errors that can occur due to DLL hell and in helping with deployment.

The chapter also discussed the capability to load an assembly dynamically, based on a location that is
derived at runtime. This capability is useful for some special deployment scenarios, such as simple
Internet deployment.

Understanding all these elements helps you understand how to structure an application, when and how
to use shared assemblies, and the deployment implications of your choices for assemblies.

Simple applications are usually done with no strong names or shared assemblies, and all assemblies for
the application are deployed to the application directory. Versioning issues are rare as long as class inter-
faces are consistent.

Complex applications may require shared assemblies to be placed in the GAC, which means that those
assemblies must have strong names, and you must control your version numbers. You also need to
understand your options for allowing an application to load a different version of an assembly than the
one it would load by default, or to load assemblies dynamically using an application-specific technique
to determine the assembly’s location. This chapter has covered the basics for all of these needs.

690

Chapter 18

21_575368 ch18.qxd 10/7/05 11:24 PM Page 690

Deployment

.NET has many effects on how we create and use software. Some of the most dramatic changes are
in the area of deployment. .NET offers a host of deployment options that were not available for
older, COM-based software. These options completely change the economics of deployment. The
changes are so important that they can even alter the preferred architecture for a system written
in .NET.

As experienced developers know, deployment is the process of taking an application that has been
developed and placing it in the production environment in which it will be used. This can include
many steps. Setting up databases, placing software in appropriate directories on servers, and con-
figuring options for a particular installation are some of the actions that fall under the deployment
category.

But deployment is not just concerned with the initial process of getting an application up and run-
ning. Deployment also includes handling of changes and upgrades to the application. Depending
on the application and the number of users, dealing with these maintenance tasks can be far more
complex than the initial installation of the application.

This chapter is going to look at what VS.NET and the CLR have to offer to help in deployment of
applications. Now that you understand assemblies (covered in the previous chapter), we are going
to start discussing the problems that occur when you deploy applications, along with a number of
terms that are used when talking about application deployment. You will then move to look at
what the CLR contains that helps alleviate some of the deployment issues discussed previously.
The remainder of the chapter covers:

❑ Creating deployment projects in VS.NET, which allow initial installation of applications

❑ Deployment of the .NET Framework itself on systems where it does not already reside

❑ Updating applications on servers, including components and ASP.NET applications

❑ Installing and updating Windows Forms applications on client machines

22_575368 ch19.qxd 10/7/05 11:13 PM Page 691

This last subject covers the most common options for client deployment, including a new deployment
technology in Visual Studio 2005 and .NET Framework 2.0 called ClickOnce.

Deployment in .NET is a huge topic and we can’t hope to cover every aspect in the pages that we have
for this chapter. What this chapter should give you is an understanding of, a basic knowledge of, and the
desire to learn more about the options available to you.

Application Deployment
This section begins by discussing the main issues associated with application deployment and defining a
few common terms that are used. It then moves on to discuss the deployment options available prior to
.NET. Hopefully, this will give you an understanding of the issues to be overcome when considering
deployment in .NET.

In the context of this chapter, application deployment includes two principle functions:

❑ The process of taking an application, packaging it up, and installing it on another machine

❑ The process of updating an application that has already been installed with new or changed
functionality

Deployment can, in some cases, also include placing the .NET Framework itself on a particular machine.
This task will be broken out as a separate task for this chapter. We will assume for most of the chapter
that the .NET Framework is installed on any machines in question. During the discussion of creating
deployment projects, we will discuss what to do if the .NET Framework is not available on a system.

Why Is Deployment Easier in .NET?
Pre-.NET applications for Microsoft Windows were typically based on a technology called COM. While
COM had many interesting benefits as a development platform, its most significant weak point was
deployment. All components in a COM environment had to be registered, which means that they had a
record embedded in the local machine’s registry to assist in identifying and locating the component.

COM components also had inflexible versioning capabilities, which resulting in the possibility that two
versions that were both needed by applications could not simultaneously be available on the same
machine. As mentioned previously, the versioning requirements of COM led to a condition colloquially
referred to as DLL hell.

DLL Hell
What does DLL hell mean? The term is actually used to describe a number of problems that can arise
when multiple applications share a common component. The common component is usually a .dll or a
COM component. The problems usually arise for one of three following reasons:

❑ The first common cause of DLL hell is installing a new application that overwrites a shared
component with a version that is not compatible with the version that already resides on the
computer. Any applications that relied on the previous version of the component could well be
rendered unusable. This often occurrs when installing an application that overwrites a system

692

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 692

file (for example, MFC42.dll) with an older version. Any application that relied on the func-
tionality of the newer version will stop working. When installing an application on the com-
puter, the installer should check that it is not overwriting a newer version of the component.
However, not all installations do this check.

❑ The second cause is installing a new version of a shared component that is binarily compatible
(the public interface matches exactly) with the previous version, but in which, when updating
the functionality, a new bug has been introduced into the component that could cause any
application that depends on the component to misbehave or stop working. This type of error
can be very hard to diagnose.

❑ The third common cause is an application that uses a feature of a common component that is
actually an undocumented and unexpected behavior in the component: a side effect. When this
shared component is updated with a newer version, the side effect may well have disappeared,
breaking any applications that depended on it. There are many undocumented API calls avail-
able in DLLs; the problem is that, because they are undocumented, they may well disappear in
a subsequent version without warning.

As the discussion indicates, DLL hell can be caused by a variety of reasons and the effects can be wide
ranging. Applications may stop working, but worse still, it could introduce subtle bugs that may lie
undetected for some time. It may be some time before you realize an application has stopped working,
which can make it significantly harder to detect the cause of the problem.

Microsoft has tried to address some of these issues with the latest versions of Windows by introducing
Windows File Protection and private DLLs:

❑ As the name suggests Windows File Protection is a mechanism by which the OS protects a list of
system DLLs from being overwritten with a different version. Normally, only service packs and
other OS updates can update the DLLs that are protected, although this can be overridden by
changing some registry keys. This should reduce some of the causes of DLL hell that are caused
by the overwriting of system DLLs.

❑ The second feature introduced is that of private DLLs. Private DLLs are used by one particular
application only and are not shared among different applications. If an application relies on a
specific version of a .dll file or COM component, then it can be installed in the application direc-
tory and a .local file created in the directory to inform that OS to look for private DLLs first and
then move on to look for shared DLLs.

However, while these capabilities have helped, DLL hell and the need for component registration still
cause COM applications to be difficult and expensive to deploy and maintain. One of the primary goals
in designing .NET was to overcome these COM deployment drawbacks. All versions of .NET include
features to simplify deployment, including two key ones — eliminating registration and side-by-side
execution of DLLs.

No Registration in .NET
As covered in the previous chapter, assemblies in .NET are self-describing. All the information needed
to execute an assembly is normally contained in the assembly itself. Thus, there is no need to place any
information in the Windows registry. As long as the CLR can locate an assembly needed by an applica-
tion (the process of location was discussed in the previous chapter), then the assembly can be run.

693

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 693

Side-by-Side Execution
Multiple versions of an assembly can be executed by .NET, even if they have exactly the same interface
and nominal version number. The previous chapter explained why this is true. The implication for
deployment is that each application can deploy the assemblies it needs and be assured that there will
be no conflict with the assemblies needed by other applications.

These .NET capabilities, thus, allow many deployment possibilities, from simple to complex. Let’s start
by looking at the simplest method of deployment, which harkens back to the days of DOS — XCOPY
deployment.

XCOPY Deployment
The term XCOPY deployment was coined to describe an ideal deployment scenario. Its name derives from
the DOS xcopy command that is used to copy an entire directory structure from one location to another.
XCOPY deployment relates to a scenario where all you have to do to deploy an application is to copy the
directory (including all child directories) to the computer that you would like to run the program.

Why can’t you use XCOPY deployment at present for older Windows applications? The main reason is
that installing an application currently is a multistep process. First, the component needs to be copied
to the machine, and then the component must be registered on the machine, creating a dependency
between the component and the registry. The application requires the entry in the registry to activate the
component. Because of this coupling between the component and the registry, it is not possible to install
the component simply by copying it from one machine to another.

All but the simplest of applications also require other dependencies (such as databases, message queues,
document extensions) to be created on the new computer. The CLR tries to overcome the problem of the
coupling between the registry and components, but at present it cannot help with the dependencies that
are required by more advanced applications. You are closer to XCOPY deployment with .NET, and in
some cases you may actually be able to achieve a form of it.

Using the Windows Installer
Microsoft introduced the Windows Installer service as part of Windows 2000 as a way to simplify installa-
tion of applications. Although the Windows Installer service was released as part of Windows 2000,
it can also be installed on previous versions of Windows and is automatically installed with several
Microsoft applications (such as Microsoft Office). The Windows Installer service is what Microsoft calls
an operating system component. The service implements all the required rules that a setup needs (for
instance, do not overwrite a system file with an older version).

Instead of creating an executable that contains all the rules to install the application, you create a file,
called a Windows Installer package file, which describes what needs to be done to install your application.
Such files have an extension of .msi, which is an acronym derived from “Microsoft Installer.”

An application is described in the resulting Windows Installer package as being made up of three parts:
components, features, and products. Each part is made up of any number of the previous parts. For
example, a product is made up of several features, and a feature may contain one or more components.
The component is the smallest part of the installation and contains a group of files and other resources

694

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 694

that need to be installed together. You will not be going into the underlying details of the Windows
Installer architecture. If you are interested then you should take a look at the Windows Installer SDK
documentation on MSDN.

The files that make up a product can be packaged externally in a number of cabinet files or the files can
be packaged up into the resultant .msi file. As you will see later, there are a number of options within the
deployment project templates that allow you to specify how the product’s files are packaged. When the
user requests that a particular application be installed he or she can just double-click the .msi file
(assuming the Windows Installer service is installed). If the Windows Installer service is not installed
there is usually a Setup.exe file that will install the Windows Installer service first. The service will
read the file and determine what needs to be done (such as which files need to be copied and where they
need to be copied to) to install the application. All the installation rules are implemented centrally by the
service and do not need to be distributed as part of a setup executable. The Windows Installer package
file contains a list of actions (such as copy file mfc40.dll to the windows system folder) and what rules need to
be applied to these actions. It does not contain the implementation of the rules.

The Windows Installer service also provides a rich API that developers can use to include features, such
as on-demand installing, into their applications. One of the biggest complaints about previous installers
is that if the installation fails, the user’s computer is often left in an unstable state. The Windows Installer
service overcomes this by providing a rollback method. If the installation fails for some reason, the
Windows Installer service will rollback the computer to its original state, so you could say that the instal-
lation is transactional.

You can manually create a Windows Installer package file using the Windows Installer SDK tools.
However, this is not very user-friendly, so Microsoft integrated creation of MSI files into the develop-
ment environment. Three out of the four actual deployment/setup templates in VS.NET use Windows
Installer technology. You will look at these in more detail later in the chapter.

Once an MSI file has been created for an application, the application can be installed by merely double-
clicking on the MSI file in Windows Explorer. The Windows Installer will take over and use the MSI file
to determine what steps are needed for application installation.

Since projects installed with the Windows Installer may have registry entries, file extension associations,
and other changes to a user’s configuration, the actions of the Windows Installer may be monitored by
programs such anti-spyware. It is often helpful to inform the user performing the install that such instal-
lation actions may be questioned by other programs, and that they should allow the installation to pro-
ceed or the resulting installation may not be complete.

Let’s take a look at the deployment project templates that are available within VS.NET and see how they
can create MSI files for easy installation of an application.

Visual Studio .NET Deployment Projects
VS.NET provides a set of project templates that can be used to help package your application and
deploy it. Most of these templates use Windows Installer technology. We will start by taking a look at
the different templates and what they should be used for, after which we will take a practical look at
their creation.

695

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 695

Project Templates
Visual Studio .NET includes five project templates that can be used for setup and deployment in .NET.
Before we discuss the project templates, we need to define the difference between setup and deploy-
ment. A setup is an application/process that you use to package your application and that provides an
easy mechanism by which it can be installed on another machine. Deployment is the process of installing
an application on another machine, usually through a setup application/process.

The five project templates available within VS.NET can be created by the same means as any other project
in VS.NET, by using the New Project dialog box, as shown in Figure 19-1.

Figure 19-1

As you can see from the Figure 19-1, you need to select the Other Project Types node and then the Setup
and Deployment Projects node from the tree view of project types on the left of the dialog box. Of the six
available project templates there are four actual project templates:

❑ CAB Project

❑ Merge Module Project

❑ Setup Project

❑ Web Setup Project

❑ Smart Device CAB Project

696

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 696

and one wizard (called the Setup Wizard) that can be used to help create any of the project templates
listed except the Smart Device CAB Project.

Let’s now consider each of the project types in turn.

The Cab Project Template
As its name implies, the Cab Project template is used to create a cabinet file. A cabinet file (.cab) can con-
tain any number of files. It is usually used to package components into a single file that can then be
placed on a Web server so that the cab file can be downloaded by a Web browser.

Controls hosted within Internet Explorer are often packaged into a cabinet file and a reference added to
the file in the Web page that uses the control. When Internet Explorer encounters this reference, it will
check that the control isn’t already installed on the user’s computer, at which point it will download the
cabinet file, extract the control, and install it to a protected part of the user’s computer.

You can compress cabinet files to reduce their size and consequently the time it takes to download them.

The Merge Module Project Template
The Merge Module Project template is used to create a merge module, which is similar to a cabinet file in
that it can be used to package a group of files. The difference is that a merge module file (.msm) cannot
be used by itself to install the files that it contains. The merge module file created by this project tem-
plate can be used within another setup project.

Merge modules were introduced as part of the Microsoft Windows Installer technology to enable a set
of files to be packaged up into an easy to use file that could be reused and shared between Windows
Installer–based setup programs. The idea is to package up all the files and any other resources (for exam-
ple, registry entries, bitmaps, and so on) that are dependent on each other into the merge module.

This type of project can be very useful for packaging a component and all its dependencies. The result-
ing merge file can then be used in the setup program of each application that uses the component. This
allows applications such as Crystal Reports to have a prepackaged deployment set that can be integrated
into the deployment of other applications.

Microsoft suggests that a merge module should not be modified once it has been distributed, which
means a new one should be created. The notion of packaging everything up into a single redistributable
file can help alleviate the issues of DLL hell, because the package contains all dependencies.

The Setup Project Template
The Setup Project template is used to create a standard Windows Installer setup for an application. This
type of project will probably be familiar to you if you have used the Visual Studio Installer add-on for
Visual Studio 6. The Setup Project template can be used to create a setup package for a standard
Windows application, which is normally installed in the Program Files directory of a user’s computer.

The Web Setup Project Template
The Web Setup Project template is used to create a Windows Installer setup program that can be used to
install a project into a virtual directory of a Web server. It is intended to be used to create a setup program
for a Web application, which may contain ASP.NET Web Forms or Web Services that must be exposed to
the Web.

697

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 697

The Smart Device CAB Project Template
The Smart Device CAB Project template is used to create a CAB file for an application that runs on a
device containing the .NET Compact Framework, such as a PocketPC device. Such applications are often
referred to a “mobile applications”, and have many capabilities and limitations that do not apply to
other .NET-based applications. This book does not discuss mobile applications, so we will not discuss
this template type any further.

The Setup Wizard
The Setup Wizard can be used to help guide you through the creation of any of the previous setup and
deployment project templates except the Smart Device CAB template. The steps that the wizard displays
to you depend on whether the wizard was started to add a project to an existing solution or started to
create a totally new project.

Creating a Deployment Project
A deployment project can be created in exactly the same way as any other project in Visual Studio 2005
by using the New ➪ Project option from the File menu or by using the New Project button on the Visual
Studio start page.

You can also add a deployment project to an existing solution by using the Add Project item from the
File menu. You will then be presented with the Add New Project dialog box, where you can select a
deployment template.

Walkthroughs
Now that you have looked at how you can create a deployment project, the next two sections are going
to contain practical walkthroughs of the creation of two deployment projects. The two walkthroughs are
going to cover:

❑ A Windows application

❑ An ASP.NET Web application

Each these scenarios details a different deployment project template. They have been chosen because
they are the most common deployment scenarios. You can use the walkthroughs and apply or modify
them to your own needs. You will not use the wizard to create the deployment projects in the walk-
throughs, so that you will be able to understand what is required to create a deployment project. The
wizard can be used to help guide you through the creation of a deployment project and, therefore, hides
from you some of the necessary background steps. However, the wizard can be very useful in providing
the base for a deployment project.

A Windows Application
The first deployment scenario that you are going to look at is that of a Windows application where a
user installs and runs an application on his local machine. In deploying this application, you will need to
ensure that everything the application needs is distributed with the application’s executable. This type
of deployment scenario is one of the most typical that you will come across.

698

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 698

In this deployment scenario, the package needs to be created in such a way that it will guide the user
through the process of installing the application on his or her machine. The best deployment template
for this scenario is the Setup Project, and this is what you will be using throughout this section.

Before getting into the specifics of this project type, you need to create an application that will serve as
the desktop application you want to deploy. For this example, you are going to use the Windows appli-
cation project type. Create a new project, and choose Windows Application from the list of available
Visual Basic project templates. Name the project “SampleForDeployment”.You will not add any code to
the project and will use it just as the new project wizard originally created it. Following this, you should
have a solution with just one project.

After this, add a new project to the solution and choose Setup Project from the list of available Setup and
Deployment Project templates. You will now have a Visual Studio solution containing two projects, as
shown in Figure 19-2.

Figure 19-2

The deployment project does not contain any files at present, just a folder called Detected Dependencies,
which is discussed later. Notice also the buttons that appear along the top of Solution Explorer. These are
used to access the editors of this deployment project template and will be discussed later in this chapter.

Next, you need to add files to the setup project, and in particular you need to add the file created by the
Windows application project. You can add files to the setup deployment project in two ways. The first is
to make sure the setup project is the active project and then choose the Add Item from the Project menu.
The second method is to right-click the setup project file in Solution Explorer and choose Add from the
pop-up menu. Both these methods enable you to choose from one of four options:

❑ If you select File from the submenu, you will be presented with a dialog box that will allow you
to browse for and select a particular file to add to the setup project. This method is sufficient if
the file you are adding is not the output from another project within the solution. This option is
very useful in Web setup projects, because it allows you include external business components
(if they are used) and so on.

699

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 699

❑ The Merge Module option allows you to include a merge module in the deployment project. If
you select this option, you will be presented with a dialog box that you can use to browse for
and select a merge module to include in your project. Third-party vendors can supply merge
modules or you can create your own with Visual Studio.

❑ The Assembly option can be used to select a .NET component (assembly) to be included in the
deployment project. If you select this option, you will be presented with a window that you can
use to select an assembly to include from those that are installed on your machine.

❑ If the deployment project is part of a solution (as in this walkthrough), you can use the Project ➪

Add ➪ Project Output submenu item. As the name implies, this allows you to add the output
from any of the projects in the solution to the setup project.

You want to add the output of the Windows application project to the setup project. Select the Project
Output menu item to bring up the dialog box (shown in Figure 19-3) that will enable you to accomplish
this task.

The Add Project Output Group dialog box is split into several parts:

❑ The combo box at the top contains a list of the names of all the nondeployment projects in the
current solution. In your case there is only one project — SampleForDeployment.

❑ Below the combo box is a list box containing all the possible outputs from the selected project. If
you click a possible output, a description of the selected output appears in the Description box
at the bottom. You are interested in the Primary output, so make sure that this is selected. The
different types of output are summarized in the following table.

❑ Below the list of possible outputs is a combo box that allows you to select the configuration to
use for the selected project. You will use the (Active) option, because this will use whatever con-
figuration is in effect when the project is built. The combo box will also contain all the possible
build configurations for the selected project.

Click OK to return to the solution.

Project Output Description

Primary output The primary output of a project is the resulting DLL or EXE that is pro-
duced by building the particular project.

Localized resources The localized resource of a project is a DLL that contains only resources.
The resources within the DLL are specific to a culture or locale. This is
often called a satellite DLL.

Debug Symbols When the particular project in question is compiled a special file is cre-
ated that contains special debugging information about the project.
These are called debug symbols. The debug symbols for a project have the
same name as the primary output but with an extension of .pdb. The
debug symbols provide information to a debugger when an application
is being run through it.

Content Files ASP.NET Web applications have content files that are part of the Web
site, such as HTLM files, images files, and so forth. This option allows
inclusion of such content as part of a deployment.

700

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 700

Project Output Description

Source Files This will include all the source files for the selected project including the
project file. The solution file is not included.

Documentation Files Source code for a project may contain comments that are formatted so
that documentation in an XML format can automatically be produces.
This option accesses those XML documentation files.

XML Serialization A project may contain XML schemas. If so, assemblies can be generated
Assemblies that contain classes based on those schemas. This option includes those

assemblies.

Now, not only has the output from the Windows application been added to the Setup project, but the
Detected Dependencies folder also contains an entry.

Figure 19-3

Whenever you add a .NET component to this deployment project, its dependencies are added to this
folder. The dependencies of the dependencies will also be added and so on until all the required files
have been added. This functionality has been included to help ensure that all the dependencies of an
application are deployed along with the application. The files listed in the Detected Dependencies folder
will be included in the resulting setup and, by default, will be installed into the application’s directory as
application-private assemblies. This is shown in Figure 19-4. This default behavior helps reduce the pos-
sible effects of DLL hell by making the application use its own copies of dependent files.

701

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 701

Figure 19-4

If you do not want a particular dependency file to be included in the resulting setup, you can exclude it
by right-clicking the particular entry under Detected Dependencies and selecting Exclude from the pop-
up menu. The dependency will then have a small “circle and slash” icon before its name to indicate that
it has been excluded. This does not apply, however to the .NET Framework dependency. Ith is handled
in a special way,, as you will see later in the chapter.)

Dependencies can also be excluded by selecting the particular dependency and using the Properties win-
dow to set the Exclude property to True. The listed dependencies will be refreshed whenever a .NET file
is added to or removed from the setup project taking into account any files that have already been excluded.

You may decide that you want to exclude a detected dependency from the setup of an application
because you know that the dependency is already installed on the target computer. This is fine if you
have tight control over what is installed on a user’s machine. If you don’t and you deploy the applica-
tion with the missing dependency, your application could well be rendered unusable. In the previous
screenshot you can see that there is one entry in the folder. The Microsoft .NET Framework entry is
a merge module dependency. As mentioned previously, a merge module is used to package a group of
files that are dependent on each other. This merge module contains a redistributable version of the CLR
and will be installed on the user’s computer when the installation is run. All dependencies must have a
complete installation package that will be integrated into your project’s deployment package, and that is
normally accomplished with a merge module.

You can select an item in the setup project in Solution Explorer and that particular item’s properties will
be displayed in the Properties window. For example, if you select the root node of the setup project
(Setup), the Properties window will change to show you the details of the setup project.

As with any other project in VS.NET, there are a set of project properties that can also be modified. The
project properties are accessed by right-clicking the project file and choosing Properties from the pop-up
menu. These properties will be covered later.

We are not going to include a discussion of every single property of all the different project items,
because this would probably fill a whole book. Instead, we will take a look at the properties from the

702

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 702

root setup node and each of the two different project items. We are going to start with the root setup
node (Setup). Before we start the discussion, make sure that the node is selected and take some time to
browse the list of available properties. The root setup node represents the resulting output from this
deployment project type: Windows Installer package (.msi). Therefore, the Properties window contains
properties that will affect the resulting .msi that is produced.

Properties of the Root Setup Node
The first property you are going to look at is ProductName. This property, as the name tells you, is used
to set the textual name of the product that this Windows Installer package is installing. By default, it is
set to the name of the setup project (in this case Setup1). The value of this property is used throughout
the steps of the resulting setup. For instance, it is used for the text of the title bar when the resulting .msi
file is run. The property is used along with the Manufacturer property to construct the default installa-
tion directory:

C:\ProgramFiles\<Manufacturer>\<ProductName>

The ProductName property is also used by the Add/Remove Programs control panel applet (see Figure
19-5) to show that the application is installed.

Figure 19-5

From the screenshot in Figure 19-5, you can see there is a link that you can click to get support informa-
tion about the selected application. That link yields a dialog similar to the one in Figure 19-6.

Figure 19-6

703

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 703

A number of the properties of the setup project can be used to customize the support information that is
shown. The following table contains details of how the properties relate to the support information that
is shown.

Support Related Properties Description
Information

Publisher Manufacturer The Manufacturer property is used to help create the
default installation directory for the project and pro-
vide a textual display of the manufacturer of the appli-
cation contained within the Windows Installer package.

Version ManufacturerUrl This property is used in conjunction with the Manu-
facturer property to make a hyperlink for the Pub-
lisher part of the support information. If a value is
entered, the name of the Publisher will be underlined,
which can then be clicked to allow you to visit the
publisher’s Web site. If a value is not included the pub-
lisher’s name does not act as a hyperlink.

Version This is the version number of the Windows Installer
package. It can be changed to match the version num-
ber of the application that the package installs. But this
has to be done manually.

Contact Author This property is used to hold the name of the company/
person that created the Windows Installer package. By
default this has the same value as the Manufacturer
property.

Support SupportPhone This property can be used to provide a support
Information telephone number for the application.

SupportUrl This property can be used to provide a URL for the
product’s support Web site. The value of this property
will be represented as a hyperlink in the support infor-
mation window.

Comments Description This property can be used to include any information
that you would like to appear in the support informa-
tion window. For instance, it could be used to detail
the opening hours of your support department.

The next property to look at for the root setup node is called AddRemoveProgramsIcon. As you can
probably guess, this property enables you to set the icon that appears in the Add/Remove Programs
control panel applet for the application contained within this Windows Installer package. You can select
(None) from the drop-down list, which means that you do not want to change the icon, and the default
icon will be used. Alternatively, you have the option to (Browse) for an icon, which brings up a window

704

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 704

that allows you to find and select the particular icon you would like to use. You do not have to use a
stand-alone icon file; you can use an icon from an executable or DLL that is contained within the project.
The last option, the Icon option is used when an icon has been selected and will then be used in the
Add/Remove Programs list.

The remainder of the properties for the root setup node are summarized in the following table.

Property Description

DetectNewer If this property is set to True and a newer version of the application is
InstalledVersion found on the machine, then the installation will not continue. If the prop-

erty is set to False, then this check will not occur, and the application will
install even if there is a newer version on the computer already.

Keywords This property enables you to set a number of keywords that can be used to
locate this installer.

Localization This property is used to set which locale this installer has been designed to
run in. The values of this property will affect what string resources are
used within the installation.

ProductCode This property is a GUID that is used to uniquely identify the particular
version of the application contained within it.

RemovePrevious If this property is set to True and an older version of the application is
Version found on the machine, then the installation will remove the old version

and continue on with the installation. If the property is set to False then
this check is not done.

SearchPath This property is used to specify a search path that VS.NET uses when it
builds the setup project and needs to find the detected dependencies.

Subject This property is used to provide an additional text string of what the
installation is used for.

Title This property is used to set the textual title of the application that is
installed. By default, this property will have the same name as the setup
project.

Upgrade Code This property is a GUID and is used to uniquely identify a product. This
property should stay the same for all versions of the same application. The
ProductCode and PackageCode properties change, depending on the
specific version of the product.

Properties of the Primary Output Project Item
You are now going to move on and take a quick look at the properties of the primary output project item
in the following table.

705

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 705

Property Description

Condition This enables you to enter a condition that will be evaluated when the installa-
tion is run. If the condition evaluates to True, then the file will be installed; if
the condition evaluates to False, then the file won’t be installed. If you only
wanted a particular file to be installed and the installation was being run on
Microsoft Windows 2000 or better, you could enter the following for the condi-
tion: VersionNT >= 5.

Dependencies Selecting this property will display a window that shows all the dependencies
of the selected project output.

Exclude You can use this property to indicate whether you want the project output to be
excluded from the resulting Windows Installer package.

ExcludeFilter This property enables you to exclude files from the project output using wild-
cards. For example, if you enter a wildcard *.txt, then all files that are part of
the project output that have an extension of .txt will be excluded from the
resulting Windows Installer package. Selecting this property will display a
window that will allow you to enter any number of wildcards.

Folder As mentioned previously, this property allows you to select the target folder for
the project outputs.

Hidden This property allows you to install the files that make up the project output
as hidden files. This property basically toggles on/off option of the hidden
attribute of the files.

KeyOutput This property expands to provide information about the main file that makes
up the project output. In your case, it will show information of the Windows
Application.exe file.

Outputs Selecting this property will display a window that lists all the files that are part
of the project output and where these files are located on the development
machine.

PackageAs This property can be used to indicate whether the project output should
be packaged according to what is defined in the project properties (vsdpa
Default) or externally (vsdpaLoose) to the resulting Windows Installer pack-
age. The default is to use the project properties setting.

Permanent This property is used to indicate whether the files that make up the project out-
put should be removed when the application is uninstalled (False) or left
behind (True). It is advisable that all the files that are installed by an applica-
tion be removed when the application is uninstalled. Therefore, this property
should be set to False, which it is the default.

ReadOnly This property is used to set the read-only file attribute of all the files that make
up the project output. As the name suggests, this makes the file read-only on
the target machine.

Register This property allows you to instruct the Windows Installer to register the files
contained within the project output as COM objects. This only really applies to
projects (for example, the Class Library project template) that have been com-
piled with the Register for COM Interop project property set.

706

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 706

Property Description

SharedLegacy This property indicates whether the files that make up the project output are to be
reference counted, once installed. This really only applies to files that are going to
be shared across multiple applications. When the installation is removed, the files
will only be uninstalled if their reference count is equal to zero.

System This property indicates that the files contained within the project output are to
be treated as system files and protected by Windows file protection.

Transitive This property indicates whether the condition specified in the condition prop-
erty is reevaluated when the installation is rerun on the computer at a later
date. If the value is True, then the condition is checked on each additional run
of the installation. A value of False will cause the condition only to be run the
first time the installation is run on the computer. The default value is False.

Vital This property is used to indicate that the files contained within the project out-
put are vital to the installation — if the installation of these files fails then the
installation as a whole should fail. The default value is True.

Properties of the Detected Dependency Items
Here is a brief look at the properties of files that reside in the DetectedDependencies folder. You will
only cover the properties that are different to those of the project output item (discussed earlier). Most of
the additional properties are read-only and cannot be changed. They are used purely to provide infor-
mation to the developer.

Property Description

MergeModuleProperties A merge module can contain a number of custom configurable prop-
erties. If the selected merge module contains any, they will appear
here. In the case of the example, there are no custom properties.

Author This property stores the name of the author of the merge module.
[Read-only]

Description This property is used to store a textual description of the merge
module. [Read-only]

LanguageIds This property is used to indicate what language the selected merge
module is targeted at. [Read-only]

ModuleDependencies Selecting this property will show a window that lists all the depen-
dencies of the selected merge module. [Read-only]

ModuleSignature This property will display the unique signature of the merge module.
[Read-only]

Subject This property is used to display additional information about the
merge module. [Read-only]

Title This property is used simply to state the title of the merge module.
[Read-only]

Table continued on following page

707

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 707

Property Description

Version This property is used to store the version number of the selected
merge module. The version number of the merge module usually
changes, because the version number of the files it contains changes.
[Read-only]

Of course, some projects will also contain other .dll files in this folder. Some of the additional properties
that may be encountered for these files are listed in the following table.

Property Description

DisplayName This contains the file name of the selected assembly. [Read-only]

Files Selecting this property will display a window that will list all the files that
make up the selected assembly. [Read-only]

HashAlgorithm This property shows what hash algorithm was used by the manifest in hash-
ing the files contents (to stop tampering). [Read-only]

Language This property will show what language this assembly is targeted at. This
property relates to the culture of an assembly. If the property is empty, then
the assembly is culture (language)–independent. [Read only]

PublicKey These two properties are used to show information about the strong name of
PublicKeyToken the selected assembly. If an assembly has a strong name, then either of these

two properties will contain a value (other than all 0s). One or the other of
these properties is used normally, not both. [Read only]

SourcePath This property contains the location of where the selected assembly can be
found on the development computer. [Read only]

TargetName This property contains the file name of the assembly, as it will appear on the
target machine. [Read only]

Version This property shows you the version number of the selected assembly.
[Read only]

This has been a brief look at the Setup Project template. It uses all the project defaults and provides a
standard set of steps to the users when they run the Windows Installer package. More often than not,
this simple approach of including a single application file and its dependencies is not good enough.
Fortunately, the setup project can be customized extensively to meet your needs. You can create short-
cuts, directories, registry entries, and so on. These customizations and more can be accomplished using
the set of built-in editors, which will be covered after the next walkthrough.

An ASP.NET Web Application
The other deployment scenario you are going to look at is that of a Web application that has been created
using the ASP.NET Web application project template. It is assumed that the Web application is being
developed on a development Web server and that you will need to create a deployment project to trans-
fer the finished application to the production Web server. Although the previous deployment scenario is
one of the most typical, this scenario has to come a very close second.

708

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 708

From the simple requirements defined earlier, you can see that the best deployment template to use is
the Web Setup Project template. There is one major difference between this template and the previous
Setup Project template: the Web Setup Project will, by default, deploy the application to a virtual direc-
tory of the Web server on which the setup is run, whereas a setup project will deploy the application to
the Program Files folder on the target machine by default. There are, obviously, some properties that
differ between the two project templates, but other than that they are pretty similar. They both produce
a Windows Installer package and have the same set of project properties discussed later in the chapter.

As with the other walkthroughs, you need to create an application that you can use for deployment.
However, an ASP.NET Web Application is not one of the project templates available with the New
Project dialog as seen in Figure 19-1. As discussed in Chapters 2 and 16, such applications are created
with the File | New | Web Site option.

Using that option, create a new ASP.NET Web Application by selecting File | New | Web Site, and then
selecting the ASP.NET Web Site template. You are not going to add any code to this web site, since it is
being used purely as a base for the deployment project.

Now, add a Web Setup Project template using the normal File | New Project dialog. Your solution should
now contain two projects.

As with the previous walkthrough, the deployment project does not contain any files at present. There is
also a folder called Detected Dependencies in Solution Explorer (shown in Figure 19-7) that acts in
exactly the same way as in the previous walkthrough.

Figure 19-7

The next step that you need to look at is adding the output of the Web application to the deployment pro-
ject. This is accomplished in pretty much the same way as the previous walkthrough, by right-clicking on
the WebSetup1 project and selecting Add | Project Output. Note that when you add the project represent-
ing the web site, the only option you have for the type of files to add is “Content Files”, which encom-
passes the files that make up the web site.

The resulting project should look like Figure 19-8.

709

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 709

Figure 19-8

Now if you build the solution, the resulting Windows Installer package will include the compiled code
of the Web application along with its dependencies, as well as the other files that make up a Web appli-
cation, ASP.NET files, stylesheets, and so on.

Most of the topics discussed in the last walkthrough apply to this walkthrough. As mentioned earlier,
the setup project and Web setup project are very similar and only really differ in where they install the
application by default.

Modifying the Deployment Project
In the last two walkthroughs, you created the default Windows Installer package for the particular pro-
ject template. You didn’t customize the steps or actions that were performed when the package was run.
What if you want to add a step to the installation process that displays a ReadMe file to the user? Or
what if you need to create registry entries on the installation computer? The walkthroughs did not cover
how to customize the installation to suit your needs, which is what this section is going to focus on.
There are six editors that you can use to customize a Windows Installer–based deployment project:

❑ File System Editor

❑ Registry Editor

❑ File Types Editor

❑ User Interface Editor

❑ Custom Actions Editor

❑ Launch Conditions Editor

The editors are accessible through the View ➪ Editor menu option or by using the corresponding buttons
at the top of Solution Explorer.

You can also modify the resulting Windows Installer package through the project’s Properties window.
In this section, you are going to take a brief look at each of the six editors and the project properties, and

710

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 710

see how they can be used to modify the resulting Windows Installer package. We will only be able to
cover the basics of each of the editors, which is enough to get you going. You will use the project created
in the Windows application walkthrough in this section.

Project Properties
The first step you take in customizing the Windows Installer package is to use the project properties.
The project properties dialog box is accessed by right-clicking the root of the setup project and selecting
Properties from the pop-up menu. You can also select the Properties item from the Project menu when
the setup project is the active project. Both of these methods will bring up the project properties dialog
box as illustrated in Figure 19-9.

Figure 19-9

As you can see from Figure 19-9, there is only one page that you can use to set the properties of the pro-
ject: Build.

The Build Page
Now it’s time to take a look at the Build page and how the options can be used to affect the way that the
resulting Windows Installer package is built.

Build Configurations
The first thing to notice is that, as with most other projects in VS.NET, you can create different build con-
figurations. You can modify the properties of a project for the currently active build configuration or you
can modify the properties for all the build configurations. You use the Configuration combo box to

711

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 711

change what build configuration you want to alter the properties for. In Figure 19-9, notice that you are
modifying the properties for the currently active build configuration: Debug. The button labeled
Configuration Manager allows you to add, remove, and edit the build configurations for this project.

Moving on, you can see an option called Output file name, which can be used to modify where the
resulting Windows Installer package (.msi) file will be created. You can modify the file name and path
directly or you can press the Browse button.

Package Files
By using the next setting, Package files, you can specify how the files that make up the installation are
packaged up. The following table describes the possible settings.

Package Description

As loose When you build the project, the files that are to be included as part of the
uncompressed files installation are copied to the same directory as the resulting Windows

Installer package (.msi) file. As mentioned earlier, this directory can be set
using the Output file name setting.

In setup file When the project is built, the files that are to be included as part of the
installation are packaged up in the resulting Windows Installer package
file. When you use this method, you only have one file to distribute. This is
the default setting.

In cabinet file(s) With this option, when the project is built, the files that are to be included
as part of the installation are packaged into a number of cabinet files. The
size of the resulting cabinet files can be restricted by the use of a number of
options, which will be discussed later in this section. This option can be
very useful if you want to distribute the installation program on a set of
floppy disks.

Prerequisites and Prerequisites URL
Prerequisites, in the context of the setup project properties, are standard components that may be
needed to install or run the application, but that are not a part of the application. There are several of
these, as can be seen in the dialog shown in Figure 19-10, which is displayed when the Settings button
next to Prerequisites URL is pressed.

The .NET Framework 2.0 will be checked by default. You should only uncheck it if you are sure that all
the machines upon which your application will be installed already have the Framework installed.

If the box for any of these prerequisites is checked, the resulting installation package will automatically
check for the presence of that prerequisite and install it if required. If you are installing from a CD or net-
work share, it is common for the packages that install these prerequisites to be placed in the same place
as your installation package. The default settings assume that this is true and will install the prerequi-
sites from that location.

712

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 712

Figure 19-10

However, you can specify a different location for packages that install prerequisites by selecting the
Download prerequisites from the following location: option at the bottom of the dialog and then specify-
ing the URL at which the packages will be located.

If your application will only be installed on Windows XP or later, it is unnecessary to have the Windows
Installer 2.0 prerequisite.

Compression
You also have the option to modify the compression used when packaging the files that are to be con-
tained within the installation program. The three options (Optimized for speed, Optimized for size,
and None) are pretty self-explanatory and will not be covered in this book. The default, however, is
Optimized for speed.

Setting the Cabinet File Size
If you want to package the files in cabinet files, then you have the option to specify the size of those
resulting cabinet file(s):

❑ The first option you have is to let the resulting cabinet file be of an unlimited size. What this
effectively means is that all the files will be packaged into one big cabinet file. The resulting size
of the cabinet file will also be dependent on the compression method selected.

❑ If you are installing from floppy disks or CDs, creating one large cabinet file is not practical. In
this case, you can use the second option to specify the maximum size of the resulting cabinet
file(s). If you select this option, you need to fill in the maximum size that a cabinet file can be
(this figure is in KB). If all the files that need to be contained within this installation exceed this
size, then multiple cabinet files will be created.

713

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 713

Using the Solution Signing Options
The final set of options are concerned with using Authenticode to sign the resulting Windows Installer
package. To enable Authenticode signing, you must make sure the check box is checked. This will enable
you to set the three settings that are required to sign the package file.

Setting Description

Certificate file This setting is used to define where the Authenticode certificate file can
be found. This file is used to sign the package.

Private key file This setting is used to define where the private key file is. This file con-
tains what you call an encryption key that is used to sign the package.

Timestamp server URL This setting allows you to optionally specify the URL of a timestamp
server. The timestamp server will be used to get the time of when the
package was signed.

We will not be covering Authenticode signing in this chapter. If you are interested in this option, you
should consult the MSDN documentation for Authenticode.

The File System Editor
Now that we have taken a look at the project properties, we are going to move on to look at the editors
that are available for to customize the resulting Windows Installer package. You will need to make sure
that the current active project is the setup project.

Start by taking a look at the File System Editor. This editor is automatically displayed for you in
VS.NET’s Document Window when you first create the Setup project. You can also get at this editor
and the other editors that are available to you via the View ➪ Editor menu option in the VS.NET IDE.
The first editor you will look at, the File System Editor, is used to manage all the file system aspects of
the installation including:

❑ Creating folders on the user’s machine

❑ Adding files to the folders defined

❑ Creating shortcuts

Basically, this is the editor that you use to define what files need to be installed and where they are
installed on the user’s machine.

The File System Editor is split into two panes in the Document Window, as shown in Figure 19-11.

The left pane shows a list of the folders that have been created automatically for the project (discussed
earlier in the chapter). When you select a folder in the left pane, two things happen: first, the right pane
of the editor displays a list of the files that are to be installed into the selected folder, and second, the
Properties window will change to show you the properties of the currently selected folder.

714

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 714

Figure 19-11

Adding Items to a Folder
To add an item that needs to be installed to a folder, you can either right-click the folder in the left pane
and choose Add from the pop-up menu or you can select the required folder and right-click in the right
pane and again choose Add from the pop-up menu. You will be presented with four options, three of
which were discussed earlier in the walkthroughs:

❑ Project output

❑ File

❑ Assembly

The fourth option (Folder) allows you to add a subfolder to the currently selected folder. This subfolder
then becomes a standard folder that can be used to add files. If you add any .NET components or exe-
cutables, the dependencies of these components will also be added to the installation automatically.

Adding Special Folders
When you create a new deployment project, a set of standard folders will be created for you (listed in the
desktop application section). What if the folders created do not match your requirements? Well, you can
also use the File System editor to add special folders. To add a special folder, right-click anywhere in the
left pane (other than on a folder), and you will be presented with a pop-up menu that has one item: Add
SpecialFolder. Alternatively, it’s available through the Action ➪ Add Special Folder menu option. This
menu item (shown in Figure 19-12) expands to show you a list of folders that you can add to the installa-
tion (folders already added to the project will be grayed out).

As you can see from Figure 19-12, there are a number of system folders that you can choose from. They
are summarized in the following table.

715

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 715

Figure 19-12

Name Description Windows Installer Property

Common Files Files (nonsystem) that are shared by [CommonFilesFolder]
Folder multiple applications are usually installed

to this folder.

Common Files Same as Common Files Folder, except that [CommonFiles64Folder]
Folder (64-bit) it’s for 64-bit systems.

Fonts Folder This folder is used to contain all the fonts that are [FontsFolder]
installed on the computer. If your application used
a specific font you want to install it into this folder.

Program Most applications are installed in a directory [ProgramFilesFolder]
Files Folder below the program files folder. This acts as root

directory for installed applications.

Program Same as Program Files Folder, except that it’s [ProgramFiles
Files Folder for 64-bit systems. 64Folder]
(64-bit)

716

Chapter 19

22_575368 ch19.qxd 10/7/05 11:13 PM Page 716

Name Description Windows Installer Property

System Folder This folder is used to store shared system files. The [SystemFolder]
folder typically holds files that are part of the OS.

System Folder Same as System Folder, except that it’s for [System64Folder]
(64-bit) 64-bit systems.

User’s This folder is used to store data on a [CommonAppDataFolder]
Application per-application basis that is specific to a user.
Data Folder

User’s This folder represents the user’s desktop. This [DesktopFolder]
Desktop folder can be used to create and display a shortcut

to your application that a user can use to start
your application.

User’s Favorite This folder is used as a central place to store links [FavoritesFolder]
Folder to the user’s favorite Web sites, documents,

folders, and so on.

User’s Personal This folder is where a user will store important [PersonalFolder]
Data Folder files. It is normally referred to as My Documents.

User’s This folder is where shortcuts are created to [ProgramMenuFolder]
Programs applications that appear on the user’s Program
Menu menu. This is an ideal place to create a shortcut

to your application.

User’s Send This folder stores all the user’s send to shortcuts. [SendToFolder]
To Menu A send to shortcut is displayed when you right-click

a file in the Windows Explorer and choose Send To.
The send to shortcut usually invokes an application
passing in the pathname of the files it was invoked
from.

User’s This folder can be used to add items to the user’s [StartMenuFolder]
Start Menu Start menu. This is not often used.

User’s This folder is used to start applications whenever [StartupFolder]
Startup Folder the user logs in to the computer. If you would like

your application to start every time the user logs in,
then you can add a shortcut to your application
in this folder.

User’s This folder contains templates specific to the [TemplateFolder]
Template logged-in user. Templates are usually used by
Folder applications like Microsoft Office 2000.

Windows This folder is the windows root folder. This is [WindowsFolder]
Folder where the OS is installed.

Global This folder is used to store all the shared
Assembly assemblies on the user’s computer.
Cache Folder

717

Deployment

22_575368 ch19.qxd 10/7/05 11:13 PM Page 717

If none of the built-in folders match your requirements, you can even use the item at the bottom of the
list to create your own custom folder. This is where the Windows Installer property column of the pre-
ceding table comes. Suppose that you wanted to create a new directory in the user’s favorites folder
called Wrox Press, you could accomplish this by adding the correct special folder and then adding a
subfolder to it. Another way to accomplish this is to create a custom folder, the process of which we will
discuss now.

Right-click in the left pane of the File Editor, and choose Custom Folder from the pop-up menu.

The new folder will be created in the left pane of the editor. The name of the folder will be edit mode, so
enter the text Wrox Press and press Enter.

The folder will now be selected, and the Properties window will have changed to show the properties of
the new folder. The properties of a folder are summarized in the following table.

Property Description

(Name) This is the name of the selected folder. The name property is used within the
setup project as the means by which you select a folder.

AlwaysCreate This property is used to indicate whether this folder should be created on
installation even if it’s empty (True). If the value is False and there are no
files to be installed into the folder, then the folder will not be created. The
default is False.

Condition This enables you to enter a condition that will be evaluated when the instal-
lation is run. If the condition evaluates to True then the folder will be cre-
ated; if the condition evaluates to False then the folder won’t be created.

DefaultLocation This is where you define where the folder is going to be created on the tar-
get machine. You can enter a literal folder name (such as C:\Temp), or you
can use a Windows Installer property, or a combination of the two. A Win-
dows Installer property contains information that is filled in when the
installer is run. In the last table of special folders, there was a column called
Windows Installer property. The property defined in this table would be
filled in with the actual location of the special folder at runtime. Therefore,
if you enter [WindowsFolder] as the text for this property, the folder cre-
ated represents the Windows special folder.

Property This property is used to define a Windows Installer property that can be
used to override the DefaultLocation property of the folder when the
installation is run.

Transitive This property indicates whether the condition specified in the condition
property is reevaluated on subsequent (re)installs. If the value is True, then
the condition is checked on each additional run of the installation. A value
of False causes the condition only to be run the first time the installation is
run on the computer. The default value is False.

Set the DefaultLocation property to [FavoritesFolder]\Wrox Press.

718

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 718

You could now add some shortcuts to this folder using the technique described in the following section.
When the installation is run, a new folder will be added to the user’s favorite folder called Wrox Press.

Creating Shortcuts
The final aspect of the File System Editor that you are going to look at is that of creating shortcuts. The
first step in creating a shortcut is to locate the file that is to be the target of the shortcut. Select the target
file and right-click it. The pop-up menu that appears will include an option to create a shortcut to the
selected file, which will be created in the same folder. Select this option.

To add the shortcut to the user’s desktop, you need to move this shortcut to the folder that represents the
user’s desktop. Likewise, you could move this shortcut to the folder that represents the user’s programs
menu. Cut and paste the new shortcut to the User’s Desktop folder in the left pane of the editor. The
shortcut will now be added to the user’s desktop when the installation is run. You will probably want to
rename the shortcut, which can be accomplished easily via the Rename option of the pop-up menu.

You have only taken a brief look at the File System Editor. I would encourage you to explore what can be
accomplished by using the editor.

The Registry Editor
The next editor that you are going to look at is the Registry Editor, which is used to:

❑ Create registry keys

❑ Create values for registry keys

❑ Import a registry file

Like the File System Editor, the Registry Editor is split into two panes, as illustrated in Figure 19-13.

Figure 19-13

The left pane of the editor represents the registry keys on the target computer. When you select a registry
key, two things happen: the right pane of the editor will be updated to show the values that are to be cre-
ated under the selected registry key, and if the registry key selected is not a root key in the left pane, the
Properties window will be updated with a set of properties for this registry key.

719

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 719

When you create a new deployment project, a set of registry keys will be created for you that correspond
to the standard base registry keys of Windows. Notice in Figure 19-13 that there is a key defined with a
name of [Manufacturer]. When the installation is run, this will be replaced with the value of the
Manufacturer property that you discussed earlier in the chapter. [Manufacturer] is a property of the
installation and can be used elsewhere within the installation. There are a number of these properties
defined that can be used in much the same way (you should consult the “Property Reference” topic in
the MSDN documentation for a full list).

Adding a Value to a Registry Key
So, how do you add a value to a registry key? First, select the required registry key (or create it) that is
going to hold the registry values, and then there are a number of ways to add the registry value:

❑ Right-click the registry key and use the resulting pop-up menu

❑ Right-click in the right-hand pane and use the resulting pop-up menu

❑ Use the Action menu

The menu items contained within the Action menu will depend on where the current focus is. For illus-
trational purposes here, select one of the Software registry keys. The Action menu will contain one item,
New, which contains a number of menu items:

❑ Key

❑ String value

❑ Environment string value

❑ Binary value

❑ DWORD value

Using this menu, you can create a new registry key below the currently selected key (via Key), or you
can create a value for the currently selected registry key using one of the four Value types: String,
Environment String, Binary, and DWORD.

Take a look at how to create a registry entry that informs the application whether or not to run in the
debug mode. The registry value must be applicable to a particular user, must be called Debug, and must
contain the text True or False.

The first step is to select the following registry key in the left pane of the editor:

HKEY_CURRENT_USER\Software [Manufacturer].

The registry key HKEY>_CURRENT>_USER is used to store registry settings that apply to the currently
logged-in user.

Now, you want to create a value so that it is applicable to only this application and not all applications
created by you. What you need to do is create a new registry key below the HKEY>_CURRENT>_USER\
Software\[Manufacturer] key that is specific to this product, so select the Action ➪ New ➪ Key menu
item.

720

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 720

When the key is created, the key name will be editable, so give it a name of [ProductName] and press
Enter. This creates a key that is given the name of the product contained within this Windows Installer
package. The ProductName property of the setup was discussed earlier in this chapter.

Now that you have created the correct registry key, the next step is to create the actual registry value.
Make sure that your new registry key is selected, and choose String Value from the Action ➪ New menu
and give the new value a name of Debug.

Once the value has been created, you can set a default value for it, in this case False. Make sure that the
new value is selected; the Properties window will have changed to show you the details for this value.
Notice that there is a property called Value, which is used to set the initial value. Enter False as the
value for the Value property, and that’s it. The end result is displayed in Figure 19-14.

Figure 19-14

When the Windows Installer package is run the Debug registry, value will be created. As you can see,
manipulating the Windows Registry is straightforward.

You can move most keys and values in the Registry Editor around by using cut and paste or simply by
dragging and dropping the required item.

If a value already exists in the registry, the Windows Installer package will overwrite the existing value
with that defined in the Registry Editor.

The alternative to creating registry entries during installation is to have your application create registry
entries the first time they are needed. However, this has one significant difference from registry keys cre-
ated with a Windows Installer package. The uninstall corresponding to a Windows Installer installation
will automatically remove any registry keys created during the install. If the registry entries are created by
the application instead, the uninstall has no way to know that these registry entries should be removed.

Importing Registry Files
If you already have a registry file that contains the registry settings that you would like to be created,
you can import the file into the Registry Editor, which saves you from having to manually enter the
information. To import a registry file, you need to make sure the root node (Registry onTarget Machine)
is selected in the left pane of the editor. You can then use the Import item of the Action menu to select
the registry file to import.

721

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 721

Registry manipulation should be used with extreme caution. Windows relies heavily on the registry and
as a result of this you can cause yourself a great number of problems if you delete/overwrite/change reg-
istry values and keys without knowing the full consequences of the action.

If you want to create the registry entries that are required to create file associations, you can use the editor
covered next.

The File Types Editor
The File Types Editor can be used to create the required registry entries to establish a file association for
the application being installed. A file association is simply a link between a particular file extension and
a particular application. For example, the file extension .doc is normally associated with Microsoft
WordPad or Microsoft Word.

When you create a file association, not only do you create a link between the file extension and the appli-
cation, but you also define a set of actions that can be performed from the context menu of the file with
the associated extension. Looking at your Microsoft Word example, if you right-click a document with
an extension of .doc, you get a context menu that can contain any number of actions, for example, Open
and Print. The action in bold (Open, by default) is the default action to be called when you double-click
the file, so in the example double-clicking a Word document will start Microsoft Word and load the
selected document.

So, how do you create a file extension using the editor? We will answer this question by walking through
the creation of a file extension for the application. Let’s say that the application uses a file extension of
.set and that the file is to be opened in the application when it is double-clicked. To accomplish this, start
the File Types editor, which unlike the last two editors, has only one pane to its interface, as shown in
Figure 19-15.

Figure 19-15

To add a new file type, you need to make sure the root element (File Types on Target Machine) is
selected in the editor. You can then choose Add File Type from the Action menu. Give the new file
type the name, Example File Type.

722

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 722

Before continuing, you must set the extension and application that this file type uses. These are both
accomplished using the Properties window (shown in Figure 19-16).

Enter .set as the value for the Extensions property.

To associate an application with this file type, you need to use the Command property. The ellipsis button
for this property presents you with a dialog box where you can select an executable file contained within
any of the folders defined in the File System Editor. In this case, you’ll select Primary Output from
WindowsApplication (active) from the Application Folder as the value for Command.

When this new file type was first created, a default action was added for you called &Open— select it.
Now take a look at the Properties window again. Notice the Arguments property: you can use this to
add command-line arguments to the application defined in the last step. In the case of the default action
that has been added for you, the arguments are “%1”, where the value “%1” will be replaced by the file
name that invoked the action. You can add your own hard-coded arguments (such as /d). An action is
set to be the default by right-clicking it and selecting Set as Default from the pop-up menu.

Figure 19-16

The User Interface Editor
The User Interface Editor is used to manage the interface that the user relies on to proceed through the
installation of the application. The editor allows you to define the dialog boxes that are displayed to the
user and in what order they are shown. The User Interface Editor looks like the example in Figure 19-17.

723

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 723

Figure 19-17

The editor uses a tree view with two root nodes: Install and Admininstrative Install. Below each of these
nodes there are three nodes that represent the stages of installation: Start, Progress, and End. Each of the
three stages can contain a number of dialog boxes that will be displayed to the user when the resulting
Windows Installer package is run. A default set of dialog boxes is predefined when you create the
deployment project. The default dialog boxes that are present depend on the type of deployment project:
Setup Project or Web Setup Project. Figure 19-17 shows the dialog boxes that were added by default to a
Setup Project. However, if you are creating a Web Setup Project the Installation Folder dialog box will be
replaced by an Installation Address dialog box. Using Figure 19-17, the following section discusses the
two modes that the installer can be run in and what the three stages of the installation are.

Installation Modes
Start by taking a look at the two modes that the installation runs: Install and Admininstrative Install.
These basically distinguish between an end user installing the application and a system administrator
performing a network setup.

To use the Administrative Install mode of the resulting Windows Installer package you can use
msiexec.exe with the/a command-line parameter:

msiexec.exe /a <PACKAGE>.msi

The Install mode will be the one that is most used and is what you will use in this discussion. As men-
tioned earlier, the steps the installation goes through can be split into three stages and are represented as
subnodes of the parent installation mode.

The Start Stage
The Start stage is the first stage of the installation and contains the dialog boxes that need to be dis-
played to the user before the actual installation of the files begins. The Start stage should be used to
gather any information from the user that may affect what is installed and where it is installed. This
stage is commonly used to ask the user to select the base installation folder for the application and to

724

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 724

ask the user what parts of the system he or she would like to install. Another very common task at this
stage is to ask users what their name is and what organization they work for. At the end of this stage the
Windows Installer service will determine how much disk space is required on the target machine and
check that this amount of space is available. If the space is not available, the user will receive an error
and the installation will not continue.

The Progress Stage
The Progress stage is the second stage of the installer and is where the actual installation of the files
occurs. There isn’t usually any user interaction in this stage of installation. There is normally one dialog
box that indicates the current progress of the installation. The current progress of the installation is cal-
culated automatically.

The End Stage
Once the actual installation of the files has finished, the installer moves into the End stage. The most
common use of this stage is to inform the user that the installation has been completed successfully. It is
often used to provide the option of running the application straight away or to view any release notes.

Customizing the Order of Dialog Boxes
The order in which the dialog boxes appear within the tree view determines the order in which they
are presented to the user when the resulting Windows Installer package is run. Dialog boxes cannot be
moved between different stages.

The order of the dialog boxes can be changed by dragging the respective dialog boxes to the position in
which you want them to appear. You can also move a particular dialog box up or down in the order in
by right-clicking the dialog box and selecting either Move Up or Move Down.

Adding Dialog Boxes
A set of predefined dialog boxes has been added to the project for you, allowing for actions such as
prompting a user for a registration code, but what happens if these do not match your requirements?
As well as being able to modify the order in which the dialog boxes appear, you can also add or remove
dialog boxes to and from any of the stages.

When adding a dialog box, you have the choice of using a built-in dialog box or importing one. To illus-
trate how to add a dialog box, consider an example of adding a dialog box to display a ReadMe file to the
user of Windows Installer package. The ReadMe file needs to be displayed before the actual installation
of the files occurs.

The first step is to determine the mode in which the dialog box is to be shown: Install or Administrative
Install. In this case, you are not interested in the Admin mode, so you will use the Install mode. After
this, you need to determine the stage at which the dialog box is to be shown. In the example, you want
to display the ReadMe file to the user before the actual installation of the files occurs, which means that
you will have to show the ReadMe file in the Start stage. Make sure the Start node is selected below the
Install parent node.

You are now ready to add the dialog box. Using the Action menu again, select the Add Dialog menu item,
which will display a dialog box (see Figure 19-18) where you can choose from the built-in dialog boxes.

725

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 725

As you can see in Figure 19-18, there are a number of built-in dialog boxes to choose from. Each dialog
box has a short description that appears at the bottom of the window to inform you of its intended func-
tion. In this case, you want to use the Read Me dialog box, so select it and click on OK.

New dialog boxes are always added as the last dialog box in the stage that they are added to, so now
you need to move it into the correct position. In this case, you want the Read Me dialog box to be shown
immediately after the Welcome dialog box, so drag and drop it into position.

Properties of the Dialog Boxes
Like most other project items in Visual Studio, dialog boxes have a set of properties that you can change
to suit your needs using the Properties window. If you make sure a dialog box is selected, you will notice
that the properties window changes to show the properties of the selected dialog box. The properties that
appear depend on the dialog box selected. Details of all the properties of the built-in dialog boxes can be
found by looking at the “Properties of the User Interface Editor” topic in the MSDN documentation.

The Custom Actions Editor
The Custom Actions Editor is used for fairly advanced installations and allows you to define actions that
are to be performed due to one of the following installation events: Install, Commit, Rollback, and
Uninstall. For example, you can use this editor to define an action that creates a new database when the
installation is committed.

Figure 19-18

726

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 726

The custom actions that are added using this editor can be windows script-based, compiled executables,
or DLLs.

Before we continue with the discussion of this editor, make sure that it is loaded by right-clicking on the
Setup1 project and selecting View | Custom Actions. Once it is loaded, you will notice that it uses a tree
view to represent the information, much like the User Interface Editor. There are four nodes that represent
each of the four installation events that you can add custom actions to. This is displayed in Figure 19-19.

Figure 19-19

As with the User Interface Editor, the order in which the actions appear determines the order in which
they are run, and this can be modified simply by dragging and dropping the actions or by using the con-
text menus of the actions to move them up or down.

Adding a Custom Action
To add a custom action you must select the node of the event into which you want to install the action.
You can then use the Action menu to select the executable, DLL, or script that implements the custom
action. The four actions that are defined in the editor are defined in the following table.

Event Description

Install The actions defined for this event will be run when the installation of the files
has finished, but before the installation has been committed.

Commit The actions defined for this event will be run when the installation has been
committed and has therefore been successful.

Rollback The actions defined for this event will be run when the installation fails and
rolls back the machine to the same state as before the install was started.

Uninstall The actions defined for this event will be run when the application is being
uninstalled from the machine.

Suppose that you want to start your application up as soon as the installation is completed successfully.
Use the following process to accomplish this.

727

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 727

First, decide when the action must occur. Using the preceding table, you can see that the Commit event
will be run when the installation has been successful. Make sure that this node is selected in the editor.
You are now ready to add the actual action you would like to happen when the Commit event is called.
Using the Action menu again, select the Add Custom Action menu item, which will display a dialog box
that you can use to navigate for and select a file (.exe, .dll, or windows script) from any that are included
in the File System Editor. In this example select Primary output from WindowsApplication
(Active), which is contained within the Application Folder.

As with most items in the editors, the new custom action has a number of relevant properties that are
summarized in the following table.

Property Description

(Name) This is the name given to the selected custom action.

Arguments This property allows you to pass command-line arguments into the exe-
cutable that makes up the custom action. This only applies to custom actions
that are implemented in executable files (.exe). By default, the first argument
passed in can be used to distinguish what event caused the action to run. The
first argument can have the following values:

/Install This enables you to enter a condition that will be evaluated before the
/Commit custom action is run. If the condition evaluates to True, then the custom
/Rollback action will run; if the condition evaluates to False, then the custom
/Uninstall action will not run.
Condition

CustomActionData This property allows you to pass additional information to the custom
action.

EntryPoint This property is used to define the entry point in the DLL that implements
the custom action. This only applies to custom actions that are implemented
in dynamic linked libraries (.dll). If no value is entered, then the installer will
look for an entry point in the selected DLL with the same name as the event
that caused the action to run (Install, Commit, Rollback, Uninstall).

InstallerClass If the custom action is implemented by an Installer class in the selected com-
ponent, then this property must be set to True. If not, it must be set to
False. (consult the MSDN documentation for more information on the
Installer class, which is used to create special installers for such .NET
applications as Windows Services. The Installer class is located in the
System.Configuration.Install namespace)

SourcePath This property will show the path to the actual file on the developer’s
machine that implements the custom action.

Set the InstallClass property to equal False, because your application does not contain an installer
class.

728

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 728

That’s it. When you run the Windows Installer package and the installation is successful, the application
will automatically start. The custom action that you implemented earlier is very simple, but custom
actions can be used to accomplish any customized installation actions that you could want. I suggest
that you take some time to play around with what can be accomplished using custom actions. For
instance, try creating a custom action that writes a short file into the application directory.

The Launch Conditions Editor
The Launch Conditions Editor can be used to define a number of conditions for the target machine that
must be met before the installation will run. For example, if your application relies on the fact that the
user must have Microsoft Word 2000 installed on his or her machine to run your application, you can
define a launch condition that will check this.

You can define a number of searches that can be performed to help create launch conditions:

❑ File search

❑ Registry search

❑ Windows Installer search

As with the Custom Actions Editor, the Launch Conditions Editor (shown in Figure 19-20) uses a tree
view to display the information contained within it.

Figure 19-20

There are two root nodes: the first, (Search Target Machine) is used to display the searches that have
been defined, the second (Launch Conditions) contains a list of the conditions that will be evaluated
when the Windows Installer package is run on the target machine.

As with many of the other editors, the order in which the items appear below these two nodes deter-
mines the order in which the searches are run and the order in which the conditions are evaluated. If you
wish, you can modify the order of the items in the same manner as previous editors.

The searches are run and then the conditions are evaluated as soon as the Windows Installer package is
run, before any dialog boxes are shown to the user.

We are now going to look at an example of adding a file search and launch condition to a setup project.
For argument’s sake, let’s say that you want to make sure that your users have Microsoft Word 2003
installed on their machine before they are allowed to run the installation for your application.

729

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 729

Adding a File Search
To add a file search, you begin by searching for the Microsoft Word 2003 executable.

Making sure the Search Target Machine node is currently selected in the editor, add a new file search by
selecting the Add File Search item from the Action menu. The new item should be given a meaningful
name, so enter Word2003Search. The end result is shown in Figure 19-21.

Figure 19-21

Modifying the File Search Properties
Like most items contained within the editors mentioned in this chapter, the new file search item has a set
of properties that you can modify using the Properties window. The properties of the file search item
determine the criteria that will be used when searching for the file. Most of the properties are self-
explanatory and have been covered in previous sections, so they will not be covered in this chapter.

In this example , you need to search for the Microsoft Word 2003 executable, which means that a number
of these properties will need to be modified to match your own search criteria.

The first property that requires modification is FileName, which is used to define the name of the file that
the search will look for. In this case, you need to search for Microsoft Word 2003 executable, so enter
winword.exe as the value for this property. Previous versions of Microsoft Word used the same file name.

There is no need to search for the file from the root of the hard drive. The Folder property can be used
to define the starting folder for the search. By default, the value is [SystemFolder], which indicates
that the search will start from the Windows system folder. There are a number of these built-in values; if
you are interested, you can look up what these folders correspond to in the “Adding Special Folders,”
section.

In this example, you do not want to search the Windows system folder because Microsoft Word is usually
installed in the Program Files folder. Set the value of the Folder property to [ProgramFilesFolder]
to indicate that this should be your starting folder.

When the search starts it will only search the folder specified in the Folder property, as indicated by the
default value (0) of the Depth property. The Depth property is used to specify how many levels of sub-
folders the search will look in from the starting folder specified above for the file in question. There are
performance issues relating to the Depth property. If a search is performed for a file that is very deep in
the file system hierarchy, it can take a long time to find the file. Therefore, it is advisable that, wherever
possible, you should use a combination of the Folder and Depth properties to decrease the possible

730

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 730

search range. The file that you are searching for in your example will probably be at a depth of greater
than 1, so change the value to 3.

There may be different versions of the file that you are searching for on a user’s machine. You can use
the remaining properties to specify a set of requirements for the file that must be met for it to be found,
for example, minimum version number, minimum file size.

You are searching for the existence of Microsoft Word 2003; this means that you will need to define the
minimum version of the file that you want to find. To search for the correct version of winword.exe,
you need to enter 11.0.0.0 as the value for the MinVersion property. This will ensure that the user has
Microsoft Word 2003 or later installed and not an earlier version.

The result of the file search will need to be assigned to a Windows Installer property so that you can use
it to create a launch condition later. This is going to be a bit of a tongue twister. You need to define the
name of the Windows Installer property that is used to store the result of the file search using the
Property property. Enter WORDEXISTS as the value for the Property property. If the file search is suc-
cessful, the full path to the found file will be assigned to this Windows Installer property; otherwise, it
will be left blank. At this point, the Properties window should look as shown in Figure 19-22.

Figure 19-22

Creating a Launch Condition
A file search alone is pretty useless. Which takes you on to the second step of the process of ensuring the
user has Microsoft Word 2003 installed, creating a launch condition. You can use the results of the file
search described earlier to create a launch condition.

Make sure that the Launch Conditions node is selected in the editor, and add a new launch condition to
the project by selecting Add Launch Condition from the Action menu. You need to give this new item a
meaningful name; in this case (see Figure 19-23), you will give it a name of Word2KExists.

731

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 731

Figure 19-23

This new item has a number of properties that you will need to modify. The first property you will
change is called Message, and it is used to set the text of the message box that will appear if this condi-
tion is not met. Enter any meaningful description that explains why the installation cannot continue.

The next property that you will need to change is called Condition, and it is used to define a valid
deployment condition that is to be evaluated when the installation runs. The deployment condition
entered must evaluate to True or False. When the installer is run, the condition will be evaluated; if
the result of the condition is False, then the message defined will be displayed to the user and the
installation will stop.

For this example, you need to enter a condition that takes into account if the winword.exe file was
found. You can use the Windows Installer property defined earlier (WORDEXISTS) as part of the condi-
tion. Because the property is empty if the file was not found and nonempty if the file was found, you can
perform a simple test on whether the property is empty to create the condition. Enter WORDEXISTS <> “”
as the value for the Condition property.

Hopefully, from the preceding discussion of this search you will be able to apply the knowledge gained,
to understand how to use the other searches and create your own launch conditions.

We have now finished the brief discussion of the editors that you can use to modify the resulting Windows
Installer package to suit your needs. You have only looked briefly at the functionality of the editors, but
they are extremely powerful so we advise you to spend some time playing around with them.

Building
The final step is concerned with how to build the deployment or setup project you have created. There is
basically no difference between how you build a Visual Basic .NET application and a deployment/setup
project. If the project is the only project contained within the solution, then you can just use the Build
item from the Build menu, which will cause the project to be built. As with the other projects, you will be
informed of what is happening during the build through the Output window.

The deployment/setup project can also be built as part of a multiproject solution. If the Build Solution
item is chosen from the Build menu, all the projects in the solution will be built. Any deployment or
setup projects will be built last. This is to ensure that if they contain the output from another project in
the solution, they pick up the latest build of that project.

732

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 732

As with most other project templates in Visual Studio, you can set the current build configuration to be
used when building the project. This will not be covered in this chapter because it is covered in
Appendix A. As you can see, building a setup/deployment project is basically the same as building any
other project template.

Internet Deployment of
Windows Applications

The earlier discussions of creating an installation package for your application presumed that you were
able to transfer the MSI file to each machine that needed installation, either electronically or via some
storage medium such as a CD-ROM. This works well for installations within an organization and can
work acceptably for initial installation from CD-ROMs on distributed systems.

However, the availability of the Internet has raised the bar for acceptable deployment of Windows-based
client applications. Perhaps the most important advantage of browser-based applications has been their
ease of deployment for the user. For Windows Forms applications to be cost-competitive with browser-
based applications, low-cost deployment over the Internet is needed.

Fortunately, there are several ways to get low-cost deployment over the Internet. These include:

❑ “No-touch” deployment

❑ Deployment with ClickOnce, a new capability in Visual Studio 2005 and the .NET Framework 2.0

❑ Components or libraries that contain deployment capabilities, such as the Application Updater
Application Block

Different deployment techniques are suitable for different applications. Let’s look at each technique, and
discuss how it works and what kinds of applications it is suitable for use with.

No-Touch Deployment
Built into all versions of the .NET Framework is the capability to run applications from a Web server
instead of from the local machine. There are two ways to do this, depending on how the application is
launched.

First, an application EXE that exists on a Web server can be launched via a standard HTML hyperlink.
An application named MyApp.exe that is located at www.mycompany.com/apps can be launched with
the following HTML in a Web page:

Launch MyApp

When the hyperlink is clicked on a system with the .NET Framework installed, Internet Explorer will
transfer control to the .NET Framework to launch the program. The Framework then tries to load the
EXE assembly, which does not yet exist on the client. At that point, the assembly is automatically fetched
from the deployment Web server and placed on the local client machine. It resides on the client machine

733

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 733

in something called the application download cache, which is a special directory on the system managed by
the .NET. Framework.

If the EXE tries to load a class from another application assembly (typically a DLL), then that assembly is
assumed to be in the same directory on the Web server as the EXE. The application assembly will also be
transferred to the application download cache and loaded for use.

This process will continue for any other application assemblies that are needed. The application is said
to trickle-feed to the client system.

Automatic Updating
Whenever an assembly in the application download cache is needed, the .NET Framework automatically
checks for a new version in the appropriate directory on the Web server. Thus, the application can be
updated for all client machines by simply placing an assembly on the Web server.

Using a Launch Application
One drawback of this technique for deploying the application is that it cannot be launched except from a
Web page. (The Web page can be local to the machine, however.)

To get around this limitation, you can get a similar deployment capability by using a small launching
application that uses dynamic loading to start the main application. Dynamic loading was discussed in
the previous chapter. In this case, the location for the assembly used in dynamic loading will be the URL
of the assembly on the Web server.

An application that uses this technique still gets all the trickle feeding and auto-update features of an
application launched straight from a URL.

Limitations of No-Touch Deployment
No-touch deployment is useful for simple applications, but has some serious drawbacks for more com-
plex applications. The biggest issues are:

❑ An active Internet connection is required to run the application — no offline capability is
available

❑ Only assemblies can be deployed via no-touch deployment — application files such as configu-
ration files cannot be included

❑ Applications deployed via no-touch deployment are subject to code-access security limitations,
as discussed in Chapter 13 on security

❑ No-touch deployment has no capability to deploy any prerequisites for the application or any
COM components that it may need

Given the limitations of no-touch deployment, Microsoft has added an alternative to the .NET
Framework 2.0 called ClickOnce. It is essentially a complete replacement for no-touch deployment.
Thus, while no-touch deployment is still supported in .NET Framework 2.0, it is no longer recom-
mended for use, and we will not discuss it further.

734

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 734

ClickOnce Deployment
A more advanced form of Internet and network deployment uses a new technology in .NET Framework
2.0 called ClickOnce. It is intended to overcome the limitations of no-touch deployment and to provide a
robust, easy-to-implement deployment option for a wide range of applications.

ClickOnce has several advantages over alternatives such as no-touch deployment, including:

Updating from a Web server with user control — No-touch deployment only allows completely auto-
matic updating from the Web server. ClickOnce can be configured for completely automatic updates
from a Web server, but can also be set up to allow more control by the user over when the application is
installed and uninstalled.

Offline Access — Applications deployed with ClickOnce can be configured to run in an offline condition
also. Applications that can be run offline have a shortcut installed on the Start menu.

ClickOnce also has advantages over applications installed with Windows Installer. These include auto-
updating of the application from the deployment server, and installation of the application by users who
are not administrators. (Windows Installer applications require the active user to be an administrator.
ClickOnce applications can be installed by users with reduced permissions.)

ClickOnce deployment can be done from a Web server, a network share, or read-only media such as a
CD-ROM or DVD_ROM. The following discussion assumes you are using a Web server for deployment,
but you can substitute a network share if you do not have access to a Web server.

Configuring an Application for ClickOnce
No special work need be done to prepare a typical Windows application to be deployed via ClickOnce.
Unlike the deployment options discussed earlier, it is not necessary to add additional projects to the
solution. If you use standard options in ClickOnce, it is also unnecessary to add any custom logic to
your application. All of the work to enable ClickOnce deployment for an application can be performed
by selecting options in the IDE.

Important Note: ClickOnce does not require the .NET Framework 2.0 to be installed
on the Web server you use for ClickOnce deployment. However, it does require that
the Web server understand how to handle files with extensions “.application” and
“.manifest”. The configuration for these extensions is done automatically if the
.NET Framework 2.0 is installed on the Web server. However, on servers that do not
contain the Framework, you will probably have to do the configuration manually.

Each extension that a Web server can handle must be associated with an option
called a “MIME type” that tells the web server how to handle that file extensions
when serving a file. The MIME type for each extension used by ClickOnce should
be set to “application/x-ms-application.” If you do not know how to configure
MIME types for your Web server, your should ask a network administrator or other
profession that is able to do so.

735

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 735

It is possible to control the ClickOnce deployment by writing your own custom logic controlling the
ClickOnce deployment processes. However, that capability is beyond the scope of this book and is not
discussed. Instead, the chapter will cover basic configuration of ClickOnce and common options that
do not require that you write any code.

Online vs. Locally Installed Applications
Applications installed via ClickOnce are one of two types:

❑ Online Applications, which can only be accessed by the user when the system has a connection
to the web site used to deploy the application

❑ Offline Applications, which can also be used when there is no connection available

Online applications must be launched with a URL (Uniform Resource Locator), a standard filename, or
a UNC (Universal Naming Convention) filename. This may be done in various ways, such as clicking a
link in a Web page, typing a URL into the Address textbox of a browser, typing a filename into the
Address textbox of Windows Explorer, or selecting a shortcut on the local machine that contains the URL
or filename. However, ClickOnce does not automatically add any such mechanisms to a user’s machine
to access the application. That is up to you.

Offline applications can also be launched with a URL or UNC, and are always launched that way the
first time. The differences are:

❑ When ClickOnce does the initial installation of the application on the user’s machine, by default
it places a shortcut to the application on the user’s Start | Programs menu.

❑ The application can be started from the shortcut, and will run with no connection to the original
location used for installation. Of course, any functionality of the application that depends on a
network or Internet connection will be affected if the system is not online. It is your responsibil-
ity to build the application in such a way that it functions properly when offline.

Deploying an Online Application
A walk-through of deployment for a simple Windows application will demonstrate the basics of
ClickOnce. This first walk-through will deploy an online application to a Web server, which is one of
the simpler user scenarios for ClickOnce.

First, create a simple Windows Application in Visual Studio, and name it SimpleApp. On the blank
Form1 that is created as part of the application, place a single button.

To enable ClickOnce deployment, access the Build menu, and select the Publish SimpleApp option. The
ClickOnce publishing wizard will appear. The first screen in the wizard is shown in Figure 19-24.

The location will default to a local web server, but as discussed earlier, deployment can be done to a net-
work share or even a local directory. You should change the location if the default is not appropriate for
your circumstances. Once you’ve verified the location to publish, press the Next button.

Next, you must select of the two types of ClickOnce applications discussed earlier. Since this example is
for an online application, you should click the second option to make the application only available
online, as shown in Figure 19-25

736

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 736

Figure 19-24

Figure 19-25

Now you can press the Next button to see a summary of your selection, and then press the Finish but-
ton. The ClickOnce deployment process will then begin. A new item will be added to your project called
“SimpleApp_TemporaryKey.pfx”, a complete build will be done, a new virtual directory will be created
for the application on the Web server, and the files needed to deploy the application will be copied to
that virtual directory. (The new item is discussed below, in the section on “Signing the Manifest”.)

737

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 737

When the process is complete, a web page will be generated that contains the link needed to deploy the
application. The Web page will have a Run button that activates the link. If you click this button, the
application will be deployed by ClickOnce. (You may wish to view the source for this web page to
obtain the HTML needed to launch the application from your own web pages.)

First, the pre-requisites for the application are verified. In this case, that just means the .NET Framework.

Then a Security Warning dialog is displayed asking if it is acceptable to run the application, as shown in
Figure 19-26. You can run the application by pressing the Run button, or press the Cancel button, which
aborts the process. Press the Run button, and after a short delay you will see the application’s form
appear.

Figure 19-26

If you now make any changes to the SimpleApp application, you must publish the application again to
make the changes available via ClickOnce. You can do that by stepping through the publishing wizard
once again. More about automatic updating of ClickOnce applications is discussed below in the topic
“The Update Process”.

Deploying an Application That is Available Offline
In the second screen of the publishing wizard, if you select the first option, then the installation process
has some differences.

❑ The web page that ClickOnce generates to test the deployment will have a button that says
“Install” instead of “Run”.

❑ When the button is pressed, a shortcut to the application is added to the user’s Start | Programs
menu. The shortcut will be in the program folder that is named for the company name that was
entered when Visual Studio was installed.

❑ The application will be launched at the end of the install process, as it was with an online app.
However, future launches can be accomplished with the same URL or via the shortcut in the
Start menu.

738

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 738

Files and Directories Produced by ClickOnce
The virtual directory used by ClickOnce to deploy your application contains a number of files for differ-
ent aspects of the deployment. Figure 19-27 shows what the directory for SimpleApp looks like after
ClickOnce has finished copying all files needed.

Figure 19-27

The virtual directory contains a folder for the first version of SimpleApp, which by default is version
1.0.0.0. It also contains the Web page that was displayed after ClickOnce finished, which is named
publish.htm.

The next file is Setup.exe. This is an executable that does not need the .NET Framework to run. It is used
during the ClickOnce process for all the activities that must take place before the application is launched.
This includes activities such as checking for the presence of the .NET Framework. It is discussed further in
the section below entitled “The Bootstrapper”.

The next file is SimpleApp.application. The “.application” extention is specific to ClickOnce, and indi-
cates a special file called a “manifest”. This is an XML-based file that contains all the information needed
to deploy the application, such as what files are needed and what options have been chosen. There is
also a file named SimpleApp_1_0_0_0.application, which is the manifest specifically associated with ver-
sion 1.0.0.0.

Each version of the application has it’s own manifest, and the one named SimpleApp.application (with
no embedded version number) it typically the currently active one. (Thus, the link to the application
does not need to change when the version number changes.)

Other files associated with a version are in the folder for that version.

739

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 739

Signing the Manifest
Since the manifest controls the update process, it is essential that ClickOnce be assured that the manifest
is valid. This is done by signing the manifest, using a public-private key pair. As long as a third party
does not have the key pair, they cannot “spoof” a manifest, preventing any malicious interference in the
ClickOnce deployment process.

A key pair is automatically generated when you publish with ClickOnce. However, you can supply your
own key pair if you like. Options for signing the application are discussed below in the section entitled
“ClickOnce Configuration Options”.

Note that your application assemblies do not need to be signed for them to be used in a ClickOnce
deployment. Only the manifest need be signed. The manifest contains hash codes of all the assemblies
involved, and those hash codes are checked before assemblies are used. This prevents malicious third
parties from inserting their own versions of your assemblies.

The Update Process
All ClickOnce applications by default check for updates each time the application is launched. This is
done by getting the current version of the manifest and checking to see if there have been any changes
since the last time the application was launched. This process is automatic, so there’s nothing you need
to do to make it happen, but it’s helpful for you to understand the steps that are taken.

For an online application, if a change is detected, it is immediately applied by downloading any changed
files. Then the application is launched. In spirit this is similar to a browser-based application, because
the user does not have any option to use an older version.

For an application available offline, if changes are detected, the user is asked if the update should be
made. The user can choose to decline the update. There is a configuration option that allows you to spec-
ify a minimum version number, and that can force a user to accept an update. We will look at ClickOnce
configuration options later.

If an update is made for an offline application, the previous version is kept. The user then has the ability
to roll back to that version using their Add/Remove Programs option in the Control Panel. The user can
also uninstall the ClickOnce-deployed application from that same location.

Only one version back is kept. If there are older versions, they are removed when a new version is
installed, so that the only versions available at any point in time are the current version and the one
immediately before it. If a roll back is made to the immediately preceding version, it cannot be rolled
back any further to earlier versions.

You can control the update process by including code in your application that detects when changes
have been made, and applies the changes as necessary. As previously mentioned, this chapter will not
cover writing such logic. There are samples available in the MSDN documentation for this capability.

740

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 740

ClickOnce Configuration Options
In Visual Studio 2005, the properties for a Windows Application project now include several pages that
affect ClickOnce. (You can get to the properties for a project by right-clicking on it in the Solution
Explorer, and selecting Properties.)

The Signing tab page includes options for signing the ClickOnce manifest. There are buttons to select a
particular certificate from a store or a file, or to generate a new test certification for signing. This page
also contains an option to sign the assembly that is compiled from the project, but as mentioned above,
this is not necessary for ClickOnce to operate. A typical example of the Signing tab page is shown in
Figure 19-28.

Figure 19-28

The Security tab page controls options relating to the code access security permissions needed by the
application to run. Since the application is being deployed from a source off of the local machine if you
use ClickOnce, code access security limitations are in effect as described in Chapter 13. A typical exam-
ple of the Security tab page is shown in Figure 19-29

741

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 741

Figure 19-29

Using the options on the Security tab page, you can calculate the permissions needed by the application,
using the button labeled Calculate Permissions. You can also arrange to test your application against a
particular set of permissions. To do that, you change from the default option “This is a full trust applica-
tion” to the option immediately below it, labeled “This is a partial trust application”. Then select the
zone from which the application will be installed. When the application is run by Visual Studio, permis-
sion for that zone will be enforced.

All of the other ClickOnce configuration options are on the tab page labeled Publish. Such a page is
shown in Figure 19-30.

742

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 742

Figure 19-30

There are many options that you can set with the Publish page, but here are some of the most important:

Property/Option Purpose Where to set it on the page

Publishing Location Specifies the virtual directory, Textbox labeled “Publishing
network directory, or local directory Location”. (Note that this can
to which the application will be also be set in the first screen of
published by ClickOnce. the publish wizard.)

Installation URL Specifies the location from which Textbox labeled
your application will be deployed “Installation URL”
by users. By default, this is the same
as the Publishing Location, but may
be set to be elsewhere.

Install Mode Selects the online only vs. offline Option buttons under “Install
mode for the application. Mode and Settings”. (Note that

this can also be set in the
second screen of the publish
wizard.)

Table continued on following page

743

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 743

Property/Option Purpose Where to set it on the page

Publish Version Sets the version of the application The textboxes under “Publish
for publishing purposes. ClickOnce Version”. If the checkbox under
requires version changes to properly those boxes is checked, the
auto-update the application. publish version will be automat-

ically incremented each time the
application is published.

Prerequisites Specifies the software that must be The Prerequisites button brings
installed before your application can up a dialog box that allows
itself be installed, including elements standard prerequisites to be
such as the .NET Framework. checked off. The .NET Frame-

work is checked by default. The
dialog also allows you to specify
the location for downloading pre-
requisites. See the section below
on the Bootstrapper for more
information on prerequisites.

Miscellaneous Options for various purposes such The Options button brings up a
options as the product name. dialog box that allows these

options to be set.

Update options Options that control the update These options are only available
process, including when the for applications that can run
application updates (before or after offline. The Updates button
it starts), the minimum version brings up a dialog box
number required, etc. controlling these options.

The Bootstrapper
Because applications deployed by ClickOnce is a part of the .NET Framework, the .NET Framework
must be available on the user’s machine before your application can be installed and run. In addition,
your application may require other items such as a database or COM component to be installed.

To provide for such needs, ClickOnce includes a “bootstrapper” that runs as the first step in the
ClickOnce process. The bootstrapper is not a .NET program, so it can run on systems that do not yet
have the .NET Framework installed. The bootstrapper is contained in a program called Setup.exe, which
is included by ClickOnce as part of the publishing process.

When setup.exe runs, it checks for the prerequisites needed by the application, as specified in the
Prerequisites options discussed above. If needed, these options are then downloaded and installed.
Only if the user’s system contains installed prerequisites does ClickOnce attempt to install and run your
Windows application.

The MSDN documentation includes more details on configuring and using the ClickOnce bootstrapper.

744

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 744

ClickOnce vs. Other Deployment Technologies
ClickOnce is a complete replacement for no-touch deployment. However, there are other deployment
scenarios for which ClickOnce may not be the ideal solution. For example, ClickOnce can only deploy a
per-user installation. ClickOnce cannot install an application once to be used by all users on the system.

ClickOnce may be used in combination with technologies such as the Windows Installer. If you create
.msi files, as discussed earlier in the chapter, you may include them as part of ClickOnce’s bootstrapper
process. This is an advanced technique not discussed in this book, but you can learn more about this
capability in the MSDN documentation.

For cases in which ClickOnce is not appropriate, you may wish to use more customized deployment
technologies. These are discussed next.

Custom Deployment Options
If an application needs deployment capabilities not covered by the technologies discussed so far, it may
be necessary to use alternatives technologies, or even develop them yourself. For example, you can cre-
ate a deployment function that checks via a Web Service to see when updating needs to take place and
that uses FTP to transfer files from a Web server to a client machine.

Updater Application Block
Rather than start from scratch on such deployment/installation technology, you can look at starting
points such as the Updater Application Block. Created by Microsoft’s Patterns and Practices Group, the
Updater Application Block can be downloaded from Microsoft’s Web site. It includes manifest-based
checking of modules for updating, and background transfer of new modules using the same transfer
technology as Windows Update.

You can use the Updater Application Block as is, or customize it for your own needs. For example, you
could create a version that allows different classes of users to have different update strategies, so that
new updates go out to a select group of users first.

Summary
An application must be deployed to be useful. How an individual application should be deployed
depends heavily on circumstances. Factors such as the geographic distribution of the application, its
complexity, and how often it will be updated all must be considered to choose an appropriate strategy.

The main possibilities for deployment are:

❑ XCOPY deployment

❑ Installation via the Windows Installer

❑ No-touch deployment

❑ ClickOnce deployment

❑ Deployment with other technologies such as the Application Updater Block

745

Deployment

22_575368 ch19.qxd 10/7/05 11:14 PM Page 745

This chapter has covered each of these, with some discussion of their applicability. It will be helpful for
you to understand all of these options to make appropriate decisions for the deployment of individual
applications.

On one hand, simple utilities, for example, might be best installed by simply copying files. On the other
hand, stand-alone applications that have many dependencies on COM-based components will more
often use Windows Installer technology. Applications that depend on Web Services for data will often be
best deployed with ClickOnce. Corporate applications with special needs for security during installa-
tion, or that need to install an application once for multiple users, may be better off using the
Application Updater Block.

It’s also helpful to understand that these options are not mutually exclusive. You may have an applica-
tion with COM dependencies that needs to use an .msi file for an initial install, but then gets the rest of
the application and future updates via ClickOnce or the Application Updater Block. Whatever your
application, the plethora of application deployment technologies available for .NET-based applications
means you should be able to find an option or combination that suits your needs.

746

Chapter 19

22_575368 ch19.qxd 10/7/05 11:14 PM Page 746

Working with Classic
COM and Interfaces

However much we try, we just can’t ignore the vast body of technology surrounding Microsoft’s
Component Object Model, or COM. Over the years, this model has been the cornerstone of so
much Microsoft-related development that we have to take a long, hard look at how we are going
to integrate all that stuff into the new world of .NET.

This chapter starts by taking a brief backward glance at COM, then compares it with the way that
components interact in .NET, and finally it takes a look at the tools Microsoft provides to help link
the two together. Having looked at the theory, we then try it out by building a few example appli-
cations. First, we take a legacy basic COM object and run it from a Visual Basic 2005 program.
Then we repeat the trick with a full-blown ActiveX control. Finally, we turn things around and
try running some Visual Basic code in the guise of a COM object.

As all that is done, try to remember one thing: COM is, to a large extent, where .NET came from.
In evolutionary terms, COM’s kind of like Lucy, the Australopithecus from ancient Ethiopia. So, if it
seems a little clunky at times, let’s not to be too hard on it. In fact, let’s not refer to it as “Nasty,
tired, clunky old COM” at all. Let’s simply call it “Classic COM.”

More information on how to make COM and VB6 code interoperate with the .NET
platform can be found in Professional Visual Basic Interoperability: COM and VB6 to
.NET (Wiley, 2002).

23_575368 ch20.qxd 10/7/05 11:12 PM Page 747

Classic COM
Before looking into COM-.NET interoperability, it’s important to be aware of the main points about
COM itself. This section doesn’t attempt to do anything more than skim the surface, however. While the
basic concepts are fundamentally simple, the underlying technology is anything but. Some of the most
impenetrable books on software that have ever been written have COM as their subject, and we have no
wish to add to these.

COM was Microsoft’s first full-blown attempt at creating a language-independent standard for program-
ming. The idea was that interfaces between components would be defined according to a binary standard.
This would mean that you could, for the first time, invoke a VB component from a VC++ application, and
vice versa. It would also be possible to invoke a component in another process or even on another
machine, via Distributed COM (DCOM). You won’t be looking at out-of-process servers here, however,
because the vast majority of components developed to date are in-process. To a large extent, DCOM was
fatally compromised by bandwidth, deployment, and firewall problems and never achieved a high level
of acceptance.

A COM component implements one or more interfaces, some of which are standards provided by the sys-
tem, and some of which are custom interfaces defined by the component developer. An interface defines
the various methods that an application may invoke. Once specified, an interface definition is supposed to
be inviolate so that, even if the underlying code changes, applications that use the interface don’t need to
be rebuilt. If the component developers find that they have left something out, they should define a new
interface containing the extra functionality in addition to that in the original interface. This has, in fact,
happened with a number of standard Microsoft interfaces. For example, the IClassFactory2 interface
extends the IClassFactory interface by adding features for managing the creation of licensed objects.

The key to getting applications and components to work together is binding. COM offers two forms of
binding, early and late:

❑ In early binding, the application uses a type library at compile time to work out how to link in to
the methods in the component’s interfaces. A type library can either come as a separate file,
with the extension .tlb, or as part of the DLL containing the component code.

❑ In late binding, no connection is made between the application and its components at compile
time. Instead, the COM runtime searches through the component for the location of the required
method when the application is actually run. This has two main disadvantages: It’s slower and
it’s unreliable. If a programming error is made (for example, the wrong method is called, or the
right method with the wrong number of arguments), it doesn’t get caught at compile time.

If a type library is not explicitly referred to, there are two ways to identify a COM component,
by class ID, which is actually a GUID, and by ProgID, which is a string and looks something like
“MyProject.MyComponent”. These are all cross-referenced in the registry. In fact, COM makes exten-
sive use of the registry to maintain links between applications, their components, and their interfaces.
All experienced COM programmers know their way around the registry blindfolded.

VB6 has a lot of COM features embedded into it, to the extent that many VB6 programmers aren’t even
aware that they are developing COM components. For instance, if you create a DLL containing an instance

748

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 748

of a VB6 class, you will in fact have created a COM object without even asking for one. The relative ease of
this process is demonstrated during the course of this chapter.

There are clearly similarities between COM and .NET. So, to a large extent, all you’ve got to do to make
them work together is put a wrapper around a COM object to turn it into an assembly, and vice versa.

COM and .NET in Practice
It’s time to get serious and see if all this seamless integration really works. To do this, we’re going to
have to simulate a legacy situation. Let’s imagine that your enterprise depends on a particular COM
object that was written for you a long time ago by a wayward genius (who subsequently abandoned
software development and has gone to live in a monastery in Tibet). Anyway, all you know is that the
code works perfectly and you need it for your .NET application.

You have one, or possibly two, options here. If you have the source (which is not necessarily the case)
and you have sufficient time (or, to put it another way, money), you can upgrade the object to .NET and
continue to maintain it under Visual Studio 2005. For the purist, this is the ideal solution for going for-
ward. However, maintaining the source as it is under Visual Studio isn’t really a viable option. Visual
Studio does offer an upgrade path, but it doesn’t cope well with COM objects using interfaces specified
as abstract classes.

If upgrading to .NET isn’t an option, all you can do is simply take the DLL for the COM object, register it
on the .NET machine, and use the .NET interoperability tools. This is the path that you’re going to take.

So, what you need is a genuine legacy COM object, and what you’re going to have to use is genuine
legacy VB6. For the next section, then, you’re going to be using VB6. If you’ve already disposed of VB6,
or never had it in the first place, feel free to skip this section. The DLL is available as part of the code
download, in any case.

A Legacy Component
For your legacy component, you’re going to imagine that you have some kind of analytics engine that
requires a number of calculations. Because of the highly complex nature of these calculations, their
development has been given to specialists, while the user interface for the application has been given to
UI specialists. A COM interface has been specified that all calculations must confirm to. This interface
has the name IMegaCalc and has the following methods.

Method Description

Sub AddInput (InputValue as Double) Add input value to calculation

Sub DoCalculation () Do calculation

Function GetOutput () as Double Get output from calculation

Sub Reset () Reset calculation for next time

749

Working with Classic COM and Interfaces

23_575368 ch20.qxd 10/7/05 11:12 PM Page 749

Step 1: Defining the Interface
The first thing you have to do is define your interface. In VB6, the way to do this is to create an abstract
class, that is, one without any implementation. So, create an ActiveX DLL project called MegaCalculator.
You do this by creating a new project and then changing its name to MegaCalculator by means of the
Project ➪ Project1 Properties dialog box. Having done that, create a class called IMegaCalc. This is what
the code looks like:

Option Explicit

Public Sub AddInput(InputValue As Double)
End Sub

Public Sub DoCalculation()
End Sub

Public Function GetOutput() As Double
End Function

Public Sub Reset()
End Sub

From the main menu, select File ➪ Make MegaCalculator.dll to define and register the interface.

Step 2: Implementing the Component
For the purposes of this demonstration, the actual calculation that you’re going to perform is going to be
fairly mundane: In fact, you’re going to calculate the mean of a series of numbers. So, create another
ActiveX DLL project, called MeanCalculator this time. You need to add a reference to the type library
for the interface that you’re going to implement, so select the MegaCalculator DLL via the References
dialog box that appears when you select Project ➪ References.

Having done that, you can go ahead and write the code for the mean calculation. You do this in a class
called MeanCalc:

Option Explicit

Implements IMegaCalc

Dim mintValue As Integer
Dim mdblValues() As Double
Dim mdblMean As Double

Private Sub Class_Initialize()
IMegaCalc_Reset

End Sub

Private Sub IMegaCalc_AddInput(InputValue As Double)
mintValue = mintValue + 1
ReDim Preserve mdblValues(mintValue)
mdblValues(mintValue) = InputValue

End Sub

750

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 750

Private Sub IMegaCalc_DoCalculation()
Dim iValue As Integer
mdblMean = 0#
If (mintValue = 0) Then Exit Sub

For iValue = 1 To mintValue
mdblMean = mdblMean + mdblValues(iValue)

Next iValue

mdblMean = mdblMean / mintValue
End Sub

Private Function IMegaCalc_GetOutput() As Double
IMegaCalc_GetOutput = mdblMean

End Function

Private Sub IMegaCalc_Reset()
mintValue = 0

End Sub

As before, you select File ➪ Make MeanCalculator.dll to build and register the component. It has a
default interface called MeanCalc (which contains no methods, and is thus invisible to the naked eye),
plus an implementation of IMegaCalc.

Step 3: Registering the Legacy Component
You now have your legacy component. If you’re developing your new .NET application on the same
machine, you don’t need to do anything more because your component would already have been regis-
tered by the build process. However, if you’re working on an entirely new machine, you’ll need to regis-
ter it there. The easiest way to do this is to open a command box, and register it with the following
command using regsvr32.exe found in C:\Windows\system32:

regsvr32 MeanCalculator.dll

Then you should see the result shown in Figure 20-1.

Figure 20-1

Because MeanCalculator implements an interface from MegaCalculator, you’ll also have to repeat
the trick with that DLL:

regsvr32 MegaCalculator.dll

and what you see is shown in Figure 20-2.

751

Working with Classic COM and Interfaces

23_575368 ch20.qxd 10/7/05 11:12 PM Page 751

Figure 20-2

You’re now ready to use your classic component from a .NET application.

The .NET Application
For your .NET application, all you’re going to do is instantiate a MeanCalc object and get it to work out
a mean for you. So, create a Windows Application project in Visual Basic called CalcApp. What the form
looks like is shown in Figure 20-3.

Figure 20-3

The two text boxes are called txtInput and txtOutput, respectively; the second one is not enabled for
user input. The three command buttons are btnAdd, btnCalculate, and btnReset, respectively.

Referencing the Legacy Component
Before you dive into writing the code behind those buttons, you need to make your new application
aware of the MeanCalculator component. So, you have to add a reference to it, via the Project ➪ Add
Reference menu item. This brings up a dialog box with five tabs: .NET, COM, Projects, Browse, and
Recent. Select MeanCalculator and MegaCalculator in turn from the COM tab (see Figure 20-4).

Now, press the OK button. Notice that, in the list of references in the Solution Explorer, you can now see
both MeanCalculator and MegaCalculator (see Figure 20-5).

Inside the .NET Application
Now that you’ve successfully got your component referenced, you can go ahead and finish coding your
application. First, add a global variable (mobjMean) to hold a reference to an instance of the mean calcu-
lation component:

752

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 752

Public Class Form1

Dim mobjMean As MeanCalculator.MeanCalc

Figure 20-4

Figure 20-5

753

Working with Classic COM and Interfaces

23_575368 ch20.qxd 10/7/05 11:12 PM Page 753

Next, you need to create a Form1_Load event where you will add the following instruction, which will
create the component that you’re going to use:

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

mobjMean = New MeanCalculator.MeanCalc()
End Sub

Finally, you need to add the code behind the buttons. First of all, the Add button:

Private Sub btnAdd_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnAdd.Click

mobjMean.AddInput(CDbl(txtInput.Text))
End Sub

All you’re doing here is adding whatever’s in the input text box into the list of numbers for the calcula-
tion. Next, here’s the code behind the Calculate button:

Private Sub btnCalculate_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnCalculate.Click

mobjMean.DoCalculation()
txtOutput.Text = mobjMean.GetOutput()

End Sub

This performs the calculation, retrieves the answer, and puts it into the output text box. Finally, the code
behind the Reset button simply resets the calculation:

Private Sub btnReset_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnReset.Click

mobjMean.Reset()
End Sub

Trying It All Out
Of course, the proof of the pudding is in the eating, so let’s see what happens when you run your appli-
cation. First, put one value in, say 2, and click Add. Now, enter another value, say 3, and click Add once
more. When you click Calculate, you’ll get the mean of the two values (2.5 in this case; see Figure 20-6).

Figure 20-6

754

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 754

Using TlbImp Directly
In the preceding example, there’s actually quite a lot going on under the covers. Every time you import a
COM DLL into Visual Studio, it’s creating a default interop assembly, which is basically a .NET assembly
that acts as a wrapper for the COM object. If you’re doing this a lot, it might be better to do the wrap-
ping once and for all, and then let your application developers import the resulting .NET assembly
instead. Let’s see how you might do that.

The process that creates the default interop assembly on behalf of Visual Studio is called TlbImp.exe.
The name stands for Type Library Import, and that’s pretty much what it does. It comes as part of the
.NET Framework SDK, and you might find it convenient to extend the PATH environment variable to
include the \bin directory of the .NET Framework SDK.

TlbImp takes a COM DLL as its input and generates a .NET assembly DLL as its output. By default, the
.NET assembly has the same name as the type library, which will — in the case of VB6 components —
always be the same as the COM DLL. This means that you’ll have to explicitly specify a different output
file. You do this by using the /out: switch. So that you can see what’s going on at each step in the pro-
cess, you’ll also specify /verbose:

tlbimp MegaCalculator.dll /out:MegaCalculatorNet.dll /verbose

For this example, start with MegaCalculator, because MeanCalculator has a reference to
MegaCalculator. If you start with MeanCalculator, you will notice that you will get an error
saying that there is a reference to MegaCalculator and that TlbImp will not be able to overwrite the
MegaCalculator.dll. The way to get around this is to start with MegaCalculator by giving TlbImp
the command as shown above. Once this is accomplished, TlbImp will inform you of the success or fail-
ure in creating a .NET assembly of the name MegaCalculatorNet.dll.

Now that MegaCalculatorNet.dll is in place, you can work with MeanCalculator and make sure
that the reference now points to the new MegaCalculatorNet.dll. You accomplish this by using the
following command:

tlbimp MeanCalculator.dll /out:MeanCalculatorNet.dll
reference:MegaCalculatorNet.dll /verbose

What happens with this command is shown in Figure 20-7.

Figure 20-7

755

Working with Classic COM and Interfaces

23_575368 ch20.qxd 10/7/05 11:12 PM Page 755

Notice that TlbImp has encountered a reference to another COM type library, MegaCalculator, and it
has very kindly in turn imported MegaCalculatorNet instead.

Having converted your COM DLLs into .NET assemblies, you can now reference them in an application
as you would any other .NET DLL.

Late Binding
We’ve shown that you can successfully do early binding on COM components within a .NET applica-
tion. But what if you want to do late binding? What if you don’t have access to a type library at applica-
tion development time? Can you still make use of the COM components? Does the .NET equivalent of
late binding even exist?

The answer is that, yes, it does, but, no, it’s not as transparent as with VB6. Let’s take a look at what one
used to do in VB6. If you wanted to do early binding, you would do this:

Dim myObj As MyObj
Set myObj = New MyObj

MyObj.MyMethod (...)

For late binding, it would look like this instead:

Dim myObj As Object
Set myObj = CreateObject (“MyLibrary.MyObject”)

MyObj.MyMethod (...)

There’s actually an enormous amount of stuff going on under the covers here; if you’re interested in
looking into this further, try VB COM: Visual Basic 6 Programmer’s Introduction to COM.

An Example for Late Binding
For your sample, let’s extend the calculator to a more generic framework that can feed inputs into a
number of different calculation modules rather than just the fixed one. You’ll keep a table in memory of
calculation ProgIDs and present the user with a combo box to select the right one.

The Sample COM Object
The first problem you encounter with late binding is that you can only late-bind to the default interface,
which, in this case, is MeanCalculator.MeanCalc, not MeanCalculator.IMegaCalc. So, you’re going
to have to redevelop your COM object as a stand-alone library, with no references to other interfaces.

As before, you’ll build a DLL under VB6, copy it over to your .NET environment, and reregister it there.
You’ll call this VB6 DLL MeanCalculator2.dll, and the code in the class (called MeanCalc) should
look like this:

756

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 756

Option Explicit

Dim mintValue As Integer
Dim mdblValues() As Double
Dim mdblMean As Double

Private Sub Class_Initialize()
Reset

End Sub

Public Sub AddInput(InputValue As Double)
mintValue = mintValue + 1
ReDim Preserve mdblValues(mintValue)
mdblValues(mintValue) = InputValue

End Sub

Public Sub DoCalculation()
Dim iValue As Integer
mdblMean = 0#

If (mintValue = 0) Then Exit Sub

For iValue = 1 To mintVal
mdblMean = mdblMean + mdblValues(iValue)

Next iValue

mdblMean = mdblMean / mintValue
End Sub

Public Function GetOutput() As Double
GetOutput = mdblMean

End Function

Public Sub Reset()
mintValue = 0

End Sub

As before, you’ll need to move this across to your .NET machine and register it using RegSvr32.

The Calculation Framework
For your generic calculation framework, you’ll create a new application in Visual Basic 2005 called
CalcFrame. You’ll basically use the same dialog box as last time, but with an extra combo box at the top
(see Figure 20-8).

The new combo box is called cmbCalculation. You’ve also disabled the controls txtInput, btnAdd,
btnCalculate, and btnReset, until you know if the selected calculation is valid.

Start off by importing the Reflection namespace; you’ll need this for handing all the late binding:

Imports System.Reflection

757

Working with Classic COM and Interfaces

23_575368 ch20.qxd 10/7/05 11:12 PM Page 757

Figure 20-8

Then add a few member variables:

Public Class Form1
Inherits System.Windows.Forms.Form

Private mstrObjects() As String
Private mnObject As Integer
Private mtypCalc As Type
Private mobjcalc As Object

Next, add a few lines to Form1_Load:

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

mnObject = 0
AddObject(“Mean”, “MeanCalculator2.MeanCalc”)
AddObject(“StdDev”, “StddevCalculator.StddevCalc”)

If (mnObject > 0) Then
cmbCalculation.SelectedIndex = 0

End If

End Sub

What you’re doing here is building up a list of calculations. Once finished, you select the first one in the
list. Let’s just take a look at that subroutine AddObject:

Private Sub AddObject(ByVal strName As String, ByVal strObject As String)
cmbCalculation.Items.Add(strName)
mnObject = mnObject + 1
ReDim Preserve mstrObjects(mnObject)
mstrObjects(mnObject - 1) = strObject

End Sub

758

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 758

In this code segment, you’re adding the calculation name to the combo box and its ProgID to an array
of strings. Neither of these is sorted, so you get a one-to-one mapping between them. Check out what
happens when you select a calculation via the combo box:

Private Sub cmbCalculation_SelectedIndexChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) _

Handles cmbCalculation.SelectedIndexChanged
Dim intIndex As Integer
Dim bEnabled As Boolean

intIndex = cmbCalculation.SelectedIndex
mtypCalc = Type.GetTypeFromProgID(mstrObjects(intIndex))

If (mtypCalc Is Nothing) Then
mobjcalc = Nothing
bEnabled = False

Else
mobjcalc = Activator.CreateInstance(mtypCalc)
bEnabled = True

End If

txtInput.Enabled = bEnabled
btnAdd.Enabled = bEnabled
btnCalculate.Enabled = bEnabled
btnReset.Enabled = bEnabled

End Sub

There are two key calls here. The first is to Type.GetTypeFromProgID. This takes the incoming ProgID
string and converts it to a Type object. This may either succeed or fail; if it fails, you disable all controls
and let the user try again. If it succeeds, however, you go on to create an instance of the object described
by the type. You do this in the call to the static method Activator.CreateInstance.

So, let’s assume that your user has selected a calculation that you can successfully instantiate. What
next? The next thing is that the user enters a number and clicks the Add button.

Private Sub btnAdd_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnAdd.Click

Dim objArgs() As [Object] = {CDbl(txtInput.Text)}
mtypCalc.InvokeMember(“AddInput”, BindingFlags.InvokeMethod, _

Nothing, mobjcalc, objArgs)

End Sub

The important call here is to InvokeMember. Let’s take a closer look. There are five parameters here:

❑ The first parameter is the name of the method that you want to call: AddInput in this case. So,
instead of going directly to the location of the routine in memory, you ask the .NET runtime to
find it for you.

❑ The value from the BindingFlags enumeration tells it to invoke a method.

759

Working with Classic COM and Interfaces

23_575368 ch20.qxd 10/7/05 11:12 PM Page 759

❑ The next parameter is to provide language-specific binding information, which isn’t needed in
this case.

❑ The fourth parameter is a reference to the COM object itself (the one that you instantiated using
Activator.CreateInstance).

❑ Finally, the fifth parameter is an array of objects representing the arguments for the method. In
this case, there’s only one argument, the input value.

Something very similar to this is going on underneath VB6 late binding, except that here it’s exposed in
all its horror. In some ways, that’s no bad thing, because it should bring it home that late binding is
something to avoid, if at all possible. Anyway, let’s carry on and complete the program. Here are the
remaining event handlers:

Private Sub btnCalculate_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnCalculate.Click

Dim objResult As Object
mtypCalc.InvokeMember(“DoCalculation”, BindingFlags.InvokeMethod, _

Nothing, mobjcalc, Nothing)
objResult = mtypCalc.InvokeMember(“GetOutput”, _

BindingFlags.InvokeMethod, Nothing, mobjcalc, Nothing)
txtOutput.Text = objResult

End Sub

Private Sub btnReset_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnReset.Click

mtypCalc.InvokeMember(“Reset”, BindingFlags.InvokeMethod, _
Nothing, mobjcalc, Nothing)

End Sub

Running the Calculation Framework
Let’s quickly complete the job by running the application. Here’s what happens when you select the
nonexistent calculation StdDev (see Figure 20-9).

Figure 20-9

760

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 760

As you can see in the screen shot, the input fields have been disabled, as desired. And, here’s what hap-
pens when you repeat the earlier calculation using Mean (see Figure 20-10). This time, the input fields
are enabled, and you can carry out your calculation as before.

Figure 20-10

One final word about late binding. You took care to ensure that you checked to see that the object was
successfully instantiated. In a real-life application, you would also need to take care that the method
invocations were successful, ensuring that all exceptions were caught — you don’t have the luxury of
having the compiler find your bugs for you.

ActiveX Controls
Let’s move on from basic COM objects to ActiveX controls You’re going to do pretty much the same as
you did with the basic COM component (apart from late binding, which has no relevance to ActiveX
controls) — build a legacy control using VB6 and then import it into a Visual Basic project.

A Legacy ActiveX Control
For your legacy control, you’re going to build a simple buttonlike object that is capable of interpreting a
mouse click and can be one of two colors according to its state. You do this by taking a second foray into
VB6; once again, if you don’t have VB6 handy, feel free to skip the next section, download the OCX file,
and pick it up when you start developing your .NET application.

Step 1: Create the Control
This time, you need to create an ActiveX Control project. You’ll call the project Magic, and the control
class MagicButton, so as to give a proper impression of its remarkable powers. From the toolbox, you
select a Shape control and place it on the UserControl form that VB6 provides you with. Rename the
shape to shpButton, and change its properties as follows.

761

Working with Classic COM and Interfaces

23_575368 ch20.qxd 10/7/05 11:12 PM Page 761

Property Value

FillStyle 0—Solid

Shape 4—Rounded Rectangle

FillColor Gray (&H00808080&)

Add a label on top of the shape control and rename this to lblText. Change its properties as follows.

Property Value

BackStyle 0—Transparent

Alignment 2—Center

Switch to the code view of MagicButton.

Now, add two properties called Caption and State, and an event called Click, as well as code to han-
dle the initialization of the properties and persisting them, to ensure that the shape resizes correctly and
that the label is centered. You also need to handle mouse clicks. The code in MagicButton should look
like this:

Option Explicit

Public Event Click()

Dim mintState As Integer

Public Property Get Caption() As String
Caption = lblText.Caption

End Property

Public Property Let Caption(ByVal vNewValue As String)
lblText.Caption = vNewValue
PropertyChanged (“Caption”)

End Property

Public Property Get State() As Integer
State = mintState

End Property

Public Property Let State(ByVal vNewValue As Integer)
mintState = vNewValue
PropertyChanged (“State”)

If (State = 0) Then
shpButton.FillColor = &HFFFFFF&

Else
shpButton.FillColor = &H808080&

End If
End Property

762

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 762

Private Sub UserControl_InitProperties()
Caption = Extender.Name
State = 1

End Sub

Private Sub UserControl_ReadProperties(PropBag As PropertyBag)
Caption = PropBag.ReadProperty(“Caption”, Extender.Name)
State = PropBag.ReadProperty(“State”, 1)

End Sub

Private Sub UserControl_WriteProperties(PropBag As PropertyBag)
PropBag.WriteProperty “Caption”, lblText.Caption
PropBag.WriteProperty “State”, mintState

End Sub

Private Sub UserControl_Resize()
shpButton.Move 0, 0, ScaleWidth, ScaleHeight
lblText.Move 0, (ScaleHeight - lblText.Height) / 2, ScaleWidth

End Sub

Private Sub lblText_Click()
RaiseEvent Click

End Sub

Private Sub UserControl_MouseUp(Button As Integer, Shift As Integer, _
X As Single, Y As Single)

RaiseEvent Click
End Sub

If you build this, you’ll get an ActiveX control called Magic.ocx.

Step 2: Registering Your Legacy Control
You now have your legacy control. As before, if you’re developing your new .NET application on the
same machine, you don’t need to do anything more, because your control will already have been regis-
tered by the build process. However, if you’re working on an entirely new machine, you’ll need to regis-
ter it there. As before, you need to open up a command box and register it with the following command:

regsvr32 Magic.ocx

Having done that, you’re ready to build your .NET application.

A .NET Application, Again
This .NET application is going to be even more straightforward than the last one. All you’re going to do
this time is show a button that will change color whenever the user clicks it. Let’s create a Windows
Application project in Visual Basic called ButtonApp. Before you start to develop it, however, you need
to extend the toolbox to incorporate your new control. You do this via the Tools ➪ Choose Toolbox Items
menu item (see Figure 20-11).

When you click the OK button, you can see that your magic button class is now available to you in the
toolbox (see Figure 20-12).

763

Working with Classic COM and Interfaces

23_575368 ch20.qxd 10/7/05 11:12 PM Page 763

Let’s add one to your form (see Figure 20-13).

Notice that references to AxMagic and Magic have just been added to the project in the Solution
Explorer window (see Figure 20-14).

Figure 20-11

Figure 20-12

All you need to do now is initialize the Caption property to ON, change the Text of the form to Button
Application, and code up a handler for the mouse Click event:

Private Sub AxMagicButton1_ClickEvent(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles AxMagicButton1.ClickEvent

AxMagicButton1.CtlState = CType(1 - AxMagicButton1.CtlState, Short)
If (AxMagicButton1.CtlState = 0) Then

AxMagicButton1.Caption = “OFF”
Else

764

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 764

AxMagicButton1.Caption = “ON”
End If

End Sub

Something slightly peculiar happened here. In the course of importing the control into .NET, the variable
State mutated into CtlState. This happened because there is already a class in the AxHost namespace
called State, which is used to encapsulated the persisted state of an ActiveX control. (So, maybe you
should have called it something else.)

Figure 20-13

Figure 20-14

765

Working with Classic COM and Interfaces

23_575368 ch20.qxd 10/7/05 11:12 PM Page 765

Trying It All Out, Again
So, what happens when you run this one? First of all, notice the control in the “ON” position (see
Figure 20-15).

If you click the control, it changes to the “OFF” position (see Figure 20-16).

Figure 20-15

Figure 20-16

Using .NET Components in the COM World
So, you’ve established beyond all doubt that you can use your COM legacy components with your
.NET-based applications. You don’t have to throw everything out quite yet. It’s now time to consider
the opposite question: Can you run .NET components in the COM world?

Actually, the first question is probably this one: Why on earth would you want to run .NET components
in the COM world? It’s not immediately obvious, in fact, because migration to .NET would almost cer-
tainly be application-led in most cases, rather than component-led. However, it’s possible (just) to imagine

766

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 766

a situation in which a particularly large application remains not based on .NET, while component devel-
opment moves over to .NET. Well, let’s pretend that that’s the case for the next section. The technology’s
quite cool, anyway.

A .NET Component
Let’s take a look at your definitely nonlegacy component. You’ll implement an exact copy of the func-
tionality that you did earlier with MegaCalculator and MeanCalculator, except using Visual Basic
rather than VB6.

Start off by creating a Class Library project called MegaCalculator2. This is the entire code of the class
library:

Public Interface IMegaCalc

Sub AddInput(ByVal InputValue As Double)

Sub DoCalculation()
Function GetResult() As Double
Sub Reset()

End Interface

Next, you create another Class Library project, called MeanCalculator3. This will contain a class
called MeanCalc that is going to implement the IMegaCalc interface in a precise analog of the
MeanCalc in your original VB6 MeanCalculator project. As before, you’ll need to add a reference
to MegaCalculator2 first, although this time it will be a true .NET Framework reference, and you’ll
have to browse for it (see Figure 20-17).

Figure 20-17

767

Working with Classic COM and Interfaces

23_575368 ch20.qxd 10/7/05 11:12 PM Page 767

This is what the code looks like:

Public Class MeanCalc
Implements MegaCalculator2.IMegaCalc

Dim mintValue As Integer
Dim mdblValues() As Double
Dim mdblMean As Double

Public Sub AddInput(ByVal InputValue As Double) _
Implements MegaCalculator2.IMegaCalc.AddInput

mintValue = mintValue + 1
ReDim Preserve mdblValues(mintValue)
mdblValues(mintValue - 1) = InputValue

End Sub

Public Sub DoCalculation()_
Implements MegaCalculator2.IMegaCalc.DoCalculation

Dim iValue As Integer

mdblMean = 0

If (mintValue = 0) Then Exit Sub

For iValue = 0 To mintValue - 1 Step 1
mdblMean = mdblMean + mdblValues(iValue)

Next iValue

mdblMean = mdblMean / iValue
End Sub

Public Function GetResult() As Double Implements _
MegaCalculator2.IMegaCalc.GetResult

GetResult = mdblMean
End Function

Public Sub Reset() Implements MegaCalculator2.IMegaCalc.Reset
mintValue = 0

End Sub

Public Sub New()
Reset()

End Sub

End Class

This is all quite similar to the VB6 version, apart from the way in which Implements is used. Let’s build
the assembly.

Now we come to the interesting part: How do you register the resulting assembly so that a COM-
enabled application can make use of it?

768

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 768

RegAsm
The tool provided with the .NET Framework SDK to register assemblies for use by COM is called
RegAsm. RegAsm is very simple to use. If all you’re interested in is late binding, then you simply run it
like this (see Figure 20-18).

The only problem with RegAsm, in fact, is finding the thing. It’s usually found lurking in %SystemRoot%\
Microsoft.NET\Framework\<version>, where <version> is the current .NET Framework version
number. You might find it useful to add this to your path in the system environment. You can also use
the Visual Studio command prompt.

Figure 20-18

However, there’s probably even less reason for late binding to an exported .NET component than there
is for early binding, so we’ll move on to look at early binding. For this, you need a type library, so you
need to add another parameter, /tlb (see Figure 20-19).

Figure 20-19

If you now take a look in the target directory, you see that not only do you have the original
MeanCalculator3.dll, but you’ve also acquired a copy of the MegaCalculator2.dll and two type
libraries: MeanCalculator3.tlb and MegaCalculator2.tlb. You’ll need both of these, so it was good
of RegAsm to provide them for you. You need the MegaCalculator2 type library for the same reason
that .NET needed the MegaCalculator assembly, because it contains the definition of the IMegaCalc
interface that MeanCalculator is using.

769

Working with Classic COM and Interfaces

23_575368 ch20.qxd 10/7/05 11:12 PM Page 769

Testing with a VB6 Application
Turning the tables again, you need to build a VB6 application to see if this is really going to work. Let’s
copy the type libraries over to your pre-.NET machine (if that’s where VB6 is running) and create a
Standard EXE project in VB6. You’ll call this CalcApp2. You’ll need to create references to the two new
type libraries, so go to the References dialog box, browse to find them, and select them (see Figure 20-20).

Now you’ve got all you need to create your application. Create it the same as you did for the Visual
Basic CalcApp (see Figure 20-21).

As before, the text boxes are txtInput and txtOutput, respectively, and the command buttons are
btnAdd, btnCalculate, and btnReset. Here’s the code behind it:

Figure 20-20

Figure 20-21

Option Explicit

Dim mobjCalc As MeanCalculator3.MeanCalc
Dim mobjMega As MegaCalculator2.IMegaCalc

770

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 770

Private Sub btnAdd_Click()
mobjMega.AddInput (txtInput.Text)

End Sub

Private Sub btnCalculate_Click()
mobjMega.DoCalculation
txtOutput.Text = mobjMega.GetResult

End Sub

Private Sub btnReset_Click()
mobjMega.Reset

End Sub

Private Sub Form_Load()
Set mobjCalc = New MeanCalculator3.MeanCalc
Set mobjMega = mobjCalc

End Sub

Notice that, this time, you have to explicitly get hold of a reference to the interface IMegaCalc. The
default interface of the component, MeanCalc, is entirely empty.

You make the executable via the File ➪ Make CalcApp2.exe menu item, and then you can move it back
to your .NET machine (unless, of course, you’re already there). Let’s run it up and see what happens (see
Figure 20-22).

Figure 20-22

Well, that’s not quite what you expected. What’s happened here?

In COM, the location of the DLL containing the component is available via the registry. In .NET, the
assembly always has to be either in the current directory or the global assembly. All the registry is doing
for you here is converting a COM reference to a .NET one; it’s not finding the .NET one for you.

But it’s easy to sort out. All you have to do to resolve matters is move the two assemblies, for
MegaCalculator3 and MeanCalculator2, to your current directory, and try again (see Figure 20-23).

That’s better. So you’ve established that in the unlikely event of having to run .NET from a COM-oriented
application, Microsoft has provided you with the tools.

771

Working with Classic COM and Interfaces

23_575368 ch20.qxd 10/7/05 11:12 PM Page 771

Figure 20-23

TlbExp
In fact, Microsoft has provided you with not one, but two alternative tools. The other one is TlbExp,
which, as its name suggests, is the counterpart of TlbImp. This is how you can use TlbExp to achieve
the same result as RegAsm in the previous section (see Figure 20-24).

Figure 20-24

Summary
COM isn’t going to go away for quite some time, so .NET applications have to interoperate with COM,
and they have to do it well. This chapter looked at how all this works in practice.

❑ You managed to make a .NET application early bind to a COM component, using the import
features available in Visual Basic.

❑ You looked at the underlying tool, Tlbimp.

❑ You managed to make it late bind as well, although it wasn’t a pleasant experience.

❑ You incorporated an ActiveX control into a .NET user interface, again using the features of
Visual Basic.

❑ You looked at using Regasm and TlbExp to export type libraries from .NET assemblies, so as to
enable VB6 applications to use .NET assemblies as if they were COM components.

772

Chapter 20

23_575368 ch20.qxd 10/7/05 11:12 PM Page 772

Enterprise Services

The previous chapter explored the vast hinterland of legacy software known as COM. This chapter
looks at “what COM did next” and how it fits into the world of .NET, in the shape of .NET
Enterprise Services. You would be forgiven for thinking that Enterprise Services is yet another ver-
sion of legacy software, except that much of it hasn’t been around for long enough to be considered
as legacy. However, there is more to it than that. The features made available by Enterprise Services
are still very valuable today for creating scalable, distributed applications.

To understand Enterprise Services, go back in time to around 1997. At this time, a number of tech-
nologies began to emerge from Microsoft, including Microsoft Transaction Server (MTS) Microsoft
Message Queuing (MSMQ), and Microsoft Clustering Services. The aim of these developments was to
bring something that had previously been esoteric, specialized, and generally mainframe-based
within the scope of standard PC technology, and put these technologies in the hands of developers.

Handling transactions involved a considerable extension to the NT/COM runtime. It also involved
the introduction of several new standard COM interfaces, some to be used or implemented by
transactional components and some to be used or implemented by the underlying resource man-
agers, such as SQL Server. These additions, along with some other innovations relating to areas like
asynchronous COM, came to be known as COM +.

This chapter explores the .NET Enterprise Services. In particular, it looks at transaction processing
and queued components. This is an enormous subject that could easily fill a whole book by itself,
so this chapter only scratches the surface of it. However, by the end of the chapter, you will under-
stand how all the various pieces fit together.

Let’s start by looking at what transactions are, and how they fit into Visual Basic 2005 (VB).

You can find more information about transactions in .NET in Professional VB.NET
Transactions (Wiley, 2002)

24_575368 ch21.qxd 10/7/05 11:10 PM Page 773

Transactions
A transaction is one or more linked units of processing placed together as a single unit of work, which
either succeeds or fails. If the unit of work succeeds, the work is then committed. If the unit fails, then
every item of processing is rolled back and the process is placed back to its original state.

The standard transaction example involves transferring money from account A to account B. The money
must either end up in account B (and nowhere else), or — if something goes wrong — stay in account A
(and go nowhere else). This avoids the very undesirable case in which we have taken money from
account A but haven’t put it in account B.

The ACID Test
Transaction theory starts with ACID. According to the ACID theory, all transactions should have the fol-
lowing properties:

❑ Atomicity — A transaction is atomic; that is, everything is treated as one unit. However many dif-
ferent components the transaction involves, and however many different method calls on those
components there are, the system treats it as a single operation that either entirely succeeds or
entirely fails. If it fails, the system is left in a state as if the transaction had never happened.

❑ Consistency — All changes are done in a consistent manner. The system goes from one valid state
to another.

❑ Isolation — Transactions that are going on at the same time are isolated from each other. If trans-
action A changes the system from state 1 to state 2, transaction B will see the system in either
state 1 or 2, but not some half-baked state in between the two.

❑ Durability — If a transaction has been committed, the effect will be permanent, even if the
system fails.

Let’s illustrate this with a concrete example. Imagine that, having spent a happy afternoon browsing in
your favorite bookstore, you decide to shell out some of your hard-earned dollars for a copy of, yes,
Professional VB.NET, 3rd Edition (wise choice). You take the copy to the checkout and exchange a bit of
cash for the book. A transaction is going on here: You pay money and the store provides you with a book.

There are only two reasonable outcomes — either you get the book and the store gets their money or you
don’t get the book and the store doesn’t get their money. If, for example, there is insufficient credit on
your card, you’ll walk out of the shop without the book In that case, the transaction doesn’t happen.
The only way for the transaction to complete is for you to get the book and the store to get its money.
This is the principle of atomicity.

If, on the other hand, the store decides to provide you with a copy of some other book instead, you
might reasonably feel that you have ended up with an outcome that wasn’t originally on the agenda.
This would be a violation of the principle of consistency.

Let’s now imagine that there is one copy of the book in the storeroom. However, another potential buyer
has gone up to the till next to you. As far as the person at the next till is concerned, your respective trans-
actions are isolated from each other (even though you are competing for the same resource). Either your
transaction succeeds or the other person’s does. What very definitely doesn’t happen is that the bookstore
decides to exert the wisdom of Solomon and give you half each.

774

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 774

Once you have taken the book home, let’s imagine that the bookstore calls you up and asks you if they
could have the book back. Apparently, some important customer (well, far more important than you,
anyway) needs a copy. You would feel that this was a tad unreasonable, and a violation of the principle
of durability.

At this point, it’s worth considering what implications all this is likely to have on the underlying compo-
nents. How can you ensure that all of the changes in the system can be unwound if the transaction is
aborted at some point? Perhaps you’re in the middle of updating dozens of database files, and some-
thing goes wrong.

There are three aspects to rescuing this situation with transactions:

❑ Knowledge that something has gone wrong

❑ Knowledge to perform the recovery

❑ Coordination of the recovery process

The middle part of the process is handled by the resource managers themselves; the likes of SQL Server
and Oracle are fully equipped to deal with two-phase commit and rollback (even if the resource man-
ager in question is restarted part-way through a transaction), so you don’t need to worry about any of
that. The last part of the process, coordination, is handled by the .NET runtime (or at least the Enterprise
Services part of it). The first part, knowing that something is wrong, is shared between the components
themselves and the .NET runtime. This isn’t at all unusual: Sometimes a component can detect that
something has gone wrong itself and signal that recovery is necessary, whilst, on other occasions, it may
not be able to do so because it has crashed.

Later you will see how all this works as you build a transactional application. However, before that, take
a look at how transactions are implemented within .NET Enterprise Services.

Transactional Components
But what actually are the components that are managed by Enterprise Services? What purpose do they
serve? To answer that, we need to consider what a typical real-world n-tier application looks like. The
bottom tier is the persistent data store, typically an industry-standard database such as SQL Server or
Oracle. However, there are other possible data stores, including the file system. These are termed
“resource managers,” as they manage . . . resources. The software here is concerned with maintaining
the integrity of the application’s data and providing rapid and efficient access to it. The top tier is the
user interface. This is a completely different specialization, and the software here is concerned with pre-
senting a smooth, easy to follow front end to the end user. This layer shouldn’t actually do any data
manipulation at all, apart from whatever formatting is necessary to meet each user’s presentational
needs. The interesting stuff is in the tiers in between, in particular, the business logic. In the .NET/COM+
transactional model, the software elements that implement this are components running under the con-
trol of the Enterprise Services runtime.

Typically, these components are called into being to perform some sort of transaction and then, to all
intents and purposes, disappear again. For example, a component might be called into play to transfer
information from one database to another in such a way that the information was either in one database

775

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 775

or the other, but not both. This component might have a number of different methods, each of which did
a different kind of transfer. However, each method call would carry out a complete transfer:

Public Sub TransferSomething()
TakeSomethingFromA
AddSomethingToB

End Sub

Crucially, this means that most transaction components have no concept of state; there are no properties
that hold values between method calls. The reason for this can be seen if you imagine what would hap-
pen if you had a number of instances of the above component all vying for the attention of the database.
If instance one of the control started the transfer, remembering the state or current values of A and B just
after instance two had done the same, you could end up with the state being different between the two
instances. This would violate the isolation of the transaction. Persistence is left to the outside tiers in this
model. This takes a little bit of getting used to at first because it runs counter to everything that you
learned in object-orientation 101 classes, so let’s take a minute or two to consider what we’re actually
gaining from this.

The business logic is the area of the system that requires all the transactional management. Anything
that happens here needs to be monitored and controlled to ensure that all the ACID requirements are
met. The neatest way to do this in a component-oriented framework is to develop the business logic as
components that are required to implement a standard interface. The transaction management frame-
work can then use this interface to monitor and control how the logic is implemented from a transac-
tional point of view. The transaction interface is a means for the business logic elements to talk to the
transaction framework and for the transaction framework to talk back to the logic elements.

So what’s all this about not having state? Well, if we maintain state inside our components, then we’ve
immediately got ourselves a scaling problem. The middle tiers of our application are now seriously
resource-hungry. If you want an analogy from another area of software, consider why the Internet scales
so well. The reason that it does is because HTTP is a stateless protocol. Every HTTP request stands in
isolation, so no resources are tied up in maintaining any form of session. It’s the same with transactional
components.

This is not to say that you can’t ever maintain state inside your transactional components. You can.
However, it’s not recommended.

An Example of Transactions
For our transaction example, we’re going to build a simple business logic component that transfers data
from one bank account (Wrox’s, in fact) to another one. Wrox’s bank account will be represented by a
row in one database, whilst the other will be represented by a row in another one.

There’s one important point that we should make right from the start. You can’t have transactions with-
out any resource managers. It’s very tempting to think that you can experiment with transactional com-
ponent services without actually involving, say, a database, because (as we shall see) none of the
methods in the transactional classes makes any explicit references to one. However, if you do try to do
this, you will find that your transactions don’t actually trouble the system’s statistics. Fortunately, you

776

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 776

don’t need to go out and lay out your hard-earned cash for a copy of SQL Server (nice though that is),
because Visual Studio .2005 (VS) comes with a lightweight (but fully functional) copy of SQL Server,
which goes under the name of SQL Express 2005, or SQL Express.

Creating Our Databases
The first thing to do, then, is set up the databases. Check to see if the Database Explorer tab is visible in
Visual Studio 2005 (see Figure 21-1). If not, open it using the View, Database Explorer menu item. You
need to create a new database in the Data Connections tree.

Figure 21-1

Next, right-click Data Connections, and select New Database from the menu. Alternately, you can click
the icon that looks like a plus sign over a can with a plug (not quite the universal symbol for a database,
but it will have to do). A further dialog box appears (see Figure 21-2).

Enter the database name (BankOfWrox) and elect to use Windows NT Integrated Security (which means
that it uses the same security as Windows itself). You should now see BankOfWrox in the list of data con-
nections (see Figure 21-3).

Figure 21-2

777

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 777

Figure 21-3

Now, set up the database. If you open up the new node, you should see a number of other nodes, includ-
ing Tables. Right-click this, then select New Table from the menu. A further dialog box should appear
(see Figure 21-4).

Figure 21-4

Create two columns, Name and Amount, as shown. Make sure that Name is set up to be the primary
key. When you click the Close box, you’ll be asked if you want to save changes to Table1. Select Yes, and
another dialog box will appear (see Figure 21-5).

Figure 21-5

778

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 778

Use the name Accounts for the table. You should now see a child node called Accounts below Tables in
the tree.

Okay, that’s BankOfWrox created. Repeat the whole process for BankOfMe. The structure is exactly the
same (although it doesn’t need to be for the purposes of this example). Don’t forget to set Name as the
primary key. While we could have created these two as separate rows in the same database, it doesn’t
really simulate the scenario where Enterprise Services is intended (interapplication communication).

Populating Our Databases
The next thing to do is populate our databases. If we right-click over Accounts for either database, and
select Show Table Data from Table from the menu, we will see a grid which will enable us to add rows
and initialize the values of their columns (see Figure 21-6).

Figure 21-6

Enter two accounts in BankOfWrox, Professional Visual Basic 2005 and Beginning XML, and allocate
$5,000 to each. Now repeat the process for BankOfMe, setting up one account, Me, with $0 in it. (So you’re
either (a) broke or (b) wise enough not to leave any cash lying around in this sort of account.)

The Business Logic
The next step is to create our transactional component to support our business logic. Create a new Class
Library project called Transactions. Then, add a reference to System.EnterpriseServices (see
Figure 21-7).

Figure 21-7

779

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 779

This reference is needed because, in order to come under the control of the Enterprise Services runtime,
the component needs to inherit from the System.EnterpriseServices .ServicedComponent class:

Imports System.EnterpriseServices
Imports System.Configuration
Imports System.Data.SqlClient

<Assembly: ApplicationName(“WroxTransactions”)>
<Assembly: ApplicationAccessControl(True)>
Public Class BankTransactions

Inherits ServicedComponent

Here’s the main function in our component, TransferMoney:

Public Sub TransferMoney(ByVal amount As Decimal, _
ByVal sourceBank As String, _
ByVal sourceAccount As String, _
ByVal destinationBank As String, _
ByVal destinationAccount As String)

Try
Withdraw(sourceBank, sourceAccount, amount)
Try

Deposit(destinationBank, destinationAccount, amount)
Catch ex As Exception

‘deposit failed
Throw New _

ApplicationException(“Error transfering money, deposit failed.”, _
ex)

End Try
‘both operations succeeded
ContextUtil.SetComplete()

Catch ex As Exception
‘withdraw failed
Throw New _

ApplicationException(“Error transfering money, withdrawal failed.”, _
ex)

End Try
End Sub

Ignoring, for the moment, the references to ContextUtil, we can see that we have effectively divided
up the logic into two halves, the half that takes money from the Wrox account (represented by the pri-
vate function Withdraw), and the half that adds it to your account (represented by the private function
Deposit). For the function to complete successfully, each of the two halves must complete successfully.

So what does ContextUtil do? The ContextUtil class represents the context of the transaction. Within
that context, there are basically two bits that control the behavior of the transaction from the point of
view of each participant: the consistent bit and the done bit. The done bit determines whether or not the
transaction is finished, so that resources can be reused. The consistent bit determines whether or not the

780

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 780

transaction was successful from the point of view of the participant. This is established during the first
phase of the two-phase commit process. In complex distributed transactions involving more than one
participant, the overall consistency and doneness are voted on, so that a transaction is only consistent or
done when everyone agrees that it is. If a transaction completes in an inconsistent state, it is not allowed
to proceed to the second phase of the commit.

In this case, there is only a single participant, but the principal remains the same. We can determine the
overall outcome by setting these two bits, which is done via SetComplete and SetAbort, which are static
methods in the ContextUtil class. Both of these set the done bit to True. SetComplete also sets the con-
sistent bit to True, whereas SetAbort sets the consistent bit to False. In this example, SetComplete is
only set if both halves of the transaction are successful.

The First Half of the Transaction
Now it’s time to see what’s going on in the two halves of the transaction itself. Note that we’re putting
the SQL commands into the component to reduce the number of files you need to touch. However, in a
real application, you would likely want to create stored procedures for each database call.

1. First of all, here’s the function that takes the money out of the Wrox account:

Private Sub Withdraw(ByVal bank As String, _
ByVal account As String, _
ByVal amount As Decimal)

2. Start by establishing a connection to our database and retrieving the current account balance
from it:

Dim ConnectionString As String
Dim SQL As String
Dim conn As SqlConnection = Nothing
Dim cmdCurrent As SqlCommand
Dim currentValue As Decimal
Dim cmdUpdate As SqlCommand
ConnectionString = My.Settings.Item(bank).ToString
SQL = String.Format(“SELECT Amount FROM Accounts WHERE Name = ‘{0}’”, _

account)

3. The call to ExecuteScalar retrieves a single value from the database; in this case, the Amount
for the requested account. Note that we have started an exception handler with the Try key-
word. We’ll finish the Try block in a moment:

Try
conn = New SqlConnection(ConnectionString)
conn.Open()

cmdCurrent = New SqlCommand(SQL, conn)
currentValue = CDec(cmdCurrent.ExecuteScalar())

781

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 781

4. Note the current balance, and see if we can afford to transfer the amount asked for. If not, we
raise an Exception:

‘check for overdrafts
If amount > currentValue Then

Throw New ArgumentException(“Attempt to overdraft account”)
End If

5. Otherwise, subtract the amount and update the table accordingly:

‘otherwise, we’re good to withdraw
SQL = _

String.Format(“UPDATE Accounts SET Amount = {0} WHERE Name = ‘{1}’”, _
currentValue - amount, account)

cmdUpdate = New SqlCommand(SQL, conn)
cmdUpdate.ExecuteNonQuery()

6. Finally, close the exception handler, and the database:

Catch ex As Exception
Throw New DataException(“Error withdrawing”, ex)

Finally
If Not conn Is Nothing Then

conn.Close()
End If

End Try
End Sub

The Second Half of the Transaction
The second half of the transaction is similar, except that the failure conditions are slightly different. First
of all, stipulate that we don’t want any transfer of less than $50. Secondly, we’ve inserted a bug such that
an attempt to transfer a negative amount will cause a divide by zero. (You’ll see why we did this rather
bizarre act of sabotage in a little while.) Here’s the code:

Private Sub Deposit(ByVal bank As String, _
ByVal account As String, _
ByVal amount As Decimal)

Dim ConnectionString As String
Dim SQL As String
Dim conn As SqlConnection = Nothing
Dim cmdCurrent As SqlCommand
Dim currentValue As Decimal
Dim cmdUpdate As SqlCommand

ConnectionString = My.Settings.Item(bank).ToString
SQL = String.Format(“SELECT Amount FROM Accounts WHERE Name = ‘{0}’”, _

782

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 782

account)

If amount < 0 Then
amount = amount / 0

ElseIf amount < 50 Then
Throw New ArgumentException(“Value of deposit must be greater than $50”)

Else
Try

conn = New SqlConnection(ConnectionString)
conn.Open()

‘get the current value
cmdCurrent = New SqlCommand(SQL, conn)
currentValue = CDec(cmdCurrent.ExecuteScalar())

SQL = _
String.Format(“UPDATE Accounts SET Amount = {0} WHERE Name = ‘{1}’”, _
currentValue + amount, account)

cmdUpdate = New SqlCommand(SQL, conn)
cmdUpdate.ExecuteNonQuery()

Finally
If Not conn Is Nothing Then

conn.Close()
End If

End Try
End If

End Sub

Our business logic component is complete. Let’s see how we bring it under the control of Enterprise
Services. First of all, of course, we need to build our DLL in VS.NET.

Why did we add the divide by zero error? This will give you a chance to see what happens to the trans-
action when an exception occurs in your code. The transaction will automatically fail and roll back. This
means that your data will still be in a good state at the end.

Registering Our Component
Because the Enterprise Services infrastructure is COM-oriented, you need to expose the .NET compo-
nent as a COM component and register it with Component Services. Component Services handles all
transaction coordination; that is, Component Services tracks any changes and restores the data should
the transaction fail. First, some changes to the component are needed to enable this COM interaction.
Prepare to take a trip down memory lane.

783

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 783

All COM components must have a GUID (Global Unique Identifier) that uniquely identifies it to the
COM infrastructure. This was done for you in Visual Basic 6.0, but with .NET it requires you to add a
value. In addition, your component will need an attribute to make it visible to COM. You can set both of
these in the Assembly information dialog. Double-click the My Project item in the Solution Explorer.
On the Application page, click Assembly Information. There should already be a Guid assigned to your
component. You will need to check off COM Visible. This makes all of the Public types accessible to
COM (see Figure 21-8).

Figure 21-8

You should also update the Assembly Version as you make changes to the component.

In Chapter 18, you can find more information about strong names and assemblies in general.

The problem is that the assembly is a private assembly. In order to make it available to the transaction
framework, it needs to be a shared assembly. To do this, we need to give the assembly a cryptographically
strong name, generally referred to as its strong name.

Cryptographically strong means that the name has been signed with the private key of a dual key pair.
This isn’t the place to go into a long discussion on dual key cryptography, but the essence of this is as
follows: A pair of keys are generated, one public and one private. If something is encrypted using the
private key, it can only be decrypted using the public key from that pair, and vice versa.

784

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 784

This means that it is an excellent tool for preventing tampering with information. If, for example, the
name of an assembly was to be encrypted using the private key of a pair, then the recipient of a new ver-
sion of that assembly could verify the origin of that new version, and be confident that it was not a
rogue version from some other source. This is because only the original creator of the assembly retains
access to its private key.

Giving the Assembly a Strong Name
We now have to make sure that our assembly uses the strong name. You can create a new strong name
file, or assign an existing strong name file on the Signing tab of the My Project dialog (see Figure 21-9).

Figure 21-9

Registering with Component Services
Once we’ve built the DLL again, we can run RegSvcs once more (see Figure 21-10).

RegSvcs does a number of things at this point. First, it creates a COM Type Library for the DLL. This
enables it to communicate with COM. In addition, it creates a COM+ application for the component.

785

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 785

Figure 21-10

The Component Services Console
The Component Services Console is the control interface for Component Services. This is an MMC snap-in,
which you can find (on Windows 2000 and XP) by selecting Control Panel ➪ Administrative Tools ➪
Component Services. If you open it up, you’ll see something like this (see Figure 21-11).

Figure 21-11

786

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 786

You should be able to find the sample, under COM+ Applications. A COM+ application is a set of
related COM+ components that have been packaged together. RegSvcs creates a new application for
every component that it registers. If you want to bundle together a series of components from separate
DLLs, you can do this, but you can only do it by creating a new application via the Component Services
Console (try right-clicking COM+ Applications and then selecting New). We’ll explore the console a little
more as we go on.

Now, we need a test application. Secondly, and more importantly, we need to tell Component Services
that we’re interested in transactions.

A Test Application
Deal with the first problem straightaway by creating a Windows Application project called Test
BankTransactions and a very simple form (see Figure 21-12).

Figure 21-12

The text field is called TransferField and the command button is called TransferButton.

In order to access the transactional component, add references to a couple of DLLs. First, add a reference
to the transactional component DLL itself. We’ll need to browse for this, as it isn’t currently in the global
assembly cache.

Secondly, in order to access the objects in this DLL, we also need to make our application aware of the
System.EnterpriseServices assembly, so add a reference to that as well.

Having done that, it’s time to import Transactions into the application:

Imports Transactions
Public Class MainForm

Here’s the code behind our TransferButton button:

Private Sub TransferButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles TransferButton.Click

Dim txn As New BankTransactions
Try

txn.TransferMoney(CDec(Me.TransferField.Text), _
“BankOfWrox”, “Professional Visual Basic “, _
“BankOfMe”, “Me”)

787

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 787

MessageBox.Show(String.Format(“{0:C} transfered from {1} to {2}”, _
CDec(Me.TransferField.Text), “BankOfWrox”, “BankOfMe”), _
“Transfer Succeeded”, _
MessageBoxButtons.OK, _
MessageBoxIcon.Information)

Catch ex As Exception
MessageBox.Show(ex.Message, “Transfer failed”, _

MessageBoxButtons.OK, _
MessageBoxIcon.Error)

End Try

End Sub

The Transaction Attribute
Now it’s time to tell Component Services how the component should enter a transaction. There are two
ways of doing this: via the Component Services Console or via an attribute in code. To do it via the
Component Services Console, open up the explorer tree to locate the Transactions component.

Next, right-click over this, and select Properties from the menu, then select the Transactions tab (see
Figure 21-13).

Figure 21-13

788

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 788

Finally, select one of the available options; we’ll discuss what these all mean in a moment.

However, it’s a little tiresome to require our system manager to do this every time, especially if we already
know that our component is always going to have the same transaction characteristics. So there’s an alter-
native mechanism available to us: We can explicitly set up an attribute in the code for our component.

Attributes are items of declarative information that can be attached to the elements of code, such as
classes, methods, data members, and properties. Anything that uses these can query their values at run-
time. One such attribute is called TransactionAttribute, and, unsurprisingly, this is used for specify-
ing the transaction characteristics of a component class. The value of this attribute is taken from an
enumeration called TransactionOption. Both TransactionAttribute and TransactionOption are
found within the System.EnterpriseServices namespace. That enumeration can take the following
values.

Value Description

Disabled Ignore any transaction in the current context; this is the default.

NotSupported Create the component in a context with no governing transaction.

Required Share a transaction if one exists; create a new transaction if necessary.

RequiresNew Create the component with a new transaction, regardless of the state of the
current context.

Supported Share a transaction if one exists. If it doesn’t, create the component in a
transaction-free.

The available values are exactly the same as the ones shown in the Transaction tab. This case is a
stand-alone transaction, so either RequiresNew or Required is equally valid.

Before changing the component, deregister the current version to avoid any confusion (see Figure 21-14).

Now go back to the Transactions project and make the change:

<Transaction(TransactionOption.RequiresNew)> _
Public Class BankTransactions

Inherits ServicedComponent

Having made the change, rebuild Transactions and then reregister it as before.

Now run the test application.

789

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 789

Figure 21-14

Enter 1000 and hit the Confirm button. You might be able to see the number of current active transac-
tions briefly go from none to one (depending on your computer, this may be too fast to see), followed by
the number of committed transactions and the total both going up by one. Great, we’ve implemented
our first transaction. And if we check the two databases, we can see that the amount in BankOfWrox’s
Professional Visual Basic account has been reduced to $4,000, whereas Jon’s account in BankOfMe has
been increased by $1,000.

Invalid Data
So what happens if we enter a value that we know is invalid? There are two options here: Either try to
transfer more money than there is in the Professional Visual Basic account, or try to transfer less than
our “approved limit.” Run the application again and try to transfer $10. As expected, the transaction will
fail, and no changes will be made to the accounts. Professional Visual Basic still has $4,000, and your
account still has $1,000. This isn’t too much of a big deal, because the invalid condition is spotted before
any database manipulation is carried out. If we look at the transaction statistics, we can see that the
number of aborted transactions has been incremented this time.

790

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 790

However, try to transfer $10,000. This time around, the first part of the transaction is successful, but the
second part fails. Again, the number of aborted transactions is incremented. But what’s happened to the
database? Well, fortunately for everyone concerned, we see that there is still $4,000 in the Professional
Visual Basic account, and still $1,000 in your account. The entire transaction has failed.

Something Goes Wrong
Remember that bit of mindless vandalism that we did to the Deposit function so that it would divide
by zero if we entered a negative value? Here’s where we get to try it out. Run the application again, and
try to transfer $-1. You should receive an error message. But we were halfway through a transaction!
Never mind, because looking at the transaction statistics, we see that the aborted count has gone up by
one. More importantly, if we check the databases, we see that Professional Visual Basic still has $4,000,
and the other account still has $1,000. So we’re protected against software failures as well.

Other Aspects of Transactions
There are a number of other topics that relate to transactions, such as Just-In-Time activation and Object
Pooling.

Just-In-Time
Creating and deleting components takes time. So, instead of discarding the component when finished
with it, why not keep it around in case another instance is required? The mechanism by which this is done
is called Just-In-Time (JIT) activation, and it’s set by default for all automatic transactional components (it’s
unset by default for all other COM+ components, however). This is another reason why holding state is a
bad thing within components, because it limits the ability to share components.

All good transactional components are entirely stateless. However, real life dictates differently, because,
for example, we might want to maintain a link to our database, one that would be expensive to set up
every time. The JIT mechanism provides us with a couple of methods that we can override in the
ServicedComponent class in this case.

The method that gets invoked when a JIT component gets activated is called Activate, and the compo-
nent that gets invoked when it is deactivated is called, unsurprisingly, Deactivate. In Activate and
Deactivate you should put the things that you would normally put in your constructor and decon-
structor. In addition, JIT can be activated by adding the JustInTimeActivation attribute to any class
within ServicedComponent.

791

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 791

Object Pooling
We can, if we want, take this a stage further and maintain a pool of objects already constructed and pre-
pared to be activated whenever required. When the object is no longer required (that is, it’s deactivated),
it is returned to the pool until the next time it is required. By retaining objects, we do not have to contin-
ually create them from new, which in turn reduces the performance costs of our application. We can use
the ObjectPooling attribute within our class to determine how the pool is to operate:

<Transaction(TransactionOption.RequiresNew), _
ObjectPooling(MinPoolSize:=5, MaxPoolSize:=20, _

CreationTimeOut:=30)> _
Public Class BankTransactions

Holding Things Up
A JIT-activated component will be deactivated whenever the current method call returns, unless we
tell it otherwise. The way that we control this is by means of methods in the ContextUtil class. The
ContextUtil is the favored method to obtain information about the context of the COM+ object.

If we invoke ContextUtil.DisableCommit, we are effectively telling Component Services that we are
not finished yet; in other words, we’re setting the consistency and done bits of the transaction to False.
The transaction is in an indeterminate state for the time being. Once we are happy that everything is
complete, call ContextUtil.EnableCommit, setting the consistency to True and the done bit to False.
This says that it is okay for the component to be deactivated at the end of the current method call.
However, it doesn’t say whether or not the transaction is complete or not. It’s up to us to invoke either
SetComplete, setting both the consistency and done parts to true, or SetAbort, which sets the consis-
tency to false and done to true, in other words, aborting the call.

As has been shown, ContextUtil allows us to control the activity of the object and retrieve any infor-
mation about its context.

Queued Components
The traditional component programming model is very much a synchronous one. Put simply, you invoke
a method and you get a result. However, a little thought reveals the unfortunate fact that an awful lot of
real-world problems are inherently asynchronous. You can’t always wait for a response to your request
before moving on to the next task. The real-world analogy here is the difference between phoning some-
one, and sending them an email. Phoning someone is a synchronous process. Either they answer the
phone (a successful transaction), or they don’t (or you’ve called a wrong number, another form of unsuc-
cessful transaction). Emailing someone is asynchronous; you have no control over how long the email
takes to arrive, or when the person will actually look at the email. So, if we are to be able to tackle every-
thing that the real world throws at us, we need to introduce an asynchronous component model for
those scenarios where it is most appropriate.

792

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 792

Why only some scenarios? The synchronous model is quite simple to manage, because the three possible
outcomes of a request are quite straightforward to handle. First of all, the request can be successful.
Secondly, the software can crash. Finally, the software can simply not respond at all; in which case, it times
out. However, when dealing with asynchronous requests, expect all manner of unusual conditions. For
example, the target system may not currently be operational, so we will have to make a decision on how
long to wait before it comes back up again. Each outstanding request takes up system resources, so they
need to be managed carefully. We need to be able to know when the response comes back. We need to
make certain that the recipient only receives a given message once. And so on.

We are, in fact, dealing with a different infrastructure than MTS here, an infrastructure to handle reliable
messaging. Microsoft’s product to tackle this type of problem is MSMQ, or Microsoft Message Queue.

The idea behind reliable messaging is that once you have asked the system to send a message to a given
target, you can effectively stop worrying about it. The system will handle storing and forwarding of
messages to their target, and will handle retries and timeouts for you, ensuring it is only received once,
and returning messages to the dead letter queue if all else fails. MSMQ is, in fact, a whole technology in
itself, and can seem quite complex. However, Enterprise Services provides a handy, simple abstraction
called queued components.

Queued components take the sometimes gnarly aspects of working with MSMQ and make them easier
to work with rather than the raw queue handling. Instead, you have the ideas of recorders, listeners, and
players. Recorders create messages that are put on a queue. Eventually, a listener receives the message.
This could happen immediately, or it could take weeks if the two components are disconnected. Finally,
the player does whatever the message requests.

Naturally, this places some restrictions on the kind of component that can be used. For example, we can’t
have any output arguments, and we can’t have any return value. If we have either of these, the values
can’t be set until the player has finally done the action, removing the benefit of the asynchronous aspects
of the call. However, there are some cool things that we can do, and we’re going to explore them in the
next section.

An Example of Queued Components
We’re going to write a very simple logging component that takes a string as its input, and writes it out to
a sequential file, as well as outputting it in a message box. For the purposes of a simple example, the
client and the server will be on the same machine; however, in a production scenario, they would be sep-
arate. The benefit of using queued components here is that the logging doesn’t slow down the main pro-
cess. So let’s create a Class Library project called Reporter. As usual with component services, add a
reference to the System.EnterpriseServices namespace. The first thing is to define an interface:

In order to run the Queued Components examples, MSMQ is needed, which comes
with Windows 2000 and XP. However, you need to install it separately using the Add
Windows Components dialog.

793

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 793

Imports System.IO
Imports System.EnterpriseServices
Public Interface IReporter

Sub Log(ByVal message As String)
End Interface

Notice that our Log method follows the requirements listed previously. There is no return value, and all
parameters are input only. We need to separate the interface from the implementation because the imple-
mentation, residing on the server, is going to be sitting on another machine somewhere. The client isn’t
the slightest bit interested in the details of this; all it needs to know is how to interface to it.

Take a look at the actual implementation. As with the transactional component, we inherit from
ServicedComponent, and we also implement the interface that we just defined. However, notice the
<InterfaceQueuing()> attribute that indicates to the component services runtime that the interface
can be queued (we did the same for the interface):

<InterfaceQueuing(Interface:=”IReporter”)> Public Class Reporter
Inherits ServicedComponent
Implements IReporter

In the logging method, all we do is output a message box, open up a StreamWriter component to
append to our log file, and then close it again:

Sub Log(ByVal message As String) Implements IReporter.Log
MsgBox(strText)
Using writer As StreamWriter = _

New StreamWriter(“c:\account.log”, True)
writer.WriteLine(String.Format(“{0}: {1}”, _

DateTime.Now, message))
writer.Close()

End Using
End Sub

End Class

And that’s it for the code for the component. Take a look at what to do to enable queuing. Click the
Show All Files button on the Solution Explorer to see the hidden files for the project. Open the My
Project item and then open the AssemblyInfo.vb file. Ensure that it has the attributes listed below:

‘Enterprise Services attributes
<Assembly: EnterpriseServices.ApplicationAccessControl(False, _

Authentication:=EnterpriseServices.AuthenticationOption.None)>
<Assembly: EnterpriseServices.ApplicationQueuing(Enabled:=True, _

QueueListenerEnabled:=True)>
<Assembly: EnterpriseServices.ApplicationName(“WroxQueue”)>
<Assembly: EnterpriseServices.ApplicationActivation(EnterpriseServices
.ActivationOption.Server)>

794

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 794

Next, we ensure that queuing is correctly enabled for this component. The next line is a special line to
enable message queuing to work correctly in a workgroup environment, by switching off authentication.
If we didn’t do this, we would need to set up an entire domain structure. (In a production scenario,
that’s exactly what we would use, so you would need to remove this line.) Finally, we ensure that the
component runs as a server, rather than as a library. This was optional in the case of transactional com-
ponents, but it’s mandatory for queued components. We’ll soon see why. In addition, you should add a
strong name file to your project as you did with the Transactions component.

Consoles Again
It’s time to build our component. Once built, register it using RegSvcs just like you did with the
Transactions component.

Take a look at the Component Services Console to see how it’s going (see Figure 21-15).That looks fine,
but there’s one other console to look at right now. This is the Computer Management Console. Get to this
either from the system console, or by right-clicking the My Computer icon, and selecting Manage from
the menu. Tucked away, right at the bottom, is the relevant part. You’ll need to open up Services and
Applications to find it. Take a closer look in Figure 21-15.

Figure 21-15

795

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 795

Component Services has set up some queues for us. There are five queues feeding into the main one, so
the infrastructure is ready. Remember, by the way, that all this would be running on the server machine
in a production scenario, not the client.

Building the Client
The problem is that all of the code you’ve written in this project is built on top of the MSMQ infrastruc-
ture, which is, inevitably, a COM infrastructure. Worse, the current tasks involve marshaling COM objects
into a stream suitable for inserting into a queued message. For the purposes of this discussion, think of
marshaling as basically intelligently serializing the contents of a method invocation on an interface. We
do this in such a way that they can then be deserialized at the other end and turned into a successful
invocation of the same method in a remote implementation of the interface. We get COM to do this for
us by constructing a moniker, which is basically an intelligent name.

We’ll start by creating a Windows Application project called TestReporter. We need to add a reference
to our Reporter component, in the usual manner. Here’s the form (see Figure 21-16).

Figure 21-16

796

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 796

The text box is called MessageField, and the button is called SendButton. Here’s the code:

Imports System.Runtime.InteropServices
Public Class MainForm

Inherits System.Windows.Forms.Form
Private Sub SendButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _
Handles SendButton.Click

Here’s the crucial section. The important things to note are the references to our interface and how we
instantiate the object:

Dim logger As Queues.IReporter

Try
logger = CType(Marshal.BindToMoniker(“queue:/new:Queues.Reporter”), _

Queues.IReporter)

Here’s the queued call:

logger.Log(Me.MessageField.Text)

Finally, we have to release the reference to the underlying COM object:

Marshal.ReleaseComObject(logger)
MessageBox.Show(“Message sent”)

Catch ex As Exception
MessageBox.Show(ex.Message, “Error sending message”)

End Try

It’s not pretty, but you only have to do it once to be able to do it many times over.

Queuing Invocations
Now, try using this application to put a message onto the queue. Run it up and enter a suitable message.,
such as “Hello everyone”.

Click the Send button and nothing happens. Time to take a look at our message queue (see Figure 21-17).

797

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 797

Figure 21-17

We’ve definitely created a message. So that represents our invocation. If we were to be able to read it, we
would see the message you typed in earlier embedded somewhere in it. (Unfortunately, the console only
allows us to inspect the start of the message, but if we do so, we can see the name of our component in
there.)

But why hasn’t anything happened? The answer is that we haven’t actually started our server. Remember,
we said that our component had to run as a server? This is why. The server has to sit there all the time,
serving the incoming queue. So let’s go to the Component Services Console, right-click Reporter, select
Start from the menu, and we’re off. Lo and behold, there’s the message box (see Figure 21-18).

Figure 21-18

Now that the message has been delivered, go back to the Component Services Console. Right-clicking
over the message queue and selecting Refresh shows that the message has indeed been removed from
the queue.

798

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 798

Look in account.log and notice that it has been updated as well. Now, running the application results
in the message boxes popping up straightaway.

Transactions with Queued Components
Now, why did we tell you to call that file account.log? The thing is that MSMQ is like SQL Server, a
resource manager, and it can take part in transactions. At first, this is a little counterintuitive, because
how on earth can anything so asynchronous as MSMQ have anything to do with transactions? The point
is that it is reliable. If we take the transaction to go up to the point at which a message is securely in the
queue, we have definitely got something that can participate. What happens at the other end of the
queue is an entirely separate transaction. Of course, if something goes wrong there, we may need to look
at setting up a compensating transaction coming back the other way to trigger some kind of rollback.

For the final example, then, we’re going to take our original transactional component and add in a
queued element, so that not only does the transfer of money take place, but the fact also gets logged to
a remote file. Use exactly the same queued component as last time. And that’s why we called the file
account.log.

Start off by making a clone of TestTransactions, called TestQueuedTransactions. We need to add a
reference to Queues and an import statement:

Imports System.Runtime.InteropServices

We also need a new private subroutine:

Private Shared Sub LogTransaction(ByVal amount As Decimal, _
ByVal sourceBank As String, ByVal sourceAccount As String, _
ByVal destinationBank As String, ByVal destinationAccount As String)

Dim logger As Queues.IReporter

Try
logger = CType(Marshal.BindToMoniker(“queue:/new:Queues.Reporter”), _

Queues.IReporter)

logger.Log(String.Format(“{0:c} transfered from {1}:{2} to {3}:{4}”, _
amount, _
sourceBank, sourceAccount, _
destinationBank, destinationAccount))

Marshal.ReleaseComObject(logger)
MessageBox.Show(“Message sent”)

Catch ex As Exception
MessageBox.Show(ex.Message, “Error sending message”)

End Try
End Sub

799

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 799

This may look kind of familiar to the previous queued component example application. Finally, add a
call to this subroutine in the button click event handler:

Private Sub TransferButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TransferButton.Click

Dim txn As New Transactions.BankTransactions
Try

txn.TransferMoney(CDec(Me.TransferField.Text), _
“BankOfWrox”, “Professional VB”, _
“BankOfMe”, “Me”)

LogTransaction(CDec(Me.TransferField.Text), _
“BankOfWrox”, “Professional VB”, _
“BankOfMe”, “Me”)

MessageBox.Show(String.Format(“{0:C} transfered from {1} to {2}”, _
CDec(Me.TransferField.Text), “BankOfWrox”, “BankOfMe”), _
“Transfer Succeeded”, _
MessageBoxButtons.OK, _
MessageBoxIcon.Information)

Catch ex As Exception
MessageBox.Show(ex.Message, “Transfer failed”, _

MessageBoxButtons.OK, _
MessageBoxIcon.Error)

End Try
End Sub

So we’re including a queued component into our transaction. It’s been deliberately placed at the start to
see if it genuinely takes part in the two-phase committal. If the transaction fails, we shouldn’t see any
messages come through.

We also need to make a small change to our Reporter component. However, we need to shut it down
via the Component Services Console first. The change is very simple. To ensure that the queued compo-
nent takes part in the transaction, it must be marked with the Transaction attribute:

<InterfaceQueuing(Interface:=”Reporter.IReporter”), _
Transaction(TransactionOption.Required)> _
Public Class Reporter

If we now transfer $1,000, we see the usual “Transfer complete” message box. And if we now start up
the Reporter component, we also see the message box from our queued component (see Figure 21-19).

Figure 21-19

800

Chapter 21

24_575368 ch21.qxd 10/7/05 11:10 PM Page 800

If we try it again, we see the queued message coming through first. So we know it’s okay for valid trans-
fers. What happens if we try to transfer $100? As we know from the earlier example, this will fail, and
indeed, we see the “Transfer failed” message box from the main component. But not a peep out of the
queued component.

Summary
This chapter looked at the .NET Component Services, those parts of .NET that address issues required
for serious enterprise computing. To begin with, we looked at transactions and their importance in
maintaining data correctness when multiple simultaneous changes may happen to your data. Properly
applied, transactions can ensure that even with multiple users editing data, your database will always
reflect the correct data. In addition, we looked at asynchronous processing using MSMQ and Queued
Components. Many scenarios, such as logging or other background processes, are better handled using
asynchronous code. Queued Components make building these asynchronous handlers much easier.

There are many other aspects of Enterprise Services that we haven’t looked at, including role-based secu-
rity, object constructors, and more. It is definitely worth investing in the many other books relating to this
topic for more details on these features.

801

Enterprise Services

24_575368 ch21.qxd 10/7/05 11:10 PM Page 801

24_575368 ch21.qxd 10/7/05 11:10 PM Page 802

Threading

One of the things that the move from 16-bit to 32-bit computing gave us was the ability to write
code that made use of threads, but although Visual C++ developers have been able to use threads
for some time, Visual Basic developers haven’t had a really reliable way to do so, until now.
Previous techniques involved accessing the threading functionality available to Visual C++ devel-
opers. Although this worked, without adequate debugger support in the Visual Basic environ-
ment, actually developing multithreaded code was nothing short of a nightmare.

For most developers, the primary motivation for multithreading is the ability to perform long-
running tasks in the background, while still providing the user with an interactive interface.
Another common scenario is when building server-side code that can perform multiple long-
running tasks at the same time. In that case, each task can be run on a separate thread, allowing
all the tasks to run in parallel.

This chapter introduces you to the various objects in the .NET Framework that enable any .NET
language to be used to develop multithreaded applications.

What Is a Thread?
The term thread is short for thread of execution. When your program is running, the CPU is actually
running a sequence of processor instructions, one after another. You can think of these instruc-
tions, one after another, as forming a thread that is being executed by the CPU. What we call a
thread is, in effect, a pointer to the currently executing instruction in the sequence of instructions
that make up our application. This pointer starts at the top of the program and moves through
each line, branching and looping when it comes across decisions and loops and, at a time when the
program is no longer needed, the pointer steps outside of the program code and the program is
effectively stopped.

25_575368 ch22.qxd 10/7/05 11:23 PM Page 803

Most applications have only one thread, so they are only executing one sequence of instructions. Some
applications have more than one thread, so they can simultaneously execute more than one sequence of
instructions.

It is important to realize that each CPU in your computer can only execute one thread at a time, with the
exception of hyperthreaded processors that essentially contain multiple CPUs inside a single CPU. This
means that if you only have one CPU, then your computer can only execute one thread at a time. Even if
an application has several threads, only one can run at a time in this case. If your computer has two or
more CPUs, then each CPU will run a different thread at the exact same time. In this case, more than one
thread in your application may run at the same exact time, each on a different CPU.

Of course, when you have a computer with only one CPU that several programs can actively be running
at the same time, the statements in the previous paragraph fly in the face of visual evidence. Yet it is true
that only one thread can execute at a time on a single-CPU machine. What you may perceive to be simulta-
neously running applications is really an illusion created by the Windows operating system through a
technique called preemptive multithreading, which is discussed later in the chapter.

All applications have at least one thread — otherwise they couldn’t do any work, as there’d be no
pointer to the thread of execution.

The principle of a thread is that it allows your program to perform multiple actions, potentially at the
same time. Each sequence of instructions is executed independently of other threads.

The classic example of multithreaded functionality is Microsoft Word’s spell checker. When the program
starts, the execution pointer starts at the top of the program and eventually gets itself into a position
where you’re able to start writing code.

However, at some point Word will start another thread and create another execution pointer. As you
type, this new thread examines the text and flags any spelling errors as you go, underlining them with a
red wavy line (see Figure 22-1).

Figure 22-1

Every application has one primary thread. This thread serves as the main process thread through the
application. Imagine you have an application that starts up, loads a file from disk, performs some process-
ing on the data in the file, writes a new file, and then quits. Functionally, it might look like Figure 22-2.

In this simple application, we need to use only a single thread. When the program is told to run,
Windows creates a new process and also creates the primary thread. To understand more about exactly
what it is that a thread does, you need to understand a little more about how Windows and the com-
puter’s processor deal with different processes.

The principle of a thread is that it allows your program to perform multiple actions, potentially at the same
tiiiiiime. Each sequence of instructions is executed independently of other threads.

804

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 804

Figure 22-2

Processes, AppDomains, and Threads
Windows is capable of keeping many programs in memory at once and allowing the user to switch
between them. Windows can also run programs in the background, possibly under different user identi-
ties. The ability to run many programs at once is called multitasking.

Each of these programs that your computer keeps in memory runs in a single process. A process is an iso-
lated region of memory that contains a program’s code and data. All programs run within a process, and
code running in one process cannot access the memory within any other process. This prevents one pro-
gram from interfering with any other program.

The process is started when the program starts and exists for as long as the program is running. When a
process is started, Windows sets up an isolated memory area for the program and loads the program’s
code into that area of memory. It then starts up the main thread for the process, pointing it at the first
instruction in the program. From that point, the thread runs the sequence of instructions defined by the
program.

Windows supports multithreading, so the main thread might execute instructions that create more threads
within the same process. These other threads run within the same memory space as the main thread — all
sharing the same memory. Threads within a process are not isolated from each other. One thread in a pro-
cess can tamper with data being used by other threads in that same process. However, a thread in one
process cannot tamper with data being used by threads in any other processes on the computer.

Prim
ar y Thread

Start

End

Load file
from disk

Process
the file

Save
results to

disk

805

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 805

At this point you should understand that Windows loads program code into a process and executes that
code on one or more threads. The .NET Framework adds another concept to the mix: the AppDomain. An
AppDomain is very much like a process in concept. Each AppDomain is an isolated region of memory,
and code running in one AppDomain cannot access the memory of another AppDomain.

The .NET Framework introduced the AppDomain to make it possible to run multiple, isolated programs
within the same Windows process. It turns out to be relatively expensive to create a Windows process in
terms of time and memory. It is much cheaper to create a new AppDomain within an existing process.

Remember that Windows has no concept of an AppDomain, it only understands the concept of a pro-
cess. The only way to get any code to run under Windows is to load it into a process. This means that
each .NET AppDomain exists within a process. The end result is that all .NET code runs within an
AppDomain and within a Windows process (see Figure 22-3).

Figure 22-3

In most cases, a Windows process will contain one AppDomain, which will contain our program’s code.
The main thread of the process will execute our program’s instructions. The end result is that the exis-
tence of the AppDomain is largely invisible to our program.

In some cases, most notably ASP.NET, a Windows process will contain multiple AppDomains, each with
a separate program loaded (see Figure 22-4).

Figure 22-4

Windows process

.NET AppDomain

Program code

.NET AppDomain

Program code

Windows process

.NET AppDomain

Program code

806

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 806

ASP.NET uses this technique to isolate Web applications from each other without having to start an
expensive new Windows process for each virtual root on the server.

Note that AppDomains do not change the relationship between a process and threads. Each process has
a main thread and may have other threads. This means that even in the ASP.NET process, with multiple
AppDomains, there is only one main thread. Of course, ASP.NET creates other threads, so multiple Web
applications can execute simultaneously, but there’s only a single main thread in the entire process.

Thread Scheduling
Earlier in the chapter we noted that visual evidence tells us that multiple programs, and thus multiple
threads, execute simultaneously even on a single-CPU computer. This is an illusion created by the oper-
ating system through the use of a concept called time slicing or time sharing.

The reality is that only one thread runs on each CPU at a time, again with the exception of hyperthreaded
processors, which are essentially multiple CPUs in one. In a single-CPU machine, this means that only
one thread is ever executing at any one time. To provide the illusion that many things are happening at
the same time, the operating system never lets any one thread run for very long, giving other threads a
chance to get a bit of work done as well. The end result is that it appears that the computer is executing
several threads at the same time.

The length of time each thread gets to run is called a quantum. Although a quantum can vary, it is typi-
cally around 20 milliseconds. Once a thread has run for its quantum, the operating system stops the
thread and allows another thread to run. When that thread reaches its quantum, yet another thread gets
to run and so forth. A thread can also give up the CPU before it reaches its quantum. This happens fre-
quently, since most I/O operations and numerous other interactions with the Windows operating sys-
tem will cause a thread to give up the CPU.

Because the length of time each thread gets to run is so short, we never notice that the threads are getting
started and stopped constantly behind the scenes. This is the same concept animators use when creating
cartoons or other animated media. As long as the changes happen faster than we can perceive them, we
are given the illusion of motion, or in this case, simultaneous execution of code.

The technology used by Windows is called preemptive multitasking. It is preemptive because no thread
is ever allowed to run beyond its quantum. The operating system always intervenes and allows other
threads to run. This helps ensure that no single thread can consume all the processing power on the
machine to the detriment of other threads.

It also means that we can never be sure when our thread will be interrupted and another thread allowed
to run. This is the primary source of the complexity of multithreading, as it can cause race conditions
when two threads access the same memory. If we attempt to solve a race condition with a lock, it can
cause deadlock conditions when two threads attempt to access the same lock. We’ll discuss these concepts
more later. The point you should take away now is that writing multithreaded code can be exceedingly
difficult.

The entity that executes code in Windows is the thread. This means that the operating system is primar-
ily focused on scheduling threads to keep the CPU or CPUs busy at all times. The operating system does
not schedule processes, nor does it schedule AppDomains. Processes and AppDomains are merely
regions of memory that contain our code — threads are what execute the code.

807

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 807

Threads have priorities, and Windows always allows higher priority threads to run before lower priority
threads. In fact, if a higher priority thread is ready to run, Windows will cut short a lower priority
thread’s quantum to allow the higher priority thread to execute sooner. The end result is that Windows
has a bias towards threads of higher priority.

Setting thread priorities can be useful in situations where you have a process that requires a lot of proces-
sor muscle, but it doesn’t matter how long the process takes to do its work. Setting a program’s thread to a
low priority allows that program to run continuously with little impact on other programs. So if we need
to use Word or Outlook or another application, Windows gives more processor time to these applications
and less time to the low priority program. This means the computer can work smoothly when the user
needs it to, letting the low priority program only use otherwise wasted CPU power.

Threads may also voluntarily suspend themselves before their quantum is complete. This happens fre-
quently, for instance, when a thread attempts to read data from a file. It takes some significant time for
the IO subsystem to locate the file and start retrieving the data. We can’t have the CPU sitting idle dur-
ing that time, especially when there are probably other threads that could be running. So what happens
is that the thread enters a wait state to indicate that it is waiting for an external event. The Windows
scheduler immediately locates and runs the next ready thread, keeping the CPU busy while the first
thread waits for its data.

Windows also automatically suspends and resumes our threads depending on its perceived processing
needs, the various priority settings, and so on. Say we’re running one AppDomain containing two
threads. If we can somehow mark the second thread as dormant (in other words, tell Windows that it
has nothing to do), there’s no need for Windows to allocate time to it. Effectively, the first thread will
receive 100 percent of the processor horsepower available to that process. When a thread is marked as
dormant we say it’s in a wait state.

Windows is particularly good at managing processes and threads. It’s a core part of Windows’ function-
ality and so its developers have spent a lot of time making sure that it’s super-efficient and as bug-free as
software can be. This means that creating and spinning up threads is very easy to do and happens very
quickly. Threads also only take up a small amount of system resources. However, there is a caveat you
should be aware of.

The activity of stopping one thread and starting another is called context switching. This switching hap-
pens relatively quickly, but only if you’re relatively careful with the number of threads you create.
Remember that this happens for each active thread at the end of each quantum (or not before) — so after
at most 20 milliseconds. If you spin up too many threads, the operating system will spend all of its time
switching between different threads, perhaps even getting to a point where the code in the thread doesn’t
get a chance to run because as soon as you’ve started the thread it’s time for it to stop again.

Creating thousands of threads is not the right solution. What you need to do is find a balance between
the amount of threads that your application needs and the amount of threads that Windows can handle.
There’s no magic number or right answer to the question of “How many threads should I create?” You
just need to be aware of context switching and experiment a little.

Take the Microsoft Word spell check example. The thread that performs the spell check is around all the
time. Imagine you have a blank document containing no text. At this point, the spell check thread is in a
wait state. Imagine you type a single word into the document and then pause. At this point, Word will

808

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 808

pass the word over to the thread and signal it to start working. The thread will use its own slice of the
processor power to examine the word. If it finds something wrong with the word, it will tell the primary
thread that a spelling problem was found and that the user needs to be alerted. At this point, the spell
check thread drops back into a wait state until more text is entered into the document. Word doesn’t spin
up the thread whenever it needs to perform a check — rather the thread runs all the time, but, if it has
nothing to do, it drops into this efficient wait state. (You’ll learn about how the thread starts again later.)

Again, this is an oversimplification. Word will “wake up” the thread at various times. However, the
principle is sound — the thread is given work to do, it reports the results, and then it starts waiting for
the next chunk of work to do.

So why is all this important? If you plan to author multithreaded applications, it is important to realize
how the operating system will be scheduling our threads as well as the threads of all other processes on
the system. Most importantly, you need to recognize that your thread can be interrupted at any time so
that another thread can run.

Thread Safety and Thread Affinity
Most of the .NET Framework base class library is not thread safe. Thread-safe code is code that can be
called by multiple threads at the same time without negative side effects. If code is not thread-safe, then
calling that code from multiple threads at the same time will result in unpredictable and undesirable
side effects, potentially even blatantly crashing your application. When dealing with objects that are not
thread safe, we must ensure that multiple threads never simultaneously interact with the same object.

As an example, if you have a ListBox control (or any other control) on a Windows Form and you start
updating that control with data from multiple threads, you’ll find that your results are undependable.
Sometimes you’ll see all your data in order, other times it will be out of order, and other times some data
will be missing. This is because Windows Forms controls are not thread safe and don’t behave properly
when used by multiple threads at the same time.

To find out if any specific method in the .NET Base Class Library is thread safe, refer to the online help.
If there is no mention of threading in association with the method, then the method is not thread safe.

The Windows Forms subset of the .NET Framework is not only not thread safe, but also has thread affin-
ity. Thread affinity means that objects created by a thread can only be used by that thread. Other threads
should never interact with those objects. In the case of Windows Forms, this means that we must ensure
that multiple threads never interact with Windows Forms objects (like forms and controls). This is
important, because when we are creating interactive multithreaded applications, we must ensure that
only the thread that created a form interacts directly with that form.

As we’ll see, Windows Forms includes technology by which a background thread can safely make method
calls on forms and controls by transferring the method call to the thread that owns the form.

When to Use Threads
If we regard computer programs as being either application software or service software, we find there
are different motivators for each one.

809

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 809

Application software uses threads primarily to deliver a better user experience. Common examples are

❑ Microsoft Word — background spell checker

❑ Microsoft Word — background printing

❑ Microsoft Outlook — background sending and receiving of email

❑ Microsoft Excel — background recalculation

You can see that in all of these cases, threads are used to do “something in the background.” This pro-
vides a better user experience. For example, I can still edit a Word document while Word is spooling
another document to the printer. Or, I can still read emails while Outlook is sending my new e-mail. As
an application developer, you should use threads to enhance the user experience. At some point during
the application startup, code running in the primary thread would have spun up this other thread to be
used for spell checking. As part of the “allow user to edit the document” process, we give the spell
checker thread some words to check. This thread separation means that the user can continue to type,
even though spell checking is still taking place.

Service software uses threads to deliver scalability and improve the service offered. For example, imagine
I had a Web server that receives six incoming connections simultaneously. That server needs to service
each of the requests in parallel, otherwise the sixth thread would have to wait for me to finish threads one
through five before it even got started. Figure 22-5 shows how IIS might handle incoming requests.

Figure 22-5

Time

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Receive
Request

Send
Request Disconnect

Receive
Request

Send
Request Disconnect

Receive
Request

Send
Request Disconnect

Receive
Request

Send
Request Disconnect

Receive
Request

Send
Request Disconnect

Receive
Request

Send
Request Disconnect

810

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 810

The primary motivation for multiple threads in a service like this is to keep the CPU busy servicing user
requests even when other user requests are blocked waiting for data or other events. If we have six user
requests, odds are high that some, or all of them, will read from files or databases and thus will spend
many milliseconds in wait states. While some of the user requests are in wait states, other user requests
will need CPU time and can be scheduled to run. The end result is higher scalability because we keep
the CPU, IO, and other subsystems of the computer as busy as possible at all times.

Designing a Background Task
The specific goals and requirements for background processing in an interactive application are quite
different from a server application. By interactive application, I am talking about Windows Forms or
Console applications. While a Web application might be somewhat interactive, the fact is that all our
code runs on the server, and so Web applications are server applications when it comes to threading.

Interactive Applications
In the case of interactive applications (typically Windows Forms applications), our design must center
around having the background thread do useful work, but also interact appropriately (and safely) with
the thread that is managing the UI. After all, we’ll typically want to let the user know when the back-
ground process starts, stops, and does interesting things over its life. We can summarize these to the fol-
lowing basic requirements for the background thread:

❑ Indicate that the background task has started

❑ Provide periodic status or progress information

❑ Indicate that the background task has completed

❑ Allow the user to request that the background task cancel

While every application is different, these four requirements are typical for background threads in an
interactive application.

As noted earlier, most of the .NET Framework is not thread safe, and Windows Forms is even more
restrictive by having thread affinity. We want our background task to be able to notify the user when it
starts, stops, and provides progress information. The fact that Windows Forms has thread affinity com-
plicates this, because our background thread can never directly interact with Windows Forms objects.
Fortunately, Windows Forms provides a formalized mechanism by which code in a background thread
can send messages to the UI thread, so that the UI thread can update the display for the user.

This is done through the use of the BackgroundWorker control. This control is found in the
Components tab of the toolbox.

The purpose of the BackgroundWorker control is to start, monitor, and control the execution of back-
ground tasks. The control makes it easy for code on the application’s primary thread to start a task on a
background thread. It also makes it easy for the code running on the background thread to notify the
primary thread of progress and completion. Finally, it provides a mechanism by which the primary
thread can request that the background task be cancelled, and for the background thread to notify the
primary thread when it has completed the cancellation.

811

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 811

All this is done in a way that safely transfers control between the primary thread (that can update the
UI) and the background thread (that cannot update the UI).

Server Applications
In the case of server programs, our design must center around the background thread being as efficient
as possible. Server resources are precious, so the quicker the task can complete, the fewer resources we’ll
consume over time. Interactivity with a UI isn’t a concern, since our code is running on a server,
detached from any UI. The key to success in server coding is to avoid or minimize locking, thus maxi-
mizing throughput because our code never gets stopped by a lock.

For example, Microsoft went to great pains to design and refine ASP.NET to minimize the number of
locks required from the time a user request hits the server to the time an ASPX page’s code is running.
Once the page code is running, no locking occurs, so the page code can just run, top to bottom, as fast
and efficiently as possible.

Avoiding locking means avoiding shared resources or data. This is the dominant design goal for server
code — to design programs to avoid scenarios where multiple threads need access to the same variables
or other resources. Any time that multiple threads may access the same resource, we need to implement
locking to prevent the threads from colliding with each other. We’ll discuss locking later in the chapter,
as sometimes it is simply unavoidable.

Implementing Threading
At this point you should have a basic understanding of threads and how they relate to the process and
AppDomain concepts. You should also realize that for interactive applications, multithreading is not a
way to improve performance, but rather is a way to improve the end user experience by providing the
illusion that the computer is executing more code simultaneously. In the case of server-side code, multi-
threading enables higher scalability by allowing Windows to better utilize the CPU along with other
subsystems such as IO.

A Quick Tour
When a background thread is created, it points to a method or procedure that will be executed by the
thread. Remember that a thread is just a pointer to the current instruction in a sequence of instructions
to be executed. In all cases, the first instruction in this sequence is the start of a method or procedure.

When using the BackgroundWorker control, this method is always the control’s DoWork event handler.
It is important to realize that this method can’t be a Function. There is no mechanism by which a
method running on one thread can return a result directly to code running on another thread. This
means that any time you design a background task, you should start by creating a Sub in which you
write the code to run on the background thread.

Also, because the goals for interactive applications and server programs are different, our designs for
implementing threading in these two environments are different. This means that the way we design
and code the background task will vary.

812

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 812

By way of explanation, let’s work with a simple method that calculates prime numbers. This implemen-
tation is naïve, and so can take quite a lot of time when run against larger numbers, so it makes for a
useful example of a long-running background task. Do the following:

1. Create a new Windows Forms Application project named Threading.

2. Add two Button controls, a ListBox and a ProgressBar control to Form1.

3. Add a BackgroundWorker control to Form1.

4. Set its WorkerReportsProgress and WorkerSupportsCancellation properties to True.

5. Add the following to the form’s code:

Public Class Form1

#Region “ Shared data “

Private mMin As Integer
Private mMax As Integer
Private mResults As New List(Of Integer)

#End Region

#Region “ Primary thread methods “

Private Sub btnStart_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnStart.Click

ProgressBar1.Value = 0
ListBox1.Items.Clear()
mMin = 1
mMax = 10000
BackgroundWorker1.RunWorkerAsync()

End Sub

Private Sub btnCancel_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCancel.Click

BackgroundWorker1.CancelAsync()

End Sub

Private Sub BackgroundWorker1_ProgressChanged(_
ByVal sender As Object, ByVal e As _
System.ComponentModel.ProgressChangedEventArgs) _
Handles BackgroundWorker1.ProgressChanged

ProgressBar1.Value = e.ProgressPercentage

End Sub

813

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 813

Private Sub BackgroundWorker1_RunWorkerCompleted(_
ByVal sender As Object, ByVal e As _
System.ComponentModel.RunWorkerCompletedEventArgs) _
Handles BackgroundWorker1.RunWorkerCompleted

For Each item As String In mResults
ListBox1.Items.Add(item)

Next

End Sub

#End Region

#Region “ Background thread methods “

Private Sub BackgroundWorker1_DoWork(ByVal sender As Object, _
ByVal e As System.ComponentModel.DoWorkEventArgs) _
Handles BackgroundWorker1.DoWork

mResults.Clear()

For count As Integer = mMin To mMax Step 2
Dim isPrime As Boolean = True

For x As Integer = 1 To CInt(count / 2)
For y As Integer = 1 To x

If x * y = count Then
‘ the number is not prime
isPrime = False
Exit For

End If
Next
‘ short-circuit the check
If Not isPrime Then Exit For

Next

If isPrime Then
mResults.Add(count)

End If

Me.BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100))

If Me.BackgroundWorker1.CancellationPending Then
Exit Sub

End If

Next

End Sub

#End Region

End Class

814

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 814

The BackgroundWorker1_DoWork method implements the code to find the prime numbers. This
method is automatically run on a background thread by the BackgroundWorker1 control. Notice that
the method is a Sub, so it returns no value. Instead, it stores its results into a variable, in this case, a
List(Of Integer). The idea is that once the background task is complete, we can do something useful
with the results.

When btnStart is clicked, the BackgroundWorker control is told to start the background task. In order
to initialize any data values before launching the background thread, the mMin and mMax variables are
set before the task is started.

Of course, we want to display the results of the background task. Fortunately, the BackgroundWorker
control raises an event when the task is complete. In this event handler we can safely copy the values
from the List(Of Integer) into the ListBox for display to the user.

Similarly, the BackgroundWorker control raises an event to indicate progress as the task runs. Notice that
the DoWork method periodically calls the ReportProgress method. When this method is called, the
progress is transferred from the background thread to the primary thread via the ProgressChanged event.

Finally we have the need to cancel a long-running task. It is never wise to directly terminate a background
task. Instead, we should send a request to the background task asking it to stop running. This allows the
task to cleanly stop running so it can close any resources it might be using and shut down properly.

To send the cancel request, call the BackgroundWorker control’s CancelAsync method. This sets the
control’s CancellationPending property to True. Notice how this value is periodically checked by
the DoWork method, and if it is True, we exit the DoWork method, thus effectively canceling the task.

Running the code now demonstrates that the UI remains entirely responsive while the background task
is running, and the results are displayed when available.

Now that we’ve explored the basics of threading in an interactive application, let’s discuss the various
threading options that are at our disposal.

Threading Options
The .NET Framework offers two ways to implement multithreading. Regardless of which approach we
use, we must specify the method or procedure that the thread will execute when it starts.

First, we can use the thread pool provided by the .NET Framework. The thread pool is a managed pool of
threads that can be reused over the life of our application. Threads are created in the pool on an as-needed
basis and idle threads in the pool are reused, thus keeping the number of threads created by our applica-
tion to a minimum. This is important because threads are an expensive operating system resource.

Many built-in .NET Framework features already use the thread pool. In fact, we’ve already used it,
because the BackgroundWorker control runs its background tasks on thread from the thread pool. Also,
any time we do an asynchronous read from a file, URL, or TCP socket, the thread pool is used on our

The thread pool should be your first choice in most multithreading scenarios.

815

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 815

behalf. Any time we implement a remoting listener, a Web site, or a Web service, the thread pool is used.
Because the .NET Framework itself relies on the thread pool, there is a high degree of confidence that it
is an optimal choice for most multithreading requirements.

Second, we can create our own thread object. This can be a good approach if we have a single, long-
running background task in our application. It is also useful if we need fine-grained control over the
background thread. Examples of such control include setting the thread priority or suspending and
resuming the thread’s execution.

Using the Thread Pool
The .NET Framework provides a thread pool in the System.Threading namespace. This thread pool is
self-managing. It will create threads on demand and, if possible, will reuse idle threads that already exist
in the pool.

The thread pool won’t create an unlimited number of threads. In fact, it will create at most 25 threads per
CPU in the system. If we assign more work requests to the pool than it can handle with these threads,
our work requests will be queued until a thread becomes available. This is typically a good feature, as it
helps ensure that our application won’t overload the operating system with too many threads.

There are five primary ways to use the thread pool: through the BackgroundWorker control, by calling
BeginXYZ methods, via Delegates, manually via the ThreadPool.QueueUserWorkItem method, or by
using a System.Timers.Timer control. Of the five, the easiest is to use the BackgroundWorker control.

Using the BackgroundWorker Control
The previous quick tour of threading explored the BackgroundWorker control, which allows us to eas-
ily start a task on a background thread, monitor that task’s progress, and be notified when it is complete.
It also allows us to request that the background task cancel itself. All this is done in a safe manner, where
control is transferred from the primary thread to the background thread and back again without us hav-
ing to worry about the details.

Using BeginXYZ Methods
Many of the .NET Framework objects support both synchronous and asynchronous invocation. For
instance, we can read from a TCP socket by using the Read method or the BeginRead method. The Read
method is synchronous, so we are blocked until the data is read.

The BeginRead method is asynchronous, so we are not blocked. Instead, the read operation occurs on a
background thread in the thread pool. We provide the address of a method that is called automatically
when the read operation is complete. This callback method is invoked by the background thread, and so
the result is that our code also ends up running on the background thread in the thread pool.

Behind the scenes, this behavior is all driven by delegates. Rather than exploring TCP sockets or some
other specific subset of the .NET Framework class library, let’s move on and discuss the underlying tech-
nology itself.

816

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 816

Using Delegates
A delegate is a strongly typed pointer to a function or method. Delegates are the underlying technology
used to implement events within Visual Basic, and they can be used directly to invoke a method given
just a pointer to that method.

Delegates can be used to launch a background task on a thread in the thread pool. They can also transfer
a method call from a background thread to the UI thread. The BackgroundWorker control uses this
technology behind the scenes on our behalf, but we can use delegates directly as well.

To use delegates, our worker code must be in a method, and we must define a delegate for that method.
The delegate is a pointer for the method, so it must have the same method signature as the method itself:

Private Delegate Sub TaskDelegate(ByVal min As Integer, ByVal max As Integer)

Private Sub FindPrimesViaDelegate(ByVal min As Integer, ByVal max As Integer)

mResults.Clear()

For count As Integer = min To max Step 2
Dim isPrime As Boolean = True

For x As Integer = 1 To CInt(count / 2)
For y As Integer = 1 To x

If x * y = count Then
‘ the number is not prime
isPrime = False
Exit For

End If
Next
‘ short-circuit the check
If Not isPrime Then Exit For

Next

If isPrime Then
mResults.Add(count)

End If

Next
End Sub

Running background tasks via delegates allows us to pass strongly typed parameters to the background
task, thus clarifying and simplifying our code.

Now that we have a worker method and corresponding delegate, we can add a new button and write
code in its click event handler to use it to run FindPrimes on a background thread:

Private Sub btnDelegate_Click(ByVal sender As System.Object)
ByVal e As System.EventArgs) Handles btnDelegate.Click

‘ run the task

817

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 817

Dim worker As New TaskDelegate(AddressOf FindPrimesViaDelegate)
worker.BeginInvoke(1, 10000, AddressOf TaskComplete, Nothing)

End Sub

First we create an instance of the delegate, setting it up to point to the FindPrimesViaDelegate
method. Then we call BeginInvoke on the delegate to invoke the method.

The BeginInvoke method is the key here. BeginInvoke is an example of the BeginXYZ methods we
discussed earlier, and as you’ll recall, they automatically run the method on a background thread in the
thread pool. This is true for BeginInvoke as well, meaning that FindPrimes will be run in the back-
ground and the UI thread is not blocked, so it can continue to interact with the user.

Notice all the parameters we’re passing to BeginInvoke. The first two correspond to the parameters we
defined on our delegate — the min and max values that should be passed to FindPrimes.

The next parameter is the address of a method that will be automatically invoked when the background
thread is complete. The final parameter (to which we’ve passed Nothing) is a mechanism by which we
can pass a value from our UI thread to the method that is invoked when the background task is complete.

This means that we need to implement the TaskComplete method. This method is invoked when the
background task is complete. It will run on the background thread, not on the UI thread, so we need to
remember that this method can’t interact with any Windows Forms objects. Instead it will contain the
code to invoke an UpdateDisplay method on the UI thread via the form’s BeginInvoke method:

Private Sub TaskComplete(ByVal ar As IAsyncResult)

Dim update As New UpdateDisplayDelegate(AddressOf UpdateDisplay)
Me.BeginInvoke(update)

End Sub

Private Delegate Sub UpdateDisplayDelegate()

Private Sub UpdateDisplay()

For Each item As String In mResults
ListBox1.Items.Add(item)

Next

End Sub

Notice how a delegate is used to invoke the UpdateDisplay method as well, thus illustrating how dele-
gates can be used with a Form object’s BeginInvoke method to transfer control back to the primary
thread. The same technique could be used to allow the background task to notify the primary thread of
progress as the task runs.

Now when we run the application we’ll have a responsive UI, with the FindPrimesViaDelegate
method running in the background within the thread pool.

818

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 818

Manually Queuing Work
The final option for using the thread pool is to manually queue items for the thread pool to process. This
is done by calling ThreadPool.QueueUserWorkItem. This is a Shared method on the ThreadPool
class that directly places a method into the thread pool to be executed on a background thread.

This technique doesn’t allow us to pass arbitrary parameters to the worker method. Instead it requires
that the worker method accept a single parameter of type object, through which we can pass an arbi-
trary value. We can use this to pass multiple values by declaring a class with all our parameter types.
Add the following class inside the Form4 class:

Private Class params
Public min As Integer
Public max As Integer

Public Sub New(ByVal min As Integer, ByVal max As Integer)
Me.min = min
Me.max = max

End Sub

End Class

Then we can make FindPrimes accept this value as an Object:

Private Sub FindPrimesInPool(ByVal state As Object)
Dim params As params = DirectCast(state, params)
mResults.Clear()

For count As Integer = params.min To params.max Step 2
Dim isPrime As Boolean = True

For x As Integer = 1 To CInt(count / 2)
For y As Integer = 1 To x

If x * y = count Then
‘ the number is not prime
isPrime = False
Exit For

End If
Next
‘ short-circuit the check
If Not isPrime Then Exit For

Next

If isPrime Then
mResults.Add(count)

End If

Next

Dim update As New UpdateDisplayDelegate(AddressOf UpdateDisplay)
Me.BeginInvoke(update)

End Sub

819

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 819

This is basically the same method used with delegates, but it accepts an object parameter rather than the
strongly typed parameters. Also notice that the method uses a delegate to invoke the UpdateDisplay
method on the UI thread when the task is complete. When we manually put a task on the thread pool,
there is no automatic callback to a method when the task is complete, so we must do the callback in the
worker method itself.

Now we can manually queue the worker method to run in the thread pool within our click event handler:

Private Sub btnPool_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPool.Click

‘ run the task
System.Threading.ThreadPool.QueueUserWorkItem(_

AddressOf FindPrimesInPool, New params(1, 10000))
End Sub

The QueueUserWorkItem method accepts the address of the worker method — in this case FindPrimes.
This worker method must accept a single parameter of type Object or we’ll get a compile error here.

The second parameter to QueueUserWorkItem is the object that is to be passed to the worker method
when it is invoked on the background thread. In this case, we’re passing a new instance of the params
class we defined earlier. This allows us to pass our parameter values to FindPrimes.

When we run this code we’ll again find that we have a responsive UI, with FindPrimes running on a
background thread in the thread pool.

Using System.Timers.Timer
Beyond BeginXYZ methods, delegates, and manually queuing work items, there are various other ways
to get our code running in the thread pool. One of the most common is through the use of a special
Timer control. The Elapsed event of this control is raised on a background thread in the thread pool.

This is different from the System.Windows.Forms.Timer control, where the Tick event is raised on the
UI thread. The difference is very important to understand, because we can’t directly interact with
Windows Forms objects from background threads. Code running in the Elapsed event of a
System.Timers.Timer control must be treated like any other code running on a background thread.

The exception to this is if we set the SynchronizingObject property on the control to a Windows
Forms object such as a Form or Control. In this case, the Elapsed event will be raised on the appropriate
UI thread rather than on a thread in the thread pool. The end result is basically the same as using
System.Windows.Forms.Timer instead.

Manually Creating a Thread
Thus far we’ve been working with the .NET thread pool. It is also possible to manually create and con-
trol background threads through code.

To manually create a thread, we need to create and start a Thread object. This looks something like the
following:

820

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 820

‘ run the task
Dim worker As New Thread(AddressOf FindPrimes)
worker.Start()

While this seems like the obvious way to do multithreading, the thread pool is typically the preferred
approach. This is because there is a cost to creating and destroying threads, and the thread pool helps
avoid that cost by reusing threads when possible. When we manually create a thread as shown here, we
must pay the cost of creating the thread each time or implement our own scheme to reuse the threads
we create.

However, manual creation of threads can be useful. The thread pool is designed to be used for back-
ground tasks that run for a while and then complete, thus allowing the background thread to be reused
for subsequent background tasks. If we need to run a background task for the entire duration of our
application, the thread pool is not ideal, because that thread would never become available for reuse.
In such a case, we are better off creating the background thread manually.

An example of this is the aforementioned spell checker in Word, which runs as long as we are editing a
document. Running such a task on the thread pool would make little sense, since the task will run as
long as the application, so instead it should be run on a manually created thread, leaving the thread pool
available for shorter running tasks.

The other primary reason for manual creation of threads is where we want to be able to interact with the
Thread object as it is running. There are various methods on the Thread object we can use to interact
with and control the background thread. These are as shown in the following table.

Abort Stops the thread (not recommended, as no cleanup occurs — this is not a
graceful shutdown of the thread)

ApartmentState Sets the COM apartment type used by this thread — important if we’re using
COM interop in the background task

Join Blocks our current thread until the background thread is complete

Priority Allows us to raise or lower the priority of the background thread so Win-
dows will schedule it to get more or less CPU time relative to other threads

Sleep Causes the thread to be suspended for a specified period of time

Suspend Suspends a thread — temporarily stopping it without terminating the thread

Resume Restarts a suspended thread

There are many other methods available on the Thread object as well; consult the online help for more
details.

We can use these methods to control the behavior and lifetime of the background thread, which can be
useful in advanced threading scenarios.

821

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 821

Shared Data
In most multithreading scenarios, we have data in our main thread that needs to be used by the back-
ground task on the background thread. Likewise, the background task typically generates data that is
needed by the main thread. These are examples of shared data, or data that is used by multiple threads.

Remember that multithreading means that we have multiple threads within the same process, and in
.NET within the same AppDomain. Because memory within an AppDomain is common across all
threads in that AppDomain, it is very easy for multiple threads to access the same objects or variables
within our application.

For example, in our original prime example, the background task needed the min and max values from
the main thread, and all our implementations have used a List(Of Integer) to transfer results back to
the main thread when the task was complete. These are examples of shared data. Note that we didn’t do
anything special to make the data shared — the variables were shared by default.

When we’re writing multithreaded code, the hardest issue is that of managing access to shared data
within our AppDomain. You don’t, for example, want two threads writing to the same piece of memory
at the same time. Equally, you don’t want a group of threads reading memory that another thread is in
the process of changing. This management of memory access is called synchronization. It’s properly man-
aging synchronization that makes writing multithreaded code difficult.

When multiple threads want to simultaneously access a common bit of shared data, use synchronization
to control things. This is typically done by blocking all but one thread, so only one thread can access the
shared data. All other threads are put into a wait state by using a blocking operation of some sort. Once
the nonblocked thread is done using the shared data, it will release the block, allowing another thread to
resume processing and to use the shared data.

The process of releasing the block is often called an event. When we say “event” we are not talking about a
Visual Basic event. Although the naming convention is unfortunate, the principle is the same — something
happens and we react to it. In this case, the nonblocked thread causes an event, which releases some other
thread so it can access the shared data.

Although blocking can be used to control the execution of threads, it’s primarily used to control access to
resources, including memory. This is the basic idea behind synchronization — if we need something, we
block until we can access it.

Synchronization is expensive and can be complex. It is expensive because it stops one or more threads from
running while another thread uses the shared data. The whole point of having multiple threads is to do
more than one thing at a time, and if we’re constantly blocking all but one thread then we lose this benefit.

It can be complex because there are many ways to implement synchronization. Each technique is appro-
priate for a certain class of synchronization problem, and using the wrong one in the wrong place will
increase the cost of synchronization.

It is also quite possible to create deadlocks, where two or more threads end up permanently blocked. You’ve
undoubtedly seen examples of this. Pretty much any time a Windows application totally locks up and
must be stopped by the Task Manager, you are seeing an example of poor multithreading implementa-
tion. The fact that this happens even in otherwise high-quality commercial applications (such as Microsoft
Outlook) is confirmation that synchronization can be very hard to get right.

822

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 822

Avoid Sharing Data
Since synchronization has so many downsides in terms of performance and complexity, the best thing
we can do is avoid or minimize its use. If at all possible, we should design our multithreaded applica-
tions to avoid reliance on shared data, and to maintain tight control over the usage of any shared data
that is required.

Typically, some shared data is unavoidable, so the question becomes how to manage that shared data to
avoid or minimize synchronization. There are two primary schemes we can use for this purpose, so let’s
discuss them now.

Transferring Data Ownership
The first approach is to avoid sharing of data by always passing references to the data between threads.
If we also make sure that neither thread uses the same reference, then each thread has its own copy of
the data, and no thread needs access to data being used by any other threads.

This is exactly what we did in our prime example where we started the background task via a delegate:

Dim worker As New TaskDelegate(AddressOf FindPrimesViaDelegate)
worker.BeginInvoke(1, 10000, AddressOf TaskComplete, Nothing)

The min and max values are passed as ByVal parameters, meaning that they are copied and provided to
the indPrimes method. No synchronization is required here, because the background thread never tries
to access the values from the main thread.

We passed copies of the values a different way when we manually started the task in the thread pool:

System.Threading.ThreadPool.QueueUserWorkItem(_
AddressOf FindPrimesInPool, New params(1, 10000))

In this case, we created a params object into which we put the min and max values. Again, those values
were copied before they were used by the background thread. The FindPrimesInPool method never
attempted to access any parameter data being used by the main thread.

Transferring Data Ownership
What we’ve done so far works great for variables that are value types, such as Integer, and immutable
objects, such as String. It won’t work for reference types, such as a regular object, because reference types
are never passed by value, only by reference.

To use reference types, we need to change our approach. Rather than returning a copy of the data, we’ll
return a reference to the object containing the data. Then we’ll make sure that the background task stops
using that object, and starts using a new object. As long as different threads aren’t simultaneously using
the same objects, there’s no conflict.

We can enhance our prime application to provide the prime numbers to the UI thread as it finds them,
rather than in a batch at the end of the process. To see how this works, we’ll alter our original code based
on the BackgroundWorker control. That is the easiest, and typically the best, way to start a background
task, so we’ll use it as a base implementation.

823

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 823

The first thing to do is to alter the DoWork method so it periodically returns results. Rather than using
the shared mResults variable, we’ll use a local List(Of Integer) variable to store the results. Each
time we have enough results to report, we’ll return that List(Of Integer) to the UI thread, and we’ll
create a new List(Of Integer) for the next batch of values. This way we’re never sharing the same
object between two threads. The required changes are highlighted:

Private Sub BackgroundWorker1_DoWork(ByVal sender As Object, _
ByVal e As System.ComponentModel.DoWorkEventArgs) _
Handles BackgroundWorker1.DoWork

‘mResults.Clear()
Dim results As New List(Of Integer)

For count As Integer = mMin To mMax Step 2
Dim isPrime As Boolean = True

For x As Integer = 1 To CInt(count / 2)
For y As Integer = 1 To x

If x * y = count Then
‘ the number is not prime
isPrime = False
Exit For

End If
Next
‘ short-circuit the check
If Not isPrime Then Exit For

Next

If isPrime Then
‘mResults.Add(count)
results.Add(count)
If results.Count >= 10 Then

BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100), results)

results = New List(Of Integer)
End If

End If

BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100))

If BackgroundWorker1.CancellationPending Then
Exit Sub

End If

Next

BackgroundWorker1.ReportProgress(100, results)

End Sub

Our results are now placed into a local List(Of Integer). Any time the list has 10 values, we return it
to the primary thread by calling the BackgroundWorker control’s ReportProgress method, passing
the List(Of Integer) as a parameter.

824

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 824

The important thing here is that we then immediately create a new List(Of Integer) for use in the
DoWorker method. This ensures that the background thread is never trying to interact with the same
List(Of Integer) object as the UI thread.

Now that the DoWork method is returning results, alter the code on the primary thread to use those
results:

Private Sub BackgroundWorker1_ProgressChanged(_
ByVal sender As Object, _
ByVal e As System.ComponentModel.ProgressChangedEventArgs) _
Handles BackgroundWorker1.ProgressChanged

ProgressBar1.Value = e.ProgressPercentage
If e.UserState IsNot Nothing Then

For Each item As String In CType(e.UserState, List(Of Integer))
ListBox1.Items.Add(item)

Next
End If

End Sub

Any time the ProgressChanged event is raised, the code checks to see if the background task provided
a state object. If it did provide a state object, we cast it to a List(Of Integer) and update the UI to dis-
play the values in the object.

At this point we no longer need the RunWorkerCompleted method, so it can be removed or
commented out.

If we run the code at this point, we’ll find that not only is our UI continually responsive, but the results
from the background task are displayed as they are discovered rather than in a batch at the end of the
process. As you run the application, resize and move the form while the prime numbers are being found.
Although the displaying of the data may be slowed down as we interact with the form (because the UI
thread can only do so much work), the generation of the data continues independently in the background
and is not blocked by the UI thread’s work.

When we rely on transferring data ownership, we are ensuring that only one thread can access the data
at any given time by ensuring that the background task never uses an object once it returns it to the pri-
mary thread.

Sharing Data with Synchronization
So far, we’ve seen ways to avoid the sharing of data. However, sometimes we will have a requirement
for data sharing, in which case we’ll be faced with the complex world of synchronization.

As we discussed earlier, incorrect implementation of synchronization can cause performance issues,
deadlocks, and application crashes. Success is dependent on serious attention to detail. Problems may
not manifest in testing, but when they happen in production they are often catastrophic. You can’t test to
ensure proper implementation; you must prove it in the same way mathematicians prove mathematical
truths — by careful logical analysis of all possibilities.

825

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 825

Built-in Synchronization Support
Some objects in the .NET Framework have built-in support for synchronization, so we don’t need to
write it ourselves. In particular, most of the collection-oriented classes have optional support for syn-
chronization. These include: Queue, Stack, Hashtable, ArrayList, and more.

Rather than transferring ownership of List(Of Integer) objects from the background thread to the UI
thread as we did in the last example, we can use the synchronization provided by the ArrayList object
to help mediate between the two threads.

To use a synchronized ArrayList, we need to change from the List(Of Integer) to an ArrayList.
Additionally, the ArrayList must be created a special way:

Private Sub BackgroundWorker1_DoWork(ByVal sender As Object, _
ByVal e As System.ComponentModel.DoWorkEventArgs) _
Handles BackgroundWorker1.DoWork

‘mResults.Clear()
‘Dim results As New List(Of Integer)
Dim results As ArrayList = ArrayList.Synchronized(New ArrayList)

What we’re doing here is creating a normal ArrayList, and then having the ArrayList class “wrap” it
with a synchronized wrapper. The end result is an ArrayList object that is thread safe and automati-
cally prevents multiple threads from interacting with the data in invalid ways.

Now that the ArrayList is synchronized, we don’t need to create a new one each time we return the
values to the primary thread.

Comment out the following line in the DoWork method:

If results.Count >= 10 Then
BackgroundWorker1.ReportProgress(_

CInt((count - mMin) / (mMax - mMin) * 100), results)
‘results = New List(Of Integer)

End If

Finally, the code on the primary thread needs to be updated to properly display the data from the
ArrayList:

Private Sub BackgroundWorker1_ProgressChanged(_
ByVal sender As Object, _
ByVal e As System.ComponentModel.ProgressChangedEventArgs) _
Handles BackgroundWorker1.ProgressChanged

ProgressBar1.Value = e.ProgressPercentage
If e.UserState IsNot Nothing Then

Dim result As ArrayList = CType(e.UserState, ArrayList)
For index As Integer = ListBox1.Items.Count To result.Count - 1

ListBox1.Items.Add(result(index))

826

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 826

Next
End If

End Sub

Since the entire list is accessible at all times, we need to only copy the new values to the ListBox rather
than looping through the entire list.

This works out well anyway, because the For..Each statement isn’t threadsafe even with a synchro-
nized collection. To use the For..Each statement, we’d need to enclose the entire loop inside a
SyncLock block like this:

Dim result As ArrayList = CType(e.UserState, ArrayList)
SyncLock result.SyncRoot

For Each item As String in result
ListBox1.Items.Add(item)

Next
End SyncLock

The SyncLock statement in Visual Basic is used to provide an exclusive lock on an object. Here it is
being used to get an exclusive lock on the ArrayList object’s SyncRoot. This means that all our code
within the SyncLock block can be sure that it is the only code that is interacting with the contents of
the ArrayList. No other threads can access the data while our code is in this block.

Synchronization Objects
While many collection objects optionally provide support for synchronization, most objects in the .NET
Framework or in third-party libraries are not thread safe. To safely share these objects and classes in a
multithreaded environment, we must manually implement synchronization.

To manually implement synchronization, we must rely on help from the Windows operating system.
The .NET Framework includes classes that wrap the underling Windows operating system concepts
however, so we don’t need to call Windows directly. Instead we use the .NET Framework synchroniza-
tion objects.

Synchronization objects have their own special terminology. Most of these objects can be acquired and
released. In other cases, we wait on an object until it is signaled. Let’s explore these terms.

For objects that can be acquired, the idea is that when we have the object we have a lock. Any other threads
trying to acquire the object are blocked until we release the object. These types of synchronization objects
are like a hot potato — only one thread has it at a time and other threads are waiting for it. No thread
should hold onto such an object any longer than necessary, since that slows down the whole system.

The other class of objects are those that wait on the object — which means our thread is blocked. Some
other thread will signal our object, which releases us so we become unblocked. Many threads can be
waiting on the same object, and when the object is signaled, all the blocked threads are released. This is
basically the exact opposite of an acquire/release type object.

The following table lists the primary synchronization objects in the .NET Framework.

827

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 827

Object Model Description

AutoResetEvent Wait/Signal Allows a thread to release other threads that are
waiting on the object

Interlocked N/A Allows multiple threads to safely increment and
decrement values that are stored in variables accessi-
ble to all the threads

ManualResetEvent Wait/Signal Allows a thread to release other threads that are
waiting on the object

Monitor Acquire/Release Defines an exclusive application-level lock where
only one thread can hold the lock at any given time

Mutex Acquire/Release Defines an exclusive systemwide lock where only
one thread can hold the lock at any given time

ReaderWriterLock Acquire/Release Defines a lock where many threads can read data,
but provides exclusive access to one thread for
writing data

Exclusive Locks and the SyncLock Statement
Perhaps the easiest type of synchronization to understand and implement is an exclusive lock. When one
thread holds an exclusive lock, no other thread can obtain that lock. Any other thread attempting to
obtain the lock is blocked until the lock becomes available.

There are two primary technologies for exclusive locking: the monitor and mutex objects. The monitor
object allows a thread in a process to block other threads in the same process. The mutex object allows a
thread in any process to block threads in the same process or in other processes. Because a mutex has
systemwide scope, it is a more expensive object to use and should only be used when cross-process lock-
ing is required.

Visual Basic includes the SyncLock statement, which is a shortcut to access a monitor object. While it is
possible to directly create and use a System.Threading.Monitor object, it is far simpler to just use the
SyncLock statement (briefly mentioned in the ArrayList object discussion), so that is what we’ll do here.

Exclusive locks can be used to protect shared data so only one thread at a time can access the data. They
can also be used to ensure that only one thread at a time can run a specific bit of code. This exclusive bit
of code is called a critical section. While critical sections are an important concept in computer science, it
is far more common to use exclusive locks to protect shared data, and that’s what we’ll focus on in this
chapter.

You can use an exclusive lock to lock virtually any shared data. As an example, we can change our code
to use the SyncLock statement instead of using a synchronized ArrayList.

Change the declaration of the ArrayList in the DoWork method so it is global to the form, and it is no
longer synchronized:

Private results As New ArrayList

828

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 828

This means that we’re responsible for managing all synchronization ourselves. First, in the DoWork
method, we need to protect all access to the results variable:

If isPrime Then
Dim numberOfResults As Integer
SyncLock results.SyncRoot

results.Add(count)
numberOfResults = results.Count

End SyncLock
If numberofresults >= 10 Then

BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100), results)

End If
End If

Notice how the code has changed so both the Add and Count method calls are contained within a
SyncLock block. This ensures that no other thread can be interacting with the ArrayList while we
make these calls.

The SyncLock statement acts against an object. In this case results.SyncRoot.

The trick to making this work is to ensure that all code throughout the application wraps any access to
results within the SyncLock statement. If any code doesn’t follow this protocol, there will be con-
flicts between threads!

Because SyncLock acts against a specific object, we can have many active SyncLock statements, each
working against a different object:

SyncLock obj1
‘ blocks against obj1

End SyncLock

SyncLock obj2
‘ blocks against obj2

End SyncLock

Note that neither obj1 nor obj2 are altered or affected by this at all. The only thing we’re saying here is
that while we’re within a SyncLock obj1 code block, any other thread attempting to execute a
SyncLock obj1 statement will be blocked until we’ve executed the End SyncLock statement.

Next we need to change the UI update code in the ProgressChanged method:

ProgressBar1.Value = e.ProgressPercentage
If e.UserState IsNot Nothing Then

Dim result As ArrayList = CType(e.UserState, ArrayList)
SyncLock result

For index As Integer = ListBox1.Items.Count To result.Count - 1
ListBox1.Items.Add(result(index))

Next
End SyncLock

End If

Again, notice how our interaction with the ArrayList is contained within a SyncLock block.

829

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 829

While this version of the code will operate just fine, notice how slow it is. In fact, you can pretty much
stall out the whole processing by continually moving or resizing the window while it runs. This is
because the UI thread is blocking the background thread via the SyncLock call, and if the UI thread is
totally busy moving or resizing the window, then the background thread can be entirely blocked during
that time as well.

Reader–Writer Locks
While exclusive locks are an easy way to protect shared data, they are not always the most efficient. In
many cases, our application will contain some code that is updating shared data, and other code that is
only reading from shared data. Some applications do a great deal of data reading, and only periodic data
changes.

Since reading data doesn’t change anything, there’s nothing wrong with having multiple threads read
data at the same time, as long as we can ensure that no threads are updating data while we’re trying to
read. Also, we typically only want one thread updating at a time.

What we have then is a scenario where we want to allow many concurrent readers, but if the data is to
be changed, then one thread must temporarily gain exclusive access to the shared memory. This is the
purpose behind the ReaderWriterLock object.

Using a ReaderWriterLock, we can request either a read lock or a write lock. If we obtain a read lock,
we can safely read the data. Other threads can simultaneously also obtain read locks and can safely read
the data.

Before we can update data, we must obtain a write lock. When we request a write lock, any other
threads requesting either a read or write lock will be blocked. If there are any outstanding read or write
locks in progress, we’ll be blocked until they are released. Once there are no outstanding locks (read or
write), we’ll be granted the write lock. No other locks are granted until we release the write lock, so our
write lock is an exclusive lock.

Once we release the write lock, any pending requests for other locks are granted, allowing either another
single writer to access the data, or allowing multiple readers to simultaneously access the data. We can
adapt our sample code to use a System.Threading.ReaderWriterLock object. Start by using the code
we just created based on the SyncLock statement with a Queue object as shared data.

First, we need to create an instance of the ReaderWriterLock in a form-wide variable:

‘ lock object
Private mRWLock As New System.Threading.ReaderWriterLock

Since a ReaderWriterLock is just an object, we can have many lock objects in an application if needed.
We could use each lock object to protect different bits of shared data.

Then we can change the DoWork method to make use of this object instead of the SyncLock statement:

If isPrime Then
Dim numberOfResults As Integer
mRWLock.AcquireWriterLock(100)
Try

830

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 830

results.Add(count)
Finally

mRWLock.ReleaseWriterLock()
End Try
mRWLock.AcquireReaderLock(100)
Try

numberOfResults = results.Count
Finally

mRWLock.ReleaseReaderLock()
End Try
If numberOfResults >= 10 Then

BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100), results)

End If
End If

Before we write or alter the data in the ArrayList, we need to acquire a writer lock. Before we read any
data from the ArrayList, we need to acquire a reader lock.

If any thread holds a reader lock, attempts to get a writer lock are blocked. When any thread requests a
writer lock, any other requests for a reader lock are blocked until after that thread gets (and releases) its
writer lock. Also, if any thread has a writer lock, other threads requesting a reader (or writer) lock are
blocked until that writer lock is released.

The end result is that there can be only one writer, and while the writer is active, there are no readers.
But if no writer is active, there can be many concurrent reader threads running at the same time.

Note that all work done while a lock is held is contained within a Try..Finally block. This ensures
that the lock is released regardless of any exceptions we might encounter.

Failure to release a lock will almost certainly block other threads, possibly forever — causing a deadlock
situation. The alternate fate is that the other threads will request a lock and will time out, throwing an
exception and causing the application to fail. Either way, if we don’t release our locks, we’ll cause appli-
cation failure.

We also need to update the code in the ProgressChanged method:

ProgressBar1.Value = e.ProgressPercentage
If e.UserState IsNot Nothing Then

Dim result As ArrayList = CType(e.UserState, ArrayList)
mRWLock.AcquireReaderLock(100)
Try

For index As Integer = ListBox1.Items.Count To result.Count - 1
ListBox1.Items.Add(result(index))

Next

It is critical that we always release locks we’re holding. Failure to do so may cause
your application to become unstable and crash or lock up unexpectedly.

831

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 831

Finally
mRWLock.ReleaseReaderLock()

End Try
End If

Again, before reading from results, we get a reader lock, releasing it in a Finally block once we’re done.

This code will run a bit smoother than the previous implementation. However, the UI thread can be kept
busy with resizing or moving the window, thus causing it to hold the reader lock and thus preventing
the background thread from running since it won’t be able to acquire a writer lock.

AutoReset Events
Both Monitor (SyncLock) and ReaderWriterLock objects follow the acquire/release model, where
threads are blocked until they can acquire control of the appropriate lock.

We can flip the paradigm by using AutoResetEvent and ManualResetEvent objects. With these objects,
threads voluntarily wait on the event object. While waiting, they are blocked and do no work. When
another thread signals (raises) the event, any threads waiting on the event object are released and do work.

Signaling an event object is done by calling the object’s Set method. To wait on an event object, a thread
calls that object’s WaitOne method. This method blocks the thread until the event object is signaled (the
event is raised).

Event objects can be in one of two states: signaled or not signaled. When an event object is signaled,
threads waiting on the object are released. If a thread calls WaitOne on an event object that is signaled,
then the thread isn’t blocked, and continues running. However, if a thread calls WaitOne on an event
object that is not signaled, then the thread is blocked until some other thread calls that object’s Set
method, thus signaling the event.

AutoResetEvent objects automatically reset themselves to the not signaled state as soon as any thread
calls the WaitOne method. In other words, if an AutoResetEvent is not signaled and a thread calls
WaitOne, then that thread will be blocked. Another thread can then call the Set method, thus signaling
the event. This both releases the waiting thread and immediately resets the AutoResetEvent object to
its not signaled state.

We can use an AutoResetEvent object to coordinate the use of shared data between threads. Change
the ReaderWriterLock declaration to declare an AutoResetEvent instead:

Dim mWait As New System.Threading.AutoResetEvent(False)

By passing False to the constructor, we are telling the event object to start out in its not signaled state.
Were we to pass True, it would start out in the signaled state, and the first thread to call WaitOne would
not be blocked, but would trigger the event object to automatically reset its state to not signaled.

Next we can update DoWork to use the event object. In order to ensure that both the primary and back-
ground thread don’t simultaneously access the ArrayList object, we’ll use the AutoResetEvent object
to block the background thread until the UI thread is done with the ArrayList:

832

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 832

If isPrime Then
Dim numberOfResults As Integer
results.Add(count)
numberOfResults = results.Count
If numberOfResults >= 10 Then

BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100), results)

mWait.WaitOne()
End If

End If

This code is much simpler than using the ReaderWriterLock. In this case, the background thread
assumes it has exclusive access to the ArrayList until the ReportProgress method is called to invoke
the primary thread to update the UI. When that occurs, the background thread calls the WaitOne
method so it is blocked until released by the primary thread.

In the UI update code, we need to change the code to release the background thread:

ProgressBar1.Value = e.ProgressPercentage
If e.UserState IsNot Nothing Then

Dim result As ArrayList = CType(e.UserState, ArrayList)
For index As Integer = ListBox1.Items.Count To result.Count - 1

ListBox1.Items.Add(result(index))
Next
mWait.Set()

End If

This is done by calling the Set method on the AutoResetEvent object, thus setting it to its signaled
state. This releases the background thread so it can continue to work. Notice that the Set method isn’t
called until after the primary thread is completely done working with the ArrayList object.

As with our previous examples, if you continually move or resize the form, the UI thread will become so
busy it won’t ever release the background thread.

ManualReset Events
A ManualResetEvent object is very similar to the AutoResetEvent we just used. The difference is that
with a ManualResetEvent object we are in total control over whether the event object is set to its sig-
naled or not signaled state. The state of the event object is never altered automatically.

This means that we can manually call the Reset method rather than relying on it to occur automatically.
The end result is that we have more control over the process and can potentially gain some efficiencies.

To see how this works, change the declaration to create a ManualResetEvent:

‘ wait object
Dim mWait As New System.Threading.ManualResetEvent(True)

Notice that we’re constructing it with a True parameter. This means that the object will be in its signaled
state to start with. Until it is reset to a nonsignaled state, WaitOne calls won’t block on this object.

833

Threading

25_575368 ch22.qxd 10/7/05 11:23 PM Page 833

Then change the DoWork method as follows:

If isPrime Then
mWait.WaitOne()
Dim numberOfResults As Integer
results.Add(count)
numberOfResults = results.Count
If numberOfResults >= 10 Then

mWait.Reset()
BackgroundWorker1.ReportProgress(_

CInt((count - mMin) / (mMax - mMin) * 100), results)
End If

End If

This is quite different from the previous code. Before interacting with the ArrayList object, the code
calls WaitOne. This will cause it to block if the primary thread is active. Remember that to start with, the
lock object is signaled, so initially the WaitOne call will not block.

Then, before transferring control to the primary thread to update the UI, we call mWait.Reset. The
Reset event sets the lock object to its nonsignaled state. Until its Set method is called, any WaitOne
methods will block.

No changes are required to the UI update code. It already calls the Set method when it is done interact-
ing with the ArrayList.

The end result is that the background thread can continue to search for prime numbers while the UI is
being updated. The only time the background thread will block is if it finds a prime number before the
UI is done with its update process.

Summary
This chapter took a fairly involved look at the subject of threading in .NET and how Visual Basic devel-
opers now have access to a rich set of threading functionality.

Proper implementation of multithreaded code is very difficult, and proving that multithreaded code will
always run as expected requires careful code walkthroughs, as it can’t be proven through testing. Due to
this, it is best to avoid the use of multithreading when possible.

However, multithreading can be a useful way to run lengthy tasks in the background, while continuing
to provide the user with an interactive experience. If using multithreading, try to avoid using shared
data, and instead relay data between the UI and background threads using messaging techniques as
shown in this chapter.

If you must share data between multiple threads, make sure to use appropriate synchronization primitives
to ensure only one thread interacts with the data at any given time. Beware the performance implications of
using synchronization objects, and design carefully to avoid deadlocks.

Threading can be useful in specialized situations, and its use should be limited whenever possible.

834

Chapter 22

25_575368 ch22.qxd 10/7/05 11:23 PM Page 834

XML Web Services

This chapter starts with a short history of multitier architecture and network operating systems, a
discussion of the early days of the network-as-the-computer, and a discussion of the future. (The
reason for this diversion is to understand the rationale behind Web Services.)

Next, the chapter looks at a sample Web Service, and walks through making it accessible to the
Internet and accessing it from a client application — both with the Visual Studio IDE and using
command-line tools. From there, the chapter moves on to a key feature of Web Services, the Service
Repository, discovery, and Universal Description, Discovery, and Integration (UDDI), features that
allow remote programmers to correctly access Web Services.

Finally, the chapter delves into more in-depth topics during the discussion of the four namespaces
found in the .NET Framework class library (System.Web.Services, System.Web.Description,
System.Web.Services.Discovery, and System.Web.Services.Protocols) that deal with
Web Services and how to access them with Visual Basic 2005. Moving on, the chapter discusses
serious topics, such as security, transactions, and the downsides of any distributed architecture
(including Web Services), followed by a short discussion of where you go from here and how you
get there.

Introduction to Web Services
A Web Service is a means of exposing application logic or data via standard protocols such as
XML, or more specifically — SOAP (Simple Object Access Protocol). A Web Service comprises one
or more functions, packaged together for use in a common framework throughout a network.
This is shown in Figure 23-1, where Web Services provide access to information through standard
Internet Protocols. By using a WSDL (Web Services Description Language) contract, consumers of
the Web Service can learn the structure of the data the Web Service provides as well as all the
details on how to actually consume it.

26_575368 ch23.qxd 10/7/05 11:11 PM Page 835

Figure 23-1

This simple concept provides for a very wide variety of potential uses by developers of Internet and
enterprise applications alike, as shown in Figure 23-1.

Web Services are going to be the heart of the next generation of systems architecture because they are

❑ Architecture neutral — Web Services don’t depend on a proprietary wire format, schema
description, or discovery standard.

❑ Ubiquitous — Any service that supports the standards can support the service.

❑ Simple — Creating Web Services is easy, quick, and can be free. The data schema is human
readable. Any language can participate.

❑ Interoperable — Since the Web Services all speak the same standards, they can all speak to one
another.

In basic terms, a Web Service is an object with an XML document describing all of the methods, properties,
and events sitting between the code and the caller. Any body of code written in just about any program-
ming language can be described with this XML document, and then any application that understands

Portal Services

WSDL Contract WSDL Contract

The Internet

Live
Devices

Internet
Applications Browsers

Developer
Applications

Our Applications

WSDL Contract

WSDL Contract

Custom Web
Services

Structural
Services

Corporate Environment

Application
Specific Services

836

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 836

SOAP can access the object. That’s because the parameters you’d type after the function name are passed
via XML to the Web Service and because SOAP is an open standard.

Microsoft has put a wrapper around all of the XML schemas that support Web Services (including SOAP
and WSDL), so they look like .NET or COM objects. Next, we’ll talk about how the world views a Web
Service, then how Microsoft views Web Services.

Early Architectural Designs
An understanding of the history of the search for a decent Remote Method Invocation (RMI) protocol is
imperative to your understanding of why Web Services are so important. Each of the RMI systems created
before Web Services solved a particular set of problems, and you will see how Web Services represent
the next evolution of these ideas and cross-platform boundaries to solve the problems that these other
technologies tried to address.

The Network Angle
Throughout the history of computing, the networking operations were largely handled by the operating
system. UNIX, the networking host of early computing, featured a body of shell operations that gave
remarkable user control over the operations of the network. Personal computing was slower to catch
up: Microsoft and Apple software didn’t inherently support networking protocols until the mid-1990s.
Third-party add-ons by Novell and Banyan were available earlier, but they were only an adjunct to the
operating system. The concept of the network being the computer didn’t fully infiltrate the development
community until the expansion of the World Wide Web.

Application Development
Let’s break away from networking for a minute and look at how application development progressed
through this time. Early time-sharing operation systems allowed several people to use the same applica-
tion with its built-in data. These single-tier systems didn’t allow for growth in the system size, and data
redundancy became the standard, with nightly batch jobs synchronizing the data becoming common-
place through the seventies and early eighties.

Eventually, the opportunity presented by networks became the overriding factor in systems development,
and enterprise network developers began offering the loosely termed Object Request Brokers (ORBs) on
their systems: Microsoft’s Transaction Server (MTS), Common Object Request Broker Architecture (CORBA),
and the like. These ORBs allowed for the separation of the user interface from the business logic using
tightly coupled method pooling. This three-tier architecture brings you to the present in development
terms, so let’s step back for a second and let networking catch up.

Merging the Two with the Web
The HTTP protocol was born in 1990. There had been several other information delivery protocols
before, such as Gopher, but what made HTTP different were the extensibility of the related language,
HTML, and the flexibility of the transport layer, TCP/IP. Suddenly, movement of many formats of data
was possible in a stateless, distributed way. Software-as-a-service was on its way.

837

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 837

Over the next decade, low-level protocols supported by network systems and the Internet became a sta-
ple in applications, with SMTP and FTP providing file and information transfer among distributed
servers. Remote procedure calls (RPC) took things to the next level, but were platform-specific, with UNIX
implementations in CORBA and Microsoft’s Distributed COM (DCOM) leading the pack.

Enterprise development took a clue from the emerging technologies in wide area network (WAN) net-
working and personal computing, and development for these large-scale business systems began to
mature. As usage of networks grew, developers began to solve problems of scalability, reliability, and
adaptability, with the traditional flat-format programming model. Multitier development began to
spread the data, processing, and user interface of applications over several machines connected by local
area networks.

This made applications more scalable and reliable by allowing for growth and providing redundancy.
Gradually, vendor compliance and the Java programming language provided adaptability, allowing the
applications to run in a variety of circumstances on a variety of platforms.

However, there was a dichotomy between the capabilities of the network and the features of the pro-
gramming environment. Specifically, after the introduction of XML, there still existed no “killer app”
using its power. XML is a subset of Standard Generalized Markup Language (SGML), an international
standard that describes the relationship between a document’s content and its structure. It enables
developers to create their own tags for hierarchical data transport in an HTML-like format. With HTTP
as a transport and SOAP as a protocol, there still needed to be an interoperable, ubiquitous, simple,
broadly supported system for the execution of business logic throughout the world of Internet applica-
tion development.

The Foundations of Web Services
The hunt began with a look at the existing protocols. As has been the case for years, the Microsoft versus
Sun Alliance debate was heating up among RPC programmers. CORBA versus DCOM was a source of
continuing argument for developers using those platforms for distributed object development. After Sun
added Remote Method Invocation to Java with Java-RMI, there were three distributed object protocols
that fit none of the requirements.

Because DCOM and RMI are manufacturer-specific, it makes sense to start with those. CORBA is centrally
managed by the Object Management Group, so it is a special case and should be considered separately.

RMI and DCOM provide distributed object invocation for their respective platforms — extremely impor-
tant in this era of distributed networks. Both allow for the enterprise-wide reuse of existing functionality,
which dramatically reduces cost and time-to-market. Both provide encapsulated object methodology,
preventing changes to one set of business logic from affecting another. Finally, similar to ORB-managed
objects, maintenance and client weight are reduced by the simple fact that applications using distributed
objects are by nature multitier.

DCOM
DCOM’s best feature is the fact that it is based on COM, surely one of the most prevalent desktop object
models in use today. COM components are shielded from one another, and calls between them are so
well defined by the OS-specific languages that there is practically no overhead to the methods. Each

838

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 838

COM object is instantiated in its own space, with the necessary security and protocol providers. If an
object in one process needs to call an object in another process, COM handles the exchange by intercept-
ing the call and forwarding it through one of the network protocols.

When you use DCOM, all you are doing is making the wire a bit longer. With Windows NT4, Microsoft
added the TCP/IP protocol to the COM network architecture and essentially made DCOM Internet-
savvy. Aside from the setup on the client and server, the interobject calls are transparent to the client,
and even to the programmer.

Any Microsoft programmer can tell you, though, that DCOM has its problems. First, there is a customer
wire transport function, so most firewalls will not allow DCOM calls to get through, even though they
are by nature quite benign. There is no way to query DCOM about the methods and properties available,
unless you have the opportunity to get the source code or request the remote component locally. In addi-
tion, there is no standard data transfer protocol (though that is less of a problem since DCOM is mostly
for Microsoft networks).

Remote Method Invocation in Java
RMI is Sun’s answer to DCOM. Java relies on a really neat, but very proprietary, protocol called Java
Object Serialization, which protects objects marshaled as a stream. The client and server both need to be
constructed in Java for this to work, but it simplifies remote method invocation even more, because Java
doesn’t care if the serialization takes place on one machine or across a continent. Similarly to DCOM,
RMI allows the object developer to define an interface for remote access to certain methods.

CORBA
CORBA uses Internet Inter-ORB Protocol to provide remote method invocation. It is remarkably similar
to Java Object Serialization in this regard. Since it is only a specification, though, it is supported by a
number of languages on diverse operating systems. With CORBA, the ORB does all the work, such as
finding the pointer to the parent, instantiating it so that it can receive remote requests, carrying messages
back and forth, and disputing arbitration and trash collecting. The CORBA objects use specially
designed sub-ORB objects called Basic or Portable Object Adapters to communicate with remote ORBs,
allowing developers more leeway in code reuse.

At first sight, it seems CORBA is your ace in the hole. There is only one problem — it doesn’t really work
that way. CORBA suffers from the same thing the Web browsers do — poor implementations of the stan-
dards, causing lack of interoperability between Object Request Brokers. With IE and Netscape, a little
differential in the way the pages display is written off as cosmetic. If there is a problem with the CORBA
standard though, it is a real problem. Not just looks are affected, but network interactions too, as if there
were 15 different implementations of HTTP.

The Problems
The principal problem of the DCOM/CORBA/RMI methods is the complexity of the implementation.
The transfer protocol of each of these is based on manufacturers’ standards, generally preventing inter-
operability. In essence, the left hand has to know what the right hand is doing. This prevents a company
using DCOM from communicating with a company using CORBA, emphasizing platform as a reason for
doing business with one another.

839

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 839

First, there’s the problem of wire format. Each of these three methods uses an OS-specific wire format
that encompasses information only supplied by the operating system in question. The problem with this
is that two diverse machines cannot usually share information. The benefit is security; since the client
and server can make assumptions about the availability of functionality, data security can be managed
with API calls to the operating system.

The second problem is the number of issues associated with describing the format of the protocol. Apart
from the actual transport layer, there must be a schema or layout for the data that moves back and forth.
Each of the three contemporary protocols makes great assumptions between the client and server. DCOM,
for instance, provides ADO/RDS for data transport, whereas RMI has JDBC. While you can endlessly
argue the benefits of one over the other, at least agree on the fact that they don’t play well together.

The third problem is how to know where to find broadly available services, even within your own net-
work. We’ve all faced the problem of having to call up the COM+ MMC panel so that we could remember
how to spell this component or that method. When the method is resident on a server 10 buildings over
and we don’t have access to the MMC console, the next step is digging through the text documentation,
if there is any.

The Other Players
On a path to providing these services, we stumble across a few other technologies. While Java Applets and
Microsoft’s client-side ActiveX aren’t technically distributed object invocations, they do provide distributed
computing and provide important lessons. Fortunately, we can describe both in the same section since
they are largely the same, with different operating systems as their backbone.

Applets and client-side ActiveX are both attempts to use the HTTP protocol to send thick clients to the
end user. In a circumstance where a user can provide a platform previously prepared to maintain a
thicker-than-HTML client base to a precompiled binary, the ActiveX and Applet protocols pass small
applications to the end user, usually running a Web browser. These applications are still managed by
their servers, at least loosely, and usually provide custom data transmission, utilizing the power of the
client to manage the information distributed, as well as display it.

This concept was taken to the extreme with Distributed Applet-Based Massively Parallel Processing, a strat-
egy that used the power of the Internet to complete processor-intense tasks such as 3-D rendering or
massive economic models with a small application installed on the user’s computer. If you view the
Internet as a massive collection of parallel processors, sitting mostly unused, you have the right idea.
An example of this type of processing is provided by United Devices (www.ud.com).

What you learned here is that HTTP can provide distributed computing. The problem you discovered is
that the tightly coupled connection between the client and server had to go, given the nature of today’s
large enterprises. The HTTP angle did show developers that using an industry recognized transport
method did solve problem number one, that is wire format. Using HTTP meant that no matter what the
network, the object could communicate. The client still had to know a lot about the service being sent,
but the network didn’t.

The goal is Distributed Object Invocation Meets the World Wide Web. The problems are wire format, proto-
col, and discovery. The solution is a standards-based, loosely coupled method invocation protocol with
a huge catalog. Microsoft, IBM, and Ariba set out in 1999 to create just that, and generated the RFC for
Web Services.

840

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 840

What All the Foundations Missed
You may notice that in reviewing the majority of the earlier services there has been little mentioned
about language. This is because it was a problem that was overlooked by the foundations. Even RMI
didn’t see the reality that you can’t make everyone use the same language, even if it is a great language.

HTTP — A Language-Independent Protocol
What we really need is a language-independent protocol that allows for a standard wire transfer, proto-
col language, and catalog service. Java and Remote Scripting and ActiveX taught us that HTTP is the
wire transfer of choice.

Why is this? What does HTTP do that is so great? First, it is simple. The header added to a communication
by HTTP is straightforward enough that a power user can type it at a command prompt if he or she has
to. Second, it doesn’t require a special data protocol; it just uses ASCII text. Another reason is that HTTP
traffic can easily get through firewalls (port 80 is usually open). Finally, it is extensible. Additional headers
can be added to the HTTP header for application-specific needs, and intermediary software just ignores it.

XML — Cross-Language Data Markup
Now that we have the standard wire transfer protocol that we know works, we need a language and a
transport mechanism. Existing languages don’t really have data description functions, aside from the
data management object models like ADO. XML fits the bill because it is self-describing. There’s no need
for the left hand to know what the right hand is doing. An XML file transported over HTTP doesn’t need
to know the answering system’s network protocol or its data description language. The concepts behind
XML are so light and open that everyone can agree to support them. In fact, almost everyone has. XML
has become the ASCII of the Web.

XML is important to Web Services because it provides a universal format for information to be passed
from system to system. We knew that, but Web Services actually uses XML as the object invocation layer,
changing the input and output to tightly formatted XML so as to be platform- and language-independent.

SOAP — The Transfer You Need
Enter Simple Object Access Protocol (SOAP), which uses HTTP to package essentially one-way messages
from service to service in such a way that business logic can interpolate a request/response pair. In order
for your Web page to get the above listing, for instance, a SOAP request would look something like this:

POST /Directory HTTP/1.1
Host: Ldap.companyname.com
Content-Type: text/xml; charset=”utf-8”
Content-Length: 33
SOAPAction: “Some-URI”\vs

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Body>

<m:FindPerson xmlns:m=”Some-URI”>
<NAME>Gates</NAME>

</m: FindPerson>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

841

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 841

This is an HTTP page request, just like one you’d see for an HTML page except that the Content-Type
specifies XML, and there is the addition of the SOAPAction header. SOAP has made use of the two most
powerful parts of HTTP — content neutrality and extensibility. Here is the response statement from the
server:

HTTP/1.1 200 OK
Content-Type: text/xml;
charset=”utf-8”
Content-Length: 66

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>
<SOAP-ENV:Body>

<m:FindPersonResponse xmlns:m=”Some-URI”>
<DIRECTORY>Employees
<PERSON>

<NAME>Bill Gates</NAME>
<FUNCTION>Architect

<TYPE>Web Services</TYPE>
</FUNCTION>
<CONTACT>

<PHONE TYPE=CELL>123-456-7890</PHONE>
<PHONE TYPE=HOME>555-111-2222</PHONE>

</CONTACT>
</PERSON>
</DIRECTORY>

</m: FindPersonResponse >
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP allows you to send the XML files back and forth among remote methods. It is tightly similar to
XML-RPC, a protocol developed by Dave Winer in parallel with the SOAP protocol. Both protocols pro-
vide similar structures, but it is the official SOAP protocol that is used by Visual Basic and the entire
.NET platform.

SOAP isn’t specific to .NET, either. The SOAP Toolkit is another set of tools that Microsoft’s Web Services
Team provides free of charge. It contains a wonderful WSDL editor, retrofit objects for Windows 2000
and Windows NT4 servers, and more. You can find it at http://msdn.microsoft.com/webservices.

Web Services Description Language
A Web Services Description Language (WSDL) document is a set of definitions. Six elements are defined
and used by the SOAP protocol: types, message, portType, binding, port, and service. Essentially
adding another layer of abstraction, the purpose of WSDL is to isolate remote method invocations from
their wire transport and data definition language. Once again, it is a specification, not a language, so it is
much easier to get companies to agree to its use.

Because WSDL is just a set of descriptions in XML, it is not so much a protocol as a grammar. Following
is the sample service contract for the HelloWorld Web Service you’ll be building shortly. You will be
able to see this file by visiting http://localhost/HelloWorldExample/Service.asmx?WSDL using
your Web browser after you install the samples:

842

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 842

<?xml version=”1.0” encoding=”utf-8” ?>
<wsdl:definitions xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”
xmlns:tns=”http://localhost/webservice” xmlns:s=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://schemas.xmlsoap.org/wsdl/soap12/”
xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”
targetNamespace=”http://localhost/webservice”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

<wsdl:types>
<s:schema elementFormDefault=”qualified”
targetNamespace=”http://localhost/webservice”>

<s:element name=”HelloWorld”>
<s:complexType />

</s:element>
<s:element name=”HelloWorldResponse”>

<s:complexType>
<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”HelloWorldResult”
type=”s:string” />

</s:sequence>
</s:complexType>

</s:element>
</s:schema>

</wsdl:types>
<wsdl:message name=”HelloWorldSoapIn”>

<wsdl:part name=”parameters” element=”tns:HelloWorld” />
</wsdl:message>
<wsdl:message name=”HelloWorldSoapOut”>

<wsdl:part name=”parameters” element=”tns:HelloWorldResponse” />
</wsdl:message>
<wsdl:portType name=”WebServiceSoap”>

<wsdl:operation name=”HelloWorld”>
<wsdl:input message=”tns:HelloWorldSoapIn” />
<wsdl:output message=”tns:HelloWorldSoapOut” />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name=”WebServiceSoap” type=”tns:WebServiceSoap”>

<wsdl:documentation>
<wsi:Claim conformsTo=”http://ws-i.org/profiles/basic/1.0”
xmlns:wsi=”http://ws-i.org/schemas/conformanceClaim/” />

</wsdl:documentation>
<soap:binding transport=”http://schemas.xmlsoap.org/soap/http”
style=”document” />

<wsdl:operation name=”HelloWorld”>
<soap:operation soapAction=”http://localhost/webservice/HelloWorld”
style=”document” />

<wsdl:input>
<soap:body use=”literal” />

</wsdl:input>
<wsdl:output>

<soap:body use=”literal” />
</wsdl:output>

843

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 843

</wsdl:operation>
</wsdl:binding>
<wsdl:binding name=”WebServiceSoap12” type=”tns:WebServiceSoap”>

<soap12:binding transport=”http://schemas.xmlsoap.org/soap/http”
style=”document” />

<wsdl:operation name=”HelloWorld”>
<soap12:operation soapAction=”http://localhost/webservice/HelloWorld”
style=”document” />

<wsdl:input>
<soap12:body use=”literal” />

</wsdl:input>
<wsdl:output>

<soap12:body use=”literal” />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name=”WebService”>

<wsdl:port name=”WebServiceSoap” binding=”tns:WebServiceSoap”>
<soap:address location=”http://localhost:40718/Reuters/WebService.asmx” />

</wsdl:port>
<wsdl:port name=”WebServiceSoap12” binding=”tns:WebServiceSoap12”>

<soap12:address
location=”http://localhost:40718/Reuters/WebService.asmx” />

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

This is what makes it all work. Notice that each of the inputs and outputs of the HelloWorldResponse
function is defined as an element in the schema. .NET uses this to build library files that understand
how best to format the outgoing requests, so no matter what operating system develops the WSDL, as
long as it is well formed, any type of application (it doesn’t necessarily need to be a .NET application)
can consume it with SOAP and .NET.

In fact, IIS with the .NET Framework is set up to use the WSDL to provide a great auto-generated user
interface for developers and consumers to check out and test Web Services. After removing the ?wsdl
from the preceding URL, you’ll see a very nicely formatted documentation screen for the service. Click
the function name, and you’ll get the screen shown in the following figure. This is all dynamically gener-
ated from the WSDL document, which is dynamically generated from ASP.NET code. Abstraction makes
it all work, as shown in Figure 23-2.

The WSDL can also be expanded in order to define your own descriptions. You can use the Description
property of both the WebService() and WebMethod() attributes in order to provide more details for this
.NET-generated test page for your XML Web Services.

Building a Web Service
Building Web Services with Visual Studio 2005 is incredibly easy. Microsoft has made it a cakewalk to put
together a new Web Service application and expose methods off that Web Service.

844

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 844

Figure 23-2

To get started, all you need is to create an ASP.NET Web Service application. Find this option by clicking
File ➪ New Web Site in Visual Studio. Then, Visual Studio will ask you for the location of the Web server.
Enter this as C:\WebSites\HelloWordExample.

Unlike an ASP.NET Web application project, Visual Studio will create an .asmx file rather than an .aspx
file. The .asmx file extension is short for Active Server Methods, and its name comes from the fact that it
adds methods that will be exposed through the Web Service.

By default, Visual Studio will create the Web Service using the code-behind model for the Web Service
page. In addition to the .asmx file, Visual Studio also created a Service.vb file and placed this file in
the App_Code folder of the project. Instead of focusing on the Service.asmx page, the Service.vb file
opens in the Document window of Visual Studio.

In the Document window, notice that there is a single method on the page and that this method is deco-
rated with the <WebMethod()> attribute. This attribute (System.Web.Services.WebMethodAttribute)
is used to tell ASP.NET to expose this particular method through the Web Service.

845

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 845

Directly before the WebServiceBinding attribute, place the WebService attribute in code to define a
custom namespace, which the industry recommends you always provide. The value of the namespace
can be whatever you see fit because it doesn’t have to be an actual URL, but just a unique identifier.

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace:=”http://localhost/helloworldexample”)> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class Service

Inherits System.Web.Services.WebService

<WebMethod()> _
Public Function HelloWorld() As String

Return “Hello World”
End Function

End Class

Next, add a new method called GoodbyeWorld, without a WebMethod attribute:

Public Function GoodbyeWorld() As String
Return “Goodbye World”

End Function

Run the project and Visual Studio will open the Service.asmx file. By default, Web Services display a
test interface (see Figure 23-3) that lets you see which methods are available and also lets you execute the
methods.

Figure 23-3

Notice that only the HelloWorld method is displayed. This is the only method decorated with the
WebMethod attribute, hence the reason why GoodbyeWorld and all of the inherited methods on the
Service class were not displayed.

846

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 846

Clicking the link gives the option to invoke the method, as shown in Figure 23-4.

Figure 23-4

If you do this, the URL http://localhost:#####/HelloWorldExample/Service.asmx/HelloWorld?
is requested, which happens to be the URL for this specific method (running with the built-in Web server
that is provided with Visual Studio). You’ll then see the payload of the SOAP document directly in the
browser, which contains the results of the call as illustrated in Figure 23-5.

Figure 23-5

847

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 847

That’s pretty much all there is to Web Services from an implementation perspective in .NET. .NET deals
with all of the plumbing that was discussed in the first part of this chapter (SOAP, WSDL, and so on),
which means that all there is to do is add properly decorated methods to the service.

A Realistic Example
Although the previous example was very easy to implement, it doesn’t demonstrate a real-world applica-
tion of Web Services. Let’s take a look at a more realistic example by building a Web Service that sends out
a richer set of data from a database instead. For the sake of example, imagine that a third-party provider
hosts the site. The SQL server is behind a firewall, and the IIS server is in a demilitarized zone — a safe,
though exposed, network position. This is illustrated in Figure 23-6.

To get the data from your site to the remote site, call a Web Service on the remote Web server from your
intranet. Since the SOAP envelope is sent via HTTP, the firewall will allow it through, and ADO.NET on
the IIS server will handle the actual database manipulation. The remote firewall will allow database calls
only from the IIS server, and the data will be updated safely because of the security.

In real life, the class file GetCustomers would be local to your intranet server, and the database file
would be an SQL server on a second PC. Across the Internet, as shown in the diagram, the Web Service
would be on an IIS server sitting outside the network firewall. The DLL that actually provides the data
functions would be on an application server inside the firewall, and the database would again be on a
separate machine.

For this application, though, you will create a Web Service that will expose the Customers table from the
sample Northwind database, across the intranet, that will then later be consumed by a Web application.
Just remember that Web Services are not only about exposing simple values, but also about exposing a
richer dataset of values such as entire tables from a data store (for example, SQL Server).

Start this example by first creating a new Web Service project in Visual Studio called MyWebService.

Using Visual Studio 2005 to Build Web Services
The Visual Studio 2005 IDE shows a marked improvement from the add-ins provided for Visual Studio 6
in the SOAP Toolkit. For instance, Web Services are shown as references on a project, rather than in a
separate dialog box. The discovery process, discussed later, is used to its fullest, providing much more
information to the developer. In short, it is nearly as easy to consume a Web Service with Visual Basic as
it is to use DLLs.

848

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 848

Figure 23-6

7. Update
operation for
publishing

Enterprise data to
remote server

Firewall

5. Call routed to
ISP via HTTP

The Internet

4. Web Service makes
call to ISP for update

Local Enterprise
Server

3. DLL provides
Web service

with data

2. SP Returns
Recordset

0. Get operation
for retrieving

data from
Enterprise
database

SQL DB

SQL DB

8. Remote Database uploaded
with Enterprise data

Firewall

The DMZ

9. Web site visitors see
current Enterprise data

Remote Internet Server
6. Web Service

Calls Update DLL

849

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 849

Produce a Typed DataSet
For simplicity, you’ll use Visual Studio to first create a typed DataSet, which will be returned from the
WebMethod that you will later produce. This IDE enables you to quickly and easily create the needed
data access without having to dig through lots of ADO.NET code.

To do this, right-click the MyWebService project in the Solution Explorer and select Add ➪ Add New Item.
One of the options is a new DataSet. Change the name of this file to MyDataComponent.xsd. This creates a
typed DataSet on the fly, and it’s already strongly typed. In addition to this, Visual Studio will request to
place this file in the App_Code directory of your solution. Confirm this request, because having it in the
App_Code directory allows for programmatic access to the DataSet (shown in Figure 23-7).

Figure 23-7

Once created, the MyDataComponent.xsd file will open itself in Visual Studio. This file will appear as a
blue screen in the Document window. In addition to the file opening up, the TableAdapter
Configuration Wizard will also open up, as shown in Figure 23-8.

Figure 23-8

850

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 850

The first step in the TableAdapter Configuration Wizard is to establish a data connection. If there is not a
connection already in place, create a new connection by clicking on the New Connection button. Using
this dialog, make a new connection to the sample Northwind database in Microsoft’s SQL Server.

Once the connection is in place, you will be able to see that the wizard will use the System.Data
.SqlClient provider. Click the Next button, which calls up a dialog that enables you to pick the com-
mand type that you are going to want to work with. Typically, the options are working with either direct
SQL commands, existing stored procedures, or stored procedures that you can create directly in the wiz-
ard. For this example though, choose the first option: Use SQL Statements.

The next page in the wizard asks for the query that you want to use to load the table data. Input the
following:

SELECT dbo.Customers.* FROM dbo.Customers

Clicking the Next button s results in a page that will allow you to pick the methods that the wizard will
create. These are the methods used in your Web Service to load data into datasets for transmission. In
this case, just accept the default and click the Next button again.

Now you will be at the last page of the wizard. This final page just shows the results of all the actions
taken (shown in Figure 23-9).

Figure 23-9

851

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 851

Once you click the Finish button, notice that the design surface of the MyDataComponent.xsd file
changes to reflect the data that comes from the Customers table of the Northwind database. These
results are shown in Figure 23-10.

Figure 23-10

The typed dataset is now in place and ready to use by the Web Service. Looking at the results on the
design surface of the .xsd file, you can see that indeed the typed Customers dataset is in place, but in
addition to this there is also a CustomersTableAdapter object with Fill() and GetData() methods
in place.

Build the Service
Right-click Service.asmx from within Solution Explorer in Visual Studio, and select View Code.
Rename the HelloWorld function to GetCustomers. From here, simply retrieve data from the
CustomersTableAdapter that was created when you created the .xsd file earlier.

<%@ WebService Language=”VB” Class=”Service” %>

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<%@ WebService Language=”VB” Class=”Service” %>
Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols
<WebService(Namespace:=”http://localhost/mywebservice”)> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class Service
Inherits System.Web.Services.WebService
<WebMethod()> _

Public Function GetCustomers() As MyDataComponent.CustomersDataTable
Dim da As New MyDataComponentTableAdapters.CustomersTableAdapter()

852

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 852

Dim ds As New MyDataComponent.CustomersDataTable()
da.Fill(ds)
Return ds

End Function
End Class

Right-click the Service.asmx file in Solution Explorer and select View in Browser. If there are no errors, a
simple screen listing GetCustomers as the sole method of the service appears. Click the Service Description
line, and you’ll get a screen like that shown earlier in the “Web Services Description Language” section.

Consuming the Service
For this consuming application, provide a Web application called WSCustomers by creating a new
ASP.NET Web site project with that name. The first step is to create a Web reference to the remote XML
Web Service.

Adding a Web Reference
The only bit of magic here is the adding of a Web reference to the project with the Visual Studio IDE. As
discussed later, you are really creating a proxy based upon the WSDL file of the service and referencing
the proxy in the project, but the IDE makes this all very easy.

To create the proxy that is needed by the consuming application, right-click the WSCustomers project in
Solution Explorer and select Add Web Reference from the list of options. In this form, enter in the WSDL
file of the Web Service that you are wishing to make a reference to. If the Web Service is a .NET Web
Service (with an .asmx file extension), simply input the URL of the .asmx file and nothing more because
the wizard will know to put ?wsdl at the end of the input. If you are referencing a Java Web Service, then
place the URL for the .wsdl file in this wizard. Enter the URL of your service in the address bar. (This
would be at the ISP in your real-life scenario, but if you’ve been following along it’ll be http://local
host/mywebservice/service.asmx. If you are using IIS, click on the Web Services in this solution link).
The dialog box should appear as displayed in Figure 23-11.

Figure 23-11

853

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 853

The service description page you’ve just seen when you built your service appears in the left pane of
the wizard, with .NET specific information in the right. Click the Add Reference button at the bottom
of the window to add this to the project. The service appears in a new folder in Solution Explorer, Web
References, as illustrated in Figure 23-12.

Figure 23-12

Building the Consumer
The COM architecture continually promised “one line of code” to generate great results. Web Services
live up to the promise, minus the declarations. Now the only thing left to do is call the referenced Web
Service and pass the generated DataSet. Compared to the scores of lines of XML needed to pass the
DataSet in the existing Microsoft technologies, this is a breeze.

The first step of your consuming an .aspx page is simply to make a reference to the proxy that Visual
Studio created and then call the GetCustomers WebMethod through this instantiated object. The results
pulled from the GetCustomers method will then be displayed in a GridView control, which should be
placed on the Web form.

There are a couple of ways to achieve this. The first method is to use an ObjectDataSource control,
which does the work of invoking the GetCustomers WebMethod and then displaying the results in the
GridView control. (The second method, discussed a bit later, is to manually write the required code.)
To work through this example, drop a GridView and an ObjectDataSource server control onto the
design surface of the Web Form. Open the smart tag of the ObjectDataSource control and select the
option to Configure Data Source. You will then be presented with the Configure Data Source Wizard.

In the first page of this wizard, uncheck the Show Only Data Components check box and select
localhost.Service from the drop-down list. Click the Next button to choose the Select method
that for ObjectDataSource control to use (shown in Figure 23-13).

From the drop-down list on this page of the wizard, select GetData(), returns CustomerDataTable.
Once this is selected, click the Finish button to progress to the next step of binding the GridView control to
the returned dataset from this ObjectDataSource control.

854

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 854

Figure 23-13

Now, focus on the GridView control. In configuring this control, open the control’s smart tag and select
ObjectDataSource1 as the data source control for this control from the drop-down list. Notice that
once you do this, the GridView control expands to include all the appropriate columns from the
Customers table of the Northwind database.

Then in the same smart tag, enable paging and sorting by selecting the appropriate check boxes. The end
code that is generated by Visual Studio is shown here:

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Consuming Application</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:GridView ID=”GridView1” Runat=”server”
DataSourceID=”ObjectDataSource1” AutoGenerateColumns=”False”
AllowPaging=”True” AllowSorting=”True”>

<Columns>
<asp:BoundField HeaderText=”CustomerID” DataField=”CustomerID”
SortExpression=”CustomerID”></asp:BoundField>

<asp:BoundField HeaderText=”CompanyName” DataField=”CompanyName”
SortExpression=”CompanyName”></asp:BoundField>

<asp:BoundField HeaderText=”ContactName” DataField=”ContactName”

855

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 855

SortExpression=”ContactName”></asp:BoundField>
<asp:BoundField HeaderText=”ContactTitle” DataField=”ContactTitle”
SortExpression=”ContactTitle”></asp:BoundField>

<asp:BoundField HeaderText=”Address” DataField=”Address”
SortExpression=”Address”></asp:BoundField>

<asp:BoundField HeaderText=”City” DataField=”City”
SortExpression=”City”></asp:BoundField>

<asp:BoundField HeaderText=”Region” DataField=”Region”
SortExpression=”Region”></asp:BoundField>

<asp:BoundField HeaderText=”PostalCode” DataField=”PostalCode”
SortExpression=”PostalCode”></asp:BoundField>

<asp:BoundField HeaderText=”Country” DataField=”Country”
SortExpression=”Country”></asp:BoundField>

<asp:BoundField HeaderText=”Phone” DataField=”Phone”
SortExpression=”Phone”></asp:BoundField>

<asp:BoundField HeaderText=”Fax” DataField=”Fax”
SortExpression=”Fax”></asp:BoundField>

</Columns>
<asp:ObjectDataSource ID=”ObjectDataSource1” Runat=”server”

SelectMethod=”GetData”
TypeName=”MyDataComponentTableAdapters.CustomersTableAdapter”>

</asp:ObjectDataSource>
</div>
</form>

</body>
</html>

Once it is complete, just build and run the page. That’s it, there is a table in the Web form with all the
data from a remote SQL server that can be paged and sorted — and you didn’t have to write any code to
achieve this functionality! The end page results are shown in Figure 23-14.

Now look at doing the same thing, but instead spend a little time writing some code. This is a good
move because it offers more control over the situation (if desired), and it teaches you more about what is
going on.

Start by creating a page that only includes a GridView control. From here, you get at the data that comes
from the Web Service in the Page_Load event. This is illustrated in the following example:

<%@ Page Language=”VB” %>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim ws As New localhost.Service

GridView1.DataSource = ws.GetCustomers()
GridView1.DataBind()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

856

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 856

<title>Consuming Application</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:GridView ID=”GridView1” Runat=”server”
AllowPaging=”True” AllowSorting=”True”>

</asp:GridView>
</div>
</form>

</body>
</html>

Figure 23-14

The first line of code contained in the Page_Load event instantiates the proxy object that was created for
you. The next line assigns the DataSource property of the GridView control to the result set from the
GetCustomers() WebMethod call. Finally, close everything by calling the DataBind() method of the
GridView control. By compiling and running the XML Web Service, you are able to pull out of the
database the entire Customers table from the Northwind database. A returned dataset contains a wealth
of information, including:

857

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 857

❑ An XSD definition of the XML that is contained in the DataSet

❑ All the customer information from the Customers table of the Northwind database

Then on the consumption side, consumers of this XML Web Service can easily use the XSD definition
and the XML that is contained within the DataSet within their own applications. If consumers are then
consuming this DataSet into .NET applications, they can easily bind this data to a DataGrid and use it
within their applications with minimal lines of code.

Visual Basic and System.Web.Services
The SOAP Toolkit provided a number of wizards to navigate most of the obstacle course required to set
up a Web Service, but the .NET Framework class library provides the abstract classes. The System.
Web.Services namespace provides four classes and three other namespaces that allow programmatic
exposure of methods to the Web.

System.Web.Services Namespace
The System.Web.Services namespace includes these component classes:

❑ WebService

❑ WebMethodAttribute

❑ WebServiceAttribute

❑ WebServicesBindingAttribute

The WebService class is the base class from which all the ASP.NET services are derived, and it includes
access to the public properties for Application, Context, Server, Session, Site, and User. ASP pro-
grammers will recognize these objects from the ASP namespace. Web Services can access the IIS object
model from the WebService class, including application-level variables:

<%@ WebService Language=”VB” Class=”Util” %>

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace:=”http://localhost/util”)> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
Public Class Util

Inherits System.Web.Services.WebService
<WebMethod(Description = “Application Hit Counter”, EnableSession = “False”)> _
Public Function HitCounter() As String

If (Application(“HitCounter”) = null) Then
Application(“HitCounter”) = 1

Else
Application(“HitCounter”) = Application(“HitCounter”) + 1

858

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 858

End If

HitCounter = Application(“HitCounter”)
End Function

End Class

WebService is an optional base class, used only if access to ASP.NET objects is desired. The
WebMethodAttribute class, however, is a necessity if the class needs to be available over the Web.

The WebServiceAttribute class is similar to the WebMethodAttribute class in that it enables the
addition of the description string to an entire class, rather than method by method. We recommend
adding it before the previous class declaration:

<WebService(Description=”Common Server Variables”)> _
Public Class ServerVariables

Inherits System.Web.Services.WebService

Instead of using WSDL in the contract to describe these services, the System.Web.Services namespace
provides programmatic access to these properties. IIS Service Discovery will use these descriptions
when queried. This way, we have removed the necessity to struggle with myriad protocols surrounding
Service Contract Language and SOAP.

System.Web.Services.Description Namespace
The System.Web.Services.Description namespace provides a host of classes that provide total
management of the WSDL Descriptions for your Web Service. This object manages every element in the
WSDL schema as a class property.

Take this example. In the preceding discussion on the benefits of WSDL description, we mentioned
the benefits of being able to query a Web Service about its methods and parameters. The System
.Web.Services.Description namespace provides methods for the discovery of methods and
parameters, gathering the information from the service contract and providing it to the object model in
Visual Basic code.

If working on the HTTP GET protocol (as opposed to SOAP, for instance), simply pass in the required
sEmail parameter through the use of a querystring. There are details of this in the Web Service’s
WSDL description. In the successive <wsdl:message> sections, you find all parameter info for all three
protocols, including HTTP GET.

<wsdl:message name=”IsValidEmailHttpGetIn”>
<wsdl:part name=”sEmail” type=”s:string” />

</wsdl:message>
<wsdl:message name=”IsValidEmailHttpGetOut”>

<wsdl:part name=”Body” element=”tns:boolean” />
</wsdl:message>

Invoking this Web Service using HTTP GET, use the following construct:

http://localserver/Validate.asmx?sEmail=evjen@yahoo.com

859

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 859

It is important to note that HTTP GET is disabled by default because it is deemed a security risk. If you
wish to enable HTTP GET for your XML Web Services, then configure it for this in the web.config file
of your Web Service solution. This is illustrated here:

<configuration>
<system.web>

<webServices>
<protocols>

<add name=”HttpGet”/>
</protocols>

</webServices>
</system.web>

</configuration>

System.Web.Services.Discovery Namespace
The System.Web.Services.Discovery namespace provides access to all of the wonderful features of
the .disco files on a dynamic basis. Since Microsoft is currently trying to integrate Web Services as a remot-
ing protocol and is not pushing the public service side as much, you don’t see the use of .disco files as
often in the Microsoft side of things. Your business partner might be using them, though, so this name-
space proves useful. For instance, you can access the DiscoveryDocument using the Discovery class:

Imports System.Web.Services.Discovery

ReadOnly Property DiscoveryDocument(strURL As String) As DiscoveryDocument
Get

DiscoveryDocument = DiscoveryClientProtocol.Discover(strURL)
End Get

End Property

Like the System.Web.Services.Description namespace, the System.Web.Services.Discovery
namespace provides many tools to build a .disco document on the fly.

System.Web.Services.Protocols Namespace
All of the wire service problems solved with HTTP and SOAP are handled here in the System.Web
.Services.Protocols namespace. When handling references to classes also referenced in other Web
Services namespaces, the System.Web.Services.Protocols namespace proves to be a handy tool.
The objects referenced by the System.Web.Services.Protocols namespace include (among others):

❑ Cookies per RFC 2019

❑ HTML forms

❑ HTTP request and response

❑ MIME

❑ Server

❑ SOAP, including SoapException, the only error-handling mechanism

860

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 860

❑ URIs and URLs

❑ XML

The System.Web.Services.Protocols namespace is particularly handy for managing the connection
type by a client. A consumer of a Web Service can use the HTTP GET or HTTP POST protocol to call
a service, as well as the HTTP SOAP protocol. Microsoft’s .NET initiative focuses on SOAP as the
ultimate means of connecting disparate data sources. The System.Web.Services.Protocols
.SoapDocumentMethodAttribute class allows the developer to set special attributes of a public
method for when a client calls it using SOAP:

<%@ WebService Language=”VB” Class=”Util” %>

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace:=”http://localhost/util”)> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class Util

Inherits System.Web.Services.WebService

<SoapDocumentMethod(Action=”http://MySoapMethod.org/Sample”, _
RequestNamespace=”http://MyNameSpace.org/Request”, _
RequestElementName=”GetUserNameRequest”, _
ResponseNamespace=”http://MyNameSpace.org/Response”, _
ResponseElementName=”GetUserNameResponse”) _
WebMethod(Description=”Obtains the User Name”)> _

Public Function GetUserName()
‘...

End Function
End Class

Architecting with Web Services
Web Services impart two remarkable benefits to users — one more obvious, another less so. First, they will
replace common binary RPC formats, such as DCOM, CORBA, and RMI. Since these use a proprietary
communication protocol, they are significantly less architecturally flexible than Web Services. With appli-
ances utilizing more and more of the Internet, platform-neutrality will be a great advantage. Less obvi-
ously but more importantly, Web Services will be used to transfer structured business communications in
a secure manner, potentially ending the hold that Sterling has on the Electronic Data Interchange (EDI)
market. HTTPS with 128-bit SSL can provide the security necessary for intracompany information trans-
fer. In addition to this, Microsoft has recently (as of this writing) released Web Services Enhancements 2.0
(WSE), which allows you to easily use WS-Security and other advanced protocols to apply credentials,
encryption, and digital signing to your SOAP messages in an easy and straightforward manner.

Why Web Services?
So, why Web Services? First, they are remarkably easy to deploy with Visual Basic. The key to remoting
with Web Services is the SDL contract — written in the dense WSDL protocol you saw earlier.

861

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 861

IIS 5.0 and 6.0 does that in conjunction with the .NET Framework, analyzing the VB code and dynami-
cally generating the WSDL code for the contract.

Also, Web Services are inherently cross-platform, even if created with Microsoft products. Yes, you’ve
heard this before, but so far this seems to be true. Since the standard XML schemas are centrally man-
aged, and IBM mostly built the WSDL specification, Microsoft seems to have toed the line on this one.

Finally, they best represent where the Internet is going — toward an architecturally neutral collection of
appliances, rather than millions of PCs surfing the World Wide Web. Encapsulating code so that you can
simply and easily allow cellphones to use your logic is a major boon to developers, even if they don’t
know it yet.

How This All Fits Together
It is important to note that Web Services are not a feature of the .NET Framework per se. In fact, Web
Services run fine on Windows NT4 SP6, with the SOAP Toolkit installed. You can do most anything you
are doing here with VB6 and IIS 4.0.

However, the .NET Framework encapsulates the Web Services protocol into objects. It is now an inte-
grated part of the strategy, rather than an add-on. If you are currently working in a VB6 environment,
take a look at the SOAP Toolkit (downloadable from MSDN at http://msdn.microsoft.com/web
services), and understand that the services you build are available not only to different flavors of
Windows, but also to IBM and Sun platforms.

The goal of Web Services is to provide a loosely coupled, ubiquitous, universal information exchange
format. Toward that end, SOAP is not the only mechanism for communicating with Web Services —
the HTTP GET and HTTP POST protocols are also supported by .NET. Response is via HTTP, just like
normal RPCs with SOAP. This allows legacy Web applications to make use of Web Services without the
benefit of the .NET Framework.

State Management for XML Web Services
The Internet is stateless by nature. Many of the techniques used for managing state in ASP.NET Web
applications are the same techniques you can use within the XML Web Services built on the .NET plat-
form. Remember that XML Web Services are part of the ASP.NET model and both application types have
the same objects at their disposal.

These sessions can also be run in the same process as the XML Web Service application itself — out of
process, using the .NET StateServer, or by storing all the sessions within SQL Server.

To use sessions within XML Web Services built on the .NET platform, you actually have to turn on this
capability within the WebMethod attribute by using the EnableSession property. By default, the
EnableSession property is set to False, so to use the HTTPSessionState object, you have to set
this property to True, as shown here:

<%@ WebService Language=”VB” Class=”Service” %>

Imports System.Web

862

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 862

Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace:=”http://localhost/util”)> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class Service

Inherits System.Web.Services.WebService

<WebMethod(EnableSession:=True)> _
Public Function SessionCounter() As Integer

If Session(“Counter”) Is Nothing Then
Session(“Counter”) = 1

Else
Session(“Counter”) = CInt(Session(“Counter”)) + 1

End If

Return CInt(Session(“Counter”))
End Function

End Class

The EnableSession property goes directly in the parentheses of the WebMethod declaration. This prop-
erty takes a Boolean value and needs to be set to True in order to work with the Session object.

Using DNS As a Model
How does any computer know where to find a Web page? Every machine doesn’t know every location
of every page. Rather, there is a big catalog called DNS that is replicated by most Internet service
providers, which translates domain names (like yahoo.com) into IP numbers (like 204.71.200.74).

The benefit of the DNS system is that it offers a further level of abstraction between the marketing and
the wires. It’s a lot easier to remember yahoo.com than 204.71.200.74. With Web Services, it becomes
even more important, because there is not only a function name but also the parameters to remember.

Three things make up the Web Service Repository: a standard format, a language, and a database. You
have already seen the language, WSDL. This can be used to lay out the discovery information you need
to publicize your Web Service. The format of choice is called DISCO (short for DISCOvery of all things).
Finally, and most exciting, is the Web Services answer to DNS — UDDI (Universal Description, Discovery,
and Integration). Let’s talk about DISCO first.

DISCO
One way to enable a repository is to have applications that look for services. To implement this, you
drop a DISCO document into the Web Service directory — a file that an application can look for that
enables the discovery of the Web Services present in that directory, or on that machine. Alternatively,
you can mark each particular service you would like to enable.

Web Service discovery is the process of locating and interrogating Web Service descriptions, which is a
preliminary step for accessing a Web Service. It is through the discovery process that Web Service clients
learn that a Web Service exists, what its capabilities are, and how to properly interact with it.

863

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 863

Dynamic Discovery with IIS
Admittedly not as fun as it sounds, dynamic discovery is Web Services’ answer to the robots.txt file.
Dynamic discovery automatically exposes Web Services beneath a given URL on a Web site. By placing
this document at the root of your service’s directories, you give a prospective consumer the opportunity
to obtain information about all services contained in that directory or subdirectories.

To enable dynamic discovery for your Web Services, create a <filename>.disco document at the root
of the Web Services directory.

This XML file contains the excluded directories within the hierarchy, so that the dynamic discovery pro-
cess knows where not to go to gather information about Web Services:

<?xml version=”1.0” ?>
<dynamicDiscovery xmlns=”urn:schemas-dynamicdiscovery:disco.2000-03-17”>

<exclude path=”_vti_cnf”/>
<exclude path=”_vti_pvt”/>
<exclude path=”_vti_log”/>
<exclude path=”_vti_script”/>
<exclude path=”_vti_txt”/>

</dynamicDiscovery>

In order for the dynamic discovery to be noticed by visiting consumers, refer to it in the <head> of your
default HTML or ASP document:

<head>
<link type=’text/xml’ rel=’alternate’ href=’Default.disco’/>
<title></title>

</head>

Or, if you have an XML page as your default:

<?xml-stylesheet type=”text/xml” alternate=”yes” href=”default.disco” ?>

Dynamic discovery is the way to go with IIS; the discovery process is very well tuned. If you work with
another Web server, though, or are a hands-on sort, you can roll your own discovery documents for each
Web Service.

A discovery document is just an XML file with references listed in the discovery hierarchy. Within the
hierarchy, you can add as many service contracts as you have services and references to other DISCO
documents throughout the server:

<?xml version=”1.0” ?>
<disco:discovery xmlns:disco=”http://schemas.xmlsoap.org/disco”

xmlns:scl=”http://schemas.xmlsoap.org/disco/scl”>
<scl:contractRef ref=”http://ServerName/ServiceName.asmx?SDL”/>
<scl:contractRef ref=”http://ServerName/AnotherName.asmx?SDL”/>
<scl:contractRef ref=”http://ServerName/ThirdName.asmx?SDL”/>
<disco:discoveryRef ref=”Folder1/default.disco”/>
<disco:discoveryRef ref=”Folder2/default.disco”/>
<disco:discoveryRef ref=”Folder3/default.disco”/>

</disco:discovery>

864

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 864

This is essentially what IIS will do, using dynamic discovery.

The DISCO concept depends on the client knowing where to start. If you don’t know that a business
offers a particular Web Service, you won’t know where to look for a DISCO document. UDDI is all about
changing that.

The UDDI Project
The DISCO format allows crawlers to index Web Services just as they index Web sites. The robots.txt
approach, however, is dependent on the ability of a crawler to locate each Web site and find the location
of the service description file on that Web site. The current system relies upon the interlocking nature of
Web sites to crawl from site to site — there is no such visible connection between Web Services. This
leaves the programmer having to know where to begin looking for a Web Service before he starts.

UDDI (Universal Description, Discovery, and Integration) takes an approach that relies upon a distributed
registry of businesses and their service descriptions implemented in a common XML format. There is all
sorts of helpful information about UDDI at www.uddi.org, but we’ll give you an introduction to it here
and talk about how it relates to Microsoft in general and Visual Basic in particular.

UDDI can be thought of as the Yellow Pages for Web Services. UDDI is a means of defining a standard
way to publish and discover information about Web Services, so businesses can provide descriptions of
their Web Services in terms of an XML file with white, yellow, and green pages:

❑ The white pages include how and where to find the service.

❑ The yellow pages include ontological classifications and binding information.

❑ The green pages include the technical specification of the service.

In the XML schema for UDDI, this breaks into four elements: businessEntity, businessService,
bindingElements, and metadata, or tModels. The tModels provide additional important technical
information that falls outside the bindingElements element, but that is necessary for the consumption
of the service once it is bound.

You can find the XML schema for this at www.uddi.org/schema/uddi_1.xsd, but you don’t have to
understand it because UDDI provided an API that is built into the .NET Framework, as discussed in the
next section. Generally, though, each API function represents a publicly accessible SOAP message used
to get or place information about a registry entry. For instance, the findService SOAP message lists
available services based on the conditions specified in the arguments:

<find_service businessKey=”uuid_key” generic=”1.0” [maxRows=”nn”]
xmlns=”urn:uddi-org:api” >

[<findQualifiers/>]
<name/> | <categoryBag/> | <tModelBag/>

</find_service>

The parameters it accepts include maxRows, businessKey, findQualifiers, name, categoryBag, and
tModelBag. On success, it returns a serviceList as a SOAP response object. On the whole, it’s not that
much different from the COM world, except that SOAP is entirely an open standard.

865

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 865

Using UDDI
The best thing about UDDI is how easy it is to use. Many of us who started early in the Internet field
remember filling out the InterNIC’s domain add/change forms, and having our own representative at
the NIC to help us when we were stuck. Now, though, the Web handles registration of services — you
only need to really have a grasp of the discovery schema if you are going to build a registration site.

In fact, Microsoft has a UDDI mirror if its own at http://uddi.microsoft.com where you can register
your Web Services, just like adding them to DNS or a search engine. Of course, you’ll have to have a
Microsoft Passport (another UDDI registered Web Service) to do it, but it is a rather simple task. After
registering against your Passport, you enter business and contact information that is stored in your
UDDI registry. Then you can add your Web Services.

Where UDDI Is Headed
UDDI is the invisible fourth layer in the stack of protocols that represent Web Services. Like DNS and
HTTP, UDDI provides a needed interface between the SOAP messaging and the ubiquity of the service
that is so important, but difficult to achieve.

Going forward, UDDI as an organization sees itself being a global provider of discovery services for the
business-to-business (B2B) Web Services market, hosted throughout the world. For instance, software
companies can build applications that customize themselves based on services information in the UDDI
registry on installation. Online marketplaces can back their market sites with UDDI technology to better
serve the growing needs of B2B value-added services.

Future services planned by UDDI include the extension of the technology far beyond the specifications in
the Open Draft. Eventually, regional and hierarchical searches will be accomplished through simple, effec-
tive conventions. The industry’s goal is much farther reaching than InterNICs was at the beginning —
truly using the lessons learned in the past to shape the future.

Microsoft’s commitment to UDDI is apparent from its use within Windows Server 2003. If you have
Windows Server 2003 Enterprise Edition, you can enable your server to be a UDDI server, and there is a
UDDI database built right in as well.

Security in Web Services
Opening up a procedure call to remoting makes applications vulnerable to accidents, poor end-user
implementation, and crackers. Any application design needs to include some level of security. Web
Services demand the inclusion of security.

Security problems with Web Services fall into two categories — that of interception and that of unautho-
rized use. SOAP messages intercepted by crackers potentially expose private information such as
account numbers and passwords to the public. Unauthorized use at best costs money and at worst
wreaks havoc within a system.

Very few of the concepts discussed here are things we would like to see in the hands of those wearing
the black hats. Even the simple validation service handles email addresses — a valuable commodity in

866

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 866

this world of “opt in” spamming. If you add Social Security or account numbers to the service, then this
becomes even more of a concern. Fortunately, the wire transport of choice — HTTPS — provides a 128-bit
solution to these problems.

Also, as mentioned earlier, now by using Microsoft’s Web Services Enhancements (WSE) capabilities,
you can easily apply security standards such as WS-Security to your SOAP messages.

The Secure Sockets Layer
The Secure Sockets Layer, or SSL, is a protocol consumed by HTTP in the transfer of Internet data from
the Web server to browser. On the Web, the process works like this:

1. The user calls a secure Web document, and a unique public key is generated for the client
browser, using the server’s root certificate.

2. A message, encrypted with the server’s public key, is sent from the browser.

3. The server can decrypt the message using its private key.

The protocol in the URI represents how HTTP would appear if it was changed to HTTPS:

<address uri=”https://aspx.securedomains.com/evjen/Validate.asmx” />

Then the service would make an SSL call to the server. Remember that SSL is significantly slower than
HTTP, so you will suffer a performance hit. Given the sensitivity of much of the information passing
over Web Services, it is probably worth the slowdown.

Directory-Level Security
You also have the option to code security into your applications. This solves different problems from
SSL, and, in fact, you may wish to combine the two services for a complete security solution.

Unauthorized access is a potential problem for any remote system, but for Web Services even more so.
The open architecture of the system provides crackers with all the information they need to plan an
attack. Fortunately, simplicity is often the best defense. Use of the NT security options already on the
server is your best bet to defend against unauthorized users.

You can use NTFS permissions for individual directories within an application and require users to pro-
vide a valid username and password combination if they wish to access the service.

Web Service security is a large area to cover. For more information, you should refer to the documenta-
tion included with the .NET Framework SDK.

The best approach to security is to use SSL and directory-level security together. It is slow, and at times
inconvenient, but this is a small price to pay for the heightened level of security. Though this is different
from the traditional role-based COM+ security, it is still very effective for running information across
the wire.

867

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 867

Other Types of Security
The Windows platform also provides for other forms of security. For instance, the Windows CryptoAPI
supplies access to most of the commonly used encryption algorithms — aside from the protocols used in
Secure Sockets Layer. Digital certificates (sort of a personal form of SSL ServerCertificates) are now
rapidly becoming a powerful force in security.

The Downside
There is a downside to any distributed architecture. We’ve covered most of them in this chapter and sug-
gested workarounds — security, state, speed, and connectivity. Let’s go over them once more to help
make sure that Web Services are the way to go.

Security
The key to the issue and solution of security problems is the management of client expectations. If Web
Services are built securely to begin with, there will be no instances to draw concern or scrutiny. Consider
the security of everything you write. It’s fairly easy, and the payoff is great.

State
State is less of a problem in a distributed architecture because in Windows DNA, Microsoft has been say-
ing for years that n-tier statefulness has to go. Most developers are used to the idea, and if you aren’t,
then you need to get on the boat with the rest of us. Architect your solutions to be loosely coupled.
That’s what Web Services are made to do.

Transactions
Web Services are not made for transactional systems. If the Web server at MyCompany.com was to access
a database at UPS for example, and the connection dropped in the middle, the lock on the database
would remain without giving the network system at UPS a chance to solve the problem. Web Services
are by nature loosely coupled. They are not designed for tight transactional integration.

A common use of Web Services, communication between differing systems, prompted a number of tech-
nology architects to design a number of XML transaction protocols such as 2PC. These packages provide
for an understanding between two systems that the network link will remain stable.

Speed and Connectivity
Speed and connectivity are going to be a continuing problem until we have the ubiquitous bandwidth
of which George Gilder talks about in his book Telecosm (Free Press, 2000). Right now, the majority of
Internet devices that could really benefit from Web Services — cellphones, PDAs, and the like — are
stuck at the paltry 14,000-bits per second currently supported by most wireless providers.

868

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 868

For application development, this is a concern because when the router goes down, the application goes
down. Right now, intranets continue to function when the ISP drops the ISDN. With Web Services run-
ning the links to customers and suppliers, that ISDN line becomes the company lifeline. Redundancy of
connections and a firm partnership with your service provider are the only solution.

Where We Go from Here
The cellphone is a listening device. It listens for a call to its network address from the cell network.
When it receives one, it follows some logic to handle the call. Sound familiar? This works just like the
RPC architecture and will be the format for a new host of devices that listen for Web Service calls over
the G3 wireless network.

The first lines of the W3C XML group’s charter say:

New business communication will be via XML and Web Services, rather than EDI and VANs. Micropayment
may actually become a reality. There are scores of promises that the Internet made since its inception that can
be fulfilled with Web Services and XML. It won’t stop there, though. The power of listening devices will
bring Web Services development into user-to-user markets from business-to-business ones.

It sounds far-fetched, but the hope is that you can see how the power of Web Services on .NET could
make this possible. SOAP isn’t just about replacing the RPC architecture already out there. It is a funda-
mentally different way to think about the network as the platform.

Summary
This chapter looked at the need for an architecturally neutral, ubiquitous, easy-to-use, and interoperable
system to replace DCOM, RMI, and CORBA. It discussed how Web Services fill the gaps successfully
because HTTP is used as the language-independent protocol, XML is its language (in WSDL) and trans-
port mechanism, and SOAP allows you to package messages for sending over HTTP.

Then, the chapter moved on to look at how to create and consume Web Services programmatically using
Visual Basic. It discussed the abstract classes provided by the .NET Framework class library to set up
and work with Web Services. In particular, it looked at the WebService, WebServiceAttribute,
WebMethodAttribute, and WebServiceBindingAttribute component classes of the System.Web
.Services namespace, in addition to the System.Web.Services.Description, System.Web.Services
.Discovery, and System.Web.Services.Protocols namespaces.

“Today, the principal use of the World Wide Web is for interactive access to docu-
ments and applications. In almost all cases, such access is by human users, typically
working through Web browsers, audio players, or other interactive front-end sys-
tems. The Web can grow significantly in power and scope if it is extended to support
communication between applications, from one program to another.”

869

XML Web Services

26_575368 ch23.qxd 10/7/05 11:11 PM Page 869

Next, it took a high-level look at some of the technologies supporting Web Services — namely DISCO
and UDDI — before briefly covering security in Web Services.

Finally, it talked about some of the downsides to using any distributed architecture (Web Services
included), but it finished with an optimistic note on where Web Services might take us in the future.

870

Chapter 23

26_575368 ch23.qxd 10/7/05 11:11 PM Page 870

Remoting

Remoting is the .NET technology that allows code in one application domain (AppDomain) to call
into the methods and properties of objects running in another application domain. A major use of
remoting is in the classic n-tier desktop approach, where presentation code on the desktop needs
to access objects running on a server somewhere on the network. Another primary use for remot-
ing is when code in ASP.NET Web forms or Web Services needs to call objects running on an appli-
cation server somewhere on the network. In short, remoting is the technology to use when your
n-tier code needs to talk to the business or data tier that is running on an application server.

Remoting is conceptually somewhat similar to Web Services. Both remoting and Web Services are
TCP/IP-based technologies that allow communication between different machines over an IP net-
work. This means that they both pass through firewalls, and they both provide stateless and con-
nectionless communication between machines. These two technologies share a lot of the same
principles.

SOAP’s biggest problem is that it is not lightweight. It’s designed with maximum platform inter-
operability in mind, and this puts certain limits on how data can be transferred. For example,
imagine that Platform A stores Integer variables as a 4-byte block of memory, with the lowest-
value byte appearing first. Now imagine that Platform B also uses a 4-byte block of memory, but
this time the highest-value byte appears first. Without some form of conversion, if you copy that
block of bytes from Platform A to Platform B, because the encoding of the value is different, the
platforms won’t be able to agree on what the number actually is. In this scenario, one platform
thinks it’s got the number 4, whereas the other thinks that the number is actually 536870912.

It is important to recognize that Microsoft intends to merge the functionality of
remoting, Web Services, Enterprise Services, and MSMQ (Microsoft Message
Queue) into Indigo — the next generation of the technologies.

27_575368 ch24.qxd 10/7/05 11:23 PM Page 871

SOAP gets around this problem by representing numbers (and everything else) as strings of ASCII char-
acters — as ASCII is a text-encoding standard that most platforms can understand. However, this means
that the native binary representations of the numbers have to be converted to text each time the SOAP
document has to be constructed. In addition, the values themselves have to be packaged in something
that you can read (with a little bit of effort). This leads to two problems: massive bloat (a 4-byte value
starts taking hundreds of bytes to store) and wasted CPU cycles used in converting from native encod-
ing to text encoding and back again.

You can live with all these problems if you only want to run your Web Service on, say, Windows 2000,
and have it accessed through a client running on a cellphone. SOAP is designed to do this kind of thing.

However, if you have a Windows XP desktop application that wants to use objects hosted on a Windows
2000 server (using the same platform), the bloated network traffic and wastage in terms of conversion is
suboptimal at best and ridiculous at worst.

Remoting lets you enjoy the same power of Web Services but without the downside. If you want, you
can connect directly to the server over TCP and send binary data without having to do any conversions.
If one Windows computer has a 4-byte block of memory holding a 32-bit integer value, you can safely
copy the bit pattern to another Windows computer and both will agree on what the number is. In effect,
network traffic sanity is restored and processor time isn’t wasted doing conversions.

Now that you know what remoting is, you’re ready to understand its architecture.

Remoting Overview
It’s important to understand several basics about remoting, including the basic terms and related objects,
which are covered in the following sections.

Basic Terminology
A normal object is not accessible via remoting. By default, .NET objects are only accessible to other code
running within the same .NET AppDomain.

A remote object is an object that’s been made available over remoting by inheriting from System
.MarshalByRefObject. These objects are often also called MBROs. Remote objects are the same kinds of
objects that you build normally, with the single condition that they inherit from MarshalByRefObject
and that you register them with the Remoting subsystem to make them available to clients. Remote
objects are anchored to the machine and AppDomain where they were created, and you communicate
with them over the network.

A serializable object is an object that’s been made available over remoting by marking the class with the
<Serializable()> attribute. These objects will move from machine to machine or AppDomain to
AppDomain. They are not anchored to any particular location, so they are unanchored objects. A common
example of a serializable object is the DataSet, which can be returned from a server to a client across the
network. The DataSet physically moves from server to client via the serialization technology in the
.NET Framework.

872

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 872

A remoting host is a server application that configures remoting to listen for client requests. Remoting
runs within the host process, using the memory and threads of the host process to handle any client
requests. The most common remoting host is IIS. You can create custom remoting hosts, which are typi-
cally created as a Windows Service, so they can run even when no user is logged in to the server. It is
also possible to have any .NET application be a remoting host, which can allow you to emulate ActiveX
EXE behaviors to some degree. This last technique is most commonly used when creating peer-to-peer-
style applications.

A channel is a way of communicating between two machines. Out-of-the-box, .NET comes with two
channels: TCP and HTTP. The TCP channel is a lightweight channel designed for transporting binary
data between two computers. (You need to think of the TCP channel as being different from the TCP
protocol that HTTP also uses.) It works using sockets, something discussed in much more detail in
Chapter 26. HTTP, as you already know, is the protocol that Web servers use. The HTTP channel hosted
in IIS is recommended by Microsoft.

A formatter object is used to serialize or marshal an object’s data into a format in which it can be trans-
ferred down the channel. Out of the box, you have two formatter objects: BinaryFormatter and
SoapFormatter. The BinaryFormatter is more efficient and is recommended. The SoapFormatter
is not recommended and may be discontinued in future versions of the .NET framework.

A message is a communication between the client and server. It holds the information about the remote
object and the method or property that’s being invoked, as well as any parameters.

A proxy is used on the client side to call into the remote object. To use remoting, you don’t typically have
to worry about creating the proxy — .NET can do it all for you. However, there’s a slightly confusing
split between something called a transparent proxy and a real proxy. A transparent proxy is so called
because “you can’t see it.” When you request a remote object, a transparent proxy is what you get. It
looks like the remote object (that is, it has the same properties and methods as the original), which
means that your client code can use the remote object or a local copy of the would-be-remote object
without your having to make any changes and without your knowing that there is any difference. The
transparent proxy defers the calls to the real proxy. The real proxy is what actually constructs the mes-
sage, sends it to the server, and waits for the response. You can think of the transparent proxy as a “fake”
object that contains the same methods and properties that the real object contains.

The real proxy is effectively a set of helper functions that manages the communications. You don’t use
the real proxy directly, instead, the transparent proxy calls into the real proxy on your behalf.

A message sink is an “interceptor object.” Before messages go into the channel, these are used to do some
further processing on them, perhaps to attach more data, reformat data before it is sent, route debugging
information, or perform security checking. On the client side, you have an “envoy sink.” On the server
side, you have a “server context sink” and an “object context sink.” In typical use, you can ignore these.

Message sinks are a pretty advanced topic and allow for some powerful extensions to the remoting
model. It is not recommended that you create custom sinks, channels, or formatters, so they are not cov-
ered in this book. Creating them is not recommended because they will not transfer directly to Indigo,
the next generation of the technology from Microsoft. If you do opt to create your own custom sink, for-
matter, or channel, you must expect to rewrite it from scratch when you upgrade to Indigo.

Figures 24-1 and 24-2 show how these concepts fit together.

873

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 873

Figure 24-1

Figure 24-1 shows how a client calls the Hello method of a transparent proxy object. The transparent
proxy looks just like the real object, so the client doesn’t even realize that remoting is involved. The
transparent proxy then invokes the real proxy, which converts the method call into a generic remoting
message.

This message is sent through any messaging sinks configured on the client. These messaging sinks may
transform the message in various ways, including adding encryption or compressing the data.

The message is then serialized by the formatter object. The result is a byte stream that is sent to the
server by using the channel configured for use on the client.

Figure 24-2 shows how the server handles the message. The message comes into the server via a channel.
The message is then deserialized by the formatter object and run through any messaging sinks configured
on the server. These messaging sinks typically mirror those on the client, unencrypting or decompressing
the data as appropriate.

Finally, the message is decoded by the object context sink, which uses the information in the message to
invoke the method on the actual object. The object itself has no idea that it was invoked via remoting,
since the method call was merely relayed from the client.

Application Domain

Hello()

Serialize()

Invokes()

Process
Message()

envoy sink

formatter

channel

client

transparent proxy

real proxy

874

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 874

Figure 24-2

SingleCall, Singleton, and Activated Objects
The next step is to look at the way that remoting treats objects. In remoting, objects are divided into three
camps: wellknown objects, client-activated objects, and serializable objects.

❑ wellknown objects run on the server and perform a service for the remote application, such as
give me a list of all the customers or create an invoice. They can be configured to act similarly to a
Web Service or use what’s called a singleton pattern (which is discussed shortly).

❑ Client-activated (Activated) objects are created for each client and maintain state on the server
over time. In many ways, these objects act similar to COM objects you accessed via DCOM in
the past.

❑ Serializable objects can move from machine to machine as needed. For instance, a serializable
object can be created on the server (by a wellknown or Activated object), and then returned to
a client. When the object is returned to the client, it is physically copied to the client machine,
where it can be used by client code.

The following table summarizes the types of object.

Type Calling Semantics Key Attributes

SingleCall (wellknown) An object is created for each client Stateless, per-method life
method call made to the server. time, atomic methods, no-

threading issues, anchored to
AppDomain where created.

Singleton (wellknown) One object exists on the server and Stateful, long-lived, shared
is used to handle all method calls instance, thread synchro-
from all clients. nization required, anchored

to AppDomain where created.

Table continued on following page

Application Domain

Deserialize() Hello()

Process Message() Process Message()

formatter

channel object context sink

remote object

server context sink

875

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 875

Type Calling Semantics Key Attributes

Activated The client creates Activated objects Stateful, long-lived, per-
on the server. The client can create client instances, threading
many such objects. Activated objects issues only if client is multi-
are available only to the client that threaded, anchored to
created the object. AppDomain where created.

Serializable The object is automatically copied Stateful, long-lived, no
from machine to machine when it is threading issues, non-
passed as a parameter or returned anchored (moves across
as the result of a function. network automatically).

The following sections discuss each in a bit more detail.

SingleCall Objects
SingleCall objects act much like typical Web Service objects. Each time a client calls a method on a
SingleCall object, an object is created specifically to handle that method call. Once the method call is
complete, the object is not reused and is garbage collected by the .NET runtime.

SingleCall objects also work the way a JIT (just-in-time) Activated object does in COM+, and
matches the way most people use MTS or COM+ objects. In those environments, good developers typi-
cally create a server-side object, make a method call, and then release the object.

These objects must inherit from System.MarshalByRefObject, so they are MBROs. This means that
they always run in the AppDomain and Windows process where they are created. If they are created on a
server in a host process, that is where they live and run. Clients interact with them across the network.

The most commonly used type of service object in remoting is the SingleCall object. Not only do these
objects provide semantics similar to Web Services, MTS, and COM+, but they also provide the simplest
programming model.

Since an object is created for each method call, these objects are inherently stateless. Even if an object
tried to keep state between calls, it would fail because the object is destroyed after each method is com-
plete. This helps ensure that no method call can be affected by previous method calls or can contaminate
subsequent method calls.

Each method call runs on its own thread (from the .NET thread pool, as discussed in Chapter 22).
However, since each method call also gets its very own object, there’s typically no contention between
threads. This means that you don’t need to worry about writing synchronization or locking code in your
SingleCall code.

Technically, it is possible to encounter synchronization issues if there are shared stateful objects on the
server. This requires substantial work to create and access such shared objects and is outside the scope of
this book. Typically, this type of model is not used, so threading is a nonissue with SingleCall objects.

Because of their automatic isolation, statelessness, and threading simplicity, SingleCall objects are the
preferred technology for creation of server code in remoting.

876

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 876

Singleton Objects
Singleton objects are quite different from SingleCall objects. Only one Singleton object exists at a
time, and it may exist for a long time and maintain state. All client method calls from all users are routed
to this one Singleton object. This means that all clients have equal, shared access to any state main-
tained by the Singleton object.

These objects must inherit from System.MarshalByRefObject, so they are MBROs. This means that
they always run in the AppDomain and Windows process where they are created. If they are created on a
server in a host process, that is where they live and run. Clients interact with them across the network.

As with the SingleCall scenario, all method calls are run on threads from the .NET thread pool. This
means that multiple simultaneous method calls can be running on different threads at the same time.
As discussed in Chapter 22, this can be complex since you have to write multithreaded synchronization
code to ensure that these threads don’t collide as they interact with your Singleton object.

Singleton objects have a potentially unpredictable lifespan. When the first client makes the first
method call to the object, it is created. From that point forward, it remains in memory for an indetermi-
nate period of time. As long as it remains in memory, all method calls from all the clients will be handled
by this one object. However, if the object is idle for a long time, remoting may release it to conserve
resources. Also, some remoting hosts may recycle their AppDomain objects, which will automatically
cause the destruction of all your objects.

Because of this, you can never be certain that the data stored in memory in the object will remain avail-
able over time. This means that any long-term state data must be written to a persistent store like a
database.

Due to the complexity of shared memory, thread synchronization, and dealing with object lifetime
issues, Singleton objects are more complex to design and code than SingleCall objects. While they
can be useful in specialized scenarios, they aren’t as widely used as SingleCall objects.

Activated Objects
Client-activated (or Activated) objects are different from both SingleCall and Singleton objects.
Activated objects are created by a client application, and they remain in memory on the server over
time. They are associated with just that one client, so they are not shared between clients. Also, they are
stateful objects, meaning that they can maintain data in memory during their lifetime.

These objects must inherit from System.MarshalByRefObject, so they are MBROs. This means that
they always run in the AppDomain and Windows process where they are created. If they are created on a
server in a host process, that is where they live and run. Clients interact with them across the network.

A client can create multiple Activated objects on the server. The objects will remain on the server until
the client releases the objects or the server Appdomain is reset (which can happen with some types of
remoting host). Also, if the client doesn’t contact the server for several minutes, the server will assume
the client abandoned the objects and it will release them.

Activated objects typically don’t have any threading issues. The only way multiple threads will be run-
ning in the same Activated object is if the client is multithreaded and multiple client threads simultane-
ously make method calls to the same server-side Activated object. If this is the case in your application,
then you’ll have to deal with shared data and synchronization issues as discussed in Chapter 22.

877

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 877

While long-lived, stateful, per-client objects can be useful in some specialized scenarios, they are not
commonly used in most client/server or n-tier application environments. By storing per-client state in
an object on the server, this type of design reduces the scalability and fault tolerance of a system.

Serializable Objects
While SingleCall, Singleton, and Activated objects are always anchored to the Appdomain,
Windows process, and machine where they are created, this is not the case with serializable objects.

Serializable objects can move from machine to machine as needed. The classic example of this is the
ADO.NET DataSet, which can be returned as a result of a function on a server. The DataSet physically
moves to the client machine, where it can be used by client code. When the client wants to update the
DataSet, it simply passes the object to the server as a parameter, causing the DataSet to physically
move to the server machine.

These objects do not inherit from System.MarshalByRefObject. Instead, they are decorated with the
<Serializable()> attribute and may optionally implement the ISerializable interface. The follow-
ing is a very basic implementation of a <Serializable()> object:

<Serializable()> _
Public Class Customer

Private mName As String = “”

Public Property Name() As String
Get

Return mName
End Get
Set(ByVal value As String)

mName = value
End Set

Public Sub Load()
‘ Load data here.

End Sub
End Class

<Serializable()> objects are not anchored to the Appdomain or Windows process where they were
created. The remoting subsystem will automatically serialize these objects’ data and transfer it across the
network to another machine. On that other machine, a new instance of the objects will be created and
loaded with the data, effectively cloning the objects across the network.

When working with serializable objects, it’s typically a good idea to use a SingleCall object on the
server to create the serializable object and call any server-side methods (such as ones to load the object
with data from a database). The SingleCall object will then return the serializable object to the client as
a function result, so the client can then interact with the object. The SingleCall object’s method might
look like the following:

Public Function GetCustomer(ByVal ID As Integer) As Customer

Dim cust As New Customer()
cust.Load(ID)
Return cust

End Function

878

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 878

The client code might look like this:

Dim cust As Customer

cust = myService.GetCustomer(123)
TextBox1.Text = cust.Name()

Note that both server and client code have direct, local access to the Customer object, because it is auto-
matically copied from the server to the client as a result of the GetCustomer method call.

Serializable objects can be very useful in many client/server scenarios, especially if the application is
created using object-oriented application design principles.

Implementing Remoting
When you implement an application using remoting, there are three key components to the application.

Client The application calling the server

Server Library The DLL containing the objects to be called by the client

Host The application running on the server that hosts remoting and the Server Library

Basically, you create your server-side objects in a Visual Basic .NET class library project. Then, you
expose the classes in that DLL from your server-side remoting host application. With the objects exposed
on the server, you can then create client applications that call the objects in the Server Library DLL.

You might also have some other optional components to support various scenarios.

Interface A DLL containing interfaces that are implemented by the objects in the Server
Library

Proxy A DLL containing generated proxy code based on the objects in the Server Library

Shared Library A DLL containing serializable objects that must be available to both the Server
Library and the client

Each of these is discussed in detail as it is used later in the chapter. For now, it’s time to get into some
code and see how remoting works.

A Simple Example
To start with, you will create a simple remoting application, consisting of a library DLL that contains the
server-side code, a remoting host application, and a client to call the library DLL on the server.

The first thing you need to realize is that both the host and the client need access to the type information
that describes the classes in the library DLL. The type information includes the name of the classes in the
DLL and the methods exposed by those classes.

879

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 879

The host needs the information because it will be exposing the library DLL to clients via remoting.
However, the client needs the information in order to know which objects to create and what methods
are available on those objects.

Since you know that the library DLL will be on the server, it is easy enough for the host application to
just reference the DLL to get the type information. The client is a bit trickier though, since the library
DLL won’t necessarily be on the client machine. There are three options for getting the type information
to the client.

Reference the library DLL This is the simplest approach, since the client just references the
DLL directly and, thus, has all the type information. The drawback is
that the DLL must be installed on the client along with the client
application.

Use an interface DLL This approach is more complex. The classes in the library DLL must
implement formal interfaces as defined in this interface DLL. The
client can then reference just the interface DLL, so the library DLL
doesn’t need to be installed on the client machine. The way the client
invokes the server is different when using interfaces.

Generate a proxy DLL This approach is of moderate complexity. The server must expose the
objects via HTTP, so you can run the soapsuds.exe command-line
utility. The utility creates an assembly containing the type informa-
tion for the library DLL classes exposed by the server. The client then
references this proxy assembly rather than the library DLL.

You’ll implement all three options in this chapter, starting with the simplest — referencing the library
DLL directly from the client application.

Library DLL
To begin, create the library DLL. This is just a regular Class Library project, so open Visual Studio
.NET (VS.NET) and create a new class library named SimpleLibrary. Remove Class1.vb and add a
new class named Calculator. Since you’re creating a well-known remoting object, it must inherit from
MarshalByRefObject:

Public Class Calculator
Inherits MarshalByRefObject

End Class

That’s really all there is to it. At this point, the Calculator class is ready to be exposed from a server via
remoting. Of course, you need to add some methods that clients can call.

Any and all Public methods written in the Calculator class will be available to clients. How you
design the methods depends entirely on whether you plan to expose this class as SingleCall,
Singleton, or Activated. For SingleCall you know that an instance of Calculator will be created
for each method call, so there’s absolutely no point in using any class-level variables. After all, they’ll be
destroyed along with the object when each method call is complete.

880

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 880

It also means that you can’t have the client call a sequence of methods on your object. Since each method
call gets its own object, each method call is entirely isolated from any previous or subsequent method
calls. In short, each method must stand alone.

For illustration purposes, you need to prove that the server-side code is running in a different process
from the client code. The easiest way to prove this is to return the thread ID where the code is running.
You can compare this thread ID to the thread ID of the client process. If they are different, then you are
sure that the server-side code really is running on the server (or at least in another process on your
machine).

Add the following method:

Public Function GetThreadID() As Integer

Return Threading.Thread.CurrentThread.ManagedThreadId

End Function

You can add other Public methods as well if you’d like, for instance:

Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

Return a + b

End Function

Since this is a calculator class, it only seems appropriate that it should do some calculations.

At this point, you have a simple but functional Calculator class. Build the solution to create the DLL.
Your remoting host application will use this DLL to provide the calculator functionality to clients.

Host Application
With the server-side library complete, you can create a remoting host. It is recommended that you use
IIS as a remoting host, but it is quite possible to create a custom host as well. You’ll use IIS later in the
chapter, but for now let’s see how you can create a custom host in a Console Application for testing.

Most custom hosts are created as a Windows Service so the host can run on the server even when no
user is logged into the machine. However, for testing purposes, a console application is easier to create
and run.

The advantage to a custom host is that you can host a remoting server on any machine that supports the
.NET Framework. This includes Windows 98 and up. If you use IIS as a host, you can only host on
Windows 2000 and up, which is a bit more restrictive.

The drawback to a custom host is that it isn’t as robust and capable as IIS, at least, not without a lot of
work. For this chapter’s example, you’re not going to attempt to make your host as powerful as IIS.
You’ll just stick with the basic process of creating a custom host.

881

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 881

Setting up the Project
Create a new solution in VS.NET, with a console application named SimpleServer.

Since the remoting host will be interacting with remoting, you need to reference the appropriate frame-
work DLL. Use the Add Reference dialog box to add a reference to System.Runtime.Remoting, as
shown in Figure 24-3.

Figure 24-3

Then, in Module1 you need to import the appropriate namespace:

Imports System.Runtime.Remoting

At this point, you can configure and use remoting. However, before you do that, you need to have access to
the DLL containing the classes you plan to expose via remoting — in this case this is SimpleLibrary.dll.

Referencing the Library DLL
There are two ways to configure remoting, via a configuration file or via code. If you opt for the configu-
ration file approach, then the only requirement is that SimpleLibrary.dll be in the same directory as
your host application. You don’t even need to reference SimpleLibrary.dll from the host. However, if
you opt to configure remoting via code, then your host must reference SimpleLibrary.dll.

Even if you go with the configuration file approach, referencing SimpleLibrary.dll from the host pro-
ject allows VS.NET to automatically keep the DLL updated in your project directory, and it means that
any setup project you might create will automatically include SimpleLibrary.dll. In general, it is a
good idea to reference the library DLL from the host and that’s what you’ll do here.

Add a reference to SimpleLibrary.dll by clicking the Browse button in the Add References dialog
box and navigating to the SimpleLibrary\bin\release directory, as shown in Figure 24-4.

882

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 882

Figure 24-4

All that remains now is to configure remoting.

Configuring Remoting
The typical way to do this is with a configuration file. Open the app.config file in the SimpleServer
project. In this config file, you’ll add a section to configure remoting. Remember that XML is case-
sensitive, so the slightest typo here will prevent remoting from being properly configured:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.runtime.remoting>
<application>

<!– The following section defines the classes you’re
exposing to clients from this host. –>

<service>
<wellknown mode=”SingleCall”

objectUri=”Calculator.rem”
type=”SimpleLibrary.Calculator, SimpleLibrary” />

</service>

<channels>
<channel ref=”tcp” port=”49341” />

</channels>

</application>
</system.runtime.remoting>

Notice that all configuration is within the <system.runtime.remoting> element, and then within an
<application> element. The real work happens first inside the <service> element. The <service>
element tells remoting that you’re configuring server-side components. Within this block is where you

883

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 883

define the classes you want to make available to clients. You can define both wellknown and Activated
classes here. In this case you’re defining a wellknown class:

<wellknown mode=”SingleCall”
objectUri=”Calculator.rem”
type=”SimpleLibrary.Calculator, SimpleLibrary” />

The mode will be either SingleCall or Singleton as discussed earlier in the chapter.

The objectUri is the “end part” of the URL that clients will use to reach your server. You’ll revisit this in a
moment, but this is basically how it fits (depending on whether you’re using the TCP or HTTP protocol):

tcp://localhost:49341/Calculator.rem

or

http://localhost:49341/Calculator.rem

The .rem extension on the objectUri is important. This extension indicates that remoting should han-
dle the client request, and is used by the networking infrastructure to route the request to the right loca-
tion. You can optionally use the .soap extension to get the same result. The .rem and .soap extensions are
totally equivalent.

Finally, the type defines the full type name and assembly where the actual class can be found. Remoting
uses this information to dynamically load the assembly and create the object when requested by a client.

You can have many <wellknown> blocks here to expose all the server-side classes you want to make
available to clients.

The other key configuration block is where you specify which remoting channel (protocol) you want to
use. You can choose between the TCP and HTTP channels.

TCP Slightly faster than HTTP, but less stable and not recommended

HTTP Slightly slower than TCP, but more stable and is recommended

Since you’ll look at the HTTP channel later, you’re using the TCP channel now. Either way, you need to
specify the IP port number on which you’ll be listening for client requests. When choosing a port for a
server, you should keep the following port ranges in mind:

❑ 0–1023 — Well-known ports reserved for specific applications such as Web servers, mail servers,
and so on

❑ 1024–49151 — Registered ports that are reserved for various widely used protocols such as
DirectPlay

❑ 49152–65535 — Intended for dynamic or private use, such as for applications that might be per-
forming remoting with .NET

884

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 884

You’re setting remoting to use a TCP channel, listening on port 49341:

<channels>
<channel ref=”tcp” port=”49341” />

</channels>

With the config file created, the only thing remaining is to tell remoting to configure itself based on this
information. To do this you need to add code to Sub Main:

Sub Main()
RemotingConfiguration.Configure(_

AppDomain.CurrentDomain.SetupInformation.ConfigurationFile)
Console.Write(“Press <enter> to exit”)
Console.Read()

End Sub

The Console.Write and Console.Read statements are there to ensure that the application stays run-
ning until you are ready for it to terminate. The line that actually configures remoting is:

RemotingConfiguration.Configure(_
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile)

You are calling the Configure method, which tells remoting to read a config file and to process the
<system.runtime.remoting> element in that file. You want it to use your application configuration
file, so you pass that path as a parameter. Fortunately, you can get the path from your AppDomain object
so you don’t have to worry about hard-coding the file name.

Configuring Remoting via Code
Your other option is to configure the remoting host via code. To do this you’d write different code in
Sub Main:

Sub Main()

RemotingConfiguration.RegisterWellKnownServiceType(_
GetType(SimpleLibrary.Calculator), _
“Calculator.rem”, _
WellKnownObjectMode.SingleCall)

System.Runtime.Remoting.Channels.ChannelServices.RegisterChannel(_
New System.Runtime.Remoting.Channels.Tcp.TcpServerChannel(49341))

Console.Write(“Press <enter> to exit”)
Console.Read()

End Sub

You can see that you’re providing the exact same information here as you did in the config file, only
via code. You call RegisterWellKnownServiceType, passing the mode, objectUri, and type data
just as you did in the config file. Then, you call RegisterChannel, passing a new instance of the
TcpServerChannel configured to use the port you chose earlier.

885

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 885

The end result is the same as using the config file. Most server applications use a config file to config-
ure remoting because it allows you to change things like the channel and port without having to recom-
pile the host application.

Build the solution. At this point your host is ready to run. Open a Command Prompt window, navigate
to the bin directory, and run SimpleServer.exe.

Client Application
The final piece of the puzzle is to create a client application that calls the server.

Setting Up the Project
Here’s how to create a new VS.NET solution with a Windows Application named SimpleClient. As
discussed earlier, the client needs access to the type information for the classes it wants to call on the
server. The easiest way to get this type information is to have it reference SimpleLibrary.dll. Since
you’ll be configuring remoting, you also need to reference the remoting DLL. Then import the remoting
namespace in Form1:

Imports System.Runtime.Remoting

Now, you can write code to interact with the Calculator class. Add controls to the form as shown in
Figure 24-5.

Figure 24-5

Name the controls (in order): ConfigureButton, CodeConfigureButton, LocalThreadButton,
LocalThread, RemoteThreadButton, RemoteThread. First, let’s write the code to get the thread ID
values for each object:

Private Sub LocalThreadButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles LocalThreadButton.Click

LocalThread.Text = CStr(Threading.Thread.CurrentThread.ManagedThreadId)

End Sub

Private Sub RemoteThreadButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles RemoteThreadButton.Click

886

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 886

Dim calc As New SimpleLibrary.Calculator

RemoteThread.Text = CStr(calc.GetThreadID)

End Sub

Displaying the thread ID of the local process is easily accomplished. More interesting though, is that
your code to interact with the Calculator class doesn’t look special in any way. Where’s the remoting
code?

It turns out that there’s this idea of location transparency, where it is possible to write “normal” code that
interacts with an object whether it is running locally or remotely. This is an important and desirable trait
for distributed technologies, and remoting supports the concept. Looking at the code you’ve written,
you can’t tell if the Calculator object is local or remoting; its location is transparent.

All that remains is to configure remoting so that it knows that the Calculator object should, in fact, be
created remotely. As with the server, you can configure clients either via a config file or through code.

Before you configure remoting, you need to realize something important. If remoting is not configured
before the first usage of SimpleLibrary.Calculator, then the Calculator object will be created
locally. If that happens, configuring remoting won’t help, and you’ll never create remote Calculator
objects.

To prevent this from happening, you need to make sure that you can’t interact with the class until after
remoting is configured. Typically, this is done by configuring remoting as the application starts up,
either in Sub Main or in the first form’s Load event. In this case, however, you’re going to configure
remoting behind some buttons, so a different approach is required.

In Form_Load, add the following code:

Private Sub Form1_Load(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load

RemoteThreadButton.Enabled = False

End Sub

This prevents you from requesting the remote thread. You won’t enable this button until after remoting
has been configured either through the config file or code.

Configuring Remoting
To configure remoting via a config file, you first need to add a config file to the project. Use the
Project ➪ Add New Item menu to add an Application Configuration File. Make sure to keep the default
name of App.config. In this file, add the following code:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.runtime.remoting>
<application>

887

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 887

<!– The following section defines the classes you’re
getting from the remote host. –>

<client>
<wellknown mode=”SingleCall”

type=”SimpleLibrary.Calculator, SimpleLibrary”
url=”tcp://localhost:49341/Calculator.rem” />

</client>
</application>

</system.runtime.remoting>
</configuration>

In this case, you’re using the <client> element, telling remoting that you’re configuring a client. Within
the <client> block, you define the classes that should be run on a remote server, both wellknown and
Activated. In your case you have a wellknown class:

<wellknown
type=”SimpleLibrary.Calculator, SimpleLibrary”

url=”tcp://localhost:49341/Calculator.rem” />

On the client, you only need to provide two bits of information. You need to tell remoting the class and
assembly that should be run remotely. This is done with the type attribute, which specifies the full type
name and assembly name for the class, just as you did on the server. You also need to provide the full
URL for the class on the server.

You defined this URL when you created the server, though it might not have been clear that you did
so. When you defined the class for remoting on the server, you specified an objectUri value
(Calculator.rem). Also, on the server you specified the channel (TCP) and port (49341) on which
the server will listen for client requests. Combined with the server name itself, you have a URL:

tcp://localhost:49341/Calculator.rem

The channel is tcp://, the server name is localhost (or whatever the server name might be), the port
is 49341, and the object’s URI is Calculator.rem. This is the unique address of your SimpleLibrary.
Calculator class on the remote server.

As with the server configuration, you might have multiple elements in the config file, one for each
server-side object you wish to use. These can be a mix of <wellknown> and <activated> elements.

With the configuration set up, you just need to tell remoting to read the file. You’ll do this behind the
ConfigureButton control:

Private Sub ConfigureButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles ConfigureButton.Click

RemotingConfiguration.Configure(_
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile)

ConfigureButton.Enabled = False
CodeConfigureButton.Enabled = False
RemoteThreadButton.Enabled = True

End Sub

888

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 888

Once remoting is configured in an application, you can’t configure it again, so you’re disabling the two
configuration buttons. Also, you’re enabling the button to retrieve the remote thread ID. Now that
remoting has been configured, it is safe to interact with SimpleLibrary.Calculator.

The line of code that configures remoting is the same as it was in the server:

RemotingConfiguration.Configure(_
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile)

Again, you’re telling remoting to read your application configuration file to find the <system.runtime
.remoting> element and process it.

Configuring Remoting via Code
Another option for configuring remoting is to do it via code. You must provide the same information in
your code as you did in the config file. Put this behind the CodeConfigureButton control:

Private Sub CodeConfigureButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles CodeConfigureButton.Click
RemotingConfiguration.RegisterWellKnownClientType(_

GetType(SimpleLibrary.Calculator), “tcp://localhost:49341/Calculator.rem”)

ConfigureButton.Enabled = False
CodeConfigureButton.Enabled = False
RemoteThreadButton.Enabled = True

End Sub

The RegisterWellKnownClientType method requires that you specify the type of the class to be run
remotely, in this case SimpleLibrary.Calculator. It also requires that you provide the URL for the
class on the remote server, just as you did in the config file.

Regardless of whether you do the configuration via code or the config file, the end result is that the
.NET runtime now knows that any attempt to create a SimpleLibrary.Calculator object should be
routed through remoting, so the object will be created on the server.

Compile and run the application. Try configuring remoting both ways. In either case, you should dis-
cover that the local thread ID and the remote thread ID are different, proving that the Calculator code is
running on the server, not locally in the Windows application, as shown in Figure 24-6.

Figure 24-6

889

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 889

Note that your specific thread ID values will vary from those shown here. The important part is that
they are different from each other, establishing that the local code and remote code are running in differ-
ent places.

Using IIS As a Remoting Host
You’ve seen how to create a very basic custom host. In most production environments, however, such a
basic host isn’t directly useful. You’d need to create a Windows Service, add management and logging
facilities, implement security, and so forth.

Or, you could just use IIS as the host and get all those things automatically. Due to this, it is often better
to use IIS as a remoting host than to try to create your own.

Creating the Host
Using IIS as a host is a straightforward exercise. The first thing to do is create a Web project. To do this,
create a new solution in VS.NET with an Empty Web Site named SimpleHost, as shown in Figure 24-7.

Figure 24-7

When you click OK, VS.NET will properly create and configure the virtual root on your server.

The next task is to ensure that the SimpleLibrary.dll is in the bin directory under the virtual root.
While you could copy the DLL there by hand, it is often easier to simply add a reference to the DLL from
the Web site. This allows VS.NET to automatically copy the DLL to the right location, and it has the
added side-benefit that if you create a deployment project the DLL will be automatically included as
part of the setup.

890

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 890

Add a reference to SimpleLibrary.dll using the Add References dialog box as you did previously in
the SimpleServer and SimpleClient projects. This way VS.NET will ensure that the DLL is available
as needed.

All that remains now is to configure remoting. The only thing you need to do within an IIS host is add
the <system.runtime.remoting> section to the web.config file. Remoting is automatically config-
ured based on web.config by ASP.NET.

Use the Project ➪ Add New Item menu to add a Web Configuration File. Make sure to use the default
name of web.config. This adds a web.config file to the project with a series of default settings. You
may opt to change some of these settings for your environment. In particular, these settings allow you to
control security options and so forth.

More importantly, however, add the remoting configuration to the file:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.runtime.remoting>
<application>

<!– The following section defines the classes you’re
exposing to clients from this host. –>

<service>
<wellknown mode=”SingleCall”

objectUri=”Calculator.rem”
type=”SimpleLibrary.Calculator, SimpleLibrary” />

</service>

</application>
</system.runtime.remoting>

An IIS host can only support the HTTP channel. Also, the port on which the host listens is defined by IIS,
not by your configuration file. This means that all you really need to do here is define the classes you
want to expose to clients. This is done within the <service> element, just like with a custom host.
Again, you use a <wellknown> element to define your class:

<wellknown mode=”SingleCall”
objectUri=”Calculator.rem”
type=”SimpleLibrary.Calculator, SimpleLibrary” />

The <wellknown> element shown here is the exact same definition as with the custom host, and you’ll
get the same end result.

The primary difference between your custom host and the IIS host is that IIS cannot use the TCP channel,
but only uses the HTTP channel. This means that the URL for your server-side class is different:

http://localhost/SimpleHost/Calculator.rem

The channel defines the protocol, which is http://. The server name is localhost (or whatever your
server name might be). The virtual root within IIS is SimpleHost, named just like it is with any Web
project. And finally, the objectUri value for your class (Calculator.rem) rounds out the URL.

891

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 891

Again note that the .rem extension is important. This extension (or the equivalent .soap extension) tells
IIS to route the client request to ASP.NET, and it tells ASP.NET to route the request to remoting so it can
be properly handled by invoking your Calculator class.

At this point, the remoting host is done and ready to go. Since it is using the HTTP protocol, you can test
it with the browser by navigating to the following URL:

http://localhost/SimpleHost/Calculator.rem?wsdl

This should return an XML description of the host service and all the classes exposed from the host.

Updating the Client Application
With a new host set up, you can change the client application to use this IIS host instead of the custom
host. To do this, all you need to do is change the URL for the object when you configure remoting.

If you’re using the config file to configure remoting, you’d make the following change:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.runtime.remoting>
<application>

<!– the following section defines the classes you’re
getting from the remote host –>

<client>
<wellknown

type=”SimpleLibrary.Calculator, SimpleLibrary”
url=”http://localhost/SimpleHost/Calculator.rem” />

</client>
</application>

</system.runtime.remoting>
</configuration>

Once making this change to App.config, make sure to rebuild the project so VS.NET copies the new
config file to the bin directory and renames it to SimpleClient.exe.config.

When configuring remoting via code, change the code to the following:

Private Sub CodeConfigureButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles CodeConfigureButton.Click

RemotingConfiguration.RegisterWellKnownClientType(_
GetType(SimpleLibrary.Calculator), _
“http://localhost/SimpleHost/Calculator.rem”)

ConfigureButton.Enabled = False
CodeConfigureButton.Enabled = False
RemoteThreadButton.Enabled = True

End Sub

892

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 892

In either case, you’re simply changing the URL, so remoting now routes your calls to the IIS host instead
of your custom host.

Using the Binary Formatter in IIS
One thing to note about using IIS as a host is that it always uses the HTTP channel. The HTTP channel
defaults to using the SoapFormatter instead of the BinaryFormatter to encode the data that is sent
across the network. While SOAP is a fine format, it is extremely verbose. The BinaryFormatter gener-
ates about one-third the number of bytes as the SoapFormatter to send the same data.

For production code, it’s good practice to use the BinaryFormatter to reduce the amount of data sent
across the network and to improve performance. The formatter is controlled by the client, so you’ll need
to update the client configuration of remoting.

To change the config file, do as follows:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.runtime.remoting>
<application>

<!– the following section defines the classes you’re
getting from the remote host –>

<client>
<wellknown

type=”SimpleLibrary.Calculator, SimpleLibrary”
url=”http://localhost/SimpleHost/Calculator.rem” />

</client>
<!-- use the binary formatter over the

http channel –>
<channels>

<channel ref=”http”>
<clientProviders>

<formatter ref=”binary” />
</clientProviders>

</channel>
</channels>

</application>
</system.runtime.remoting>

</configuration>

The highlighted XML shown above configures remoting so when it initializes the HTTP channel, it does
so with a BinaryFormatter instead of the default SoapFormatter.

To do the equivalent to the XML configuration in code, you’ll want to import a couple namespaces into
Form1:

Imports System.Runtime.Remoting.Channels
Imports System.Runtime.Remoting.Channels.Http

This also requires that the SimpleClient project reference the System.Runtime.Remoting.dll
assembly. Do this using the Add References dialog as you did earlier in the SimpleLibrary project.

893

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 893

Then add the following when configuring remoting:

Private Sub CodeConfigureButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles CodeConfigureButton.Click

RemotingConfiguration.RegisterWellKnownClientType(_
GetType(SimpleLibrary.Calculator), _
“http://localhost/SimpleHost/Calculator.rem”)

‘ Use the binary formatter with the
‘ HTTP channel.
Dim clientFormatter As New BinaryClientFormatterSinkProvider
Dim channel As New HttpChannel(Nothing, clientFormatter, Nothing)
ChannelServices.RegisterChannel(channel)

ConfigureButton.Enabled = False
CodeConfigureButton.Enabled = False
RemoteThreadButton.Enabled = True

End Sub

As with the config file approach, you’re specifically creating the HttpChannel object, specifying that it
should use a BinaryFormatter rather than the default.

At this point, you’ve explored the basic use of remoting. You’ve created a library DLL, a client that uses
the library DLL, and two different types of remoting hosts, so the library DLL can run on the server.

There are many other facets of remoting to explore, more than what fits into this single chapter. The
remainder of the chapter explores some of the more common features that you might encounter or use in
your applications. You’ll have to take them pretty fast, but the complete code for each of them is avail-
able in the code download for the book, so you can get the complete picture there.

Using Activator.GetObject
In your simple client you configured remoting so that all attempts to use SimpleLibrary.Calculator
were automatically routed to a specific server via remoting. If you want more control and flexibility, you
can take a different approach by using the System.Activator class. The full code for this example is in
the ActivatorClient project.

Instead of configuring remoting to always know where to find the remote class, you can specify it as
you create the remote object. Since you won’t be configuring remoting, you don’t need a reference to
System.Runtime.Remoting.dll, nor do you need any of the remoting configuration code you had in
the client to this point.

All you do is replace the use of the New keyword with a call to Activator.GetObject. To use the custom
host, you’d use the following code to retrieve the remote thread ID:

Private Sub RemoteThreadButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles RemoteThreadButton.Click

894

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 894

Dim calc As SimpleLibrary.Calculator

calc = CType(Activator.GetObject(_
GetType(SimpleLibrary.Calculator), _
“tcp://localhost:49341/Calculator.rem”), _
SimpleLibrary.Calculator)

RemoteThread.Text = CStr(calc.GetThreadID)

End Sub

For this to work, the SimpleServer application must be running before the RemoteThread button is
clicked.

The Activator.GetObject method accepts the type of object to create (SimpleLibrary.Calculator)
and the URL where the object can be found. To use the IIS host, you’d change the URL:

calc = CType(Activator.GetObject(_
GetType(SimpleLibrary.Calculator), _

“http://localhost/SimpleHost/Calculator.rem”), _
SimpleLibrary.Calculator)

Using this approach, you lose location transparency because it is quite obvious looking at your code that
you’re using a remote object. However, you gain explicit control over where the remote object will be
created. This can be useful in some cases, when you want to programmatically control the URL on a
per-call basis.

Interface-Based Design
One drawback to the simple implementation you’ve used thus far is that the library DLL
(SimpleLibrary.dll) must be installed on the client machine. Sometimes this is not desirable,
because you don’t want clients to have access to the server-side code. There are a couple of solutions
to this problem: using an interface DLL or using a generated proxy. First, take a look at the interface
DLL approach.

Interface DLL
To use this approach, you need to create a new DLL that contains interface definitions for your server-
side classes and their methods. For instance, in the SimpleInterface project, you have the following
interface defined:

Public Interface ICalculator
Function GetThreadID() As Integer
Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

End Interface

This interface defines the methods on your Calculator class. You need to update the Calculator class
to implement this interface. The SimpleLibrary project must reference the SimpleInterface DLL,
then you can do the following in your Calculator class:

895

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 895

Public Class Calculator
Inherits MarshalByRefObject

Implements SimpleInterface.ICalculator
Public Function GetThreadID() As Integer _

Implements SimpleInterface.ICalculator.GetThreadID

Return AppDomain.GetCurrentThreadId

End Function

Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer _
Implements SimpleInterface.ICalculator.Add

Return a + b

End Function

End Class

At this point, the SimpleLibrary.Calculator class can be invoked either directly or via the
ICalculator interface.

Make sure to rebuild the custom and IIS host projects so that the new SimpleLibrary and the Simple
Interface DLLs are both copies to the host directories. Note that since (SimpleLibrary.Calculator)
is still available natively, your existing client applications (SimpleClient and ActivatorClient) will
continue to run just fine.

Updating the Client Application
The InterfaceClient project only references SimpleInterface.dll, not SimpleLibrary.dll. This
means that the client machine doesn’t need to install SimpleLibrary.dll for the client to run, meaning
that the client has no access to the actual server-side code.

Since you don’t have access to the types in SimpleLibrary, you can’t use them in your code. The only
types you can use come from SimpleInterface. This means that your code to retrieve the remote
thread ID is a bit different. To use the custom host, you do the following:

Private Sub RemoteThreadButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles RemoteThreadButton.Click

Dim calc As SimpleInterface.ICalculator

calc = CType(Activator.GetObject(_
GetType(SimpleInterface.ICalculator), _
“tcp://localhost:49341/Calculator.rem”), _
SimpleInterface.ICalculator)

RemoteThread.Text = CStr(calc.GetThreadID)

End Sub

896

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 896

Note that the calc variable is now declared as type ICalculator rather than Calculator. Also notice
that you’re using Activator.GetType. This is required when using interfaces, because you can’t use
the New keyword at all. You can’t do the following:

calc = New SimpleInterface.ICalculator()

The result is a compiler error because it isn’t possible to create an instance of an interface. Because
of this, you can’t just configure remoting and use location transparency, you must use Activator
.GetObject to have remoting create an instance of the object on the server.

Remoting knows how and where to create the object based on the URL you provide. It then converts the
object to the right type (SimpleInterface.ICalculator) based on the type you provide in the
GetObject call. If the remote object doesn’t implement this interface, then you’ll get a runtime exception.

Using Generated Proxies
Another way to create a client that doesn’t reference the library DLL is to use the soapsuds.exe command-
line utility to create a proxy assembly for the service and the classes it exposes. This proxy assembly is then
referenced by the client application, giving the client access to the server type information so that it can
interact with the server objects.

Proxy DLL
To create the proxy DLL, you just run the soapsuds.exe utility with the following command line:

> soapsuds -url:http://localhost/SimpleHost/Calculator.rem?wsdl -oa:SimpleProxy.dll

Note that you’re going against the IIS host here because it uses the HTTP protocol. This won’t work
against your current custom host, as the soapsuds.exe utility doesn’t understand the tcp:// prefix.
To use this against a custom host, you’d have to make sure the custom host used the HTTP protocol.

Creating the Client Application
In the code download there’s a ProxyClient project. This is a Windows application that references only
SimpleProxy.dll. There is no reference to SimpleLibrary.dll or SimpleInterface.dll— this
client relies entirely on the generated proxy assembly to interact with the server.

The best part of this is that the generated proxy contains the same namespace and class names as the ser-
vice on the server. In other words, it appears that you are working with SimpleLibrary .Calculator,
because the proxy is set up with that same namespace and class name. To get the remote thread ID, write
the following code:

Private Sub RemoteThreadButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles RemoteThreadButton.Click

Dim calc As New SimpleLibrary.Calculator()

RemoteThread.Text = CStr(calc.GetThreadID)

End Sub

897

Remoting

27_575368 ch24.qxd 10/7/05 11:23 PM Page 897

Note that this is the same code used in the original simple example. You’ve come full circle at this point,
but now the client application doesn’t directly reference your library DLL.

Summary
Remoting is a powerful technology that provides many of the capabilities of Web Services and DCOM,
plus some new capabilities of its own. Using remoting, you can create both Windows and Web applica-
tions that interact with objects on an application server across the network.

On the server you can create SingleCall, Singleton, and Activated objects. These three object types
provide a great deal of flexibility in terms of n-tier application design and should be able to meet almost
any need. SingleCall gives you behavior similar to Web Services or typical COM+ objects. Activated
gives you objects that act similar to COM objects exposed via DCOM. Singleton objects are unique to
remoting and allow all your clients to share a single stateful object on the server.

You can also create serializable objects, which can move from machine to machine as needed. Using this
type of object allows you to easily move data and business logic from server to client and back again.
This technology is particularly exciting for object-oriented development in a distributed environment.

In this chapter, you created a library DLL and exposed it to clients from both a custom and IIS remoting
host. You then created client applications to use your server-side code by referencing the library DLL
directly, using an interface DLL and using the soapsuds.exe utility to create a proxy DLL. These tech-
niques apply not only to SingleCall objects but also to Singleton and Activated objects, so you
should have a good grounding in the techniques available for using remoting in your environment.

898

Chapter 24

27_575368 ch24.qxd 10/7/05 11:23 PM Page 898

Windows Services

Modern, multitasking operating systems often need to run applications that operate in the back-
ground and that are independent of the user who is logged in. In Windows NT, Windows 2000,
Windows XP, and Windows Server 2003, such applications are called Windows Services (formerly
known as NT Services). The tasks carried out by Windows Services are typically long running and
have little or no direct interaction with a user (so they don’t usually have user interfaces). Such
applications may be started when the computer is booted and often continue to run until the com-
puter is shut down.

This chapter looks at:

❑ The characteristics of a Windows Service

❑ How to interact with a Windows Service using Visual Studio 2005 and the management
applets in the Windows Control Panel

❑ How to create, install, and communicate with a Windows Service using Visual Basic

❑ How to debug a Windows Service from within Visual Studio 2005

As VB6 did not offer direct support for the creation of Windows Services, you might be unfamiliar
with such applications. So, to help understand the variety of such applications, this chapter exam-
ines some scenarios in which a Windows Service application is a good solution.

Example Windows Services
Microsoft SQL Server, Exchange Server, Internet Information Server (IIS), and antivirus software
all use Windows Services to perform tasks in response to events that occur on the system overall.
Only a background service, or Windows Service, which runs no matter which user is logged in,
could perform such operations.

28_575368 ch25.qxd 10/7/05 11:12 PM Page 899

Consider these potential Windows Services:

❑ A File Watcher — Suppose we are running an FTP server that allows users to place files in a par-
ticular directory. We could use a Windows Service to monitor and process files within that direc-
tory as they arrive. The service runs in the background and detects when files are changed or
added within the directory, and then extracts information from these files in order to process
orders, or update address and billing information. We’ll see an example of such a Windows
Service later in this chapter.

❑ An Automated Stock Price Reporter — We could build a system that extracts stock prices from
a Web site and then e-mails the information to users. We could set thresholds so that an e-mail is
only sent out if the stock price reaches a certain price. This Windows Service can be automated
to extract the information every 10 minutes, every 10 seconds, or whatever. Because a Windows
Service can contain any logic that does not require a user interface, there is a lot of flexibility in
constructing such applications.

❑ Microsoft Transaction Server (MTS) — This (part of COM+ Services in Windows 2000 and
later) is an object broker that manages instances of components and is used regularly by profes-
sional developers. This service runs constantly in the background and manages components as
soon as the computer is booted, just like IIS or Exchange Server.

Characteristics of a Windows Service
To properly design and develop a Windows Service, it’s important to understand how a Windows
Service differs from a typical Windows program. Here are the most important characteristics of a
Windows Service:

❑ A Windows Service can start before a user logs on. The system maintains a list of Windows
Services and they can be set to start at boot time. Services can also be installed so they require a
manual startup and will not start at boot.

❑ A Windows Service can run under a different account from that of the current user. Most
Windows Services provide functionality that needs to be running all the time and some load
before a user logs on, so they cannot depend on a user being logged on to run.

❑ A Windows Service has its own process. It does not run in the process of a program communi-
cating with it (Chapter 24 has more information on processes).

❑ A Windows Service typically has no user interface. This is because the service may be running
under a different account from that of the current user, or the service may start at boot time,
which would mean that the calls to put up a user interface might fail because they are out of
context (it is possible to create a Windows Service with a user interface, but Visual Basic 2005
cannot be used to do it; we’ll discuss why later on).

❑ A Windows Service requires a special installation procedure; just clicking on a compiled EXE
won’t run it. The program must run in a special context in the operating system, and a specific
installation process is required to do the configuration necessary for a Windows Service to be
run in this special context.

900

Chapter 25

28_575368 ch25.qxd 10/7/05 11:12 PM Page 900

❑ A Windows Service works with a Service Control Manager (discussed shortly). The Service
Control Manager is required to provide an interface to the Windows Service. External programs
that want to communicate with a Windows Service (for example, to start or stop the service)
must go through the Service Control Manager. The Service Control Manager is an operating-
system-level program, but it has a user interface that can be used to start and stop services, and
this interface can be accessed through the Computer Management section of the Control Panel.

Interacting with Windows Services
You can view the services that are used on your computer by opening the Services Control Manager user
interface. This can be done in Windows 2000 via Administrative Tools ➪ Services in the Control Panel,
and in Windows XP Professional via All Programs ➪ Administrative Tools ➪ Services from the Start but-
ton. Using the Services Control Manager, a service can be set to automatically start up when the system
is booted, or a service can be started manually. Services can also be stopped or paused. The list of ser-
vices contained in the Services Control Manager includes the current state for each service. Figure 25-1
shows the Services Control Manager in Windows XP.

Figure 25-1

901

Windows Services

28_575368 ch25.qxd 10/7/05 11:12 PM Page 901

The Status column indicates the current state of the service. If this column is blank, the service has not
been started since the last time the computer was booted. Other possible values for Status are Started,
Stopped, and Paused. You can get access to additional settings and details concerning a service by double-
clicking it.

When a service is started, it automatically logs into the system using either a user or system account:

❑ The user account is a regular NT account that allows the program to interact with the system —
in essence, the service will impersonate a user.

❑ The system account is not associated with a particular user.

The Services Control Manager seen in Figure 25-1 is part of the operating system (which is what sup-
ports Windows Services); it is not a part of .NET. Any service run by the operating system is exposed
through the Services Control Manager, no matter how the service was created or installed. We can also
interact with Windows Services via the Server Explorer in Visual Studio 2005. We’ll cover this technique
later on.

Creating a Windows Service
Prior to .NET, most Windows Services were created with C++. Third-party toolkits were available to
allow Windows Services to be created in VB6 and earlier, but deployment problems and threading issues
meant that few developers went down this route.

In .NET, the functionality needed to interface to the operating system is wrapped up in the .NET
Framework classes, so any .NET-compliant language can now be used to create a Windows Service.

The .NET Framework Classes for Windows Services
There are several base classes that are needed to create a Windows Service:

❑ System.ServiceProcess.ServiceBase— Provides the base class for the Windows Service.
The class that contains the logic that will run in the service inherits from ServiceBase. A single
executable can contain more than one service, but each service in the executable will be a sepa-
rate class that inherits from ServiceBase.

❑ System.Configuration.Install.Installer— This is a generic class that performs the
installation chores for a variety of components. One class in a Windows Service process must
inherit and extend Installer in order to provide the interface necessary to install the service
under Windows Server 2003, XP, 2000, and NT.

Each class that inherits from Installer needs to contain an instance of each of these classes:

❑ System.ServiceProcess.ServiceProcessInstaller— This class contains the information
needed to install a .NET executable that contains Windows Services (that is, an executable that
contains classes that inherit from ServiceBase). The .NET installation utility for Windows
Services (InstallUtil.exe, which we will discuss later) calls this class to get the information
it needs to perform the installation.

902

Chapter 25

28_575368 ch25.qxd 10/7/05 11:12 PM Page 902

❑ System.ServiceProcess.ServiceInstaller— This class also interacts with the
InstallUtil.exe installation program. Whereas ServiceProcessInstaller contains infor-
mation needed to install the executable as a whole, ServiceInstaller contains information
on a specific service in the executable. If an executable contains more than one service, an
instance of ServiceInstaller is needed for each one.

For most Windows Services we develop, we can let Visual Studio 2005 take care of Installer,
ServiceProcessInstaller, and ServiceInstaller. We’ll just need to set a few properties. The class
we need to thoroughly understand is ServiceBase, as this is the class that contains the functionality of
a Windows Service and therefore must inherit from it.

The ServiceBase Class
ServiceBase contains several useful properties and methods, but initially it’s more important to under-
stand the events of ServiceBase. Most of these events are fired by the Service Control Manager when
the state of the service is changed. The most important events are as follows.

Event How and When the Event is Used

OnStart Occurs when the service is started. This is where the initialization logic for
a service is usually placed.

OnStop Occurs when the service is stopped. Cleanup and shutdown logic is gener-
ally placed here.

OnPause Occurs when the service is paused. Any logic required to suspend opera-
tions during a pause goes here.

OnContinue Occurs when a service continues after being paused.

OnShutdown Occurs when the operating system is being shut down.

OnSessionChange Occurs when a change event is received from a Terminal Session service.
This method is new in the .NET Framework 2.0.

OnPowerEvent Occurs when the system’s power management software causes a change in
the power status of the system. Usually used to change the behavior of a
service when a system is going in or out of a “suspended” power mode.
This is more frequent with end users who are working on a laptop.

OnCustomCommand Occurs when an external program has told the Service Control Manager
that it wishes to send a command to the service. The operation of this event
is covered in “Communicating with the Service.”

The events used most frequently are OnStart, OnStop, and OnCustomCommand. The OnStart and OnStop
events are used in almost every Windows Service written in Visual Basic, and the OnCustomCommand is
used if any special configuration of the service needs to be done while the service is running.

All of these are Protected events, so they are only available to classes that inherit from ServiceBase.
Because of the restricted context in which it runs, a Windows Service component that inherits from
ServiceBase often lacks a public interface. While we can add public properties and methods to such a
component, they are of limited use because outside programs cannot obtain an object reference to run-
ning a Windows Service component.

903

Windows Services

28_575368 ch25.qxd 10/7/05 11:12 PM Page 903

To be active as a Windows Service, an instance of ServiceBase must be started via the shared Run
method of the ServiceBase class. However, normally we don’t have to write code to do this because
the template code generated by Visual Studio 2005 places the correct code in the Main subroutine of the
project for us.

The most commonly used property of ServiceBase is the AutoLog property. This Boolean property is
set to True by default. If True, then the Windows Service automatically logs the Start, Stop, Pause,
and Continue events to an Event Log. The Event Log used is the Application Event Log and the Source
in the log entries is taken from the name of Windows Service. This automatic event logging is stopped
by setting the AutoLog property to False.

The following File Watcher example goes into more detail about the automatic logging capabilities in a
Windows Service, and about Event Logs in general.

Installation-Oriented Classes
The Installer, ServiceProcessInstaller, and ServiceInstaller classes are quite simple to
build and use if you are employing Visual Studio 2005. After you create your Windows Service project,
Visual Studio 2005 will create a class file called Service1.vb for you. To add the Installer,
ServiceProcessInstaller, and ServiceInstaller classes to your project, simply right-click the
design surface of this ServiceBase class, Service1.vb, and select Add Installer. This creates the code
framework necessary to use them.

The Installer class (named ProjectInstaller.vb by default in a Windows Service project) gener-
ally needs no interaction at all — it is ready to use when created by Visual Studio 2005. However, it may
be appropriate to change some properties of the ServiceProcessInstaller and ServiceInstaller
classes. You can do this by simply highlighting these objects on the design surface and changing their
properties directly in the Properties window of Visual Studio 2005. The properties that are typically
modified for ServiceProcessInstaller include:

❑ Account— This specifies the type of account under which the entire service application will
run. Different settings give the services in the application different levels of privilege on the
local system. We’ll use the highest level of privilege, LocalSystem, for most of the examples in
this chapter in order to keep it simple. If this property is set to User (which is the default), then
we must supply a username and password, and that user’s account is used to determine privi-
leges for the service. If there is any possibility that a service could access system resources that
should be “out-of-bounds,” then using the User setting to restrict privileges is a good idea.
Besides LocalSystem and User, other possible settings for the Account property include
NetworkService and LocalService.

❑ Username— If Account is set to User, then this property determines the user account to use in
determining the privileges the system will have and how it interacts with other computers on
the network. If this property is left blank, it will be requested when the service is installed.

❑ Password— This property determines the password to access the user account specified in the
Username property. If the password is left blank, it will be requested when the service is installed.

❑ HelpText— The information about the service that will be displayed in certain installation
options.

904

Chapter 25

28_575368 ch25.qxd 10/7/05 11:12 PM Page 904

If the Account property is set to User, it is good practice to set up a special user account for the service,
rather than relying on some existing account that is intended for a live user. The special account can be
set up with exactly the appropriate privileges for the service. It also is not as vulnerable to having its
password or its privileges inadvertently changed in a way that would cause problems in running the
service.

For the ServiceInstaller class, the properties we might change include:

❑ DisplayName— The name of the service as displayed in the Service Manager or the Server
Explorer can be different from the class name and the executable name if desired, though it’s a
good convention to make this name the same as the class name for the service.

❑ StartType— This specifies how the service is started. The default is Manual, which means we
must start the service manually as it won’t start by itself after the system boots. If we want the
service to always start when the system starts, we can change this property to Automatic. The
Service Manager can be used to override the StartType setting.

❑ ServiceName— The name of the service that this ServiceInstaller handles during installa-
tion. If we changed the class name of the service after using the Add Installer option, we would
need to change this property to correspond to the new name for the service.

ServiceProcessInstaller and ServiceInstaller are used as necessary during the installation pro-
cess, so there is no need to understand or manipulate the methods of either.

Multiple Services Within One Executable
It is possible to place more than one class that inherits from ServiceBase in a single Windows Service
executable. Each such class then allows for a separate service that can be started, stopped, and so on,
independently of the other services in the executable.

If a Windows Service executable contains more than one service, it needs to contain one ServiceInstaller
for each service. Each ServiceInstaller is configured with the information used for its associated service,
such as the displayed name and the start type (automatic or manual). However, the executable still only
needs one ServiceProcessInstaller, which works for all the services in the executable. It is configured
with the account information that will be used for all the services in the executable.

The ServiceController Class
Another important .NET Framework class for working with Windows Services is the System
.ServiceProcess.ServiceController class. This class is not used when constructing a service. It is
used by external applications to communicate with a running service, allowing operations such as start-
ing and stopping the service. The ServiceController class is described in detail in Communicating
with the Service.

Other Types of Windows Services
The ServiceBase and ServiceController classes can be used to create typical Windows Services that
work with high-level system resources such as the file system or performance counters. However, some
Windows Services need to interact at a deeper level. For example, a service may work at the kernel level,
fulfilling functions such as that of a device driver.

905

Windows Services

28_575368 ch25.qxd 10/7/05 11:12 PM Page 905

Presently, the .NET Framework classes for Windows Services cannot be used to create such lower-level
services, which rules out both VB and C# as tools to create them. C++ is typically the tool of choice for
these types of services. If the .NET version of C++ is used, the code for such services would typically run
in unmanaged mode.

Another type of service that cannot be created with the .NET Framework classes is one that interacts
with the Windows desktop. Again, C++ is the preferred tool for such services.

We’ll look at the types of services that are possible again when we cover the ServiceType property of
the ServiceController class, in “Communicating with the Service.”

Creating a Windows Service
with Visual Basic

Now it’s time to create and use a Windows Service with Visual Basic, using the previously discussed
.NET Framework classes. We will demonstrate these tasks later in a detailed example. Here is a high-
level description of the necessary tasks:

1. Create a new project of the type Windows Service. By default, the service will be in a module
named Service1.vb. The service can be renamed as with any other .NET module. (The class
that is automatically placed in Service1.vb will be named Service1 by default, and it will
inherit from ServiceBase.)

2. Place any logic needed to run when the service is started in the OnStart event of the service
class. You can find the code listing for the Service1.vb file by double-clicking this file’s design
surface.

3. Add any additional logic that the service needs to carry out its operation. Logic can be placed in
the class for the service, or in any other class module in the project. Such logic is typically called
via some event that is generated by the operating system and passed to the service, such as a file
changing in a directory, or a timer tick.

4. Add an installer to the project. This module provides the interface to Windows Server 2003,
Windows XP, Windows 2000, or Windows NT to install the module as a Windows Service. The
installer will be a class that inherits from System.Configuration.Install.Installer, and
it will contain instances of the ServiceProcessInstaller and ServiceInstaller classes.

5. Set the properties of the installer modules as necessary. The most common settings needed are
the account under which the service will run and the name the service will display in the
Service Control Manager.

6. Build the project. This will result in an EXE file. If the service was named WindowsService1,
then the executable file would be named WindowsService1.exe.

7. Install the Windows Service with a command-line utility named InstallUtil.exe. (As previ-
ously mentioned, a service cannot be started by just running the EXE file.)

8. Start the Windows Service with the Service Control Manager (available in the Control Panel ➪
Administrative Tools folder in Windows 2000, or the Start ➪ All Programs ➪ Administrative
Tools folder in Windows XP) or with the Server Explorer in Visual Studio 2005.

906

Chapter 25

28_575368 ch25.qxd 10/7/05 11:12 PM Page 906

You can also start a service from the command console if the proper paths to .NET are set. The
command is “NET START <servicename>”. Note that the <servicename> used in this com-
mand is the name of the service, not the name of the executable in which the service resides.
Depending on the configuration of your system, a service being started with any of the afore-
mentioned methods will sometimes fail with an error message that says the service did not start
in a timely fashion. This may be because the .NET libraries and other initialization tasks did not
finish fast enough to suit the Service Control Manager. If this happens, attempt to start the ser-
vice again, and it will usually succeed the second time.

Note that Steps 2 through 5 can be done in a different order. It doesn’t matter if the installer is added
and configured before or after the logic that does the processing for the service is added.

At this point, a service is installed and running. The Service Manager or the Server Explorer can stop the
service, or it will be automatically stopped when the system is shut down. The command to stop the ser-
vice in a command console is “NET STOP <servicename>”.

The service will not automatically start up the next time the system is booted unless the service is config-
ured for that. This can be done by setting the StartType property for the service to Automatic when
developing the service or it can be done in the Service Manager. Right-clicking the service in the Service
Manager gives access to this capability.

This process is superficially similar to doing most other Visual Basic projects. There are a few important
differences, however:

❑ We cannot debug the project in the environment as you normally would any other Visual Basic
program. The service must be installed and started before it can be debugged. It is also neces-
sary to attach to the process for the service to do debugging. Details about this are included in
“Debugging the Service.”

❑ Even though the end result of the development is an EXE, we should not include any message
boxes or other visual elements in the code. The Windows Service executable is more like a com-
ponent library in that sense, and should not have a visual interface. If you include visual ele-
ments such as message boxes, the results can vary. In some cases, the UI code will have no
effect. In others cases, the service may hang when attempting to write to the user interface.

❑ Finally, we should be especially careful to handle all errors within the program. Since the pro-
gram is not running in a user context, a runtime error has no place to report itself visually. We
should handle all errors with structured exception handling, and use an Event Log or other
offline means to record and communicate runtime errors.

Creating a Counter Monitor Service
To illustrate the outlined steps, we’ll create a simple service that will check the value of a performance
counter, and when the value of the counter exceeds a certain value, the service will beep every three sec-
onds. This is a good example for stepping through the process of creating, installing, and starting a
Windows Service. It contains very little logic, and we can easily tell when it is working.

907

Windows Services

28_575368 ch25.qxd 10/7/05 11:12 PM Page 907

In the first phase of the example, we create a service that always beeps. Then in the second phase, we
add logic to monitor the performance counter and only beep when the counter exceeds a specific value:

1. Start a new Windows Service project using Visual Studio 2005. Name the project
CounterMonitor.

2. In the Solution Explorer, rename Service1.vb to CounterMonitor.vb.

3. Click the design surface for CounterMonitor.vb. In the Properties window, change the
(Name) property to CounterMonitor, and change the ServiceName property from Service1
to CounterMonitor (the (Name) property changes the name of the class on which the service is
based, while the ServiceName property changes the name of the service as known to the
Service Control Manager).

4. Right-click the project for the service, and select Properties. You will then be presented with the
CounterMonitor Property Pages as one of the paged tabs directly in Visual Studio. From the
Application tab, set the Application Type drop-down list to Windows Service and from the
drop-down list named Startup Object, select CounterMonitor. This is shown in Figure 25-2.

Figure 25-2

908

Chapter 25

28_575368 ch25.qxd 10/7/05 11:13 PM Page 908

5. Go back to the CounterMonitor.vb file’s design view and open the Visual Studio 2005 Toolbox.
Open the Components (not the Windows Forms) tab. Drag a Timer control from the Toolbox
onto the CounterMonitor design surface. It will appear on the design surface with the name
Timer1.

6. In the Properties window for Timer1, change the Interval property to a value of 3000 (that’s
3,000 milliseconds, which will cause the timer to fire every 3 seconds).

7. Go to the code for CounterMonitor.vb. Inside the OnStart event handler (which is already
created for you in the code), enter the following code:

Timer1.Enabled = True

8. In the OnStop event for the class, enter the following code:

Timer1.Enabled = False

9. Create an Elapsed event for the timer by highlighting Timer1 in the left-hand drop-down box
at the top of the code editor window, and then selecting the Elapsed event in the right-hand
drop-down box from the code view of the file.

10. In the Elapsed event, place the following line of code:

Beep()

11. Now add an installer to the project. Go back to the design surface for CounterMonitor and
right-click it. Select Add Installer. A new file called ProjectInstaller1.vb is created and
added to the project. The ProjectInstaller1.vb file will have two components added to its
design surface, named ServiceProcessInstaller1 and ServiceInstaller1. This is shown
in Figure 25-3.

Figure 25-3

12. On the ProjectInstaller.vb design surface, highlight the ServiceProcessInstaller1
control. In its Properties window, change the Account property to LocalSystem.

13. Highlight the ServiceInstaller1 control. In its Properties window, type in CounterMonitor
as the value of the DisplayName property.

14. Now build the project by right-clicking on the solution and selecting Build from the menu. An
EXE for the service will be created named CounterMonitor.exe.

909

Windows Services

28_575368 ch25.qxd 10/7/05 11:13 PM Page 909

Installing the Service
Now we are ready to install the service. The utility for doing this must be run from a command line. The
utility is called InstallUtil.exe, and it is located in the .NET utilities directory, which will be found
at C:\WINNT\Microsoft.NET\Framework\v2.0.[xxxx] on Windows 2000 and NT systems, or
C:\Windows\Microsoft.NET\Framework\v2.0.[xxxx] on Windows XP and Windows 2003.

You can easily access this utility (and all the other .NET utilities in that directory) using an option off of the
Programs menu that is installed with Visual Studio 2005. Choose Microsoft Visual Studio 2005 ➪ Visual
Studio Tools ➪ Visual Studio 2005 Command Prompt. This will result in the display of a command win-
dow. Change to the directory that contains CounterMonitor.exe. By default, when using Visual Studio
2005, you’ll find this executable at C:\Documents and Settings\[user]\My Documents\Visual
Studio\Projects\CounterMonitor\Projects\CounterMonitor\CounterMonitor\obj\Debug.
Once found, run the following command:

InstallUtil CounterMonitor.exe

You should look at the messages generated by InstallUtil.exe to make sure that the installation of
the service was successful. The utility will generate several lines of information, and if it is successful,
the last two lines will be

The Commit phase completed successfully.

The transacted install has completed.

If these two lines do not appear, you will need to read all the information generated by the utility to find
out why the install did not work. Reasons might include a bad pathname for the executable, or trying to
install the service again when it is already installed (it must be uninstalled before it can be reinstalled).

Starting the Service
Later in this chapter, we will create our own “control panel” screen to start and stop the service. But for
now, to test our new Windows Service, we will use the Server Explorer in Visual Studio 2005. Open the
Server Explorer in Visual Studio 2005 and expand the Services node. The resulting screen is shown in
Figure 25-4.

Figure 25-4

910

Chapter 25

28_575368 ch25.qxd 10/7/05 11:13 PM Page 910

If the CounterMonitor service does not appear in the list, the installation was unsuccessful. Try the
installation again and check the error messages.

Right-click the CounterMonitor service. Select the Start menu option. You will hear the service beep
every 3 seconds. You can stop the service by right-clicking it again, and selecting the Stop menu option.

You can also use the Service Control Manager built into Windows to start the CounterMonitor service.
This is illustrated in Figure 25-5.

Figure 25-5

Start CounterMonitor by right-clicking it and selecting Start or by clicking the Start link. As before, you
will hear your computer beep every three seconds. Stop the service by right-clicking CounterMonitor
and selecting Stop or by clicking the Stop link. Note that if you already started the service via the Server
Explorer (as discussed earlier), then it will be in a Started state when you go into the Service Control
Manager program.

Uninstalling the Service
Uninstalling the service is very similar to installing it. The service must be in a stopped state before it
can be uninstalled, but the uninstall operation will attempt to stop the service if it is running. The unin-
stall operation is done in the same command window (with the Visual Studio 2005 Command Prompt)
as the install operation, and the command used is the same as the one for installation, except that the
option /u is included just before name of the service. Remember that you will need to navigate to

C:\Documents and Settings\[user]\My Documents\Visual Studio\Projects\CounterMonitor\
Projects\CounterMonitor\CounterMonitor\obj\Debug to run this command.

InstallUtil.exe /u CounterMonitor.exe

911

Windows Services

28_575368 ch25.qxd 10/7/05 11:13 PM Page 911

You can tell that the uninstall was successful if the information displayed by the utility contains the fol-
lowing line:

Service CounterMonitor was successfully removed from the system.

If the uninstall is unsuccessful, read the rest of the information to find out why. Besides typing in the
wrong pathname, another common reason for failure is trying to uninstall a service that is in a running
state and could not be stopped in a timely fashion.

Once you have uninstalled CounterMonitor, it will no longer show up in the list of available services to
start and stop (at least after a refresh it won’t).

Monitoring a Performance Counter
Performance counters are a system-level function of Windows Server 2003, Windows 2000, XP, and NT.
They are used to track usage of system resources. Performance counters can be expressed as counts
(number of times a Web page was hit), or percentages (how much disk space is left), or other types of
information. Many counters are automatically maintained by the operating system, but applications can
create and manage their own performance counters.

To demonstrate how services can interact with system-level functionality, we will add the capability to
our CounterMonitor to monitor a particular performance counter, and only beep when the perfor-
mance counter exceeds a certain value.

Performance counters can be monitored by a user with the Performance Monitor. There are a variety of
performance counters built into the operating system, providing access to information such as the num-
ber of threads currently active on the system, or the number of documents in a print queue. Any of
these, and any custom performance counters, can be graphed in the Performance Monitor.

Creating a Performance Counter
We will create a performance counter named ServiceCounter. Then we will change CounterMonitor
to check that counter and only beep when its value is over 5. To test it, we will also create a small
Windows Forms application that increments and decrements the counter.

Performance counters are typically accessed in Visual Studio 2005 through the Server Explorer tab. To
see the available performance counters, open the Server Explorer, which looks much like the screen
shown in Figure 25-6.

To see the categories of performance counters, click the plus sign next to the Performance Counters
option in the Server Explorer. Several dozen categories will be shown. You can look at the counters in
any particular category by clicking the plus sign next to the category.

A Windows Service must be uninstalled and reinstalled every time you make
changes to it. You should uninstall CounterMonitor now because we’re about to
add new capabilities to it.

912

Chapter 25

28_575368 ch25.qxd 10/7/05 11:13 PM Page 912

Figure 25-6

You can also create new categories and new counters. For this example, you need to create a new cate-
gory for our counter called Service Counters. To do that, right-click the Performance Counters option
in the Server Explorer and select the Create New Category option. In the resulting Performance Counter
Builder dialog box (shown in Figure 25-7), enter the name of the category as Service Counters, and
create a new counter by clicking the New button and entering TestCounter for the name. Once that is
complete, click the OK button in the dialog box, and Visual Studio 2005 will then create a new category
called Service Counters that contains a single performance counter called TestCounter.

Figure 25-7

913

Windows Services

28_575368 ch25.qxd 10/7/05 11:13 PM Page 913

Integrating the Counter into the Service
Using a performance counter in the CounterMonitor service we created earlier is straightforward.
Open the CounterMonitor project, and go to the design surface for CounterMonitor. Then open the
Server Explorer so that it shows the TestCounter performance counter we created. Click TestCounter
from within the Server Explorer and drag it onto the CounterMonitor.vb design surface.

A new visual control named PerformanceCounter1 will now be shown on the page’s design surface.
The performance counter is now ready to use. Change the logic in the Elapsed event for Timer1 to look
like this:

If PerformanceCounter1.RawValue > mnMaxValue Then
Beep()

End If

The RawValue property being used in this code fetches the unformatted value of the counter. For counters
that track whole numbers (such as the number of times a Web page is hit), the RawValue property is
normally used to get the value of the counter for testing or display. Some other types of counters use a
NextValue method to get a formatted value. See the CounterType property of the PerformanceCounter
class for more on the types of performance counters available.

Next, put this statement in the code module just under the first line of the CounterMonitor class:

Dim mnMaxValue As Integer = 5

Now build the service again, and install it as we did before. Start the service. It should not beep at this
point because the value in the performance counter is zero. You can leave the counter running, because
we will now create a program to change the value in the performance counter, and thus make the service
begin beeping.

Changing the Value in the Performance Counter
To manipulate the performance counter, we will build a small forms-based application. Close the
CounterMonitor solution in Visual Studio, and start a new Windows Application Project named
CounterTest. Place two buttons on Form1 and change their properties as shown in the following table.

Name Text

BtnIncrement Increment Counter

BtnDecrement Decrement Counter

Then, open the Server Explorer and drag the TestCounter performance counter onto the form itself,
just as you did earlier with the CounterMonitor project. As with all nonvisible components from the
toolbox, the counter will appear in the component tray (just under the form) rather than on the form
design surface.

914

Chapter 25

28_575368 ch25.qxd 10/7/05 11:13 PM Page 914

The PerformanceCounter1 control for CounterTest needs one property change. The ReadOnly prop-
erty of the control needs to be set to False. This will allow the application to manipulate the counter.
(This change was unnecessary for the CounterMonitor Windows Service project because that project
only reads the value of the performance counter and does not change it.)

Now double-click btnIncrement to get to its click event. Place the following code in the event:

PerformanceCounter1.Increment()

Double-click the btnDecrement to get to its click event. Place the following code in the event:

PerformanceCounter1.Decrement()

Build and run the program and click the increment button six times. If the CounterMonitor service is
running, on the sixth click it will begin beeping because the value in the counter has exceeded five. Then
click the decrement button a couple of times, and the beeping will stop.

If you want to monitor the current value of the counter, select Control Panel ➪ Administrative Tools ➪
Performance. This program, the Performance Monitor, allows the value of counters to be graphed.
You add a counter for display by clicking the New Counter Set button and right-clicking the right-hand
portion of the Performance Monitor, and adding a counter in the dialog box that pops up. Change the
Performance Object drop-down list to Service Counters and add the TestCounter performance
counter to the list. When completed, press the Close button. The counter that you created will then be
monitored by the dialog box. You can use the help for this program for more details on displaying coun-
ters in the Performance Monitor.

Communicating with the Service
Up to this point, we’ve seen how to:

❑ Create a Windows Service using Visual Basic

❑ Start and stop a service with the Server Explorer in Visual Studio 2005 or the Service Control
Manager in the control panel

❑ Make a service work with a system level function such as a performance counter

If it is sufficient to start, stop, and check on the service through the Server Explorer or Service Control
Manager, and there is no need to do any other communication with the service, then these procedures
are all you need. But it is oftentimes helpful to create a specialized application to manipulate your ser-
vice. This application will typically be able to start and stop a service, and check on its status. The appli-
cation may also need to communicate with the service to change its configuration. Such an application is
often referred to as a control panel for the service, even though it does not necessarily reside in the operat-
ing system’s Control Panel. A commonly-used example of such an application is the SQL Server Service
Manager, whose icon appears in the tray on the Taskbar (normally in the lower right section of the
screen) if you have SQL Server 2000 installed.

915

Windows Services

28_575368 ch25.qxd 10/7/05 11:13 PM Page 915

Such an application needs a way to communicate with the service. The .NET Framework base class that
is used for such communication is the ServiceController class. It is in the System.ServiceProcess
namespace. You need to add a reference to System.ServiceProcess.dll (which contains this name-
space) before a project can use the ServiceController class.

The ServiceController class provides an interface to the Service Control Manager, which coordinates
all communication with Windows Services. However, we don’t have to know anything about the Service
Control Manager to use the ServiceController class. We just manipulate the properties and methods
of the ServiceController class, and any necessary communication with the Service Control Manager
is accomplished on our behalf behind the scenes.

It’s a good idea to use exactly one instance of the ServiceController class for each service you are con-
trolling. Multiple instances of ServiceController that are communicating with the same service can
have timing conflicts. Typically, that means using a module-level object variable to hold the reference to
the active ServiceController, and instantiating the ServiceController during the initialization logic
for the application. The following example uses this technique.

The ServiceController Class
The constructor for the ServiceController requires the name of the Windows Service with which it
will be communicating. This is the same as the name that was placed in the ServiceName property of
the class that defined the service. We’ll see how to instantiate the ServiceController class shortly.

The ServiceController class has several members that are useful in manipulating services. Here are
the most important methods, followed by another table of the most important properties.

Method Purpose

Start A method to start up the service.

Stop A method to stop the service.

Refresh A method to make sure the ServiceController object contains the latest
state of the service (needed because the service might be manipulated from
another program).

ExecuteCommand A method used to send a custom command to the service. We will cover
this method in the section on Custom Commands.

Here are the most important properties.

Property Purpose

CanStop A property indicating whether the service can be stopped.

ServiceName A property containing the name of the associated service.

916

Chapter 25

28_575368 ch25.qxd 10/7/05 11:13 PM Page 916

Property Purpose

Status An enumerated property that indicates whether a service is stopped, started,
in process of being started, and so on. The ToString method on this property
is useful for getting the status in a string form for text messages. The possible
values of the enumeration are:

ContinuePending— The service is attempting to continue

Paused— The service is paused

PausePending— The service is attempting to go into a paused state

Running— The service is running

StartPending— The service is starting

Stopped— The service is not running

StopPending— The service is stopping

ServiceType A property that indicates the type of service. The result is an enumerated
value. The enumerations are:

Win32OwnProcess— The service uses its own process (this is the default for a
service created in .NET).

Win32ShareProcess— The service shares a process with another service
(this advanced capability is not covered here).

Adapter, FileSystemDriver, InteractiveProcess, KernelDriver,
RecognizerDriver— These are low-level service types that cannot be created
with Visual Basic because the ServiceBase class does not support the types.
However, the value of the ServiceType property may still have these values
for services created with other tools.

Integrating a ServiceController into the Example
To manipulate the service, we’ll enhance the CounterTest program we created earlier. Here are step-by-
step instructions to do that:

1. Add three new buttons to the CounterTest form, with the following names and text labels.

Name Text

BtnCheckStatus “ Check Status”

BtnStartService “ Start Service”

BtnStopService “ Stop Service”

917

Windows Services

28_575368 ch25.qxd 10/7/05 11:13 PM Page 917

2. Add a reference to the DLL that contains the ServiceController class. To do this, select
Project ➪ Add Reference. On the .NET tab, highlight the System.ServiceProcess.dll
option, and press the OK button.

3. Add this line at the top of the code for Form1:

Imports System.ServiceProcess

4. As we discussed, the project needs to use only one instance of the ServiceController class.
Create a module-level object reference to a ServiceController class by adding the following
line of code within the Form1 class:

Dim myController As ServiceController

5. Create a Form Load event in Form1, and place the following line of code in it to instantiate the
ServiceController class:

myController = New ServiceController(“CounterMonitor”)

We now have a ServiceController class named myController that we can use to manipulate the
CounterMonitor Windows Service. In the click event for btnCheckStatus, place the following code:

Dim sStatus As String
myController.Refresh()
sStatus = myController.Status.ToString

MsgBox(myController.ServiceName & “ is in state: “ & sStatus)

In the click event for btnStartService, place the following code:

Try
myController.Start()

Catch exp As Exception
MsgBox(“Could not start service or the service is already running”)

End Try

In the click event for btnStopService, place the following code:

If myController.CanStop Then
myController.Stop()

Else
MsgBox(“Service cannot be stopped or the service is already stopped”)

End If

Run and test the program. The service may already be running because of one of your previous tests.
Make sure the performance counter is high enough to make the service beep, and then test starting and
stopping the service.

918

Chapter 25

28_575368 ch25.qxd 10/7/05 11:13 PM Page 918

More About ServiceController
ServiceController classes can be created for any Windows Service, not just those created in .NET.
For example, we could instantiate a ServiceController class that was associated with the Windows
Service for Internet Information Server (IIS), and use it to start, pause, and stop IIS. The code would look
just like the code used earlier for the application that controlled the CounterMonitor service. The only
difference is that the name of the service would need to be changed in the line that instantiates the
ServiceController (Step 5).

It’s also useful to emphasize that the ServiceController is not communicating directly with the service.
It is working through the Services Control Manager. That means the requests from the Service Controller
to start, stop, or pause a service do not behave synchronously. As soon as the ServiceController has
passed the request to the ServicesControlManager, it continues to execute its own code without waiting
for the Service Control Manager to pass on the request, or for the service to act on the request.

Custom Commands
Some services need additional operations besides starting and stopping. For example, for our
CounterMonitor Windows Service, we might want to set the threshold value of the performance
counter that causes the service to begin beeping, or we might want to change the interval between beeps.

With most components, we would implement such functionality through a public interface. That is, we
would put public properties and methods on the component. However, we cannot do this with a
Windows Service, because it has no public interface that we can get to from outside the service.

To deal with this need, the interface for a Windows Service contains a special event called
OnCustomCommand. The event arguments include a numeric code that can service as a command sent to
the Windows Service. The code can be any number in the range 128 to 255. (Those numbers under 128
are reserved for use by the operating system.)

To fire the event and send a custom command to a service, the ExecuteCommand method of the
ServiceController is used. The ExecuteCommand method takes the numeric code that needs to be
sent to the service as a parameter. When this method is accessed, the ServiceController class tells
the Service Control Manager to fire the OnCustomCommand event in the service, and to pass it the
numeric code.

To see this process in action, let’s go through an example. Suppose we want to be able to change the
interval between beeps for our CounterMonitor service. We cannot directly send the beep interval that
we want, but we can pick various values of the interval, and associate a custom command numeric code
with each.

Suppose we want to be able to set intervals of 1 second, 3 seconds (the default), or 10 seconds. We could
set up the following correspondence.

919

Windows Services

28_575368 ch25.qxd 10/7/05 11:13 PM Page 919

Custom Command Beep Interval
Numeric Code

201 One second (1,000 milliseconds)

203 Three seconds (3,000 milliseconds)

210 Ten seconds (10,000 milliseconds)

The correspondence between code and times we have chosen is completely arbitrary. We could use any
codes between 128 and 255 to associate with our beep intervals. The ones shown in the table were cho-
sen because they are easy to remember.

First, we need to change the CounterMonitor service so that it is able to accept the custom commands
for the beep interval. To do that, first make sure the CounterMonitor service is uninstalled from any
previous installs. Then open the Visual Studio 2005 project for the CounterMonitor service.

Create an OnCustomCommand event in the service. To do this, first open the code window for
CounterMonitor.vb. Then type Protected Overrides OnCustomCommand. By this point, IntelliSense
will kick in and you can press the tab key to autocomplete the shell event. Notice how it only accepts a
single Integer as a parameter.

Protected Overrides Sub OnCustomCommand(ByVal command As Integer)

End Sub

In the OnCustomCommand event, place the following code:

Timer1.Enabled = False
Select Case command

Case 201
Timer1.Interval = 1000

Case 203
Timer1.Interval = 3000

Case 210
Timer1.Interval = 10000

End Select
Timer1.Enabled = True

Now build the countermonitor service, reinstall it, and start it.

Now we can enhance our CounterTest application that we created earlier to set the interval. To allow
the user to pick the interval, we will use radio buttons. On the CounterTest program Form1 (which
currently contains five buttons), place three radio buttons. Set their text labels as follows:

RadioButton1 - “1 second”
RadioButton2 - “3 seconds”
RadioButton3 - “10 seconds”

920

Chapter 25

28_575368 ch25.qxd 10/7/05 11:13 PM Page 920

Then, place a button directly under these option buttons. Name it btnSetInterval, and set its text to
Set Interval. In the click event for this button, place the following code:

Dim nIntervalCommand As Integer = 203
If RadioButton1.Checked Then

nIntervalCommand = 201
End If
If RadioButton2.Checked Then

nIntervalCommand = 203
End If
If RadioButton3.Checked Then

nIntervalCommand = 210
End If
myController.ExecuteCommand(nIntervalCommand)

At this point, Form1 should look something like the sample screen shown in Figure 25-8.

Figure 25-8

Start the CounterTest control program, and test the ability to change the beep interval. Remember to
make sure the performance counter is high enough so that the CounterMonitor service beeps. Also
remember that every time you stop and restart the service, it will reset the beep interval to 3 seconds.

Passing Strings to a Service
Since the OnCustomCommand event only takes numeric codes as input parameters, we cannot directly
pass strings to the service. For example, if we wanted to reconfigure a directory name for a service, we
could not just send the directory name over.

Instead it would be necessary to place the information to be passed to the service in a file in some known
location on disk. Then a custom command for the service could instruct it to look at the standard file
location, and read the information in the file. What the service did with the contents of the file would, of
course, be customized for the service.

921

Windows Services

28_575368 ch25.qxd 10/7/05 11:13 PM Page 921

Creating a File Watcher
Now let’s step through another example to illustrate what a Windows Service can do and how to con-
struct one. We will build a service that monitors a particular directory, and reacts when a new or
changed file is placed in the directory. The example Windows Service application waits for those files,
extracts information from them, and then logs an event to a system log to record the file change.

As before, create a Windows Service from the built-in template named Windows Service in the New
Project screen. Start by creating a new project and selecting the Windows Service template. Name this
project FileWatcherService and click OK. This creates a new service class called Service1.vb.
Rename this to FileWatcherService.vb. Then right-click the design surface, select Properties, and set
the ServiceName property to FileWatcherService.

As in the first example, set the application type to Windows Service and reset the project’s start object to
FileWatcherService. All of this is illustrated earlier in this chapter.

Writing Events Using an Eventlog
The way to ensure the service is doing its job is by having it write events to a system Event Log. Event
Logs are available under Windows NT, Windows 2000, Windows XP, and Windows Server 2003. As with
many other system-level features, the use of Event Logs is simplified in .NET because a .NET Framework
base class does most of the work for you.

There are three Event Logs on the system: Application, Security, and System. Normally, your appli-
cations should only write to the Application log. A property of a log entry called Source identifies the
application writing the message. This property does not have to be the same as the executable name of
the application, but is often given that name to make it easy to identify the source of the message.

You can look at the events in the Event Log by using the Event Viewer. It is in Control Panel ➪

Administrative Tools ➪ Event Viewer on Windows 2000, and Start ➪ All Programs ➪ Administrative
Tools ➪ Event Viewer on Windows XP. We will use the Event Viewer in our example below to make sure
our service is generating events.

Early in the chapter, we briefly mentioned that the AutoLog property of the ServiceBase class deter-
mines whether the service automatically writes events to the Application log. The AutoLog property
instructs the service to use the Application Event Log to report command failures, as well as information
for OnStart, OnStop, OnPause, and OnContinue events on the service. What is actually logged to the
Event Log is an entry saying Service started successfully and Service stopped successfully, and any
errors that might have occurred. If you look in the Application Event Log now, you will notice these
logged events for the CounterMonitor Windows Service that you created and ran earlier in the chapter.

We can turn off the Event Log reporting by setting the AutoLog property to False in the Properties win-
dow for the service. However, we will leave it set to True for our example. That means some events will
be logged automatically (without us including any code for them). Then, we add some code to our ser-
vice to log additional events not covered by the AutoLog property.

First, though, we need to implement a file monitoring control into the project.

922

Chapter 25

28_575368 ch25.qxd 10/7/05 11:13 PM Page 922

Creating a FileSystemWatcher
For performance reasons, we should do all of our work on a separate thread to our main application
thread. We want to leave our main application free to accept any requests from the user or the operating
system. We can do this by using some of the different components that create their own threads when
they are launched. The Timer component and the FileSystemWatcher component are two examples.
When the Timer component fires its Elapsed event, a thread is spawned and any code placed within
that event will work on that newly created thread. The same thing happens when the events for the
FileSystemWatcher component fire.

You can learn more about threading in .NET in Chapter 22.

The FileSystemWatcher Component
The FileSystemWatcher component is used to monitor a particular directory. The component imple-
ments Created, Changed, Deleted, and Renamed events, which are fired when files are placed in the
directory, changed, deleted, or renamed, respectively.

The operation that takes place when one of these events is fired is up to the application developer. Most
often, logic is included to read and process the new or changed files. However, we are just going to write
a message to a log file.

To implement the component in the project, drag and drop a FileSystemWatcher control from the
Components tab of the toolbox onto the designer surface of FileWatcherService.vb. This control
will automatically be called FileSystemWatcher1.

The EnableRaisingEvents Property
The FileSystemWatcher control should not generate any events until the service is initialized and
ready to handle them. To prevent this, set the EnableRaisingEvents property to False. This will pre-
vent the control from firing any events. We will enable it during the OnStart event in the service.

These events fired by the FileSystemWatcher are controlled using the NotifyFilter property,
discussed later.

The Path Property
Next, the path that we want to monitor is the TEMP directory on the C: drive, so set the Path property to
C:\TEMP (be sure to check that there is a TEMP directory on your C: drive). Of course, this path can be
changed to monitor any directory depending on your system, including any network or removable
drives.

The NotifyFilter Property
We only want to watch for when a file is freshly created, or the last modified value of a file has changed.
To do this, set the NotifyFilter property to FileName, LastWrite. We could also watch for other
changes such as attributes, security, size, and directory name changes as well, just by changing the
NotifyFilter property. Note that we specify multiple changes to watch for by including a list of
changes separated by commas.

923

Windows Services

28_575368 ch25.qxd 10/7/05 11:13 PM Page 923

The Filter Property
The types of files that we will look for are text files. This is done by setting the Filter property to .txt.
Notice that if you were going to watch for all file types, then the value of the Filter property needs to
be set to *.*.

The IncludeSubdirectories Property
If we wanted to watch subdirectories, we would set the IncludeSubdirectories property to True. In
this sample, we’re leaving it as False, which is the default value.

You should have the following properties set as illustrated in Figure 25-9.

Figure 25-9

Adding FileSystemWatcher Code to OnStart and OnStop
Now that we have some properties set, let’s add some code to the OnStart event. We need to start the
FileSystemWatcher1 component so it will start triggering events when files are created or copied into
the directory we’re monitoring, so we set the EnableRaisingEvents property to True:

Protected Overrides Sub OnStart(ByVal args() As String)
‘ Start monitoring for files
FileSystemWatcher1.EnableRaisingEvents = True

End Sub

Once our file monitoring properties are initialized, we are ready to start the monitoring.

When the service stops we need to stop the file monitoring process. Add this code to your OnStop event:

Protected Overrides Sub OnStop()
‘ Stop monitoring for files
FileSystemWatcher1.EnableRaisingEvents = False

End Sub

924

Chapter 25

28_575368 ch25.qxd 10/7/05 11:13 PM Page 924

The EventLog Component
Now we are ready to place an EventLog component in the service to facilitate logging of events. Drag
and drop an EventLog control from the Components tab of the toolbox onto the designer surface of
FileWatcherService.vb. This control will automatically be called EventLog1.

Set the Log property for Eventlog1 to Application, and set the Source property to
FileWatcherService.

The Created Event
Next, we will place some logic in the Created event of our FileSystemWatcher component to log
when a file has been created. This event will fire when a file has been placed or created in the directory
that we are monitoring. This event fires because the last modified information on the file has changed.

Select FileSystemWatcher1 from the Class Name drop-down list and select Created from the Method
Name drop-down list, and the Created event will be added to your code. Add code to the Created
event as follows:

Public Sub FileSystemWatcher1_Created(ByVal sender As Object, _
ByVal e As System.IO.FileSystemEventArgs) _
Handles FileSystemWatcher1.Created

Dim sMessage As String
sMessage = “File created in directory - file name is “ + e.Name
EventLog1.WriteEntry(sMessage)

End Sub

Notice that the event argument’s object (the object named “e” in the event parameters) includes a prop-
erty called Name. This property holds the name of the file that generated the event.

At this point, we could add the other events for FileSystemWatcher (Changed, Deleted, Renamed) in
a similar way and create corresponding log messages for those events. To keep the example simple, we’ll
just do the Created event in this service.

We need to add an Installer class to this project to install the application. This is done as it was in the
earlier CounterMonitor example, by right-clicking the design surface for the service and selecting Add
Installer or by clicking on the Add Installer link in the Properties window of Visual Studio 2005. Don’t
forget to change the Account property to LocalSystem, or set it to User and fill in the Username and
Password properties.

As before, we must install the service using InstallUtil.exe. Then, start it with the Server Explorer or
the Service Manager.

Upon successful compilation of these steps, we will get a message logged for any file with a .txt exten-
sion that we copy or create in the monitored directory. So, after dropping some sample text files into our
monitored directory, we can use the Event Viewer to check and make sure the events are present.

Figure 25-10 shows the Event Viewer with several example messages created by our service.

925

Windows Services

28_575368 ch25.qxd 10/7/05 11:13 PM Page 925

If you right-click one of the events for FileWatcherService, you’ll see a detail screen. Notice that
the message corresponds to the Event Log message we constructed in the Created event of the
FileSystemWatcher control in the service as shown in Figure 25-11.

Figure 25-10

Figure 25-11

926

Chapter 25

28_575368 ch25.qxd 10/7/05 11:13 PM Page 926

Debugging the Service
Because a service must be run from within the context of the Services Control Manager rather than from
within Visual Studio 2005, debugging a service is not as straightforward as debugging other Visual
Studio 2005 application types. To debug a service, we must start the service and then attach a debugger
to the process in which it is running. We can then debug your application using all of the standard
debugging functionality of Visual Studio 2005.

To avoid going through this extra effort, you may want to test out most of the code in your service
in a standard Windows Forms application. This test-bed application can have the same components
(FileSystemWatchers, EventLogs, Timers, and so on) as the Windows Service, and thus will be able
to run the same logic in events. Once you have checked out the logic in this context, you can just copy
and paste it into a Windows Service application.

However, there will be some occasions for which the service itself needs to be debugged directly. So it’s
important to understand how to attach to the service’s process and do direct debugging. The rest of this
section explains how to do that.

The only time you can debug a service is when it’s running. When you attach the debugger to the service,
you are interrupting the service. The service is suspended for a short period while you attach to it. The
service will also be interrupted when you place breakpoints and step through your code.

Attaching to the service’s process allows you to debug most, but not all, of the service’s code. For
instance, because the service has already been started, you cannot debug the code in the service’s
OnStart method this way, or the code in the Main method that is used to load the service. To debug the
OnStart event or any of the Visual Studio 2005 designer code, you have to add a dummy service and
start that service first. In the dummy service, you would create an instance of the service that you want
to debug. You can place some code in a Timer object and create the new instance of the object that you
want to debug after 30 seconds or so. Allow enough time to attach to the debugger before the new
instance is created. Meanwhile, place breakpoints in your startup code to debug those events, if desired.

To Debug a Service
Follow these steps to debug a service:

1. Install the service.

2. Start the service, either from the Services Control Manager, Server Explorer, or from code.

3. In Visual Studio 2005, load the solution for the service. Then select Attach to Process from the
Debug menu. The Attach to Process dialog box appears (see Figure 25-12).

4. For a Windows Service, the desired process to attach to is not a foreground process; it’s impor-
tant to make sure to check the check box next to the Show processes from all users option.

You should not attach to a process unless you know what the process is and under-
stand the consequences of attaching to and possibly killing that process.

927

Windows Services

28_575368 ch25.qxd 10/7/05 11:13 PM Page 927

5. In the Available Processes section, click the process indicated by the executable name for the ser-
vice, and then click the Attach button.

Figure 25-12

6. You can now debug your process. Place a breakpoint in the code for the service at the place you
want to debug. Cause the code in the service to execute (by placing a file in a monitored direc-
tory, for example).

7. When finished, select Stop Debugging from the Debug menu.

Let’s go through an actual scenario, using our earlier CounterMonitor example. Bring up both the
CounterMonitor project and the CounterTest project in separate instances of the Visual Studio 2005 IDE.
Then make sure that the CounterMonitor service has been started. It is best if you hear it beeping — that
way you know it is working. If necessary, remember to increment the performance counter to make it beep.

In the CounterMonitor project, go to the Debug menu and select Processes, you’ll get a dialog box that
shows a list of the foreground processes on the system. Check the box next to “Show system processes.”

Once you do this, the list of processes will expand, and one of the processes in the list will be
CounterMonitor.exe. That’s the process you want. Highlight it and press the Attach button.

928

Chapter 25

28_575368 ch25.qxd 10/7/05 11:13 PM Page 928

You’ll then get a dialog box asking you what program types you are interested in debugging. Since we
are working solely within .NET, check the box next to common language runtime and leave the rest
unchecked. Then press the OK button on this dialog box, and press the Close button on the Processes
dialog box. You are now attached to the process running CounterMonitor in the background.

Place a breakpoint on the first line of the OnCustomCommand event:

Timer1.Enabled = False

Now we are ready to check debugging. Bring up the CounterTest program, and start it. Press one of the
radio buttons to change the beep interval. You will hear the beeping stop, because CounterMonitor.exe
has entered debugging mode. Switch back to the CounterMonitor project, and the cursor will be on the
breakpoint line in OnCustomCommand. You can use the normal commands at this point to step through
the code.

Summary
This chapter presented a general overview of what a Windows Service is and how to create one with
Visual Basic. The techniques in this chapter can be used for many different types of background service.
A few examples are:

❑ Automatically moving statistical files from a database server to a Web server

❑ Pushing general files across computers and platforms

❑ A watchdog timer to ensure that a connection is always available

❑ An application to move and process FTP files, or indeed files received from any source

While Visual Basic cannot be used to create every type of Windows Service, it is effective at creating many
of the most useful ones. The .NET Framework classes for Windows Services make this creation relatively
straightforward. The designers generate much of the routine code needed, and you as a developer can
concentrate on the code that is specific to your particular Windows Service.

929

Windows Services

28_575368 ch25.qxd 10/7/05 11:13 PM Page 929

28_575368 ch25.qxd 10/7/05 11:13 PM Page 930

Network Programming

Just as it is difficult to live your life without talking with people, your applications also need to
communicate, perhaps with other programs or perhaps with hardware devices. As we have seen
throughout this book, there are a variety of techniques you can use to have your program commu-
nicate, including .NET Remoting, Web Services, and Enterprise Services. This chapter looks at yet
another way to communicate, using the basic protocols that the Internet and many networks have
been built on. You will learn how the classes in System.Net can provide a variety of techniques
for communicating with existing applications such as Web or FTP servers, or how you can use
them to create your own communication applications.

Before getting started on writing applications using these classes, however, it would be good to get
some background on how networks are bolted together, and how machines and applications are
identified.

Getting Your Message Across:
Protocols, Addresses, and Ports

No discussion of a network is complete without a huge number of acronyms, seemingly random
numbers, and the idea of a protocol. For example, the World Wide Web runs using a protocol
called HTTP or HyperText Transfer Protocol. Similarly, there are File Transfer Protocol (FTP),
Network News Transfer Protocol (NNTP), and Gopher protocols. Each application you run on a
network communicates with another program using a defined protocol. The protocol is simply the
expected messages each program will send the other, in the order that they should be sent. For a
real-world example, if you want to go see a movie with a friend, a simplified conversation could
look like this:

You: Dials phone
Them: Hears phone ringing, answers phone, “Hello”
You: “Hello. Want to go see ‘Freddie and Jason Escape from New York part 6?’”

29_575368 ch26.qxd 10/7/05 11:22 PM Page 931

Them: “No, I saw that one already. What about ‘Star Warthogs’?”
You: “OK, 9:30 showing downtown?”
Them: “Yes”
You: “Later”

Them: “See you”, hangs up

Apart from a bad taste in movies, we can see a basic protocol here. Someone initiates a communication
channel. The recipient accepts the channel and signals the start of the communication. The initial caller
then sends a series of messages to which the recipient replies, either to signify they have received them,
or as either a positive or negative response. Finally, one of the messages indicates the end of the commu-
nication channel, and the two disconnect.

Similarly, network applications have their own protocols defined by the application writer. For example,
sending an email using SMTP (Simple Mail Transfer Protocol) could look like the following:

220 schroedinger Microsoft ESMTP MAIL Service, Version: 6.0.2600.2180 ready at Wed,
6 Oct 2004 15:58:28 -0700
HELO
250 schroedinger Hello [127.0.0.1]
FOO
500 5.3.3 Unrecognized command
MAIL FROM: me
250 2.1.0 me@schroedinger....Sender OK
RCPT TO: him
250 2.1.5 him@schroedinger
DATA
354 Start mail input; end with <CRLF>.<CRLF>
subject: Testing SMTP

Hello World, via mail.
.
250 2.6.0 <SCHROEDINGERKaq65r500000001@schroedinger> Queued mail for delivery
QUIT
221 2.0.0 schroedinger Service closing transmission channel

Connection to host lost.

In this case, lines beginning with numbers are coming from the server, while the items in uppercase (and
the message itself) were sent from the client. If the client sends an invalid message (as in the “FOO” mes-
sage in the preceding code example), it receives a gentle rebuff from the server, while correct messages
receive either an “OK” or “Go on” reply. Traditionally, for SMTP and many other protocols, the reply is a
three-digit number (see the following table) identifying the response (the text after the number, such as,
“2.1.0 me@schroedinger Sender OK, isn’t really needed).

Range Description

100–199 Message is good, but the server is still working on the request.

200–299 Message is good, and the server has completed acting on the request.

932

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 932

Range Description

300–399 Message is good, but the server needs more information to work on the request.

400–499 Message is good, but the server could not act on the request. You may try the
request again to see if it works in the future.

500–599 The server could not act on the request. Either the message was bad or an error
occurred. It likely won’t work next time.

Other protocols use this technique as well (leading to the infamous HTTP 404 error for “Page not found”),
but they don’t have to. Having a good reference is key to your success, and the best reference for existing
protocols is the Request for Comments (RFC) for the protocol. These are the definitions that are used by
protocol authors to create their implementation of the standard. Many of these RFCs are available at the
IETF (http://www.ietf.org) and World Wide Web Consortium (http://www.w3.org) Web sites.

Addresses and Names
The next important topic necessary to a thorough understanding of network programming is the rela-
tionship between the names and addresses of each of the computers involved. Each form of network
communication (such as TCP/IP networks, such as the Internet) has its own way of mapping the name
of a computer (or host) to an address. The reason for this is simple: Computers deal with numbers better
than text, and humans can remember text better than numbers (generally). So, while you may have
named your computer something clever like, “l33t_#4x0R,” applications and other computers know it by
its IP (Internet Protocol) address. This address is a 32-bit value, usually written in four parts (each one a
byte that is a number from 0 to 255), like 192.168.1.39. This is the standard the Internet has worked on for
many years. However, as there are only about four billion unique addresses using this method, another
standard, IPv6, has been proposed. It is called IPv6 as it is the sixth recommendation in the series (the
older 32-bit addresses are often called IPv4 to differentiate them). With IPv6, a 128-bit address is used,
leading to a maximum number of about 3x1028 unique addresses. More than enough for every Internet-
enabled toaster, I imagine.

This IP (whether IPv4 or IPv6) address must uniquely identify each host on a network (actually subnet-
work, but I’m getting ahead of myself). If not, messages will not be routed to their destination properly,
and chaos ensues. The matter gets more complicated when another 32-bit number, the Subnet Mask, is
brought into the picture. This is a value that is masked (using a Boolean AND operation) over the address
to identify the subnetwork of the network that the computer is on.

Because computers and humans use two different means of identifying computers, there must obviously
be some way for the two to be related. The term for this process is name resolution. In the case of the
Internet, a common means of name resolution is done by yet another protocol, Domain Naming System
(DNS). Computers, when faced with an unknown text-based name, will send a message to the closest
DNS server. It then looks to see if it knows the IP address of that host. If it does, it passes this back to the
requestor. If not, it asks another DNS server it knows. This process continues until either the IP address
is found, or you run out of DNS servers. Once the IP address is found, all of the servers (and the original
computer) store that number for a while in case they are asked again.

933

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 933

Keeping the problems that can ensue during name resolution in mind can often solve many develop-
ment problems. For example, if you are having difficulty communicating with a computer that should be
responding, it may be that your computer simply can’t resolve the name of the remote computer. Try
using the IP address instead. This removes any name resolution problems from the equation, and may
allow you to continue developing while someone else fixes the name resolution problem.

Ports: They’re Not Just for Ships
As the previous sections described, each computer or host on a network is uniquely identified by an
address. However, how does your computer realize which of possibly many applications running are
meant to receive a given message arriving on the network? This is determined by the port the message is
targeted at. The port is another number, in this case an integer value from 1 to 32,767. The unique combi-
nation of address and port identifies the target application.

For example, assume you currently have a Web server (IIS) running, as well as an SMTP server, and a few
browser windows open. If a network message comes in, how does the operating system “know” which of
these applications should receive the packet? Each of the applications (either client or server) that may
receive a message is assigned a unique port number. In the case of servers, this is typically a fixed number,
while client applications, such as your Web browser, are assigned a random available port.

To make communication with servers easier, they typically use a well-known assigned port. In the case
of Web servers, this is port 80, while SMTP servers use port 25. You can see a list of common servers and
their ports in the file %windows%\system32\drivers\etc\services.

If you are writing a server application, you can either use these common port numbers (and you should
if you’re attempting to write a common type of server), or choose your own. If you are writing a new
type of server, you should likely choose a port that has not been assigned to another server; choosing a
port higher than 1024 should prevent any conflicts, as these are not assigned. When writing a client
application, there is typically no need to assign a port, as a dynamic port is assigned to the client for
communication with a server.

In addition, ports below 1024 should be considered secure ports and applications that use them should
have administrative access.

Firewalls: Can’t Live with Them, Can’t Live without Them
Many people experience a love/hate relationship with firewalls. While they are invaluable in today’s
network, sometimes it would be nice if they got out of the way. A firewall is a piece of hardware or soft-
ware that monitors network traffic, either incoming, outgoing, or both. They can be configured to allow
only particular ports or applications to transmit information beyond the firewall. They protect against
hackers or viruses that may attempt to connect to open ports, leveraging them to their own ends.
They protect against spyware applications that may attempt to communicate out from your machine.
However, they also “protect” against any network programming you may attempt to do. You must
invariably cooperate with your network administrators, working within their guidelines for network
access. If they make only certain ports available, then your applications should only use those ports.
Alternately, you may be able to get them to configure the firewalls involved to permit the ports needed
by your applications.

Thankfully, passing messages is a bit easier with Visual Basic 2005. The following sections demonstrate how.

934

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 934

The System.Net Namespace
Most of the functionality used when writing network applications is contained within the System.Net and
System.Net.Sockets namespaces. The main classes in these namespaces that this chapter covers are

❑ WebRequest and WebResponse, and their subclasses, including the new FtpWebRequest.

❑ WebClient, the simplified WebRequest for common scenarios.

❑ HttpListener, the new ability to create your own Web server.

Note: There are additional classes, methods, properties, and events that have been added to the System.Net
and System.Net.Sockets namespaces in the .NET Framework 2.0. Please see the updated reference for
these namespaces (currently at http://msdn2.microsoft.com/library/system.net.aspx as of
this writing).

Web Requests (and Responses)
When most people think of network programming these days, they’re really thinking of communication
via a Web server or client. Therefore, it shouldn’t come as a surprise that there should be a set of classes
for this communication need. In this case, it is the abstract WebRequest class and the associated
WebResponse. These two classes represent the concept of a request/response communication with a
Web server, or similar server. As these are abstract classes, that is, MustInherit classes, they cannot be
created by themselves. Instead, you create the subclasses of WebRequest that are optimized for specific
types of communication.

The most important properties and methods of the WebRequest class are shown in the following table.

Member Description

Create Method used to create specific type of WebRequest. This method uses the
URL (either as a string or as an Uri class) passed to identify and create a sub-
class of WebRequest.

GetRequestStream Method that allows access to the outgoing request. This allows you to add
additional information, such as POST data, to the request before sending.

GetResponse Method used to perform the request and retrieve the corresponding
WebResponse.

Credentials Property that allows you to set the user id and password for the request if
they are needed to perform the request.

Headers Property that enables you to change or add to the headers for the request.

Method Property used to identify the action for the request, such as GET or POST.
The list of available methods is specific to each type of server.

Proxy Property allowing you to identify a proxy server for the communication if
needed. Note that you generally don’t need to set this property as Visual
Basic 2005 detects the settings for Internet Explorer and uses them by default.

Timeout Property that enables you to define the time permitted for the request before
you ‘give up’ on the server.

935

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 935

Each of the subclasses of WebRequest supports these methods, giving a very consistent programming
model for communication with a variety of server types. The basic model for working with any of the
subclasses of WebRequest can be written in the following pseudo code:

Declare variable as child class
Create the variable based on the URL
Make any changes to the Request object you may need
Use the GetResponse method to retrieve the response from the server
Get the Stream from the WebResponse
Do something with the Stream

If you decide to change the protocol (for example, from HTTP to a file-based protocol), the only thing
that needs to change is the URL used to retrieve the object.

Working with FileWebRequest and HttpWebRequest
The first two types of WebRequest that became available were the FileWebRequest and
HttpWebRequest. FileWebRequest is used less frequently; it represents a request to a local file,
using the “file://” URL format. You may have seen this type of request if you attempt to open a local file
using your Web browser, such as Internet Explorer, Firefox, or Navigator. Generally, however, the sub-
class most developers will use is HttpWebRequest. This class enables you to make HTTP requests to a
Web server, without requiring a browser. This could allow you to communicate with a Web server, or,
using the time-honored tradition of “screen scraping” to retrieve data available on the Web.

One hurdle many developers encounter when first working with HttpWebRequest is that there is no
available constructor. Instead, you must use the WebRequest.Create (or the Create method of your
desired subclass) method to create new instances of any of the subclasses. This method uses the URL
requested to create the appropriate subtype of WebRequest. For example, this would create a new
HttpWebRequest:

Dim req As HttpWebRequest = WebRequest.Create(“http://msdn.microsoft.com”)

Note that if you have Option Strict turned on (and you should), the above code will produce an error.
Instead, you should explicitly cast the return value of Create to the desired type:

Dim req As HttpWebRequest = _
DirectCast(WebRequest.Create(“http://msdn.microsoft.com”), _
System.Net.HttpWebRequest)

Putting It Together
In order to demonstrate how to use WebRequest/WebResponse, the following example shows how to
wrap a Web call into a Visual Basic class. In this case, we’ll wrap Google’s, define: keyword that
allows you to retrieve a set of definitions for a word (for example, http://www.google.com/
search?q=define%3A+egregious), then use that in a sample application. (See Figure 26-1.)

1. Create a new Windows application. I named my project, DefinePad.

2. Add a new class to the project. This will hold the actual WebRequest code. Call it
GoogleClient.

3. Add a reference to the System.Web.DLL, as we will need access to some of its functionality later.

936

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 936

Figure 26-1

4. In the GoogleClient.vb file, add import statements to make the coding a little briefer:

Imports System.IO
Imports System.Net
Imports System.Web
Imports System.Collections.Generic

5. The main function in GoogleClient will be a Define function that will return an array of
strings. Each string will be one definition returned by Google.

Public Function Define(ByVal word As String) As String()
Dim req As HttpWebRequest = Nothing
Dim resp As HttpWebResponse
Dim query As String
Dim result As New List(Of String)

query = “http://www.google.com/search?q=define%3A” & _
HttpUtility.UrlEncode(word)

Try
req = DirectCast(WebRequest.Create(query), HttpWebRequest)
With req

.Method = “GET”
resp = req.GetResponse
If resp.StatusCode = HttpStatusCode.OK Then

ParseResponse(resp.GetResponseStream, result)
Else

MessageBox.Show(“Error calling definition service”)
End If

End With
Catch ex As Exception

End Try

Return result.ToArray()

End Function

937

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 937

6. The first task is to guarantee that no invalid characters appear in the QueryString when you
send the request, such as a space, accented character, or other non-ASCII character. The
System.Web.HttpUtility class has a number of handy shared methods for encoding strings,
including the UrlEncode method. This replaces characters with a safe representation of the
character that looks like, %value, where the value is the Unicode code for the character. For
example, in the definition of the query variable above, the %3A is actually the colon character
(“:”) that has been encoded. Anytime that you retrieve a URL based on user input, encode it
because there is no guarantee the resulting URL is safe to send.

7. Once the query is ready, you create the WebRequest. As the URL is for an http resource, an
HttpWebRequest is created. While the default method for WebRequest is a GET, it’s still good
practice to set it. You’ll create the ParseResponse method shortly to process the stream
returned from the server.

8. One other piece of code worthy of mentioning is the return value for this method, and how it is
created. In order to return arrays of a specific type (rather than returning actual collections from
a method), you either must know the actual size to initialize the array, or you need to use the
new List generic type or the older ArrayList. These classes behave like the Visual Basic 6.0
Collection class, which enables you to add items, and it grows as needed. They also have a
handy method that allows you to convert the array into an array of any type; you can see this in
the return statement. The ArrayList requires you to do a bit more work. If you want to use an
ArrayList for this method, you must identify the type of array you’d like to return. The result-
ing return statement would look like this using an ArrayList:

Return result.ToArray(GetType(String))

9. The ProcessRequest method parses the stream returned from the server, and converts it into
an array of items. Note that this is slightly simplified: In a real application, you would likely
want to return an array of objects, where each object provides access to the definition and the
URL of the site providing it.

Private Sub ParseResponse(ByVal input As System.IO.Stream, _
ByRef output As List(Of String))

‘definitions are in a block beginning with <p>Definitions for...
‘then are marked with tags
‘yes, I should use Regular Expressions for this
‘this format will also likely change in the future. Dim reader As New

StreamReader(input)
Dim work As String = reader.ReadToEnd

Dim blockStart As String = “<p>Definitions of”
Dim pos As Integer = work.IndexOf(blockStart) Dim posEnd As Integer

Dim temp As String

Do
pos = work.IndexOf(“<p>”, pos + 1)
If pos Then

posEnd = work.IndexOf(“</p>”, pos)
temp = work.Substring(pos + 3, posEnd - pos - 6)
output.Add(ParseDefinition(temp))
pos = posEnd + 1

End If
Loop While pos

End Sub

938

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 938

10. The code is fairly simple, using the time-honored tradition of “screen scraping” — processing
the HTML of a page to find the section you need and then removing the HTML to produce the
result.

11. The last part of the GoogleClient class is the ParseDefinition method that cleans up the
definition, removing the link and other HTML tags.

Private Function ParseDefinition(ByVal input As String) As String
Dim result As String = “”

Dim lineBreak As Integer

lineBreak = input.IndexOf(“
”)
If lineBreak > 0 Then

result = input.Substring(0, input.IndexOf(“
”))
Else

result = input
End If

End Function

12. Now, with class in hand, you can create a client to use it. In this case, you’ll create a simple text
editor that adds the ability to retrieve definitions for words. Go back to the Form created for the
application, and add controls as shown in Figure 26-2.

Figure 26-2

939

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 939

13. The user interface for DefinePad is simple: a TextBox and a ContextMenuStrip.

Control Property Value

TextBox Name TextField

Multiline True

Dock Client

ContextMenuStrip DefinitionMenu

ContextMenuStrip Name DefinitionMenu1

14. The only code in the Form is for the Opening event of the ContextMenuStrip. Here, you will
add the definitions to the menu. Add the following code to the handler for the Opening event.

Private Sub DefinitionMenu_Opened(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles DefinitionMenu.Opened

Dim svc As New GoogleClient
Dim definitions() As String
Dim definitionCount As Integer

DefinitionMenu.Items.Clear()

Try
‘define the currently selected word
If TextField.SelectionLength > 0 Then

definitions = svc.Define(TextField.SelectedText)

‘build context menu of returned definitions
definitionCount = definitions.Length
If definitionCount > 6 Then

definitionCount = 6
ElseIf definitionCount = 0 Then

‘we can’t do anymore, so exit
Dim item As New ToolStripButton
item.Text = “Sorry, no definitions available”
DefinitionMenu.Items.Add(item)
Exit Sub

End If

For i As Integer = 1 To definitionCount
Dim item As New ToolStripButton
item.Text = definitions(i)
DefinitionMenu.Items.Add(item)

Next
End If

Catch ex As Exception
MessageBox.Show(ex.Message, “Error getting definitions”, _

MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try
End Sub

940

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 940

15. The bulk of the code in this event is to limit the number of items displayed in the menu. The
actual functional part of the routine is the call to the Define method of the GoogleClient. If
you trace through the code as you run, you’ll see the WebRequest generated, the call made, and
the resulting response stream parsed into the individual items as desired. Finally, you can use
the returned list to create a set of menu items (that don’t actually do anything), and display the
“menu”. Clicking on any definition closes the menu.

16. To text the application, run it. Type or copy some text into the TextBox, select a word, and
right-click on it. After a brief pause, you should see the definitions for the word (see Figure 26-3
for definitions of developer).

Figure 26-3

While they are not as ‘sexy’ as Web Services, using this technique (WebRequest, screen scraping of
the resulting HTML) can provide access to a great deal of the functionality of the Internet for your
applications.

Working with FtpWebRequest
One of the new sets of classes added to the System.Net namespace in Visual Basic 2005 is another type
of Web request — the FtpWebRequest. This class, and the related FtpWebResponse, is used to commu-
nicate with FTP servers. While the HttpWebRequest/Response can be used for simple file uploading
and retrieving, the FtpWebRequest adds the ability to browse or create directories, delete files, and
more. The following table describes some of the added functionality in the FtpWebRequest.

Member Description

Abort Used when performing an asynchronous operation. This command terminates the
current operation.

Binary A Boolean value that determines if the data transfer should be treated as binary or
text. Set to true when you are transferring a binary file and text otherwise.

Table continued on following page

941

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 941

Member Description

Method While not new, the behavior of this method is quite important with the FtpWebRe-
quest as it defines the action to perform. See the section below on WebRequest-
Methods.Ftp that defines the possible values.

Passive Boolean value that determines how the client and server should communicate. If
this is set to true, the server does not initiate communication back to the client.
Instead, it waits until the client initiates the communication. This is typically
needed when communicating through a firewall that might not allow the server
to open a connection to the client machine.

WebRequestMethods.Ftp
As described above, the actual request made by the FtpWebRequest is identified by the Method prop-
erty. This is a string property that can be set to any value recognized by your FTP server, but you will
often want to set it to one of the values in the WebRequestMethods.Ftp structure.

Field Description

AppendFile Adds content to an existing file.

DeleteFile Deletes a file from the server (if you have permission).

DownloadFile Retrieves a file from the FTP server.

GetDateTimeStamp Gets the date and time the file was last modified.

GetFileSize Gets the size of the file on the FTP server.

ListDirectory Gets the file and directory names for a directory on the FTP server. The
data returned is a list of the files, each on a line (that is, separated by
CRLF characters). This method doesn’t provide an easy way to deter-
mine which of the items returned are directories or files.

ListDirectoryDetails Gets the file and directory information for a directory on the FTP server.
This method returns a good deal of information about each item, includ-
ing attributes, permissions, date of last modification, and size. Just as
with the ListDirectory method, each file’s (or directory’s) information is
on a single line.

MakeDirectory Creates a directory on the server.

PrintWorkingDirectory Gets the current path on the FTP server.

RemoveDirectory Removes a directory from the server (if you have permission).

UploadFile Uploads a file to the FTP server.

UploadFileWith Similar to UploadFile, but this method ensures that the new file has a
UniqueName unique file name. This is great when you allow the user to upload files,

but don’t want possible name collisions to happen, or if you don’t really
care what name the file is (for example when the file contents just need
processing but not saving).

942

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 942

Creating an FTP Client
In order to demonstrate using the FtpWebRequest, the next section covers how to create a simple FTP
server browser. The application will allow you to connect to a server, browse the available files, and
download files. (See Figure 26-4.)

Figure 26-4

Even though this application is a Windows Forms application, we separate the FTP handling to a class
for use in other applications.

1. Create a new Windows application called “FTP Browser”

2. Add MenuStrip and SplitContainer controls to the Form. You can leave the names and other
properties of these controls at their defaults. Create three items under the File menu: Connect...,
Download, and Exit. You may also want to add an ImageList control, and populate it with
appropriate graphics for open and closed folders.

3. Add a TreeView control to the right side of the SplitContainer, and a ListView to the left
side. Set the properties as in the following tables.

TreeView

Property Value

Name DirectoryList

Dock Fill

PathSeparator /

Table continued on following page

943

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 943

Property Value

ImageList The name of your ImageList control

SelectedImageKey The open image’s name

ImageKey The closed image’s name

ListView

Property Value

Name FileList

Dock Fill

MultiSelect False

View List

4. Open the Code View for the form. First, add a few private variables to the Form class.

Private ftp As New FtpClient
Private baseUrl As String
Private downloadPath As String

5. Next, add a handler for the Form Load event; this will initialize the TreeView and FtpClient
objects.

Private Sub MainForm_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

‘initialize form
With Me.DirectoryTree

.Nodes.Add(“/”)
End With
‘initialize ftp client
With ftp

.UserId = My.Settings.user

.Password = My.Settings.email
End With
downloadPath = My.Settings.downloadPath

End Sub

6. Notice the calls to My.Settings when initializing the FtpClient. The Settings collection is
available to the My object when you have created settings values in the My Project dialog. Open
the Solution Explorer and double-click on the My Project item. Select the Settings tab, and add
the three values there (see Figure 26-5).

944

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 944

Figure 26-5

7. You can now return to adding the code to the Form. The next step is to enable connecting to the
FTP server, and retrieving the initial list of directories to add to the TreeView. Add this to the
Connect menu item.

Private Sub ConnectToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ConnectToolStripMenuItem.Click

‘makes a new connection to an FTP server

baseUrl = InputBox(“Enter FTP site to open”, “FTP Browser”, __
“ftp://ftp.microsoft.com”)

AddNodes(Me.DirectoryTree.Nodes(0), baseUrl)

End Sub

8. The event prompts the user for the address of the FTP server to connect with, and then adds it
to the TreeView via a helper subroutine, AddNodes.

Private Sub AddNodes(ByVal parent As TreeNode, ByVal url As String)
Dim dirs() As String

Me.Cursor = Cursors.WaitCursor

dirs = ftp.GetDirectories(url)
For Each dir As String In dirs

With parent.Nodes.Add(dir)
.Nodes.Add(“NoNodeHere”, “empty”)

End With

945

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 945

Next

Me.Cursor = Cursors.Default
End Sub

9. The AddNodes method retrieves the list of directories for the selected URL. In this, the first call
for an FTP server, it retrieves the root directory. Later, the same method is used to retrieve subdi-
rectories by requesting a URL containing the full path. Notice the addition of a fake node to
each of the directories (the “NoNodeHere” item). This ensures that each of the directories we
add has the plus symbol next to it in the TreeView, implying that there is content below it. We
will remove the empty node later when we request the actual subdirectories.

10. Initially, each of the directories is empty except for the “NoNodeHere” item. You can use the
presence of this node to determine if you need to request subdirectories. If it still exists, you
need to call AddNodes when the user attempts to expand the TreeView node.

Private Sub DirectoryTree_BeforeExpand(ByVal sender As Object, _
ByVal e As System.Windows.Forms.TreeViewCancelEventArgs) _
Handles DirectoryTree.BeforeExpand

Dim thisNode As TreeNode

thisNode = e.Node
If thisNode.Nodes.ContainsKey(“NoNodeHere”) Then

‘we haven’t retrieved this nodes children yet
‘remove the empty node
thisNode.Nodes(“NoNodeHere”).Remove()
‘get the real children now
AddNodes(thisNode, baseUrl + thisNode.FullPath)

End If

End Sub

11. If the “NoNodeHere” still exists, you remove it, and then call the AddNodes method again, pass-
ing this node, and its path. This calls the FTP server again, retrieving the child directories of the
selected directory. You perform this before the node is expanded, so before the user can see the
“NoNodeHere” node. If the subdirectories have already been requested, the “NoNodeHere”
node won’t be in the TreeView anymore, and so the code to call the FTP server won’t be called
again.

12. After the node has been expanded, it is selected. At this time, retrieve the list of files in that
directory to display in the ListView control.

Private Sub DirectoryTree_AfterSelect(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.TreeViewEventArgs) _
Handles DirectoryTree.AfterSelect

Dim thisNode As TreeNode
Dim files() As String

thisNode = e.Node

‘we don’t want to do this for the root node
If thisNode.Text <> “/” Then

946

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 946

‘get files for this directory
Me.Cursor = Cursors.WaitCursor
‘clear the current list
Me.FileList.Items.Clear()
files = ftp.GetFiles(baseUrl + thisNode.FullPath)
For Each fil As String In files

Me.FileList.Items.Add(fil)
Next

Me.Cursor = Cursors.Default
End If

End Sub

13. This code is fairly simple. First, the ListView is cleared of existing files. Then, the FtpClient is
called, retrieving the list of files in the selected directory. These are then added to the ListView.

14. That sets up our user interface. Now it’s time to begin to add the functionality. Add a new class
to the project, called FtpClient.vb. This class will be used to create wrapper functionality to
make working with FtpWebRequest easier. First, add the Imports statements for later use.

Imports System.IO
Imports System.Net
Imports System.Text
Imports System.Collections.Generic

15. Next, add two properties to the class. This is for the user id and password that will be used by
the FtpClient.

Private _user As String
Private _pwd As String

Public Property UserId() As String
Get

Return _user
End Get
Set(ByVal value As String)

_user = value
End Set

End Property

Public Property Password() As String
Get

Return _pwd
End Get
Set(ByVal value As String)

_pwd = value
End Set

End Property

16. The code added to the Form above used two methods, GetDirectories and GetFiles. These
two methods are basically identical.

947

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 947

Public Function GetDirectories(ByVal url As String) As String()
‘line should look like:
‘dr-xr-xr-x 1 owner group
‘ 0 Nov 25 2002 bussys”
‘ if the first character is a ‘d’, it’s a directory
Return GetDirectoryEntries(url, “d”)

End Function

Public Function GetFiles(ByVal url As String) As String()
‘line should look like:
‘-r-xr-xr-x 1 owner group
‘ 1715 May 20 1996 readme.txt
‘ if the first character is a ‘-’, it’s a file
Return GetDirectoryEntries(url, “-”)

End Function

17. Obviously, both GetDirectories and GetFiles simply return the result of another helper
routing, GetDirectoryEntries. The only difference between the information returned for a
file and a directory is that directories have the directory attribute set to ‘d’, while files have a
blank (‘-’) in that position.

Private Function GetDirectoryEntries(ByVal url As String, _
ByVal directoryAttribute As String) As String()

Dim result As New List(Of String)
Dim str As Stream = Nothing
Dim temp As String
Dim words() As String
Dim splitChars() As Char = {“ “c}

DoFtpRequest(url, _
WebRequestMethods.Ftp.ListDirectoryDetails, _
False, str)

Try
Using reader As StreamReader = New StreamReader(str)

Do
temp = reader.ReadLine

If temp <> Nothing Then
‘split into component parts
words = temp.Split(splitChars, _

StringSplitOptions.RemoveEmptyEntries)
If words(0).StartsWith(directoryAttribute) Then

result.Add(words(8))
End If

End If
Loop While temp <> Nothing

End Using
Catch ex As Exception

MessageBox.Show(ex.Message, “Error getting files from “ & url)
End Try

Return result.ToArray()

End Function

948

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 948

18. The GetDirectoryEntries method uses another helper method you’ll create shortly to exe-
cute the WebRequestMethods.Ftp.ListDirectoryDetails method on the FTP server. This
method returns the resulting response stream in the str parameter. The code then loops through
the returned content. Each of the directory entries appears on a separate line, so ReadLine is
perfect here. The line is split on spaces, and then added to the return value if it has the desired
value for the first character (that represents it if it’s a directory or a file).

19. The GetDirectoryEntries method calls a helper method that does the actual FtpWebRequest.
This method returns the resulting stream by way of a ByRef parameter.

Private Function DoFtpRequest(ByVal url As String, _
ByVal method As String, ByVal useBinary As Boolean, _
ByRef data As Stream) As FtpStatusCode

Dim result As FtpStatusCode

Dim req As FtpWebRequest
Dim resp As FtpWebResponse
Dim creds As New NetworkCredential(UserId, Password)

req = DirectCast(WebRequest.Create(url), FtpWebRequest)

With req
.Credentials = creds
.UseBinary = useBinary
.KeepAlive = True

‘make initial connection
.Method = method
resp = .GetResponse()

data = resp.GetResponseStream
result = resp.StatusCode

End With

Return result
End Function

20. The appropriate type of WebRequest is created, the properties are set, and the final request
is sent.

21. You should now be able to run the application and browse an FTP server (see Figure 26-6).

22. Just for a few finishing touches, we’ll set the Download menu item to only be usable if a file is
selected, and add the code for the Exit menu item. Set the initial value for Enabled to false for
the download menu item, and add the following code to the handler for the ListView’s
SelectedIndexChanged event:

Private Sub FileList_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileList.SelectedIndexChanged

Me.DownloadToolStripMenuItem.Enabled = _
CBool(Me.FileList.SelectedItems.Count)

End Sub

949

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 949

Figure 26-6

23. When there is a selected item, the Count will be > 0, which converts to True. If 0 items are
selected, this will be False.

24. The code for the Exit menu item is simple enough:

Private Sub ExitToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ExitToolStripMenuItem.Click

Me.Close()
End Sub

25. Finally, we’re ready to add the code for the Download menu item:

Private Sub DownloadToolStripMenuItem_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles DownloadToolStripMenuItem.Click

‘download currently selected file (but only if something is selected)

ftp.DownloadFile(baseUrl & _
Me.DirectoryTree.SelectedNode.FullPath & _
“/” & Me.FileList.SelectedItems(0).Text, _
downloadPath & Me.FileList.SelectedItems(0).Text)

End Sub

950

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 950

26. Obviously, we need to add the DownloadFile method to the FtpClient class. Here’s the code:

Public Sub DownloadFile(ByVal url As String, _
ByVal destination As String)

Dim str As Stream = Nothing

DoFtpRequest(url, _
WebRequestMethods.Ftp.DownloadFile, _
True, _
str)

Using reader As StreamReader = New StreamReader(str)
Using writer As StreamWriter = _

New StreamWriter(File.OpenWrite(destination))
writer.Write(reader.ReadToEnd)

End Using
End Using

End Sub

Note the repeat use of the DoFtpRequest method. However, this time, we pass ‘True’ for the binary, just
in case the file we’re transferring is not a text-based file. Using the new ‘using’ block, we create a new
StreamReader around the output stream of the response, and a new StreamWriter to a local output
file. By using the Using block, we guarantee that the associated readers, writers, and streams will all be
closed when we’re done using them. The Using block is functionally identical to the following .NET
Framework 1.1 code:

Dim reader As StreamReader
Try

reader = New StreamReader(str)
...

Finally
reader.Flush()
reader.Close()
reader = Nothing

End Try

Now you can test out the new download code. Run the application again, connect to an FTP server,
select a file, and then select Download from the File menu. You should see the newly created file appear
in your download directory. (See Figure 26-7.)

While creating a full-blown FTP client would still be a fair bit more work, hopefully you can see that the
functionality of the FtpWebRequest and FtpWebResponse classes makes communicating with an FTP
server much easier than before, let alone writing the core functionality yourself using sockets.

951

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 951

Figure 26-7

Simplifying Common Web Requests with WebClient
When I first saw a demo of WebRequest back in early 2000, I was delighted. Here was the ability to eas-
ily access Internet resources waiting for me to play with. However, one of the other attendees of the demo
asked, “Why is that so difficult? You need to do so much to get it to work.” The next time I saw the same
WebRequest demo, the presenter concluded with, “For those of you doing the common scenarios, we
have an even easier way.” He then went on to show us how to use System.Net.WebClient.

For those times when you just want to send a GET or POST request and download a file or the resulting
data, you can forget about WebRequest/WebResponse. WebClient abstracts away all of the little details
of making Web requests, and makes it amazingly easy to grab data from the Web. The important meth-
ods and properties of the WebClient class are described in the following table.

952

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 952

Member Description

DownloadData Returns a Byte array of data from the server. This is essentially the same
as if you had called the Read method on the stream returned from GetRe-
sponseStream. You could then save this to a binary file, or convert to text
using an appropriate Encoding. However, see DownloadFile and Down-
loadString below for two easier ways of performing these tasks.

DownloadFile Retrieves a file from the server, and saves it locally.

DownloadString Returns a block of text from the server.

OpenRead Returns a stream providing data from the server. This is essentially the
same stream returned from the call to GetResponseStream.

OpenWrite Returns a stream you can use to write to the server. This is essentially the
same as creating a WebRequest and writing to the GetResponse stream.

UploadData Sends a Byte array of data to the server. See UploadFile, UploadString,
and UploadValues for easier ways of performing this task.

UploadFile Sends a local file up to the server for processing.

UploadString POSTs a string to the server. This is very handy when you are simulating
HTML form input.

UploadValues Sends a set of name/value pairs to the server. This is similar to the for-
mat used by QueryString values, and this method is quite useful for sim-
ulating HTML input.

BaseAddress The base URL the WebClient will access, for example:
http://www.example.com.

Credentials Credentials that will be used when performing any request. You can
either create a new NetworkCredential to use this, or alternately, set the
UseDefaultCredentials property to true to use the credentials the user
has logged in as.

Headers Collection of headers that will be used for the request.

Proxy Overrides the proxy settings from Internet Explorer if set. By default you
should never need to set this property as the normal proxy settings are
chosen by default.

QueryString Collection of name/value pairs that will be sent with the request. This
represents the values after the ‘?’ on a request.

ResponseHeaders Collection of headers returned by the server.

All of the DownloadX and UploadX methods also support an asynchronous version of the method,
called DownloadXAsync, such as DownloadFileAsync or UploadValuesAsync. These methods per-
form the actual request on a background thread, and fire an event when the task is completed. If your
application has some form of user interface, such as a Form, you should generally use these methods to
keep your application responsive.

953

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 953

As WebClient uses the WebRequest classes to actually perform its magic, it can greatly simplify net-
work coding. For example, just replace the code used in the WebRequest sample created earlier.

Before:

Public Function Define(ByVal word As String) As String()
Dim req As HttpWebRequest = Nothing
Dim resp As HttpWebResponse
Dim query As String
Dim result As New List(Of String)

query = “http://www.google.com/search?q=define%3A” & _
HttpUtility.UrlEncode(word)

Try
req = DirectCast(WebRequest.Create(query), HttpWebRequest)
With req

.Method = “GET”
resp = req.GetResponse
If resp.StatusCode = HttpStatusCode.OK Then

ParseResponse(resp.GetResponseStream, result)
Else

MessageBox.Show(“Error calling definition service”)
End If

End With
Catch ex As Exception

End Try

Return result.ToArray()

End Function

After:

Public Function Define(ByVal word As String) As String()
Dim client As New WebClient
Dim query As String
Dim result As New List(Of String)

query = “http://www.google.com/search?q=define%3A” & _
HttpUtility.UrlEncode(word)

Try
result = ParseResponse(client.DownloadString(query))

Catch ex As Exception

End Try

Return result.ToArray()

End Function

954

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 954

WebClient avoids all of the stream handling required for WebRequest. However, you should still know
how WebRequest operates, as this knowledge is directly relatable to WebClient.

Creating Your Own Web Server with HttpListener
One feature of the .NET Framework 2.0 that got me extremely excited was the new HttpListener class
(and related classes). This class enables you to very easily create your own Web server. While it likely
wouldn’t be a replacement for IIS, it can enable you to add Web server functionality to other applica-
tions. For example, rather than using Remoting or MSMQ to create a communication channel between
two applications, why not use HTTP? Each instance could host its own little Web server, and then you
could use HttpWebRequest or WebClient to communicate between them. Alternately, many applica-
tions and hardware devices now provide a built-in Web application enabling you to configure the device
or application via a Web browser.

The fine print. Unfortunately, the HttpListener class relies on the new Http.sys functionality
built into IIS 6.0, so you must be using an operating system that includes http.sys as a systemwide
HTTP service. Only Windows Server 2003 and Windows XP SP2 (and future versions of the operating
system) include this functionality. So, this is yet another reason to upgrade, and to install Service
Packs. Future operating systems should all provide this functionality.

HttpListener works by registering one or more “Prefixes” with http.sys. Once this is done,
any requests intercepted by the HTTP subsystem will be passed on to the registered listener. An
HttpListenerContext object is created and passed to your listener. This context contains properties
for the Request and Response objects, just as the Context object in ASP.NET does. Again, similar to Web
applications, you read the request from the Request property, and write the response to the Response
property. Closing the Response sends the resulting page to the user’s browser. The following table
describes the important members of HttpListener.

Member Description

Abort Shuts down the server, without finishing any existing requests.

Close Shuts down the server, after finishing handling any existing requests.

Start Starts the listener receiving requests.

Stop Stops the listener from receiving requests.

IsListening Property that determines if the listener is currently receiving requests.

Prefixes Collection of the types of requests that this listener will respond to. These are
the ‘left hand side’ of the URL, such as ‘http://localhost:8080/’ or ‘http://
serverName:1234/vrootName/’. Note that you must end the prefix in a slash,
or you will receive a runtime error. If you have IIS installed on the same
server, you can use port 80, as long as a vroot with the same name is not
already defined by IIS.

Creating Your Web Server
To demonstrate using HttpListener, I’ll show you how to create a Windows Service to host its function-
ality. This could simulate a management or monitoring interface to a Windows Service that would enable
authenticated individuals to use the Windows Service remotely or to get other information out of it.

955

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 955

1. Create a new Windows Service application called MiniServer. The server won’t do much on its
own, but will host an HttpListener.

2. From the Components section of the toolbox, add a BackgroundWorker component. Call this
component BackgroundWork. The other properties can remain at their defaults. This
BackgroundWorker will be used to process HTTP requests on a background thread, simplifying
the handling of the threads.

3. Switch to code view for the service. Add the Imports statements you need to the top of the file.

Imports System.Net
Imports System.IO
Imports System.Web
Imports System.Text

4. In the OnStart method, set up the list of Prefixes that the server will respond to. This can be as
simple as adding a port address to the URL, or include specific vroots. In the sample’s case,
there are examples of each:

Protected Overrides Sub OnStart(ByVal args() As String)
‘args(0) will allow us to override the port
Dim machineName As String

machineName = System.Environment.MachineName
theService = HttpUtility.UrlEncode(Me.ServiceName)

Me.EventLog.WriteEntry(“Service Name: “ & Me.ServiceName)

With listener
.Prefixes.Add(String.Format(“http://{0}:{1}/”, _

“localhost”, PORT.ToString))
.Prefixes.Add(String.Format(“http://{0}:{1}/”, _

machineName, PORT.ToString))
.Prefixes.Add(String.Format(“http://{0}/{1}/”, _

“localhost”, theService))
.Prefixes.Add(String.Format(“http://{0}/{1}/”, _

machineName, theService))
.Start()

End With
‘start up the background thread
Me.BackgroundWork.RunWorkerAsync()

End Sub

In this case, the server will respond to a prefix in any of the formats (the sample computer is
called Tantalus):

http://localhost:9090/
http://tantalus:9090/
http://localhost/sampleservice/
http://tantalus/sampleservice/

Note: There is one important point to keep in mind as you add prefixes. They must
end in a slash (“/”) character. If not, you will get a runtime error when the listener
attempts to add that prefix.

956

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 956

After initializing the Prefixes collection, calling the Start method binds the listener to the
appropriate ports and vroots and starts it accepting requests. However, we don’t want to actu-
ally receive the requests in the OnStart handler. Remember that the service doesn’t actually
start until after this method has completed. So, having a lot of processing in the OnStart will
actually prevent the service from completing. Therefore, we use another of the new features of
Visual Basic 2005, the BackgroundWorker component, to handle the requests. Call its
RunWorkerAsync to start the background task (in our case, the HttpListener).

5. The OnStop method will serve to shutdown the HttpListener.

Protected Overrides Sub OnStop()
With listener

.Stop()

.Close()
End With

End Sub

6. The background task performed by the BackgroundWorker component can be any process that
you don’t want to interfere with the normal application’s processing. If this was a Windows
Forms application, having a long running loop or other process running might prevent the
application from drawing, or responding to the user’s requests. Beyond that, we can do any-
thing we want in the background task, with one exception. Because a Windows Forms applica-
tion works in a single foreground task, one can’t directly access the controls on the Form from
the background task. Instead, if the background task must change properties on the controls, it
should fire events. The controls can then subscribe to those events, where you can access the
properties. In this Windows Service, it has no such user interface, so that problem is avoided.

The actual work you want the BackgroundWorker to perform is in the DoWork event handler:

Private Sub BackgroundWork_DoWork(ByVal sender As System.Object, _
ByVal e As System.ComponentModel.DoWorkEventArgs) Handles BackgroundWork.DoWork

Dim context As HttpListenerContext
Dim path As String

‘this is where we actually process requests
While listener.IsListening

context = listener.GetContext
path = context.Request.Url.AbsolutePath.ToLower

‘strip out the serviceName if you’re using the URL format:
‘http://server/servicename/path
If path.StartsWith(“/” & theService.ToLower) Then

path = path.Substring(theService.Length + 1)
End If
Me.EventLog.WriteEntry(“Received request for “ & path)

Select Case path
Case “/time”

SendPage(context.Response, DateTime.Now.ToLongTimeString)
Case “/date”

SendPage(context.Response, DateTime.Now.ToLongDateString)
Case “/random”

SendPage(context.Response, New Random().Next.ToString)
Case Else

‘if we don’t understand the request, send a 404

957

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 957

context.Response.StatusCode = 404
End Select

End While
End Sub

Our background task performs its work in a loop as long as the HttpListener is actively lis-
tening. Every developer knows that performing a set of tasks in a (relatively) tight loop is dan-
gerous, possibly leading to computer or application lockup. However, the BackgroundWorker
performs this on another thread, leaving our application responsive.

For this application, we first get access to the context for the listener. The context groups
together one client’s set of communication with our listener. Similar to the HttpContext in
ASP.NET, the HttpListenerContext provides access to the HttpListenerRequest and
HttpListenerResponse objects, so the first step in handling a request should always be to get
this context. Next, the code uses a very simple means of determining the request URL. In a more
full-featured implementation, this could be more complex, separating any query values from
the path requested, etc. For this sample, the listener only responds to three main paths, “/time”,
“/date”, and “/random” to receive the current (server) time or date, or a random Integer value.
If the user requests anything else, we return a 404.

7. The SendPage subroutine simply writes out a basic HTML page, and the value determined.

Private Sub SendPage(ByVal response As HttpListenerResponse, _
ByVal message As String)

Dim sb As New StringBuilder

‘build string
With sb

.Append(“<html><body>”)

.AppendFormat(“<h3>{0}</h3>”, message)

.Append(“</body></html>”)
End With

Me.EventLog.WriteEntry(sb.ToString)

‘set up content headers
With response

.ContentType = “text/html”

.ContentEncoding = Encoding.UTF8

.ContentLength64 = sb.ToString.Length
Me.EventLog.WriteEntry(sb.ToString.Length.ToString)

Try
Using writer As New StreamWriter(.OutputStream)

With writer
.Write(sb.ToString)
.Flush()

End With
End Using

Catch ex As Exception
Me.EventLog.WriteEntry(ex.Message, EventLogEntryType.Error)

958

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 958

Finally
‘close the response to end
.Close()

End Try
End With

End Sub

Hopefully there isn’t much surprising in this code. Using a StringBuilder, a response is built.
Then the content is written back to the browser (see Figure 26-8) using a StreamWriter that is
created on top of the Response.OutputStream. Remember to Close the Response, or the
request will never close until it times out.

Figure 26-8

8. Before you can install and test your Windows Service, however, it must be installed. On the
Properties window for the actual service, click Add Installer (see Figure 26-9). This adds a
new file to the project called ProjectInstaller.vb, and adds two components to the file,
ServiceInstaller1 and ServiceProcessInstaller1. You can either keep these names
or change them as you desire. In addition, set the properties as in the following table.

Figure 26-9

959

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 959

Component Property Value

ServiceInstaller1 Description Sample Service from Wrox Professional Visual
Basic 2005

DisplayName Sample Service

ServiceName SampleService

ServiceProcessInstaller1 Account LocalSystem

Most of these properties only affect the display values for the Windows Service. However, the
Account property of the ServiceProcessInstaller deserves special mention. Windows
Services run on behalf of the user. Therefore, they can actually run under another user account.
By setting the Account property to LocalSystem, you are setting the resulting Windows
Service to run under the local system account. This account has a lot of access to the system, so
you may want to instead use an account with more limited rights to the system; however you
would have to create this account separately.

9. Build the Windows service. Unfortunately, if you attempt to run the service directly from Visual
Basic, you will get an error message (see Figure 26-10).

Figure 26-10

A Windows Service can only run if it has been installed into the system, and this task is per-
formed using a command-line utility InstallUtil.exe. Open the Visual Studio Command
Prompt and navigate to the directory where you have built MiniServer.exe. Run installutil
miniserver.exe, and hopefully you’ll be greeted with a success message (see Figure 26-11).

960

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 960

Figure 26-11

10. Finally, you can start your new service. Open the Services application from Start ➪ All Programs ➪

Administrative Tools. Find the Sample Service in the list (see Figure 26-12), and click Start. You
should now be able to request one of the items the service is listening to, such as http://local
host:9090/time (see Figure 26-13).

961

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 961

Figure 26-12

Figure 26-13

Just to confirm that all of the Prefixes work, you can also request one of the values using the
vroot rather than using the port (see Figure 26-14).

962

Chapter 26

29_575368 ch26.qxd 10/7/05 11:22 PM Page 962

Figure 26-14

The HttpListener adds yet another powerful way for your applications to communicate. It gives you
the ability to extend the reach of your applications out to Web browser clients, without requiring the
additional administrative and management overhead of IIS to your deployment.

Summary
Programming directly to the network provides a great deal of power and flexibility. Of course, all of that
power and flexibility comes at a cost. Many of the services provided by higher-level technologies, such
as Web Services or Remoting, aren’t available, and must often be re-created. However, in those situations
where you must communicate with an existing application, or when you need the ultimate in control
and speed, using the classes in System.Net make life easier than it would be otherwise.

This chapter looked at many of the classes that expose network programming. You’ve seen how to make
Web requests without a browser, so you could use the data on the Internet in your applications; you’ve
seen how you can leverage the bare sockets layer to write your own communication protocols, and finally,
you’ve seen some of the new classes in Visual Basic 2005 for creating FTP clients and Web servers.

963

Network Programming

29_575368 ch26.qxd 10/7/05 11:22 PM Page 963

29_575368 ch26.qxd 10/7/05 11:22 PM Page 964

Visual Basic and
the Internet

In today’s network-centric world, it’s very likely that applications will need to work with other
computers over a private network, the Internet, or both.

This chapter details how to:

❑ Download resources from the Web

❑ Design your own communication protocols

❑ Reuse Internet Explorer in your applications

A good place to start working with network resources is with a look at how to download content
from the Web.

Downloading Internet Resources
Downloading content from the Web is very easy, so you’ll throw together a basic application
before getting onto some more meaty topics. This application will download HTML from a Web
page and display it in a text box. Later on, you’ll look at how you can display HTML properly by
hosting Internet Explorer (IE) directly using the new WebBrowser control in Windows Forms
applications, but for now you’ll just use plain text.

In order to download a Web page, you need to be able to identity the remote page that you wish
to download, make a request of the Web server that can provide that page, listen for the response,
and download the data for the resource.

30_575368 ch27.qxd 10/7/05 11:24 PM Page 965

The relevant classes for this example are System.Uri, System.Net.WebRequest, System.Net
.HttpWebRequest, and System.Net.HttpWebResponse:

❑ System.Uri is a useful general-purpose class for expressing a Uniform Resource Identifier (URI).
A Uniform Resource Locator (URL) is a type of URI (although in reality the terms are so confused
that they are often used interchangeably). A URI, however is “more than” a URL, which is
why this .NET class is Uri and not Url. System.Uri has many properties for decoding a
URI. For example, if you had a string like www.pretendcompany.com:8080/ myservices/
myservice.asmx?WSDL, you could use the Port property to extract the port number, the Query
property to extract the query string, and so on.

❑ A WebRequest expresses some kind of Internet resource whether it is located on the LAN or
WAN (so in my opinion a better name for this class would be NetRequest, as the classes aren’t
specifically related to the Web protocol).

❑ Protocol-specific descendants of WebRequest carry out the actual request: HttpWebRequest
expresses an HTTP download and FileWebRequest expresses a file download, for example
file://c:/MyFile.txt.

❑ An HttpWebResponse is returned once a connection to the Web server has been made and the
resource is available to download.

There are another two major classes related to working with the Internet in the .NET Framework. One is
System.Net.WebClient and the other is System.Net.WebProxy. WebClient is basically a helper class
that wraps the request and response classes previously mentioned.

As this is a professional-level book, I’m going to show you what to do behind the scenes, in effect,
reengineer what WebClient can do. I’ll talk about WebProxy later, which allows you to explicitly define
a proxy server to use for Internet communications.

Let’s use these classes to build an application. Create a new Windows application, create a new form,
and add controls to it as shown in Figure 27-1.

Figure 27-1

The control names are: textUrl, buttonGo, and textData. The Anchor properties of the controls are
set so that the form resizes properly. The control textUrl should be set to Top, Left, Right; buttonGo
to Top, Right; and textData to Top, Left, Bottom, Right.

966

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 966

Add these namespace import declarations to the form’s code:

Imports System.IO
Imports System.Net
Imports System.Text

To keep the code simple, you’ll include all the functionality into the Click handler of buttonGo. In an
ideal world, you want to break the code in the handler out to a separate method. This enriches the inter-
face of the object and promotes good reuse.

The first thing you do here is create a new System.Uri based on the URL that the user enters into the
text box:

Private Sub buttonGo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonGo.Click

Dim uri As New Uri(textUrl.Text)

Then, you’ll illustrate some of the useful properties of System.Uri:

Dim builder As New StringBuilder
builder.Append(“AbsolutePath: “ & uri.AbsolutePath & VbCrLf)
builder.Append(“AbsoluteUri: “ & uri.AbsoluteUri & VbCrLf)
builder.Append(“Host: “ & uri.Host & VbCrLf)
builder.Append(“HostNameType: “ & uri.HostNameType.ToString() & _

VbCrLf)
builder.Append(“LocalPath: “ & uri.LocalPath & VbCrLf)
builder.Append(“PathAndQuery: “ & uri.PathAndQuery & VbCrLf)
builder.Append(“Port: “ & uri.Port & VbCrLf)
builder.Append(“Query: “ & uri.Query & VbCrLf)
builder.Append(“Scheme: “ & uri.Scheme)
MsgBox(builder.ToString())

The shared Create method of System.Net.WebRequest is used to create the actual object that you can
use to download the Web resource. Notice how you don’t create an instance of HttpWebRequest; you’re
working with a return object of type WebRequest. However, you’ll actually be given an HttpWebRequest
object, and WebRequest chooses the most appropriate class to return based on the URI. This allows you to
build your own handlers for different network resources that can be used by consumers who simply sup-
ply an appropriate URL.

To make the request and get the response back from the server (so ultimately you can access the data), you
call the GetResponse method of WebRequest. In your case, you’ll get an HttpWebResponse object — once
more it’s up to the implementation of the WebRequest-derived object, in this case HttpWebRequest, to
return an object of the most suitable type.

If the request is not okay, you’ll get an exception (which for the sake of simplicity you won’t bother pro-
cessing). If the request is okay, you can get the length and the type of the response using properties of
the WebResponse object:

Dim request As WebRequest = WebRequest.Create(uri)
Dim response As WebResponse = request.GetResponse()
builder = New StringBuilder

967

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 967

builder.Append(“Request type: “ & request.GetType().ToString() & VbCrLf)
builder.Append(“Response type: “ & response.GetType().ToString() & VbCrLf)
builder.Append(“Content length: “ & response.ContentLength & _

“ bytes” & VbCrLf)
builder.Append(“Content type: “ & response.ContentType & VbCrLf)
MsgBox(builder.ToString())

It just remains for you to download the information. You can do this through a stream (WebResponse
objects return a stream by overriding GetResponseStream), and what’s more, you can use a System
.IO.StreamReader to download the whole lot in a single call by calling the ReadToEnd method. This
method will only download text, so if you want to download binary data you’ll have to use the methods
on the Stream object directly, or use a System.IO.BinaryReader.

Dim stream As Stream = response.GetResponseStream()
Dim reader As New StreamReader(stream)
Dim data As String = reader.ReadToEnd()
reader.Close()
stream.Close()
textData.Text = data

End Sub

If you run the application, enter a URL of www.reuters.com, and click the Go button, you’ll see debug-
ging information about the URL, as shown in Figure 27-2.

Figure 27-2

This is a simple URL. The application tells you that the scheme is http, and the host name type is Dns.
If, for example, you enter an IP into the URL to be requested rather than a host name, this type will
come back as IPv4. This tells you where the host name came from; in this case, it’s a general Internet
host name.

Next, the application as shown in Figure 27-3 provides information about the response.

968

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 968

Figure 27-3

Finally, you get to see the response data itself as illustrated in Figure 27-4.

Figure 27-4

Perhaps the most important exception to be aware of when using these classes is the System.Net
.WebException exception. If anything goes wrong on the WebRequest.GetResponse call, this excep-
tion will be thrown. Among other things, this exception provides access to the WebResponse object
through the Response property. The StatusCode property of WebResponse tells you what actually
happened through the HttpStatusCode enumeration. For example, HttpStatusCode.NotFound is
the equivalent of the HTTP 404 status code.

Sockets
There may be times when you need to transfer data across a network (either a private network or the
Internet) when the existing techniques and protocols don’t exactly suit your needs. For example, you
wouldn’t be able to download resources using the techniques discussed at the start of this chapter, and
you can’t use Web Services (as described in Chapter 23) or remoting (as described in Chapter 24). When
this happens, the best course of action is to roll your own protocol using sockets.

TCP/IP, and therefore, the Internet itself, is based on sockets. The principle is simple, establish a port at
one end and allow clients to “plug in” to that port from the other end. Once the connection is made,
applications can send and receive data through a stream. For example, HTTP nearly always operates on
port 80. So, a Web server opens a socket on port 80 and waits for incoming connections (Web browsers,
unless told otherwise, attempt to connect to port 80 in order to make a request of that Web server).

969

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 969

In .NET, sockets are implemented in the System.Net.Sockets namespace and use classes from
System.Net and System.IO to get the stream classes. Although working with sockets can be a little
tricky outside of .NET, the Framework includes some superb classes that enable you to open a socket for
inbound connections (System.Net.TcpListener) and for communication between two open sockets
(System.Net.TcpClient). These two classes, in combination with some threading shenanigans, allow
you build your own protocol, through which you can send any data you like. With your own protocol,
you have ultimate control over the communication.

To demonstrate these techniques, you’re going to build Wrox Messenger, a very basic instant messenger
application similar to MSN Messenger.

Building the Application
You’ll wrap all the functionality of your application into a single Windows application. This application
will act as both a server that waits for inbound connections and a client that has established outbound
connections.

Create a new project called WroxMessenger. Change the title of Form1 to Wrox Messenger and add a
TextBox control called textConnectTo and a Button control called buttonConnect. The form should
appear as shown in Figure 27-5.

Figure 27-5

We’ll talk about this in more detail in a little while, but for now it’s very important that all of your UI
code runs in the same thread, and that the thread is actually the main application that creates and runs
Form1.

To keep track of what’s happening, you’ll add a field to Form1 that allows you to store the ID of the startup
thread and also report that ID on the caption. This will help you gain an understanding of the thread/UI
issues that are discussed later. You’ll also need some namespace imports and a constant specifying the ID
of the default port. Add this code to Form1:

Imports System.Net
Imports System.Net.Sockets

Public Class Form1
Inherits System.Windows.Forms.Form

Private Shared _mainThreadId As Integer
Public Const ServicePort As Integer = 10101

Next, open the designer file for Form1 (Form1.Designer.vb) and add this code to the constructor that
populates the field and changes the caption:

970

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 970

<System.Diagnostics.DebuggerNonUserCode()> _
Public Sub New()

MyBase.New()

‘This call is required by the Windows Form Designer.
InitializeComponent()

mainThreadId = System.Threading.Thread.CurrentThread.GetHashCode()

Text &= “-” & _mainThreadId.ToString()

End Sub

Note that you can get to the Form1.Designer.vb file by starting from the Form1.vb file and using
Visual Studio by selecting Form1 and New in the uppermost drop-downs in the document window. This
will cause the Form1.Designer.vb file to open for you.

To listen for incoming connections, you’ll create a separate class called Listener. This class will use an
instance of System.Net.Sockets.TcpListener to wait for incoming connections. Specifically, this will
open a TCP port that any client can connect to — sockets are absolutely not platform-specific. Although
connections are always made on a specific, known port, the actual communication takes place on a port
of the TCP/IP subsystem’s choosing, which means you can support many inbound connections at once,
despite the fact that each of them connects to the same port. Sockets are an open standard available on
pretty much any platform you care to mention. For example, if you publish the specification for your
protocol, developers working on Linux would be able to connect to your Wrox Messenger service.

When you detect an inbound connection, you’ll be given a System.Net.Sockets.TcpClient object.
This is your gateway to the remote client. To send and receive data, you need to get hold of a System.
Net.NetworkStream object (returned through a call to GetStream on TcpClient), which returns a
stream that you can use.

Create a new class called Listener. This thread needs members to hold an instance of a System.
Threading.Thread object and also a reference back to the Form1 class that is the main form in the
application. We won’t go into a discussion of how to spin up and spin down threads, nor are we going to
talk about synchronization. (You should refer back to Chapter 22 if you need more information on this.)

Here’s the basic code for the Listener class:

Imports System.Net.Sockets
Imports System.Threading

Public Class Listener

Private _main As Form1
Private _listener As TcpListener
Private _thread As Thread

Public Sub New(ByVal main As Form1)
_main = main

End Sub

971

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 971

Public Sub SpinUp()

‘ create and start the new thread...
_thread = New Thread(AddressOf ThreadEntryPoint)
_thread.Start()

End Sub
End Class

The obvious missing method here is ThreadEntryPoint. This is where you need to create the socket
and wait for inbound connections. When you get them, you’ll be given a TcpClient object, which you
need to pass back to Form1, where the conversation window can be created.

To create the socket, create an instance of TcpListener and give it a port. In your application, the port
you’re going to use is 10101. This port should be free on your computer, but if the debugger breaks on
an exception when you instantiate TcpListener or call Start, try another port. Once you’ve done that
and called Start to configure the object to listen for connections, you drop into an infinite loop and call
AcceptTcpClient. This method will block until the socket is closed, or a connection becomes available.
If you get Nothing back, either the socket is closed or there’s a problem, so you drop out of the thread. If
you get something back, then you pass the TcpClient over to Form1 through a call to the (not yet built)
ReceiveInboundConnection method:

‘ ThreadEntryPoint...
Protected Sub ThreadEntryPoint()

‘ Create a socket...
_listener = New TcpListener(Form1.ServicePort)
_listener.Start()

‘ Loop infinitely, waiting for connections.
Do While True

‘ Get a connection...
Dim client As TcpClient = _listener.AcceptTcpClient()
If client Is Nothing Then
Exit Do

End If
‘ Process it...
_main.ReceiveInboundConnection(client)
Loop

End Sub

It’s in the ReceiveInboundConnection method that you’ll create the Conversation form that the user
can use to send messages.

Creating Conversation Windows
When building Windows Forms applications that support threading, there’s always the possibility of
running into a problem with the Windows messaging subsystem. This is a very old part of Windows
(the idea has been around since version 1.0 of the platform, although the implementation on modern
Windows versions is far removed from the original) that powers the Windows user interface.

972

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 972

Even those who are not familiar with old-school Windows programming, such as MFC, Win32, or even
Win16 development, should be familiar with events. When you move a mouse over a form, you get
MouseMove events. When you close a form, you get a Closed event. There’s a mapping between these
events and the messages that Windows passes around to support the actual display of the windows.
For example, whenever you receive a MouseMove event, a message called WM_MOUSEMOVE is sent to the
window, by Windows, in response to the mouse driver. In .NET, and in other Rapid Application
Development (RAD) environments like VB and Delphi, this message is converted into an event that you
can write code against.

Although this is getting way off the topic — you know how to build Windows Forms applications by
now and don’t need the details of messages like WM_NCHITTEST or WM_PAINT— it has an important
implication. In effect, Windows creates a message queue for each thread into which it posts the messages
that the thread’s windows have to work with. This queue is looped on a virtually constant basis, and the
messages are distributed to the appropriate window (remember, small controls like buttons and text
boxes are also windows). In .NET, these messages are turned into events, but unless the message queue
still gets looped the messages don’t get through.

Imagine that Windows needs to paint a window. It will post a WM_PAINT message to the queue. A mes-
sage loop implemented on the main thread of the process containing the window detects the message
and dispatches it on to the appropriate window where it is processed. Now, imagine that the queue isn’t
looped. The message never gets picked up, and the window will never get painted.

In a Windows application, a single thread is usually responsible for message dispatch. This thread is usu-
ally (although it doesn’t have to be) the main application thread, the one that’s created when the process is
first created. If you create windows in a different thread, then that new thread has to support the message
dispatch loop so that messages destined for the windows get through. However, with Listener, you
have no code for processing the message loop and there’s little point in writing any, because the next time
you call AcceptTcpClient you’re going to block and everything will stop working.

The trick then is to create the windows only in the main application thread, which is the thread that cre-
ated Form1 and that is processing the messages for all the windows created in this thread. You can pass
calls from one thread to the other by calling the Invoke method of Form1.

This is where things start to get complicated. There is an awful lot of code to write to get to a point
where you can see that the socket connection has been established and get conversation windows to
appear. Here’s what you need to do:

❑ Create a new Conversation form. This form will need controls for displaying the total content of
the conversation, plus a TextBox control for adding new messages.

❑ The Conversation window will need to be able to send and receive messages through its own
thread.

❑ Form1 needs to be able to initiate new connections. This will be done in a separate thread that is
managed by the thread pool. When the connection has been established, a new Conversation
window needs to be created and configured.

❑ Form1 also needs to receive inbound connections. When it gets one of these, a new
Conversation needs to be created and configured.

Let’s look at these problems one at a time.

973

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 973

Creating the Conversation Form
The simplest place to start is to build the new Conversation form. This needs three TextBox controls
(textUsername, textMessages, and textMessage) and a Button control (buttonSend). The form is
shown in Figure 27-6.

Figure 27-6

This class requires a number of fields and an enumeration. It needs fields to hold the username of the user
(which you’ll default to Evjen), the underlying TcpClient, and the NetworkStream returned by that
client. The enumeration indicates the direction of the connection (which will help you when debugging):

Imports System.Net
Imports System.Net.Sockets
Imports System.Text
Imports System.Threading
Imports System.Runtime.Serialization.Formatters.Binary

Public Class Conversation
Inherits System.Windows.Forms.Form

Private _username As String = “Evjen”
Private _client As TcpClient
Private _stream As NetworkStream
Private _direction As ConversationDirection

Public Enum ConversationDirection As Integer
Inbound = 0
Outbound = 1

End Enum

We won’t look into the issues of establishing a thread for exchanging messages at this stage, but we will
look at implementing the ConfigureClient method. This method will eventually do more work than
this, but, for now, it sets a couple of fields and calls UpdateCaption:

Public Sub ConfigureClient(ByVal client As TcpClient, _
ByVal direction As ConversationDirection)

‘ Set it up...

974

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 974

_client = client
_direction = direction

‘ Update the window...
UpdateCaption()

End Sub

Protected Sub UpdateCaption()

‘ Set the text.
Dim builder As New StringBuilder(_username)
builder.Append(“ - “)
builder.Append(_direction.ToString())
builder.Append(“ - “)
builder.Append(Thread.CurrentThread.GetHashCode())
builder.Append(“ - “)
If Not _client Is Nothing Then
builder.Append(“Connected”)

Else
builder.Append(“Not connected”)

End If
Text = builder.ToString()

End Sub

One debugging issue that you have is that if you’re connecting to a conversation on the same machine, you
need a way of changing the name of the user sending each message; otherwise, things will get confusing.

That’s what the topmost TextBox control is for. In the constructor, set the text for the textUsername.Text
property:

Public Sub New()
MyBase.New()
‘This call is required by the Windows Form Designer.

InitializeComponent()

‘Add any initialization after the InitializeComponent() call
textUsername.Text = _username

End Sub

On the TextChanged event for this control, update the caption and the internal _username field:

Private Sub textUsername_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles textUsername.TextChanged

_username = textUsername.Text
UpdateCaption()

End Sub

Initiating Connections
Form1 needs to be able to both initiate connections and receive inbound connections — the application is
both a client and a server. You’ve already created some of the server portion by creating Listener, and
now you’ll look at the client side.

975

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 975

The general rule when working with sockets is that any time you send anything over the wire, you must
perform the actual communication in a separate thread. Virtually all calls to send and receive do so in a
blocking manner; that is, they block until data is received, block until all data is sent, and so on.

If threads are used well, the UI will keep running as normal, irrespective of the problems that may occur
during transmitting and receiving. This is why in the InitiateConnection method on Form1 you
defer processing to another method called InitiateConnectionThreadEntryPoint, which is called
from a new thread:

Public Sub InitiateConnection()
InitiateConnection(textConnectTo.Text)

End Sub

Public Sub InitiateConnection(ByVal hostName As String)

‘ Give it to the threadpool to do...
ThreadPool.QueueUserWorkItem(AddressOf _
Me.InitiateConnectionThreadEntryPoint, hostName)

End Sub

Private Sub buttonConnect_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles buttonConnect.Click

InitiateConnection()
End Sub

Inside the thread, you try to convert the host name that you’re given into an IP address (localhost is
used as the host name in the demonstration, but it could be the name of a machine on the local network
or a host name on the Internet). This is done through the shared Resolve method on System.Net.Dns
and returns a System.Net.IPHostEntry object. As a host name can point to multiple IP addresses,
you’ll just use the first one that you’re given. You take this address expressed as an IP (for example,
192.168.0.4) and combine it with the port number to get a new System.Net.IPEndPoint. You create
a new TcpClient from this IPEndPoint and try to connect.

If at any time an exception is thrown (which can happen because the name couldn’t be resolved or
the connection could not be established), you’ll pass the exception over to
HandleInitiateConnectionException. If it succeeds, you’ll pass it to
ProcessOutboundConnection. Both of these methods will be implemented shortly:

Private Sub InitiateConnectionThreadEntryPoint(ByVal state As Object)

Try
‘ Get the host name...

Dim hostName As String = CStr(state)

‘ Resolve...
Dim hostEntry As IPHostEntry = Dns.Resolve(hostName)
If Not hostEntry Is Nothing Then

‘ Create an end point for the first address.

976

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 976

Dim endPoint As New IPEndPoint(hostEntry.AddressList(0), ServicePort)

‘ Create a TCP client...
Dim client As New TcpClient
client.Connect(endPoint)

‘ Create the connection window...
ProcessOutboundConnection(client)

Else
Throw New ApplicationException(“Host ‘“ & hostName & _
“‘ could not be resolved.”)

End If
Catch ex As Exception
HandleInitiateConnectionException(ex)

End Try
End Sub

When it comes to HandleInitiateConnectionException, you start to see the inter-thread UI prob-
lems that were mentioned earlier. When there is a problem with the exception, you need to tell the user,
which means that you need to move the exception from the thread-pool-managed thread into the main
application thread. The principle for this is the same, you need to create a delegate and call that delegate
through the Invoke method of the form. This method does all the hard work in marshaling the call
across to the other thread.

Here’s what the delegates look like. They have the same parameters of the calls themselves. As a naming
convention, it’s a good idea to use the same name as the method and tack the word Delegate on the end:

Public Class Form1
Inherits System.Windows.Forms.Form
Private Shared _mainThreadId As Integer

‘ delegates...
Protected Delegate Sub HandleInitiateConnectionExceptionDelegate(_

ByVal ex As Exception)

In the constructor for Form1, you capture the thread caller’s thread ID and store it in _mainThreadId.
Here’s a method that compares the captured ID with the ID of the current thread:

Public Shared Function IsMainThread() As Boolean
If Thread.CurrentThread.GetHashCode() = _mainThreadId Then
Return True

Else
Return False

End If
End Function

The first thing you do at the top of HandleInitiateConnectionException is to check the thread ID. If
it doesn’t match, you create the delegate and call it. Notice how you set the delegate to call back into the
same method, because the second time it’s called you would have moved to the main thread; therefore,
IsMainThread will return True, and you can process the exception properly:

977

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 977

Protected Sub HandleInitiateConnectionException(ByVal ex As Exception)

‘ main thread?
If IsMainThread() = False Then

‘ Create and call...
Dim args(0) As Object
args(0) = ex
Invoke(New HandleInitiateConnectionExceptionDelegate(AddressOf _
HandleInitiateConnectionException), args) ‘ return

Return
End If

‘ Show it.
MsgBox(ex.GetType().ToString() & “:” & ex.Message)

End Sub

The result is that when the call comes in from the thread-pool-managed thread, IsMainThread returns
False, and the delegate is created and called. When the method is entered again as a result of the dele-
gate call, IsMainThread returns True and you see the message box.

When it comes to ProcessOutboundConnection, you have to again jump into the main UI thread.
However, the magic behind this method is implemented in a separate method called ProcessConnection,
which can handle either inbound or outbound connections. Here’s the delegate:

Public Class Form1
Inherits System.Windows.Forms.Form

Private Shared _mainThreadId As Integer

Private _listener As Listener

Protected Delegate Sub ProcessConnectionDelegate(ByVal client As _
TcpClient, ByVal direction As Conversation.ConversationDirection)

Protected Delegate Sub HandleInitiateConnectionExceptionDelegate(ByVal _
ex As Exception)

Here’s the method itself, which creates the new Conversation form and calls the ConfigureClient
method:

Protected Sub ProcessConnection(ByVal client As TcpClient, _
ByVal direction As Conversation.ConversationDirection)

‘ Do you have to move to another thread?
If IsMainThread() = False Then

‘ Create and call...
Dim args(1) As Object
args(0) = client
args(1) = direction
Invoke(New ProcessConnectionDelegate(AddressOf ProcessConnection), _

args)

978

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 978

Return
End If
‘ Create the conversation window...

Dim conversation As New Conversation
conversation.Show()
conversation.ConfigureClient(client, direction)

End Sub

Of course, ProcessOutboundConnection needs to defer to ProcessConnection:

Public Sub ProcessOutboundConnection(ByVal client As TcpClient)
ProcessConnection(client, Conversation.ConversationDirection.Outbound)

End Sub

Now that you can connect to something on the client side, let’s look at how to receive connections (on
the server side).

Receiving Inbound Connections
You’ve already built Listener, but you haven’t created an instance of it, nor have you spun up its
thread to wait for incoming connections. To do this, you need a field in Form1 to hold an instance of the
object, and you also need to tweak the constructor. Here’s the field:

Public Class Form1
Inherits System.Windows.Forms.Form

Private _mainThreadId As Integer

Private _listener As Listener

Here is the new code that needs to be added to the constructor:

Public Sub New()
MyBase.New()

‘This call is required by the Windows Form Designer.
InitializeComponent()

_ mainThreadId = Thread.CurrentThread.GetHashCode()
Text &= “ - “ & _mainThreadId.ToString()

‘ listener...
_listener = New Listener(Me)
_listener.SpinUp()

End Sub

When inbound connections are received, you’ll get a new TcpClient object. This is passed back to Form1
through the ReceiveInboundConnection method. This method, like ProcessOutboundConnection,
defers to ProcessConnection. Because ProcessConnection already handles the issue of moving the
call to the main application thread, ReceiveInboundConnection looks like this:

Public Sub ReceiveInboundConnection(ByVal client As TcpClient)
ProcessConnection(client, Conversation.ConversationDirection.Inbound)

End Sub

979

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 979

If you run the project now, you should be able to click the Connect button and see two windows — one
inbound and one outbound, as shown in Figure 27-7.

Figure 27-7

If you close all three windows, the application will keep running because you haven’t written code to
close down the listener thread, and having an open thread like this will keep the application open. Use
the Debug ➪ Stop Debugging menu option in Visual Studio to close the application down by killing all
running threads.

By clicking the Connect button, you’re calling InitiateConnection. This spins up a new thread in the
pool that resolves the given host name (localhost) into an IP address. This IP address, in combination
with a port number, is then used in the creation of a TcpClient object. If the connection can be made,
ProcessOutboundConnection is called, which results in the first of the conversation windows being
created and marked as “outbound.”

Your example is somewhat artificial, as the two instances of Wrox Messenger should be running on sepa-
rate computers. On the remote computer (if you’re connecting to localhost, this will be the same com-
puter), a connection is received through the AcceptTcpClient method of TcpListener. This results in
a call to ReceiveInboundConnection, which, in turn, results in the creation of the second conversation
window, this time marked as “inbound.”

Sending Messages
The next step is to work out how to exchange messages between the two Conversation windows. You
already have a TcpClient in each case so all you have to do is squirt binary data down the wire on one
side and pick it up at the other end. As the two Conversation windows act as both client and server, both
need to be able to send and receive.

980

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 980

There are three problems to solve:

❑ You need to establish one thread to send and another thread to receive data.

❑ Data sent and received needs to be reported back to the user so that he or she can follow the
conversation.

❑ The data that you want to send has to be converted into a wire-ready format, which in .NET
terms usually means serialization.

The power of sockets means that you can define whatever protocol you like for data transmission. If you
wanted to build your own SMTP server, you could implement the (publicly available) specifications, set
up a listener to wait for connections on port 25 (the standard port for SMTP), wait for data to come in,
process it, and return responses as appropriate.

It’s best to work in this way when building protocols. Unless there are very strong reasons for not doing
so, make your server as open as possible: Do not tie it to a specific platform. This is the way that things are
done on the Internet. To an extent, things like Web Services should negate the need to build your own pro-
tocols; as you go forward, you will rely instead on the “remote object available to local client” paradigm.

Now it’s time to think ahead to the idea of using the serialization features of .NET to transmit data
across the network. After all, you’ve already seen this in action with Web Services and remoting. You can
take an object in .NET, use serialization to convert it to a string of bytes, and expose that string down to a
Web Service consumer, or remoting client, or even to a file.

Chapter 24 discussed the BinaryFormatter and SoapFormatter classes. You could use either of those
classes, or create your own custom formatter, to convert data for transmission and reception. In this case,
you’re going to create a new class called Message and use BinaryFormatter to crunch it down into a
wire-ready format and convert it back again for processing.

This approach isn’t ideal from the perspective of interoperability, because the actual protocol used is lost
in the implementation of the .NET Framework, rather than being under your absolute control.

If you want to build an open protocol, this is not the best way to do it. Unfortunately, the best way to do
it is beyond the scope of this book, but a good place to start is to look at existing protocols and standards
and model any protocol on their approach. BinaryFormatter is quick and dirty, which is why you’re
going to use it.

The Message Class
The Message class contains two fields, _username and _message, which form the entirety of the data
that you want to transmit. The code for this class follows; notice how the Serializable attribute is
applied to it so that BinaryFormatter can change it into a wire-ready form. Also notice how you’re
providing a new implementation of ToString:

Imports System.Text

<Serializable()> Public Class Message

Private _username As String
Private _message As String

981

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 981

Public Sub New(ByVal name As String)
_username = name

End Sub

Public Sub New(ByVal name As String, ByVal message As String)
_username = name
_message = message

End Sub

Public Overrides Function ToString() As String
Dim builder As New StringBuilder(_username)
builder.Append(“ says:”)
builder.Append(ControlChars.CrLf)
builder.Append(_message)
builder.Append(ControlChars.CrLf)
Return builder.ToString()

End Function

End Class

Now, all you have to do is spin up two threads, one for transmission and one for reception, updating the
display. You need two threads per conversation, so if you have 10 conversations open, you’ll need 20
threads plus the main UI thread, plus the thread running TcpListener.

Receiving messages is pretty easy. When calling Deserialize on BinaryFormatter, you give it the stream
returned to you from TcpClient. If there’s no data, this blocks. If there is data, it’s decoded into a Message
object that you can display. If you have multiple messages coming down the pipe, BinaryFormatter will
keep processing them until the pipe is empty. Here’s the method for doing this, and this should be added to
Conversation. Remember, you haven’t implemented ShowMessage yet:

Protected Sub ReceiveThreadEntryPoint()

‘ Create a formatter...
Dim formatter As New BinaryFormatter
‘ Loop
Do While True

‘ Receive...
Dim message1 As Message = formatter.Deserialize(_stream)
If message1 Is Nothing Then
Exit Do

End If

‘ Show it...
ShowMessage(message1)

Loop
End Sub

Transmitting messages is a touch more complex. What you want is a queue (managed by a System.
Collections.Queue) of outgoing messages. Every second, you’ll examine the state of the queue. If you
find any messages, you’ll use BinaryFormatter to transmit them. Because you’ll be accessing this
queue from multiple threads, you’ll use a System.Threading.ReaderWriterLock to control access.
To minimize the amount of time you spend inside locked code, you’ll quickly transfer the contents of the

982

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 982

shared queue into a private queue that you can process at your leisure. This allows the client to continue
to add messages to the queue through the UI, even though existing messages are being sent by the trans-
mit thread.

First, add these members to Conversation:

Public Class Conversation
Inherits System.Windows.Forms.Form

Private _username As String = “Evjen”
Private _client As TcpClient
Private _stream As NetworkStream
Private _direction As ConversationDirection

Private _receiveThread As Thread
Private _transmitThread As Thread
Private _transmitQueue As New Queue()
Private _transmitLock As New ReaderWriterLock()

Now, add this method again to Conversation:

Protected Sub TransmitThreadEntryPoint()

‘ Create a formatter...
Dim formatter As New BinaryFormatter
Dim workQueue As New Queue
‘ Loop
Do While True

‘ Wait for the signal...
Thread.Sleep(1000)

‘ Go through the queue...

_transmitLock.AcquireWriterLock(-1)
Dim message As Message
workQueue.Clear()
For Each message In _transmitQueue
workQueue.Enqueue(message)

Next
_transmitQueue.Clear()
_transmitLock.ReleaseWriterLock()

‘ Loop the outbound messages...
For Each message In workQueue

‘ Send it...
formatter.Serialize(_stream, message)

Next

Loop

End Sub

983

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 983

When you want to send a message, you call one version of the SendMessage method. Here are all of the
implementations, and the Click handler for buttonSend:

Private Sub buttonSend_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonSend.Click

SendMessage(textMessage.Text)
End Sub

Public Sub SendMessage(ByVal message As String)
SendMessage(_username, message)

End Sub

Public Sub SendMessage(ByVal username As String, ByVal message As String)
SendMessage(New Message(username, message))

End Sub

Public Sub SendMessage(ByVal message As Message)

‘ Queue it
_transmitLock.AcquireWriterLock(-1)
_transmitQueue.Enqueue(message)
_transmitLock.ReleaseWriterLock()

‘ Show it...
ShowMessage(message)

End Sub

ShowMessage is responsible for updating textMessages so that the conversation remains up to date
(notice how you add the message both when you send it and when you receive it so that both parties
have an up-to-date thread). This is a UI feature, so it is good practice to pass it over to the main
application thread for processing. Although, the call in response to the button click comes off the main
application thread, the one from inside ReceiveThreadEntryPoint does not. Here’s what the delegate
looks like:

Public Class Conversation
Inherits System.Windows.Forms.Form

‘ members...
Private _username As String = “Evjen”
Private _client As TcpClient
Private _stream As NetworkStream
Private _direction As ConversationDirection
Private _receiveThread As Thread
Private _transmitThread As Thread
Private _transmitQueue As New Queue()
Private _transmitLock As New ReaderWriterLock()

Public Delegate Sub ShowMessageDelegate(ByVal message As Message)

984

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 984

Here’s the method implementation:

Public Sub ShowMessage(ByVal message As Message)

‘ Thread?
If Form1.IsMainThread() = False Then

‘ Run...
Dim args(0) As Object
args(0) = message
Invoke(New ShowMessageDelegate(AddressOf ShowMessage), args)

‘ Return...
Return

End If

‘ Show it...
textMessages.Text &= message.ToString()

End Sub

All that remains now is to spin up the threads. This should be done from within ConfigureClient.
Before the threads are spun up, you need to get hold of the stream and store it in the private _stream
field. After that, you create new Thread objects as normal:

Public Sub ConfigureClient(ByVal client As TcpClient, _
ByVal direction As ConversationDirection)

‘ Set it up...
_client = client
_direction = direction

‘ Update the window...
UpdateCaption()

‘ Get the stream...
_stream = _client.GetStream()
‘ Spin up the threads...
_transmitThread = New Thread(AddressOf TransmitThreadEntryPoint)
_transmitThread.Start()
_receiveThread = New Thread(AddressOf ReceiveThreadEntryPoint)
_receiveThread.Start()

End Sub

At this point, you should be able to connect and exchange messages, as shown in Figure 27-8.

Note that the screen shots show the username of the inbound connection as Tuija. This was done with
the textUsername text box so that you can follow which half of the conversation comes from where.

985

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 985

Figure 27-8

Shutting Down the Application
You’ve yet to solve the problem of neatly closing the application, or, in fact, dealing with one person in
the conversation closing down his or her window, indicating a wish to end the conversation. When the
process ends (whether “neatly” or forcefully), Windows automatically mops up any open connections
and frees up the port for other processes.

Imagine, if you will, that you have two computers, one window per computer as you would in a pro-
duction environment. If you close your window, you’re indicating that you want to end the conversa-
tion. You need to close the socket and spin down the transmission and reception threads. At the other
end, you should be able to detect that the socket has been closed, spin down the threads, and tell the
user that the other user has terminated the conversation.

This all hinges on being able to detect when the socket has been closed. For some reason, Microsoft has
actually made this very hard, thanks to the design of the TcpClient class. TcpClient effectively encap-
sulates a System.Net.Sockets.Socket class, providing methods for helping to manage the connection
lifetime and communication streams. However, TcpClient does not have a method or property that
answers the question, “Am I still connected?” What you need to do is get hold of the Socket object that
TcpClient is wrapping and then you can use its Connected property to find out if the connection has
been closed.

TcpClient does support a property called Client that returns a Socket. However, this property is pro-
tected, meaning that you can only access it by inheriting a new class from TcpClient. But, there is another
way — you could use reflection to get at the property and call it without having to inherit a new class.

Microsoft claims that this is a legitimate technique, even though it appears to violate every rule in the
book about encapsulation. Reflection is designed not only for finding out which types are available, and

986

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 986

learning which methods and properties each type supports, but also for invoking those methods and
properties whether they’re protected or public.

So, in Conversation, you need to store the socket:

Public Class Conversation
Inherits System.Windows.Forms.Form

Private _username As String = “Evjen”
Private _client As TcpClient
Private _socket As Socket

In ConfigureClient, you need to use Reflection to peek in to the Type object for TcpClient and dig
out the Client property. Once you have a System.Reflection.PropertyInfo for this property, you
can retrieve its value by using the GetValue method. Here’s the code. Don’t forget to import the
System.Reflection namespace:

Public Sub ConfigureClient(ByVal client As TcpClient, _
ByVal direction As ConversationDirection)

‘ Set it up...
_client = client
_direction = direction

‘ Update the window...
UpdateCaption()

‘ Get the stream...
_stream = _client.GetStream()

‘ Get the socket through reflection...
Dim propertyInfo As PropertyInfo = _

_client.GetType().GetProperty(“Client”, _
BindingFlags.Instance Or BindingFlags.NonPublic)

If Not propertyInfo Is Nothing Then
_socket = propertyInfo.GetValue(_client, Nothing)

Else
Throw New Exception(“Couldn’t retrieve Client property from TcpClient”)

End If

‘ Spin up the threads...
_transmitThread = New Thread(AddressOf TransmitThreadEntryPoint)
_transmitThread.Start()
_receiveThread = New Thread(AddressOf ReceiveThreadEntryPoint)
_receiveThread.Start()

End Sub

Applications are able to check the state of the socket either by detecting when an error occurs because
you’ve tried to send data over a closed socket or by actually asking if the socket is connected. If you
either don’t have a Socket available in _socket (that is, it is Nothing), or if you have one and it tells
you you’re disconnected, you give the user some feedback and exit the loop. By exiting the loop, you
effectively exit the thread, which is a neat way of quitting the thread. Notice as well that you might not

987

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 987

have a window at this point (you might be the one that closed the conversation by closing the window),
so you wrap the UI call in a Try Catch (the other side will see a <disconnect> message):

Protected Sub TransmitThreadEntryPoint()

‘ Create a formatter...
Dim formatter As New BinaryFormatter
Dim workQueue As New Queuevs

‘ name...
Thread.CurrentThread.Name = “Tx-” & _direction.ToString()

‘ Loop...
Do While True
‘ Wait for the signal...
Thread.Sleep(1000)

‘ Disconnected?
If _socket Is Nothing OrElse _socket.Connected = False Then
Try
ShowMessage(New Message(“Debug”, “<disconnect>”))

Catch
End Try
Exit Do

End If

‘ Go through the queue...

ReceiveThreadEntryPoint also needs some massaging. When the socket is closed, the stream will no
longer be valid and so BinaryFormatter.Deserialize will throw an exception. Likewise, you quit
the loop and, therefore, neatly quit the thread:

Protected Sub ReceiveThreadEntryPoint()

‘ Create a formatter...
Dim formatter As New BinaryFormatter

‘ Loop...
Do While True

‘ Receive...
Dim message As Message = Nothing
Try
message = formatter.Deserialize(_stream)

Catch
End Try
If message Is Nothing Then
Exit Do

End If

‘ Show it...
ShowMessage(message)

Loop
End Sub

988

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 988

So, how do you deal with actually closing the socket? Well, you tweak the Dispose method of the form
itself (you will find this method in the Windows-generated code section of the file), and if you have a
_socket object you close it:

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
If disposing Then
If Not (components Is Nothing) Then
components.Dispose()

End If
End If

‘ Close the socket...
If Not _socket Is Nothing Then
_socket.Close()
_socket = Nothing

End If

MyBase.Dispose(disposing)
End Sub

Now, you’ll be able to start a conversation, and if one of the windows is closed, <disconnect> will
appear in the other. This is illustrated in Figure 27-9. In the background, the four threads (one transmit,
one receive per window) will spin down properly.

Figure 27-9

However, the application itself will still not close properly, even if you close all the windows. That’s
because you need to stop the Listener when Form1 closes. To do this, you’ll make Listener imple-
ment Idisposable:

Public Class Listener
Implements IDisposable

Public Sub Dispose() Implements System.IDisposable.Dispose

‘ Stop it...
Finalize()
GC.SuppressFinalize(Me)

End Sub

989

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 989

Protected Overrides Sub Finalize()

‘ Stop the listener...
If Not _listener Is Nothing Then
_listener.Stop()
_listener = Nothing

End If

‘ Stop the thread...
If Not _thread Is Nothing Then
_thread.Join()
_thread = Nothing

End If

‘ Call up...
MyBase.Finalize()

End Sub

Now all that remains is to call Dispose from within Form1. A good place to do this is in the Closed
event handler:

Protected Overrides Sub OnClosed(ByVal e As System.EventArgs)
If Not _listener Is Nothing Then
_listener.Dispose()
_listener = Nothing

End If
End Sub

After the code is compiled again, the application can be closed.

Using Internet Explorer in Your Applications
A common requirement of modern applications is to display HTML files and other files commonly used
with Internet applications. Although the .NET Framework has considerable support for common image
formats (such as GIF, JPEG, and PNG), working with HTML used to be a touch trickier in versions 1.0
and 1.1 of the .NET Framework. Today, life has been made considerably easier with the inclusion of the
new WebBrowser control in the .NET Framework 2.0.

You don’t want to have to write your own HTML parser, so using this new control to display HTML
pages is, in most cases, one of your only options. Microsoft’s Internet Explorer was implemented as a
stand-alone component comprising a parser and a renderer, all packaged up in a neat COM object. The
new WebBrowser control that you all use “simply” utilizes this COM object. There’s nothing to stop you
from using this COM object directly in your own applications, but you will find it considerably easier to
use this new control for hosting Web pages in your applications.

For information on how to accomplish this task using the .NET Framework 1.0 or
1.1, please review the second and third editions of this book.

990

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 990

Yes, a COM object. There is no managed version of Internet Explorer for use with .NET. Considering that
writing an HTML parser is extremely hard, and writing a renderer is extremely hard, the natural conclu-
sion is that it’s much easier to use interop to get to Internet Explorer in the .NET applications than have
Microsoft try and rewrite a managed version of it just for .NET. Maybe you will see “Internet Explorer
.NET” within the next year or two, but for now you do have to use interop.

Windows Forms and HTML — No Problem!
These sections demonstrate how to build a mini-browser application. In some cases, you might want to
display HTML pages without giving the user the UI widgets like a toolbar or the ability to enter his or
her own URLs. You might also want to use the control in a nonvisual manner. For example, using the
WebBrowser control, you can retrieve Web pages and then print the results that are retrieved without
ever needing to display the contents. Let’s start though by first creating a simple form that contains only
a TextBox and a WebBrowser control.

Allowing Simple Web Browsing in Your Windows Application
The first step is to create a new Windows Forms application called MiniBrowser. On the default form,
place a single TextBox control and the new WebBrowser control so that your form looks as shown in
Figure 27-10.

Figure 27-10

The idea is that when the end user presses the Enter key (Return key), the URL that is entered into the
text box will be the HTML page that is retrieved and displayed in the WebBrowser control. To accom-
plish this task, use the following code for your form:

991

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 991

Public Class Form1

Private Sub TextBox1_KeyPress(ByVal sender As Object, _
ByVal e As System.Windows.Forms.KeyPressEventArgs) Handles TextBox1.KeyPress

If e.KeyChar = Chr(13) Then
WebBrowser1.Navigate(TextBox1.Text)

End If

End Sub

End Class

For this simple example, you check the key presses that are made in the TextBox1 control, and if the key
press is a specific one — the Enter key — then you use the WebBrowser control’s Navigate method to
navigate to the requested page. The Navigate method can take a single String value, which represents
the location of the Web page to retrieve. The example shown in Figure 27-11 shows the Wrox Web site.

Figure 27-11

Launching Internet Explorer from Your Windows Application
Sometimes, the goal is not to host a browser inside of the application but instead to allow the user to
find the Web site in a typical Web browser. For an example of this task, create a Windows Form that has
a LinkLabel control on it. For instance, you can have a form that has a LinkLabel control on it that
simply states, “Visit your company Web site!”

Once this control is in place, use the following code to launch the company’s Web site in an independent
browser as opposed to directly in the form of your application:

992

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 992

Public Class Form1

Private Sub LinkLabel1_LinkClicked(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) Handles _
LinkLabel1.LinkClicked

Dim wb As New WebBrowser
wb.Navigate(“http://www.wrox.com”, True)

End Sub

End Class

In this example, when the LinkLabel control is clicked by the user, a new instance of the WebBrowser
class is created. Then, using the WebBrowser’s Navigate method, the code specifies the location of the
Web page as well as a Boolean value that specifics whether this end point should be opened within the
Windows Form application (a False value) or from within an independent browser (a True value). By
default, this is set to False. With the preceding construct, when the end user clicks on the link found in
the Windows application, a browser instance will be instantiated and the Wrox Web site will be immedi-
ately launched.

Updating URLs and Page Titles
Notice that when working with the MiniBrowser example in which the WebBrowser control is directly
in the form, when you click the links, the text in the TextBox1 control is not updated. You can fix this by
listening for events coming off the WebBrowser control and adding handlers to the control.

Updating the form’s title with the HTML page’s title is easy. You just have to create a DocumentTitle
Changed event and update the Text property of the form:

Private Sub WebBrowser1_DocumentTitleChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles WebBrowser1.DocumentTitleChanged

Me.Text = WebBrowser1.DocumentTitle.ToString()

End Sub

In this case, when the WebBrowser control notices that the page title has changed (due to changing the
page viewed), the DocumentTitleChanged event will fire. In this case, you change the Form’s Text
property (its title) to the title of the page being viewed using the DocumentTitle property of the
WebBrowser control.

The next thing you want to do is to update the text string that appears in the Form’s text box, based on the
complete URL of the page being viewed. To do this, you can use the WebBrowser control’s Navigated
event.

Private Sub WebBrowser1_Navigated(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserNavigatedEventArgs) Handles _
WebBrowser1.Navigated

TextBox1.Text = WebBrowser1.Url.ToString()

End Sub

993

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 993

In this case, when the requested page is finished being downloaded in the WebBrowser control, the
Navigated event is fired. You simply update the Text value of the TextBox1 control to be the URL of
the page. This means that once a page is loaded in the WebBrowser control’s HTML container and if the
URL changes in this process, then the new URL will be shown in the text box. For instance, if you
employ these steps and navigate to the Wrox Web site (www.wrox.com), you will notice that the page’s
URL will immediately change to http://www.wrox.com/WileyCDA/. This process also means that if
the end user clicks on one of the links contained within the HTML view, then the URL of the newly
requested page will also be shown in the text box.

Now, if you run the application with the preceding changes put into place, the form title and address bar
will work as they do in Microsoft’s Internet Explorer, as demonstrated in Figure 27-12.

Figure 27-12

Creating a Toolbar
Next, you’ll add a simple toolbar to the top of the control that gives you the usual features you’d expect
from a Web browser, that is Back, Forward, Stop, Refresh, and Home.

Rather than using the ToolBar control, you’ll add a set of button controls at the top of the control where
you currently have the address bar. Add five buttons to the top of the control, as illustrated in Figure 27-13.

I’ve just changed the text on the buttons to indicate their function. Of course, you can use a screen capture
utility to “borrow” button images from IE and use those. The buttons should be named buttonBack,
buttonForward, buttonStop, buttonRefresh, and buttonHome. To get the resizing to work properly,
make sure that you set the Anchor property of the three buttons on the right to Top, Right.

994

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 994

Figure 27-13

On startup, buttonBack, buttonForward, and buttonStop should be disabled because there is no
point to the buttons if there is no initial page loaded. You will later tell the WebBrowser control when to
enable and disable the Back and Forward buttons, depending on where the user is in the page stack.
Also, when a page is being loaded, you will need to enable the Stop button — but you will also need to
disable the Stop button once the page has finished being loaded.

First off though, you’ll add the functionality behind the buttons. The WebBrowser class itself has all of
the methods that you need, so this is all very straightforward:

Public Class Form1
Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

buttonBack.Enabled = False
buttonForward.Enabled = False
buttonStop.Enabled = False

End Sub

Private Sub buttonBack_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonBack.Click

WebBrowser1.GoBack()
TextBox1.Text = WebBrowser1.Url.ToString()

End Sub

Private Sub buttonForward_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonForward.Click

995

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 995

WebBrowser1.GoForward()
TextBox1.Text = WebBrowser1.Url.ToString()

End Sub

Private Sub buttonStop_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonStop.Click

WebBrowser1.Stop()
End Sub

Private Sub buttonRefresh_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonRefresh.Click

WebBrowser1.Refresh()
End Sub

Private Sub buttonHome_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonHome.Click

WebBrowser1.GoHome()
TextBox1.Text = WebBrowser1.Url.ToString()

End Sub

Private Sub buttonSubmit_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonSubmit.Click

WebBrowser1.Navigate(TextBox1.Text)
End Sub

Private Sub WebBrowser1_CanGoBackChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles WebBrowser1.CanGoBackChanged

If WebBrowser1.CanGoBack = True Then
buttonBack.Enabled = True

Else
buttonBack.Enabled = False

End If
End Sub

Private Sub WebBrowser1_CanGoForwardChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles WebBrowser1.CanGoForwardChanged

If WebBrowser1.CanGoForward = True Then
buttonForward.Enabled = True

Else
buttonForward.Enabled = False

End If
End Sub

Private Sub WebBrowser1_Navigated(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserNavigatedEventArgs) Handles _
WebBrowser1.Navigated

TextBox1.Text = WebBrowser1.Url.ToString()
Me.Text = WebBrowser1.DocumentTitle.ToString()

End Sub

Private Sub WebBrowser1_Navigating(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserNavigatingEventArgs) Handles _
WebBrowser1.Navigating

buttonStop.Enabled = True
End Sub

996

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 996

Private Sub WebBrowser1_DocumentCompleted(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserDocumentCompletedEventArgs) _
Handles WebBrowser1.DocumentCompleted

buttonStop.Enabled = False
End Sub

End Class

There are a lot of different activities going on in this example, since there are so many options for the end
user when using this MiniBrowser application. First, for each of the button Click events, there is a spe-
cific WebBrowser class method assigned as the action to initiate. For instance, for the Back button on the
form, you simply use the Web Browser control’s GoBack() method. And for the other buttons, it is the
same — for the Forward button you have the GoForward() method, and for the other buttons you have
methods such as Stop(), Refresh(), and GoHome(). This makes it fairly simple and straightforward to
create a toolbar that will give you actions similar to those of Microsoft’s Internet Explorer.

When the form is first loaded, the Form1_Load event disables the appropriate buttons. From there, the
end user can enter a URL into the text box and click the Submit button to have the application retrieve
the desired page.

To manage the enabling and disabling of the buttons, you have to key in a couple of events. As men-
tioned before, whenever downloading begins you need to enable Stop. For this, you simply add an event
handler for the Navigating event to enable the Stop button:

Private Sub WebBrowser1_Navigating(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserNavigatingEventArgs) Handles _
WebBrowser1.Navigating

buttonStop.Enabled = True
End Sub

Then the Stop button is again disabled when the document has finished loading:

Private Sub WebBrowser1_DocumentCompleted(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserDocumentCompletedEventArgs) _
Handles WebBrowser1.DocumentCompleted

buttonStop.Enabled = False
End Sub

Enabling and disabling the appropriate Back and Forward buttons really depend on the ability to go
backward or forward in the page stack. This is achieved by using both the CanGoForwardChanged and
the CanGoBackChanged events.

Private Sub WebBrowser1_CanGoBackChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles WebBrowser1.CanGoBackChanged

If WebBrowser1.CanGoBack = True Then
buttonBack.Enabled = True

Else
buttonBack.Enabled = False

End If
End Sub

997

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 997

Private Sub WebBrowser1_CanGoForwardChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles WebBrowser1.CanGoForwardChanged

If WebBrowser1.CanGoForward = True Then
buttonForward.Enabled = True

Else
buttonForward.Enabled = False

End If
End Sub

Run the project now, and visit a Web page and click through a few links. You should also be able to use
the toolbar to enhance your browsing experience. The end product is shown in Figure 27-14.

Figure 27-14

Showing Documents Using the WebBrowser Control
You are not limited to using just Web pages within the WebBrowser control. In fact, you can allow the
end user to view many different types of documents. So far, you have seen how to use the WebBrowser
control to access documents that have been purely accessible by defining a URL. Though, the
WebBrowser control also allows you to use an absolute path and define end points to files such as Word
documents, Excel documents, PDFs, and more.

For instance, let’s suppose that you are using the following code snippet:

WebBrowser1.Navigate(“C:\Financial Report.doc”)

This would open the Word document in your application. Not only would the document appear in the
WebBrowser control, but the Word toolbar would also be present. This is illustrated in Figure 27-15.

998

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 998

Figure 27-15

In Figure 27-16, the WebBrowser control shows an Adobe PDF file.

Figure 27-16

999

Visual Basic and the Internet

30_575368 ch27.qxd 10/7/05 11:24 PM Page 999

In addition to simply opening up specific documents in the control, users also have the ability to
drag and drop documents onto the WebBrowser control’s surface, and the document dropped will
automatically be opened within the control. To turn off this ability (which is enabled by default), set
the WebBrowser control’s AllowWebBrowserDrop property to False.

Printing Using the WebBrowser Control
Not only can users use the WebBrowser control to view pages and documents, they can also use the con-
trol to send these pages and documents to the printer for printing. To print the page or document being
viewed in the control, simply use the following construct:

WebBrowser1.Print()

As before, it is possible to print the page or document without viewing it by using the WebBrowser class
to load an HTML document and print it without even displaying the loaded document. This is accom-
plished as shown here:

Dim wb As new WebBrowser
wb.Navigate(“http://www.wrox.com”)
wb.Print()

Summary
This chapter kicked off by looking at just how easy it is to download resources from a Web server
using classes built into the .NET Framework. System.Uri lets you express a URI, and System.Net
. WebRequest, in combination with System.Net.HttpWebRequest and System.Net
.HttpWebResponse, lets you physically get hold of the data.

The second section took a look at how you could build your own network protocol by using sockets,
implemented in the System.Net.Sockets namespace. You looked at how TcpListener and TcpClient
make it relatively easy to work with sockets. You also spent a lot of time working with threads and the
various UI issues that such kind of work throws up in order to make the application as usable as possible.

Finally, you looked at how you could use the new WebBrowser control in your own Windows Form
application to work with HTML and other documents.

1000

Chapter 27

30_575368 ch27.qxd 10/7/05 11:24 PM Page 1000

The Visual Basic Compiler

When the .NET Framework was first introduced, one nice addition for the Visual Basic developer
was the inclusion of a stand-alone language compiler. This meant that you weren’t required to
have the Visual Studio .NET 2002 IDE in order to build Visual Basic applications. In fact, you could
take the .NET Framework from the Microsoft Web site (for free), and build Web applications,
classes, modules and more simply using a text editor such as Notepad. You could then take the
completed files and compile them using the Visual Basic compiler.

The Visual Basic compiler is included along with the default .NET Framework install. The name of
the compiler is vbc.exe and can be found at:

C:\WINDOWS\Microsoft.NET\Framework\v2.0.[version]\vbc.exe

The vbc.exe.config File
In addition to the vbc.exe file, you will also notice that there is a vbc.exe.config file in the
directory as well. This XML file is used to specify the versions of the .NET Framework the com-
piler should build applications for. Now that there are three versions of the .NET Framework
available for our applications to work with, it is important to understand how this configuration
file actually works.

With the .NET Framework 2.0 installed, you will find the vbc.exe.config file with the following
construction:

<?xml version =”1.0”?>
<configuration>

<startup>
<supportedRuntime version=”v2.0.40607” safemode=”true”/>
<requiredRuntime version=”v2.0.40607” safemode=”true”/>

</startup>
</configuration>

31_575368 appa.qxd 10/7/05 11:15 PM Page 1001

Note that the actual build number of your version might be different than what is shown in the above
example.

This .config file is basically a typical .NET Framework configuration file with the default <configu-
ration> root element included. Nested within the <configuration> element, you will need to place a
<startup> element. This is the only child element that is possible in the vbc.exe’s configuration file.

Nested within the <startup> element, you can use two possible elements: <supportedRuntime> and
<requiredRuntime>.

The <requiredRuntime> element really is only needed if your application is going to run on the .NET
Framework 1.0 (the very first iteration of the .NET Framework). If your application is going to run from
the .NET Framework 1.0, then you would build the vbc.exe.config file as such:

<?xml version =”1.0”?>
<configuration>

<startup>
<requiredRuntime version=”v1.0.3705” safemode=”true”/>

</startup>
</configuration>

Though today, working with three different versions of the .NET Framework, you may wish to compile
your applications using the Visual Basic compiler so that they work with multiple versions of the frame-
work. To do this, you could use the <supportedRuntime> element as shown here:

<?xml version =”1.0”?>
<configuration>

<startup>
<supportedRuntime version=”v2.0.40607” safemode=”true”/>
<supportedRuntime version=”v1.1.4322” safemode=”true”/>

</startup>
</configuration>

This construction states that the application should first try to run on version 2.0.40607 of the .NET
Framework, and if this version of the .NET Framework is not found, then the next preferred version
of the framework in which the compiled object should work with is version 1.1.4322 of the .NET
Framework. When working in this kind of construction, you need to order the framework versions in
the XML file so that the most preferred version of the framework in which you want to utilize should be
the uppermost element, and the least preferred version of the framework should be last in the node list.

It is important to note that the <supportedRuntime> element is meant for .NET Framework versions
1.1 and above. If you are going to utilize the .NET Framework version 1.0, then you should use the
<requiredRuntime> element.

The <supportedRuntime> element contains two possible attributes —version and safemode. Both
attributes are optional. The attribute version allows you to specify the specific version you want your
application to run against, while safemode specifies whether the registry should be searched for the
particular framework version. The safemode attribute takes a Boolean value and the default value is
false, meaning that the framework version will not be checked.

1002

Appendix A

31_575368 appa.qxd 10/7/05 11:15 PM Page 1002

Simple Steps to Compilation
To show how the Visual Basic compiler works in the simplest manner, let’s start by taking a look at how
to compile a single class file.

1. To accomplish this task, create a module called MyModule.vb. Let’s keep the module simple as
this example is meant to show you just how to compile the items using the vbc.exe compiler.

Module Module1

Sub Main()
Console.WriteLine(“Howdy there”)
Console.ReadLine()

End Sub

End Module

2. Once your file is in place, it is then time to use the Visual Basic compiler. There are really a cou-
ple of ways around this. First off, if you do have Visual Studio 2005 on the computer, you can
open the Visual Studio Command Prompt (found at Start ➪ All Programs ➪ Microsoft Visual
Studio 2005 ➪ Visual Studio Tools ➪ Visual Studio Command Prompt). Once open, you then just
navigate to the location of the file and then run the compiler against the file (shown shortly).

3. In most cases, you are probably going to be using the Visual Basic compiler on computers that
do not have Visual Studio on them. In those cases, copy and paste the vbc.exe, vbc.exe
.config, and the vbc.rsp files to the folder where the class file you wish to compile is located.
Then you can open up a command prompt by selecting Run from the Start menu and typing
cmd in the text box.

Another option is to add the compiler to the path itself. This is done by typing the following at
the command prompt:

path %path%;C:\WINDOWS\Microsoft.NET\Framework\v2.0.50215

Now you can work with the compilation normally and the vbc.exe compiler will be found
upon compilation.

4. Once the command prompt is open, navigate to the folder that contains both the Visual Basic
compiler and the class file that needs compiling. From this location, type the following com-
mand at the command prompt:

vbc.exe MyModule.vb

There are many options in how items can be compiled using the Visual Basic compiler — but this is the
absolute simplest way to compile this module. This command simply compiles the .vb file so that it can
then be utilized by your applications. Running this command produces the following results:

C:\CoolStuff>vbc.exe MyModule.vb
Microsoft (R) Visual Basic .NET Compiler version 8.0.40607.16
for Microsoft (R) .NET Framework version 2.0.40607.16
Copyright (C) Microsoft Corporation 1987-2003. All rights reserved.

So what does this operation actually do? Well, in this case, it has created an .exe file for you in the same
directory as the MyModule.vb file. Looking there, you will find MyModule.exe all ready to run.

1003

The Visual Basic Compiler

31_575368 appa.qxd 10/7/05 11:15 PM Page 1003

The Visual Basic compiler has a number of options that are available for use which allow you to dictate
what sorts of actions the compiler will take with the compilation process. These flags will be defined
soon, but you can specify additional settings by using a forward-slash followed by the name of the
option and the setting assigned to the option. For instance, if you were going to add a reference to
Microsoft.VisualBasic.dll along with the compilation, you would construct your compiler com-
mand as follows:

vbc.exe MyModule.vb /reference:Microsoft.VisualBasic.dll

Compiler Output
Now, take a comprehensive look at all the available options for the Visual Basic compiler. Note that you
can get a full list of options by typing the following command:

vbc.exe /?

/nologo
This option causes the compiler to perform its compilation without producing the compiler information
set that was previously shown in our examples. This is really only useful if you are invoking the com-
piler in your application, showing the results coming from the compiler to the end user of your applica-
tion, and if you have no desire to show this information to them in the result set.

/utf8output
By default, when you use the Visual Basic command-line compiler, it will not do the compilation using
UTF-8 encoding. In fact, the Visual Studio 2005 IDE will not even allow this to occur, but by using
/utf8output in the command-line compiler, you will use this encoding type.

/verbose
Adding this command will cause the compiler to output a complete list of what it is doing, including the
assemblies that are being loaded and the errors that it receives in the compilation process. You would
use it in the following fashion:

vbc.exe MyModule.vb /reference:Microsoft.VisualBasic.dll /verbose

This would produce results such as (note that there is only room to show small examples of the result
output as it is rather lengthy):

Adding assembly reference ‘C:\WINDOWS\Microsoft.NET\Framework\v2.0.40607\System.
Data.dll’

As well as:

Adding import ‘System’
Adding import ‘Microsoft.VisualBasic’
Adding file ‘C:\MyModule.vb’
Adding assembly reference ‘C:\WINDOWS\Microsoft.NET\Framework\v2.0.40607\Microso
ft.VisualBasic.dll’
Compiling...

1004

Appendix A

31_575368 appa.qxd 10/7/05 11:15 PM Page 1004

And then the compiler starts loading assemblies:

Loading C:\WINDOWS\Microsoft.NET\Framework\v2.0.40607\mscorlib.dll.

Loading C:\WINDOWS\Microsoft.NET\Framework\v2.0.40607\Microsoft.VisualBasic.dll.

Until it finishes:

Building C:\MyModule.vb.

Building 17d14f5c-a337-4978-8281-53493378c1071.vb.

Compilation successful

Optimization
The following sections discuss the optimization features available.

/filealign
Though, most likely not used by most developers, the /filealign setting allows you to specify the
alignment of sections, or blocks of contiguous memory, in your output file. You would use the following
construction when using this option:

vbc.exe MyModule.vb /filealign:2048

The number assigned is the byte size of the file produced, and valid values include 512, 1024, 2048,
4096, 8192, and 16384.

/optimize
If you go to your project’s property page (found by right-clicking on the project in the Visual Studio
Solution Explorer), then you will see that there is a page for compilation settings. From this page, you
can make all sorts of optimizations on how the application should be compiled. To have your command-
line compiler not ignore these instructions, you should set the /optimize flag in your compilation
instructions.

vbc.exe MyModule.vb /optimize

By default, optimizations are turned off.

Output files
The following sections explain the output files.

/doc
By default, the compiler does not produce the XML documentation file upon compilation. This new fea-
ture of Visual Basic 2005 allows developers to put structured comments in their code which can then be
turned into an XML document for easy viewing (along with a style sheet). Including the /doc option

1005

The Visual Basic Compiler

31_575368 appa.qxd 10/7/05 11:15 PM Page 1005

causes the compiler to create this documentation. You would structure your command as follows if you
wanted to produce this XML documentation file.

vbc.exe MyModule.vb /doc

You can also specify the name of the XML file in the following manner:

vbc.exe MyModule.vb /doc:MyModuleXmlFile.xml

/netcf
This option is not possible to execute from Visual Studio 2005 itself, but you can use this flag from the
Visual Basic command-line compiler. Using /netcf causes the compiler to build your application so
that the result is targeted for the .NET Compact Framework and not to the full .NET Framework itself.
To accomplish this, you should use the following construct:

vbc.exe MyModule.vb /netcf

/out
Using the /out option allows you to change the name and extension of the file that was produced from
the compilation. By default, it will be the name of the file that contains the Main() procedure or the first
source code file in a DLL. To modify this yourself instead of using the defaults, you could use something
similar to the following:

vbc.exe MyModule.vb /out:MyReallyCoolModule.exe

/target
This setting allows you to specify what exactly is output from the compilation process. For this, there are
four options. You can have the compiler output an EXE, a DLL, a module, or a Windows program.

/target:exe— Produces an executable console application. This is the default if no /target option is
specified.

/target:library— Produces a dynamic link library (also known as a DLL).

/target:module— Produces a module.

/target:winexe— Produces a Windows program.

You can also use a short form of this by just using /t:exe, /t:library, /t:module, or /t:winexe.

.NET Assemblies
The following sections detail the .NET assemblies for use.

1006

Appendix A

31_575368 appa.qxd 10/7/05 11:15 PM Page 1006

/addmodule
This option is also not available to Visual Studio 2005, but is possible when using the Visual Basic com-
piler. Using /addmodule allows you to add a .netmodule file to the resulting output of the compiler.
For this, you would use something similar to the following construction:

vbc.exe MyModule.vb /addmodule:MyOtherModule.netmodule

/delaysign
This is a compiler option that needs to be used in conjunction with the /key or /keycontainer option,
which deals with the signing of your assembly. When used with the /delaysign option, the compiler
will create a space for the digital signature that will later be used to sign the assembly instead of actually
signing the assembly at that point. You would use this option in the following manner:

vbc.exe MyModule.vb /key:myKey1.sn /delaysign

/imports
A commonly used compiler option, the /imports option allows you to import namespaces into the
compilation process. For instance:

vbc.exe MyModule.vb /imports:System

You can also add multiple namespaces by separating the namespaces with a comma:

vbc.exe MyModule.vb /imports:System, System.Data

/keycontainer
This command causes the compiler to create a sharable component and places a public key into the com-
ponent’s assembly manifest while signing the assembly with a private key. You would use this option in
the following manner:

vbc.exe MyModule.vb /keycontainer:myKey1

If your key container that contains the key has a name that includes a space, then you will have to place
quotes around the value as shown here:

vbc.exe MyModule.vb /keycontainer:”my Key1”

/keyfile
Similar to the /keycontainer option, the /key option causes the compiler to place a public key into the
component’s assembly manifest while signing the assembly with a private key. To use this option, you
would use the following construction:

vbc.exe MyModule.vb /key:myKey1.sn

1007

The Visual Basic Compiler

31_575368 appa.qxd 10/7/05 11:15 PM Page 1007

If your key has a name that includes a space, then you will have to place quotes around the value as
shown here:

vbc.exe MyModule.vb /key:”my Key1.sn”

/libpath
When making references to other assemblies when using the /reference compiler option (mentioned
next), you will not always have these referenced assemblies in the same location as the object getting
compiled. For this reason, you can use the /libpath option to specify the location of the referenced
assemblies. This is illustrated here:

vbc.exe MyModule.vb /reference:MyAssembly.dll /libpath:c:\Reuters\bin

If you want the compiler to search for the referenced DLLs in more than one location, you can specify
the multiple locations using the /libpath option by separating the locations with a comma. This is
shown here:

vbc.exe MyModule.vb /reference:MyAssembly.dll /libpath:c:\Reuters\bin, c:\

This command means that the compiler will look for the MyAssembly.dll in both the C:\Reuters\bin
directory as well as the root directory found at C:\.

/reference
The /reference option allows you to make references to other assemblies in the compilation process.
This is done in the following manner:

vbc.exe MyModule.vb /reference:MyAssembly.dll

You can also shorten the command option by using just /r:

vbc.exe MyModule.vb /r:MyAssembly.dll

You would make a reference to multiple assemblies by using a comma to separate the referenced
assemblies:

vbc.exe MyModule.vb /reference:MyAssembly.dll, MyOtherAssembly.dll

Debugging and Error-Checking
The following sections address the many features available for error-checking and debugging.

/bugreport
This option creates a file that is a full report of the compilation process. The /bugreport option will cre-
ate this file which will contain your code, as well as version information on the computer’s operating
system as well as the compiler itself. You would use this option in the following manner:

vbc.exe MyModule.vb /bugreport:bugsy.txt

1008

Appendix A

31_575368 appa.qxd 10/7/05 11:15 PM Page 1008

/debug
By default, the Visual Basic compiler will not build objects with attached debugging information included
in the generated object. Using the /debug option will cause the compiler to place this information in the
created output file. The use of this option is shown here:

vbc.exe MyModule.vb /debug

/nowarn
The /nowarn option actually suppresses the compiler from throwing any warnings. There are a couple
of ways in which you can use this option. The first is by simply using the /nowarn option without any
associated values as shown here:

vbc.exe MyModule.vb /nowarn

Instead of suppressing all the warnings that can come from the compiler, the other option at your dis-
posal is in specifying the exact warnings you wish the compiler to suppress. This is shown here:

vbc.exe MyModule.vb /nowarn:42016

In this case, you are telling the compiler not to throw any warnings when it encounters a 42016 error
(an implicit conversion warning error). To interject more than one warning code, you would separate
the warning codes with a comma as illustrated here:

vbc.exe MyModule.vb /nowarn:42016, 42024

You can find a list of available warnings by searching for ‘Configuring Warnings in Visual Basic’ in the
MSDN documentation.

/quiet
Like some of the other compiler options, the /quiet option is only available to the command-line com-
piler and is not available when compiling your applications using Visual Studio. The /quiet option
removes some of the error notifications from the error text output that is typically generated. What nor-
mally occurs when the compiler encounters an error that disallows further compilation, is that the error
notification will be shown with a line of code in the file where the error occurred. The line of code that is
presented will have a squiggly line underneath the bit of code which is the exact point of error occurrence.
Using the /quiet option causes the compiler to only show the notification line and to leave the code line
out of the output. This might be desirable in some situations.

/removeintchecks
By default, the Visual Basic compiler checks all your integer calculations for any possible errors. Possible
errors include division by zero or overflow situations. Using the /removeintchecks causes the com-
piler to not look for these kinds of errors in the code of the files being compiled. You would use this
option in the following manner:

vbc.exe MyModule.vb /removeintchecks

1009

The Visual Basic Compiler

31_575368 appa.qxd 10/7/05 11:15 PM Page 1009

/warnaserror
The compiler can not only find and report errors, but the compiler can also encounter situations that are
only considered warnings. Even though warnings are encountered, the compilation process will still
continue to proceed. Using the /warnaserror option in the compilation process causes the compiler to
treat all warnings as errors. This option would be used as illustrated here:

vbc.exe MyModule.vb /warnaserror

You might not want each warning to cause an error to be thrown, but instead only specific warnings. For
these occasions, you can state the warning ID number that you want to look out for. This is shown here:

vbc.exe MyModule.vb /warnaserror:42016

You can also check for multiple warnings by separating the warning ID numbers with commas:

vbc.exe MyModule.vb /warnaserror:42016, 42024

Help
The following sections address the help features.

/?
When you’re without this book for reference, you can use the Visual Basic compiler to give you a list of
options for the compiler by using the /? option. This is shown here:

vbc.exe /?

This will cause the entire list of options and their definitions to be displayed in the command window.

/help
The /help option is the same as the /? option. Both of these options will produce the same results. The
/help option produces a list of options that can be used with the compiler.

Language
The following sections detail the language options.

/optionexplicit
Always a good idea, using the /optionexplicit causes the compiler to check to see if any variables in
the code are used before they are even declared (yes, this is possible and very bad practice). If it is found
that there are variables that are used before they are even declared, the compiler will throw an error stat-
ing such if this option is in use. By default, the compiler will not check the code using the option
explicit option. Using this option is shown here in the following example:

vbc.exe MyModule.vb /optionexplicit

1010

Appendix A

31_575368 appa.qxd 10/7/05 11:15 PM Page 1010

/optionstrict
Another good idea is the use of the /optionstrict option in the compilation process. Using this option
causes the compiler to check if you are making any improper type conversions in your code. Widening
type conversions are allowed, but when you start performing narrowing type conversions, then with the
use of the option — an error will be thrown by the compiler. By default, the compiler is not looking for
these types of possible errors with your type conversions. Using this option is illustrated here:

vbc.exe MyModule.vb /optionstrict

/optioncompare
By default, the Visual Basic compiler compares strings using a binary comparison. If you wish the string
comparisons using a text comparison, then you would use the following construction:

vbc.exe MyModule.vb /optioncompare:text

Preprocessor: /define
The /define option allows you to define conditional compiler constants for the compilation process.
This is quite similar to using the #Const directive in your code. This can be used in something similar
to the following:

vbc.exe MyModule.vb /define:Version=”4.11”

You can also place definitions for multiple constants as shown here:

vbc.exe MyModule.vb /define:Version=”4.11”, DebugMode=False

To place multiple constants, you just need to separate the constants with commas.

Resources
The following sections elaborate on the resources in the compiler.

/linkresource
Instead of imbedding resources directly in the generated output file (such as the case with the /resource
option), the /linkresource allows you to just create the connection between your resulted objects and
the resources that they require. You would use this option in the following manner:

vbc.exe MyModule.vb /linkresource=MyResourceFile.res

You can then specify if the resource file is supposed to be public or private in the assembly manifest. By
default, the resource file is referenced as public.

vbc.exe MyModule.vb /linkresource=MyResourceFile.res, private

You can shorten the /linkresource option to just /linkres if you desire.

1011

The Visual Basic Compiler

31_575368 appa.qxd 10/7/05 11:15 PM Page 1011

/resource
The /resource option allows you to reference managed resource objects. The referenced resource is
then embedded in the assembly. You would do this in the following manner:

vbc.exe MyModule.vb /resource=MyResourceFile.res

Like the /linkresource option, you can specify whether the reference to the resource should be done
using either public or private. This is done in the following way (again the default is public):

vbc.exe MyModule.vb /resource=MyResourceFile.res, private

You can shorten the /resource option to just /res if you desire.

/win32icon
This option allows you to embed an .ico file (an image that is actually the application’s icon) in the pro-
duced file. This is done as illustrated here in the following example:

vbc.exe MyModule.vb /win32icon:MyIcon.ico

/win32resource
This option allows you to embed a Win32 resource file into the produced file. This is done as shown here
in the following example:

vbc.exe MyModule.vb /win32resource=MyResourceFile.res

Miscellaneous
Finally, the following sections address some of the more random but very useful features in the compiler.

One great feature of the Visual Basic compiler is in the use of response files. If you have a compilation
that you frequently perform or one that is rather lengthy, you can instead create an .rsp file (the response
file), which is a simple text file that contains all of the compilation instructions that you need for the
compilation process. Here is an example .rsp file:

This is a comment
/target:exe
/out:MyCoolModule.exe
/linkresource=MyResourceFile.res
MyModule.vb
SomeOtherClassFile.vb

Save this as MyResponseFile.res and then you can use this as shown here in the following example:

vbc.exe @MyResponseFile.rsp

You can also specify multiple response files as illustrated here:

vbc.exe @MyResponseFile.rsp @MyOtherResponseFile.rsp

1012

Appendix A

31_575368 appa.qxd 10/7/05 11:15 PM Page 1012

/baseaddress
When creating a DLL using the /target:library option, you can assign the base address of the DLL
if you wish. This, by default, is done for you by the compiler, but if you wish to make this assignment
yourself, you can. To accomplish this, you would use something similar to the following:

vbc.exe MyClass.vb /target:library /baseaddress:0x11110000

All base addresses are specified as hexadecimal numbers.

/codepage
By default, the compiler compiles your files expecting all the files to be using an ANSI, Unicode, or
UTF-8 code page. Using the /codepage option of the compiler, you can specify the code page that the
compiler should actually be using. Setting it to one of the defaults is shown here:

vbc.exe MyClass.vb /codepage:1252

1252 is used for American English and most European languages. Though setting it to Japanese Kanji
would be done in the following manner:

vbc.exe MyClass.vb /codepage:932

/main
Using the /main option, you can point the compiler to the class or module that contains the SubMain
procedure. This is done in the following manner:

vbc.exe MyClass.vb /main:MyClass.vb

/noconfig
By default, the Visual Basic compiler uses the vbc.rsp resource file in the compilation process. Using
the /noconfig option, you are telling the compiler to avoid the use of this file in the compilation pro-
cess. An example of this is shown here:

vbc.exe MyClass.vb /noconfig

/recurse
The /recurse option tells the compiler to compile all the specified files within a specified directory.
Also included will be all of the child directories of the directory specified. One example of the use of the
/recurse option is shown here:

vbc.exe /target:library /out:MyComponent.dll /recurse:MyApplication\Classes*.vb

This command takes all of the .vb files from the MyApplication/Classes directory and creates a DLL
called MyComponent.dll.

1013

The Visual Basic Compiler

31_575368 appa.qxd 10/7/05 11:15 PM Page 1013

/rootnamespace
This option allows you to specify the namespace to use for the compilation process. This is illustrated
here in the following example:

vbc.exe MyClass.vb /rootnamespace:Reuters

/sdkpath
This option allows you to specify the location of mscorlib.dll and Microsoft.VisualBasic.dll if
it is located someplace other than the default location. This setting was really meant to be used with the
/netcf option, which was described earlier, and should be used in some way similar to the following:

vbc.exe /sdkpath:”C:\Program Files\Microsoft Visual Studio 8
\CompactFrameworkSDK\v1.0.5000\Windows CE” MyModule.vb

Looking at the vbc.rsp File
As stated earlier, the vbc.rsp file is there for the compiler’s sake. When a compilation is being done, the
Visual Basic compiler uses the vbc.rsp file for each compilation (unless you specify the /noconfig
option). Inside this .rsp file, you will find a list of compiler commands:

This file contains command-line options that the VB
command-line compiler (VBC) will process as part
of every compilation, unless the “/noconfig” option
is specified.

Reference the common Framework libraries
/r:Accessibility.dll
/r:Microsoft.Vsa.dll
/r:System.Configuration.Install.dll
/r:System.Data.dll
/r:System.Design.dll
/r:System.DirectoryServices.dll
/r:System.dll
/r:System.Drawing.Design.dll
/r:System.Drawing.dll
/r:System.EnterpriseServices.dll
/r:System.Management.dll
/r:System.Messaging.dll
/r:System.Runtime.Remoting.dll
/r:System.Runtime.Serialization.Formatters.Soap.dll
/r:System.Security.dll
/r:System.ServiceProcess.dll
/r:System.Web.dll
/r:System.Web.Mobile.dll
/r:System.Web.RegularExpressions.dll
/r:System.Web.Services.dll
/r:System.Windows.Forms.Dll
/r:System.XML.dll

Import System and Microsoft.VisualBasic
/imports:System
/imports:Microsoft.VisualBasic

1014

Appendix A

31_575368 appa.qxd 10/7/05 11:15 PM Page 1014

These commands are the references and imports which are done for each item that you compile using
this command-line compiler. The nice thing is that you can also feel free to play with this file as you
choose. If you wish to add your own references, then add them to the list and save the file, and from
then on, every compilation that you make will then include this reference. As you get into using the
Visual Basic command-line compiler, you will see a lot of power in using .rsp files — even the default
Visual Basic one.

1015

The Visual Basic Compiler

31_575368 appa.qxd 10/7/05 11:15 PM Page 1015

31_575368 appa.qxd 10/7/05 11:15 PM Page 1016

Visual Basic Resources

On the Web
The MSDN Visual Basic Developer Center msdn.microsoft.com/vbasic
Blogs of the Microsoft VB team blogs.msdn.com/vteam
VB DotNet Heaven www.vbdotnetheaven.com
The Microsoft Windows Forms site www.windowsforms.net
The Microsoft ASP.NET site www.asp.net
VB City www.vbcity.com
GotDotNet www.gotdotnet.com
VB.NET Forums www.vbdotnetforums.com
vbAccelerator.com www.vbaccelerator.com
DotNetJunkies www.dotnetjunkies.com
4 Guys from Rolla www.4guysfromrolla.com
123ASPX www.123aspx.com
International .NET Association www.ineta.org
Microsoft Newsgroups msdn.microsoft.com/newsgroups
Microsoft Developer Centers msdn.microsoft.com/developercenters
VBRun: Microsoft’s Visual Basic 6.0 site msdn.microsoft.com/VBRun

Books
Professional ASP.NET 2.0 (ISBN: 0764576100)

Wrox’s Visual Basic 2005 Express Edition Starter Kit (ISBN: 0764595733)

ASP.NET 2.0 Website Programming: Problem Design Solution (ISBN: 0764584642)

32_575368 appb.qxd 10/7/05 11:10 PM Page 1017

Beginning VB.NET Databases (ISBN: 0764568000)

Beginning Visual Basic 2005 Databases (ISBN: 076458994X)

Beginning ASP.NET 2.0 (ISBN: 0764588508)

1018

Appendix B

32_575368 appb.qxd 10/7/05 11:10 PM Page 1018

In
de

x

Index

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1019

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1020

In
de

x

Index

Symbols
& operator, 127
* operator, 127
^ operator, 127
+ operator, 127, 280–281
< operator, 127
<< operator, 127
<= operator, 127
<> operator, 127
= operator, 127
> operator, 127
>= operator, 127
>> operator, 127
/ operator, 127
\ operator, 127
/? option, 1010

A
Abort member
FtpWebRequest class, 941
HttpListener class, 955

abstract base class, 185–187
MustInherit keyword, 185
MustOverride keyword, 186

abstraction, 83, 223–227

Access Control Lists (ACLs), 202
AccessDataSource control, 642
Account property, ServiceProcessInstaller

class, 904
ACID test, 774–775
ACLs (Access Control Lists), 202
act-as relationship, 139
Action property, 471
Activated objects, 877–878
Activator class, System namespace, 894
Activator.GetObject, remoting using,

894–895
ActiveX controls, 543, 761–766
legacy ActiveX control, 761–763
.NET application, 763–765

Add method, SortedList collection, 80
AddFullTrust command, 458
AddGroup command, 458
AddGroup switch, 461
AddHandler method, 108, 110, 111–113
/addmodule option, 1007
AddNodes method, 946
AddOwnedForm() method, 506
AddPSet command, 458
addresses, 933–934
ADO.NET, 8, 13

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1021

ADO.NET 1.x, 341
ADO.NET 2.0, 341–388
architecture enhancements, 342–344
connection pooling enhancements in, 369
data access component, building, 369–388
constructors, 370–371
methods, 373–385
overview, 369–370
properties, 371–372
stored procedure XML structure, 372–373
using DataSet Objects to bind to DataGrids,

385–388
data providers, 344–359
Command object, 345–346
Connection object, 344–345
DataAdapter objects, 354–358
DataReader object, 350–351
executing commands asynchronously,

352–354
OLE DB .NET Data Provider, 359
overview, 344
SQL Server .NET Data Provider, 358
using stored procedures with Command

objects, 346–350
DataSet component, 359–366. See also

DataSet objects
DataRelationCollection, 360
DataTable objects, 363–366
DataTableCollection, 359
ExtendedProperties, 360–361
overview, 359

overview, 341–342
working with common provider model,

366–368
AdRotator control, 602, 603
aliasing namespaces, 294–295
All option, 462
AllowDrop property, 536, 565
AllowFullOpen property, 534
AllowPaging property, 647

AllowSorting property, 647
AllowWebBrowserDrop property, 1000
American Standard Code for Information

Interchange (ASCII), 62
Anchor property, 565
anchoring Windows Forms controls,

515–516
And operator, 127
AndAlso operator, 128
ApartmentState method, 821
app.config file, 23, 302–303, 349,

386–387, 883
AppDir option, 463
AppDomain process, 806
Append method, StringBuilder class, 80
AppendFile field, 942
application download cache, 734
Application event log, 922
application events, 609
ApplicationContext method, 299
ApplicationEnd event, 610
application-private assemblies, 678
ApplicationStart event, 610
Arguments custom action property, 728
ArrayList class, 76, 826–827, 938
arrays, 73–76
control arrays, 511–513
multidimensional, 74–75
ReDim statement, 75–76
UBound function, 74

ASCII (American Standard Code for
Information Interchange), 62

.asmx extension, 845
ASP, vs. Web forms, 609–610
ASP.NET
overview, 11
server controls, 598, 602–603

ASP.NET 2.0, 627–669
applications and pages, 627–634
configuring ASP.NET, 666–669

1022

ADO.NET 1.x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1022

data-driven applications, 642–652
editing and deleting of records with

GridView, 648–652
overview, 642–643
using GridView and SqlDataSource controls,

643–648
master pages, 634–642
creating content page, 637–641
creating master page, 635–637
declaring master page application-wide,

641
overview, 634–635
providing default content in your master

page, 642
membership and role management,

661–665
navigation, 653–660
overview, 627
personalization, 665–666

assemblies, 199–200, 671–690, 1006–1008
/addmodule, 1007
/delaysign, 1007
and deployment, 678–680
dynamic loading of, 687–689
/imports, 1007
/keycontainer, 1007
/keyfile, 1007–1008
/libpath, 1008
manifest, 673–678
overview, 671–673
/reference, 1008
versioning issues, 681–687

Assembly class, 208, 687–689
.assembly extern directive, 677
Assembly Information screen, Visual Studio

.NET, 25–26
Assembly Version, 26
<assemblyIdentity> element, 685
AssemblyInfo property, 299
Assert method, 334, 445

AsymmetricAlgorithm class, System.Security
.Cryptography namespace, 484

atomicity in transactions, 774
AttributeCount property, 407
attributes, 206–208
Assembly, 26
Assembly Version, 26
Browsable, 559
Category, 559
COM Visible, 26
Company, 26
ConnectionString, 647
ContentPlaceHolderID, 640
Copyright assembly, 26
culture, 685
DataSourceID, 656
DefaultValue, 556, 558
Description, 26, 559, 654
File Version, 26
Guid, 26
MasterPageFile, 639
Obsolete, 206
OnClick, 629
PostBackUrl, 629
Product, 26
Roles, 654
runat, 600
safemode, 1002
Serializable, 206, 981
ShowLines, 659
Source Code Style, 397–399
Title, 26, 654
ToolboxBitmap, 579
Trademark, 26
Transaction, 800
TransactionAttribute, 789
TransactionOption, 789
Url, 654
VirtualPath, 630

Audio property, 303

1023

Audio property

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1023

Author property, 704, 707
AutoCompleteCustomSource property, 500
AutoCompleteMode property, 500
AutoCompleteSource property, 500
autocompletion
in text boxes and combo boxes, 500
and Windows Forms controls, 523–524

automatic quick fix engineering policy, 683
AutoResetEvent object, 828, 832–833
Autos window, Visual Studio 2005, 46
AutoScaleDimensions property, 33
AutoScaleMode property, 33
AutoScroll property, 509

B
BackColor property, 565
BackgroundWorker control, 811, 816
base class. See abstract base class
BaseAddress, WebClient class, 953
/baseaddress option, 1013
BeginExecuteNonQuery method, 352
BeginExecuteReader method, 352
BeginExecuteXmlReader method, 352
BeginInvoke method, 818
BeginRead method, 816
Binary member, FtpWebRequest class, 941
BinaryFormatter class, 873, 893, 981
binding, 90–94. See also late binding
binding element, 842
<bindingRedirect> element, 685
BitArray collection, 76
block cipher algorithm, 488
Boolean primitive type, 54–55
Boolean type, 8, 55–58
Bootstrapper program, 744
BoundField control, 647
boxing, 79–80
breadcrumb navigation, 654
Breakpoints window, Visual Studio 2005, 45
BringToFront property, 565

Browsable attribute, 559
bubbled events, 609
/bugreport option, 1008
Build option, 43
Build page, 711–714
build configurations, 711–712
compression, 713
Package files, 712
prerequisites, 712–713
setting cabinet file size, 713
using solution signing options, 714

BulletedList control, 603
Button control, 602, 614
ByRef parameter, 52, 100
Byte primitive type, 51, 54
ByVal parameter, 52, 100

C
CA (Certificate Authority), 491
Cab Project template, 697
Calendar control, 602, 603
Call keyword, 78
Call Stack window, Visual Studio 2005, 45
CanDeserialize method, 396
CanFocus property, 565
CanGoBackChanged event, 997
CanGoForwardChanged event, 997
CanStop service controller property, 916
Capture namespace, 285
CaptureCollection namespace, 285
CASPOL (Code Access Security Policy), 455
caspol.exe utility, 440, 455–465, 470
Catch block, 91
Catch keyword, 316–317
Category attribute, 559
CausesValidation property, 527–528, 565
CBool() method, 67
CByte() method, 67
CChar() method, 67
CDate() method, 67

1024

Author property

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1024

CDbl() method, 67
CDec() method, 67
CenterParent startup location, 504
CenterScreen startup location, 504
Cert2spc.exe, 471
Certificate Authority (CA), 491
Certificate management tools, 471
Certmgr.exe, 471
Ch() method, 62
ChangeCurrentCulture method, 299
ChangeCurrentUICulture method, 299
Char primitive type, 54–55
Character type, 51
CheckAsset method, 445
CheckBox control, 603
CheckBoxList control, 603
CheckCharacters property, 401, 409
CheckDemand method, 445
CheckDeny method, 445
CheckedListBox control, 560–564
checkmarks for menu items, 532
CheckPermitOnly method, 446
ChgGroup command, 458
ChgPset& command, 458
Chktrust.exe, 471
Chr() method, 62
ChrW() method, 62
CInt() method, 67
circular references, 211–212
Class constraint, 279
class creation, 94–116. See also classes
Class keyword, 95–96
constructor methods, 114
events, 106–113
fields, 96–97
methods, 97–100
overview, 94
properties, 100–106
termination and cleanup, 115–116

Class keyword, 95–96, 134, 224

classes, 84, 267–271. See also class
creation

abstract base class, 185–187
Activator, 895, 897
Activator, System namespace, 894
ArrayList, 76, 826–827, 938
Assembly, 208, 687–689
AsymmetricAlgorithm, System.Security

.Cryptography namespace, 484
BinaryFormatter, 893, 981, 988
CodeAccessSecurityAttribute, 443
vs. components, 133–135
ConfigurationSettings, 386
Connection, 344–345
Contact base class, 247–248
ContextUtil, 782
Control, 67, 499, 564–565
DataAdapter, 343, 354, 358
DataProtectionPermission, 443
DataProtectionPermissionAttribute, 443
DataReader, 350–351
DataRelationCollection, 360
DataTable, 357–358, 364
DBNull, 72–73
Dictionary, 156, 262
DSACryptoServiceProvider, 484
Encoder, 284
Environment, 298
EnvironmentPermission, 443, 451
EnvironmentPermissionAttribute, 443
FileDialogPermission, 443
FileDialogPermissionAttribute, 443
FileIOPermission, 443, 451
FileIOPermissionAttribute, 443
FileSystem, 211
FileSystemObject, 211
Form, 32, 39
FormsAuthenticationModule, 478
FtpWebRequest, 935, 941, 942
FtpWebRequest class, 941

1025

classes

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1025

classes (continued)
GacIdentityPermission, 443
GacIdentityPermissionAttribute, 443
Graphics, 573–574
HashAlgorithm, 476
Hashtable, 103
HMACSHA1, 476
HttpChannel, 894
HttpContext, 958
HttpListener, 935
HttpListenerContext, 958
HttpListenerRequest, 958
HttpListenerResponse, 958
HttpUtility, 938
HttpWebRequest, 1000
HttpWebResponse, 1000
and inheritance, 273–274
Installation-Oriented, 904–905
IPEndPoint, 976
IPHostEntry, 976
IsolatedStorageFilePermission, 443
IsolatedStoragePermission, 443
KeyContainerPermission, 443
KeyContainerPermissionAccessEntry, 444
KeyContainerPermissionAccessEntry

Collection, 444
KeyContainerPermissionAccessEntry

Enumerator, 444
KeyContainerPermissionAttribute, 444
ListDictionary, 76, 77
MACTripleDES, 476
MD5CryptoServiceProvider, 476
Message, 981–986
MessageBox, 36
MissingMemberException, 91
NetworkStream, 974
Object, 51, 52, 68–70, 269, 276
Partial classes, 16
PerformanceCounter, 914
PermissionSetAttribute, 444

PrincipalPermission, 444
PrincipalPermissionAttribute, 444
ProviderFactory, 366
PublisherIdentityPermission, 444
PublisherIdentityPermissionAttribute, 444
ReaderWriterLock, 830
ReflectionPermission, 444
ReflectionPermissionAttribute, 444
RegistryPermission, 444
RegistryPermissionAttribute, 444
ResourcePermissionBase, 444
ResourcePermissionBaseEntry, 444
RIPEMD160Managed, 476
RSACryptoServiceProvider, 484
RSAKeyValue, 485
ScrollableControl, 509
SecurityAttribute, 444
SecurityException, 471–473
SecurityPermission, 444
SecurityPermissionAttribute, 445
ServiceBase, 903–904
ServiceController, 905, 916–919
ServiceInstaller, 905
ServiceProcessInstaller, 904
ServiceProcessInstaller class, 904
SHA1CryptoServiceProvider, 476
SHA256Managed, 476
SoapDocumentMethodAttribute, 861
SoapFormatter, 893, 981
SqlConnection, 345, 369
SqlDataAdapter, 377
SqlDataReader, 348
SqlParameter, 356
StorePermission, 445
StorePermissionAttribute, 445
Stream, 418
StreamReader, 951
StreamWriter, 951
String, 70–72
StringBuilder, 53, 72, 284

1026

classes (continued)

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1026

StringBuilder class, 80
StringCollection, 76, 77
StringDictionary, 76, 77
TcpClient, 970
TcpListener, 970
TextStream, 211
TextWriter, 418
ThreadPool, 816
Timer, 134, 820
Trace, 335–339
UIPermission, 445
UIPermissionAttribute, 445
UserControl, 565–566
creating composite UserControl, 567–568
example, 569–572
exposing properties of subcontrols,

568–569
overview, 566–567
resize, how works, 568
setting minimum size, 568

WebClient, 935, 952, 953, 966
WebRequest, 935
WebService, 858
WebServiceAttribute, 858
WebServicesBindingAttribute, 858
X509Certificate, 493
XmlAttribute, 419
XmlDocument, 371–372, 418
XmlElement, 419
XmlNameTable, 400
XmlNode, 372, 418
XmlReader, 437
XmlReaderSettings, 409–410
XmlResolver, 400
XmlSerializer, 416
XmlTextReader, 434
XmlTextWriter, 434
XmlWriter, 399, 418, 437
XsltArgumentList, 432
XsltCompileException, 432
XsltContext, 432

XsltException, 432
XslTransform, 400, 424, 428–429

classes (reference types), 68–78
arrays, 73–76
collections, 76–78
DBNull class and IsDBNull() function,

72–73
Object class, 68–70
overview, 68
String class, 70–72

ClearPool method, SqlConnection class, 369
ClearPools method, SqlConnection class, 369
Click event, 565
ClickOnce deployment, 11, 16, 202–203,

735–745
Bootstrapper program, 744
configuration options, 741–744
configuring application for, 735–736
deploying application that is available

offline, 738
deploying online application, 736–738
files and directories produced by, 739
online vs. locally installed applications, 736
vs. other deployment technologies, 745
overview, 735
signing manifest, 740
update process, 740

client-side events, 608
ClientSize property, 33
CLng() method, 67
Clock property, 303
Close member, HttpListener class, 955
Close method, 333, 334
CLR. See Common Language Runtime (CLR)
CObj() method, 67
code access permission, 445–446
Code Access Security Policy (CASPOL), 455
CodeAccessSecurityAttribute class, 443
<codeBase> element, 686
/codepage option, 1013
Collect method, 221

1027

Collect method

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1027

collections, 76–78
Color property, 534
ColorDialog control, 534
COM (Component Object Model), 2–3, 13
classic COM, 748–749
disadvantages of, 2–3
and late binding, 756–761
legacy component, 749–752
.NET application, 752–754
role of, 13
using .NET components in, 766–772
using TlbImp directly, 755–756

COM+, 205
combo boxes, autocompletion in, 500
Command object, 344, 345–350
Command property, 723
commands
AddFullTrust, 458
AddGroup, 458
AddPSet, 458
ChgGroup, 458
ChgPset&, 458
End Namespace, 295
ExecuteCommand, 919
executing asynchronously, 352–354
Force&, 458
–List, 455
–ListFulltrust, 455
–ListGroups, 455
–ListPset, 455
Namespace command, 295
Recover, 458
RemFullTrust, 458
RemGroup, 458
RemPSet, 458
–Reset, 455
–ResolveGroup, 455
–ResolvePerm, 455
Using command, 214

Commit custom action, 727

Common Language Runtime (CLR), 4–8,
197–222, 311

common type system, 8
cross-language integration, 203–209
deployment, 202–203
elements of .NET application, 198–201
IL Disassembler, 209–210
key design goals, 5–7
memory management, 210–222
faster memory allocation for objects,

218–219
overview, 210–211

metadata, 7
multiple-language integration and support, 7
namespaces, 8
overview, 4–5, 197–198
versioning, 201–202

Common Object Request Broker
Architecture (CORBA), 837, 839

Common Type System (CTS), 204
Company attribute, 26
Compare delegate, 130
Compare method, 70, 184
CompareOrdinal method, 70
CompareValidator control, 604
compiler options, 64–66
COMPlus namespace, 294
Component Object Model. See COM

(Component Object Model)
components vs. classes, 133–135
Concat method, 70
Condition property, 706, 728, 732
conditional compilation, 337–338
configuration files, 684–687
overview, 684
runtime settings, 685–687

ConformanceLevel property, 401, 409
Connection class, 344–345
Connection property, 355
ConnectionString attribute, 647

1028

collections

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1028

ConnectionString property, 371
consistency in transactions, 774
console applications, 12
constraints, 276–280
constructor methods, 114
overloading, 119–120
overview, 114
parameterized constructors, 114

constructors, 172–176
overloading, and variable initialization,

175–176
with parameters, 174–175
shared, 125
simple, 172–173

Contact base class, creating, 247–248
ContainsKey method, Hashtable class, 103
Content Files deployment output, 700
ContentPage control, 603
ContentPlaceHolder control, 637
ContentPlaceHolderID attribute, 640
context menus, 532
context switching, 808
ContextMenu control, 501
ContextMenuStrip control, 501
ContextUtil class, 782
Control class, 499, 564–565
Control control, 614
control panel for a service, 915
controls
Access Control Lists (ACLs), 202
AccessDataSource, 642
ActiveX, 543, 761–766
legacy ActiveX control, 761–763
.NET application, 763–765

AdRotator, 602, 603
BackgroundWorker, 811, 816
BoundField, 647
BulletedList, 603
Button, 602, 614
Calendar, 602, 603

CheckBox, 603
CheckBoxList, 603
ColorDialog, 534
CompareValidator, 604
ContentPage, 603
ContentPlaceHolder, 637
ContextMenuStrip, 501
Control control, 614
CustomValidator, 604
DataGrid, 385–388, 602, 615
DataGridView, 306
DataList, 603
DetailsView, 603
DropDownList, 603
DynamicImage, 603
ErrorProvider, 522
extender provider controls, 520–523
FileUpload, 603
FlowLayoutPanel, 499, 500–501, 517–520
overview, 517–518
Padding and Margin properties, 518–520

FontDialog, 535
FormsView, 603
GridView, 603, 624, 643–652, 854–856
GroupBox, 538–539
HelpProvider control, 521–522
HTML server controls, 598, 600–601
HyperLink, 602
Image, 603
ImageButton, 602
ImageMap, 603
Label, 602, 612
LinkButton, 602
LinkLabel, 992
ListBox, 603
ListView, 946, 949
MaskedTextbox, 500, 524–526
Menu server, 656–657
MenuStrip, 501
MultiView, 603

1029

controls

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1029

controls (continued)
NotifyIcon, 553
ObjectDataSource, 642, 652, 854
Panel, 538–539
Printer Dialog controls, 535
RadioButton, 603
RadioButtonList, 603
RangeValidator, 604
RegularExpressionValidator, 604
Repeater, 603
RequiredFieldValidator, 604, 612
retired, 543
ScrollableControl, 509
server controls, 598
server-side controls, 598–600
ServiceController, 905, 916–919
SiteMapDataSource, 642, 656
SiteMapPath, 654–655
Splitter, 516–517
SqlDataSource, 642, 643–648
StatusStrip, 501
Table, 603
TableLayoutPanel, 499, 500–501, 520
TextBox, 278, 602, 612
Toolbars and ToolStrip, 528–531
allowing user to move Toolbar

elements, 531
altering Toolbar elements in Designer, 531
creating standard set of Toolbar

elements, 531
creating ToolStrip and adding toolbar

elements, 529–530
overview, 528–529

ToolStripButton, 528
ToolStripComboBox, 528
ToolStripControlHost, 528
ToolStripDropDownButton, 529
ToolStripDropDownItem, 529
ToolStripLabel, 528
ToolStripMenuItem, 529
ToolStripSeparator, 528

ToolStripSplitButton, 529
ToolStripTextBox, 528
TreeView, 603, 657–660
User Controls, 598, 605–606
UserControl class, 565–566
creating composite UserControl, 567–568
example, 569–572
exposing properties of subcontrols,

568–569
overview, 566–567
resize, how works, 568
setting minimum size, 568

Validation Controls, 598, 604–605
WebBrowser, 993
WebBrowser control, 500, 991, 998–1000
Wizard, 603
XmlDataSource, 642

Controls property, 565
conversation windows, 972–980
creating Conversation form, 974–975
initiating connections, 975–979
receiving inbound connections, 979–980

Convert class, System namespace, 67
Copy method, 70, 446, 447
Copyright attribute, 26
CORBA (Common Object Request Broker

Architecture), 837, 839
counter monitor service, 907–912
installing, 910
starting, 910–911
uninstalling, 911–912

CounterType property, PerformanceCounter
class, 914

Create member, WebRequest class, 935
Created event, FileSystemWatcher class,

925–926
CreateEventSource method, 331
CreateInstance method, 236
cross-language integration, 203–209
attributes, 206–208
common type system, 203–204

1030

controls (continued)

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1030

metadata, 204–206
overview, 203
Reflection API, 208–209

cryptography, 473–474. See also hash
algorithms; security, in .NET framework 2.0

CShort() method, 67
CSng() method, 67
CStr() method, 67
CTS (Common Type System), 204
CType() method, 63, 68, 92–93, 218
CType operator, 127
culture attribute, 685
Currency type, 61
CurrentCulture method, 299
CurrentDirectory method, 299
CurrentUICulture method, 299
Custom Actions Editor, 726–729
custom deployment options, 745–746
Custom option, 463
CustomActionData property, 728
CustomValidator control, 604

D
data access component, building

(ADO.NET 2.0), 369–388
constructors, 370–371
methods, 373–385
ExecSp, 382–383
ExecSpOutputValues, 384–385
ExecSpReturnDataReader, 380–381
ExecSpReturnDataSet, 373–380
ExecSpReturnXmlReader, 381–382

overview, 369–370
properties, 371–372
stored procedure XML structure, 372–373
using DataSet Objects to bind to DataGrids,

385–388
Data Component Configuration Wizard, 850
data providers, ADO.NET, 344–359
Command object, 345–346
Connection object, 344–345

DataAdapter objects, 354–358
DataReader object, 350–351
executing commands asynchronously,

352–354
OLE DB .NET Data Provider, 359
overview, 344
SQL Server .NET Data Provider, 358
using stored procedures with Command

objects, 346–350
DataAdapter class, 343
DataAdapter object, 344, 354–358
Database project type, 21
DataBind() method, 857
<DataBindings> element, 660
data-driven applications, ASP.NET 2.0,

642–652
editing and deleting of records with

GridView, 648–652
overview, 642–643
using GridView and SqlDataSource controls,

643–648
DataGrid control, 385–388, 602, 615
DataGridView control, 306
DataList control, 603
DataProtectionPermission class, 443
DataProtectionPermissionAttribute

class, 443
DataReader class, 344, 350–351
DataRelationCollection class, 360
DataRowCollection property, DataTable

class, 357
DataSet component, ADO.NET 2.0,

359–366. See also DataSet objects
DataRelationCollection, 360
DataTable objects, 363–366
DataTableCollection, 359
ExtendedProperties, 360–361
overview, 359

DataSet objects, 342, 351
creating and using, 361–363
enhancements to, 364–366
using to bind to DataGrids, 385–388

1031

DataSet objects

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1031

DataSourceID attribute, 656
DataTable class, 357–358
DataTable objects, 363–366
DataTableCollection class, 359
Date primitive type, 55
DateTime primitive type, 54
DBNull class, 72–73
DCOM (Distributed Component Object

Model), 748, 838–839
/debug option, 1009
Debug Symbols deployment output, 700
debugging and error-checking, 1008–1010.

See also exception handling
/bugreport, 1008
/debug, 1009
/nowarn, 1009
/quiet, 1009
/removeintchecks, 1009
/warnaserror, 1010

Decimal primitive type, 54–55, 60–62, 82
Declare keyword, 29
DeclaringType property, 209
Decoder namespace, 285
deep copy, 53
default interop assembly, 755
default property properties, 105–106
default versioning policy, 683
DefaultValue attribute, 556, 558
/delaysign option, 1007
Delegate keyword, 128
delegates, 128–133
declaring delegate, 128–129
implementing delegate method, 130–133
overview, 128
using delegate datatype, 129–130

Delete method, 331
DeleteCommand property, 357
DeleteEventSource method, 331
DeleteFile field, 942
Demand method, 446, 447

Demanded property, 471
Deny method, 446
DenySetInstance property, 471
Dependencies primary output project

property, 706
deployment, 202–203, 299, 691–746. See

also deployment project, modifying; Inter-
net deployment of Windows applications;
Visual Studio .NET, deployment projects

and assemblies, 678–680
building, 732–733
overview, 691–692
using Windows Installer, 694–695
why easier in .NET, 692–694
XCOPY deployment, 694

deployment output
Content Files, 700
Debug Symbols, 700
Documentation Files, 701
Localized resources, 700
Primary, 700
Source Files, 701
XML Serialization, 701

deployment project, modifying, 710–732
Custom Actions Editor, 726–729
File System Editor, 714–719
File Types Editor, 722–723
Launch Conditions Editor, 729–732
overview, 710–711
project properties, 711–714
Registry Editor, 719–722
User Interface Editor, 723–726

dereferencing objects, 90
DES encryption, 479
Description attribute, 26, 559, 654
Description property, 704, 707, 844
Deserialize method, BinaryFormatter

class, 988
deserialize method overrides, 394
DetailsView control, 603

1032

DataSourceID attribute

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1032

DetectedDependencies folder, 707
DetectNewerInstalledVersion property, 705
dialog forms, 547–549
DialogResult property, 547–549
Dictionary (Of K, T) generic, 262
Dictionary class, 156, 262
digital signatures, 488–491
DirectCast function, 93–94
directory-level security, 867
DISCO, 863–865
DisplayName property, 708, 905
Dispose method, 217
Distributed Component Object Model

(DCOM), 748, 838–839
DLL (Dynamic Link Library), 6, 692–693
DNA, disadvantages of, 2–3
DNS (Domain Naming System), 863–866, 933
/doc option, 1005–1006
Dock property, 565
docking of Windows Forms controls, 514–515
Document Object Model (DOM), 418–424
overview, 418–419
traversing raw XML elements, 419–422
traversing XML attributes, 422–424

Documentation Files deployment output, 701
DoDragDrop property, 565
DOM. See Document Object Model (DOM)
Domain Naming System (DNS), 863–866, 933
Double primitive type, 54–55
DoubleClick event, 565
drag and drop, 535–538
DragDrop event, 565
DragEnter event, 565
DragLeave event, 565
DragOver event, 565
drives changes in Visual Basic, 14
DropDownList control, 603
DSA encryption, 484
DSACryptoServiceProvider class, 484
DtdValidate property, 409

durability in transactions, 774
Dynamic Help, Visual Studio .NET, 30–31
Dynamic Link Library (DLL), 6, 692–693
dynamic loading of assemblies, 687–689
Assembly class, 687–689
overview, 687
putting assemblies to work, 689–690

DynamicImage control, 603

E
early binding, 90–94, 748. See also late

binding
Edit and Continue, 16
Effect property, 536
Elapsed event, 820, 914
elements
<assemblyIdentity>, 685
binding element, 842
<bindingRedirect>, 685
<codeBase>, 686
<DataBindings>, 660
for-each, 424
message, 842
Option Explicit, 41
Option Strict, 41
port, 842
portType, 842
<probing>, 686
<roleManager>, 664
service, 842
stylesheet, 424
template, 424
types, 842
value-of, 424

Empty property, 70
Enabled property, 565
EnableRaisingEvents property,

FileSystemWatcher class, 923
EnableSession property, 862–863

1033

EnableSession property

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1033

encapsulation, 83, 227–229
Encoder class
System.Drawing.Imaging namespace, 284
System.Text namespace, 284

Encoder namespace, 285
EncodeXmlBinary property, 402
Encoding namespace, 285
Encoding property, 402
End Namespace command, 295
End Region directive, 27
End Try keyword, 316
EndExecuteNonQuery method, 352
EndExecuteReader method, 352
EndExecuteXmlReader method, 352
Enterprise Services, 773. See also queued

components; transactions
EntryPoint property, 728
EntryWritten event, 331
Environment class, 298
EnvironmentPermission class, 443, 451
EnvironmentPermissionAttribute class, 443
Equality method, 71
Equals method, 70, 204, 209, 446, 447
Error log entry, 330
error logging, 329–335
Event Log, 330–331
events, methods, and properties, 331–332
overview, 329–330
writing to trace files, 333–335

ErrorProvider control, 522
errors. See exception handling
event handlers, customizing, 36–37
Event keyword, 108, 188
EventLog component, 922, 925
events, 106–113
application events, 609
ApplicationEnd, 610
ApplicationStart, 610
AutoResetEvent, 828, 832–833
bubbled, 609
CanGoBackChanged, 997

CanGoForwardChanged, 997
Click, 565
client-side, 608
Created, 925–926
declaring and raising custom events,

109–110
DoubleClick, 565
DragDrop, 565
DragEnter, 565
DragLeave, 565
DragOver, 565
Elapsed, 820, 914
EntryWritten, 331
form events, 509
GotFocus, 565
handling, 106–107
and inheritance, 179–182
intrinsic, 608
ItemCommand, 609
KeyDown, 565
KeyPress, 565
KeyUp, 565
MouseDown, 565
MouseHover, 565
MouseOver, 608
MouseUp, 565
multiple, 107
Navigated, 993
non-postback, 608–609
OnClosed, 217
OnContinue, 903
OnCustomCommand, 903
OnLoad, 217
OnOpen, 217
OnPause, 903
OnPowerEvent, 903
OnSessionChange, 903
OnShutdown, 903
OnStart, 903
OnStop, 903
postback, 608–609, 628

1034

encapsulation

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1034

raising, 108–110
receiving with AddHandler, 111–113
receiving with WithEvents, 110–111
SelectedIndexChanged, 949
server-side, 608
session events, 609
shared, 124–125, 185
TextChanged, 106
Validated, 565
Validating, 527, 565
in Web forms, 606–609
WithEvents keyword, 107–108

Everything permission set, 441
exception handling, 311–339. See also error

logging; structured-exception-handling
keywords in VB.NET

exceptions vs. Err object in VB6, 315
interoperability with VB6-style error handling,

328–329
overview, 311–312
properties and methods of exceptions,

314–315
and SecurityException class, 471–473
and Trace class, 335–339
in VB6, 312–313

Exclude property, 706
ExcludeFilter property, 706
exclusive locks and SyncLock statement,

828–834
AutoReset Events, 832–833
ManualReset Events, 833–834
reader–writer locks, 830–832

ExecSp method, 382–384
ExecSpOutputValues method, 384–385
ExecSpReturnDataReader method, 380–381
ExecSpReturnDataSet method, 373–380
ExecSpReturnXmlReader method, 381–382
ExecuteCommand method, Service

controller class, 916, 919
ExecuteReader method, 351

ExecuteScalar method, 783
Execution permission set, 442
Exists method, 331
Exit Try statement, 311, 320–321
explicit conversions, 63–68
compiler options, 64–66
overview, 63
performing, 66–68

ExtendedProperties, 360–361
extender provider controls, 520–523
ErrorProvider, 522
HelpProvider, 521–522
overview, 520–521
properties of, 522–523
ToolTip, 521
working with in code, 523

Extensible Markup Language. See XML
(Extensible Markup Language)

F
Fail method, 334
FailedAssemblyInfo property, 471
Failure audit log entry, 330
fields, 87–88, 96–97
File System Editor, 714–719
adding items to folder, 715
adding special folders, 715–719
creating shortcuts, 719
overview, 714–715

File Transfer Protocol (FTP), 931
File Types Editor, 722–723
File Version attribute, 26
File Watcher, 922–926. See also

FileSystemWatcher
/filealign option, 1005
FileDialogPermission class, 443
FileDialogPermissionAttribute class, 443
FileIOPermission class, 443, 451
FileIOPermissionAttribute class, 443
Filename property, 534

1035

Filename property

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1035

Files additional property, 708
FileSystem class, 211
FileSystem property, 304
FileSystemObject class, 211
FileSystemWatcher, 923–926
adding FileSystemWatcher code to OnStart

and OnStop, 924
Created event, 925–926
EnableRaisingEvents property, 923
EventLog component, 925
FileSystemWatcher component, 923
Filter property, 924
IncludeSubdirectories property, 924
NotifyFilter property, 923
Path property, 923

FileUpload control, 603
FileWebRequest class, 936
Fill method
DataAdapter class, 354
DateSet class, 852
SqlDataAdapter class, 377

Filter property
FileSystemWatcher class, 924
OpenFileDialog class, 533

FilterIndex property, 534
Finalize method, 90, 214–215, 222
Finally keyword, 316–317
FindControl method, PreviousPage

property, 629
firewalls, 934
FirstPermissionThatFailed property, 471
Fixed3D option, 505
FixedDialog option, 505
FixedPitchOnly property, 535
FixedSingle option, 505
FixedToolWindow option, 505
FlowLayoutPanel control, 499, 500–501,

517–520
overview, 517–518
Padding and Margin properties, 518–520

Flush method, 333, 334
Focus property, 565
Folder property, 706
Font property, 535, 565
FontDialog control, 535
FOR XML AUTO query, 435
FOR XML clause, 434
FOR XML EXPLICIT query, 436
FOR XML RAW query, 435
Force& command, 458
for-each element, 424
ForeColor property, 565
Form class, System.Windows.Forms

namespace, 32, 39
form events, 509
FormsAuthenticationModule class, System

.Web.Security namespace, 478
FormsView control, 603
Friend keyword, 86, 88, 97, 177
FromOADate method, 63
FromTypes method, 396
FromXml method, 446, 447
FTP (File Transfer Protocol), 931
FtpWebRequest class, 935, 941–952
creating FTP client, 943–952
WebRequestMethods.Ftp, 942

FullTrust permission set, 441
Function keyword, 98

G
GAC (Global Application Cache), 671
GAC (Global Assembly Cache), 201–202,

679–680
GacIdentityPermission class, 443
GacIdentityPermissionAttribute class, 443
gacutil.exe, 680
garbage collection, 211–218
circular references, 211–212
CLR’s, 212–214
Finalize method, 214–215

1036

Files additional property

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1036

garbage collector optimizations, 220–222
IDisposable interface, 215–218
overview, 211

GDI+, 25
GDI+, painting custom control with, 573–579
overview, 573
System.Drawing namespace, 573
System.Drawing.Graphics class, 573–574
using GDI+ capabilities in Windows Form,

574–579
generics, 16, 77–78, 259–281
constraints, 276–280
Dictionary (Of K, T), 262
and late binding, 280–281
List (Of T), 260
methods, 265–266, 275–276
overview, 259
types, 261–265, 267–275
using, 260–266

GetBaseException method, 314, 326–327
GetConfig method, ConfigurationSettings

class, 386
GetData() method, 852
GetDataReader method, 366
GetDateTimeStamp field, 942
GetDirectories method, 947–948
GetDirectoryEntries method, 949
GetEventLogs method, 331
GetExecutingAssembly method, 208
GetFiles method, 947–948
GetFileSize field, 942
GetHashCode method, 204, 446, 447
GetMembers method, 209
GetObject method, Activator class, 895
GetRequestStream method, WebRequest

class, 935
GetResponse method, WebRequest

class, 935
GetType method, Activator class, 897
GetType method, Object class, 142, 204,

446, 447

GetTypes method, 208
GetValues method, 194
GetXml method, 432
Global Application Cache (GAC), 671
Global Assembly Cache (GAC), 201–202,

679–680
Global keyword, 297
Global Unique Identifier (GUID), 224, 785
global.asax file, 598
GoBack() method, 997
GoForward() method, 997
GoHome() method, 997
Gopher protocol, 931
GotFocus event, 565
Goto keyword, 29
GoTo statement, 312
GrantedSet property, 471
Graphical User Interface (GUI), 12
Graphics class, System.Drawing namespace,

573–574
GridView control, 603, 624, 643–652,

854–856
GroupBox container control, 538–539
GroupCollection namespace, 285
GUI (Graphical User Interface), 12
GUID (Global Unique Identifier), 224, 785
Guid attribute, 26
Guid primitive type, 54

H
Handles clause, 193
Handles keyword, 106, 107
handling exceptions, 413–414
Handshake Protocol, 493
hash algorithms, 474–495
digital signature basics, 488–491
Message Digest version 5 (MD5), 478–479
overview, 474–476
Public Key Cryptographic System (PKCS),

484–488

1037

hash algorithms

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1037

hash algorithms (continued)
RACE Integrity Primitives Evaluation

(RIPEMD-160), 479
secret key encryption, 479–484
Secure Sockets Layer (SSL), 493–495
Secured Hashing Algorithm (SHA), 477–478
X509 certificates, 491–493

hash digest, 488
Hash option, 463
HashAlgorithm class, System.Security

.Cryptography namespace, 476
HashAlgorithm property, 708
Hashtable class, 103
Hashtable collection, 76
heap, 218
help features, Visual Basic compiler, 1010
/help option, 1010
HelpLink property, 314, 328
HelpProvider control, 521–522
HelpText property, ServiceProcessInstaller

class, 904
Hidden property, 706
Hide property, 565
HMACSHA1 class, 476
HTML server controls, 598, 600–601
HTTP (HyperText Transfer Protocol),

606, 841, 931
HttpChannel class, 894
HttpContext class, 958
HttpListener class, 935, 955–963
HttpListenerContext class, 958
HttpListenerRequest class, 958
HttpListenerResponse class, 958
HttpUtility class, System.Web

namespace, 938
HttpWebRequest class, System.Net

namespace, 936, 1000
HttpWebResponse class, System.Net

namespace, 1000
HyperLink control, 602
HyperText Transfer Protocol (HTTP),

606, 841, 931

I
IClassFactory interface, 748
IComparable interface, 277
IConfigurationSectionHandler interface,

System.Configuration namespace, 387
icons for menu items, 532
IDE (Integrated Development Environment),

20, 27–28
identity permissions, 449
identity section, manifest, 675–677
culture, 676–677
overview, 675–676
strong names, 676
version number, 676

IDictionary interface, 375
IDisposable interface, 214, 215–218
IETF (Internet Engineering Task Force), 493
IgnoreComments property, 409
IgnoreInlineSchema property, 409
IgnoreProcessing property, 409
IgnoreSchema property, 410
IgnoreValidation property, 410
IgnoreWhitespace property, 410
IIS (Internet Information Server), 584
dynamic discovery with, 864–865
using as remoting host, 890–894

IL (Intermediate Language), 7
IL Disassembler, 209–210, 673
Ildasm.exe tool, 209, 673
Image control, 603
ImageButton control, 602
ImageMap control, 603
Implements clause, 193
Implements keyword, 29, 192, 232
Implements statement, 275
importing namespaces, 292–293
Imports keyword, 294
/imports option, 1007
Imports statement, 35, 143, 237, 283
IncludeSubdirectories property,

FileSystemWatcher class, 924

1038

hash algorithms (continued)

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1038

Indent property, 402
IndentChars property, 402
Inequality method, 71
Info property, 304
Information log entry, 330
Inheritance, 83
inheritance, 241–257. See also inheritance

implementation
and classes, 273–274
depth of levels, 252–254
fragile base class issue, 254–257
and multiple interfaces, 246–252
overview, 241
polymorphism with, 238–240
when to use, 242–246

Inheritance, Framework, 244
inheritance implementation, 140–187
combining interfaces and inheritance, 195
constructors, 172–176
creating abstract base class, 185–187
creating base class, 140–141
creating subclass, 141–145
events and inheritance, 179–182
interacting with base class, your class, and

your object, 166–172
levels of inheritance, 163–166
overloading methods, 145–148
overriding methods, 148–156
overview, 140
preventing inheritance, 187
protected scope, 177–179
shadowing, 156–163
shared events, 185
shared methods, 182–184

Inherits keyword, 32, 142, 143–145
Inherits statement, 134
InitialDirectory property, 533
InitializeComponent procedure, 33
InnerException property, 314, 323–325
InsertCommand property, 357

Install custom action, 727
Install Mode property, 743
Installation URL property, 743
Installation-Oriented classes, 904–905
InstallerClass property, 728
InstallUtil.exe utility, 910
instance variables, 87–88
instances, 84
Int16 primitive type, 54
Int32 primitive type, 54
Int64 primitive type, 54
Integer datatype, 125
Integer primitive type, 8, 51, 55, 58–59, 274
Integrated Development Environment (IDE),

20, 27–28
IntelliSense, 29
interface, 85–88
Interface keyword, 187, 190
interfaces, 275
IDisposable, 214
multiple, 187–195

Interlocked object, 828
Intermediate Language (IL), 7
Internet deployment of Windows

applications, 733–746. See also
ClickOnce deployment

custom deployment options, 745–746
no-touch deployment, 733–734
overview, 733

Internet Engineering Task Force (IETF), 493
Internet Explorer, using in applications,

990–1000
allowing simple Web browsing, 991–992
creating toolbar, 994–998
launching from Windows application,

992–993
printing using WebBrowser control, 1000
showing documents using WebBrowser

control, 998–1000
updating URLs and page titles, 993–994

1039

Internet Explorer

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1039

Internet Information Server (IIS), 584
dynamic discovery with, 864–865
using as remoting host, 890–894

Internet permission set, 442
Intersect method, 446, 447
intrinsic events, 608
Invoke method, 130
IPEndPoint class, System.Net

namespace, 976
IPHostEntry class, System.Net

namespace, 976
IPrintableObject class, 248–252
is-a relationship, 139
IsCrossPagePostBack property, 632
IsDBNull() function, 72–73
IsEmpty function, 80
ISerializable interface, 878
IsFalse overloading, 127
IsNetworkDeployed method, 299
IsNot keyword, 16
IsNull function, 80
IsolatedStorageFilePermission class, 443
IsolatedStoragePermission class, 443
Isolation property, 774
IsPostBack property, 631
IsSubsetOf method, 446, 447
IsTrue operator, 127
IsUnrestricted method, 447
Item property, 270
ItemCommand event, 609
IXsltContextFunction interface, 432
IXsltContextVariable interface, 432

J
Java, remote method invocation in, 839
JIT (Just in Time), 22, 791
Join thread object method, 821
Just in Time (JIT), 22, 791

K
Keyboard property, 304
/keycontainer option, 1007
KeyContainerPermission class, 443
KeyContainerPermissionAccessEntry

class, 444
KeyContainerPermissionAccessEntryCollec-

tion class, 444
KeyContainerPermissionAccessEntryEnumer-

ator class, 444
KeyContainerPermissionAttribute class, 444
KeyDown event, 565
/keyfile option, 1007–1008
KeyOutput property, 706
KeyPress event, 565
KeyState property, 536
KeyUp event, 565
keywords
AddHandler, 110
ByRef, 100
ByVal, 100
Call, 78
Catch, 316–317
Class keyword, 95–96, 134, 224
Declare, 29
Delegate, 128
End Try, 316
Event, 108, 188
Finally, 316–317
Friend, 86, 88, 97, 177
Function, 98
Global, 297
Goto, 29
Handles, 106, 107
Implements, 29, 192, 232
Imports, 294
Inherits, 32, 142, 143–145
Interface, 187, 190
IsNot, 16

1040

Internet Information Server (IIS)

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1040

keywords, 80–82
Me, 33, 166–170
MustInherit, 185, 186
MustOverride, 186
My, 298–309
My.Application, 299–303
My.Computer, 303–307
My.Forms, 307
My.Resources, 308
My.User, 308
My.WebServices, 308–309
overview, 298–299

MyBase, 150–152, 169, 170–171
MyClass, 171–172
Narrowing, 126
New, 88
NotInheritable, 187
Operator, 126
Option, 29
Optional, 78, 116–117
Overloads, 145
Overridable, 148–149
Overrides, 149–150
Partial, 32, 592
Preserve, 75–76
Private, 85, 87, 97, 177
Property, 100, 188
Protected, 85, 97, 177
Protected Friend, 97
Provider, 345
Public, 85, 88, 97, 99, 177
RaiseEvent, 110
retired, 80–82. See also structured-

exception-handling keywords in VB.NET
Return, 98
Shadows, 157
Shared, 32, 121, 122
structured-exception-handling keywords in

VB.NET, 315–328
Exit Try statement, 320–321

GetBaseException method, 326–327
HelpLink property, 328
InnerException and TargetSite properties,

323–325
Message property, 323
Nested Try structures, 321–323
overview, 315–316
Source and StackTrace properties, 326
Throw keyword, 318
Try, Catch, and Finally keywords, 316–317

Sub, 98
Throw, 316, 318
Try, 315, 316–317
Using keyword, 17, 218
Widening, 126
WithEvents, 38, 107–108, 110–111

Keywords property, 705

L
Label control, 602, 612
language options, Visual Basic compiler,

1010–1011
Language property, 708
LanguageIds detected dependency

property, 707
late binding, 748, 756–761
calculation framework, 757–761
example for, 756
and generics, 280–281
implementing, 91–92
overview, 91–92
polymorphism through, 231–233
sample COM object, 756–757
use of CType function, 92–93
use of DirectCast function, 93–94
use of TryCast function, 94

Launch Conditions Editor, 729–732
adding file search, 730
creating launch condition, 731–732

1041

Launch Conditions Editor

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1041

Launch Conditions Editor (continued)
modifying file search properties, 730–731
overview, 729

LBound function, 80
Levels 0 through 4, 335
/libpath option, 1008
libraries of prewritten functionality, 15
Like operator, 127
LineNumber property, 410
LineNumberOffset property, 410
LinePositionOffset property, 410
LinkButton control, 602
LinkLabel control, 992
/linkresource option, 1011
List (Of T) generic, 260
–List command, 455
ListBox control, 603
ListDictionary class,

System.Collections.Specialized
namespace, 76, 77

ListDirectory field, 942
ListDirectoryDetails field, 942
–ListFulltrust command, 455
–ListGroups command, 455
–ListPset command, 455
ListView control, 946
Load method, 236, 366, 427
LoadFrom method, 208, 236
.locale directive, 677
.Locale directive, 678
LocalInternet permission set, 442
Localization property, 705
Localized resources project output, 700
Locals window, Visual Studio 2005, 46
Location property, 38, 565
location transparency, 887
Log property, 299, 301, 332
Long primitive type, 55
Long type, 8, 51, 59
Longhorn operating system, 16
Lset function, 80

M
machine.config file, 366
MACTripleDES class, 476
/main option, 1013
MainForm property, 299
MainMenu, replaced by MenuStrip, 501
Makecert.exe, 471
MakeDirectory field, 942
manifest, 673–678
identity section, 675–677
overview, 673–675
referenced assemblies, 677–678

Manual startup location, 504
ManualResetEvent object, 828, 833–834
Margin property, FlowLayoutPanel control,

501, 518–520
MaskedTextbox control, 500, 524–526
Master directive, 637
master pages, ASP.NET 2.0, 634–642
creating content page, 637–641
creating master page, 635–637
declaring master page application-wide, 641
overview, 634–635
providing default content in your master

page, 642
master.cs file, 635
MasterPageFile attribute, 639
master.vb file, 635
MatchCollection namespace, 285
MaximumSize property, 499
MD5 (Message Digest version 5), 478–479
MD5CryptoServiceProvider class, 476
MDI forms, 544–545
creating MDI parent form, 545
differences in MDI parent forms between

VB6 and VB.NET, 545
MDI child forms, 545
MDI example in VB.NET, 545–547
overview, 544

MDI interface, 28

1042

Launch Conditions Editor (continued)

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1042

Me keyword, 33, 166–170
memory management, 210–222. See also

garbage collection
faster memory allocation for objects,

218–219
overview, 210–211

MemoryStream class, 414–417
Menu control, 656–657
menus, 531–533
adding standard items to, 532
context menus, 532
ContextMenu, 501
ContextMenuStrip control, 501
dynamically manipulating at runtime,

532–533
icons and checkmarks for menu items, 532
overview, 531–532

MenuStrip control, 501
Merge Module Project template, 697
MergeModuleProperties property, 707
message, 872
Message class, 981–986
Message Digest version 5 (MD5), 478–479
message element, 842
Message property, 314, 323, 732
MessageBox class, System.Windows.Forms

namespace, 36
MessageBoxButtons enumeration, 35
metadata, 7, 198–201, 204–206
Method member, FtpWebRequest class, 942
Method property, 471
method signatures, 230
methods, 92–93, 97–100
Abort thread object method, 821
Add, SortedList collection, 80
AddHandler, 108, 111–113
AddNodes, 946
AddOwnedForm(), 506
ApartmentState thread object method, 821
Append, StringBuilder class, 80

Assert, 334, 445
BeginExecuteNonQuery, 352
BeginExecuteReader, 352
BeginExecuteXmlReader, 352
BeginInvoke, 818
BeginRead, 816
CanDeserialize, 396
CBool(), 67
CByte(), 67
CChar(), 67
CDate(), 67
CDbl(), 67
CDec(), 67
Ch(), 62
Char(), 62
CheckAsset, 445
CheckDemand, 445
CheckDeny, 445
CheckPermitOnly, 446
Chr(), 62
ChrW(), 62
CInt(), 67
ClearPool, SqlConnection class, 369
ClearPools, SqlConnection class, 369
CLng(), 67
Close, 333, 334
CObj(), 67
Collect, 221
Compare, 70, 184
CompareOrdinal, 70
Concat, 70
constructor methods, 114, 119–120
ContainsKey, Hashtable class, 103
Copy, 70, 446, 447
Create, 935
CreateEventSource, 331
CreateInstance, 236
CSng(), 67
CStr(), 67
CType(), 63, 68, 92–93, 218

1043

methods

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1043

methods (continued)
CurrentCulture, 299
CurrentDirectory, 299
CurrentUICulture, 299
DataBind(), 857
Delete, 331
DeleteEventSource, 331
Demand, 446, 447
Deny, 446
Deserialize, BinaryFormatter class, 988
Dispose, 217
EndExecuteNonQuery, 352
EndExecuteReader, 352
EndExecuteXmlReader, 352
Equality, 71
Equals, 70, 204, 209, 446, 447
ExecSp, 382–384
ExecSpOutputValues, 384–385
ExecSpReturnDataReader, 380–381
ExecSpReturnDataSet, 373–380
ExecSpReturnXmlReader, 381–382
ExecuteCommand, 916, 919
ExecuteScalar, 783
Exists, 331
Fail, 334
Fill(), 354, 377, 852
Finalize, 90, 214–215, 222
FindControl, 629
Flush, 333, 334
FromOADate, 63
FromTypes, 396
FromXml, 446, 447
GetBaseException, 314, 326–327
GetConfig, ConfigurationSettings class, 386
GetData(), 852
GetDataReader, 366
GetDirectories, 947–948
GetDirectoryEntries, 949
GetEventLogs, 331
GetExecutingAssembly, 208

GetFiles, 947–948
GetHashCode, 204, 446, 447
GetMembers, 209
GetObject, Activator class, 895
GetRequestStream WebRequest, 935
GetResponse WebRequest, 935
GetType, 142, 204, 446, 447, 897
GetTypes, 208
GetValues, 194
GetXml, 432
GoBack(), 997
GoForward(), 997
GoHome(), 997
Inequality, 71
Intersect, 446, 447
Invoke, 130
IsNetworkDeployed, 299
IsSubsetOf, 446, 447
IsUnrestricted, 447
Join thread object method, 821
Load, 236, 366, 427
LoadFrom, 208, 236
MinValue, 66
MoveToNextAttribute, 405
Navigate, 992–993
NewRow, DataTable class, 357
nonvirtual, overriding, 157–161
Now(), 63
OpenForms(), 300
overloaded, overriding, 155–156
overloading, 116–120, 145–148
combining overloading and optional

parameters, 118–119
constructor methods, 119–120
method signatures, 117–118
shared methods, 183–184

overriding, 148–156
MyBase keyword, 150–152
nonvirtual methods, 157–161
overloaded methods, 155–156

1044

methods (continued)

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1044

Overridable keyword, 148–149
Overrides keyword, 149–150
virtual methods, 152–155

PadLeft and PadRight, String class, 71
parameters of, 99–100
PermitOnly, 446
Priority, 821
ProcessRequest, 938
QueueUserWorkItem,ThreadPool class, 816
Read, 816
ReadEndElement, 411
ReadLine, 949
ReadXml, 366
ReadXmlSchema, 366
Refresh(), 916, 997
RegisterWellKnownClientType, 889
Remote Method Invocation (RMI), 837
RemoveHandler, 111
Resume thread object method, 821
retired, 80–82
RevertAll, 445
RevertAssert, 445, 452
RevertDeny, 445
RevertPermitOnly, 445
RMI (Remote Method Invocation), 837
scope of, indicating, 99
SetAbort(), ContextUtil class, 782
SetComplete(), ContextUtil class, 782
Show, MessageBox class, 36
Sleep method, Thread class, 821
SourceExists, 331
Sqrt(), System.Math namespace, 9–10
Start(), 916
Stop(), 916, 997
String(), 70–71
SubString, 71
Suspend method, Thread class, 821
that return values, 98–99
Today(), 63

ToOADate, 63
ToString, 67, 69, 166–168, 204, 314, 323,

446, 447, 453
ToXml, 446, 447
Transfer, 611
Transform, 428
Union, 446, 447
Update, DataAdapter class, 358
UrlEncode, 938
UtcNow(), 63
virtual, overriding, 152–155
WaitForPendingFinalizers, 221
Write, 333, 334
WriteAttributeString, 403
WriteComment, 403
WriteElementString, 403
WriteEndElement, 403
WriteEntry, 301, 303, 331
WriteExceptionEntry, 301
WriteIf, 334
WriteLine, 333, 334
WriteLineIF, 334
WriteStartElement, 403
WriteXml, 366
WriteXmlSchema, 366

Microsoft Clustering Services, 773
Microsoft Intermediate Language (MSIL),

7, 22, 198
Microsoft Message Queue (MSMQ),

773, 871
Microsoft .NET. See .NET
Microsoft Transaction Server (MTS), 773
Microsoft.CSharp namespace, 289
Microsoft.VisualBasic namespace, 287, 676
Microsoft.VisualBasic.Compatibility.VB6

namespace, 286
MinimumSize property, 499
MinValue method, 66
MissingMemberException class, 91

1045

MissingMemberException class

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1045

Mod operator, 127
ModuleDependencies property, 707
modules, 198–199
ModuleSignature property, 707
Monitor property, 828
Mouse property, 304
MouseDown event, 565
MouseHover event, 565
MouseOver event, 608
MouseUp event, 565
MoveToNextAttribute method, 405
mscorlib assembly, 677
mscorlib.dll file, 209, 677
msiexec.exe tool, 724
MSIL (Microsoft Intermediate Language),

7, 22, 198
MSMQ (Microsoft Message Queue),

773, 871
MTS (Microsoft Transaction Server), 773
multidimensional arrays, 74–75
multilevel inheritance, 163–166
Multiline property, 261
multiple events, 107
multiple interfaces, 163, 187–195
object interfaces, 187–189
overview, 187
polymorphism with, 233–235
secondary interfaces, 189–195

multitasking, 805
multithreading, 805
MultiView control, 603
MustInherit keyword, 185, 186
MustOverride keyword, 186
Mutex class, 828
My keyword, 298–309
My.Application namespace, 299–303
My.Computer namespace, 303–307
My.Forms namespace, 307
My.Resources namespace, 308
My.User namespace, 308

My.WebServices namespace, 308–309
overview, 298–299

My namespace, 283, 306
My Project display, Visual Studio .NET,

23–25
My.Application namespace, 299–303
MyBase keyword, 150–152, 169, 170–171
MyClass keyword, 171–172
My.Computer namespace, 303–307
My.Forms namespace, 307
My.Resources namespace, 308
My.User namespace, 308
My.WebServices namespace, 308–309

N
Name property, 33, 39, 102, 146, 167,

304, 407
Namespace command, 295
namespaces, 8, 283–309
aliasing, 294–295
Capture, 285
CaptureCollection, 285
common namespaces, 289–291
COMPlus, 294
creating, 295–298
Decoder, 285
Encoder, 285
Encoding, 285
GroupCollection, 285
importing, 292–293
MatchCollection, 285
Microsoft.CSharp, 289
Microsoft.VisualBasic, 287, 676
Microsoft.VisualBasic.Compatibility.VB6, 286
My, 283, 298–309
My.Computer, 303–307
My.Forms, 307
My.Resources, 308
My.User, 308

1046

Mod operator

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1046

My.WebServices, 308–309
overview, 283–284
and references, 287–289
referencing in ASP.NET, 293–294
RegEx, 285
RegExCompilationInfo, 285
RegularExpressions, 284
Security.Permissions, 465
System, 67, 269, 276, 297, 315, 894
System.Collections, 10, 68, 289, 290
System.Collections.Generic, 256, 260
System.Collections.Specialized, 77–78
System.Configuration, 387
System.Configuration.Install.Installer, 902
System.Data, 10, 286, 290, 297, 315, 619
System.Data.SqlClient, 297, 358, 851
System.Diagnostics, 10, 289, 290, 331
System.DirectoryServices, 285
System.Drawing, 25, 53, 248, 290, 293, 573
System.Drawing.Imaging, 284
System.Drawing.Text, 292
System.EnterpriseServices, 290, 294, 780,

781, 790
System.IO, 10, 284, 290
System.Math, 9–10, 80
System.Net, 955–963, 966, 970, 976,

1000. See also Web requests (and
responses)

System.Net.Sockets, 935, 1000
System.Net.WebProxy, 966
System.Reflection, 208, 235, 677, 687
System.Runtime.Remoting, 882
Systems.Collections, 76
Systems.Collections.Specialized, 76
System.Security, 10
System.Security.Cryptography, 476,

484, 485
System.Security.Cryptography

.X509Certificates, 491
System.Security.Cryptography.Xml, 485

System.Security.Permissions,
439, 442–449, 451

System.ServiceProcess, 916
System.ServiceProcess.ServiceBase, 902
System.ServiceProcess.ServiceInstaller, 903
System.ServiceProcess

.ServiceProcessInstaller, 902
System.Text, 53, 72, 284, 285, 291
System.Text.RegularExpressions, 284
System.Threading, 291, 830
System.Web, 288, 291, 938
System.Web.Security, 478
System.Web.Services, 288, 291, 858–861
System.Web.Services.Description, 859–860
System.Web.Services.Discovery, 860
System.Web.Services.Protocols, 860–861
System.Web.Services.Protocols n, 861
System.Web.UI.HtmlControls, 601
System.Web.UI.WebControls, 602
System.Window.Forms, 291
System.Windows.Forms, 25, 32, 35, 36,

38, 39, 502
System.XML, 315
System.Xml, 389, 437
System.Xml.Query, 437
System.Xml.Schema, 389
System.Xml.Serialization, 389
System.Xml.XPath, 389
System.Xml.Xsl, 389, 424
Text, 284
what they are, 284–291

NameTable property, 410
Narrowing keyword, 126
Navigate method, 992–993
Navigated event, WebBrowser control, 993
navigation, ASP.NET 2.0, 653–660
Menu server control, 656–657
overview, 653–654
SiteMapPath server control, 654–655
TreeView server control, 657–660

1047

navigation

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1047

Nested Try structures, 321–323
.NET, 1–17. See also COM (Component

Object Model)
Common Language Runtime (CLR), 4–8
drives changes in Visual Basic, 14
exceptions in, 314–315
Framework overview, 3–4
future of, 16
how affects VB developers, 14–15
major differences in .NET 2.0, 16–17
NET Class Framework, 8–10
overview, 1
role of COM, 13
user and program interfaces, 10–12
what it is, 1–3
XML as .NET metalanguage, 12–13

.NET 2.0 changes, 16

.NET assemblies. See assemblies

.NET data providers. See data providers,
ADO.NET

.NET framework classes, 902–905
Installation-Oriented classes, 904–905
multiple services within one executable, 905
ServiceBase class, 903–904
ServiceController class, 905

.NET Framework version 2.0, 20
/netcf option, 1006
Network News Transfer Protocol (NNTP), 931
network programming, 931–963. See also

System.Net namespace
addresses and names, 933–934
firewalls, 934
ports, 934

Network property, 304
NetworkStream class, 974
New Code window, Visual Studio .NET, 26–29
customizing Text Editor, 28–29
extended IntelliSense, 29
overview, 26–28
tabs versus MDI, 28

New constraint, 279
New keyword, 88
NewLineChars property, 402
NewLineOnAttributes property, 402
NewRow method, DataTable class, 357
Ngen.exe utility, 199
NNTP (Network News Transfer Protocol), 931
/noconfig option, 1013
NodeType property, 407
/nologo option, 1004
None option, 505
non-postback events, 608–609
nonvirtual methods, overriding, 157–161
NormalizeNewLines property, 402
Nothing permission set, 442
NotifyFilter property, FileSystemWatcher

class, 923
NotifyIcon control, 553
NotInheritable keyword, 187
no-touch deployment, 733–734
Now() method, 63
/nowarn option, 1009
Nullable types, 16

O
obfuscator, 210
Object class, 51, 52, 68–70, 269, 276
Object datatype, 91
Object Linking and Embedding (OLE), 7
ObjectDataSource control, 642, 652, 854
objects, 83–135. See also binding; classes;

delegates; methods; operators
composition of, 85–88
declaration and instantiation, 88–89
dereferencing, 90
object references, 90
object-oriented terminology, 84–88
overview, 83–84

Obsolete attribute, 206

1048

Nested Try structures

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1048

ODBC (Open DataBase Connectivity), 344
Office project type, 21
OLE (Object Linking and Embedding), 7
OLE DB .NET Data Provider, 359
OleDbConnection connection string, 345
OleDbDataAdapter object, 354
OmitXmlDeclaration property, 402
On Error construct, 312, 328
On_Click event handler, 34
OnClick attribute, 629
OnClosed event, 217
OnContinue event, ServiceBase class, 903
OnCustomCommand event, ServiceBase

class, 903
One Touch Deployment, 24
OnLoad event, 217
OnOpen event, 217
OnPause event, ServiceBase class, 903
OnPowerEvent event, ServiceBase class, 903
OnSessionChange event, ServiceBase

class, 903
OnShutdown event, ServiceBase class, 903
OnStart event, ServiceBase class, 903
OnStop event, ServiceBase class, 903
Opacity property, 507
Open DataBase Connectivity (ODBC), 344
OpenFileDialog control, 533–534
OpenForms() method, 300
OPENXML extension, 434
Operator keyword, 126
operators
/, 127
\, 127
&, 127
*, 127
^, 127
+, 127, 280–281
<, 127
<<, 127
<=, 127

<>, 127
=, 127
>, 127
>=, 127
>>, 127
AndAlso, 128
CType, 127
IsTrue, 127
Like, 127
Mod, 127
Operator, 126
Or, 127
OrElse, 128
overloading, 16, 125–128
TypeOf, 68
Xor, 127

/optimize option, 1005
Option Compare setting, 65
Option Explicit setting, 41, 64
Option keyword, 29
Option Strict setting, 41, 64, 231
Optional keyword, 78, 116–117
/optioncompare option, 1011
/optionexplicit option, 1010
/optionstrict option, 1011
Or operator, 127
OrElse operator, 128
/out option, 1006
Output window, Visual Studio 2005, 45
Outputs primary output project property, 706
overloaded methods, overriding, 155–156
overloading methods, 116–120, 145–148
combining overloading and optional

parameters, 118–119
constructor methods, 119–120
method signatures, 117–118
shared methods, 183–184

Overloads keyword, 145
Overridable keyword, 148–149
Overrides keyword, 149–150

1049

Overrides keyword

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1049

overriding methods, 148–156
MyBase keyword, 150–152
nonvirtual methods, 157–161
overloaded methods, 155–156
Overridable keyword, 148–149
Overrides keyword, 149–150
virtual methods, 152–155

owned forms, 505–506
OwnedForms collection, 506
Owner property, 506

P
PackageAs property, 706
Padding property, FlowLayoutPanel control,

501, 518–520
PadLeft and PadRight methods, String

class, 71
page titles, updating, 993–994
Panel container controls, 538–539
parameterized constructors, 114
parameterized properties, 102–104
parameters, 99–100
ByRef, 52, 100
ByVal, 52, 100
constructors with, 176
passing, 78
Variant, 15

Partial classes, 16
Partial keyword, 32, 592
Passive member, FtpWebRequest class, 942
Password property, ServiceProcessInstaller

class, 904
Path property, FileSystemWatcher class,

923
performance counter, 912–915
Permanent primary output project

property, 706
permcalc.exe utility, 465–470
Permission tools, 470

permissions
managing code access permissions,

449–454
in System.Security.Permissions namespace,

442–449
PermissionSetAttribute class, 444
PermissionState property, 472
PermissionType property, 472
PermitOnly method, 446
PermitOnlySetInstance property, 472
PermView.exe utility, 440, 470
Peverify.exe, 470
PKCS (Public Key Cryptographic System),

473, 484–488
Point structure, System.Drawing

namespace, 53
polymorphism, 83, 230–241
with inheritance, 238–240
through late binding, 231–233
method signatures, 230
with multiple interfaces, 233–235
overview, 230
through reflection, 235–238

port element, 842
ports, 934
Ports object, 304
portType element, 842
positioning, of Windows Forms controls,

513–517
postback event, 608–609, 628
PostBackUrl attribute, 629
precompile.axd file, 632
preemptive multitasking, 807
Prerequisites property, 744
Preserve keyword, ReDim statement, 75–76
preventing inheritance, 187
PreviousPage property, 631
PreviousPageType directive, 630
Primary deployment output, 700
primary thread, 804

1050

overriding methods

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1050

primitive types, 54–63
Boolean type, 55–58
Byte type, 62
DateTime, 63
Decimal types, 60–62
Integer types, 58–59
overview, 54–55
unsigned types, 60

PrincipalPermission class, 444
PrincipalPermissionAttribute class, 444
Printer Dialog controls, 535
Printers object, 304
printing, using WebBrowser control, 1000
PrintWorkingDirectory field, 942
Priority method, Thread class, 821
Private keyword, 85, 87, 97, 177
<probing> element, 686
ProcessRequest method, 938
Product attribute, 26
ProductCode property, 705
Profile object, 666
ProgID (programmatic identifier), 201, 283
program interfaces. See user and program

interfaces
programmatic identifier (ProgID), 201, 283
properties, 100–106
Account, 904
Action, 471
AllowDrop, 536, 565
AllowFullOpen, 534
AllowPaging, 647
AllowSorting, 647
AllowWebBrowserDrop, 1000
Anchor, 565
Arguments, 728
Audio, 303
Author, 704, 707
AutoCompleteCustomSource, 500
AutoCompleteMode, 500
AutoCompleteSource, 500

AutoScaleDimensions, 33
AutoScaleMode, 33
AutoScroll, 509
BackColor, 565
BringToFront, 565
CanFocus, 565
CanStop, 916
CausesValidation, 527–528, 565
CheckCharacters, 401, 409
ClientSize, 33
Color, 534
Command, 723
Comments, 704
ConformanceLevel, 401, 409
Connection, 355
ConnectionString, 371
Contact Author, 704
Controls property, 565
CounterType, 914
Credentials WebRequest, 935
CustomActionData, 728
DataRowCollection, 357
DeclaringType, 209
default property, 105–106
DeleteCommand, 357
Demanded, 471
DenySetInstance, 471
Dependencies, 706
Description, 704, 707, 844
DetectNewerInstalledVersion, 705
DialogResult, 547–549
DisplayName, 708, 905
Dock, 565
DoDragDrop, 565
DtdValidate, 409
Effect, 536
Empty, 70
Enabled, 565
EnableRaisingEvents, 923
EnableSession, 862–863

1051

properties

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1051

properties (continued)
EncodeXmlBinary, 402
Encoding, 402
EntryPoint, 728
Exclude, 706
ExcludeFilter, 706
FailedAssemblyInfo, 471
Filename, 534
Files, 708
FileSystem, 304
Filter, 533, 924
FilterIndex, 534
FirstPermissionThatFailed, 471
FixedPitchOnly, 535
Focus, 565
Folder, 706
Font, 535, 565
ForeColor, 565
GrantedSet, 471
HashAlgorithm, 708
HelpLink, 314, 328
HelpText, 904
Hidden, 706
Hide, 565
IgnoreComments, 409
IgnoreInlineSchema, 409
IgnoreProcessing, 409
IgnoreSchema, 410
IgnoreValidation, 410
IgnoreWhitespace, 410
IncludeSubdirectories, 924
Indent, 402
IndentChars, 402
Info, 304
InitialDirectory, 533
InnerException, 314, 323–325
InsertCommand, 357
Install Mode, 743
Installation URL, 743
InstallerClass, 728

IsCrossPagePostBack, 632
Isolation, 774
IsPostBack, 631
Item, 270
Keyboard, 304
KeyOutput, 706
KeyState, 536
Keywords, 705
Language, 708
LanguageIds, 707
LineNumber, 410
LineNumberOffset, 410
LinePositionOffset, 410
Localization, 705
Location, 38, 565
Log, 299, 301, 332
MainForm, 299
Margin, 501, 518–520
MaximumSize, 499
MergeModuleProperties, 707
Message, 314, 323, 732
Method property, 471
Method WebRequest, 935
MinimumSize, 499
ModuleDependencies, 707
ModuleSignature, 707
Monitor, 828
Mouse, 304
Multiline, 261
Name, 33, 39, 102, 146, 167, 304
NameTable, 410
Network, 304
NewLineChars, 402
NewLineOnAttributes, 402
NodeType, 407
NormalizeNewLines, 402
NotifyFilter, 923
OmitXmlDeclaration, 402
Opacity, 507
Outputs, 706

1052

properties (continued)

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1052

Owner, 506
PackageAs, 706
Padding, 501, 518–520
parameterized, 102–104
Password, 904
Path, 923
Permanent, 706
PermissionState, 472
PermissionType, 472
PermitOnlySetInstance, 472
Prerequisites, 744
PreviousPage, 631
ProductCode, 705
Property, 100, 188, 731
Proxy WebRequest, 935
PublicKey, 708
PublicKeyToken, 708
Publish Version, 744
Publisher, 704
Publishing Location, 743
RawValue, 914
read-only, 104
ReadOnly, 104, 706
Refresh, 565
RefusedSet, 472
Region, 508
Register, 706
Registry, 304
RemotingFormat, 364
RemovePreviousVersion, 705
RestoreDirectory, 534
ResumeLayout, 33
Schemas, 410
Screen, 304
SearchPath, 705
SelectCommand, 354
SerializationFormat, 364
ServiceName, 905, 916
ServiceType, 917
shared, 123–124

SharedLegacy, 707
Show, 565
ShowCheckBox, 660
ShowColor, 535
ShowDialog, 534
ShowEffects, 535
Size, 565
Source, 314, 326, 332
SourceColumn, 356
SourcePath, 708, 728
SpParamXml, 371
SpParamXmlDoc, 371
StackTrace, 314, 326
StartType, 905
Status, 917
Subject, 705, 707
SupportPhone, 704
SupportUrl, 704
Suspend Layout, 33
SynchronizingObject, 820
System primary, 707
TabIndex, 39
TargetName, 708
TargetSite, 314, 323–325
Text, 29, 69
Timeout WebRequest, 935
Title, 705, 707
TopMost, 505
TraceError, 336
TraceInfo, 336
TraceVerbose, 336
TraceWarning, 336
Transitive, 707
TransparencyKey, 507–508
Update, 565
UpdateCommand, 357
UpgradeCode, 705
Url, 472
Username, 904

1053

properties (continued)

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1053

properties (continued)
UseWaitCursor, 499
Version, 704, 708
Visible, 565
Vital, 707
write-only, 105
XmlResolver, 427
XmlSchemaSet, 410
XsdValidate, 410
Zone, 472
z-order, 511

Properties window, Visual Studio .NET, 29–30
Property keyword, 100, 188
Property property, 731
Protected Friend keyword, 97
Protected keyword, 85, 97, 177
protected scope, 177–179
protected variables, 178–179
ProVB.NET, running, 32
Provider keyword, 345
ProviderFactory class, 366
proxy, 873
Pub option, 462
Public key certificate, 491
Public Key Cryptographic System (PKCS),

473, 484–488
Public keyword, 85, 88, 97, 99, 177
PublicKey property, 708
.publickeytoken directive, 677–678
PublicKeyToken property, 708
Publish Version property, 744
Publisher property, 704
PublisherIdentityPermission class, 444
PublisherIdentityPermissionAttribute

class, 444
Publishing Location property, 743

Q
QFE (Quick Fix Engineering), 201, 682
quantum, 807
Queue collection, 76

queued components, 793–801
example of, 794–800
transactions with, 800–801

QueueUserWorkItem method,ThreadPool
class, 816

Quick Fix Engineering (QFE), 201, 682
/quiet option, 1009

R
RACE Integrity Primitives Evaluation

(RIPEMD-160), 479
RAD (Rapid Application Development), 973
RadioButton control, 603
RadioButtonList control, 603
RaiseEvent keyword, 110
raising events, 108–110
RangeValidator control, 604
Rapid Application Development (RAD), 973
RawValue property, 914
RC2 encryption, 479
Read method, 816
ReadEndElement method, 411
ReaderWriterLock class, System.Threading

namespace, 830
ReaderWriterLock object, 828
ReadLine method, 949
ReadOnly property, 706
ReadOnly Property, 104
read-only property, 104
ReadStartElement method, 411
ReadXml method, 366
ReadXmlSchema method, 366
Rebuild option, 43
Recover command, 458
/recurse option, 1013
ReDim statement, 75–76
Redirect method, Response class, 611
/reference option, 1008
reference types (classes), 68–78
arrays, 73–76
collections, 76–78

1054

properties (continued)

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1054

DBNull class and IsDBNull() function, 72–73
Object class, 68–70
overview, 68
String class, 70–72

referenced assemblies, 677–678
.Locale directive, 678
overview, 677
.publickeytoken directive, 677–678
.Ver directive, 678

references, and namespaces, 287–289
reflection, polymorphism through, 235–238
Reflection API, 208–209
ReflectionPermission class, 444
ReflectionPermissionAttribute class, 444
Refresh() method
ServiceController control, 916
WebBrowser control, 997

Refresh property, 565
RefusedSet property, 472
RegAsm tool, 769–772
regasm.exe utility, 769
RegEx namespace, 285
RegExCompilationInfo namespace, 285
Region property, 508
Register property, 706
RegisterWellKnownClientType method, 889
Registry Editor, 719–722
adding value to registry key, 720–721
importing registry files, 721–722
overview, 719–720

Registry property, 304
RegistryPermission class, 444
RegistryPermissionAttribute class, 444
regsvr32.exe tool, 751
RegularExpressions namespace, 284
RegularExpressionValidator control, 604
RemFullTrust command, 458
RemGroup command, 458
Remote Method Invocation (RMI), 837
remote object, 872

remoting, 871–898
Activated objects, 877–878
interface-based design, 895–897
overview, 872–879
Serializable objects, 878–879
simple example, 879–890
SingleCall objects, 876
Singleton objects, 877
terminology, 872–875
using Activator.GetObject, 894–895
using generated proxies, 897–898
using IIS as remoting host, 890–894

RemotingFormat property, DataTable
class, 364

RemoveDirectory field, 942
RemoveHandler method, 110, 111
/removeintchecks option, 1009
RemovePreviousVersion property, 705
RemPSet command, 458
Repeater control, 603
Request for Comments (RFC), 933
RequestMinimum level, 464
RequestOptional level, 464
RequestRefused level, 464
RequiredFieldValidator control, 604, 612
<requiredRuntime> node, 685
–Reset command, 455
resizing of Windows Forms controls,

513–517
anchoring, 515–516
docking, 514–515
overview, 513
splitter control, 516–517

–ResolveGroup command, 455
–ResolvePerm command, 455
/resource option, 1012
ResourcePermissionBase class, 444
ResourcePermissionBaseEntry class, 444
resources, in Visual Basic compiler,

1011–1012
ResponseHeaders member, WebClient

class, 953

1055

ResponseHeaders member

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1055

RestoreDirectory property, 534
Resume method, Thread class, 821
ResumeLayout property, 33
retired controls, 543
retired keywords and methods, 80–82
Return keyword, 98
RevertAll method, 445
RevertAssert method, 445, 452
RevertDeny method, 445
RevertPermitOnly method, 445
RFC (Request for Comments), 933
Rijndael encryption, 479
RIPEMD-160 (RACE Integrity Primitives

Evaluation), 479
RIPEMD160Managed class, 476
RMI (Remote Method Invocation), 837
Roeder, Lutz, 209
role-based permissions, 446–449
<roleManager> element, 664
Roles attribute, 654
Rollback custom action, 727
/rootnamespace option, 1014
RSA encryption, 484
RSACryptoServiceProvider class, 484
RSAKeyValue class, 485
Rset function, 80
runat attribute, 600
runtime settings, 685–687
defining location of an assembly, 686
loading particular version of an

assembly, 685
providing search path, 686–687

S
safemode attribute, 1002
sample application, Visual Basic 2005, 34–46
adding control and event handler, 34–35
build configurations, 40–43
building applications, 43–46

customizing code, 35–40
overview, 34

SaveFileDialog properties, 533–534
SByte primitive type, 54
Schemas property, 410
scope of methods, indicating, 99
Screen property, 304
scrollable forms, 509
ScrollableControl class, 509
/sdkpath option, 1014
SearchPath property, 705
secret key encryption, 479–484
Secure Sockets Layer (SSL), 493–495, 867
Secured Hashing Algorithm (SHA), 477–478
security, in .NET framework 2.0, 439–495.

See also cryptography
concepts and definitions, 440–442
dealing with exceptions using

SecurityException class, 471–473
figuring minimum permissions required for

application, 465–470
managing code access permissions,

449–454
overview, 439–440
permissions in System.Security.Permissions

namespace, 442–449
security tools, 470–471

Security event log, 922
security in Web Services, 866–868
Security Setup Wizard, 661
SecurityAttribute class, 444
SecurityException class, 471–473
SecurityPermission class, 444
SecurityPermissionAttribute class, 445
Security.Permissions namespace, 465
Secutil.exe, 470
SelectCommand property, DataAdapter

class, 354
SelectedIndexChanged event, ListView

control, 949
self-describing components, 682
Serializable attribute, 206, 981

1056

RestoreDirectory property

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1056

Serializable objects, 872, 878–879
serialization, 364–365
serialization, XML, 392–399
overview, 392–397
Source Code Style attributes, 397–399

SerializationFormat property, DataTable
class, 364

serialize method overrides, 394
server controls, 598
server-side controls, 598–600
server-side events, 608
service element, 842
ServiceBase class, 903–904
ServiceController class, 905, 916–919
ServicedComponent class, System

.EnterpriseServices namespace, 781
ServiceName property, ServiceInstaller

class, 905, 916
ServiceType property, 917
session events, 609
Set statement, 101
SetAbort() method, ContextUtil class, 782
SetComplete() method, ContextUtil

class, 782
Setup Project template, 697
Setup Wizard, 698
SHA (Secured Hashing Algorithm), 477–478
SHA1CryptoServiceProvider class, 476
SHA256Managed class, 476
SHA384Managed class, 476
SHA512Managed class, 476
shadowing, 156–163
overriding nonvirtual methods, 157–161
shadowing arbitrary elements, 161–163
shared methods, 184

Shadows keyword, 157
shallow copy, 53
shared assemblies, 679–680
shared constructor, 125
shared events, 124–125, 185
Shared keyword, 32, 121, 122

shared methods, 122–123, 182–184
overloading, 183–184
shadowing, 184

shared properties, 123–124
shared variables, 121–122
SharedLegacy property, 707
Short primitive type, 8, 55, 59
Show method, MessageBox class, 36
Show property, 565
ShowCheckBox property, 660
ShowColor property, 535
ShowDialog property, 534
ShowEffects property, 535
ShowLines attribute, 659
side-by-side execution, 682, 694
side-by-side versioning, 201
Signcode.exe, 470
SignCode.exe utility, 440
Simple Mail Transfer Protocol (SMTP), 932
Simple Object Access Protocol (SOAP),

1, 835, 841–842
Single primitive type, 54–55, 60–61
SingleCall objects, 876
Singleton objects, 877
Site option, 462
.sitemap file, 655–659
SiteMapDataSource control, 642, 656
SiteMapPath server control, 654–655
Size property, 565
Sizeable option, 505
SizeableToolWindow option, 505
SkipVerif option, 463
SkipVerification permission set, 442
Sleep method, thread class, 821
smart client applications, 498
Smart Device CAB Project template, 698
Smart Device project type, 21
SMTP (Simple Mail Transfer Protocol), 932
Sn.exe tool, 470
SOAP (Simple Object Access Protocol),

1, 835, 841–842

1057

SOAP (Simple Object Access Protocol)

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1057

SoapDocumentMethodAttribute class,
System.Web.Services.Protocols
namespace, 861

SoapFormatter class, 873, 893, 981
sockets, 969–990
building application, 970–972
creating conversation windows, 972–980
creating Conversation form, 974–975
initiating connections, 975–979
receiving inbound connections, 979–980

sending messages, 980–986
shutting down application, 986–990

SortedList collection, 76
Source Code Style attributes, 397–399
Source Files deployment output, 701
Source property, 314, 326, 332
SourceColumn property, SqlParameter

class, 356
SourceExists method, 331
SourcePath property, 708, 728
SplashScreen, 300
Splitter control, 516–517
SpParamXml property, 371
SpParamXmlDoc property, 371
SQL Server .NET Data Provider, 358
SQL Server variables, 347
SqlCommand object, 351
SqlConnection class, 345
SqlDataReader class, 348
SqlDataSource control, 642, 643–648
SqlDbDataAdapter object, 354
Sqrt() method, System.Math namespace,

9–10
SSL (Secure Sockets Layer), 493–495, 867
Stack collection, 76
StackTrace property, 314, 326
Start member, HttpListener class, 955
Start method, Service Controller class, 916
StartType property, ServiceInstaller

class, 905

startup settings, 685
<startup> node, 685
Status property, ServiceController class, 917
StatusStrip control, 501
Stop member, HttpListener class, 955
Stop method, ServiceController class,

916, 997
Storeadm.exe, 470
<StoredProcedureSettings> section, 387
StorePermission class, 445
StorePermissionAttribute class, 445
Stream class, 418
StreamReader class, 951
stream-style parsers, XML, 399–424
Document Object Model (DOM), 418–424
overview, 418–419
traversing raw XML elements, 419–422
traversing XML attributes, 422–424

overview, 399–400
reading XML stream, 404–414
using MemoryStream object, 414–417
writing XML stream, 400–404

StreamWriter class, 951
String() method, 70–71
String class, 70–72
overview, 70
PadLeft and PadRight methods, 71
String() method, 70–71
SubString method, 71

String datatype, 101, 125
String primitive type, 55, 274
StringBuilder class, System.Text

namespace, 53, 72, 284, 285
StringCollection class, 76, 77
StringDictionary class, 76, 77
Strong option, 462
Structure constraint, 279
structured-exception-handling keywords in

VB.NET, 315–328
Exit Try statement, 320–321
GetBaseException method, 326–327

1058

SoapDocumentMethodAttribute class

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1058

HelpLink property, 328
InnerException and TargetSite properties,

323–325
Message property, 323
Nested Try structures, 321–323
overview, 315–316
Source and StackTrace properties, 326
Throw keyword, 318
Try, Catch, and Finally keywords, 316–317

structures, 274–275
structures (value types), 54–63. See also

primitive types
overview, 54
vs. reference types, 52–54

stylesheet element, 424
Sub keyword, 98
Subject property, 705, 707
SubString() method, 71
Success audit log entry, 330
SupportPhone property, 704
SupportUrl property, 704
Suspend Layout property, 33
Suspend method, Thread class, 821
synchronization, 825–827
synchronization objects, 827–834
exclusive locks and SyncLock statement,

828–833
overview, 827–828

SynchronizingObject property, 820
SyncLock statement. See exclusive locks

and SyncLock statement
System event log, 922
System namespace, 297, 315
System property, 707
System.Collections namespace, 10, 68,

289, 290
System.Collections.Generic namespace,

256, 260
System.Collections.Specialized namespace,

77–78

System.Configuration.Install.Installer
namespace, 902

System.Data namespace, 10, 286, 290,
297, 315, 619

System.Data.SqlClient namespace,
297, 358, 851

System.Deployment namespace, 24
System.Diagnostics namespace, 10, 289,

290, 331
System.DirectoryServices namespace, 285
System.Drawing namespace, 25, 248, 290,

293, 573
System.Drawing.Text namespace, 292
System.EnterpriseServices namespace,

290, 294, 780
System.IO namespace, 10, 284, 290
System.Math namespace, 10, 80
System.Net namespace, 955–963. See also

Web requests (and responses)
System.Net.Sockets namespace, 935, 1000
System.Reflection namespace, 10, 208,

235, 677, 687
System.Runtime.Remoting namespace, 882
Systems.Collections namespace, 76
Systems.Collections.Specialized

namespace, 76
System.Security namespace, 10
System.Security.Cryptography namespace,

485
System.Security.Cryptography

.X509Certificates namespace, 491
System.Security.Cryptography.Xml

namespace, 485
System.Security.Permissions namespace,

439, 442–449
System.ServiceProcess namespace, 916
System.ServiceProcess.ServiceBase

namespace, 902
System.ServiceProcess.ServiceInstaller

namespace, 903

1059

System.ServiceProcess.ServiceBase namespace

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1059

System.ServiceProcess
.ServiceProcessInstaller
namespace, 902

System.Text and System.Drawing.Text, 293
System.Text namespace, 285, 291
System.Text.RegularExpressions

namespace, 284
System.Threading namespace, 291
System.Web namespace, 288, 291
System.Web.Services namespace, 288,

291, 858–861
System.Web.Services.Description

namespace, 859–860
System.Web.Services.Discovery

namespace, 860
System.Web.Services.Protocols

namespace, 860–861
System.Web.UI.HtmlControls

namespace, 601
System.Web.UI.WebControls

namespace, 602
System.Window.Forms namespace, 291
System.Windows.Forms namespace, 25, 32,

35, 38, 502
System.Windows.Forms.Timer, 820
System.XML namespace, 315
System.Xml namespace, 389, 437
System.Xml.Query namespace, 437
System.Xml.Schema namespace, 389
System.Xml.Serialization namespace, 389
System.Xml.XPath namespace, 389
System.Xml.Xsl namespace, 389

T
TabIndex property, 39
Table control, 603
TableLayoutPanel control, 499, 500–501, 520
Tabular Data Stream (TDS), 358
/target option, 1006

TargetName property, 708
TargetSite property, 314, 323–325
tblimp.exe utility, 755
TcpClient class, System.Net namespace, 970
TcpListener class, System.Net

namespace, 970
TDS (Tabular Data Stream), 358
template element, 424
templates
Cab Project, 697
Merge Module Project, 697
Setup Project, 697
Smart Device CAB Project, 698
template element, 424
Web Setup Project, 697

text boxes, autocompletion in, 500
Text Editor, customizing, 28–29
Text namespace, 284
Text property, 29, 69
TextBox control, 278, 602, 612
TextChanged event, 106
TextStream class, 211
TextWriter class, 418
This = statement, 73
thread pool, 815
thread priority, 808
threading, 803–834
avoid sharing data, 823–825
designing background task, 811
implementation overview, 812–815
interactive applications, 811–812
manually creating thread, 820–821
processes, AppDomains, and threads,

805–807
shared data, 822
sharing data with synchronization, 825–827
synchronization objects, 827–834
thread safety and thread affinity, 809
thread scheduling, 807–809
threading options, 815–820
when to use, 809–811

1060

System.ServiceProcess.ServiceInstaller namespace

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1060

Throw keyword, 316, 318
Throw statement, 329
Timeout property, WebRequest class, 935
Timer class, 134, 820
TimeSpan primitive type, 54
Title attribute, 26, 654
Title property, 705, 707
TlbExp tool, 772
Today() method, 63
ToOADate method, 63
Toolbars and ToolStrip control, 528–531
allowing user to move Toolbar

elements, 531
altering Toolbar elements in Designer, 531
creating standard set of Toolbar

elements, 531
creating ToolStrip and adding toolbar

elements, 529–530
overview, 528–529

ToolboxBitmap attribute, 579
ToolStripButton control, 528
ToolStripComboBox control, 528
ToolStripControlHost control, 528
ToolStripDropDownButton control, 529
ToolStripDropDownItem control, 529
ToolStripLabel control, 528
ToolStripMenuItem control, 529
ToolStripSeparator control, 528
ToolStripSplitButton control, 529
ToolStripTextBox control, 528
TopMost property, 505
ToString method, 67, 69, 166–168, 204,

314, 323, 446, 447, 453
ToXml method, 446, 447
Trace class, 335–339
trace files, writing to, 333–335
TraceError property, 336
TraceInfo property, 336
TraceVerbose property, 336
TraceWarning property, 336

Trademark attribute, 26
Transaction attribute, 801
TransactionAttribute attribute, System

.EnterpriseServices namespace, 790
TransactionOption attribute, System

.EnterpriseServices namespace, 790
transactions, 774–775
example, 780–792
just-in-time, 792
object pooling, 793
with queued components, 800–801
and Web Services, 868

Transfer method, Server class, 611
Transform method, 428
Transitive property, 707
TransparencyKey property, 507–508
transparent proxy, 873
TreeView control, 603, 657–660
Triple DES encryption, 479
Try block, 91
Try keyword, 315, 316–317
TryCast function, 94
Try-Catch statement, 472
Type Library Import, 755
TypeOf operator, 68
types, 200–201. See also value types

(structures); variables
explicit conversions, 63–68
overview, 51–52

types element, 842

U
UBound function, 74
UDDI (Universal Description, Discovery, and

Integration), 835, 865–866
UDT (User-Defined Type), 54
UInt16 primitive type, 58
UInt32 primitive type, 59
UInt64 primitive type, 59

1061

UInt64 primitive type

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1061

UIPermission class, 445
UIPermissionAttribute class, 445
UML (Universal Modeling Language), 138
UNC (Universal Naming Convention), 736
Unicode, 62
Uniform Resource Identifier (URI), 966
Uniform Resource Locator (URL), 736, 966
Uninstall custom action, 727
Union method, 446, 447
UniqueName field, 942
Universal Description, Discovery, and

Integration (UDDI), 835, 865–866
Universal Modeling Language (UML), 138
Universal Naming Convention (UNC), 736
unsigned types, 60
Update method,DataAdapter class, 358
Update property, 565
UpdateCommand property, 357
Updater Application Block, 745–746
updating URLs and page titles, 993–994
UpgradeCode property, 705
UploadData member, WebClient class, 953
UploadFile field, 942
UploadFile member, WebClient class, 953
UploadFileWith field, 942
UploadString member, WebClient class, 953
UploadValues member, WebClient class, 953
URI (Uniform Resource Identifier), 966
URL (Uniform Resource Locator), 736, 966
Url attribute, 654
URL option, 463
Url property, 472
UrlEncode method, 938
URLs, updating, 993–994
user and program interfaces, 10–12
console applications, 12
overview, 10
Web Forms, 11–12
Web Services, 12
Windows Forms, 11

User Controls, 598, 605–606

User Interface Editor, 723–726
adding dialog boxes, 725–726
customizing order of dialog boxes, 725
installation modes, 724–725
overview, 723–724
properties of dialog boxes, 726

UserControl class, 565–566
creating composite UserControl, 567–568
example, 569–572
exposing properties of subcontrols, 568–569
overview, 566–567
resize, how works, 568
setting minimum size, 568

User-Defined Type (UDT), 54
Username property, ServiceProcessInstaller

class, 904
UseWaitCursor property, 499
Using command, 214
Using keyword, 17, 218
using TlbImp directly, 755–756
UtcNow() method, 63
/utf8output option, 1004

V
Validated event, 565
Validating event, 527, 565
Validation Controls, 598, 604–605
Value property, 407
value types (structures), 54–63. See also

primitive types
overview, 54
vs. reference types, 52–54

value-of element, 424
variables. See also types

instance variables, 87–88
protected, 178–179
shared variables, 121–122

Variant parameter, 15
.vb extension, 95
vbc.exe.config file, 1001–1002

1062

UIPermission class

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1062

vbc.rsp file, 1014–1015
VB.NET. See also structured-exception-

handling keywords in VB.NET
.Ver directive, 678
/verbose option, 1004–1005
Version property, 704, 708
versioning, 201–202, 681–687
application isolation, 681
configuration files, 684–687
overview, 681
self-describing components, 682
side-by-side execution, 682
version policies, 682–687

virtual methods, overriding, 152–155
VirtualPath attribute, 630
Visible property, 565
Visual Basic
creating Web Services with, 906–907
resources, 1017–1018
and System.Web.Services, 858–861

Visual Basic 2005, 31–33. See also Visual
Studio 2005

enhancing sample application, 34–46
form properties set in code, 32–33
overview, 31–32
running ProVB.NET, 32

Visual Basic compiler, 1001–1015
compilation, 1003–1004
compiler output, 1004–1005
debugging and error-checking, 1008–1010
help features, 1010
language options, 1010–1011
.NET assemblies, 1006–1008
optimization, 1005
output files, 1005–1006
preprocessor: /define, 1011
resources, 1011–1012
vbc.exe.config file, 1001–1002
vbc.rsp file, 1014–1015

visual inheritance, 32

Visual Studio 2005, 2
Command window, 47
enhancing sample application, 34–46
overview, 46
recording and using macros, 49–50
Server Explorer, 47–48
Task List, 46–47

Visual Studio .NET, 21–31
Assembly Information screen, 25–26
deployment projects, 695–710
ASP.NET Web application example, 708–710
creating, 698
templates, 696–698
Windows application example, 698–708

Dynamic Help, 30–31
My Project display, 23–25
New Code window, 26–29
overview, 20–22
Properties window, 29–30

Visual Studio .NET 2002, 2
Visual Studio .NET 2003, 2
Visual Studio .NET 2005, 2
Visual Studio Tools for Office (VSTO), 21
Visual Web Developer Web Server, 585
Vital primary output project property, 707
VSTO (Visual Studio Tools for Office), 21

W
WaitForPendingFinalizers method, 221
/warnaserror option, 1010
Warning log entry, 330
Watch windows, Visual Studio 2005, 46
Web applications, building, 583–625
anatomy of Web form, 590–594
controls available in Web forms, 598–606
ASP.NET server controls, 602–603
HTML server controls, 600–601
server-side, 598–600
User Controls, 605–606
Validation Controls, 604–605

1063

Web applications

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1063

Web applications, building (continued)
events in Web forms, 606–609
examples, 594–596, 611–625
overview, 583
processing flow of ASP.NET Web forms,

596–598
transferring control among Web forms, 611
Web forms vs. ASP, 609–610
Web site in action, 583–590

Web forms, 9, 11–12
vs. ASP, 609–610
cleanup, 608
configuration, 607
controls, 598–606
events in, 606–609
processing flow of, 596–598
transferring control among, 611

Web requests (and responses), 935–952
example, 936–941
simplifying common requests with

WebClient, 952–955
working with FileWebRequest and

HttpWebRequest, 936
working with FtpWebRequest, 941–952

Web Services. See XML Web Services
Web Services Description Language

(WSDL), 835, 842–844
Web Setup Project template, 697
WebBrowser control, 500, 991
printing using, 1000
showing documents using, 998–1000

WebClient class, 935, 952, 953, 966
web.config file, 23, 294, 598, 891
WebMethod() attribute, 844
WebMethodAttribute, System.Web.Services

namespace, 858
WebRequest class, 935
WebResponse class, 935
WebService() attribute, 844

WebService class, System.Web.Services
namespace, 858

WebServiceAttribute class, System.Web
.Services namespace, 858

WebServicesBindingAttribute class,
System.Web.Services namespace, 858

web.sitemap file, 653
/win32icon option, 1012
/win32resource option, 1012
Windows API, 2
Windows applications, Internet deployment

of. See Internet deployment of Windows
applications

Windows Form controls, 510–549
advanced capabilities for data entry,

523–526
automatic resizing and positioning of,

513–517
building from scratch, 572–579
common dialogs, 533–535
control arrays, 511–513
control tab order, 511
custom controls, adding additional logic to,

555–558
custom controls, developing in .NET,

552–554
dialog forms, 547–549
drag and drop, 535–538
embedding controls in other controls,

580–582
extender provider controls, 520–523
FlowLayoutPanel control, 517–520
inheriting from existing controls, 554–564
MDI example in VB.NET, 545–547
MDI forms, 544–545
menus, 531–533
overview, 510
Panel and GroupBox container controls,

538–539

1064

Web applications (continued)

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1064

programming tips, 543–544
retired controls, 543
standard Windows.Forms controls, 539–543
TableLayoutPanel control, 520
Toolbars and ToolStrip control, 528–531
using ActiveX controls, 543
validating data entry, 526–528

Windows Forms, 2, 9, 11, 497–549, 551–582.
See also Windows Form controls

attaching an icon for Toolbox, 579–580
building control from scratch, 572
changes in version 2.0, 498–502
Control class, 564–565
form borders, 505
and HTML, 991–1000
importance of, 498
making transparent and translucent,

507–508
overview, 497, 551–552
owned forms, 505–506
packaging logic in visual controls, 552
at runtime, 509–510
scrollable forms, 509
setting startup form, 503–504
showing via Sub Main, 503
startup location, 504
System.Windows.Forms namespace, 502
TopMost property, 505
UserControl class, 565–572
visual inheritance, 508–509

Windows Installer, 694–695
Windows project type, 21
Windows Services
characteristics of, 900–901
communicating with, 915–919
creating, 902–906
creating counter monitor service, 907–912
creating File Watcher, 922–926
custom commands, 919–921

debugging, 927–929
example, 899–900
interacting with, 901–902
monitoring performance counter, 912–915
passing strings to, 921

WindowsDefaultBounds value, 504
WindowsDefaultLocation value, 504
WinFX, 16
WithEvents keyword, 38, 107–108,

110–111
Wizard control, 603
Write method, 333, 334
WriteAttributeString method, 403
WriteComment method, 403
WriteElementString method, 403
WriteEndElement method, 403
WriteEntry method, 301, 303, 331
WriteExceptionEntry method, 301
WriteIf method, 334
WriteLine method, 333, 334
WriteLineIF method, 334
write-only property, 105
WriteStartElement method, 403
WriteXml method, 366
WriteXmlSchema method, 366
WSDL (Web Services Description

Language), 835, 842–844

X
X509 certificates, 491–493
X509Certificate class, 493
XCOPY deployment, 6, 11, 202, 694
XML (Extensible Markup Language), 4, 20,

23, 25, 841. See also XML stream-style
parsers

adding XML comments, 35–36
and ADO.NET, 432–437
as .NET metalanguage, 12–13

1065

XML (Extensible Markup Language)

In
de

x

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1065

XML (Extensible Markup Language)
(continued)

overview, 391–392
serialization, 392–399
System.Xml document support, 399

XML Serialization deployment output, 701
XML stream-style parsers, 399–424. See

also Document Object Model (DOM)
overview, 399–400
reading an XML stream, 404–414
using MemoryStream object, 414–417
writing an XML stream, 400–404

XML Web Services, 835–870
architecting with Web Services, 861–866
building Web Service, 844–848
disadvantages, 868–869
early architectural designs, 837–844
example using Visual Studio 2005 to build,

848–858
overview, 835–837
security in, 866–868
and System.Web.Services, 858–861

XmlAttribute class, 419
XmlDataSource control, 642
XmlDocument class, 371–372, 418
XmlElement class, 419
XmlNameTable class, 400
XmlNode class, 372, 418
XmlReader class, 399, 437
XmlReaderSettings class, 409–410

XmlResolver class, 400
XmlResolver property, 427
XmlSchemaSet property, 410
XmlSerializer class, 416
XmlTextReader, traversing XML using,

411–414
XmlTextReader class, 434
XmlTextWriter class, 434
XmlWriter class, 399, 418, 437
XmlWriterSettings object, 401
Xor operator, 127
XsdValidate property, 410
XSLT transforms, 424–432
other classes and interfaces in

System.Xml.Xsl, 432
overview, 424–429
XSLT transforming between XML standards,

429–432
XsltArgumentList class, 432
XsltCompileException class, 432
XsltContext class, 432
XsltException class, 432
XslTransform class, System.Xml.Xsl

namespace, 400, 424, 428–429

Z
-Zone option, 462
Zone property, 472
z-order property, 511

1066

XML (Extensible Markup Language) (continued)

33_575368 bindex.qxd 10/7/05 11:18 PM Page 1066

Take your library
wherever you go
Now you can access more than 70 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP
• C
• Databases
• .NET
• Java
• Macromedia

• Open Source
• Visual Basic

and VBA
• Web

Development
• XML

Find books on

www.wrox.com

33_575368 bindex.qxd 10/12/05 4:17 PM Page 1072

