This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I |I@ve RuBoard m

° Reader Reviews

Errata

Programming PHP

By Rasmus Lerdorf, Kevin Tatroe

Publisher : O'Reilly

Pub Date : March 2002
ISBN 1 1-56592-610-2
Pages : 524

Programming PHP is a comprehensive guide to PHP, a simple yet powerful language for creating
dynamic web content. Filled with the unique knowledge of the creator of PHP, Rasmus Lerdorf, this
book is a detailed reference to the language and its applications, including such topics as form
processing, sessions, databases, XML, and graphics. Covers PHP 4, the latest version of the language.

I I@ve RuBoard m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard

. Reader Reviews
. Errata
Programming PHP

By Rasmus lLerdorf, Kevin Tatroe

Publisher : O'Reilly

Pub Date : March 2002
ISBN : 1-56592-610-2
Pages 1 524

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Colophon
Index

I |I@ve RuBoard

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Copyright

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The association between the image of a cuckoo and PHP is a trademark of O'Reilly &
Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Preface

Now, more than ever, the Web is a major vehicle for corporate and personal communications. Web
sites carry photo albums, shopping carts, and product lists. Many of those web sites are driven by
PHP, an open source scripting language primarily designed for generating HTML content.

Since its inception in 1994, PHP has swept over the Web. The millions of web sites powered by PHP
are testament to its popularity and ease of use. It lies in the sweet spot between Perl/CGI, Active
Server Pages (ASP), and HTML. Everyday people can learn PHP and can build powerful dynamic web
sites with it.

The core PHP language features powerful string- and array-handling facilities, as well as support for
object-oriented programming. With the use of standard and optional extension modules, a PHP
application can interact with a database such as MySQL or Oracle, draw graphs, create PDF files, and
parse XML files. You can write your own PHP extension modules in C—for example, to provide a PHP
interface to the functions in an existing code library. You can even run PHP on Windows, which lets
you control other Windows applications such as Word and Excel with COM, or interact with databases
using ODBC.

This book is a guide to the PHP language. When you finish this book, you will know how the PHP
language works, how to use the many powerful extensions that come standard with PHP, and how to
design and build your own PHP web applications.

{1ove Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Audience for This Book

PHP is a melting pot of cultures. Web designers appreciate its accessibility and convenience, while
programmers appreciate its flexibility and speed. Both cultures need a clear and accurate reference to
the language.

If you're a programmer, this book is for you. We show the big picture of the PHP language, then
discuss the details without wasting your time. The many examples clarify the explanations, and the
practical programming advice and many style tips will help you become not just a PHP programmer,
but a good PHP programmer.

If you're a web designer, you'll appreciate the clear and useful guides to specific technologies, such as
XML, sessions, and graphics. And you'll be able to quickly get the information you need from the
language chapters, which explain basic programming concepts in simple terms.

This book does assume a working knowledge of HTML. If you don't know HTML, you should gain some
experience with simple web pages before you try to tackle PHP. For more information on HTML, we
recommend HTML & XHTML: The Definitive Guide, by Chuck Musciano and Bill Kennedy (O'Reilly).

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Structure of This Book

We've arranged the material in this book so that you can read it from start to finish, or jump around
to hit just the topics that interest you. The book is divided into 15 chapters and 2 appendixes, as
follows.

Chapter 1 talks about the history of PHP and gives a lightning-fast overview of what is possible with
PHP programs.

Chapter 2 is a concise guide to PHP program elements such as identifiers, data types, operators, and
flow-control statements.

Chapter 3 discusses user-defined functions, including scoping, variable-length parameter lists, and
variable and anonymous functions.

Chapter 4 covers the functions you'll use when building, dissecting, searching, and modifying strings.
Chapter 5 details the notation and functions for constructing, processing, and sorting arrays.

Chapter 6 covers PHP's object-oriented features. In this chapter, you'll learn about classes, objects,
inheritance, and introspection.

Chapter 7 discusses web basics such as form parameters and validation, cookies, and sessions.

Chapter 8 discusses PHP's modules and functions for working with databases, using the PEAR DB
library and the MySQL database for examples.

Chapter 9 shows how to create and modify image files in a variety of formats from PHP.
Chapter 10 explains how to create PDF files from a PHP application.

Chapter 11 introduces PHP's extensions for generating and parsing XML data, and includes a section
on the web services protocol XML-RPC.

Chapter 12 provides valuable advice and guidance for programmers in creating secure scripts. You'll
learn best-practices programming techniques here that will help you avoid mistakes that can lead to
disaster.

Chapter 13 talks about the advanced techniques that most PHP programmers eventually want to use,
including error handling and performance tuning.

Chapter 14 is an advanced chapter that presents easy-to-follow instructions for building a PHP
extension in C.

Chapter 15 discusses the tricks and traps of the Windows port of PHP. It also discusses the features
unique to Windows, such as COM and ODBC.

Appendix A is a handy quick reference to all the core functions in PHP.

Appendix B describes the standard extensions that ship with PHP.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Conventions Used in This Book

The following typographic conventions are used in this book:
Italic

Used for file and directory names, email addresses, and URLs, as well as for new terms where
they are defined.

Constant Width

Used for code listings and for keywords, variables, functions, command options, parameters,
class names, and HTML tags where they appear in the text.

Constant Width Bold
Used to mark lines of output in code listings.
Constant Width Italic

Used as a general placeholder to indicate items that should be replaced by actual values in
your own programs.

I l@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can
access this page at:

http://www.oreilly.com/catalog/progphp/
To comment or ask technical questions about this book, send email to:
I . dorei

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com
I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Acknowledgments

All of the authors would like to thank the technical reviewers for their helpful comments on the
content of this book: Shane Caraveo, Andi Gutmans, and Stig Bakken. We'd also like to thank Andi
Gutmans, Zeev Suraski, Stig Bakken, Shane Caraveo, and Randy Jay Yarger for their contributions to
early drafts of material for this book.

Rasmus Lerdorf

I would like to acknowledge the large and wonderfully boisterous PHP community, without which there
would be no PHP today.

Kevin Tatroe

I'll err on the side of caution and thank Nat Torkington for dragging me into this project. ("You don't
want to write a book, it's a miserable experience... Hey, want to write a book?") While I was writing,
the denizens of Nerdsholm and 3WA were always quick with help and/or snarky commentary, both of
which contributed to the book's completion. Without twice-monthly game sessions to keep me sane, I
would surely have given up well before the last chapter was delivered: thank you to my fellow
players, Jenn, Keith, Joe, Keli, Andy, Brad, Pete, and Jim.

Finally, and most importantly, a huge debt of gratitude is owed to Jennifer and Hadden, both of whom
put up with more neglect over the course of the past year than any good people deserve.

Bob Kaehms

Thanks to my wife Janet and the kids (Jenny, Megan, and Bobby), to Alan Brown for helping me
understand the issues in integrating COM with PHP, and to the staff at Media Net Link for allowing me
to add this project to my ever-expanding list of extracurricular activities.

Ric McGredy

Thanks to my family for putting up with my absence, to Nat for inheriting the project while in the
midst of family expansion, and to my colleagues at Media Net Link for all their help and support.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Chapter 1. Introduction to PHP

PHP is a simple yet powerful language designed for creating HTML content. This chapter covers
essential background on the PHP language. It describes the nature and history of PHP; which
platforms it runs on; and how to download, install, and configure it. This chapter ends by showing you
PHP in action, with a quick walkthrough of several PHP programs that illustrate common tasks, such
as processing form data, interacting with a database, and creating graphics.

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

1.1 What Does PHP Do?

PHP can be used in three primary ways:
Server-side scripting

PHP was originally designed to create dynamic web content, and it is still best suited for that
task. To generate HTML, you need the PHP parser and a web server to send the documents.
Lately, PHP has also become popular for generating XML documents, graphics, Flash
animations, PDF files, and more.

Command-line scripting

PHP can run scripts from the command line, much like Perl, awk, or the Unix shell. You might
use the command-line scripts for system administration tasks, such as backup and log parsing.

Client-side GUI applications

Using PHP-GTK (http://gtk.php.net), you can write full-blown, cross-platform GUI applications
in PHP.

In this book, we'll concentrate on the first item, using PHP to develop dynamic web content.

PHP runs on all major operating systems, from Unix variants including Linux, FreeBSD, and Solaris to
such diverse platforms as Windows and Mac OS X. It can be used with all leading web servers,
including Apache, Microsoft IIS, and the Netscape/iPlanet servers.

The language is very flexible. For example, you aren't limited to outputting just HTML or other text
files—any document format can be generated. PHP has built-in support for generating PDF files, GIF,
JPG, and PNG images, and Flash movies.

One of PHP's most significant features is its wide-ranging support for databases. PHP supports all
major databases (including MySQL, PostgreSQL, Oracle, Sybase, and ODBC-compliant databases),
and even many obscure ones. With PHP, creating web pages with dynamic content from a database is
remarkably simple.

Finally, PHP provides a library of PHP code to perform common tasks, such as database abstraction,
error handling, and so on, with the PHP Extension and Application Repository (PEAR). PEAR is a
framework and distribution system for reusable PHP components. You can find out more about it at
http://pear.php.net.

[love Ruoard [« Fwvious |t +

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Hove RuBoare [+ erevious st]

1.2 A Brief History of PHP

Rasmus Lerdorf first conceived of PHP in 1994, but the PHP that people use today is quite different
from the initial version. To understand how PHP got where it is today, it is useful to know the
historical evolution of the language. Here's that story, as told by Rasmus.

1.2.1 The Evolution of PHP

Here is the PHP 1.0 announcement that I posted to the Usenet newsgroup
comp.infosystems.www.authoring.cgi in June 1995:

From: rasmus@io.org (Rasmus Lerdorf)

Subject: Announce: Personal Home Page Tools (PHP Tools)
Date: 1995/06/08

Message-ID: <3r7pgp$aal@ionews.io.org>#1/1
organization: none

newsgroups: comp.infosystems.www.authoring.cgi

Announcing the Personal Home Page Tools (PHP Tools) version 1.0.

These tools are a set of small tight cgi binaries written in C.
They perform a number of functions including:

. Logging accesses to your pages in your own private log files

. Real-time viewing of log information

. Providing a nice interface to this log information

. Displaying last access information right on your pages

. Full daily and total access counters

. Banning access to users based on their domain

. Password protecting pages based on users' domains

. Tracking accesses ** based on users' e-mail addresses **

. Tracking referring URL's - HTTP_REFERER support

. Performing server-side includes without needing server support for it
. Ability to not log accesses from certain domains (ie. your own)
. Easily create and display forms

. Ability to use form information in following documents

Here is what you don't need to use these tools:

. You do not need root access - install in your ~/public_html dir

. You do not need server-side includes enabled in your server

. You do not need access to Perl or Tcl or any other script interpreter
. You do not need access to the httpd log files

The only requirement for these tools to work is that you have
the ability to execute your own cgi programs. Ask your system
administrator if you are not sure what this means.

The tools also allow you to implement a guestbook or any other
form that needs to write information and display it to users
later in about 2 minutes.

The tools are in the public domain distributed under the GNU
Public License. Yes, that means they are free!

For a complete demonstration of these tools, point your browser

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

at: http://www.io.org/~rasmus

Rasmus Lerdorf
rasmus@io.org
http://www.io.org/~rasmus

Note that the URL and email address shown in this message are long gone. The language of this
announcement reflects the concerns that people had at the time, such as password-protecting pages,
easily creating forms, and accessing form data on subsequent pages. The announcement also
illustrates PHP's initial positioning as a framework for a number of useful tools.

The announcement talks only about the tools that came with PHP, but behind the scenes the goal was
to create a framework to make it easy to extend PHP and add more tools. The business logic for these
add-ons was written in C—a simple parser picked tags out of the HTML and called the various C
functions. It was never my plan to create a scripting language.

So, what happened?

I started working on a rather large project for the University of Toronto that needed a tool to pull
together data from various places and present a nice web-based administration interface. Of course, I
decided that PHP would be ideal for the task, but for performance reasons, the various small tools of
PHP 1 had to be brought together better and integrated into the web server.

Initially, I made some hacks to the NCSA web server, to patch it to support the core PHP functionality.
The problem with this approach was that as a user, you had to replace your web-server software with
this special, hacked-up version. Fortunately, Apache was starting to gain momentum around this
time, and the Apache API made it easier to add functionality like PHP to the server.

Over the next year or so, a lot was done and the focus changed quite a bit. Here's the PHP Version 2
(PHP/FI) announcement I sent in April 1996:

From: rasmus@madhaus.utcs.utoronto.ca (Rasmus Lerdorf)

Subject: ANNOUNCE: PHP/FI Server-side HTML-Embedded Scripting Language
Date: 1996/04/16

Newsgroups: comp.infosystems.www.authoring.cgi

PHP/FI is a server-side HTML embedded scripting language. It has built-in
access logging and access restriction features and also support for
embedded SQL queries to mSQL and/or Postgres95 backend databases.

It is most likely the fastest and simplest tool available for creating
database-enabled web sites.

It will work with any UNIX-based web server on every UNIX flavour out
there. The package is completely free of charge for all uses including
commercial.

Feature List:

. Access Logging
Log every hit to your pages in either a dbm or an mSQL database.
Having hit information in a database format makes later analysis easier.
. Access Restriction
Password protect your pages, or restrict access based on the refering URL
plus many other options.
. mSQL Support
Embed mSQL queries right in your HTML source files
. Postgres95 Support
Embed Postgres95 queries right in your HTML source files
. DBM Support
DB,DBM,NDBM and GDBM are all supported
. RFC-1867 File Upload Support

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Create file upload forms

. Variables, Arrays, Associative Arrays

. User-Defined Functions with static variables + recursion

. Conditionals and While loops
Writing conditional dynamic web pages could not be easier than with
the PHP/FI conditionals and looping support

. Extended Regular Expressions
Powerful string manipulation support through full regexp support

. Raw HTTP Header Control
Lets you send customized HTTP headers to the browser for advanced
Features such as cookies.

. Dynamic GIF Image Creation
Thomas Boutell's GD library is supported through an easy-to-use set of
tags.

It can be downloaded from the File Archive at: <URL:http://www.vex.net/php>

Rasmus Lerdorf
rasmus@vex.net

This was the first time the term "scripting language" was used. PHP 1's simplistic tag-replacement
code was replaced with a parser that could handle a more sophisticated embedded tag language. By
today's standards, the tag language wasn't particularly sophisticated, but compared to PHP 1 it
certainly was.

The main reason for this change was that few people who used PHP 1 were actually interested in
using the C-based framework for creating add-ons. Most users were much more interested in being
able to embed logic directly in their web pages for creating conditional HTML, custom tags, and other
such features. PHP 1 users were constantly requesting the ability to add the hit-tracking footer or
send different HTML blocks conditionally. This led to the creation of an if tag. Once you have if, you
need else as well. And from there, it's a slippery slope to the point where, whether you want to or not,
you end up writing an entire scripting language.

By mid-1997, PHP Version 2 had grown quite a bit and had attracted a lot of users, but there were
still some stability problems with the underlying parsing engine. The project was also still mostly a
one-man effort, with a few contributions here and there. At this point, Zeev Suraski and Andi
Gutmans in Tel Aviv volunteered to rewrite the underlying parsing engine, and we agreed to make
their rewrite the base for PHP Version 3. Other people also volunteered to work on other parts of PHP,
and the project changed from a one-person effort with a few contributors to a true open source
project with many developers around the world.

Here is the PHP 3.0 announcement from June 1998:

June 6, 1998 -- The PHP Development Team announced the release of PHP 3.0,
the latest release of the server-side scripting solution already in use on
over 70,000 World Wide Web sites.

This all-new version of the popular scripting language includes support
for all major operating systems (Windows 95/NT, most versions of Unix,
and Macintosh) and web servers (including Apache, Netscape servers,
WebSite Pro, and Microsoft Internet Information Server).

PHP 3.0 also supports a wide range of databases, including Oracle, Sybase, Solid,
MySQ, mSQL, and PostgreSQL, as well as ODBC data sources.

New features include persistent database connections, support for the
SNMP and IMAP protocols, and a revamped C API for extending the language
with new features.

"PHP is a very programmer-friendly scripting language suitable for
people with little or no programming experience as well as the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

seasoned web developer who needs to get things done quickly. The
best thing about PHP is that you get results quickly," said
Rasmus Lerdorf, one of the developers of the language.

"Version 3 provides a much more powerful, reliable and efficient
implementation of the language, while maintaining the ease of use and
rapid development that were the key to PHP's success in the past”,
added Andi Gutmans, one of the implementors of the new language core.

"At Circle Net we have found PHP to be the most robust platform for
rapid web-based application development available today," said Troy
Cobb, Chief Technology Officer at Circle Net, Inc. "Our use of PHP

has cut our development time in half, and more than doubled our client
satisfaction. PHP has enabled us to provide database-driven dynamic
solutions which perform at phenomenal speeds."

PHP 3.0 is available for free download in source form and binaries for
several platforms at http://www.php.net/.

The PHP Development Team is an international group of programmers who
lead the open development of PHP and related projects.

For more information, the PHP Development Team can be contacted at
core@php.net.

After the release of PHP 3, usage really started to take off. Version 4 was prompted by a number of
developers who were interested in making some fundamental changes to the architecture of PHP.
These changes included abstracting the layer between the language and the web server, adding a
thread-safety mechanism, and adding a more advanced, two-stage parse/execute tag-parsing
system. This new parser, primarily written by Zeev and Andi, was named the Zend engine. After a lot
of work by a lot of developers, PHP 4.0 was released on May 22, 2000.

Since that release, there have been a few minor releases of PHP 4, with the latest version as of this
writing being 4.1.1. As this book goes to press, there is talk of PHP Version 5, which is likely to
improve the internals of PHP's object system.

1.2.2 The Growth of PHP

Figures 1-1 and 1-2 show the growth of PHP as measured by the usage numbers collected by Netcraft
(http://www.netcraft.com) since early 1998. Figure 1-1 shows the total number of unique IP
addresses that report they are using Apache with the PHP module enabled. In November 2001, this
number went beyond the one-million mark. The slight dip at the end of 2001 reflects the demise of a
number of dot-coms that disappeared from the Web. The overall number of servers that Netcraft
found also went down for the first time during this period.

Figure 1-1. The growth of PHP IP addresses

Figure 1-2 shows the number of actual domains that report they are using the PHP module. In
November 2001, when Netcraft found 36,458,394 different domains, 7,095,691 (just under 20%) of
them were found to have PHP enabled. The domain figures represent the number of web sites using
PHP, whereas IP addresses represent the number of physical servers running PHP.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 1-2. The growth of PHP domains

Hove Rugoard o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

1.3 Installing PHP

PHP is available for many operating systems and platforms. The most common setup, however, is to
use PHP as a module for the Apache web server on a Unix machine. This section briefly describes how
to install Apache with PHP. If you're interested in running PHP on Windows, see Chapter 15, which
explains your many options.

To install Apache with PHP, you'll need a Unix machine with an ANSI-compliant C compiler, and
around 5 MB of available disk space for source and object files. You'll also need Internet access to
fetch the source code for PHP and Apache.

Start by downloading the source distributions of PHP and Apache. The latest files are always available

from http://www.php.net and http://www.apache.org, respectively. Store the files in the same

directory, so that you have:

-rw-r--r-- 1 gnat wheel 2177983 Oct 9 09:34 apache_1.3.22.tar.gz
-rw-r--r-- 1 gnat wheel 3371385 Dec 10 14:29 php-4.1.1.tar.gz

Now uncompress and extract the distributions:

gunzip -c apache_1.3.22.tar.gz | tar xf -
gunzip -c php-4.1.1.tar.gz | tar xf -

Each distribution unpacks into its own subdirectory, as follows:

drwxr-xr-x 8 gnat wheel 512 Dec 16 11:26 apache_1.3.22
drwxr-xr-x 16 gnat wheel 2048 Dec 21 23:48 php-4.1.1

The next step is to configure Apache, then configure PHP, telling it where the Apache source is and
specifying the various other features that you want built into PHP. You'll probably want to customize
the configurations of Apache and PHP. For instance, provide the --prefix=/some/path option to
Apache's configure to change where Apache expects its configuration files and utilities. Similarly,
typical options for PHP include --with-apache to identify the location of the Apache source tree, --
enable-inline-optimizations to enable compilation options that give a faster PHP interpreter, and --with-
mysql to identify where MySQL was installed. Each configuration creates detailed output as it goes:

cd apache_1.3.22

./configure --prefix=/usr/local/apache

Configuring for Apache, Version 1.3.22

+ using installation path layout: Apache (config.layout)
Creating Makefile

Creating Configuration.apaci in src

Creating Makefile in src

+ configured for FreeBSD 4.2 platform

+ setting C compiler to gcc

cd ../php-4.1.1

./configure --with-apache=../apache_1.3.22 --enable-inline-optimization \
--with-mysql=/usr

creating cache ./config.cache

checking for a BSD compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

checking whether make sets ${MAKE}... yes

checking for working aclocal... missing

checking for working autoconf... found

checking for working automake... missing

checking for working autoheader... found

checking for working makeinfo... found

Updated php_version.h

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

For a full list of available configure options for each package, see the output of:
.Jconfigure --help
Now you can build and install PHP:

make
make install

These commands also install the PEAR libraries and copy the compiled Apache module to the Apache
source tree.

Finally, change directory back to the Apache directory. Reconfigure Apache, telling it about the newly
built PHP module, and compile and install it:

cd ../apache_1.3.22

./configure --prefix=/usr/local/apache --activate-module=src/modules/php4/libphp4.a
make

make install

You now have Apache installed in /usr/local/apache, with PHP enabled. You also have PHP's
extensions installed (probably in /usr/local/lib/php). You still need to configure the web server to
process .php pages with the PHP interpreter, and start the web server. You may also want to change
the PHP configuration.

Note that if you already have Apache installed and running on your server, it is possible to add PHP to
the existing Apache instance without recompiling it. These days, this is actually the most common
way to build PHP. Instead of using --with-apache on your configure line, use --with-apxs. You don't
need the Apache source code in this case; only the apxs script needs to be available on your server.
Most Linux distributions include this script and the corresponding files in their apache-devel packages.

PHP's configuration goes in a file called php.ini. The settings in this file control the behavior of PHP
features, such as session handling and form processing. Later chapters will refer to php.ini options,
but in general the code in this book does not require a customized configuration. See

http://www.php.net/manual/en/configuration.php for more information on php.ini configuration.

Once you have a web server, you'll need to tell it that .php files are to be handled by the PHP module.
Put this in Apache's httpd.conf file, and restart the web server:

AddType application/x-httpd-php .php

The PHP and Apache source directories both include files called INSTALL that contain detailed
instructions on troubleshooting and building those programs. If you want a nonstandard installation,
or if you encounter problems with the instructions presented here, be sure to read the INSTALL files.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I l@ve RuBoard [« rrwvivun |
1.4 A Walk Through PHP

PHP pages are HTML pages with PHP commands embedded in them. This is in contrast to many other
dynamic web-page solutions, which are scripts that generate HTML. The web server processes the
PHP commands and sends their output (and any HTML from the file) to the browser. Example 1-1
shows a complete PHP page.

Example 1-1. hello.php

<html|>
<head>
<title>Look Out World</title>
</head>

<body>
<?php echo 'Hello, world!" ?>
</body>
</html>

Save the contents of Example 1-1 to a file, hello.php, and point your browser to it. The results appear
in Figure 1-3.

Figure 1-3. Output of hello.php

The PHP echo command produces output (the string "Hello, world!"), which is inserted into the HTML
file. In this example, the PHP code is placed between <?php and ?> tags. There are other ways to tag
your PHP code—see Chapter 2 for a full description.

1.4.1 Configuration Page

The PHP function phpinfo() creates an HTML page full of information on how PHP was installed. You
can use it to see whether you have particular extensions installed, or whether the php.ini file has been
customized. Example 1-2 is a complete page that displays the phpinfo() page.

Example 1-2. Using phpinfo()

<?php phpinfo(); ?>
Figure 1-4 shows the first part of the output of Example 1-2.

Figure 1-4. Partial output of phpinfo()

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1.4.2 Forms

Example 1-3 creates and processes a form. When the user submits the form, the information typed
into the name field is sent back to this page. The PHP code tests for a name field and displays a
greeting if it finds one.

Example 1-3. Processing a form

<html>
<head>
<title>Personalized Hello World</title>
</head>

<body>
<?php if(!empty($_POST['name'])) {
echo "Greetings, {$_POST['name']}, and welcome.";
y?>

<form action="<?php $PHP_SELF; ?>" method="post">
Enter your name: <input type="text" nhame="name" />
<input type="submit" />
</form>
</body>
</html>

The form and the message are shown in Figure 1-5.

Figure 1-5. Form and greeting

PHP programs access form values through the $_POST and $_GET array variables. Chapter 7 discusses
forms and form processing in more detail.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1.4.3 Databases

PHP supports all the popular database systems, including MySQL, PostgreSQL, Oracle, Sybase, and
ODBC-compliant databases. Figure 1-6 shows part of a MySQL database with two tables: actors, which
assigns a unique identifier to each actor who played James Bond; and movies, which records each
movie's name, release date, and the identifier of the Bond actor.

Figure 1-6. Contents of the Bond tables

The code in Example 1-4 connects to the database, issues a query to match up movies with the
actor's name, and produces a table as output. It uses the DB library to access a MySQL database,

issue a query, and display the results. The <?= and ?> bracketing construct runs PHP code and prints
the result.

Example 1-4. Querying the Bond database

<html><head> <title>Bond Movies</title></head>
<body>
<table border=1>
<tr><th>Movie</th><th>Year</th><th>Actor</th></tr>
<?php
// connect
require_once('DB.php");
$db = DB::connect("mysql://username:password@server/webdb");
if (DB::iserror($db)) {

die($db->getMessage());
b

// issue the query

$sql = "SELECT movies.title,movies.year,actors.name
FROM movies,actors
WHERE movies.actor=actors.id
ORDER BY movies.year ASC";

$q = $db->query($sql);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (DB::iserror($q)) {
die($g->getMessage());

// generate table

while ($g->fetchInto($row)) {

?>

<tr><td><?= $row[0] ?></td>
<td><?= $row[1] ?></td>
<td><?= $row[2] ?></td>

</tr>

<?php

b

?>

</table>

</body></html>

The output of Example 1-4 is shown in Figure 1-7.

Figure 1-7. Output of the database query

Database-provided dynamic content drives the news and e-commerce sites at the heart of the Web.
More details on accessing databases from PHP are given in Chapter 8.

1.4.4 Graphics

With PHP, you can easily create and manipulate images using the GD extension. Example 1-5
provides a text-entry field that lets the user specify the text for a button. It takes an empty button
image file, and on it centers the text passed as the GET parameter "message". The result is then sent
back to the browser as a PNG image.

Example 1-5. Dynamic buttons

<?php

if (isset($_GET['message'])) {
// load font and image, calculate width of text
$font = 'times';
$size = 12;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$im = ImageCreateFromPNG('button.png");
$tsize = imagettfbbox($size,0,$font,$_GET['message']);

/| center

$dx = abs($tsize[2]-$tsize[0]);

$dy = abs($tsize[5]-$tsize[3]);

$x = (imagesx($im) - $dx) / 2;

$y = (imagesy($im) - $dy) / 2 + $dy;

// draw text
$black = ImageColorAllocate($im,0,0,0);
ImageTTFText($im, $size, 0, $x, $y, $black, $font, $_GET['message']);

// return image
header('Content-type: image/png");
ImagePNG($im);
exit;
b
?>
<html|>
<head> <title>Button Form</title></head>
<body>

<form action="<?= $PHP_SELF ?>" method="GET">
Enter message to appear on button:

<input type="text" name="message" />

<input type="submit" value="Create Button" /> </form>
</body>

</html>

The form generated by Example 1-5 is shown in Figure 1-8. The button created is shown in Figure 1-
9.

Figure 1-8. Button-creation form

Figure 1-9. Button created

You can use GD to dynamically resize images, produce graphs, and much more. PHP also has several
extensions to generate documents in Adobe's popular PDF format. Chapter 9 covers dynamic image
generation in depth, and Chapter 10 shows how to create Adobe PDF files.

1.4.5 From the Shell

If you compile PHP without specifying a specific web server type, you get a PHP interpreter as a

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

program instead of a web server module. This lets you write PHP scripts that use PHP functionality
such as databases and graphics and yet are callable from the command line.

For example, Example 1-6 also creates buttons. However, it is run from the command line, not from a
web server. The -q option to the php executable inhibits the generation of HTTP headers.

Example 1-6. Shell-based PHP program to create a button

#!/usr/local/bin/php -q
<?php
if ($argc '=3){
die("usage: button-cli filename message\n");

b
list(, $filename, $message) = $argv;

// load font and image, calculate width of text
$font = 'Arial.ttf';

$size = 12;

$im = ImageCreateFromPNG('button.png");
$tsize = imagettfbbox($size,0,$font,$message);

/| center

$dx = abs($tsize[2]-$tsize[0]);

$dy = abs($tsize[5]-$tsize[3]);

$x = (imagesx($im) - $dx) / 2;

$y = (imagesy($im) - $dy) / 2 + $dy;

// draw text
$black = ImageColorAllocate($im,0,0,0);
ImageTTFText($im, $size, 0, $x, $y, $black, $font, $message);

// return image
ImagePNG($im, $filename);
?>

Save Example 1-6 to button-cli and run it:

./button-cli

usage: button-cli filename message

./button-cli php-button.png "PHP Button"

|s -l php-button.png

-rwxr-xr-x 1 gnat gnat 1837 Jan 21 22:17 php-button.png

Now that you've had a taste of what is possible with PHP, you are ready to learn how to program in
PHP. We start with the basic structure of the language, with special focus given to user-defined
functions, string manipulation, and object-oriented programming. Then we move to specific
application areas such as the Web, databases, graphics, XML, and security. We finish with quick
references to the built-in functions and extensions. Master these chapters, and you've mastered PHP!

I |I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Chapter 2. Language Basics

This chapter provides a whirlwind tour of the core PHP language, covering such basic topics as data
types, variables, operators, and flow control statements. PHP is strongly influenced by other
programming languages, such as Perl and C, so if you've had experience with those languages, PHP
should be easy to pick up. If PHP is one of your first programming languages, don't panic. We start
with the basic units of a PHP program and build up your knowledge from there.

{10ve Rugoard [+ evisus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

2.1 Lexical Structure

The lexical structure of a programming language is the set of basic rules that governs how you write
programs in that language. It is the lowest-level syntax of the language and specifies such things as
what variable names look like, what characters are used for comments, and how program statements
are separated from each other.

2.1.1 Case Sensitivity

The names of user-defined classes and functions, as well as built-in constructs and keywords such as
echo, while, class, etc., are case-insensitive. Thus, these three lines are equivalent:

echo("hello, world");
ECHO("hello, world");
EcHo("hello, world");

Variables, on the other hand, are case-sensitive. That is, $name, $NAME, and $NaME are three
different variables.

2.1.2 Statements and Semicolons

A statement is a collection of PHP code that does something. It can be as simple as a variable
assignment or as complicated as a loop with multiple exit points. Here is a small sample of PHP
statements, including function calls, assignment, and an if test:

echo "Hello, world";
myfunc(42, "O'Reilly");

$a=1;
$name = "Elphaba";
$b = $a/ 25.0;

if ($a == $b) { echo "Rhyme? And Reason?"; }

PHP uses semicolons to separate simple statements. A compound statement that uses curly braces to
mark a block of code, such as a conditional test or loop, does not need a semicolon after a closing
brace. Unlike in other languages, in PHP the semicolon before the closing brace is not optional:

if ($needed) {
echo "We must have it!"; // semicolon required here
} // no semicolon required here

The semicolon is optional before a closing PHP tag:

<?php

if ($a == $b) { echo "Rhyme? And Reason?"; }

echo "Hello, world" // no semicolon required before closing tag
?>

It's good programming practice to include optional semicolons, as they make it easier to add code
later.

2.1.3 Whitespace and Line Breaks

In general, whitespace doesn't matter in a PHP program. You can spread a statement across any
number of lines, or lump a bunch of statements together on a single line. For example, this
statement:

raise_prices($inventory, $inflation, $cost_of_living, $greed);

could just as well be written with more whitespace:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

raise_prices (
$inventory ,
$inflation ,
$cost_of_living
$greed

)i

or with less whitespace:
raise_prices($inventory,$inflation,$cost_of_living,$greed);

You can take advantage of this flexible formatting to make your code more readable (by lining up
assignments, indenting, etc.). Some lazy programmers take advantage of this free-form formatting
and create completely unreadable code—this isn't recommended.

2.1.4 Comments

Comments give information to people who read your code, but they are ignored by PHP. Even if you
think you're the only person who will ever read your code, it's a good idea to include comments in
your code—in retrospect, code you wrote months ago can easily look as though a stranger wrote it.

Good practice is to make your comments sparse enough not to get in the way of the code itself and
plentiful enough that you can use the comments to tell what's happening. Don't comment obvious
things, lest you bury the comments that describe tricky things. For example, this is worthless:

$x = 17; // store 17 into the variable $x
whereas this may well help whoever will maintain your code:

// convert &#nnn; entities into characters
$text = preg_replace('/&#([0-9])+);/€e', "chr("\\1")", $text);

PHP provides several ways to include comments within your code, all of which are borrowed from
existing languages such as C, C++, and the Unix shell. In general, use C-style comments to comment
out code, and C++-style comments to comment on code.

2.1.4.1 Shell-style comments

When PHP encounters a hash mark (#) within the code, everything from the hash mark to the end of
the line or the end of the section of PHP code (whichever comes first) is considered a comment. This
method of commenting is found in Unix shell scripting languages and is useful for annotating single
lines of code or making short notes.

Because the hash mark is visible on the page, shell-style comments are sometimes used to mark off
blocks of code:

BHABHHBHBHBHHBHBHBHHBHES
#4# Cookie functions
HHABHHHHBHBHHBHBHBHHBHSH

Sometimes they're used before a line of code to identify what that code does, in which case they're
usually indented to the same level as the code:

if ($double_check) {
create an HTML form requesting that the user confirm the action
echo confirmation_form();

}

Short comments on a single line of code are often put on the same line as the code:

$value = $p * exp($r * $t); # calculate compounded interest

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When you're tightly mixing HTML and PHP code, it can be useful to have the closing PHP tag terminate
the comment:

<?php $d = 4 # Set $d to 4. ?> Then another <?php echo $d ?>
Then another 4

2.1.4.2 C++ comments

When PHP encounters two slash characters (//) within the code, everything from the slashes to the
end of the line or the end of the section of code, whichever comes first, is considered a comment. This
method of commenting is derived from C++. The result is the same as the shell comment style.

Here are the shell-style comment examples, rewritten to use C++ comments:

I

// Cookie functions
T

if ($double_check) {
// create an HTML form requesting that the user confirm the action
echo confirmation_form();

b
$value = $p * exp($r * $t); // calculate compounded interest

<?php $d = 4 // Set $d to 4. ?> Then another <?php echo $d ?>
Then another 4

2.1.4.3 C comments

While shell- and C++-style comments are useful for annotating code or making short notes, longer
comments require a different style. As such, PHP supports block comments, whose syntax comes from
the C programming language. When PHP encounters a slash followed by an asterisk (/*), everything
after that until it encounters an asterisk followed by a slash (*/) is considered a comment. This kind
of comment, unlike those shown earlier, can span multiple lines.

Here's an example of a C-style multiline comment:

/* In this section, we take a bunch of variables and
assign numbers to them. There is no real reason to
do this, we're just having fun.

*/
$a=1;$b=2; $c =3; $d = 4;

Because C-style comments have specific start and end markers, you can tightly integrate them with
code. This tends to make your code harder to read, though, so it is frowned upon:

/* These comments can be mixed with code too,
see? */ $e = 5; /* This works just fine. */

C-style comments, unlike the other types, continue past end markers. For example:

<?php

$l=12;

$m = 13;

/* A comment begins here

?>

<p>Some stuff you want to be HTML.</p>
<?=$n = 14; ?>

*/

acrhn("l=¢l m=¢m n=¢n\n"\-

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

vvvv \ + EALLEEE AUV
?>
<p>Now this is regular HTML...</p>
I=12 m=13 n=

<p>Now this is regular HTML...</p>
You can indent, or not indent, comments as you like:

/* There are no
special indenting or spacing
rules that have to be followed, either.

*/

C-style comments can be useful for disabling sections of code. In the following example, we've
disabled the second and third statements by including them in a block comment. To enable the code,
all we have to do is remove the comment markers:

$f=6;
/* $g =7; # Thisis a different style of comment
$h =8;
*/
However, you have to be careful not to attempt to nest block comments:
$i=09;
/* $j = 10; /* This is a comment */
$k =11;
Here is some comment text.
*/

In this case, PHP tries (and fails) to execute the (non-)statement Here is some comment text and
returns an error.

2.1.5 Literals

A literal is a data value that appears directly in a program. The following are all literals in PHP:

2001

OxFE

1.4142
"Hello World"
IHil

true

null

2.1.6 Identifiers

An identifier is simply a name. In PHP, identifiers are used to name variables, functions, constants,
and classes. The first character of an identifier must be either an ASCII letter (uppercase or
lowercase), the underscore character (_), or any of the characters between ASCII 0x7F and ASCII
OxFF. After the initial character, these characters and the digits 0-9 are valid.

2.1.6.1 Variable names

Variable names always begin with a dollar sign ($) and are case-sensitive. Here are some valid
variable names:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$bill
$head_count
$MaximumForce
$I_HEART_PHP
$_underscore
$_int

Here are some illegal variable names:

$not valid

$l
$3wa

These variables are all different:

$hot_stuff $Hot_stuff $hot_Stuff $HOT_STUFF
2.1.6.2 Function names

Function names are not case-sensitive (functions are discussed in more detail in Chapter 3). Here are
some valid function names:

tally

list_all_users

deleteTclFiles
LOWERCASE_IS_FOR_WIMPS
_hide

These function names refer to the same function:

howdy HowdY HOWDY HOWdy howdy
2.1.6.3 Class names

Class names follow the standard rules for PHP identifiers and are not case-sensitive. Here are some
valid class names:

Person
account

The class name stdClass is reserved.
2.1.6.4 Constants

A constant is an identifier for a simple value; only scalar values—boolean, integer, double, and string
—can be constants. Once set, the value of a constant cannot change. Constants are referred to by
their identifiers and are set using the define() function:

define('PUBLISHER', "O'Reilly & Associates");
echo PUBLISHER;

2.1.7 Keywords
A keyword is a word reserved by the language for its core functionality—you cannot give a variable,
function, class, or constant the same name as a keyword. Table 2-1 lists the keywords in PHP, which

are case-insensitive.

Table 2-1. PHP core language keywords

and |$argc |$argv |as

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

break case cfunction class

continue declare default die

do E_ALL echo E_ERROR

else elseif empty enddeclare

endfor endforeach endif endswitch
E_PARSE eval E_WARNING exit

extends FALSE for foreach

function $HTTP_COOKIE_VARS $HTTP_ENV_VARS $HTTP_GET_VARS

$HTTP_POST_FILES

$HTTP_POST_VARS

$HTTP_SERVER_VARS

if

include include_once global list

new not NULL old_function
or parent PHP_OS $PHP_SELF
PHP_VERSION print require require_once
return static stdClass switch

$this TRUE var virtual

while Xor _ _FILE_ _ _ _LINE_ _
_ _sleep _ _wakeup $_COOKIE $_ENV
$_FILES $_GET $_POST $_SERVER

In addition, you cannot use an identifier that is the same as a built-in PHP function. For a complete

list of these, see Appendix A.

I |@ve RuBoard

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

2.2 Data Types

PHP provides eight types of values, or data types. Four are scalar (single-value) types: integers,
floating-point numbers, strings, and booleans. Two are compound (collection) types: arrays and
objects. The remaining two are special types: resource and NULL. Numbers, booleans, resources, and
NULL are discussed in full here, while strings, arrays, and objects are big enough topics that they get

their own chapters (Chapter 4, Chapter 5, and Chapter 6).

2.2.1 Integers

Integers are whole numbers, like 1, 12, and 256. The range of acceptable values varies according to
the details of your platform but typically extends from -2,147,483,648 to +2,147,483,647.
Specifically, the range is equivalent to the range of the long data type of your C compiler.
Unfortunately, the C standard doesn't specify what range that long type should have, so on some
systems you might see a different integer range.

Integer literals can be written in decimal, octal, or hexadecimal. Decimal values are represented by a
sequence of digits, without leading zeros. The sequence may begin with a plus (+) or minus (-) sign.
If there is no sign, positive is assumed. Examples of decimal integers include the following:

1998
-641
+33

Octal numbers consist of a leading 0 and a sequence of digits from 0 to 7. Like decimal numbers,
octal numbers can be prefixed with a plus or minus. Here are some example octal values and their
equivalent decimal values:

0755 // decimal 493
+010 // decimal 8

Hexadecimal values begin with 0x, followed by a sequence of digits (0-9) or letters (A-F). The letters
can be upper- or lowercase but are usually written in capitals. Like decimal and octal values, you can
include a sign in hexadecimal numbers:

OxFF // decimal 255
0x10 // decimal 16
-OxDAD1 // decimal -56017

If you try to store a too-large integer in a variable, it will automatically be turned into a floating-point
number.

Use the is_int() function (or its is_integer() alias) to test whether a value is an integer:

if (is_int($x)) {
// $x is an integer

}

2.2.2 Floating-Point Numbers

Floating-point numbers (often referred to as real numbers) represent numeric values with decimal
digits. Like integers, their limits depend on your machine's details. PHP floating-point numbers are
equivalent to the range of the double data type of your C compiler. Usually, this allows numbers
between 1.7E-308 and 1.7E+308 with 15 digits of accuracy. If you need more accuracy or a wider
range of integer values, you can use the BC or GMP extensions. See Appendix B for an overview of
the BC and GMP extensions.

PHP recognizes floating-point numbers written in two different formats. There's the one we all use
every day:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

3.14
0.017
-7.1

but PHP also recognizes numbers in scientific notation:

0.314E1 // 0.314*10%, or 3.14
17.0E-3 // 17.0%1073, or 0.017

Floating-point values are only approximate representations of nhumbers. For example, on many
systems 3.5 is actually represented as 3.4999999999. This means you must take care to avoid writing
code that assumes floating-point numbers are represented completely accurately, such as directly
comparing two floating-point values using ==. The normal approach is to compare to several decimal
places:

if (int($a * 1000) == int($b * 1000)) {
// numbers equal to three decimal places

Use the is_float() function (or its is_real() alias) to test whether a value is a floating point number:

if (is_float($x)) {
// $x is a floating-point number

}

2.2.3 Strings

Because strings are so common in web applications, PHP includes core-level support for creating and
manipulating strings. A string is a sequence of characters of arbitrary length. String literals are
delimited by either single or double quotes:

'big dog'

"fat hog"

Variables are expanded within double quotes, while within single quotes they are not:
$name = "Guido";

echo "Hi, $name\n";

echo 'Hi, $name’;

Hi, Guido

Hi, $name

Double quotes also support a variety of string escapes, as listed in Table 2-2.

Table 2-2. Escape sequences in double-quoted strings

Escape sequence Character represented
\" Double quotes
\n Newline
\r Carriage return
\t Tab
\\ Backslash
\$ Dollar sign
\{ Left brace
\} Right brace
\[Left bracket
\] Right bracket
\0 through \777 ASCII character represented by octal value
\x0 through \xFF ASCII character represented by hex value

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A single-quoted string only recognizes \\ to get a literal backslash and \' to get a literal single quote:
$dos_path = "C:\\WINDOWS\\SYSTEM';

$publisher = 'Tim O\'Reilly’;

echo "$dos_path $publisher\n";

C:\WINDOWS\SYSTEM Tim O'Reilly

To test whether two strings are equal, use the == comparison operator:

if ($a == $b) { echo "a and b are equal" }

Use the is_string() function to test whether a value is a string:

if (is_string($x)) {
// $x is a string
b

PHP provides operators and functions to compare, disassemble, assemble, search, replace, and trim
strings, as well as a host of specialized string functions for working with HTTP, HTML, and SQL
encodings. Because there are so many string-manipulation functions, we've devoted a whole chapter

(Chapter 4) to covering all the details.

2.2.4 Booleans

A boolean value represents a "truth value"—it says whether something is true or not. Like most
programming languages, PHP defines some values as true and others as false. Truth and falseness
determine the outcome of conditional code such as:

if ($alive) { ... }
In PHP, the following values are false:
® The keyword false
® The integer 0
® The floating-point value 0.0
® The empty string (") and the string "0"
® An array with zero elements
® An object with no values or functions
® The NULL value

Any value that is not false is true, including all resource values (which are described later, in Section
2.2.7).

PHP provides true and false keywords for clarity:

$x = 5; // $x has a true value
$x = true; // clearer way to write it
sy ="" // $y has a false value
$y = false; // clearer way to write it

Use the is_bool() function to test whether a value is a boolean:

if (is_bool($x)) {

// $x is a boolean
b

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2.2.5 Arrays

An array holds a group of values, which you can identify by position (a number, with zero being the
first position) or some identifying name (a string):

$person[0] = "Edison";
$person[1] = "Wankel";
$person[2] = "Crapper";

$creator|'Light bulb'] = "Edison";
$creator['Rotary Engine'] = "Wankel";
$creator['Toilet'] = "Crapper";

The array() construct creates an array:

$person = array('Edison’, 'Wankel', 'Crapper");

$creator = array('Light bulb' => 'Edison’,
'Rotary Engine' => '"Wankel',
"Toilet' => 'Crapper');

There are several ways to loop across arrays, but the most common is a foreach loop:

foreach ($person as $name) {
echo "Hello, $name\n";
b
foreach ($creator as $invention => $inventor) {
echo "$inventor created the $invention\n";
b
Hello, Edison
Hello, Wankel
Hello, Crapper
Edison created the Light bulb
Wankel created the Rotary Engine
Crapper created the Toilet

You can sort the elements of an array with the various sort functions:

sort($person);
// $person is now array('Crapper’, 'Edison’, 'Wankel')

asort($creator);

// $creator is now array(‘Toilet' => 'Crapper,
// 'Light bulb' => 'Edison’,

// 'Rotary Engine' => '"Wankel");

Use the is_array() function to test whether a value is an array:

if (is_array($x)) {
// $x is an array
¥

There are functions for returning the number of items in the array, fetching every value in the array,
and much more. Arrays are described in Chapter 5.

2.2.6 Objects

PHP supports object-oriented programming (OOP). OOP promotes clean modular design, simplifies
debugging and maintenance, and assists with code reuse.

Classes are the unit of object-oriented design. A class is a definition of a structure that contains
properties (variables) and methods (functions). Classes are defined with the class keyword:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

class Person {
var $name = ";

function name ($newname = NULL) {
if (! is_null($newname)) {
$this->name = $newname;
b
return $this->name;
by
b

Once a class is defined, any number of objects can be made from it with the new keyword, and the
properties and methods can be accessed with the -> construct:

$ed = new Person;

$ed->name('Edison');

printf("Hello, %s\n", $ed->name);

$tc = new Person;

$tc->name('Crapper");

printf("Look out below %s\n", $tc->name);
Hello, Edison

Look out below Crapper

Use the is_object() function to test whether a value is an object:

if (is_object($x)) {
// $x is an object
b

Chapter 6 describes classes and objects in much more detail, including inheritance, encapsulation (or
the lack thereof), and introspection.

2.2.7 Resources

Many modules provide several functions for dealing with the outside world. For example, every
database extension has at least a function to connect to the database, a function to send a query to
the database, and a function to close the connection to the database. Because you can have multiple
database connections open at once, the connect function gives you something by which to identify
that connection when you call the query and close functions: a resource.

Resources are really integers under the surface. Their main benefit is that they're garbage collected
when no longer in use. When the last reference to a resource value goes away, the extension that
created the resource is called to free any memory, close any connection, etc. for that resource:

$res = database_connect(); // fictitious function
database_query($res);
$res = "boo"; // database connection automatically closed

The benefit of this automatic cleanup is best seen within functions, when the resource is assigned to a
local variable. When the function ends, the variable's value is reclaimed by PHP:

function search () {
$res = database_connect();
$database_query($res);

by
When there are no more references to the resource, it's automatically shut down.

That said, most extensions provide a specific shutdown or close function, and it's considered good
style to call that function explicitly when needed rather than to rely on variable scoping to trigger
resource cleanup.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Use the is_resource() function to test whether a value is a resource:

if (is_resource($x)) {
// $x is a resource

}
2.2.8 NULL

There's only one value of the NULL data type. That value is available through the case-insensitive
keyword NULL. The NULL value represents a variable that has no value (similar to Perl's undef or
Python's None):

$aleph = "beta";

$aleph = null; // variable's value is gone
$aleph = Null; /] same

$aleph = NULL; // same

Use the is_null() function to test whether a value is NULL—for instance, to see whether a variable has
a value:

if (is_null($x)) {
// $x is NULL

b
I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

2.3 Variables
Variables in PHP are identifiers prefixed with a dollar sign ($). For example:

$name

$Age

$_debugging
$MAXIMUM_IMPACT

A variable may hold a value of any type. There is no compile- or runtime type checking on variables.
You can replace a variable's value with another of a different type:

$what = "Fred";
$what = 35;
$what = array('Fred’, '35', 'Wilma');

There is no explicit syntax for declaring variables in PHP. The first time the value of a variable is set,
the variable is created. In other words, setting a variable functions as a declaration. For example, this
is a valid complete PHP program:

$day = 60 * 60 * 24;
echo "There are $day seconds in a day.\n";
There are 86400 seconds in a day.

A variable whose value has not been set behaves like the NULL value:

if ($uninitialized_variable === NULL) {
echo "Yes!";

}

Yes
2.3.1 Variable Variables

You can reference the value of a variable whose name is stored in another variable. For example:

$foo = 'bar’;
$$foo = 'baz';

After the second statement executes, the variable $bar has the value "baz".
2.3.2 Variable References

In PHP, references are how you create variable aliases. To make $black an alias for the variable
$white, use:

$black =& $white;

The old value of $black is lost. Instead, $black is now another name for the value that is stored in
$white:

$big_long_variable_name = "PHP";

$short =& $big_long_variable_name;
$big_long_variable_name .= " rocks!";
print "\$short is $short\n";

print "Long is $big_long_variable_name\n";
$short is PHP rocks!

Long is PHP rocks!

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$short = "Programming $short";

print "\$short is $short\n";

print "Long is $big_long_variable_name\n";
$short is Programming PHP rocks!
Long is Programming PHP rocks!

After the assignment, the two variables are alternate names for the same value. Unsetting a variable
that is aliased does not affect other names for that variable's value, though:

$white = "snow";
$black =& $white;
unset($white);
print $black;
snow

Functions can return values by reference (for example, to avoid copying large strings or arrays, as

discussed in Chapter 3):

function &ret_ref() { // note the &
$var = "PHP";
return $var;

}

$v =& ret_ref(); // note the &
2.3.3 Variable Scope

The scope of a variable, which is controlled by the location of the variable's declaration, determines
those parts of the program that can access it. There are four types of variable scope in PHP: local,
global, static, and function parameters.

2.3.3.1 Local scope

A variable declared in a function is local to that function. That is, it is visible only to code in that
function (including nested function definitions); it is not accessible outside the function. In addition,
by default, variables defined outside a function (called global variables) are not accessible inside the
function. For example, here's a function that updates a local variable instead of a global variable:

function update_counter () {
$counter++;

b

$counter = 10;

update_counter();

echo $counter;

10

The $counter inside the function is local to that function, because we haven't said otherwise. The
function increments its private $counter, whose value is thrown away when the subroutine ends. The
global $counter remains set at 10.

Only functions can provide local scope. Unlike in other languages, in PHP you can't create a variable
whose scope is a loop, conditional branch, or other type of block.

2.3.3.2 Global scope

Variables declared outside a function are global. That is, they can be accessed from any part of the
program. However, by default, they are not available inside functions. To allow a function to access a
global variable, you can use the global keyword inside the function to declare the variable within the
function. Here's how we can rewrite the update_counter() function to allow it to access the global
$counter variable:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

function update_counter () {
global $counter;
$counter++;

b

$counter = 10;

update_counter();

echo $counter;

11

A more cumbersome way to update the global variable is to use PHP's $GLOBALS array instead of
accessing the variable directly:

function update_counter () {
$GLOBALS[counter]++;

b

$counter = 10;

update_counter();

echo $counter;

11

2.3.3.3 Static variables

A static variable retains its value between calls to a function but is visible only within that function.
You declare a variable static with the static keyword. For example:

function update_counter () {
static $counter = 0;
$counter++;
echo "Static counter is now $counter\n";
b
$counter = 10;
update_counter();
update_counter();
echo "Global counter is $counter\n";
Static counter is now 1
Static counter is now 2
Global counter is 10

2.3.3.4 Function parameters

As we'll discuss in more detail in Chapter 3, a function definition can have named parameters:

function greet ($name) {
echo "Hello, $name\n";

b

greet("Janet");

Hello, Janet

Function parameters are local, meaning that they are available only inside their functions. In this
case, $name is inaccessible from outside greet().

2.3.4 Garbage Collection

PHP uses reference counting and copy-on-write to manage memory. Copy-on-write ensures that
memory isn't wasted when you copy values between variables, and reference counting ensures that
memory is returned to the operating system when it is no longer needed.

To understand memory management in PHP, you must first understand the idea of a symbol table .
There are two parts to a variable—its name (e.g., $name), and its value (e.g., "Fred"). A symbol table

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

is an array that maps variable names to the positions of their values in memory.

When you copy a value from one variable to another, PHP doesn't get more memory for a copy of the
value. Instead, it updates the symbol table to say "both of these variables are names for the same
chunk of memory." So the following code doesn't actually create a new array:

$worker = array("Fred", 35, "Wilma");
$other = $worker; // array isn't copied

If you then modify either copy, PHP allocates the memory and makes the copy:
$worker[1] = 36; // array is copied, value changed

By delaying the allocation and copying, PHP saves time and memory in a lot of situations. This is
copy-on-write.

Each value pointed to by a symbol table has a reference count, a number that represents the number
of ways there are to get to that piece of memory. After the initial assignment of the array to $worker
and $worker to $other, the array pointed to by the symbol table entries for $worker and $other has a

reference count of 2.111 In other words, that memory can be reached two ways: through $worker or
$other. But after $worker[1] is changed, PHP creates a new array for $worker, and the reference count
of each of the arrays is only 1.

[1] It is actually 3 if you are looking at the reference count from the C API, but for the
purposes of this explanation and from a user-space perspective, it is easier to think of
it as 2.

When a variable goes out of scope (as a function parameter or local variable does at the end of a
function), the reference count of its value is decreased by one. When a variable is assigned a value in
a different area of memory, the reference count of the old value is decreased by one. When the
reference count of a value reaches 0, its memory is freed. This is reference counting.

Reference counting is the preferred way to manage memory. Keep variables local to functions, pass in
values that the functions need to work on, and let reference counting take care of freeing memory
when it's no longer needed. If you do insist on trying to get a little more information or control over
freeing a variable's value, use the isset() and unset() functions.

To see if a variable has been set to something, even the empty string, use isset():

$s1 = isset($name); // $s1 is false
$name = "Fred";
$s2 = isset($name); /] $s2 is true

Use unset() to remove a variable's value:

$name = "Fred";
unset($name); // $name is NULL

{10ve Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

2.4 Expressions and Operators

An expression is a bit of PHP that can be evaluated to produce a value. The simplest expressions are
literal values and variables. A literal value evaluates to itself, while a variable evaluates to the value
stored in the variable. More complex expressions can be formed using simple expressions and
operators.

An operator takes some values (the operands) and does something (for instance, adds them
together). Operators are written as punctuation symbols—for instance, the + and - familiar to us from
math. Some operators modify their operands, while most do not.

Table 2-3 summarizes the operators in PHP, many of which were borrowed from C and Perl. The
column labeled "P" gives the operator's precedence; the operators are listed in precedence order,
from highest to lowest. The column labeled "A" gives the operator's associativity, which can be L (left-
to-right), R (right-to-left), or N (non-associative).

Table 2-3. PHP operators

P|A Operator Operation
19|N |new Create new object
18|R|[Array subscript
17|R|! Logical NOT
R |~ Bitwise NOT
Ri++ Increment
R|-- Decrement
R|(int), (double), (string), (array), (object) Cast
Rl@ Inhibit errors
16|L |* Multiplication
L{/ Division
L (% Modulus
15|L |+ Addition
L |- Subtraction
L. String concatenation
14|L |<< Bitwise shift left
L{>> Bitwise shift right
13[N|<, <= Less than, less than or equal
N[>, >= Greater than, greater than or equal
12|N|== Value equality
N|'=, <> Inequality
N|=== Type and value equality
N|l== Type and value inequality
11L& Bitwise AND
10|L |~ Bitwise XOR
9 |L|| Bitwise OR
8 L |&& Logical AND
7 Ll Logical OR
6 |L|?: Conditional operator
5 |IL]= Assignment

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

L |+=, -=, *=, /=, .=, %=, &=, |=, "= Assignment with operation
4 |L |land Logical AND
3 |L |xor Logical XOR
2 |L |or Logical OR
1 L, List separator

2.4.1 Number of Operands

Most operators in PHP are binary operators; they combine two operands (or expressions) into a
single, more complex expression. PHP also supports a number of unary operators, which convert a
single expression into a more complex expression. Finally, PHP supports a single ternary operator that
combines three expressions into a single expression.

2.4.2 Operator Precedence

The order in which operators in an expression are evaluated depends on their relative precedence. For
example, you might write:

2+4%*3

As you can see in Table 2-3, the addition and multiplication operators have different precedence, with
multiplication higher than addition. So the multiplication happens before the addition, giving 2 + 12,
or 14, as the answer. If the precedence of addition and multiplication were reversed, 6 * 3, or 18,
would be the answer.

To force a particular order, you can group operands with the appropriate operator in parentheses. In
our previous example, to get the value 18, you can use this expression:

(2+4)*3

It is possible to write all complex expressions (expressions containing more than a single operator)
simply by putting the operands and operators in the appropriate order so that their relative
precedence yields the answer you want. Most programmers, however, write the operators in the order
that they feel makes the most sense to programmers, and add parentheses to ensure it makes sense
to PHP as well. Getting precedence wrong leads to code like:

$X+2/$y>=47?2%z2:$x << $z
This code is hard to read and is almost definitely not doing what the programmer expected it to do.

One way many programmers deal with the complex precedence rules in programming languages is to
reduce precedence down to two rules:

® Multiplication and division have higher precedence than addition and subtraction.
® Use parentheses for anything else.
2.4.3 Operator Associativity

Associativity defines the order in which operators with the same order of precedence are evaluated.
For example, look at:

2/2%2

The division and multiplication operators have the same precedence, but the result of the expression
depends on which operation we do first:

2/(2*2) /] 0.5
(2/2)*2 /] 2

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The division and multiplication operators are left-associative; this means that in cases of ambiguity,
the operators are evaluated from left to right. In this example, the correct result is 2.

2.4.4 Implicit Casting

Many operators have expectations of their operands—for instance, binary math operators typically
require both operands to be of the same type. PHP's variables can store integers, floating-point
numbers, strings, and more, and to keep as much of the type details away from the programmer as
possible, PHP converts values from one type to another as necessary.

The conversion of a value from one type to another is called casting. This kind of implicit casting is
called type juggling in PHP. The rules for the type juggling done by arithmetic operators are shown in

Table 2-4.
Table 2-4. Implicit casting rules for binary arithmetic operations
Type of Type of
first second Conversion performed
operand operand
Integer Elc?iér:ttmg The integer is converted to a floating-point number
Inteaer Strin The string is converted to a number; if the value after conversion is a
9 9 floating-point number, the integer is converted to a floating-point number
E:i?\ttmg String The string is converted to a floating-point number

Some other operators have different expectations of their operands, and thus have different rules. For
example, the string concatenation operator converts both operands to strings before concatenating
them:

3.274 /] gives the string 32.74

You can use a string anywhere PHP expects a number. The string is presumed to start with an integer
or floating-point number. If no number is found at the start of the string, the numeric value of that
string is 0. If the string contains a period (.) or upper- or lowercase €, evaluating it numerically
produces a floating-point number. For example:

"9 Lives" - 1; // 8 (int)
"3.14 Pies" * 2; // 6.28 (float)
"9 Lives." - 1; // 8 (float)

"1E3 Points of Light" + 1; // 1001 (float)
2.4.5 Arithmetic Operators

The arithmetic operators are operators you'll recognize from everyday use. Most of the arithmetic
operators are binary; however, the arithmetic negation and arithmetic assertion operators are unary.
These operators require numeric values, and non-numeric values are converted into numeric values
by the rules described in Section 2.4.11. The arithmetic operators are:

Addition (+)
The result of the addition operator is the sum of the two operands.
Subtraction (-)

The result of the subtraction operator is the difference between the two operands; i.e., the
value of the second operand subtracted from the first.

Multiplication (*)

The result of the multiplication operator is the product of the two operands. For example, 3 * 4
is 12.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Division (/)

The result of the division operator is the quotient of the two operands. Dividing two integers
can give an integer (e.g., 4/2) or a floating-point result (e.g., 1/2).

Modulus (%)

The modulus operator converts both operands to integers and returns the remainder of the
division of the first operand by the second operand. For example, 10 % 6 is 4.

Arithmetic negation (-)

The arithmetic negation operator returns the operand multiplied by -1, effectively changing its
sign. For example, -(3 - 4) evaluates to 1. Arithmetic negation is different from the subtraction
operator, even though they both are written as a minus sign. Arithmetic negation is always
unary and before the operand. Subtraction is binary and between its operands.

Arithmetic assertion (+)

The arithmetic assertion operator returns the operand multiplied by +1, which has no effect. It
is used only as a visual cue to indicate the sign of a value. For example, +(3 - 4) evaluates to -
1, just as (3 - 4) does.

2.4.6 String Concatenation Operator

Manipulating strings is such a core part of PHP applications that PHP has a separate string
concatenation operator (.). The concatenation operator appends the righthand operand to the lefthand
operand and returns the resulting string. Operands are first converted to strings, if necessary. For
example:

$n=75;
$s = 'There were ' . $n . ' ducks.’;
// $s is 'There were 5 ducks'

2.4.7 Autoincrement and Autodecrement Operators

In programming, one of the most common operations is to increase or decrease the value of a
variable by one. The unary autoincrement (++) and autodecrement (--) operators provide shortcuts
for these common operations. These operators are unique in that they work only on variables; the
operators change their operands' values as well as returning a value.

There are two ways to use autoincrement or autodecrement in expressions. If you put the operator in
front of the operand, it returns the new value of the operand (incremented or decremented). If you
put the operator after the operand, it returns the original value of the operand (before the increment
or decrement). Table 2-5 lists the different operations.

Table 2-5. Autoincrement and autodecrement operations

Operator Name Value returned Effect on $var
$var++ Post-increment $var Incremented
++$var Pre-increment $var + 1 Incremented
$var-- Post-decrement $var Decremented
--$var Pre-decrement $var - 1 Decremented

These operators can be applied to strings as well as numbers. Incrementing an alphabetic character
turns it into the next letter in the alphabet. As illustrated in Table 2-6, incrementing "z" or "Z" wraps it
back to "a" or "Z" and increments the previous character by one, as though the characters were in a
base-26 number system.

Table 2-6. Autoincrement with letters
Incrementing this

Gives this

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

g "p
"z" "aa"
"spaz" "spba"
"K9" "LO"
"42" "43"

2.4.8 Comparison Operators

As their name suggests, comparison operators compare operands. The result is always either true, if
the comparison is truthful, or false, otherwise.

Operands to the comparison operators can be both numeric, both string, or one numeric and one

string. The operators check for truthfulness in slightly different ways based on the types and values of

the operands, either using strictly numeric comparisons or using lexicographic (textual) comparisons.
able 2-7 outlines when each type of check is used.

Table 2-7. Type of comparision performed by the comparision operators

First operand Second operand Comparison
Number Number Numeric
String that is entirely numeric String that is entirely numeric Numeric
String that is entirely numeric Number Numeric
String that is not entirely numeric Number Lexicographic
String that is entirely numeric String that is not entirely numeric Lexicographic
String that is not entirely numeric String that is not entirely numeric Lexicographic

One important thing to note is that two numeric strings are compared as if they were numbers. If you
have two strings that consist entirely of numeric characters and you need to compare them
lexicographically, use the strcmp() function.

The comparison operators are:
Equality (==)

If both operands are equal, this operator returns true; otherwise, it returns false.
Identical (===)

If both operands are equal and are of the same type, this operator returns true; otherwise, it
returns false. Note that this operator does not do implicit type casting. This operator is useful
when you don't know if the values you're comparing are of the same type. Simple comparison
may involve value conversion. For instance, the strings "0.0" and "0" are not equal. The ==
operator says they are, but === says they are not.

Inequality (= or <>)
If both operands are not equal, this operator returns true; otherwise, it returns false.
Not identical (!==

If both operands are not equal, or they are not of the same type, this operator returns true;
otherwise, it returns false.

Greater than (>)

If the lefthand operator is greater than the righthand operator, this operator returns true;
otherwise, it returns false.

Greater than or equal to (>=)

If the lefthand operator is greater than or equal to the righthand operator, this operator returns
true; otherwise, it returns false.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Less than (<)

If the lefthand operator is less than the righthand operator, this operator returns true;
otherwise, it returns false.

Less than or equal to (<=)

If the lefthand operator is less than or equal to the righthand operator, this operator returns
true; otherwise, it returns false.

2.4.9 Bitwise Operators

The bitwise operators act on the binary representation of their operands. Each operand is first turned
into a binary representation of the value, as described in the bitwise negation operator entry in the
following list. All the bitwise operators work on numbers as well as strings, but they vary in their
treatment of string operands of different lengths. The bitwise operators are:

Bitwise negation (~)

The bitwise negation operator changes 1s to Os and Os to 1s in the binary representations of
the operands. Floating-point values are converted to integers before the operation takes place.
If the operand is a string, the resulting value is a string the same length as the original, with
each character in the string negated.

Bitwise AND (&)

The bitwise AND operator compares each corresponding bit in the binary representations of the
operands. If both bits are 1, the corresponding bit in the result is 1; otherwise, the
corresponding bit is 0. For example, 0755 & 0671 is 0651. This is a bit easier to understand if
we look at the binary representation. Octal 0755 is binary 111101101, and octal 0671 is binary
110111001. We can the easily see which bits are on in both numbers and visually come up with
the answer:

111101101
& 110111001

110101001

The binary number 110101001 is octal 0651.52] You can use the PHP functions bindec(),

decbin(), octdec(), and decoct() to convert numbers back and forth when you are trying to
understand binary arithmetic.

[2] Here's a tip: split the binary number up into three groups. 6 is binary 110, 5 is
binary 101, and 1 is binary 001; thus, 0651 is 110101001.

If both operands are strings, the operator returns a string in which each character is the result
of a bitwise AND operation between the two corresponding characters in the operands. The
resulting string is the length of the shorter of the two operands; trailing extra characters in the
longer string are ignored. For example, "wolf" & "cat" is "cad".

Bitwise OR (])

The bitwise OR operator compares each corresponding bit in the binary representations of the
operands. If both bits are 0, the resulting bit is 0; otherwise, the resulting bit is 1. For
example, 0755 | 020 is 0775.

If both operands are strings, the operator returns a string in which each character is the result
of a bitwise OR operation between the two corresponding characters in the operands. The
resulting string is the length of the longer of the two operands, and the shorter string is padded
at the end with binary Os. For example, "pussy" | "cat" is "suwsy".

Bitwise XOR ()

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

The bitwise XOR operator compares each corresponding bit in the binary representation of the
operands. If either of the bits in the pair, but not both, is 1, the resulting bit is 1; otherwise,
the resulting bit is 0. For example, 0755 ~ 023 is 776.

If both operands are strings, this operator returns a string in which each character is the result
of a bitwise XOR operation between the two corresponding characters in the operands. If the
two strings are different lengths, the resulting string is the length of the shorter operand, and
extra trailing characters in the longer string are ignored. For example, "big drink" ~ "AA" is "#

("

Left shift (<<)

The left shift operator shifts the bits in the binary representation of the lefthand operand left by
the number of places given in the righthand operand. Both operands will be converted to
integers if they aren't already. Shifting a binary number to the left inserts a 0 as the rightmost
bit of the number and moves all other bits to the left one place. For example, 3 << 1 (or binary
11 shifted one place left) results in 6 (binary 110).

Note that each place to the left that a number is shifted results in a doubling of the number.
The result of left shifting is multiplying the lefthand operand by 2 to the power of the righthand
operand.

Right shift (>>)

The right shift operator shifts the bits in the binary representation of the lefthand operand right
by the number of places given in the righthand operand. Both operands will be converted to
integers if they aren't already. Shifting a binary number to the right inserts a 0 as the leftmost
bit of the number and moves all other bits to the right one place. The rightmost bit is
discarded. For example, 13 >> 1 (or binary 1101) shifted one place right results in 6 (binary
110).

2.4.10 Logical Operators

Logical operators provide ways for you to build complex logical expressions. Logical operators treat
their operands as Boolean values and return a Boolean value. There are both punctuation and English
versions of the operators (|| and or are the same operator). The logical operators are:

Logical AND (&&, and)

The result of the logical AND operation is true if and only if both operands are true; otherwise,
it is false. If the value of the first operand is false, the logical AND operator knows that the
resulting value must also be false, so the righthand operand is never evaluated. This process is
called short-circuiting, and a common PHP idiom uses it to ensure that a piece of code is
evaluated only if something is true. For example, you might connect to a database only if some
flag is not false:

$result = $flag and mysql_connect();

The && and and operators differ only in their precedence.

Logical OR (||, or)

The result of the logical OR operation is true if either operand is true; otherwise, the result is
false. Like the logical AND operator, the logical OR operator is short-circuited. If the lefthand
operator is true, the result of the operator must be true, so the righthand operator is never
evaluated. A common PHP idiom uses this to trigger an error condition if something goes
wrong. For example:

$result = fopen($filename) or exit();

The || and or operators differ only in their precedence.

Logical XOR (xor)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The result of the logical XOR operation is true if either operand, but not both, is true;
otherwise, it is false.

Logical negation (!)

The logical negation operator returns the Boolean value true if the operand evaluates to false,
and false if the operand evaluates to true.

2.4.11 Casting Operators

Although PHP is a weakly typed language, there are occasions when it's useful to consider a value as
a specific type. The casting operators, (int) , (float), (string), (bool), (array), and (object), allow you to
force a value into a particular type. To use a casting operator, put the operator to the left of the
operand. Table 2-8 lists the casting operators, synonymous operands, and the type to which the
operator changes the value.

Table 2-8. PHP casting operators

Operator Synonymous operators Changes type to
(int) (integer) Integer
(float) (real) Floating point
(string) String
(bool) (boolean) Boolean
(array) Array
(object) Object

Casting affects the way other operators interpret a value, rather than changing the value in a
variable. For example, the code:

$a ="5";
$b = (int) $a;

assigns $b the integer value of $a; $a remains the string "5". To cast the value of the variable itself,
you must assign the result of a cast back into the variable:

$a - Il5|l
$a = (int) $a; // now $a holds an integer

Not every cast is useful: casting an array to a numeric type gives 1, and casting an array to a string
gives "Array" (seeing this in your output is a sure sign that you've printed a variable that contains an
array).

Casting an object to an array builds an array of the properties, mapping property names to values:

class Person {
var $name = "Fred";
var $age = 35;
b
$0 = new Person;
$a = (array) $o;
print_r($a);

Array

(
[name] => Fred
[age] => 35

)

You can cast an array to an object to build an object whose properties correspond to the array's keys
and values. For example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$a = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma");
$0 = (object) $a;

echo $0->name;

Fred

Keys that aren't valid identifiers, and thus are invalid property names, are inaccessible but are
restored when the object is cast back to an array.

2.4.12 Assignment Operators

Assignment operators store or update values in variables. The autoincrement and autodecrement
operators we saw earlier are highly specialized assignment operators—here we see the more general
forms. The basic assignment operator is =, but we'll also see combinations of assignment and binary
operations, such as += and &=.

2.4.12.1 Assignment

The basic assignment operator (=) assigns a value to a variable. The lefthand operand is always a
variable. The righthand operand can be any expression—any simple literal, variable, or complex
expression. The righthand operand's value is stored in the variable named by the lefthand operand.

Because all operators are required to return a value, the assignment operator returns the value
assigned to the variable. For example, the expression $a = 5 not only assigns 5 to $a, but also
behaves as the value 5 if used in a larger expression. Consider the following expressions:

$a =5;
$b = 10;
$c = (%$a = $b);

The expression $a = $b is evaluated first, because of the parentheses. Now, both $a and $b have the
same value, 10. Finally, $c is assigned the result of the expression $a = $b, which is the value
assigned to the lefthand operand (in this case, $a). When the full expression is done evaluating, all
three variables contain the same value, 10.

2.4.12.2 Assignment with operation

In addition to the basic assignment operator, there are several assignment operators that are
convenient shorthand. These operators consist of a binary operator followed directly by an equals
sign, and their effect is the same as performing the operation with the operands, then assigning the
resulting value to the lefthand operand. These assignment operators are:

Plus-equals (+=)

Adds the righthand operand to the value of the lefthand operand, then assigns the result to the
lefthand operand. $a += 5 is the same as $a = $a + 5.

Minus-equals (-=

Subtracts the righthand operand from the value of the lefthand operand, then assigns the
result to the lefthand operand.

Divide-equals (/=)

Divides the value of the lefthand operand by the righthand operand, then assigns the result to
the lefthand operand.

Multiply-equals (¥=)

Multiplies the righthand operand with the value of the lefthand operand, then assigns the result
to the lefthand operand.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com
Modulus-equals (%=)

Performs the modulus operation on the value of the lefthand operand and the righthand
operand, then assigns the result to the lefthand operand.

Bitwise-XOR-equals (=)

Performs a bitwise XOR on the lefthand and righthand operands, then assigns the result to the
lefthand operand.

Bitwise-AND-equals (&=)

Performs a bitwise AND on the value of the lefthand operand and the righthand operand, then
assigns the result to the lefthand operand.

Bitwise-OR-equals (]|=)

Performs a bitwise OR on the value of the lefthand operand and the righthand operand, then
assigns the result to the lefthand operand.

Concatenate-equals (.=)

Concatenates the righthand operand to the value of the lefthand operand, then assigns the
result to the lefthand operand.

2.4.13 Miscellaneous Operators

The remaining PHP operators are for error suppression, executing an external command, and
selecting values:

Error suppression (@)

Some operators or functions can generate error messages. The error suppression operator,
discussed in full in Chapter 13, is used to prevent these messages from being created.

Execution ("...7)

The backtick operator executes the string contained between the backticks as a shell command
and returns the output. For example:

$listing = "Is -Is /tmp”;
echo $listing;

Conditional (?:)

The conditional operator is, depending on the code you look at, either the most overused or
most underused operator. It is the only ternary (three-operand) operator and is therefore
sometimes just called the ternary operator.

The conditional operator evaluates the expression before the ?. If the expression is true, the
operator returns the value of the expression between the ? and :; otherwise, the operator
returns the value of the expression after the :. For instance:

<a href="<?= $url ?>"><?= $linktext ? $linktext : $url ?>

If text for the link $url is present in the variable $linktext, it is used as the text for the link;
otherwise, the URL itself is displayed.

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

2.5 Flow-Control Statements

PHP supports a number of traditional programming constructs for controlling the flow of execution of a
program.

Conditional statements, such as if/else and switch, allow a program to execute different pieces of
code, or none at all, depending on some condition. Loops, such as while and for, support the repeated
execution of particular code.

251 if

The if statement checks the truthfulness of an expression and, if the expression is true, evaluates a
statement. An if statement looks like:

if (expression)
statement

To specify an alternative statement to execute when the expression is false, use the else keyword:

if (expression)
statement

else
statement

For example:

if ($user_validated)
echo "Welcome!";
else
echo "Access Forbidden!";

To include more than one statement in an if statement, use a block —a curly brace-enclosed set of
statements:

if ($user_validated) {
echo 'Welcome!";
$greeted = 1;

} else {
echo "Access Forbidden!";
exit;

}

PHP provides another syntax for blocks in tests and loops. Instead of enclosing the block of
statements in curly braces, end the if line with a colon (:) and use a specific keyword to end the block
(endif, in this case). For example:

if ($user_validated) :
echo "Welcome!";
$greeted = 1;

else :
echo "Access Forbidden!";
exit;

endif;

Other statements described in this chapter also have similar alternate style syntax (and ending
keywords); they can be useful if you have large blocks of HTML inside your statements. For example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?if($user_validated):?>
<table>
<tr>
<td>First Name: </td><td>Sophia</td>
</tr>
<tr>
<td>Last Name:</td><td>Lee</td>
</tr>
</table>
<?else:?>
Please log in.
<?endif?>

Because if is a statement, you can chain them:

if ($good)
print('Dandy!");
else
if ($error)
print('Oh, no!");
else
print("I'm ambivalent...");

Such chains of if statements are common enough that PHP provides an easier syntax: the elseif
statement. For example, the previous code can be rewritten as:

if ($good)
print('Dandy!");
elseif ($error)
print('Oh, no!");
else
print("I'm ambivalent...");

The ternary conditional operator (?:) can be used to shorten simple true/false tests. Take a common
situation such as checking to see if a given variable is true and printing something if it is. With a
normal if/else statement, it looks like this:

<td><? if($active) echo 'yes'; else echo 'no'; ?></td>
With the ternary conditional operator, it looks like this:
<? echo '<td>'.($active ? 'yes':'no').'</td>' ?>

Compare the syntax of the two:

if (expression) true_statement else false_statement
(expression) ? true_expression : false_expression

The main difference here is that the conditional operator is not a statement at all. This means that it
is used on expressions, and the result of a complete ternary expression is itself an expression. In the
previous example, the echo statement is inside the if condition, while when used with the ternary
operator, it precedes the expression.

2.5.2 switch

It often is the case that the value of a single variable may determine one of a number of different
choices (e.g., the variable holds the username and you want to do something different for each user).
The switch statement is designed for just this situation.

A switch statement is given an expression and compares its value to all cases in the switch; all
statements in a matching case are executed, up to the first break keyword it finds. If none match, and
a default is given, all statements following the default keyword are executed, up to the first break

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

keyword encountered.

For example, suppose you have the following:

if ($name == 'ktatroe")
// do something

elseif ($name == "rasmus’)
// do something

elseif ($name == "ricm")
// do something

elseif ($name == 'bobk")
// do something

You can replace that statement with the following switch statement:

switch($name) {

case 'ktatroe'":
// do something
break;

case 'rasmus':
// do something
break;

case 'ricm':
// do something
break;

case 'bobk":
// do something
break;

}

The alternative syntax for this is:

switch($name):
case 'ktatroe'":
// do something
break;
case 'rasmus':
// do something
break;
case 'ricm':
// do something
break;
case 'bobk':
// do something
break;
endswitch;

Because statements are executed from the matching case label to the next break keyword, you can
combine several cases in a fall-through. In the following example, "yes" is printed when $name is
equal to "sylvie" or to "bruno":

switch ($name) {
case 'sylvie'": // fall-through
case 'bruno":
print(‘yes");
break;
default:
print('no’);
break;

}

Commenting the fact that you are using a fall-through case in a switch is a good idea, so someone
doesn't come along at some point and add a break, thinking you had forgotten it.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You can specify an optional number of levels for the break keyword to break out of. In this way, a
break statement can break out of several levels of nested switch statements. An example of using
break in this manner is shown in the next section.

2.5.3 while

The simplest form of loop is the while statement:

while (expression)
statement

If the expression evaluates to true, the statement is executed and then the expression is reevaluated (if
it is true, the body of the loop is executed, and so on). The loop exits when the expression evaluates
to false.

As an example, here's some code that adds the whole numbers from 1 to 10:

$total = 0;

$i=1;

while ($i <= 10) {
$total += $i;

b

The alternative syntax for while has this structure:

while (expn):
statement;

ee)
endwhile;

For example:

$total = 0;

$i=1;

while ($i <= 10):
$total += $i;

endwhile;

You can prematurely exit a loop with the break keyword. In the following code, $i never reaches a
value of 6, because the loop is stopped once it reaches 5:

$total = 0;
$i=1;
while ($i <= 10) {
if ($i == 5)
break; // breaks out of the loop

$total += $i;
$i++;

}

Optionally, you can put a number after the break keyword, indicating how many levels of loop
structures to break out of. In this way, a statement buried deep in nested loops can break out of the
outermost loop. For example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$i=0;
while ($i < 10) {
while ($j < 10) {
if ($j == 5)
break 2; // breaks out of two while loops
$j++;

}

$i++;

}

echo $i;
echo $j;
0
5

The continue statement skips ahead to the next test of the loop condition. As with the break keyword,
you can continue through an optional number of levels of loop structure:

while ($i < 10) {
while ($j < 10) {
if ($j = 5)
continue 2; // continues through two levels
$j++;
b
$i++;

by
In this code, $j never has a value above 5, but $i goes through all values from 0 through 9.
PHP also supports a do /while loop, which takes the following form:

do
statement
while (expression)

Use a do/while loop to ensure that the loop body is executed at least once:

$total = 0;
$i=1;
do{
$total += $i++;
} while ($i <= 10);

You can use break and continue statements in a do/while statement just as in a normal while
statement.

The do/while statement is sometimes used to break out of a block of code when an error condition
occurs. For example:

do{
// do some stuff
if ($error_condition)
break;
// do some other stuff
} while (false);

Because the condition for the loop is false, the loop is executed only once, regardless of what happens
inside the loop. However, if an error occurs, the code after the break is not evaluated.

2.5.4 for

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The for statement is similar to the while statement, except it adds counter initialization and counter
manipulation expressions, and is often shorter and easier to read than the equivalent while loop.

Here's a while loop that counts from 0 to 9, printing each number:

$counter = 0;

while ($counter < 10) {
echo "Counter is $counter\n";
$counter++;

}

Here's the corresponding, more concise for loop:

for ($counter = 0; $counter < 10; $counter++)
echo "Counter is $counter\n";

The structure of a for statement is:

for (start, condition; increment)
statement

The expression start is evaluated once, at the beginning of the for statement. Each time through the
loop, the expression condition is tested. If it is true, the body of the loop is executed; if it is false, the
loop ends. The expression /increment is evaluated after the loop body runs.

The alternative syntax of a for statement is:

for (exprl; expr2; expr3):
statement;

.
endfor;

This program adds the numbers from 1 to 10 using a for loop:
$total = 0;

for ($i= 1; $i <= 10; $i++) {

$total += $i;
b

Here's the same loop using the alternate syntax:

$total = 0;

for ($i = 1; $i <= 10; $i++):
$total += $i;

endfor;

You can specify multiple expressions for any of the expressions in a for statement by separating the
expressions with commas. For example:

$total = 0;

for ($i = 0, $j = 0; $i <= 10; $i++, $j *= 2) {
$total += $j;

by

You can also leave an expression empty, signaling that nothing should be done for that phase. In the
most degenerate form, the for statement becomes an infinite loop. You probably don't want to run
this example, as it never stops printing:

for (;;) {
echo "Can't stop me!
";

}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In for loops, as in while loops, you can use the break and continue keywords to end the loop or the
current iteration.

2.5.5 foreach

The foreach statement allows you to iterate over elements in an array. The two forms of foreach
statement are discussed in Chapter 5. To loop over an array, accessing each key, use:

foreach ($array as $current) {
/...
b

The alternate syntax is:

foreach ($array as $current):
/] ...

endforeach;

To loop over an array, accessing both key and value, use:

foreach ($array as $key => $value) {
/...
b

The alternate syntax is:

foreach ($array as $key => $value):
/...

endforeach;

2.5.6 declare

The declare statement allows you to specify execution directives for a block of code. The structure of a
declare statement is:

declare (directive)
Statement

Currently, there is only one declare form, the ticks directive. Using it, you can specify how frequently
(measured roughly in number of code statements) a tick function registered with
register_tick_function() is called. For example:

register_tick_function("some_function");

declare(ticks = 3) {
for($i = 0; $i < 10; $i++) {
// do something

¥
b

In this code, some_function() is called after every third statement is executed.
2.5.7 exit and return

The exit statement ends execution of the script as soon as it is reached. The return statement returns
from a function or (at the top level of the program) from the script.

The exit statement takes an optional value. If this is a number, it's the exit status of the process. If
it's a string, the value is printed before the process terminates. The exit() construct is an alias for die(

):

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$handle = @mysql_connect("localhost", $USERNAME, $PASSWORD);
if (I$handle) {
die("Could not connect to database");

}

This is more commonly written as:

$handle = @mysql_connect("localhost", $USERNAME, $PASSWORD)
or die("Could not connect to database");

See Chapter 3 for more information on using the return statement in functions.

{1ove Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

2.6 Including Code

PHP provides two constructs to load code and HTML from another module: require and include. They
both load a file as the PHP script runs, work in conditionals and loops, and complain if the file being
loaded can't be found. The main difference is that attempting to require a nonexistent file is a fatal

error, while attempting to include such a file produces a warning but does not stop script execution.

A common use of include is to separate page-specific content from general site design. Common
elements such as headers and footers go in separate HTML files, and each page then looks like:

<? include 'header.html'; ?>

content
<? include 'footer.html’; ?>

We use include because it allows PHP to continue to process the page even if there's an error in the
site design file(s). The require construct is less forgiving and is more suited to loading code libraries,
where the page can't be displayed if the libraries don't load. For example:

require 'codelib.inc’;
mysub(); // defined in codelib.inc

A marginally more efficient way to handle headers and footers is to load a single file and then call
functions to generate the standardized site elements:

<? require 'design.inc’;
header();

?>

content

<? footer(); ?>

If PHP cannot parse some part of a file included by include or require, a warning is printed and
execution continues. You can silence the warning by prepending the call with the silence operator; for
example, @include.

If the allow_url_fopen option is enabled through PHP's configuration file, php.ini, you can include files
from a remote site by providing a URL instead of a simple local path:

include 'http://www.example.com/codelib.inc’;

If the filename begins with "http://" or "ftp://", the file is retrieved from a remote site and then
loaded.

Files included with include and require can be arbitrarily named. Common extensions are .php, .inc,
and .html. Note that remotelyfetching a file that ends in .php from a web server that has PHP enabled
fetches the output of that PHP script. For this reason, we recommend you use .inc for library files that
primarily contain code and .htm/ for library files that primarily contain HTML.

If a program uses include or require to include the same file twice, the file is loaded and the code is
run or the HTML is printed twice. This can result in errors about the redefinition of functions or
multiple copies of headers or HTML being sent. To prevent these errors from occurring, use the
include_once and require_once constructs. They behave the same as include and require the first time a
file is loaded, but quietly ignore subsequent attempts to load the same file. For example, many page
elements, each stored in separate files, need to know the current user's preferences. The element
libraries should load the user preferences library with require_once. The page designer can then
include a page element without worrying about whether the user preference code has already been
loaded.

Code in an included file is imported at the scope that is in effect where the include statement is found,
so the included code can see and alter your code's variables. This can be useful—for instance, a user-
tracking library might store the current user's name in the global $user variable:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// main page
include 'userprefs.inc';
echo "Hello, $user.";

The ability of libraries to see and change your variables can also be a problem. You have to know
every global variable used by a library to ensure that you don't accidentally try to use one of them for
your own purposes, thereby overwriting the library's value and disrupting how it works.

If the include or require construct is in a function, the variables in the included file become function-
scope variables for that function.

Because include and require are keywords, not real statements, you must always enclose them in curly
braces in conditional and loop statements:

for ($i=0; $i < 10; $i++) {
include "repeated_element.html";

}

Use the get_included_files() function to learn which files your script has included or required. It
returns an array containing the full system path filenames of each included or required file. Files that
did not parse are not included in this array.

{1ove Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

2.7 Embedding PHP in Web Pages

Although it is possible to write and run standalone PHP programs, most PHP code is embedded in
HTML or XML files. This is, after all, why it was created in the first place. Processing such documents
involves replacing each chunk of PHP source code with the output it produces when executed.

Because a single file contains PHP and non-PHP source code, we need a way to identify the regions of
PHP code to be executed. PHP provides four different ways to do this.

As you'll see, the first, and preferred, method looks like XML. The second method looks like SGML.
The third method is based on ASP tags. The fourth method uses the standard HTML <script> tag; this
makes it easy to edit pages with enabled PHP using a regular HTML editor.

2.7.1 XML Style

Because of the advent of the eXtensible Markup Language (XML) and the migration of HTML to an XML
language (XHTML), the currently preferred technique for embedding PHP uses XML-compliant tags to
denote PHP instructions.

Coming up with tags to demark PHP commands in XML was easy, because XML allows the definition of
new tags. To use this style, surround your PHP code with <?php and ?>. Everything between these
markers is interpreted as PHP, and everything outside the markers is not. Although it is not necessary
to include spaces between the markers and the enclosed text, doing so improves readability. For
example, to get PHP to print "Hello, world", you can insert the following line in a web page:

<?php echo "Hello, world"; ?>

The trailing semicolon on the statement is optional, because the end of the block also forces the end
of the expression. Embedded in a complete HTML file, this looks like:

<!Idoctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<title>This is my first PHP program!</title>
</head>
<body>
<p>
Look, ma! It's my first PHP program:

<?php echo "Hello, world"; ?>

How cool is that?
</p>
</body>
</html>

Of course, this isn't very exciting—we could have done it without PHP. The real value of PHP comes
when we put dynamic information from sources such as databases and form values into the web
page. That's for a later chapter, though. Let's get back to our "Hello, world" example. When a user
visits this page and views its source, it looks like this:

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html|>
<head>
<title>This is my first PHP program!</title>
</head>
<body>
<p>
Look, ma! It's my first PHP program:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Hello, world!

How cool is that?
</p>
</body>
</html>

Notice that there's no trace of the PHP source code from the original file. The user sees only its
output.

Also notice that we switched between PHP and non-PHP, all in the space of a single line. PHP
instructions can be put anywhere in a file, even within valid HTML tags. For example:

<input type="text" name="first_name"
value="<?php echo "Rasmus"; ?>" />

When PHP is done with this text, it will read:

<input type="text" name="first_name"
value="Rasmus" />

The PHP code within the opening and closing markers does not have to be on the same line. If the
closing marker of a PHP instruction is the last thing on a line, the line break following the closing tag
is removed as well. Thus, we can replace the PHP instructions in the "Hello, world" example with:

<?php
echo "Hello, world"; ?>

with no change in the resulting HTML.
2.7.2 SGML Style

The "classic" style of embedding PHP comes from SGML instruction processing tags. To use this
method, simply enclose the PHP in <? and ?>. Here's the "Hello world" example again:

<? echo "Hello, world"; ?>

This style, known as short tags, is the shortest and least intrusive, and it can be turned off so as to
not clash with the XML PI (Process Instruction) tag in the php.ini initialization file. Consequently, if
you want to write fully portable PHP code that you are going to distribute to other people (who might
have short tags turned off), you should use the longer <?php ... ?> style, which cannot be turned off.
If you have no intention of distributing your code, you don't have an issue with telling people who
want to use your code to turn on short tags, and you are not planning on mixing XML in with your PHP
code, then using this tag style is okay.

2.7.3 ASP Style

Because neither the SGML nor XML tag style is strictly legal HTML,L3J-» some HTML editors do not parse
it correctly for color syntax highlighting, context-sensitive help, and other such niceties. Some will
even go so far as to helpfully remove the "offending" code for you.

[3] Mostly because you are not allowed to use a > inside your tags if you wish to be
compliant, but who wants to write code like if($a > 5)...?

However, many of these same HTML editors recognize another mechanism (no more legal than PHP's)
for embedding code—that of Microsoft's Active Server Pages (ASP). Like PHP, ASP is a method for
embedding server-side scripts within documents.

If you want to use ASP-aware tools to edit files that contain embedded PHP, you can use ASP-style
tags to identify PHP regions. The ASP-style tag is the same as the SGML-style tag, but with % instead
of ?:

<% echo "Hello, world"; %>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In all other ways, the ASP-style tag works the same as the SGML-style tag.

ASP-style tags are not enabled by default. To use these tags, either build PHP with the --enable-asp-
tags option or enable asp_tags in the PHP configuration file.

2.7.4 Script Style

The final method of distinguishing PHP from HTML involves a tag invented to allow client-side scripting
within HTML pages, the <script> tag. You might recognize it as the tag in which JavaScript is
embedded. Since PHP is processed and removed from the file before it reaches the browser, you can
use the <script> tag to surround PHP code. To use this method, simply specify "php" as the value of
the language attribute of the tag:

<script language="php">
echo "Hello, world";
</script>

This method is most useful with HTML editors that work only on strictly legal HTML files and don't yet
support XML processing commands.

2.7.5 Echoing Content Directly

Perhaps the single most common operation within a PHP application is displaying data to the user. In
the context of a web application, this means inserting into the HTML document information that will
become HTML when viewed by the user.

To simplify this operation, PHP provides special versions of the SGML and ASP tags that automatically
take the value inside the tag and insert it into the HTML page. To use this feature, add an equals sign
(=) to the opening tag. With this technique, we can rewrite our form example as:

<input type="text" name="first_name" value="<?="Rasmus"; ?>">

If you have ASP-style tags enabled, you can do the same with your ASP tags:
<p>This number (<%= 2 + 2 %>)

and this number (<% echo (2 + 2); %>)

Are the same.</p>

After processing, the resulting HTML is:

<p>This number (4)

and this number (4)

are the same.</p>

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Chapter 3. Functions

A function is a named block of code that performs a specific task, possibly acting upon a set of values
given to it, or parameters, and possibly returning a single value. Functions save on compile time—no
matter how many times you call them, functions are compiled only once for the page. They also
improve reliability by allowing you to fix any bugs in one place, rather than everywhere you perform a
task, and they improve readability by isolating code that performs specific tasks.

This chapter introduces the syntax of function calls and function definitions and discusses how to
manage variables in functions and pass values to functions (including pass-by-value and pass-by-
reference). It also covers variable functions and anonymous functions.

{1ove Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

3.1 Calling a Function

Functions in a PHP program can be either built-in (or, by being in an extension, effectively built-in) or
user-defined. Regardless of their source, all functions are evaluated in the same way:

$some_value = function_name([parameter, ...]);

The number of parameters a function requires differs from function to function (and, as we'll see later,
may even vary for the same function). The parameters supplied to the function may be any valid
expression and should be in the specific order expected by the function. A function's documentation
will tell you what parameters the function expects and what values you can expect to be returned.

Here are some examples of functions:

// strlen() is a built-in function that returns the length of a string
$length = strlen("PHP"); // $length is now 3

// sin() and asin() are the sine and arcsine math functions
$result = sin(asin(1)); // $result is the sine of arcsin(1), or 1.0

// unlink() deletes a file
$result = unlink("functions.txt"); // false if unsuccessful

In the first example, we give an argument, "PHP", to the function strlen(), which gives us the number
of characters in the string it's given. In this case, it returns 3, which is assigned to the variable
$length. This is the simplest and most common way to use a function.

The second example passes the result of asin(1) to the sin() function. Since the sine and arcsine
functions are reflexive, taking the sine of the arcsine of any value will always return that same value.

In the final example, we give a filename to the unlink() function, which attempts to delete the file.
Like many functions, it returns false when it fails. This allows you to use another built-in function, die(
), and the short-circuiting property of the logic operators. Thus, this example might be rewritten as:

$result = unlink("functions.txt") or die("Operation failed!");

The unlink() function, unlike the other two examples, affects something outside of the parameters
given to it. In this case, it deletes a file from the filesystem. All such side effects of a function should
be carefully documented.

PHP has a huge array of functions already defined for you to use in your programs. Everything from
database access, to creating graphics, to reading and writing XML files, to grabbing files from remote
systems can be found in PHP's many extensions. Chapter 14 goes into detail on how to add new
extensions to PHP, the built-in functions are described in detail in Appendix A, and an overview of
PHP's extensions can be found in Appendix B.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

3.2 Defining a Function
To define a function, use the following syntax:

function [&] function_name ([parameter|[, ...1])
{

statement list

}

The statement list can include HTML. You can declare a PHP function that doesn't contain any PHP
code. For instance, the column() function simply gives a convenient short name to HTML code that
may be needed many times throughout the page:

<? function column() { ?>
</td><td>
<X?F?>

The function name can be any string that starts with a letter or underscore followed by zero or more
letters, underscores, and digits. Function names are case-insensitive; that is, you can call the sin()
function as sin(1), SIN(1), SiN(1), and so on, because all these names refer to the same function.

Typically, functions return some value. To return a value from a function, use the return statement:
put return exprinside your function. When a return statement is encountered during execution, control
reverts to the calling statement, and the evaluated results of expr will be returned as the value of the
function. Although it can make for messy code, you can actually include multiple return statements in
a function if it makes sense (for example, if you have a switch statement to determine which of
several values to return).

If you define your function with the optional ampersand before the name, the function returns a
reference to the returned data rather than a copy of the data.

Let's take a look at a simple function. Example 3-1 takes two strings, concatenates them, and then
returns the result (in this case, we've created a slightly slower equivalent to the concatenation
operator, but bear with us for the sake of example).

Example 3-1. String concatenation

function strcat($left, $right) {
$combined_string = $left . $right;
return $combined_string;

}

The function takes two arguments, $left and $right. Using the concatenation operator, the function
creates a combined string in the variable $combined_string. Finally, in order to cause the function to
have a value when it's evaluated with our arguments, we return the value $combined_string.

Because the return statement can accept any expression, even complex ones, we can simplify the

program as shown in Example 3-2.

Example 3-2. String concatenation redux

function strcat($left, $right) {
return $left . $right;
b

If we put this function on a PHP page, we can call it from anywhere within the page. Take a look at

Example 3-3.

Example 3-3. Using our concatenation function

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php

function strcat($left, $right) {
return $left . $right;

b

$first = "Thisisa ";
$second = " complete sentence!";

echo strcat($first, $second);
?>

When this page is displayed, the full sentence is shown.
This function takes in an integer, doubles it, and returns the result:

function doubler($value) {
return $value << 1;

}

Once the function is defined, you can use it anywhere on the page. For example:
<?="A pair of 13sis' . doubler(13); ?>

You can nest function declarations, but with limited effect. Nested declarations do not limit the
visibility of the inner-defined function, which may be called from anywhere in your program. The inner
function does not automatically get the outer function's arguments. And, finally, the inner function
cannot be called until the outer function has been called.

function outer ($a) {
function inner ($b) {
echo "there $b";

echo "$a, hello ";
outer("well");

inner("reader");
well, hello there reader

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

3.3 Variable Scope

Up to this point, if you don't use functions, any variable you create can be used anywhere in a page.
With functions, this is no longer always true. Functions keep their own sets of variables that are
distinct from those of the page and of other functions.

The variables defined in a function, including its parameters, are not accessible outside the function,
and, by default, variables defined outside a function are not accessible inside the function. The
following example illustrates this:

function foo() {
$a +=2;

}

foo();
echo $a;

The variable $a inside the function foo() is a different variable than the variable $a outside the
variable; even though foo() uses the add-and-assign operator, the value of the outer $a remains 3
throughout the life of the page. Inside the function, $a has the value 2.

As we discussed in Chapter 2, the extent to which a variable can be seen in a program is called the
scope of the variable. Variables created within a function are inside the scope of the function (i.e.,
have function-level scope). Variables created outside of functions and objects have global scope and
exist anywhere outside of those functions and objects. A few variables provided by PHP have both
function-level and global scope.

At first glance, even an experienced programmer may think that in the previous example $a will be 5
by the time the echo statement is reached, so keep that in mind when choosing names for your
variables.

3.3.1 Global Variables

If you want a variable in the global scope to be accessible from within a function, you can use the
global keyword. Its syntax is:

global varl, var2, ...
Changing the previous example to include a global keyword, we get:
$a=3;

function foo() {
global $a;
$a +=2;

}

foo();
echo $a;

Instead of creating a new variable called $a with function-level scope, PHP uses the global $a within
the function. Now, when the value of $a is displayed, it will be 5.

You must include the global keyword in a function before any uses of the global variable or variables
you want to access. Because they are declared before the body of the function, function parameters
can never be global variables.

Using global is equivalent to creating a reference to the variable in the $GLOBALS variable. That is, the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

following declarations:

global $var;
$var = &$GLOBALS['var'];

both create a variable in the function's scope that is a reference to the same value as the variable
$var in the global scope.

3.3.2 Static Variables

Like C, PHP supports declaring function variables static. A static variable is shared between all calls to
the function and is initialized during a script's execution only the first time the function is called. To
declare a function variable static, use the static keyword at the variable's first use. Typically, the first
use of a static variable is to assign an initial value:

static var[= valu€][, ...];

In Example 3-4, the variable $count is incremented by one each time the function is called.
Example 3-4. Static variable counter

function counter() {
static $count = 0;
return $count++;

}

for ($i = 1; $i <=5; $i++) {
print counter();

When the function is called for the first time, the static variable $count is assigned a value of 0. The
value is returned and $count is incremented. When the function ends, $count is not destroyed like a
non-static variable, and its value remains the same until the next time counter() is called. The for
loop displays the numbers from 0 to 4.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

3.4 Function Parameters

Functions can expect, by declaring them in the function definition, an arbitrary number of arguments.

There are two different ways of passing parameters to a function. The first, and more common, is by
value. The other is by reference.

3.4.1 Passing Parameters by Value

In most cases, you pass parameters by value. The argument is any valid expression. That expression
is evaluated, and the resulting value is assigned to the appropriate variable in the function. In all of
the examples so far, we've been passing arguments by value.

3.4.2 Passing Parameters by Reference

Passing by reference allows you to override the normal scoping rules and give a function direct access
to a variable. To be passed by reference, the argument must be a variable; you indicate that a
particular argument of a function will be passed by reference by preceding the variable name in the
parameter list with an ampersand (&). Example 3-5 revisits our doubler() function with a slight
change.

Example 3-5. Doubler redux

function doubler(&$value) {
$value = $value << 1;

}

$a=3;
doubler($a);
echo $a;

Because the function's $value parameter is passed by reference, the actual value of $a, rather than a
copy of that value, is modified by the function. Before, we had to return the doubled value, but now
we change the caller's variable to be the doubled value.

Here's another place where a function contains side effects: since we passed the variable $a into
doubler() by reference, the value of $a is at the mercy of the function. In this case, doubler() assigns
a new value to it.

A parameter that is declared as being passed by reference can only be a variable. Thus, if we included
the statement <?= doubler(7); ?> in the previous example, it would issue an error.

Even in cases where your function does affect the given value, you may want a parameter to be
passed by reference. When passing by value, PHP must copy the value. Particularly for large strings
and objects, this can be an expensive operation. Passing by reference removes the need to copy the
value.

3.4.3 Default Parameters

Sometimes, a function may need to accept a particular parameter in some cases. For example, when
you call a function to get the preferences for a site, the function may take in a parameter with the
name of the preference to retrieve. If you want to retrieve all the preferences, rather than using some
special keyword, you can just not supply an argument. This behavior works by using default
arguments.

To specify a default parameter, assign the parameter value in the function declaration. The value
assigned to a parameter as a default value cannot be a complex expression; it can only be a constant.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

function get_preferences($which_preference = "all") {
// if $which_preference is "all", return all prefs;
// otherwise, get the specific preference requested...

}

When you call get_preferences(), you can choose to supply an argument. If you do, it returns the
preference matching the string you give it; if not, it returns all preferences.

A function may have any number of parameters with default values. However, they must be listed
after all the parameters that do not have default values.

3.4.4 Variable Parameters

A function may require a variable number of arguments. For example, the get_preferences() example
in the previous section might return the preferences for any number of names, rather than for just
one. To declare a function with a variable number of arguments, leave out the parameter block
entirely.

function get_preferences() {
/] some code

}

PHP provides three functions you can use in the function to retrieve the parameters passed to it.
func_get_args() returns an array of all parameters provided to the function, func_num_args() returns
the number of parameters provided to the function, and func_get_arg() returns a specific argument
from the parameters.

$array = func_get_args();
$count = func_num_args();
$value = func_get_arg(argument_numben);,

In Example 3-6, the count_list() function takes in any number of arguments. It loops over those
arguments and returns the total of all the values. If no parameters are given, it returns false.

Example 3-6. Argument counter

function count_list() {
if(func_num_args() == 0) {
return false;
b
else {
for($i = 0; $i < func_num_args(); $i++) {
$count += func_get_arg($i);
b
return $count;
by
b

echo count_list(1, 5, 9);

The result of any of these functions cannot directly be used as a parameter to another function. To
use the result of one of these functions as a parameter, you must first set a variable to the result of
the function, then use that in the function call. The following expression will not work:

foo(func_num_args());
Instead, use:

$count = func_num_args();
foo($count);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

3.4.5 Missing Parameters

PHP lets you be as lazy as you want—when you call a function, you can pass any number of
arguments to the function. Any parameters the function expects that are not passed to it remain
unset, and a warning is issued for each of them:

function takes_two($a, $b) {
if (isset($a)) { echo " a is set\n"; }
if (isset($b)) { echo " b is set\n"; }
b
echo "With two arguments:\n";
takes_two(1, 2);
echo "With one argument:\n";
takes_two(1);
With two arguments:
ais set
b is set
With one argument:
Warning: Missing argument 2 for takes_two()
in /path/to/script.php on line 6
ais set

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

3.5 Return Values
PHP functions can return only a single value with the return keyword:

function return_one() {
return 42;

}

To return multiple values, return an array:

function return_two () {
return array("Fred", 35);

}

By default, values are copied out of the function. A function declared with an & before its name
returns a reference (alias) to its return value:

$names = array("Fred", "Barney", "Wilma", "Betty");
function & find_one($n) {
return $names[$n];

b
$person =& find_one(1); // Barney
$person = "Barnetta"; // changes $names[1]

In this code, the find_one() function returns an alias for $names[1], instead of a copy of its value.
Because we assign by reference, $person is an alias for $names[1], and the second assignment
changes the value in $names[1].

This technique is sometimes used to return large string or array values efficiently from a function.
However, PHP's copy-on-write/shallow-copy mechanism usually means that returning a reference
from a function is not necessary. There is no point in returning a reference to some large piece of data
unless you know you are likely to change that data. The drawback of returning the reference is that it
is slower than returning the value and relying on the shallow-copy mechanism to ensure that a copy
of that data is not made unless it is changed.

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

3.6 Variable Functions

As with variable variables, you can call a function based on the value of a variable. For example,
consider this situation, where a variable is used to determine which of three functions to call:

switch($which) {
case 'first':
first();
break;

case 'second":
second();
break;

case 'third":
third();
break;
b

In this case, we could use a variable function call to call the appropriate function. To make a variable
function call, include the parameters for a function in parentheses after the variable. To rewrite the
previous example:

$which(); // if $which is "first" the function first() is called, etc...

If no function exists for the variable, a runtime error occurs when the code is evaluated. To prevent
this, you can use the built-in function function_exists() to determine whether a function exists for the
value of the variable before calling the function:

$yes_or_no = function_exists(function_name);
For example:

if(function_exists($which)) {
$which(); // if $which is "first" the function first() is called, etc...

}

Language constructs such as echo() and isset() cannot be called through variable functions:

$f = 'echo’;
$f('hello, world"); // does not work

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

3.7 Anonymous Functions

Some PHP functions use a function you provide them with to do part of their work. For example, the
usort() function uses a function you create and pass to it as a parameter to determine the sort order
of the items in an array.

Although you can define a function for such purposes, as shown previously, these functions tend to be
localized and temporary. To reflect the transient nature of the callback, create and use an anonymous
function (or lambda function).

You can create an anonymous function using create_function(). This function takes two parameters—
the first describes the parameters the anonymous function takes in, and the second is the actual
code. A randomly generated name for the function is returned:

$func_name = create_function(args_string, code_string);

Example 3-7 shows an example using usort().

Example 3-7. Anonymous functions

$lambda = create_function('$a,$b’, 'return(strien($a) - strlen($b));");

$array = array('really long string here, boy', 'this', 'middling length’, 'larger');
usort($array, $lambda);

print_r($array);

The array is sorted by usort(), using the anonymous function, in order of string length.

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Chapter 4. Strings

Most data you encounter as you program will be sequences of characters, or strings. Strings hold
people's names, passwords, addresses, credit-card numbers, photographs, purchase histories, and
more. For that reason, PHP has an extensive selection of functions for working with strings.

This chapter shows the many ways to write strings in your programs, including the sometimes-tricky
subject of interpolation (placing a variable's value into a string), then covers the many functions for
changing, quoting, and searching strings. By the end of this chapter, you'll be a string-handling
expert.

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

4.1 Quoting String Constants

There are three ways to write a literal string in your program: using single quotes, double quotes, and
the here document (heredoc) format derived from the Unix shell. These methods differ in whether
they recognize special escape sequences that let you encode other characters or interpolate variables.

The general rule is to use the least powerful quoting mechanism necessary. In practice, this means
that you should use single-quoted strings unless you need to include escape sequences or interpolate
variables, in which case you should use double-quoted strings. If you want a string that spans many
lines, use a heredoc.

4.1.1 Variable Interpolation

When you define a string literal using double quotes or a heredoc, the string is subject to variable
interpolation. Interpolation is the process of replacing variable names in the string with the values of
those variables. There are two ways to interpolate variables into strings—the simple way and the
complex way.

The simple way is to just put the variable name in a double-quoted string or heredoc:

$who = 'Kilroy';

$where = 'here’;

echo "$who was $where";
Kilroy was here

The complex way is to surround the variable being interpolated with curly braces. This method can be
used either to disambiguate or to interpolate array lookups. The classic use of curly braces is to
separate the variable name from surrounding text:

$n =12;
echo "You are the {$n}th person";
You are the 12th person

Without the curly braces, PHP would try to print the value of the $nth variable.

Unlike in some shell environments, in PHP strings are not repeatedly processed for interpolation.
Instead, any interpolations in a double-quoted string are processed, then the result is used as the
value of the string:

$bar = 'this is not printed’;

$foo = '$bar'; // single quotes
print("$foo™);

$bar

4.1.2 Single-Quoted Strings

Single-quoted strings do not interpolate variables. Thus, the variable name in the following string is
not expanded because the string literal in which it occurs is single-quoted:

$name = 'Fred';

$str = 'Hello, $name’; // single-quoted
echo $str;

Hello, $name

The only escape sequences that work in single-quoted strings are \', which puts a single quote in a
single-quoted string, and \\, which puts a backslash in a single-quoted string. Any other occurrence of
a backslash is interpreted simply as a backslash:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$name = 'Tim O\'Reilly’; // escaped single quote
echo $name;

$path = 'C:\\WINDOWS'; // escaped backslash
echo $path;

$nope = "\n'; // not an escape

echo $nope;

Tim O'Reilly

C:\WINDOWS

\n

4.1.3 Double-Quoted Strings

Double-quoted strings interpolate variables and expand the many PHP escape sequences. Table 4-1
lists the escape sequences recognized by PHP in double-quoted strings.

Table 4-1. Escape sequences in double-quoted strings

Escape sequence Character represented
\" Double quotes
\n Newline
\r Carriage return
\t Tab
\\ Backslash
\$ Dollar sign
\{ Left brace
\} Right brace
\[Left bracket
\] Right bracket
\0 through \777 ASCII character represented by octal value
\x0 through \xFF ASCII character represented by hex value

If an unknown escape sequence (i.e., a backslash followed by a character that is not one of those in
Table 4-1) is found in a double-quoted string literal, it is ignored (if you have the warning level
E_NOTICE set, a warning is generated for such unknown escape sequences):

$str = "What is \c this?"; // unknown escape sequence
echo $str ;
What is \c this?

4.1.4 Here Documents

You can easily put multiline strings into your program with a heredoc, as follows:

$clerihew = <<< End_Of_Quote
Sir Humphrey Davy

Abominated gravy.

He lived in the odium

Of having discovered sodium.
End_Of_Quote;

echo $clerihew;

Sir Humphrey Davy
Abominated gravy.

He lived in the odium

Of having discovered sodium.

The <<< Identifier tells the PHP parser that you're writing a heredoc. There must be a space after the
<<< and before the identifier. You get to pick the identifier. The next line starts the text being quoted
by the heredoc, which continues until it reaches a line that consists of nothing but the identifier.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

As a special case, you can put a semicolon after the terminating identifier to end the statement, as
shown in the previous code. If you are using a heredoc in a more complex expression, you need to
continue the expression on the next line, as shown here:

printf(<<< Template
%s is %d years old.
Template

, "Fred", 35);

Single and double quotes in a heredoc are passed through:

$dialogue = <<< No_More

"It's not going to happen!" she fumed.

He raised an eyebrow. "Want to bet?"
No_More;

echo $dialogue;

"It's not going to happen!" she fumed.
He raised an eyebrow. "Want to bet?"

Whitespace in a heredoc is also preserved:

$ws = <<< Enough
boo
hoo

Enough;
// $ws =" boo\n hoo\n";

The newline before the trailing terminator is removed, so these two assignments are identical:

$s = 'Foo';

// same as

$s = <<< End_of_pointless_heredoc
Foo

End_of_pointless_heredoc;

If you want a newline to end your heredoc-quoted string, you'll need to add an extra one yourself:

$s = <<< End
Foo

End;

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

4.2 Printing Strings

There are four ways to send output to the browser. The echo construct lets you print many values at
once, while print() prints only one value. The printf() function builds a formatted string by inserting
values into a template. The print_r() function is useful for debugging—it prints the contents of arrays,
objects, and other things, in a more-or-less human-readable form.

4.2.1 echo

To put a string into the HTML of a PHP-generated page, use echo. While it looks—and for the most
part behaves—Ilike a function, echo is a language construct. This means that you can omit the
parentheses, so the following are equivalent:

echo "Printy";
echo("Printy"); // also valid

You can specify multiple items to print by separating them with commas:

echo "First", "second", "third";
Firstsecondthird

It is a parse error to use parentheses when trying to echo multiple values:

// this is a parse error
echo("Hello", "world");

Because echo is not a true function, you can't use it as part of a larger expression:

// parse error
if (echo("test")) {
echo("it worked!");

}

Such errors are easily remedied, though, by using the print() or printf() functions.
4.2.2 print()

The print() function sends one value (its argument) to the browser. It returns true if the string was
successfully displayed and false otherwise (e.g., if the user pressed the Stop button on her browser
before this part of the page was rendered):

if (! print("Hello, world")) {
die("you're not listening to me!");

Hello, world

4.2.3 printf()

The printf() function outputs a string built by substituting values into a template (the format string).
It is derived from the function of the same name in the standard C library. The first argument to
printf() is the format string. The remaining arguments are the values to be substituted in. A %
character in the format string indicates a substitution.

4.2.3.1 Format modifiers

Each substitution marker in the template consists of a percent sign (%), possibly followed by
modifiers from the following list, and ends with a type specifier. (Use '%%' to get a single percent
character in the output.) The modifiers must appear in the order in which they are listed here:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® A padding specifier denoting the character to use to pad the results to the appropriate string
size. Specify 0, a space, or any character prefixed with a single quote. Padding with spaces is
the default.

® A sign. This has a different effect on strings than on numbers. For strings, a minus (-) here
forces the string to be right-justified (the default is to left-justify). For numbers, a plus (+)
here forces positive numbers to be printed with a leading plus sign (e.g., 35 will be printed as
+35).

® The minimum number of characters that this element should contain. If the result is less than
this number of characters, the sign and padding specifier govern how to pad to this length.

® For floating-point numbers, a precision specifier consisting of a period and a number; this

dictates how many decimal digits will be displayed. For types other than double, this specifier
is ignored.

4.2.3.2 Type specifiers

The type specifier tells printf() what type of data is being substituted. This determines the
interpretation of the previously listed modifiers. There are eight types, as listed in Table 4-2.

Table 4-2. printf() type specifiers

Specifier Meaning

B The argument is an integer and is displayed as a binary number.

C The argument is an integer and is displayed as the character with that value.
dorl The argument is an integer and is displayed as a decimal number.

e, E, or f |The argument is a double and is displayed as a floating-point number.

gorG The argument is a double with precision and is displayed as a floating-point humber.

0 The argument is an integer and is displayed as an octal (base-8) number.

S The argument is a string and is displayed as such.

U The argument is an unsigned integer and is displayed as a decimal number.

X The argument is an integer and is displayed as a hexadecimal (base-16) humber;
lowercase letters are used.

X The argument is an integer and is displayed as a hexadecimal (base-16) number;

uppercase letters are used.

The printf() function looks outrageously complex to people who aren't C programmers. Once you get
used to it, though, you'll find it a powerful formatting tool. Here are some examples:

® A floating-point number to two decimal places:

printf('%.2f", 27.452);
27.45

® Decimal and hexadecimal output:

printf('The hex value of %d is %x', 214, 214);
The hex value of 214 is d6

® Padding an integer to three decimal places:

printf('Bond. James Bond. %03d.!, 7);
Bond. James Bond. 007.

® Formatting a date:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

printf('%02d/%02d/%04y', $month, $day, $year);
02/15/2002

® A percentage:

printf('%.2f%% Complete', 2.1);
2.10% Complete

® Padding a floating-point number:

printf("You\'ve spent $%5.2f so far', 4.1);
You've spent $ 4.10 so far

The sprintf() function takes the same arguments as printf() but returns the built-up string instead of
printing it. This lets you save the string in a variable for later use:

$date = sprintf("%02d/%02d/%04d", $month, $day, $year);
// now we can interpolate $date wherever we need a date

4.2.4 print_r() and var_dump()

The print_r() construct intelligently displays what is passed to it, rather than casting everything to a
string, as echo and print() do. Strings and numbers are simply printed. Arrays appear as
parenthesized lists of keys and values, prefaced by Array:

$a = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma");
print_r($a);
Array
(
[name] => Fred
[age] => 35
[wife] => Wilma

)

Using print_r() on an array moves the internal iterator to the position of the last element in the array.
See Chapter 5 for more on iterators and arrays.

When you print_r() an object, you see the word Object, followed by the initialized properties of the
object displayed as an array:

class P {
var $name = 'nat’;
/] ..

b

$p = new P;

print_r($p);
Object

(
)

Boolean values and NULL are not meaningfully displayed by print_r():

[name] => nat

print_r(true); print "\n";
1

print_r(false); print "\n";
print_r(null); print "\n";

For this reason, var_dump() is preferable to print_r() for debugging. The var_dump() function

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

displays any PHP value in a human-readable format:

var_dump(true);

bool(true)

var_dump(false);

bool(false);

var_dump(null);

bool(null);

var_dump(array('name' => Fred, 'age' => 35));

array(2) {
["name"]=>
string(4) "Fred"
["age"]=>
int(35)

s

class P {
var $name = 'Nat’;
/] ...

b

$p = new P;

var_dump($p);

object(p)(1) {
["name"]=>
string(3) "Nat"

}

Beware of using print_r() or var_dump() on a recursive structure such as $GLOBALS (which has an
entry for GLOBALS that points back to itself). The print_r() function loops infinitely, while var_dump()
cuts off after visiting the same element three times.

I1@ve RuBoard (< revvious foaxi]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

4.3 Accessing Individual Characters
The strlen() function returns the number of characters in a string:

$string = 'Hello, world';
$length = strlen($string); // $length is 12

You can use array syntax (discussed in detail in Chapter 5) on a string, to address individual
characters:

$string = 'Hello;
for ($i=0; $i < strlen($string); $i++) {
printf("The %dth character is %s\n", $i, $string[$i]);

b

The 0th character is H
The 1th character is e
The 2th characteris |

The 3th character is |

The 4th character is o

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

4.4 Cleaning Strings

Often, the strings we get from files or users need to be cleaned up before we can use them. Two
common problems with raw data are the presence of extraneous whitespace, and incorrect
capitalization (uppercase versus lowercase).

4.4.1 Removing Whitespace
You can remove leading or trailing whitespace with the trim(), Itrim(), and rtrim() functions:

$trimmed = trim(string [, charlist });
$trimmed = Itrim(string [, charlist });
$trimmed = rtrim(string [, charlist));

trim() returns a copy of string with whitespace removed from the beginning and the end. Itrim(') (the /
is for left) does the same, but removes whitespace only from the start of the string. rtrim() (the ris
for right) removes whitespace only from the end of the string. The optional charlist argument is a
string that specifies all the characters to strip. The default characters to strip are given in Table 4-3.

Table 4-3. Default characters removed by trim(), Itrim(), and rtrim()

Character ASCII value Meaning
" 0x20 Space
"\t" 0x09 Tab
"\n" 0x0A Newline (line feed)
"\r" 0x0D Carriage return
"\0" 0x00 NUL-byte
"\x0B" 0x0B Vertical tab

For example:

$title =" Programming PHP \n";

$str_1 = Itrim($title); // $str_1 is "Programming PHP \n"
$str_2 = rtrim($title); /] $str_2is" Programming PHP"
$str_3 = trim($title); // $str_3 is "Programming PHP"

Given a line of tab-separated data, use the charset argument to remove leading or trailing whitespace
without deleting the tabs:

$record =" Fred\tFlintstone\t35\tWilma \n";
$record = trim($record, " \r\n\0\x0B";
// $record is "Fred\tFlintstone\t35\tWilma"

4.4.2 Changing Case

PHP has several functions for changing the case of strings: strtolower() and strtoupper() operate on
entire strings, ucfirst() operates only on the first character of the string, and ucwords() operates on
the first character of each word in the string. Each function takes a string to operate on as an
argument and returns a copy of that string, appropriately changed. For example:

$stringl = "FRED flintstone";
$string2 = "barney rubble";
print(strtolower($string1));
print(strtoupper($string1));
print(ucfirst($string2));
print(ucwords($string2));
fred flintstone

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FRED FLINTSTONE
Barney rubble
Barney Rubble

If you've got a mixed-case string that you want to convert to "title case," where the first letter of each
word is in uppercase and the rest of the letters are in lowercase, use a combination of strtolower()
and ucwords():

print(ucwords(strtolower($string1)));
Fred Flintstone

{1ove Rugoard [+ evisus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

4.5 Encoding and Escaping

Because PHP programs often interact with HTML pages, web addresses (URLs), and databases, there
are functions to help you work with those types of data. HTML, web page addresses, and database
commands are all strings, but they each require different characters to be escaped in different ways.
For instance, a space in a web address must be written as %20, while a literal less-than sign (<) in an
HTML document must be written as <. PHP has a number of built-in functions to convert to and from
these encodings.

4.5.1 HTML

Special characters in HTML are represented by entities such as & and <. There are two PHP
functions for turning special characters in a string into their entities, one for removing HTML tags, and
one for extracting only meta tags.

4.5.1.1 Entity-quoting all special characters

The htmlispecialchars() function changes all characters with HTML entity equivalents into those
equivalents (with the exception of the space character). This includes the less-than sign (<), the
greater-than sign (>), the ampersand (&), and accented characters.

For example:

$string = htmlentities("Einsturzende Neubauten");
echo $string;
Einstiirzende Neubauten

The entity-escaped version (ü) correctly displays as U in the web page. As you can see, the
space has not been turned into .

The htmlentities() function actually takes up to three arguments:
$output = htmlentities(/nput, quote_style, charset),

The charset parameter, if given, identifies the character set. The default is "ISO-8859-1". The
quote_style parameter controls whether single and double quotes are turned into their entity forms.
ENT_COMPAT (the default) converts only double quotes, ENT_QUOTES converts both types of quotes,
and ENT_NOQUOTES converts neither. There is no option to convert only single quotes. For example:

$input = <<< End

"Stop pulling my hair!" Jane's eyes flashed.<p>

End;

$double = htmlentities($input);

// "Stop pulling my hair!" Jane's eyes flashed.<p>

$both = htmlentities($input, ENT_QUOTES);
// "Stop pulling my hair!" Jane's eyes flashed.<p>

$neither = htmlentities($input, ENT_NOQUOTES);
// "Stop pulling my hair!" Jane's eyes flashed.< p>

4.5.1.2 Entity-quoting only HTML syntax characters

The htmispecialchars() function converts the smallest set of entities possible to generate valid HTML.
The following entities are converted:

® Ampersands (&) are converted to &

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® Double quotes (") are converted to "

® Single quotes (') are converted to ' (if ENT_QUOTES is on, as described for htmlentities(
)

® | ess-than signs (<) are converted to <
® Greater-than signs (>) are converted to >

If you have an application that displays data that a user has entered in a form, you need to run that
data through htmispecialchars() before displaying or saving it. If you don't, and the user enters a
string like "angle < 30" or "sturm & drang", the browser will think the special characters are HTML, and
you'll have a garbled page.

Like htmlentities(), htmlspecialchars() can take up to three arguments:
$output = htmlspecialchars(input, [quote_style, [charset]));

The guote_style and charset arguments have the same meaning that they do for htmlentities().

There are no functions specifically for converting back from the entities to the original text, because
this is rarely needed. There is a relatively simple way to do this, though. Use the
get_html_translation_table() function to fetch the translation table used by either of these functions in
a given quote style. For example, to get the translation table that htmlentities() uses, do this:

$table = get_html_translation_table(HTML_ENTITIES);
To get the table for htmlspecialchars() in ENT_NOQUOTES mode, use:
$table = get_html_translation_table(HTML_SPECIALCHARS, ENT_NOQUOTES);

A nice trick is to use this translation table, flip it using array_flip(), and feed it to strtr() to apply it to
a string, thereby effectively doing the reverse of htmlentities():

$str = htmlentities("Einstiirzende Neubauten"); // now it is encoded

$table = get_html_translation_table(HTML_ENTITIES);
$rev_trans = array_flip($table);

echo strtr($str,$rev_trans); // back to normal
Einstiirzende Neubauten

You can, of course, also fetch the translation table, add whatever other translations you want to it,
and then do the strtr(). For example, if you wanted htmlentities() to also encode spaces to s,
you would do:

$table = get_html_translation_table(HTML_ENTITIES);
$table[' '] = ' ';
$encoded = strtr($original, $table);

4.5.1.3 Removing HTML tags

The strip_tags() function removes HTML tags from a string:

$input = '<p>Howdy, "Cowboy"</p>";
$output = strip_tags($input);
// $output is 'Howdy, "Cowboy"'

The function may take a second argument that specifies a string of tags to leave in the string. List
only the opening forms of the tags. The closing forms of tags listed in the second parameter are also
preserved:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$input = 'The bold tags will <i>stay</i><p>';
$output = strip_tags($input, '");
// $output is 'The bold tags will stay'

Attributes in preserved tags are not changed by strip_tags(). Because attributes such as style and
onmouseover can affect the look and behavior of web pages, preserving some tags with strip_tags()
won't necessarily remove the potential for abuse.

4.5.1.4 Extracting meta tags

If you have the HTML for a web page in a string, the get_meta_tags() function returns an array of the
meta tags in that page. The name of the meta tag (keywords, author, description, etc.) becomes the
key in the array, and the content of the meta tag becomes the corresponding value:

$meta_tags = get_meta_tags('http://www.example.com/");
echo "Web page made by {$meta_tags[author]}";
Web page made by John Doe

The general form of the function is:
$array = get_meta_tags(filename [, use_include_path));

Pass a true value for use_include path to let PHP attempt to open the file using the standard include
path.

4.5.2 URLs

PHP provides functions to convert to and from URL encoding, which allows you to build and decode
URLs. There are actually two types of URL encoding, which differ in how they treat spaces. The first
(specified by RFC 1738) treats a space as just another illegal character in a URL and encodes it as
%?20. The second (implementing the application/x-www-form-urlencoded system) encodes a space as a
+ and is used in building query strings.

Note that you don't want to use these functions on a complete URL, like
http://www.example.com/hello, as they will escape the colons and slashes to produce
http%3A%2F%2Fwww.example.com%?2Fhello. Only encode partial URLs (the bit after
http://www.example.com/), and add the protocol and domain name later.

4.5.2.1 RFC 1738 encoding and decoding

To encode a string according to the URL conventions, use rawurlencode():
$output = rawurlencode(/nput);

This function takes a string and returns a copy with illegal URL characters encoded in the %dd
convention.

If you are dynamically generating hypertext references for links in a page, you need to convert them
with rawurlencode():

$name = "Programming PHP";

$output = rawurlencode($name);

echo "http://localhost/$output”;
http://localhost/Programming%20PHP

The rawurldecode() function decodes URL-encoded strings:

$encoded = 'Programming%?20PHP';
echo rawurldecode($encoded);
Programming PHP

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4.5.2.2 Query-string encoding

The urlencode() and urldecode() functions differ from their raw counterparts only in that they encode
spaces as plus signs (+) instead of as the sequence %20. This is the format for building query strings
and cookie values, but because these values are automatically decoded when they are passed through
a form or cookie, you don't need to use these functions to process the current page's query string or
cookies. The functions are useful for generating query strings:

$base_url = 'http://www.google.com/q=";

$query = 'PHP sessions -cookies';

$url = $base_url . urlencode($query);

echo $url;
http://www.google.com/q=PHP+sessions+-cookies

4.5.3 SQL

Most database systems require that string literals in your SQL queries be escaped. SQL's encoding
scheme is pretty simple— single quotes, double quotes, NUL-bytes, and backslashes need to be
preceded by a backslash. The addslashes() function adds these slashes, and the stripslashes()
function removes them:

$string = <<< The_End

"It's never going to work," she cried,

as she hit the backslash (\\) key.

The_End;

echo addslashes($string);

\"It\'s never going to work,\" she cried,
as she hit the backslash (\\) key.

echo stripslashes($string);

"It's never going to work," she cried,

as she hit the backslash (\) key.

Some databases escape single quotes with another single quote instead of a backslash. For those
databases, enable magic_quotes_sybase in your php.ini file.

4.5.4 C-String Encoding

The addcslashes() function escapes arbitrary characters by placing backslashes before them. With the
exception of the characters in Table 4-4, characters with ASCII values less than 32 or above 126 are
encoded with their octal values (e.g., "\002"). The addcslashes() and stripcslashes() functions are
used with nonstandard database systems that have their own ideas of which characters need to be
escaped.

Table 4-4. Single-character escapes recognized by addcslashes() and stripcslashes()

ASCII value Encoding
7 \a
8 \b
9 \t
10 \n
11 \v
12 \f
13 \r

Call addcslashes() with two arguments—the string to encode and the characters to escape:

$escaped = addcslashes(string, charset);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Specify a range of characters to escape with the ".." construct:

echo addcslashes("hello\tworld\n", "\x00..\x1fz..\xff");
hello\tworld\n

Beware of specifying '0', 'a', 'b’, 'f', 'n', 'r', 't', or 'V' in the character set, as they will be turned into '\0',
\a', etc. These escapes are recognized by C and PHP and may cause confusion.

stripcslashes() takes a string and returns a copy with the escapes expanded:
$string = stripcslashes(escaped);
For example:

$string = stripcslashes('hello\tworld\n");
// $string is "hello\tworld\n"

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

4.6 Comparing Strings

PHP has two operators and six functions for comparing strings to each other.
4.6.1 Exact Comparisons

You can compare two strings for equality with the == and === operators. These operators differ in
how they deal with non-string operands. The == operator casts non-string operands to strings, so it
reports that 3 and "3" are equal. The === operator does not cast, and returns false if the types of the
arguments differ.

$0l1 = 3;
$02 = "3",
if ($01 == $02){

echo("== returns true
");

¥
if ($01 === $02) {

echo("=== returns true
");
¥

= returns true
The comparison operators (<, <=, >, >=) also work on strings:

$him = "Fred";
$her = "Wilma";
if ($him < $her) {
print "$him comes before $her in the alphabet.\n";

}

Fred comes before Wilma in the alphabet
However, the comparison operators give unexpected results when comparing strings and numbers:

$string = "PHP Rocks";

$number = 5;

if ($string < $number) {
echo("$string < $number");

b
PHP Rocks < 5

When one argument to a comparison operator is a number, the other argument is cast to a number.
This means that "PHP Rocks" is cast to a number, giving 0 (since the string does not start with a
number). Because 0 is less than 5, PHP prints "PHP Rocks < 5".

To explicitly compare two strings as strings, casting numbers to strings if necessary, use the strcmp()
function:

$relationship = strcmp(string_1, string_2);

The function returns a number less than 0 if string_1 sorts before string 2, greater than 0 if string_2
sorts before string_1, or 0 if they are the same:

$n = strcmp("PHP Rocks", 5);
echo($n);
1

A variation on strcmp() is strcasecmp() , which converts strings to lowercase before comparing them.
Its arguments and return values are the same as those for strcmp():

$n = strcasecmp("Fred", "frED"); // $nis 0

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Another variation on string comparison is to compare only the first few characters of the string. The
strncmp() and strncasecmp() functions take an additional argument, the initial number of characters
to use for the comparisons:

$relationship = strncmp(string_1, string_2, len);
$relationship = strncasecmp(string_1, string_2, len);

The final variation on these functions is natural-order comparison with strnatcmp() and strnatcasecmp(
), which take the same arguments as strcmp() and return the same kinds of values. Natural-order
comparison identifies numeric portions of the strings being compared and sorts the string parts
separately from the numeric parts.

able 4-5 shows strings in natural order and ASCII order.

Table 4-5. Natural order versus ASCII order

Natural order ASCII order
picl.jpg picl.jpg
pic5.jpg pic10.jpg
pig10.jpg pic5.jpg
pic50.jpg pic50.jpg

4.6.2 Approximate Equality

PHP provides several functions that let you test whether two strings are approximately equal:
soundex() , metaphone(), similar_text(), and levenshtein().

$soundex_code = soundex($string);

$metaphone_code = metaphone($string);

$in_common = similar_text($string_1, $string 2 [, $percentage]);

$similarity = levenshtein(gstring_1, $string_2);

$similarity = levenshtein(gstring_1, $string 2 [, $cost_ins, $cost_rep, $cost_del));

The Soundex and Metaphone algorithms each yield a string that represents roughly how a word is
pronounced in English. To see whether two strings are approximately equal with these algorithms,
compare their pronunciations. You can compare Soundex values only to Soundex values and
Metaphone values only to Metaphone values. The Metaphone algorithm is generally more accurate, as
the following example demonstrates:

$known = "Fred";
$query = "Phred";
if (soundex($known) == soundex($query)) {
print "soundex: $known sounds $query
";
} else {
print "soundex: $known doesn't sound like $query
";
b
if (metaphone($known) == metaphone($query)) {
print "metaphone: $known sounds $query
";
} else {
print "metaphone: $known doesn't sound like $query
";
b
soundex: Fred doesn't sound like Phred
metaphone: Fred sounds like Phred

The similar_text() function returns the number of characters that its two string arguments have in
common. The third argument, if present, is a variable in which to store the commonality as a
percentage:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$string_1 = "Rasmus Lerdorf";

$string_2 = "Razmus Lehrdorf";

$common = similar_text($string_1, $string_2, $percent);

printf("They have %d chars in common (%.2f%%).", $common, $percent);
They have 13 chars in common (89.66%).

The Levenshtein algorithm calculates the similarity of two strings based on how many characters you
must add, substitute, or remove to make them the same. For instance, "cat" and "cot" have a
Levenshtein distance of 1, because you need to change only one character (the "a" to an "0") to make
them the same:

$similarity = levenshtein("cat", "cot"); // $similarity is 1

This measure of similarity is generally quicker to calculate than that used by the similar_text()
function. Optionally, you can pass three values to the levenshtein() function to individually weight
insertions, deletions, and replacements—for instance, to compare a word against a contraction.

This example excessively weights insertions when comparing a string against its possible contraction,
because contractions should never insert characters:

echo levenshtein('would not', 'wouldn\'t', 500, 1, 1);

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

4.7 Manipulating and Searching Strings

PHP has many functions to work with strings. The most commonly used functions for searching and
modifying strings are those that use regular expressions to describe the string in question. The
functions described in this section do not use regular expressions—they are faster than regular
expressions, but they work only when you're looking for a fixed string (for instance, if you're looking
for "12/11/01" rather than "any numbers separated by slashes").

4.7.1 Substrings

If you know where in a larger string the interesting data lies, you can copy it out with the substr()
function:

$piece = substr(string, start[, length1);

The start argument is the position in string at which to begin copying, with 0 meaning the start of the
string. The /ength argument is the number of characters to copy (the default is to copy until the end of
the string). For example:

$name = "Fred Flintstone";
$fluff = substr($name, 6, 4); // $fluff is "lint"
$sound = substr($name, 11); // $sound is "tone"

To learn how many times a smaller string occurs in a larger one, use substr_count():

$number = substr_count(big_string, small_string);
For example:

$sketch = <<< End_of_Sketch

Well, there's egg and bacon; egg sausage and bacon; egg and spam;

egg bacon and spam; egg bacon sausage and spam; spam bacon sausage
and spam; spam egg spam spam bacon and spam; spam sausage spam spam
bacon spam tomato and spam;

End_of_Sketch;

$count = substr_count($sketch, "spam™);

print("The word spam occurs $count times.");

The word spam occurs 14 times.

The substr_replace() function permits many kinds of string modifications:
$string = substr_replace(original, new, start[, length1);

The function replaces the part of original indicated by the start (0 means the start of the string) and
length values with the string new. If no fourth argument is given, substr_replace() removes the text
from start to the end of the string.

For instance:

$greeting = "good morning citizen";

$farewell = substr_replace($greeting, "bye", 5, 7);
// $farewell is "good bye citizen"

Use a length value of 0 to insert without deleting:

$farewell = substr_replace($farewell, "kind ", 9, 0);
// $farewell is "good bye kind citizen"

Use a replacement of "" to delete without inserting:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$farewell = substr_replace($farewell, "", 8);
// $farewell is "good bye"

Here's how you can insert at the beginning of the string:

$farewell = substr_replace($farewell, "now it's time to say ", 0, 0);
// $farewell is "now it's time to say good bye™

A negative value for startindicates the number of characters from the end of the string from which to
start the replacement:

$farewell = substr_replace($farewell, "riddance", -3);
// $farewell is "now it's time to say good riddance"

A negative /ength indicates the number of characters from the end of the string at which to stop
deleting:

$farewell = substr_replace($farewell, "", -8, -5);
// $farewell is "now it's time to say good dance"

4.7.2 Miscellaneous String Functions

The strrev() function takes a string and returns a reversed copy of it:
$string = strrev(string);
For example:

echo strrev("There is no cabal);
labac on si erehT

The str_repeat() function takes a string and a count and returns a new string consisting of the
argument string repeated count times:

$repeated = str_repeat(string, count);
For example, to build a crude horizontal rule:
echo str_repeat('-', 40);

The str_pad() function pads one string with another. Optionally, you can say what string to pad with,
and whether to pad on the left, right, or both:

$padded = str_pad(to_pad, length [, with [, pad_type 11);
The default is to pad on the right with spaces:

$string = str_pad('Fred Flintstone', 30);

echo "$string:35:Wilma";

Fred Flintstone :35:Wilma

The optional third argument is the string to pad with:

$string = str_pad('Fred Flintstone', 30, '. ');
echo "{$string}35";
Fred Flintstone. 35

The optional fourth argument can be either STR_PAD_RIGHT (the default), STR_PAD_LEFT, or
STR_PAD_BOTH (to center). For example:

echo '[". str_pad('Fred Flintstone', 30, ' ', STR_PAD_LEFT) . "]\n";
echo '[". str_pad('Fred Flintstone', 30, ', STR_PAD_BOTH) . "]\n";
[Fred Flintstone]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Fred Flintstone 1
4.7.3 Decomposing a String

PHP provides several functions to let you break a string into smaller components. In increasing order
of complexity, they are explode(), strtok(), and sscanf().

4.7.3.1 Exploding and imploding

Data often arrives as strings, which must be broken down into an array of values. For instance, you
might want to separate out the comma-separated fields from a string such as "Fred,25,Wilma". In
these situations, use the explode() function:

$array = explode(separator, string [, limit]);

The first argument, separator, is a string containing the field separator. The second argument, string,
is the string to split. The optional third argument, /imit, is the maximum number of values to return in
the array. If the limit is reached, the last element of the array contains the remainder of the string:

$input = 'Fred,25,Wilma’;

$fields = explode(',', $input);

// $fields is array('Fred', '25', 'Wilma")
$fields = explode(',', $input, 2);

// $fields is array('Fred’, '25,Wilma")

The implode() function does the exact opposite of explode()—it creates a large string from an array of
smaller strings:

$string = implode(separator, array);

The first argument, separator, is the string to put between the elements of the second argument,
array. To reconstruct the simple comma-separated value string, simply say:

$fields = array('Fred’, '25', 'Wilma");
$string = implode(',', $fields); // $string is 'Fred,25,Wilma'

The join() function is an alias for implode().
4.7.3.2 Tokenizing

The strtok() function lets you iterate through a string, getting a new chunk (token) each time. The
first time you call it, you need to pass two arguments: the string to iterate over and the token
separator:

$first_chunk = strtok(string, separator);
To retrieve the rest of the tokens, repeatedly call strtok() with only the separator:

$next_chunk = strtok(separator);
For instance, consider this invocation:

$string = "Fred,Flintstone,35,Wilma";

$token = strtok($string, ",");

while ($token == false) {
echo("$token
");
$token = strtok(",");

b

Fred

Flintstone

35

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Wilma
The strtok() function returns false when there are no more tokens to be returned.

Call strtok() with two arguments to reinitialize the iterator. This restarts the tokenizer from the start
of the string.

4.7.3.3 sscanf()

The sscanf() function decomposes a string according to a printf()-like template:

$array = sscanf(string, template);
$count = sscanf(string, template, varl, ...);

If used without the optional variables, sscanf() returns an array of fields:

$string = "Fred\tFlintstone (35)";
$a = sscanf($string, "%s\t%s (%d)");
print_r($a);Array
(
[0] => Fred
[1] => Flintstone
[2] => 35
)

Pass references to variables to have the fields stored in those variables. The number of fields assigned
is returned:

$string = "Fred\tFlintstone (35)";

$n = sscanf($string, "%s\t%s (%d)", &$first, &$last, &$age);
echo "Matched n fields: $first $last is $age years old";

Fred Flintstone is 35 years old

4.7.4 String-Searching Functions

Several functions find a string or character within a larger string. They come in three families: strpos(
) and strrpos(), which return a position; strstr(), strchr(), and friends, which return the string they
find; and strspn() and strcspn(), which return how much of the start of the string matches a mask.

In all cases, if you specify a number as the "string" to search for, PHP treats that number as the
ordinal value of the character to search for. Thus, these function calls are identical because 44 is the
ASCII value of the comma:

$pos = strpos($large, ","); // find last comma
$pos = strpos($large, 44); // find last comma

All the string-searching functions return false if they can't find the substring you specified. If the
substring occurs at the start of the string, the functions return 0. Because false casts to the number 0,
always compare the return value with === when testing for failure:

if ($pos === false) {
// wasn't found

} else {
// was found, $pos is offset into string

by
4.7.4.1 Searches returning position

The strpos() function finds the first occurrence of a small string in a larger string:

$position = strpos(/arge_string, small_string);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If the small string isn't found, strpos() returns false.

The strrpos() function finds the last occurrence of a character in a string. It takes the same
arguments and returns the same type of value as strpos().

For instance:

$record = "Fred,Flintstone,35,Wilma";

$pos = strrpos($record, ","); // find last comma
echo("The last comma in the record is at position $pos");
The last comma in the record is at position 18

If you pass a string as the second argument to strrpos(), only the first character is searched for. To
find the last occurrence of a multicharacter string, reverse the strings and use strpos():

$long = "Today is the day we go on holiday to Florida";
$to_find = "day";
$pos = strpos(strrev ($long), strrev($to_find));
if ($pos === false) {
echo("Not found");
} else {
// $pos is offset into reversed strings
// Convert to offset into regular strings
$pos = strlen($long) - $pos - strlen($to_find);;
echo("Last occurrence starts at position $pos");

}

Last occurrence starts at position 30
4.7.4.2 Searches returning rest of string

The strstr() function finds the first occurrence of a small string in a larger string and returns from that
small string on. For instance:

$record = "Fred,Flintstone,35,Wilma";
$rest = strstr($record, ","); // $rest is ",Flintstone,35,Wilma"

The variations on strstr() are:
stristr()
Case-insensitive strstr()
strchr()
Alias for strstr()
strrchr()
Find last occurrence of a character in a string
As with strrpos(), strrchr() searches backward in the string, but only for a character, not for an entire
string.

4.7.4.3 Searches using masks

If you thought strrchr() was esoteric, you haven't seen anything yet. The strspn() and strcspn()
functions tell you how many characters at the beginning of a string are comprised of certain
characters:

$length = strspn(string, charset);

For example, this function tests whether a string holds an octal number:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

function is_octal ($str) {
return strspn($str, '01234567') == strlen($str);

}

The c in strcspn() stands for complement—it tells you how much of the start of the string is not
composed of the characters in the character set. Use it when the number of interesting characters is
greater than the number of uninteresting characters. For example, this function tests whether a string
has any NUL-bytes, tabs, or carriage returns:

function has_bad_chars ($str) {
return strcspn($str, "\n\t\0");

by
4.7.4.4 Decomposing URLs

The parse_url() function returns an array of components of a URL:
$array = parse_url(url);
For example:

$bits = parse_url('http://me:secret@example.com/cgi-bin/board?user=fred);
print_r($bits);
Array
(
[scheme] => http
[host] => example.com
[user] => me
[pass] => secret
[path] => /cgi-bin/board
[query] => user=fred

)

The possible keys of the hash are scheme, host, port, user, pass, path, query, and fragment.

I1ave RuBoard (< revvious foaxi]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

4.8 Regular Expressions

If you need more complex searching functionality than the previous methods provide, you can use
regular expressions. A regular expression is a string that represents a pattern. The regular expression
functions compare that pattern to another string and see if any of the string matches the pattern.
Some functions tell you whether there was a match, while others make changes to the string.

PHP provides support for two different types of regular expressions: POSIX and Perl-compatible.
POSIX regular expressions are less powerful, and sometimes slower, than the Perl-compatible
functions, but can be easier to read. There are three uses for regular expressions: matching, which
can also be used to extract information from a string; substituting new text for matching text; and
splitting a string into an array of smaller chunks. PHP has functions for all three behaviors for both
Perl and POSIX regular expressions. For instance, ereg() does a POSIX match, while preg_match()
does a Perl match. Fortunately, there are a number of similarities between basic POSIX and Perl
regular expressions, so we'll cover those before delving into the details of each library.

4.8.1 The Basics

Most characters in a regular expression are literal characters, meaning that they match only
themselves. For instance, if you search for the regular expression "cow" in the string "Dave was a
cowhand", you get a match because "cow" occurs in that string.

Some characters, though, have special meanings in regular expressions. For instance, a caret () at
the beginning of a regular expression indicates that it must match the beginning of the string (or,
more precisely, anchors the regular expression to the beginning of the string):

ereg('~cow', 'Dave was a cowhand'); // returns false
ereg('~cow', 'cowabunga!’); // returns true

Similarly, a dollar sign ($) at the end of a regular expression means that it must match the end of the
string (i.e., anchors the regular expression to the end of the string):

ereg('cow$’, 'Dave was a cowhand'); // returns false
ereg('cow$’, "Don't have a cow"); // returns true

A period (.) in a regular expression matches any single character:

ereg(‘c.t, 'cat’); // returns true
ereg(‘c.t’, 'cut’); // returns true
ereg('c.t!, 'ct'); // returns true

ereg('c.t', 'bat"); // returns false
ereg('c.t!, 'ct"); // returns false

If you want to match one of these special characters (called a metacharacter), you have to escape it
with a backslash:

ereg("\$5\.00', 'Your bill is $5.00 exactly'); // returns true
ereg('$5.00', 'Your bill is $5.00 exactly"); // returns false

Regular expressions are case-sensitive by default, so the regular expression "cow" doesn't match the
string "COW". If you want to perform a case-insensitive POSIX-style match, you can use the eregi()
function. With Perl-style regular expressions, you still use preg_match(), but specify a flag to indicate
a case-insensitive match (as you'll see when we discuss Perl-style regular expressions in detail later in
this chapter).

So far, we haven't done anything we couldn't have done with the string functions we've already seen,
like strstr(). The real power of regular expressions comes from their ability to specify abstract
patterns that can match many different character sequences. You can specify three basic types of
abstract patterns in a regular expression:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® A set of acceptable characters that can appear in the string (e.g., alphabetic characters,
numeric characters, specific punctuation characters)

® A set of alternatives for the string (e.g., "com", "edu", "net", or "org")

® A repeating sequence in the string (e.g., at least one but no more than five numeric
characters)

These three kinds of patterns can be combined in countless ways, to create regular expressions that
match such things as valid phone numbers and URLs.

4.8.2 Character Classes

To specify a set of acceptable characters in your pattern, you can either build a character class
yourself or use a predefined one. You can build your own character class by enclosing the acceptable
characters in square brackets:

ereg('c[aeiou]t', 'T cut my hand"); // returns true
ereg('c[aeiou]t', 'This crusty cat'); // returns true
ereg('c[aeiou]t', 'What cart?'); // returns false
ereg('cl[aeiou]t', '14ct gold'); // returns false

nmonunonn

The regular expression engine finds a "c", then checks that the next character is one of "a", "e", "i",
"0", or "u". If it isn't a vowel, the match fails and the engine goes back to looking for another "c". If a
vowel is found, though, the engine then checks that the next character is a "t". If it is, the engine is at
the end of the match and so returns true. If the next character isn't a "t", the engine goes back to

looking for another "c".
You can negate a character class with a caret (©) at the start:

ereg('c[~aeiou]t', 'T cut my hand'); // returns false
ereg('c[~aeiou]t', 'Reboot chthon'); // returns true
ereg('c[~aeiou]t', '14ct gold"); // returns false

In this case, the regular expression engine is looking for a "c", followed by a character that isn't a
vowel, followed by a "t".

You can define a range of characters with a hyphen (-). This simplifies character classes like "all
letters" and "all digits":

ereg('[0-9]%', 'we are 25% complete'); // returns true
ereg('[0123456789]%', 'we are 25% complete'); // returns true
ereg('[a-z]t', '11th"); // returns false
ereg('[a-z]t!, 'cat’); // returns true

ereg('[a-z]t', 'PIT"); // returns false
ereg('[a-zA-Z]", '111"); // returns false
ereg('[a-zA-Z]", 'stop!"); // returns true

When you are specifying a character class, some special characters lose their meaning, while others
take on new meaning. In particular, the $ anchor and the period lose their meaning in a character
class, while the »~ character is no longer an anchor but negates the character class if it is the first
character after the open bracket. For instance, [*\]] matches any character that is not a closing
bracket, while [$.~] matches any dollar sign, period, or caret.

The various regular expression libraries define shortcuts for character classes, including digits,
alphabetic characters, and whitespace. The actual syntax for these shortcuts differs between POSIX-
style and Perl-style regular expressions. For instance, with POSIX, the whitespace character class is "
[[:space:]]", while with Perl it is "\s".

4.8.3 Alternatives

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You can use the vertical pipe (|) character to specify alternatives in a regular expression:

ereg('cat|dog', 'the cat rubbed my legs'); // returns true
ereg('cat|dog', 'the dog rubbed my legs'); // returns true
ereg('cat|dog’, 'the rabbit rubbed my legs'); // returns false

The precedence of alternation can be a surprise: '“cat|dog$' selects from '~cat' and 'dog$', meaning
that it matches a line that either starts with "cat" or ends with "dog". If you want a line that contains
just "cat" or "dog", you need to use the regular expression '~(cat|dog)$'.

You can combine character classes and alternation to, for example, check for strings that don't start
with a capital letter:

ereg('~([a-z]|[0-9])", 'The quick brown fox"); // returns false
ereg('~([a-z]|[0-9])", 'jumped over'); // returns true
ereg('~([a-z]|[0-9])", '10 lazy dogs"); // returns true
4.8.4 Repeating Sequences

To specify a repeating pattern, you use something called a quantifier. The quantifier goes after the
pattern that's repeated and says how many times to repeat that pattern. Table 4-6 shows the
quantifiers that are supported by both POSIX and Perl regular expressions.

Table 4-6. Regular expression quantifiers

Quantifier Meaning
Oorl1
* 0 or more
+ 1 or more
{n} Exactly ntimes
{n,m} At least n, no more than m times
{n>} At least n times

To repeat a single character, simply put the quantifier after the character:

ereg('ca+t', 'caaaaaaat"); // returns true
ereg(‘ca+t, 'ct'); // returns false
ereg('ca?t', 'caaaaaaat’); // returns false
ereg(‘ca*t’, 'ct’); // returns true

With quantifiers and character classes, we can actually do something useful, like matching valid U.S.
telephone numbers:

ereg('[0-91{3}-[0-9]1{3}-[0-9]{4}, '303-555-1212"); // returns true
ereg('[0-9{3}-[0-91{3}-[0-9]{4}', '64-9-555-1234"); // returns false

4.8.5 Subpatterns

You can use parentheses to group bits of a regular expression together to be treated as a single unit
called a subpattern:

ereg('a (very)+big dog', 'it was a very very big dog'); // returns true
ereg('~(cat|dog)$', 'cat); // returns true
ereg('~(cat|dog)$', 'dog'); // returns true

The parentheses also cause the substring that matches the subpattern to be captured. If you pass an
array as the third argument to a match function, the array is populated with any captured substrings:

ereg('([0-9]+)', "'You have 42 magic beans', $captured);
// returns true and populates $captured

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The zeroth element of the array is set to the entire string being matched against. The first element is
the substring that matched the first subpattern (if there is one), the second element is the substring
that matched the second subpattern, and so on.

{10ve Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

4.9 POSIX-Style Regular Expressions

Now that you understand the basics of regular expressions, we can explore the details. POSIX-style
regular expressions use the Unix locale system. The locale system provides functions for sorting and
identifying characters that let you intelligently work with text from languages other than English. In
particular, what constitutes a "letter" varies from language to language (think of a and ¢), and there
are character classes in POSIX regular expressions that take this into account.

However, POSIX regular expressions are designed for use with only textual data. If your data has a
NUL-byte (\x00) in it, the regular expression functions will interpret it as the end of the string, and
matching will not take place beyond that point. To do matches against arbitrary binary data, you'll
need to use Perl-compatible regular expressions, which are discussed later in this chapter. Also, as we
already mentioned, the Perl-style regular expression functions are often faster than the equivalent
POSIX-style ones.

4.9.1 Character Classes
As shown in Table 4-7, POSIX defines a number of named sets of characters that you can use in
character classes. The expansions given in Table 4-7 are for English. The actual letters vary from

locale to locale.

Table 4-7. POSIX character classes

Class Description Expansion
[:alnum:]J|Alphanumeric characters [0-9a-zA-Z]
[:alpha:] |Alphabetic characters (letters) [a-zA-Z]
[:ascii:] |7-bit ASCII [\x01-\x7F]
[:blank:] |Horizontal whitespace (space, tab) [\t]
[:cntrl:] |Control characters [\x01-\x1F]
[:digit:] |Digits [0-9]
[:graph:] S::tr;ﬁgers that use ink to print (non-space, non- [A\x01-\x20]
[:lower:] |Lowercase letter [a-z]

[:print:] f;‘;jn)table character (graph class plus space and [\t\x20-\XFF]

Any punctuation character, such as the period (.) LIHEONRY VK e A
and the semicolon (,) [. #$ /0&() +I'/'I<_>'@[\\] — {l}]

Whitespace (newline, carriage return, tab, space, [\M\\t \X0B]

[:punct:]

[:space:] vertical tab)
[:upper:] |Uppercase letter [A-Z]
[:xdigit:] |[Hexadecimal digit [0-9a-fA-F]

Each [:something:] class can be used in place of a character in a character class. For instance, to find
any character that's a digit, an uppercase letter, or an at sign (@), use the following regular
expression:

[@[:digit:][:upper:]]
However, you can't use a character class as the endpoint of a range:
ereg('[A-[:lower:]]', 'string"); // invalid regular expression

Some locales consider certain character sequences as if they were a single character—these are called
collating sequences. To match one of these multicharacter sequences in a character class, enclose it
with [. and .]. For example, if your locale has the collating sequence ch, you can match s, t, or ch with
this character class:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[st[.ch.1]

The final POSIX extension to character classes is the equivalence class, specified by enclosing the
character in [= and =]. Equivalence classes match characters that have the same collating order, as
defined in the current locale. For example, a locale may define a, &, and & as having the same sorting
precedence. To match any one of them, the equivalence class is [=a=].

4.9.2 Anchors

An anchor limits a match to a particular location in the string (anchors do not match actual characters
in the target string). Table 4-8 lists the anchors supported by POSIX regular expressions.

Table 4-8. POSIX anchors

Anchor Matches
N Start of string
$ End of string
[[:<:0] Start of word
[[:>:1] End of word

A word boundary is defined as the point between a whitespace character and an identifier
(alphanumeric or underscore) character:

ereg('[[:<:1lgun[[:>:]]", 'the Burgundy exploded'); // returns false
ereg('gun’, 'the Burgundy exploded"); // returns true

Note that the beginning and end of a string also qualify as word boundaries.
4.9.3 Functions

There are three categories of functions for POSIX-style regular expressions: matching, replacing, and
splitting.

4.9.3.1 Matching

The ereg() function takes a pattern, a string, and an optional array. It populates the array, if given,
and returns true or false depending on whether a match for the pattern was found in the string:

$found = ereg(pattern, string [, captured),
For example:

ereg('y.*e$', 'Sylvie"); // returns true
ereg('y(.*)e$', 'Sylvie', $a); // returns true, $a is array('Sylvie', 'Ivi")

The zeroth element of the array is set to the entire string being matched against. The first element is
the substring that matched the first subpattern, the second element is the substring that matched the
second subpattern, and so on.

The eregi() function is a case-insensitive form of ereg(). Its arguments and return values are the
same as those for ereg().

Example 4-1 uses pattern matching to determine whether a credit-card number passes the Luhn
checksum and whether the digits are appropriate for a card of a specific type.

Example 4-1. Credit-card validator

// The Luhn checksum determines whether a credit-card number is syntactically
// correct; it cannot, however, tell if a card with the number has been issued,
// is currently active, or has enough space left to accept a charge.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

function IsValidCreditCard($inCardNumber, $inCardType) {
// Assume it's okay
$isValid = true;

// Strip all non-numbers from the string
$inCardNumber = ereg_replace('[~[:digit:]1]",", $inCardNumber);

// Make sure the card number and type match
switch($inCardType) {
case 'mastercard":
$isValid = ereg('~5[1-5].{14}$', $inCardNumber);
break;

case 'visa':
$isValid = ereg('"4.{15}$|"4.{12}$', $inCardNumber);
break;

case 'amex':
$isValid = ereg('~3[47].{13}$', $inCardNumber);
break;

case 'discover':
$isValid = ereg('"6011.{12}$', $inCardNumber);
break;

case 'diners':
$isValid = ereg("~30[0-5].{11}$|~3[68].{12}$', $inCardNumber);
break;

case 'jcb":
$isValid = ereg('*3.{15}$|72131]|1800.{11}$', $inCardNumber);
break;

}

// It passed the rudimentary test; let's check it against the Luhn this time
if($isValid) {

// Work in reverse

$inCardNumber = strrev($inCardNumber);

// Total the digits in the number, doubling those in odd-numbered positions
$theTotal = 0;
for ($i = 0; $i < strlen($inCardNumber); $i++) {

$theAdder = (int) $inCardNumber{$i};

// Double the numbers in odd-numbered positions
if($i % 2) {

$theAdder << 1;

if($theAdder > 9) { $theAdder -=9; }

}

$theTotal += $theAdder;
b

// Valid cards will divide evenly by 10
$isValid = (($theTotal % 10) == 0);
by

return $isVvalid;

}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4.9.3.2 Replacing

The ereg_replace() function takes a pattern, a replacement string, and a string in which to search. It
returns a copy of the search string, with text that matched the pattern replaced with the replacement
string:

$changed = ereg_replace(pattern, replacement, string);

If the pattern has any grouped subpatterns, the matches are accessible by putting the characters \1
through \9 in the replacement string. For example, we can use ereg_replace() to replace characters
wrapped with [b] and [/b] tags with equivalent HTML tags:

$string = 'It is [b]not[/b] a matter of diplomacy.’;
echo ereg_replace ("\[b]([*]]*)\[/b], '\1', $string);
It is not a matter of diplomacy.

The eregi_replace() function is a case-insensitive form of ereg_replace(). Its arguments and return
values are the same as those for ereg_replace().

4.9.3.3 Splitting

The split() function uses a regular expression to divide a string into smaller chunks, which are
returned as an array. If an error occurs, split() returns false. Optionally, you can say how many
chunks to return:

$chunks = split(pattern, string [, limit]);

The pattern matches the text that separates the chunks. For instance, to split out the terms from an
arithmetic expression:

$expression = '3*¥5+i/6-12";

$terms = split('[/+*-]', $expression);

// $terms is array('3', '5', ', '6', '12)

If you specify a limit, the last element of the array holds the rest of the string:
$expression = '3*¥5+i/6-12";

$terms = split('[/+*-]', $expression, 3);
// $terms is array('3', '5', 'i'/6-12)

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

4.10 Perl-Compatible Regular Expressions

Perl has long been considered the benchmark for powerful regular expressions. PHP uses a C library
called pcre to provide almost complete support for Perl's arsenal of regular expression features. Perl
regular expressions include the POSIX classes and anchors described earlier. A POSIX-style character
class in a Perl regular expression works and understands non-English characters using the Unix locale
system. Perl regular expressions act on arbitrary binary data, so you can safely match with patterns
or strings that contain the NUL-byte (\x00).

4.10.1 Delimiters

Perl-style regular expressions emulate the Perl syntax for patterns, which means that each pattern
must be enclosed in a pair of delimiters. Traditionally, the slash (/) character is used; for example,
/pattern/. However, any nonalphanumeric character other than the backslash character (\) can be
used to delimit a Perl-style pattern. This is useful when matching strings containing slashes, such as
filenames. For example, the following are equivalent:

preg_match('/\/usr\/local\//', '/usr/local/bin/perl'); // returns true
preg_match('#/usr/local/#', '/usr/local/bin/perl'); // returns true

Parentheses (()), curly braces ({}), square brackets ([]), and angle brackets (<>) can be used as
pattern delimiters:

preg_match('{/usr/local/}', '/usr/local/bin/perl"); // returns true

Section 4.10.8 discusses the single-character modifiers you can put after the closing delimiter to
modify the behavior of the regular expression engine. A very useful one is X, which makes the regular
expression engine strip whitespace and #-marked comments from the regular expression before
matching. These two patterns are the same, but one is much easier to read:

/([[:alpha:]]+)\s+\1/'
'/(# start capture
[[:alpha:]]+ # a word
\s+ # whitespace
\1 # the same word again
) # end capture

/X
4.10.2 Match Behavior

While Perl's regular expression syntax includes the POSIX constructs we talked about earlier, some
pattern components have a different meaning in Perl. In particular, Perl's regular expressions are
optimized for matching against single lines of text (although there are options that change this
behavior).

The period (.) matches any character except for a newline (\n). The dollar sign ($) matches at the end
of the string or, if the string ends with a newline, just before that newline:

preg_match('/is (.*)$/', "the key is in my pants", $captured);
// $captured[1] is 'in my pants'

4.10.3 Character Classes

Perl-style regular expressions support the POSIX character classes but also define some of their own,
as shown in Table 4-9.

Table 4-9. Perl-style character classes
Character class Meaning Expansion

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

\s Whitespace [\r\n \t]

\S Non-whitespace [M\r\n \t]

\w Word (identifier) character [0-9A-Za-z_]
\W Non-word (identifier) character [~0-9A-Za-z_]
\d Digit [0-9]

\D Non-digit [~0-9]

4.10.4 Anchors

Perl-style regular expressions also support additional anchors, as listed in Table 4-10.

Table 4-10. Perl-style anchors

Assertion Meaning
ord boundary (between \w an or at start or end of string
\b Word bound (b \ d\w d of string)
\B Non-word boundary (between \w and \w, or \W and \W)
\A Beginning of string
\Z End of string or before \n at end
\z End of string
n Start of line (or after \n if /m flag is enabled)
$ End of line (or before \n if /m flag is enabled)

4.10.5 Quantifiers and Greed

The POSIX quantifiers, which Perl also supports, are always greedy. That is, when faced with a
quantifier, the engine matches as much as it can while still satisfying the rest of the pattern. For
instance:

preg_match('/(<.*>)/', 'do not press the button', $match);
// $match[1] is 'not'

The regular expression matches from the first less-than sign to the last greater-than sign. In effect,
the .* matches everything after the first less-than sign, and the engine backtracks to make it match
less and less until finally there's a greater-than sign to be matched.

This greediness can be a problem. Sometimes you need minimal (non-greedy) matching—that is,
quantifiers that match as few times as possible to satisfy the rest of the pattern. Perl provides a
parallel set of quantifiers that match minimally. They're easy to remember, because they're the same
as the greedy quantifiers, but with a question mark (?) appended. Table 4-11 shows the
corresponding greedy and non-greedy quantifiers supported by Perl-style regular expressions.

Table 4-11. Greedy and non-greedy quantifiers in Perl-compatible regular expressions

Greedy quantifier Non-greedy quantifier
? ??
+ +?
{m} {m}?
{m,} {m,}?
{m,n} {m,n}?

Here's how to match a tag using a non-greedy quantifier:

preg_match('/(<.*?>)/', 'do not press the button', $match);
// $match[1] is '"

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Another, faster way is to use a character class to match every non-greater-than character up to the
next greater-than sign:

preg_match('/(<[~>]*>)/', 'do not press the button', $match);
// $match[1] is ''

4.10.6 Non-Capturing Groups

If you enclose a part of a pattern in parentheses, the text that matches that subpattern is captured
and can be accessed later. Sometimes, though, you want to create a subpattern without capturing the
matching text. In Perl-compatible regular expressions, you can do this using the (?:subpattern)
construct:

preg_match('/(?:ello)(.*)/", 'jello biafra’, $match);
/] $match[1] is ' biafra’

4.10.7 Backreferences

You can refer to text captured earlier in a pattern with a backreference: \1 refers to the contents of
the first subpattern, \2 refers to the second, and so on. If you nest subpatterns, the first begins with
the first opening parenthesis, the second begins with the second opening parenthesis, and so on.

For instance, this identifies doubled words:

preg_match('/([[:alpha:]]+)\s+\1/', 'Paris in the the spring', $m);
// returns true and $m[1] is 'the'

You can't capture more than 99 subpatterns.
4.10.8 Trailing Options

Perl-style regular expressions let you put single-letter options (flags) after the regular expression
pattern to modify the interpretation, or behavior, of the match. For instance, to match case-
insensitively, simply use the i flag:
preg_match('/cat/i', 'Stop, Catherine!'); // returns true

able 4-12 shows the modifiers from Perl that are supported in Perl-compatible regular expressions.

Table 4-12. Perl flags
Meaning

Modifier
/regexpyi

Match case-insensitively.

/regexp/s

Make period (.) match any character, including newline (\n).

/ regexp|x

Remove whitespace and comments from the pattern.

/regexp/m

Make caret () match after, and dollar sign ($) match before, internal newlines (\n).

/regexple

If the replacement string is PHP code, eval() it to get the actual replacement string.

PHP's Perl-compatible regular expression functions also support other modifiers that aren't supported
by Perl, as listed in Table 4-13.

Table 4-13. Additional PHP flags

Modifier Meaning

/regexp/U iﬁ;:;ezftg: %rffr?i:si)scagiiET: subpattern; * and + now match as little as possible,
/regexp/u |Causes pattern strings to be treated as UTF-8

/regexp/X|Causes a backslash followed by a character with no special meaning to emit an error

/ regexp/A Ciljfej the beginning of the string to be anchored as if the first character of the pattern

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

vwgic

/regexp/D|Causes the $ character to match only at the end of a line

Causes the expression parser to more carefully examine the structure of the pattern, so it
may run slightly faster the next time (such as in a loop)

/regexp/S

It's possible to use more than one option in a single pattern, as demonstrated in the following
example:

$message = <<< END
To: you@youcorp
From: me@mecorp
Subject: pay up

Pay me or else!

END;

preg_match('/”subject: (.*)/im', $message, $match);
// $match[1] is 'pay up'

4.10.9 Inline Options

In addition to specifying patternwide options after the closing pattern delimiter, you can specify
options within a pattern to have them apply only to part of the pattern. The syntax for this is:

(?flags: subpattern)
For example, only the word "PHP" is case-insensitive in this example:
preg_match('/I like (?i:PHP)/', 'I like pHp"); // returns true

The i, m, s, U, X, and X options can be applied internally in this fashion. You can use multiple options
at once:

preg_match('/eat (?ix:fo o d)/', 'eat FOOD'); // returns true

Prefix an option with a hyphen (-) to turn it off:

preg_match('/(?-i:I like) PHP/i', 'T like pHp"); // returns true

An alternative form enables or disables the flags until the end of the enclosing subpattern or pattern:

preg_match('/I like (?i)PHP/', 'I like pHp'); // returns true
preg_match('/I (like (?1)PHP) a lot/', 'I like pHp a lot', $match);
// $match[1] is 'like pHp'

Inline flags do not enable capturing. You need an additional set of capturing parentheses do that.
4.10.10 Lookahead and Lookbehind

It's sometimes useful in patterns to be able to say "match here if this is next." This is particularly
common when you are splitting a string. The regular expression describes the separator, which is not
returned. You can use /ookahead to make sure (without matching it, thus preventing it from being
returned) that there's more data after the separator. Similarly, lookbehind checks the preceding text.

Lookahead and lookbehind come in two forms: positive and negative. A positive lookahead or
lookbehind says "the next/preceding text must be like this." A negative lookahead or lookbehind says
"the next/preceding text must not be like this." Table 4-14 shows the four constructs you can use in
Perl-compatible patterns. None of the constructs captures text.

Table 4-14. Lookahead and lookbehind assertions

Construct Meaning

(?=subpattern) Positive lookahead

(?!subpattern) Negative lookahead

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(?<=subpattern) Positive lookbehind
(?<!subpattern) Negative lookbehind

A simple use of positive lookahead is splitting a Unix mbox mail file into individual messages. The
word "From" starting a line by itself indicates the start of a new message, so you can split the mailbox
into messages by specifying the separator as the point where the next text is "From" at the start of a
line:

$messages = preg_split('/(?="From)/m', $mailbox);

A simple use of negative lookbehind is to extract quoted strings that contain quoted delimiters. For
instance, here's how to extract a single-quoted string (note that the regular expression is commented
using the X modifier):

$input = <<< END
name = 'Tim O\'Reilly’;
END;

$pattern = <<< END
! # opening quote

(# begin capturing

K2 # the string

?<I'\W) # skip escaped quotes
) # end capturing

END;

preg_match("($pattern)x”, $input, $match);
echo $match[1];

Tim O\'Reilly

closing quote

The only tricky part is that, to get a pattern that looks behind to see if the last character was a
backslash, we need to escape the backslash to prevent the regular expression engine from seeing
"\)", which would mean a literal close parenthesis. In other words, we have to backslash that
backslash: "\\)". But PHP's string-quoting rules say that \\ produces a literal single backslash, so we
end up requiring four backslashes to get one through the regular expression! This is why regular
expressions have a reputation for being hard to read.

Perl limits lookbehind to constant-width expressions. That is, the expressions cannot contain
quantifiers, and if you use alternation, all the choices must be the same length. The Perl-compatible
regular expression engine also forbids quantifiers in lookbehind, but does permit alternatives of
different lengths.

4.10.11 Cut

The rarely used once-only subpattern, or cut, prevents worst-case behavior by the regular expression
engine on some kinds of patterns. Once matched, the subpattern is never backed out of.

The common use for the once-only subpattern is when you have a repeated expression that may itself
be repeated:

/(@+|b+)*\.+/
This code snippet takes several seconds to report failure:

$p = "/(a+|b+)*\.+$/,
$s = 'abababababbabbbabbaaaaaabbbbabbababababababbba..!’;
if (preg_match($p, $s)) {
echo "Y";
} else {
echo "N";

}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This is because the regular expression engine tries all the different places to start the match, but has
to backtrack out of each one, which takes time. If you know that once something is matched it should
never be backed out of, you should mark it with (?>subpattern):

$p = "/(?>a+|b+)*\.+$/";

The cut never changes the outcome of the match; it simply makes it fail faster.
4.10.12 Conditional Expressions

A conditional expression is like an if statement in a regular expression. The general form is:

(?(condition) yespattern)
(?(condition) yespattern| nopattern)

If the assertion succeeds, the regular expression engine matches the yespattern. With the second
form, if the assertion doesn't succeed, the regular expression engine skips the yespattern and tries to
match the nopattern.

The assertion can be one of two types: either a backreference, or a lookahead or lookbehind match.
To reference a previously matched substring, the assertion is a number from 1-99 (the most
backreferences available). The condition uses the pattern in the assertion only if the backreference
was matched. If the assertion is not a backreference, it must be a positive or negative lookahead or
lookbehind assertion.

4.10.13 Functions

There are five classes of functions that work with Perl-compatible regular expressions: matching,
replacing, splitting, filtering, and a utility function for quoting text.

4.10.13.1 Matching

The preg_match() function performs Perl-style pattern matching on a string. It's the equivalent of the
m// operator in Perl. The preg_match() function takes the same arguments and gives the same return
value as the ereg() function, except that it takes a Perl-style pattern instead of a standard pattern:

$found = preg_match(pattern, string [, captured]);
For example:

preg_match('/y.*e$/', 'Sylvie"); // returns true
preg_match('/y(.*)e$/', Sylvie', $m); // $m is array('Sylvie', 'lvi')

While there's an eregi() function to match case-insensitively, there's no preg_matchi() function.
Instead, use the i flag on the pattern:

preg_match('y.*e$/i', 'SyLvle"); // returns true

The preg_match_all() function repeatedly matches from where the last match ended, until no more
matches can be made:

$found = preg_match_all(pattern, string, matches [, order);

The order value, either PREG_PATTERN_ORDER or PREG_SET_ORDER, determines the layout of
matches. We'll look at both, using this code as a guide:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$string = <<< END

13 dogs

12 rabbits

8 cows

1 goat

END;

preg_match_all("/(\d+) (\S+)/', $string, $m1, PREG_PATTERN_ORDER);
preg_match_all("/(\d+) (\S+)/', $string, $m2, PREG_SET_ORDER);

With PREG_PATTERN_ORDER (the default), each element of the array corresponds to a particular
capturing subpattern. So $m1[0] is an array of all the substrings that matched the pattern, $m1[1] is
an array of all the substrings that matched the first subpattern (the numbers), and $m1[2] is an array
of all the substrings that matched the second subpattern (the words). The array $m1 has one more
elements than subpatterns.

With PREG_SET_ORDER, each element of the array corresponds to the next attempt to match the
whole pattern. So $m2[0] is an array of the first set of matches ('13 dogs', '13', 'dogs'), $m2[1] is an
array of the second set of matches ('12 rabbits', '12', 'rabbits'), and so on. The array $m2 has as many
elements as there were successful matches of the entire pattern.

Example 4-2 fetches the HTML at a particular web address into a string and extracts the URLs from
that HTML. For each URL, it generates a link back to the program that will display the URLs at that
address.

Example 4-2. Extracting URLs from an HTML page

<?php

if (getenv('/REQUEST_METHOD') == 'POST') {
$url = $_POST[url];

}else {
$url = $_GET[url];

b

?>

<form action="<?php $PHP_SELF ?>" method="POST">

URL: <input type="text" name="url" value="<?php $url ?>" />

<input type="submit">

</form>

<?php

if ($url) {
$remote = fopen($url, 'r");
$html = fread($remote, 1048576); // read up to 1 MB of HTML
fclose($remote);

$urls = '(http|telnet|gopher|file|wais|ftp)’;

$ltrs = "\w';
$gunk = "/#~:2+=R%@"\-";
$punc = ".:?\-;

$any = "$ltrs$gunk$punc”;

preg_match_all("{

\b # start at word boundary
$urls : # need resource and a colon
[$any] +? # followed by one or more of any valid

characters--but be conservative
and take only what you need
(?= # the match ends at
[$punc]* # punctuation
[~$any] # followed by a non-URL character

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| ' # or
$ # the end of the string

X", $html, $matches);
printf("I found %d URLs<P>\n", sizeof($matches[0]));
foreach ($matches[0] as $u) {
$link = $PHP_SELF . "?url=". urlencode($u);
echo "$u
\n";
b

?>
4.10.13.2 Replacing

The preg_replace() function behaves like the search and replace operation in your text editor. It finds
all occurrences of a pattern in a string and changes those occurrences to something else:

$new = preg_replace(pattern, replacement, subject|, limit1);

The most common usage has all the argument strings, except for the integer /imit. The limit is the
maximum number of occurrences of the pattern to replace (the default, and the behavior when a limit
of -1 is passed, is all occurrences).

$better = preg_replace('/<.*?>/', "', 'do not press the button');
// $better is 'do Inot! press the button'

Pass an array of strings as subject to make the substitution on all of them. The new strings are
returned from preg_replace():

$names = array('Fred Flintstone',
'Barney Rubble’,
'Wilma Flintstone',
'Betty Rubble");
$tidy = preg_replace('/(\w)\w* (\w+)/', "\1 \2', $names);
// $tidy is array ('F Flintstone', 'B Rubble', 'W Flintstone', 'B Rubble")

To perform multiple substitutions on the same string or array of strings with one call to preg_replace(
), pass arrays of patterns and replacements:

$contractions = array("/don't/i", "/won't/i", "/can't/i"),

$expansions = array('do not', 'will not', 'can not');

$string = "Please don't yell--I can't jump while you won't speak”;
$longer = preg_replace($contractions, $expansions, $string);

// $longer is 'Please do not yell--I can not jump while you will not speak’;

If you give fewer replacements than patterns, text matching the extra patterns is deleted. This is a
handy way to delete a lot of things at once:

$html_gunk = array('/<.*?>/', '/&.*?;/");

$html = 'é : very cute’;

$stripped = preg_replace($html_gunk, array(), $html);
// $stripped is ' : very cute'

If you give an array of patterns but a single string replacement, the same replacement is used for
every pattern:

$stripped = preg_replace($html_gunk, ", $html);

The replacement can use backreferences. Unlike backreferences in patterns, though, the preferred
syntax for backreferences in replacements is $1, $2, $3, etc. For example:

echo preg_replace('/(\w)\w+\s+(\w+)/', '$2, $1.", 'Fred Flintstone')
Flintstone, F.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The /e modifier makes preg_replace() treat the replacement string as PHP code that returns the actual
string to use in the replacement. For example, this converts every Celsius temperature to Fahrenheit:

$string = 'It was 5C outside, 20C inside’;
echo preg_replace('/(\d+)C\b/e', '$1*9/5+32', $string);
It was 41 outside, 68 inside

This more complex example expands variables in a string:

$name = 'Fred';

$age = 35;

$string = '$name is $age’;
preg_replace('/\$(\w+)/e', '$$1', $string);

Each match isolates the name of a variable ($name, $age). The $1 in the replacement refers to those
names, so the PHP code actually executed is $name and $age. That code evaluates to the value of the
variable, which is what's used as the replacement. Whew!

4.10.13.3 Splitting

Whereas you use preg_match_all() to extract chunks of a string when you know what those chunks
are, use preg_split() to extract chunks when you know what separates the chunks from each other:

$chunks = preg_split(pattern, string [, limit[, flags 11);

The pattern matches a separator between two chunks. By default, the separators are not returned.
The optional /imit specifies the maximum number of chunks to return (-1 is the default, which means
all chunks). The flags argument is a bitwise OR combination of the flags PREG_SPLIT_NO_EMPTY
(empty chunks are not returned) and PREG_SPLIT_DELIM_CAPTURE (parts of the string captured in
the pattern are returned).

For example, to extract just the operands from a simple numeric expression, use:
$ops = preg_split('{[+*/-1}', '3+5%9/2");

// $ops is array('3', '5', '9', '2")

To extract the operands and the operators, use:

$ops = preg_split('{([+*/-1)}, '3+5*9/2', -1, PREG_SPLIT_DELIM_CAPTURE);

/I $ops is array('3', '+, '5', ', 19", /', '2')

An empty pattern matches at every boundary between characters in the string. This lets you split a
string into an array of characters:

$array = preg_split('//', $string);

A variation on preg_replace() is preg_replace_callback(). This calls a function to get the replacement
string. The function is passed an array of matches (the zeroth element is all the text that matched the
pattern, the first is the contents of the first captured subpattern, and so on). For example:

function titlecase ($s) {
return ucfirst(strtolower($s[01));

}

$string = 'goodbye cruel world’;

$new = preg_replace_callback('/\w+/', 'titlecase', $string);
echo $new;

Goodbye Cruel World

4.10.13.4 Filtering an array with a regular expression

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The preg_grep() function returns those elements of an array that match a given pattern:
$matching = preg_grep(pattern, array);
For instance, to get only the filenames that end in .txt, use:

$textfiles = preg_grep('/\.txt$/', $filenames);
4.10.13.5 Quoting for regular expressions

The preg_quote() function creates a regular expression that matches only a given string:
$re = preg_quote(string [, delimiter1);

Every character in string that has special meaning inside a regular expression (e.g., * or $) is prefaced
with a backslash:

echo preg_quote('$5.00 (five bucks)");
\$5\.00 \(five bucks\)

The optional second argument is an extra character to be quoted. Usually, you pass your regular
expression delimiter here:

$to_find = "/usr/local/etc/rsync.conf’;

$re = preg_quote($filename, '/');

if (preg_match("/$re", $filename)) {
// found it!

b

4.10.14 Differences from Perl Regular Expressions

Although very similar, PHP's implementation of Perl-style regular expressions has a few minor
differences from actual Perl regular expressions:

® The null character (ASCII 0) is not allowed as a literal character within a pattern string. You
can reference it in other ways, however (\000, \x00, etc.).

® The \E, \G, \L, \I, \Q, \u, and \U options are not supported.

® The (?{ some perl code }) construct is not supported.

® The /D, /G, /U, /u, /A, and /X modifiers are supported.

® The vertical tab \v counts as a whitespace character.

® | ookahead and lookbehind assertions cannot be repeated using *, +, or ?.
® Parenthesized submatches within negative assertions are not remembered.

® Alternation branches within a lookbehind assertion can be of different lengths.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Chapter 5. Arrays

As we discussed in Chapter 2, PHP supports both scalar and compound data types. In this chapter,
we'll discuss one of the compound types: arrays. An array is a collection of data values, organized as
an ordered collection of key-value pairs.

This chapter talks about creating an array, adding and removing elements from an array, and looping
over the contents of an array. There are many built-in functions that work with arrays in PHP, because
arrays are very common and useful. For example, if you want to send email to more than one email
address, you'll store the email addresses in an array and then loop through the array, sending the
message to the current email address. Also, if you have a form that permits multiple selections, the
items the user selected are returned in an array.

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

5.1 Indexed Versus Associative Arrays

There are two kinds of arrays in PHP: indexed and associative. The keys of an indexed array are
integers, beginning at 0. Indexed arrays are used when you identify things by their position.
Associative arrays have strings as keys and behave more like two-column tables. The first column is
the key, which is used to access the value.

PHP internally stores all arrays as associative arrays, so the only difference between associative and
indexed arrays is what the keys happen to be. Some array features are provided mainly for use with
indexed arrays, because they assume that you have or want keys that are consecutive integers
beginning at 0. In both cases, the keys are unique—that is, you can't have two elements with the
same key, regardless of whether the key is a string or an integer.

PHP arrays have an internal order to their elements that is independent of the keys and values, and
there are functions that you can use to traverse the arrays based on this internal order. The order is
normally that in which values were inserted into the array, but the sorting functions described later let
you change the order to one based on keys, values, or anything else you choose.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

5.2 Identifying Elements of an Array

You can access specific values from an array using the array variable's name, followed by the
element's key (sometimes called the index) within square brackets:

$age['Fred']
$shows[2]

The key can be either a string or an integer. String values that are equivalent to integer numbers
(without leading zeros) are treated as integers. Thus, $array[3] and $array['3'] reference the same
element, but $array['03'] references a different element. Negative numbers are valid keys, and they
don't specify positions from the end of the array as they do in Perl.

You don't have to quote single-word strings. For instance, $age['Fred'] is the same as $age[Fred].
However, it's considered good PHP style to always use quotes, because quoteless keys are
indistinguishable from constants. When you use a constant as an unquoted index, PHP uses the value
of the constant as the index:

define(‘index',5);
echo $array[index]; // retrieves $array[5], not $array['index'];

You must use quotes if you're using interpolation to build the array index:
$age["Clone$number"]
However, don't quote the key if you're interpolating an array lookup:

// these are wrong

print "Hello, $person[‘name']";
print "Hello, $person["name"]";
// this is right

print "Hello, $person[name]";

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

5.3 Storing Data in Arrays

Storing a value in an array will create the array if it didn't already exist, but trying to retrieve a value
from an array that hasn't been defined yet won't create the array. For example:

// $addresses not defined before this point

echo $addresses[0]; // prints nothing
echo $addresses; // prints nothing

$addresses[0] = 'spam@cyberpromo.net’;

echo $addresses; // prints "Array"

Using simple assignment to initialize an array in your program leads to code like this:

$addresses[0] = 'spam@cyberpromo.net’;
$addresses[1] = 'abuse@example.com’;
$addresses[2] = 'root@example.com';

/] ..

That's an indexed array, with integer indexes beginning at 0. Here's an associative array:

$price['Gasket'] = 15.29;
$price['Wheel'] = 75.25;
$price['Tire'] = 50.00;
/] ...

An easier way to initialize an array is to use the array() construct, which builds an array from its
arguments:

$addresses = array('spam@cyberpromo.net’, 'abuse@example.com’,
'root@example.com");

To create an associative array with array(), use the => symbol to separate indexes from values:

$price = array('Gasket' => 15.29,
'Wheel' => 75.25,
'Tire' => 50.00);

Notice the use of whitespace and alignment. We could have bunched up the code, but it wouldn't have
been as easy to read:

$price = array('Gasket'=>15.29,'Wheel'=>75.25,'Tire'=>50.00);
To construct an empty array, pass no arguments to array():
$addresses = array();

You can specify an initial key with => and then a list of values. The values are inserted into the array
starting with that key, with subsequent values having sequential keys:

$days = array(1 => 'Monday', 'Tuesday', 'Wednesday',
"Thursday', 'Friday', 'Saturday', 'Sunday");
// 2 is Tuesday, 3 is Wednesday, etc.

If the initial index is a non-numeric string, subsequent indexes are integers beginning at 0. Thus, the
following code is probably a mistake:

$whoops = array('Friday' => 'Black’, 'Brown', 'Green');
// same as
$whoops = array('Friday' => 'Black’, 0 => 'Brown', 1 => 'Green');

5.3.1 Adding Values to the End of an Array

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To insert more values into the end of an existing indexed array, use the [] syntax:

$family = array(‘Fred’, 'Wilma');
$family[] = 'Pebbles'; // $family[2] is 'Pebbles'

This construct assumes the array's indexes are numbers and assigns elements into the next available
numeric index, starting from 0. Attempting to append to an associative array is almost always a
programmer mistake, but PHP will give the new elements numeric indexes without issuing a warning:

$person = array(‘name' => 'Fred");
$person[] = 'Wilma'; // $person[0] is now 'Wilma'

5.3.2 Assigning a Range of Values

The range() function creates an array of consecutive integer or character values between the two
values you pass to it as arguments. For example:

$numbers = range(2, 5); // $numbers = array(2, 3, 4, 5);
$letters = range('a’, 'z"); // $numbers holds the alphabet
$reversed_numbers = range(5, 2); /] $numbers = array(5, 4, 3, 2);
Only the first letter of a string argument is used to build the range:
range(‘aaa’, 'zzz") /// same as range('a’,'z")

5.3.3 Getting the Size of an Array

The count() and sizeof() functions are identical in use and effect. They return the number of elements
in the array. There is no stylistic preference about which function you use. Here's an example:

$family = array('Fred', 'Wilma', 'Pebbles');
$size = count($family); // $size is 3

These functions do not consult any numeric indexes that might be present:

$confusion = array(10 => 'ten’, 11 => 'eleven’, 12 => 'twelve");
$size = count($confusion); // $size is 3

5.3.4 Padding an Array

To create an array initialized to the same value, use array_pad(). The first argument to array_pad() is
the array, the second argument is the minimum number of elements you want the array to have, and
the third argument is the value to give any elements that are created. The array_pad() function
returns a new padded array, leaving its argument array alone.

Here's array_pad() in action:

$scores = array(5, 10);
$padded = array_pad($scores, 5, 0); // $padded is now array(5, 10, 0, 0, 0)

Notice how the new values are appended to the end of the array. If you want the new values added to
the start of the array, use a negative second argument:

$padded = array_pad($scores, -5, 0);
Assign the results of array_pad() back to the original array to get the effect of an in situ change:
$scores = array_pad($scores, 5, 0);

If you pad an associative array, existing keys will be preserved. New elements will have numeric keys
starting at 0.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

5.4 Multidimensional Arrays

The values in an array can themselves be arrays. This lets you easily create multidimensional arrays:
$row_0 = array(1, 2, 3);

$row_1 = array(4, 5, 6);

$row_2 = array(7, 8, 9);

$multi = array($row_0, $row_1, $row_2);

You can refer to elements of multidimensional arrays by appending more []s:

$value = $multi[2][0]; // row 2, column 0. $value = 7

To interpolate a lookup of a multidimensional array, you must enclose the entire array lookup in curly
braces:

echo("The value at row 2, column 0 is {$multi[2][0]}\n");
Failing to use the curly braces results in output like this:

The value at row 2, column 0 is Array[0]

{1ove Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

5.5 Extracting Multiple Values
To copy all of an array's values into variables, use the list() construct:

list(gvariable, ...) = $array;

The array's values are copied into the listed variables, in the array's internal order. By default that's
the order in which they were inserted, but the sort functions described later let you change that.
Here's an example:

$person = array(‘name' => 'Fred', 'age’' => 35, 'wife' => 'Betty');
list($n, $a, $w) = $person; // $nis 'Fred', $a is 35, $w is 'Betty’

If you have more values in the array than in the list(), the extra values are ignored:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');
list($n, $a) = $person; // $nis 'Fred', $ais 35

If you have more values in the list() than in the array, the extra values are set to NULL:

$values = array(‘hello’, 'world");
list($a, $b, $c) = $values; // $ais 'hello’, $b is 'world', $c is NULL

Two or more consecutive commas in the list() skip values in the array:

$values = range('a’, 'e");
list($m,,$n,,$0) = $values; // $mis'a’, $nis'c, $ois 'e'

5.5.1 Slicing an Array

To extract only a subset of the array, use the array_slice() function:
$subset = array_slice(array, offset, length);

The array_slice() function returns a new array consisting of a consecutive series of values from the
original array. The offset parameter identifies the initial element to copy (0 represents the first
element in the array), and the /ength parameter identifies the number of values to copy. The new
array has consecutive numeric keys starting at 0. For example:

$people = array('Tom', 'Dick’, 'Harriet’, 'Brenda’, 'Jo");
$middle = array_slice($people, 2, 2); // $middle is array(‘Harriet’, 'Brenda')

It is generally only meaningful to use array_slice() on indexed arrays (i.e., those with consecutive
integer indexes, starting at 0):

// this use of array_slice() makes no sense

$person = array(‘name' => 'Fred', 'age' => 35, 'wife' => 'Betty');

$subset = array_slice($person, 1, 2); // $subset is array(0 => 35, 1 => 'Betty")
Combine array_slice() with list() to extract only some values to variables:
$order = array('Tom', 'Dick’, 'Harriet', 'Brenda’, 'Jo");

list($second, $third) = array_slice($order, 1, 2);
// $second is 'Dick’, $third is 'Harriet'

5.5.2 Splitting an Array into Chunks

To divide an array into smaller, evenly sized arrays, use the array_chunk() function:

$chunks = array_chunk(array, size [, preserve_keys));

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The function returns an array of the smaller arrays. The third argument, preserve_keys, is a Boolean
value that determines whether the elements of the new arrays have the same keys as in the original
(useful for associative arrays) or new numeric keys starting from 0 (useful for indexed arrays). The
default is to assign new keys, as shown here:

$nums = range(1, 7);
$rows = array_chunk($nums, 3);
print_r($rows);

Array
[0] => Array

(
[0]=>1
[1]1=>2
[2] =>3

)
[1] => Array

(
[0]=>4
[1]1=>5
[2]=>6

)
[2] => Array

(
[0]=>7

)

)

5.5.3 Keys and Values

The array_keys() function returns an array consisting of only the keys in the array, in internal order:
$array_of_keys = array_keys(array);
Here's an example:

$person = array(‘name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
$keys = array_keys($person); // $keys is array('name’, 'age’, 'wife")

PHP also provides a (less generally useful) function to retrieve an array of just the values in an array,
array_values() :

$array_of_values = array_values(array);
As with array_keys(), the values are returned in the array's internal order:

$values = array_values($person); // $values is array('Fred', 35, 'Wilma");

5.5.4 Checking Whether an Element Exists

To see if an element exists in the array, use the array_key_exists() function:
if (array_key_exists(key, array)) { ... }

The function returns a Boolean value that indicates whether the second argument is a valid key in the
array given as the first argument.

It's not sufficient to simply say:
if ($person['name']) { ... } // this can be misleading

Even if there is an element in the array with the key name, its corresponding value might be false

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(i.e., 0, NULL, or the empty string). Instead, use array_key_exists() as follows:

$person['age'] = 0; // unborn?
if ($person['age']) {
echo "true!\n";
b
if (array_key_exists(‘age', $person)) {
echo "exists!\n";
b

exists!

In PHP 4.0.6 and earlier versions, the array_key_exists() function was called key_exists(). The original
name is still retained as an alias for the new name.

Many people use the isset() function instead, which returns true if the element exists and is not NULL:

$a = array(0,NULL,");
function tf($v) { return $v ? "T" : "F"; }
for ($i=0; $i < 4; $i++) {
printf("%d: %s %s\n", $i, tf(isset($a[$i])), tf(array_key_exists($i, $a)));
¥
O:TT
1:FT
2:TT
3:FF

5.5.5 Removing and Inserting Elements in an Array

The array_splice() function can remove or insert elements in an array:
$removed = array_splice(array, start[, length [, replacement]]);
We'll look at array_splice() using this array:

$subjects = array('physics', 'chem’, 'math’, 'bio’, 'cs', 'drama’, 'classics");

We can remove the math, bio, and cs elements by telling array_splice() to start at position 2 and
remove 3 elements:

$removed = array_splice($subjects, 2, 3);
// $removed is array('math’, 'bio’, 'cs')
// $subjects is array('physics', 'chem');

If you omit the length, array_splice() removes to the end of the array:

$removed = array_splice($subjects, 2);
// $removed is array(‘'math’, 'bio’, 'cs', 'drama’, 'classics")
// $subjects is array('physics', 'chem");

If you simply want to delete the elements and you don't care about their values, you don't need to
assign the results of array_splice():

array_splice($subjects, 2);
// $subjects is array('physics', 'chem");

To insert elements where others were removed, use the fourth argument:
$new = array('law', 'business', 'IS");

array_splice($subjects, 4, 3, $new);

// $subjects is array('physics', 'chem’, 'math’, 'bio’, 'law', 'business’, 'IS")

The size of the replacement array doesn't have to be the same as the number of elements you delete.
The array grows or shrinks as needed:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$new = array('law', 'business', 'IS");
array_splice($subjects, 2, 4, $new);
// $subjects is array('physics', 'chem’, 'math’, 'law’, 'business', 'IS")

To get the effect of inserting new elements into the array, delete zero elements:

$subjects = array('physics', 'chem’, 'math’);

$new = array('law', 'business");

array_splice($subjects, 2, 0, $new);

// $subjects is array('physics', 'chem’, 'law’, 'business', 'math")

Although the examples so far have used an indexed array, array_splice() also works on associative
arrays:

$capitals = array('USA' => "Washington',
'Great Britain' => 'London’,
'New Zealand' => 'Wellington',
'Australia’ => 'Canberra',
'Ttaly' => 'Rome");
$down_under = array_splice($capitals, 2, 2); // remove New Zealand and Australia
$france = array('France' => 'Paris');
array_splice($capitals, 1, 0, $france); // insert France between USA and G.B.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

5.6 Converting Between Arrays and Variables

PHP provides two functions, extract() and compact(), that convert between arrays and variables. The
names of the variables correspond to keys in the array, and the values of the variables become the
values in the array. For instance, this array:

$person = array(‘'name' => 'Fred’, 'age' => 35, 'wife' => 'Betty');
can be converted to, or built from, these variables:

$name = 'Fred';
$age = 35;
$wife = 'Betty’;

5.6.1 Creating Variables from an Array

The extract() function automatically creates local variables from an array. The indexes of the array
elements are the variable names:

extract($person); // $name, $age, and $wife are now set

If a variable created by the extraction has the same name as an existing one, the extracted variable
overwrites the existing variable.

You can modify extract()'s behavior by passing a second argument. Appendix A describes the possible
values for this second argument. The most useful value is EXTR_PREFIX_SAME, which says that the
third argument to extract() is a prefix for the variable names that are created. This helps ensure that
you create unique variable names when you use extract(). It is good PHP style to always use
EXTR_PREFIX_SAME, as shown here:

$shape = "round";

$array = array("cover" => "bird", "shape" => "rectangular");
extract($array, EXTR_PREFIX_SAME, "book");

echo "Cover: $book_cover, Book Shape: $book_shape, Shape: $shape";
Cover: bird, Book Shape: rectangular, Shape: round

5.6.2 Creating an Array from Variables

The compact() function is the complement of extract(). Pass it the variable names to compact either
as separate parameters or in an array. The compact() function creates an associative array whose
keys are the variable names and whose values are the variable's values. Any names in the array that
do not correspond to actual variables are skipped. Here's an example of compact() in action:

$color = 'indigo’;
$shape = 'curvy';
$floppy = 'none’;

$a = compact('color’, 'shape’, 'floppy");
/[or

$names = array('color', 'shape’, 'floppy");
$a = compact($names);

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

5.7 Traversing Arrays

The most common task with arrays is to do something with every element—for instance, sending mail
to each element of an array of addresses, updating each file in an array of filenames, or adding up
each element of an array of prices. There are several ways to traverse arrays in PHP, and the one you
choose will depend on your data and the task you're performing.

5.7.1 The foreach Construct

The most common way to loop over elements of an array is to use the foreach construct:

$addresses = array('spam@cyberpromo.net’, 'abuse@example.com');
foreach ($addresses as $value) {
echo "Processing $value\n";

}

Processing spam@cyberpromo.net
Processing abuse@example.com

PHP executes the body of the loop (the echo statement) once for each element of $addresses in turn,
with $value set to the current element. Elements are processed by their internal order.

An alternative form of foreach gives you access to the current key:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma");
foreach ($person as $k => $v) {

echo "Fred's $k is $v\n";
b

Fred's name is Fred
Fred's age is 35
Fred's wife is Wilma

In this case, the key for each element is placed in $k and the corresponding value is placed in $v.

The foreach construct does not operate on the array itself, but rather on a copy of it. You can insert or
delete elements in the body of a foreach loop, safe in the knowledge that the loop won't attempt to
process the deleted or inserted elements.

5.7.2 The lterator Functions

Every PHP array keeps track of the current element you're working with; the pointer to the current
element is known as the iterator. PHP has functions to set, move, and reset this iterator. The iterator
functions are:

current()

Returns the element currently pointed at by the iterator
reset()

Moves the iterator to the first element in the array and returns it
next()

Moves the iterator to the next element in the array and returns it
prev()

Moves the iterator to the previous element in the array and returns it

end()

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Moves the iterator to the last element in the array and returns it
each()

Returns the key and value of the current element as an array and moves the iterator to the
next element in the array

key()

Returns the key of the current element

The each() function is used to loop over the elements of an array. It processes elements according to
their internal order:

reset($addresses);
while (list($key, $value) = each($addresses)) {
echo "$key is $value
\n";

b
0 is spam@cyberpromo.net
1 is abuse@example.com

This approach does not make a copy of the array, as foreach does. This is useful for very large arrays
when you want to conserve memory.

The iterator functions are useful when you need to consider some parts of the array separately from
others. Example 5-1 shows code that builds a table, treating the first index and value in an
associative array as table column headings.

Example 5-1. Building a table with the iterator functions

$ages = array('Person' => 'Age’,

'Fred" => 35,
'‘Barney' => 30,
'Tigger' => 8,
'Pooh’ => 40);
// start table and print heading
reset($ages);

list($c1, $c2) = each($ages);

echo("<table><tr><th>$cl</th><th>$c2</th></tr>\n");

// print the rest of the values

while (list($c1,$c2) = each($ages)) {
echo("<tr><td>$cl</td><td>$c2</td></tr>\n");

b

// end the table

echo("</table>");
<table><tr><th>Person</th><th>Age</th></tr>
<tr><td>Fred</td><td>35</td></tr>
<tr><td>Barney</td><td>30</td></tr>
<tr><td>Tigger</td><td>8</td></tr>
<tr><td>Pooh</td><td>40</td></tr>

</table>

5.7.3 Using a for Loop

If you know that you are dealing with an indexed array, where the keys are consecutive integers
beginning at 0, you can use a for loop to count through the indexes. The for loop operates on the
array itself, not on a copy of the array, and processes elements in key order regardless of their
internal order.

Here's how to print an array using for:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$addresses = array('spam@cyberpromo.net’, 'abuse@example.com');
for($i = 0; $i < count($array); $i++) {
$value = $addresses[$i];
echo "$value\n";
b
spam@cyberpromo.net
abuse@example.com

5.7.4 Calling a Function for Each Array Element

PHP provides a mechanism, array_walk(), for calling a user-defined function once per element in an
array:

array_walk(array, function_name);

The function you define takes in two or, optionally, three arguments: the first is the element's value,
the second is the element's key, and the third is a value supplied to array_walk() when it is called. For
instance, here's another way to print table columns made of the values from an array:

function print_row($value, $key) {
print("<tr><td>$value</td><td>$key</td></tr>\n");

by

$person = array(‘name' => 'Fred', 'age' => 35, 'wife' => 'Wilma");

array_walk($person, 'print_row');

A variation of this example specifies a background color using the optional third argument to
array_walk(). This parameter gives us the flexibility we need to print many tables, with many
background colors:

function print_row($value, $key, $color) {
print("<tr><td bgcolor=$color>$value</td><td bgcolor=$color>$key</td></tr>\n");

by
$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma");
array_walk($person, 'print_row', 'blue');

The array_walk() function processes elements in their internal order.
5.7.5 Reducing an Array

A cousin of array_walk(), array_reduce() , applies a function to each element of the array in turn, to
build a single value:

$result = array_reduce(array, function_name [, default));

The function takes two arguments: the running total, and the current value being processed. It should
return the new running total. For instance, to add up the squares of the values of an array, use:

function add_up ($running_total, $current_value) {
$running_total += $current_value * $current_value;
return $running_total;

}

$numbers = array(2, 3, 5, 7);
$total = array_reduce($numbers, 'add_up");
// $total is now 87

The array_reduce() line makes these function calls:

add_up(2,3)
add_up(13,5)
add_up(38,7)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The default argument, if provided, is a seed value. For instance, if we change the call to array_reduce(
) in the previous example to:

$total = array_reduce($numbers, 'add_up', 11);
The resulting function calls are:

add_up(11,2)
add_up(13,3)
add_up(16,5)
add_up(21,7)

If the array is empty, array_reduce() returns the default value. If no default value is given and the
array is empty, array_reduce() returns NULL.

5.7.6 Searching for Values

The in_array() function returns true or false, depending on whether the first argument is an element
in the array given as the second argument:

if (in_array(fo_find, array [, strict)) { ... }

If the optional third argument is true, the types of fo_find and the value in the array must match. The
default is to not check the types.

Here's a simple example:

$addresses = array('spam@cyberpromo.net’, 'abuse@example.com’,
'root@example.com");

$got_spam = in_array(‘spam@cyberpromo.net’, $addresses); // $got_spam is true

$got_milk = in_array('milk@tucows.com', $addresses); // $got_milk is false

PHP automatically indexes the values in arrays, so in_array() is much faster than a loop that checks
every value to find the one you want.

Example 5-2 checks whether the user has entered information in all the required fields in a form.
Example 5-2. Searching an array

<?php
function have_required($array , $required_fields) {
foreach($required_fields as $field) {
if(empty($array[$field])) return false;
b

return true;

b

if($submitted) {
echo '<p>You ';
echo have_required($_POST, array('name’, 'email_address')) ? 'did' : 'did not';
echo ' have all the required fields.</p>";
b
?>
<form action="<?= $PHP_SELF; ?>" method="POST">
<p>
Name: <input type="text" nhame="name" />

Email address: <input type="text" name="email_address" />

Age (optional): <input type="text" name="age" />

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

</p>

<p align="center">
<input type="submit" value="submit" name="submitted" />
</p>
</form>

A variation on in_array() is the array_search() function. While in_array() returns true if the value is
found, array_search() returns the key of the found element:

$person = array(‘name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
$k = array_search($person, 'Wilma');

echo("Fred's $k is Wilma\n");

Fred's wife is Wilma

The array_search() function also takes the optional third strict argument, which requires the types of
the value being searched for and the value in the array to match.

I1ave RuBoard (< revvious foaxi]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I |@ve RuBoard m m
5.8 Sorting

Sorting changes the internal order of elements in an array and optionally rewrites the keys to reflect
this new order. For example, you might use sorting to arrange a list of scores from biggest to
smallest, to alphabetize a list of names, or to order a set of users based on how many messages they
posted.

PHP provides three ways to sort arrays—sorting by keys, sorting by values without changing the keys,
or sorting by values and then changing the keys. Each kind of sort can be done in ascending order,
descending order, or an order defined by a user-defined function.

5.8.1 Sorting One Array at a Time

The functions provided by PHP to sort an array are shown in Table 5-1.

Table 5-1. PHP functions for sorting an array

Effect Ascending|Descending User-defined
order
Sgrt array by values, then reassign indexes starting sort() rsort() usort()
with 0
Sort array by values asort() arsort() uasort()
Sort array by keys ksort() krsort() uksort()

The sort(), rsort(), and usort() functions are designed to work on indexed arrays, because they
assign new numeric keys to represent the ordering. They're useful when you need to answer
questions like "what are the top 10 scores?" and "who's the third person in alphabetical order?" The
other sort functions can be used on indexed arrays, but you'll only be able to access the sorted
ordering by using traversal functions such as foreach and next.

To sort names into ascending alphabetical order, you'd use this:

$names = array('cath’, 'angela’, 'brad’, 'dave");
sort($names); // $names is now 'angela’, 'brad’, 'cath’, 'dave'

To get them in reverse alphabetic order, simply call rsort() instead of sort().

If you have an associative array mapping usernames to minutes of login time, you can use arsort() to
display a table of the top three, as shown here:

$logins = array('njt' => 415,

'kt' => 492,
" => 652,
jht' => 441,
it => 441,
'wt' => 402);

arsort($logins);

$num_printed = 0;

echo("<table>\n");

foreach ($logins as $user => $time) {
echo("<tr><td>$user</td><td>$time</td> </tr>\n");
if (++$num_printed == 3) {

break; // stop after three

b

echo("</table>\n");

<table>
<tr><td>ri</td><td>652</td></tr>
<tr><td>kt</td><td>492</td></tr>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<tr><td>jht</td><td>441</td></tr>
</table>

If you want that table displayed in ascending order by username, use ksort():

ksort($logins);

echo("<table>\n");

foreach ($logins as $user => $time) {
echo("<tr><td>$user</td><td>$time</td></tr>\n");

echo("</table>\n");

<table>
<tr><td>jht</td><td>441</td></tr>
<tr><td>jj</td><td>441</td></tr>
<tr><td>kt</td><td>492</td></tr>
<tr><td>njt</td><td>415</td></tr>
<tr><td>ri</td><td>652</td></tr>
<tr><td>wt</td><td>402</td></tr>
</table>

User-defined ordering requires that you provide a function that takes two values and returns a value
that specifies the order of the two values in the sorted array. The function should return 1 if the first
value is greater than the second, -1 if the first value is less than the second, and 0 if the values are
the same for the purposes of your custom sort order.

Example 5-3 is a program that lets you try the various sorting functions on the same data.
Example 5-3. Sorting arrays

<?php
function user_sort($a, $b) {
// smarts is all-important, so sort it first
if($b == 'smarts') {
return 1;

else if($a == 'smarts') {
return -1;

by

return ($a ==9$b)?0: (($a < $b) ?-1:1);
b

$values = array(‘'name' => 'Buzz Lightyear',
'email_address' => 'buzz@starcommand.gal',
'age' => 32,
'smarts' => 'some');

if($submitted) {
if($sort_type == 'usort' || $sort_type == 'uksort' || $sort_type == 'uasort’) {
$sort_type($values, 'user_sort');

else {
$sort_type($values);
b
b

?>

<form action="index.php">
<p>
<input type="radio" name="sort_type" value="sort" checked="checked" />
Standard sort

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<input type="radio" name="sort_type" value="rsort" /> Reverse sort

<input type="radio" name="sort_type" value="usort" /> User-defined sort

<input type="radio" name="sort_type" value="ksort" /> Key sort

<input type="radio" name="sort_type" value="krsort" /> Reverse key sort

<input type="radio" name="sort_type" value="uksort" /> User-defined key sort

<input type="radio" name="sort_type" value="asort" /> Value sort

<input type="radio" name="sort_type" value="arsort" /> Reverse value sort

<input type="radio" name="sort_type" value="uasort" /> User-defined value sort

</p>

<p align="center">
<input type="submit" value="Sort" name="submitted" />
</p>

<p>
Values <?= $submitted ? "sorted by $sort_type" : "unsorted"; ?>:
</p>

<?php
foreach($values as $key=>$value) {
echo "$key: $value";
b
?>

</form>

5.8.2 Natural-Order Sorting

PHP's built-in sort functions correctly sort strings and numbers, but they don't correctly sort strings
that contain numbers. For example, if you have the filenames ex10.php, ex5.php, and ex1.php, the
normal sort functions will rearrange them in this order: ex1.php, ex10.php, ex5.php. To correctly sort
strings that contain numbers, use the natsort() and natcasesort() functions:

$output = natsort(input);
$output = natcasesort(input);

5.8.3 Sorting Multiple Arrays at Once

The array_multisort() function sorts multiple indexed arrays at once:
array_multisort(arrayl [, array2, ... 1);

Pass it a series of arrays and sorting orders (identified by the SORT_ASC or SORT_DESC constants),
and it reorders the elements of all the arrays, assigning new indexes. It is similar to a join operation
on a relational database.

Imagine that you have a lot of people, and several pieces of data on each person:

$names = array(‘'Tom', 'Dick’, 'Harriet', 'Brenda’, 'Joe');
$ages = array(25, 35, 29, 35, 35);
$zips = array(80522, '02140', 90210, 64141, 80522);

The first element of each array represents a single record—all the information known about Tom.
Similarly, the second element constitutes another record—all the information known about Dick. The
array_multisort() function reorders the elements of the arrays, preserving the records. That is, if Dick
ends up first in the $names array after the sort, the rest of Dick's information will be first in the other
arrays too. (Note that we needed to quote Dick's zip code to prevent it from being interpreted as an
octal constant.)

Here's how to sort the records first ascending by age, then descending by zip code:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

array_multisort($ages, SORT_ASC, $zips, SORT_DESC, $names, SORT_ASC);

We need to include $names in the function call to ensure that Dick's name stays with his age and zip
code. Printing out the data shows the result of the sort:

echo("<table>\n");

for ($i=0; $i < count($names); $i++) {
echo("<tr><td>$ages[$i]</td><td>$zips[$i]</td><td>$names[$i]</td>\n");

b

echo("</table>\n");

<table>

<tr><td>25</td><td>80522</td><td>Tom</td>

<tr><td>29</td><td>90210</td><td>Harriet</td>

<tr><td>35</td><td>80522</td><td>Joe</td>

<tr><td>35</td><td>64141</td><td>Brenda</td>

<tr><td>35</td><td>02140</td><td>Dick</td>

</table>

5.8.4 Reversing Arrays

The array_reverse() function reverses the internal order of elements in an array:
$reversed = array_reverse(array);

Numeric keys are renumbered starting at 0, while string indexes are unaffected. In general, it's better
to use the reverse-order sorting functions instead of sorting and then reversing the order of an array.

The array_flip() function returns an array that reverses the order of each original element's key-value
pair:

$flipped = array_flip(array);

That is, for each element of the array whose value is a valid key, the element's value becomes its key
and the element's key becomes its value. For example, if you have an array mapping usernames to
home directories, you can use array_flip() to create an array mapping home directories to usernames:

$u2h = array('gnat' => '/home/staff/nathan’,
'rasmus' => '/home/elite/rasmus’,
'ktatroe' => '/home/staff/kevin');
$h2u = array_flip($u2h);
$user = $h2u['/home/staff/kevin']; // $user is now 'ktatroe'

Elements whose original values are neither strings nor integers are left alone in the resulting array.
The new array lets you discover the key in the original array given its value, but this technique works
effectively only when the original array has unique values.

5.8.5 Randomizing Order

To traverse the elements in an array in a random order, use the shuffle() function. All existing keys,
whether string or numeric, are replaced with consecutive integers starting at 0.

Here's how to randomize the order of the days of the week:

$days = array('Monday', "Tuesday', 'Wednesday',
"Thursday', 'Friday', 'Saturday’, 'Sunday');
shuffle($days);
print_r($days);
Array
(
[0] => Tuesday
[1] => Thursday
[2] => Monday

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[3] => Friday
[4] => Wednesday
[5] => Saturday
[6] => Sunday

)

Obviously, the order after your shuffle() may not be the same as the sample output here. Unless you
are interested in getting multiple random elements from an array, without repeating any specific item,
using the rand() function to pick an index is more efficient.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

5.9 Acting on Entire Arrays

PHP has several useful functions for modifying or applying an operation to all elements of an array.
You can merge arrays, find the difference, calculate the total, and more, all using built-in functions.

5.9.1 Calculating the Sum of an Array

The array_sum() function adds up the values in an indexed or associative array:
$sum = array_sum(array);
For example:

$scores = array(98, 76, 56, 80);
$total = array_sum($scores);
// $total = 310

5.9.2 Merging Two Arrays

The array_merge() function intelligently merges two or more arrays:
$merged = array_merge(arrayl, array2 [, array ... 1)

If a numeric key from an earlier array is repeated, the value from the later array is assigned a new
numeric key:

$first = array(‘hello’, 'world"); // 0 => "'hello’, 1 => 'world'
$second = array(‘exit', 'here'); // 0 =>"exit', 1 => 'here'
$merged = array_merge($first, $second);

// $merged = array('hello’, 'world', 'exit’, 'here")

If a string key from an earlier array is repeated, the earlier value is replaced by the later value:
$first = array('bill' => 'clinton’, 'tony' => 'danza’);

$second = array('bill' => 'gates’, 'adam' => 'west');

$merged = array_merge($first, $second);

// $merged = array('bill' => 'gates’, 'tony' => 'danza’, 'adam' => 'west")

5.9.3 Calculating the Difference Between Two Arrays

The array_diff() function identifies values from one array that are not present in others:
$diff = array_diff(arrayl, array2 [, array ... 1);

For example:

$al = array('bill', 'claire’, 'elle', 'simon’, 'judy');

$a2 = array(‘jack’, 'claire', 'toni");

$a3 = array('elle', 'simon’, 'garfunkel');

// find values of $al not in $a2 or $a3

$diff = array_diff($al, $a2, $a3);

// $diff is array('bill’, 'judy");

Values are compared using ===, so 1 and "1" are considered different. The keys of the first array are
preserved, so in $diff the key of 'bill' is 0 and the key of 'judy' is 4.

5.9.4 Filtering Elements from an Array

To identify a subset of an array based on its values, use the array_filter() function:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

s$filtered = array_filter(array, callback);

Each value of array is passed to the function named in callback. The returned array contains only those
elements of the original array for which the function returns a true value. For example:

function is_odd ($element) {
return $element % 2;
b
$numbers = array(9, 23, 24, 27);
$odds = array_filter($numbers, 'is_odd');
// $odds is array(0 => 9, 1 => 23, 3 => 27)

As you see, the keys are preserved. This function is most useful with associative arrays.

{10ve Rugoard [+ esvsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

5.10 Using Arrays

Arrays crop up in almost every PHP program. In addition to their obvious use for storing collections of
values, they're also used to implement various abstract data types. In this section, we show how to
use arrays to implement sets and stacks.

5.10.1 Sets

Arrays let you implement the basic operations of set theory: union, intersection, and difference. Each
set is represented by an array, and various PHP functions implement the set operations. The values in
the set are the values in the array—the keys are not used, but they are generally preserved by the
operations.

The union of two sets is all the elements from both sets, with duplicates removed. The array_merge()
and array_unique() functions let you calculate the union. Here's how to find the union of two arrays:

function array_union($a, $b) {
$union = array_merge($a, $b); // duplicates may still exist
$union = array_unique($union);

return $union;

}

$first = array(1, 'two', 3);

$second = array(‘two’, 'three’, 'four");
$union = array_union($first, $second);
print_r($union);

Array
(
[0]=>1
[1] => two
[2]1 => 3
[4] => three
[5] => four
)

The intersection of two sets is the set of elements they have in common. PHP's built-in array_intersect(
) function takes any number of arrays as arguments and returns an array of those values that exist in
each. If multiple keys have the same value, the first key with that value is preserved.

Another common function to perform on a set of arrays is to get the difference; that is, the values in
one array that are not present in another array. The array_diff() function calculates this, returning an
array with values from the first array that are not present in the second.

The following code takes the difference of two arrays:

$first = array(1, 'two', 3);

$second = array('two’, 'three’, 'four");
$difference = array_diff($first, $second);
print_r($difference);

Array
(
[0]=>1
[2] => 3
)
5.10.2 Stacks

Although not as common in PHP programs as in other programs, one fairly common data type is the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

last-in first-out (LIFO) stack. We can create stacks using a pair of PHP functions, array_push() and
array_pop(). The array_push() function is identical to an assignment to $array[]. We use array_push()
because it accentuates the fact that we're working with stacks, and the parallelism with array_pop()
makes our code easier to read. There are also array_shift() and array_unshift() functions for treating
an array like a queue.

Stacks are particularly useful for maintaining state. Example 5-4 provides a simple state debugger
that allows you to print out a list of which functions have been called up to this point (i.e., the stack
trace).

Example 5-4. State debugger

$call_trace = array();

function enter_function($name) {
global $call_trace;
array_push($call_trace, $name); // same as $call_trace[] = $name

echo "Entering $name (stack is now: " . join(' -> ', $call_trace) . ")
";

}

function exit_function() {
echo 'Exiting
";

global $call_trace;
array_pop($call_trace); // we ignore array_pop()'s return value

function first() {
enter_function('first');
exit_function();

}

function second() {
enter_function('second');
first();

exit_function();

}

function third()<
enter_function('third");
second();
first();
exit_function();

}

first();
third();

Here's the output from Example 5-4:

Entering first (stack is now: first)

Exiting

Entering third (stack is now: third)

Entering second (stack is now: third -> second)
Entering first (stack is now: third -> second -> first)
Exiting

Exiting

Entering first (stack is now: third -> first)

Exiting

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Exiting
Exiting

I |@ve RuBoard

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Chapter 6. Objects

Object-oriented programming (OOP) opens the door to cleaner designs, easier maintenance, and
greater code reuse. Such is the proven value of OOP that few today would dare to introduce a
language that wasn't object-oriented. PHP supports many useful features of OOP, and this chapter
shows you how to use them.

OOP acknowledges the fundamental connection between data and the code that works on that data,
and it lets you design and implement programs around that connection. For example, a bulletin-board
system usually keeps track of many users. In a procedural programming language, each user would
be a data structure, and there would probably be a set of functions that work with users' data
structures (create the new users, get their information, etc.). In an object-oriented programming
language, each user would be an object—a data structure with attached code. The data and the code
are still there, but they're treated as an inseparable unit.

In this hypothetical bulletin-board design, objects can represent not just users, but also messages
and threads. A user object has a username and password for that user, and code to identify all the
messages by that author. A message object knows which thread it belongs to and has code to post a
new message, reply to an existing message, and display messages. A thread object is a collection of
message objects, and it has code to display a thread index. This is only one way of dividing the
necessary functionality into objects, though. For instance, in an alternate design, the code to post a
new message lives in the user object, not the message object. Designing object-oriented systems is a
complex topic, and many books have been written on it. The good news is that however you design
your system, you can implement it in PHP.

The object as union of code and data is the modular unit for application development and code reuse.
This chapter shows you how to define, create, and use objects in PHP. It covers basic OO concepts as
well as advanced topics such as introspection and serialization.

{1ove Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

6.1 Terminology

Every object-oriented language seems to have a different set of terminology for the same old
concepts. This section describes the terms that PHP uses, but be warned that in other languages
these terms may have different meanings.

Let's return to the example of the users of a bulletin board. You need to keep track of the same
information for each user, and the same functions can be called on each user's data structure. When
you design the program, you decide the fields for each user and come up with the functions. In OOP
terms, you're designing the user class. A class is a template for building objects.

An object is an instance of a class. In this case, it's an actual user data structure with attached code.
Objects and classes are a bit like values and data types. There's only one integer data type, but there
are many possible integers. Similarly, your program defines only one user class but can create many
different (or identical) users from it.

The data associated with an object are called its properties . The functions associated with an object
are called its methods . When you define a class, you define the names of its properties and give the
code for its methods.

Debugging and maintenance of programs is much easier if you use encapsulation. This is the idea that
a class provides certain methods (the interface) to the code that uses its objects, so the outside code
does not directly access the data structures of those objects. Debugging is thus easier because you
know where to look for bugs—the only code that changes an object's data structures is in the class—
and maintenance is easier because you can swap out implementations of a class without changing the
code that uses the class, as long as you maintain the same interface.

Any nontrivial object-oriented design probably involves inheritance. This is a way of defining a new
class by saying that it's like an existing class, but with certain new or changed properties and
methods. The old class is called the superclass (or base class), and the new class is called the
subclass (or derived class). Inheritance is a form of code reuse—the base-class code is reused instead
of being copied and pasted into the new class. Any improvements or modifications to the base class
are automatically passed on to the derived class.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

6.2 Creating an Object

It's much easier to create objects and use them than it is to define object classes, so before we
discuss how to define classes, let's look at creating objects. To create an object of a given class, use
the new keyword:

$object = new (lass;

Assuming that a Person class has been defined, here's how to create a Person object:
$rasmus = new Person;

Do not quote the class name, or you'll get a compilation error:

$rasmus = new 'Person’; // does not work

Some classes permit you to pass arguments to the new call. The class's documentation should say
whether it accepts arguments. If it does, you'll create objects like this:

$object = new Person('Fred', 35);

The class name does not have to be hardcoded into your program. You can supply the class nhame
through a variable:

$class = 'Person’;
$object = new $class;
// is equivalent to
$object = new Person;

Specifying a class that doesn't exist causes a runtime error.

Variables containing object references are just normal variables—they can be used in the same ways
as other variables. Of particular note is that variable variables work with objects, as shown here:

$account = new Account;
$object = 'account'
${$object}->init(50000, 1.10); // same as $account->init

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

6.3 Accessing Properties and Methods
Once you have an object, you can use the -> notation to access methods and properties of the object:

$object-> propertyname
$object->methodname([arg, ...))

For example:

printf("Rasmus is %d years old.\n", $rasmus->age); // property access
$rasmus->birthday(); // method call
$rasmus->set_age(21); // method call with arguments

Methods are functions, so they can take arguments and return a value:
$clan = $rasmus->family(‘extended");

PHP does not have the concept of private and public methods or properties. That is, there's no way to
specify that only the code in the class should be able to directly access a particular property or
method. Encapsulation is achieved by convention—only an object's code should directly access its
properties—rather than being enforced by the language itself.

You can use variable variables with property names:

$prop = 'age’;
echo $rasmus->$prop;

A static method is one that is called on a class, not on an object. Such methods cannot access
properties. The name of a static method is the class name, followed by two colons and the function
name. For instance, this calls the p() method in the HTML class:

HTML::p("Hello, world");
A class's documentation tells you which methods are static.

Assignment creates a copy of an object with identical properties. Changing the copy does not change
the original:

$f = new Person('Fred', 35);

$b = $f; // make a copy

$b->set_name('Barney"); // change the copy

printf("%s and %s are best friends.\n", $b->get_name(), $f->get_name());
Barney and Fred are best friends.

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

6.4 Declaring a Class

To design your program or code library in an object-oriented fashion, you'll need to define your own
classes, using the class keyword. A class definition includes the class name and the properties and
methods of the class. Class names are case-insensitive and must conform to the rules for PHP
identifiers. The class name stdClass is reserved. Here's the syntax for a class definition:

class classname [extends baseclass |

{
[var $property [= value]; ...]

[function functionname (args) {
/| code
b

-
}

6.4.1 Declaring Methods

A method is a function defined inside a class. Although PHP imposes no special restrictions, most
methods act only on data within the object in which the method resides. Method names beginning
with two underscores (__) may be used in the future by PHP (and are currently used for the object
serialization methods _ _sleep() and _ _wakeup(), described later in this chapter), so it's
recommended that you do not begin your method names with this sequence.

Within a method, the $this variable contains a reference to the object on which the method was
called. For instance, if you call $rasmus->birthday(), inside the birthday() method, $this holds the
same value as $rasmus. Methods use the $this variable to access the properties of the current object
and to call other methods on that object.

Here's a simple class definition of the Person class that shows the $this variable in action:

class Person {
var $name;

function get_name () {
return $this->name;
b

function set_name ($new_name) {
$this->name = $new_name;
by

}

As you can see, the get_name() and set_name() methods use $this to access and set the $name
property of the current object.

There are no keywords or special syntax for declaring a static method. A static method simply doesn't
use $this, because the method is called on a class and not on an object. For example:

class HTML_Stuff {
function start_table() {
echo "<table border='1'>\n";

b
function end_table () {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

echo "</table>\n";
}

b
HTML_Stuff->start_table();

// print HTML table rows and columns
HTML_Stuff->end_table();

6.4.2 Declaring Properties

In the previous definition of the Person class, we explicitly declared the $name property. Property
declarations are optional and are simply a courtesy to whoever maintains your program. It's good PHP
style to declare your properties, but you can add new properties at any time.

Here's a version of the Person class that has an undeclared $name property:

class Person {
function get_name ()

{

return $this->name; }

function set_name ($new_name) {
$this->name = $new_name;
b

by
You can assign default values to properties, but those default values must be simple constants:
var $name = '] Doe’; /] works

var $age = 0; // works
var $day = 60*60*24; // doesn't work

6.4.3 Inheritance

To inherit the properties and methods from another class, use the extends keyword in the class
definition, followed by the name of the base class:

class Person {
var $name, $address, $age;

}

class Employee extends Person {
var $position, $salary;

The Employee class contains the $position and $salary properties, as well as the $name, $address, and
$age properties inherited from the Person class.

I f a derived class has a property or method with the same name as one in its parent class, the
property or method in the derived class takes precedence over, or overrides, the property or method
in the parent class. Referencing the property returns the value of the property on the child, while
referencing the method calls the method on the child.

To access an overridden method, use the parent::method() notation:

parent::birthday(); // call parent class's birthday() method

A common mistake is to hardcode the name of the parent class into calls to overridden methods:
Creature::birthday(); // when Creature is the parent class

This is a mistake because it distributes knowledge of the parent class's name all over the derived
class. Using parent:: centralizes the knowledge of the parent class in the extends clause.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

6.4.4 Constructors

You may also provide a list of arguments following the class name when instantiating an object:
$person = new Person('Fred', 35);

These arguments are passed to the class's constructor, a special function that initializes the properties
of the class.

A constructor is a function with the same name as the class in which it is defined. Here's a constructor
for the Person class:

class Person {
function Person ($name, $age) {
$this->name = $name;
$this->age = $age;
b
b

PHP does not provide for an automatic chain of constructors; that is, if you instantiate an object of a
derived class, only the constructor in the derived class is automatically called. For the constructor of
the parent class to be called, the constructor in the derived class must explicitly call the constructor.
In this example, the Employee class constructor calls the Person constructor:

class Person {
var $name, $address, $age;

function Person($name, $address, $age) {
$this->name = $name;
$this->address = $address;
$this->age = $age;
b
b

class Employee extends Person {
var $position, $salary;

function Employee($name, $address, $age, $position, $salary) {
$this->Person($name, $address, $age);
$this->position = $position;
$this->salary = $salary;
b
b

6.4.5 References

When you assign an object to another variable, you create a copy:

$fred = new Person;

$copy = $fred;

$fred->name("Fred");

print $copy->name(); // does not print "Fred"

You now have two Person objects, $fred and $copy, with independent property values. This is also the
case when you assign the results of a call to a constructor, as shown here:

$fred = new Person;

The object created by the Person constructor is copied, and the copy is stored in $fred. This means
that $this in the constructor and $fred actually refer to two different objects. If the constructor creates
an alias to $this through a reference, it won't create an alias to $fred. For example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$people = array();
class Person {
function Person () {
global $people;
$people[] =& $this;
b
b
$fred = new Person;
$fred->name = "Fred";
$barney =& new Person;
$barney->name = "Barney";
var_dump($people);
array(2) {
[0]=>
&object(person)(0) {
by

[1]=>
&object(person)(1) {
["name"]=>
string(6) "Barney"
b
b

$fred is a copy of the object that the constructor stored in $people[0], while $barney is an alias for the
object that the constructor stored in $people[1]. When we change the properties of $fred, we're not
changing the object that is in $people[0]. However, when we change the properties of $barney, we are
changing the object in $people[1].

To prevent copying on assignment, assign by reference:
$obj =& new Class;

This code makes $obj an alias for the new object, which was $this in the constructor. If the
constructor stores a reference to $this, it keeps a reference to $obj.

The documentation for a class should say whether you need to use =& with its constructor. In most
cases, this isn't necessary.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

6.5 Introspection

Introspection is the ability of a program to examine an object's characteristics, such as its name,
parent class (if any), properties, and methods. With introspection, you can write code that operates
on any class or object. You don't need to know which methods or properties are defined when you
write your code; instead, you can discover that information at runtime, which makes it possible for
you to write generic debuggers, serializers, profilers, etc. In this section, we look at the introspective
functions provided by PHP.

6.5.1 Examining Classes

To determine whether a class exists, use the class_exists() function, which takes in a string and
returns a Boolean value. Alternately, you can use the get_declared_classes() function, which returns
an array of defined classes and checks if the class name is in the returned array:

$yes_no = class_exists(classname);
$classes = get_declared_classes();

You can get the methods and properties that exist in a class (including those that are inherited from
superclasses) using the get_class_methods() and get_class_vars() functions. These functions take a
class name and return an array:

$methods = get_class_methods(classname);
$properties = get_class_vars(classname);

The class name can be a bare word, a quoted string, or a variable containing the class name:

$class = 'Person’;

$methods = get_class_methods($class);

$methods = get_class_methods(Person); // same
$methods = get_class_methods('Person'); // same

The array returned by get_class_methods() is a simple list of method names. The associative array
returned by get_class_vars() maps property names to values and also includes inherited properties.
One quirk of get_class_vars() is that it returns only properties that have default values; there's no
way to discover uninitiailized properties.

Use get_parent_class() to find a class's parent class:
$superclass = get_parent_class(classname);

Example 6-1 lists the display_classes() function, which displays all currently declared classes and the
methods and properties for each.

Example 6-1. Displaying all declared classes

function display_classes () {
$classes = get_declared_classes();
foreach($classes as $class) {
echo "Showing information about $class
";

echo "$class methods:
";
$methods = get_class_methods($class);
if(!count($methods)) {

echo "<i>None</i>
";
b
else {

foreach($methods as $method) {

echo "$method()
";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}
}

echo "$class properties:
";
$properties = get_class_vars($class);
if(!count($properties)) {
echo "<i>None</i>
";
by
else {
foreach(array_keys($properties) as $property) {
echo "\$$property
";
by
by

echo "<hr />";
b
b

Figure 6-1 shows the output of the display_classes() function.

Figure 6-1. Output of display_classes()

6.5.2 Examining an Object

To get the class to which an object belongs, first make sure it is an object using the is_object()
function, then get the class with the get_class() function:

$yes_no = is_object(var),;
$classname = get_class(object);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Before calling a method on an object, you can ensure that it exists using the method_exists()
function:

$yes_no = method_exists(object, method);
Calling an undefined method triggers a runtime exception.

Just as get_class_vars() returns an array of properties for a class, get_object_vars() returns an array
of properties set in an object:

$array = get_object_vars(object);

And just as get_class_vars() returns only those properties with default values, get_object_vars()
returns only those properties that are set:

class Person {
var $name;
var $age;
b
$fred = new Person;
$fred->name = 'Fred';
$props = get_object_vars($fred); // $props is array('name’ => 'Fred');

The get_parent_class() function actually accepts either an object or a class name. It returns the name
of the parent class, or FALSE if there is no parent class:

class A {}

class B extends A {}

$obj = new B;

echo get_parent_class($obj); // prints A
echo get_parent_class(B); // prints A

6.5.3 Sample Introspection Program

Example 6-2 shows a collection of functions that display a reference page of information about an
object's properties, methods, and inheritance tree.

Example 6-2. Object introspection functions

// return an array of callable methods (include inherited methods)
function get_methods($object) {
$methods = get_class_methods(get_class($object));

if(get_parent_class($object)) {
$parent_methods = get_class_methods(get_parent_class($object));
$methods = array_diff($methods, $parent_methods);

}

return $methods;

}

// return an array of inherited methods
function get_inherited_methods($object) {
$methods = get_class_methods(get_class($object));

if(get_parent_class($object)) {
$parent_methods = get_class_methods(get_parent_class($object));
$methods = array_intersect($methods, $parent_methods);

}

return $methods;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}

// return an array of superclasses
function get_lineage($object) {
if(get_parent_class($object)) {
$parent = get_parent_class($object);
$parent_object = new $parent;

$lineage = get_lineage($parent_object);
$lineage[] = get_class($object);

by

else {
$lineage = array(get_class($object));

b

return $lineage;

}

// return an array of subclasses
function get_child_classes($object) {
$classes = get_declared_classes();

$children = array();
foreach($classes as $class) {
if (substr($class, 0, 2) =="_ _"{
continue;

$child = new $class;
if(get_parent_class($child) == get_class($object)) {
$children[] = $class;
b
b

return $children;

}

// display information on an object
function print_object_info($object) {
$class = get_class($object);
echo '<h2>Class</h2>";
echo "<p>$class</p>";

echo '<h2>Inheritance</h2>";

echo '<h3>Parents</h3>";

$lineage = get_lineage($object);

array_pop($lineage);

echo count($lineage) ? ('<p>'. join(' -> ', $lineage)
: '<i>None</i>";

echo '<h3>Children</h3>";

$children = get_child_classes($object);

echo '<p>'. (count($children) ? join(', ', $children)
1 '<i>None</i>") . '</p>";

echo '<h2>Methods</h2>";
$methods = get_class_methods($class);
$object_methods = get_methods($object);
if(!count($methods)) {

echo "<i>None</i>
";

L'</p>h

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}

else {
echo '<p>Inherited methods are in <i>italics</i>.</p>";
foreach($methods as $method) {
echo in_array($method, $object_methods) ? "$method();
"
: "<i>$method</i>();
";
b

}

echo '<h2>Properties</h2>";
$properties = get_class_vars($class);
if(!count($properties)) {
echo "<i>None</i>
";
b
else {
foreach(array_keys($properties) as $property) {
echo "\$$property =" . $object->$property . '
';
b
b

echo '<hr />";

}

Here are some sample classes and objects that exercise the introspection functions from Example 6-
2:

class A {
var $foo = 'foo';
var $bar = 'bar’;
var $baz = 17.0;

function first_function() { }
function second_function() { }

3

class B extends A {
var $quux = false;

function third_function() { }

o

class C extends B {
}¥

$a = new A;
$a->foo = 'sylvie';
$a->bar = 23;

$b = new B;

$b->foo = 'bruno’;
$b->quux = true;

$c = new C;

print_object_info($a);
print_object_info($b);
print_object_info($c);

Figure 6-2 shows the output of this code.

Figure 6-2. Object introspection output

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I |@ve RuBoard

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

6.6 Serialization

Serializing an object means converting it to a bytestream representation that can be stored in a file.
This is useful for persistent data; for example, PHP sessions automatically save and restore objects.
Serialization in PHP is mostly automatic—it requires little extra work from you, beyond calling the
serialize() and unserialize() functions:

$encoded = serialize(something);
$something = unserialize(encoded);

Serialization is most commonly used with PHP's sessions, which handle the serialization for you. All
you need to do is tell PHP which variables to keep track of, and they're automatically preserved
between visits to pages on your site. However, sessions are not the only use of serialization—if you
want to implement your own form of persistent objects, the serialize() and unserialize() functions are
a natural choice.

An object's class must be defined before unserialization can occur. Attempting to unserialize an object
whose class is not yet defined puts the object into stdClass, which renders it almost useless. One
practical consequence of this is that if you use PHP sessions to automatically serialize and unserialize
objects, you must include the file containing the object's class definition in every page on your site.
For example, your pages might start like this:

<?php

include('object_definitions.inc'); // load object definitions

session_start(); // load persistent variables

?>

<html>...

PHP has two hooks for objects during the serialization and unserialization process: _ _sleep() and _

_wakeup(). These methods are used to notify objects that they're being serialized or unserialized.
Objects can be serialized if they do not have these methods; however, they won't be notified about
the process.

The _ _sleep() method is called on an object just before serialization; it can perform any cleanup
necessary to preserve the object's state, such as closing database connections, writing out unsaved
persistent data, and so on. It should return an array containing the names of the data members that
need be written into the bytestream. If you return an empty array, no data is written.

Conversely, the _ _wakeup() method is called on an object immediately after an object is created
from a bytestream. The method can take any action it requires, such as reopening database
connections and other initialization tasks.

Example 6-3 is an object class, Log, which provides two useful methods: write() to append a message
to the logfile, and read() to fetch the current contents of the logfile. It uses _ _wakeup() to reopen
the logfile and _ _sleep() to close the lodfile.

Example 6-3. The Log.inc file

<?php

class Log {
var $filename;
var $fp;

function Log($filename) {
$this->filename = $filename;
$this->open();

b

function open() {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$this->fp = fopen($this->filename, "a")
or die("Can't open {$this->filename}");
b

function write($note) {
fwrite($this->fp, "$note\n");
b

function read() {
return join(", file($this->filename));

by

function _ _wakeup() {
$this->open();

function _ _sleep() {
// write information to the account file
fclose($this->fp);
return array(‘filename');
b
b

?>

Store the Log class definition in a file called Log.inc. The HTML page in Example 6-4 uses the Log class
and PHP sessions to create a persistent log variable, $I.

Example 6-4. front.php

<?php
include_once('Log.inc");
session_start();

?>

<html><head> <title>Front Page</title></head>
<body>

<?php
$now = strftime("%c");

if (!session_is_registered('l')) {
$l = new Log("/tmp/persistent_log");
session_register('l');
$l->write("Created $now");
echo("Created session and persistent log object.<p>");

b

$l->write("Viewed first page $now");

echo "The log contains:<p>";

echo nl2br($l->read());

?>

Move to the next page

</body></html>

The output when this page is viewed is shown in Figure 6-3.

Figure 6-3. The front page

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 6-5 shows the file next.php, an HTML page. Following the link from the front page to this
page triggers the loading of the persistent object $l. The _ _wakeup() call reopens the logfile so that
the object is ready to be used.

Example 6-5. next.php

<?php
include_once('Log.inc");
session_start();

?>

<html><head> <title>Next Page</title></head>
<body>

<?php

$now = strftime("%c");
$l->write("Viewed page 2 at $now");
echo "The log contains: <p>";

echo nl2br($l->read());

?>

</body></html>

Figure 6-4 shows the output of next.php.

Figure 6-4. The next page

H1ove RuBoare [+ erevious st]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Chapter 7. Web Techniques

PHP was designed as a web scripting language and, although it is possible to use it in purely
command-line and GUI scripts, the Web accounts for the vast majority of PHP uses. A dynamic web
site may have forms, sessions, and sometimes redirection, and this chapter explains how to
implement those things in PHP. You'll learn how PHP provides access to form parameters and
uploaded files, how to send cookies and redirect the browser, how to use PHP sessions, and more.

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

7.1 HTTP Basics

The web runs on HTTP, the HyperText Transfer Protocol. This protocol governs how web browsers
request files from web servers and how the servers send the files back. To understand the various
techniques we'll show you in this chapter, you need to have a basic understanding of HTTP. For a

more thorough discussion of HTTP, see the HTTP Pocket Reference, by Clinton Wong (O'Reilly).

When a web browser requests a web page, it sends an HTTP request message to a web server. The
request message always includes some header information, and it sometimes also includes a body.
The web server responds with a reply message, which always includes header information and usually
contains a body. The first line of an HTTP request looks like this:

GET /index.html HTTP/1.1

This line specifies an HTTP command, called a method , followed by the address of a document and
the version of the HTTP protocol being used. In this case, the request is using the GET method to ask
for the index.htm/ document using HTTP 1.1. After this initial line, the request can contain optional
header information that gives the server additional data about the request. For example:

User-Agent: Mozilla/5.0 (Windows 2000; U) Opera 6.0 [en]
Accept: image/gif, image/jpeg, text/*, */*

The User-Agent header provides information about the web browser, while the Accept header specifies
the MIME types that the browser accepts. After any headers, the request contains a blank line, to
indicate the end of the header section. The request can also contain additional data, if that is
appropriate for the method being used (e.g., with the POST method, as we'll discuss shortly). If the
request doesn't contain any data, it ends with a blank line.

The web server receives the request, processes it, and sends a response. The first line of an HTTP
response looks like this:

HTTP/1.1 200 OK

This line specifies the protocol version, a status code, and a description of that code. In this case, the
status code is "200", meaning that the request was successful (hence the description "OK"). After the
status line, the response contains headers that give the client additional information about the
response. For example:

Date: Sat, 26 Jan 2002 20:25:12 GMT

Server: Apache 1.3.22 (Unix) mod_perl/1.26 PHP/4.1.0
Content-Type: text/html

Content-Length: 141

The Server header provides information about the web server software, while the Content-Type
header specifies the MIME type of the data included in the response. After the headers, the response
contains a blank line, followed by the requested data, if the request was successful.

The two most common HTTP methods are GET and POST. The GET method is designed for retrieving
information, such as a document, an image, or the results of a database query, from the server. The
POST method is meant for posting information, such as a credit-card number or information that is to
be stored in a database, to the server. The GET method is what a web browser uses when the user
types in a URL or clicks on a link. When the user submits a form, either the GET or POST method can
be used, as specified by the method attribute of the form tag. We'll discuss the GET and POST
methods in more detail later, in Section 7.4.

I1ave RuBoard (< revvious foaxi]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

7.2 Variables

Server configuration and request information—including form parameters and cookies—are accessible
in three different ways from your PHP scripts, as described in this section. Collectively, this
information is referred to as EGPCS (environment, GET, POST, cookies, and server).

If the register_globals option in php.ini is enabled, PHP creates a separate global variable for every
form parameter, every piece of request information, and every server configuration value. This
functionality is convenient but dangerous, as it lets the browser provide initial values for any of the
variables in your program. The (negative) effects this can have on your program's security are

explained in Chapter 12.

Regardless of the setting of register_globals, PHP creates six global arrays that contain the EGPCS
information.

The global arrays are:
$HTTP_COOKIE_VARS

Contains any cookie values passed as part of the request, where the keys of the array are the
names of the cookies

$HTTP_GET_VARS

Contains any parameters that are part of a GET request, where the keys of the array are the
names of the form parameters

$HTTP_POST_VARS

Contains any parameters that are part of a POST request, where the keys of the array are the
names of the form parameters

$HTTP_POST_FILES

Contains information about any uploaded files
$HTTP_SERVER_VARS

Contains useful information about the web server, as described in the next section
$HTTP_ENV_VARS

Contains the values of any environment variables, where the keys of the array are the names
of the environment variables

Because names like $HTTP_GET_VARS are long and awkward to use, PHP provides shorter aliases:
$_COOKIE, $_GET, $_POST, $_FILES, $_SERVER, and $_ENV. These variables are not only global, but
also visible from within function definitions, unlike their longer counterparts. These short variables are
the recommended way to access EGPCS values. The $_REQUEST array is also created by PHP if the
register_globals option is on; however, there is no corresponding $HTTP_REQUEST_VARS array. The
$_REQUEST array contains the elements of the $_GET, $_POST, and $_COOKIE arrays.

PHP also creates a variable called $PHP_SELF, which holds the name of the current script, relative to
the document root (e.g., /store/cart.php). This value is also accessible as $_SERVER['PHP_SELF']. This
variable is useful when creating self-referencing scripts, as we'll see later.

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

7.3 Server Information

The $_SERVER array contains a lot of useful information from the web server. Much of this information
comes from the environment variables required in the CGI specification

(http://hoohoo.ncsa.uiuc.edu/cgi/env.html).
Here is a complete list of the entries in $_SERVER that come from CGI:
SERVER_SOFTWARE
A string that identifies the server (e.g., "Apache/1.3.22 (Unix) mod_perl/1.26 PHP/4.1.0").
SERVER_NAME
The hostname, DNS alias, or IP address for self-referencing URLs (e.g., "www.example.com").
GATEWAY_INTERFACE
The version of the CGI standard being followed (e.g., "CGI/1.1").
SERVER_PROTOCOL
The name and revision of the request protocol (e.g., "HTTP/1.1").
SERVER_PORT
The server port number to which the request was sent (e.g., "80").
REQUEST_METHOD
The method the client used to fetch the document (e.g., "GET").
PATH_INFO
Extra path elements given by the client (e.g., "/list/users").
PATH_TRANSLATED

The value of PATH_INFO, translated by the server into a filename (e.g.,
"/home/httpd/htdocs/list/users").

SCRIPT_NAME

The URL path to the current page, which is useful for self-referencing scripts (e.g.,
"/~me/menu.php").

QUERY_STRING
Everything after the ? in the URL (e.g., "name=Fred+age=35").
REMOTE_HOST

The hostname of the machine that requested this page (e.g., "dialup-192-168-0-
1.example.com"). If there's no DNS for the machine, this is blank and REMOTE_ADDR is the
only information given.

REMOTE_ADDR

A string containing the IP address of the machine that requested this page (e.g.,
"192.168.0.250").

AUTH_TYPE

If the page is password-protected, this is the authentication method used to protect the page
(e.g., "basic").

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

REMOTE_USER

If the page is password-protected, this is the username with which the client authenticated
(e.g., "fred"). Note that there's no way to find out what password was used.

REMOTE_IDENT

If the server is configured to use identd (RFC 931) identification checks, this is the username
fetched from the host that made the web request (e.g., "barney"). Do not use this string for
authentication purposes, as it is easily spoofed.

CONTENT_TYPE

The content type of the information attached to queries such as PUT and POST (e.g., "x-url-
encoded").

CONTENT_LENGTH
The length of the information attached to queries such as PUT and POST (e.g., 3952).

The Apache server also creates entries in the $_SERVER array for each HTTP header in the request.
For each key, the header name is converted to uppercase, hyphens (-) are turned into underscores
(L), and the string "HTTP_" is prepended. For example, the entry for the User-Agent header has the
key "HTTP_USER_AGENT". The two most common and useful headers are:

HTTP_USER_AGENT

The string the browser used to identify itself (e.g., "Mozilla/5.0 (Windows 2000; U) Opera 6.0
[en]")

HTTP_REFERER

The page the browser said it came from to get to the current page (e.g.,
"http://www.example.com/last_page.html")

{1ove Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

7.4 Processing Forms

It's easy to process forms with PHP, as the form parameters are available in the $_GET and $_POST
arrays. There are many tricks and techniques for working with forms, though, which are described in
this section.

7.4.1 Methods

As we already discussed, there are two HTTP methods that a client can use to pass form data to the
server: GET and POST. The method that a particular form uses is specified with the method attribute
to the form tag. In theory methods are case-insensitive in the HTML, but in practice some broken
browsers require the method name to be in all uppercase.

A GET request encodes the form parameters in the URL, in what is called a query string:
/path/to/chunkify.php?word=despicable&length=3

A POST request passes the form parameters in the body of the HTTP request, leaving the URL
untouched.

The most visible difference between GET and POST is the URL line. Because all of a form's parameters
are encoded in the URL with a GET request, users can bookmark GET queries. They cannot do this
with POST requests, however.

The biggest difference between GET and POST requests, however, is far more subtle. The HTTP
specification says that GET requests are idempotent—that is, one GET request for a particular URL,
including form parameters, is the same as two or more requests for that URL. Thus, web browsers can
cache the response pages for GET requests, because the response page doesn't change regardless of
how many times the page is loaded. Because of idempotence, GET requests should be used only for
queries such as splitting a word into smaller chunks or multiplying numbers, where the response page
is never going to change.

POST requests are not idempotent. This means that they cannot be cached, and the server is
recontacted every time the page is displayed. You've probably seen your web browser prompt you
with "Repost form data?" before displaying or reloading certain pages. This makes POST requests the
appropriate choice for queries whose response pages may change over time—for example, displaying
the contents of a shopping cart or the current messages in a bulletin board.

That said, idempotence is often ignored in the real world. Browser caches are generally so poorly
implemented, and the Reload button is so easy to hit, that programmers tend to use GET and POST
simply based on whether they want the query parameters shown in the URL or not. What you need to
remember is that GET requests should not be used for any actions that cause a change in the server,
like placing an order or updating a database.

The type of method that was used to request a PHP page is available through
$_SERVER['REQUEST_METHOD']. For example:

if ($_SERVER['REQUEST_METHOD'] == 'GET") {
// handle a GET request

} else {
die("You may only GET this page.");

b

7.4.2 Parameters

Use the $_POST , $_GET, and $_FILES arrays to access form parameters from your PHP code. The
keys are the parameter names, and the values are the values of those parameters. Because periods
are legal in HTML field names, but not in PHP variable names, periods in field names are converted to
underscores (_) in the array.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 7-1 shows an HTML form that chunkifies a string supplied by the user. The form contains two
fields: one for the string (parameter name "word") and one for the size of chunks to produce
(parameter name "number").

Example 7-1. The chunkify form (chunkify.html)

<html>

<head> <title>Chunkify Form</title></head>
<body>

<form action="chunkify.php" method="POST">
Enter a word: <input type="text" nhame="word" />

How long should the chunks be?

<input type="text" name="number" />

<input type="submit" value="Chunkify!">
</form>

</body>

</html>

Example 7-2 lists the PHP script, chunkify.php, to which the form in Example 7-1 submits. The script
copies the parameter values into variables and uses them. Although the register_globals option in
php.ini would automatically create variables from the parameter values, we don't use it because it
complicates writing secure PHP programs.

Example 7-2. The chunkify script (chunkify.php)

<html>
<head> <title>Chunked Word</title></head>
<body>

<?php
$word = $_POST['word'];
$number = $_POST['number'];
$chunks = ceil(strlen($word)/$number);
echo "The $number-letter chunks of '$word' are:
\n";
for ($i=0; $i < $chunks; $i++) {
$chunk = substr($word, $i*3, 3);
printf("%d: %s
\n", $i+1, $chunk);

?>

</body>
</html>

Figure 7-1 shows the both the chunkify form and the resulting output.

Figure 7-1. The chunkify form and its output

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

7.4.3 Automatic Quoting of Parameters

PHP ships with the magic_quotes_gpc option enabled in php.ini. This option instructs PHP to
automatically call addslashes() on all cookie data and GET and POST parameters. This makes it easy
to use form parameters in database queries, as we'll see in Chapter 8, but can cause trouble with
form parameters not used in database queries as all single quotes, double quotes, backslashes, and
NUL-bytes are escaped with backslash characters.

For instance, if you enter the word "O'Reilly" in the form in Figure 7-1 and hit the Chunkify button,
you'll see that the word that's actually chunked is "O\'Reilly". That's magic_quotes_gpc at work.

To work with the strings as typed by the user, you can either disable magic_quotes_gpc in php.ini or
use the stripslashes() function on the values in $_GET , $_POST, and $_COOKIES. The correct way to
work with a string is as follows:

$value = ini_get('magic_quotes_gpc")
? stripslashes($_GET['word'])
1 $_GET['word'];

If you plan to work with lots of string values, it's wise to define a function to handle this for you:

function raw_param ($name) {
return ini_get(‘'magic_quotes_gpc')
? stripslashes($_GET[$name])
1 $_GET[$name];
b

You call the function like this:
$value = raw_param(‘word");

For the remaining examples in this chapter, we'll assume that you have magic_quotes_gpc disabled in
php.ini. If you don't, you'll need to change the examples to call stripslashes() on all the parameters.

7.4.4 Self-Processing Pages

One PHP page can be used to both generate a form and process it. If the page shown in Example 7-3
is requested with the GET method, it prints a form that accepts a Fahrenheit temperature. If called
with the POST method, however, the page calculates and displays the corresponding Celsius
temperature.

Example 7-3. A self-processing temperature-conversion page (temp.php)

<html>
<head> <title>Temperature Conversion</title></head>
<body>

<?php
if ($_SERVER['REQUEST_METHOD'] == 'GET") {
?>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>" method="POST">
Fahrenheit temperature:

<input type="text" name="fahrenheit" />

<input type="submit" name="Convert to Celsius!" />

</form>

<?php

} elseif ($_SERVER['REQUEST_METHOD'] == 'POST') {
$fahr = $_POST['fahrenheit'];
$celsius = ($fahr - 32) * 5/9;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

printf("%.2fF is %.2fC", $fahr, $celsius);
}else {

die("This script only works with GET and POST requests.");
b

?>

</body>
</html>

Figure 7-2 shows the temperature-conversion page and the resulting output.

Figure 7-2. The temperature-conversion page and its output

Another way for a script to decide whether to display a form or process it is to see whether or not one
of the parameters has been supplied. This lets you write a self-processing page that uses the GET
method to submit values. Example 7-4 shows a new version of the temperature-conversion page that
submits parameters using a GET request. This page uses the presence or absence of parameters to
determine what to do.

Example 7-4. Temperature conversion using the GET method

<html|>
<head> <title>Temperature Conversion</title></head>
<body>

<?php

$fahr = $_GET['fahrenheit'];
if (is_null($fahr)) {

?>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>" method="GET">
Fahrenheit temperature:

<input type="text" name="fahrenheit" />

<input type="submit" name="Convert to Celsius!" />

</form>

<?php

}else {
$celsius = ($fahr - 32) * 5/9;
printf("%.2fF is %.2fC", $fahr, $celsius);

?>

</body>
</html>

In Example 7-4, we copy the form parameter value into $fahr. If we weren't given that parameter,

$fahr contains NULL, so we can use is_null() to test whether we should display the form or process
the form data.

7.4.5 Sticky Forms

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Many web sites use a technique known as sticky forms, in which the results of a query are
accompanied by a search form whose default values are those of the previous query. For instance, if
you search Google (http://www.google.com) for "Programming PHP", the top of the results page
contains another search box, which already contains "Programming PHP". To refine your search to
"Programming PHP from O'Reilly", you can simply add the extra keywords.

This sticky behavior is easy to implement. Example 7-5 shows our temperature-conversion script from
Example 7-4, with the form made sticky. The basic technique is to use the submitted form value as
the default value when creating the HTML field.

Example 7-5. Temperature conversion with a sticky form

<html|>
<head> <title>Temperature Conversion</title></head>
<body>

<?php
$fahr = $_GET['fahrenheit'];
?>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>" method="GET">
Fahrenheit temperature:

<input type="text" name="fahrenheit" value="<?php echo $fahr ?>" />

<input type="submit" name="Convert to Celsius!" />

</form>

<?php

if (! is_null($fahr)) {
$celsius = ($fahr - 32) * 5/9;
printf("%.2fF is %.2fC", $fahr, $celsius);

?>

</body>
</html>

7.4.6 Multivalued Parameters

HTML selection lists, created with the select tag, can allow multiple selections. To ensure that PHP
recognizes the multiple values that the browser passes to a form-processing script, you need to make
the name of the field in the HTML form end with []. For example:

<select name="languages[]">
<input name="c">C</input>
<input name="c++">C++</input>
<input name="php">PHP</input>
<input name="perl">Perl</input>
</select>

Now, when the user submits the form, $_GET['languages'] contains an array instead of a simple string.
This array contains the values that were selected by the user.

Example 7-6 illustrates multiple selection. The form provides the user with a set of personality
attributes. When the user submits the form, he gets a (not very interesting) description of his
personality.

Example 7-6. Multiple selection values with a select box

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<html|>
<head> <title>Personality </title></head>
<body>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>" method="GET">
Select your personality attributes:

<select name="attributes[]" multiple>

<option value="perky">Perky</option>

<option value="morose">Morose</option>

<option value="thinking">Thinking</option>

<option value="feeling">Feeling</option>

<option value="thrifty">Spend-thrift</option>

<option value="prodigal">Shopper</option>

</select>

<input type="submit" name="s" value="Record my personality!" />
</form>

<?php

if (array_key_exists('s', $_GET)) {
$description = join (" ", $_GET['attributes']);
echo "You have a $description personality.";

¥

?>

</body>
</html>

In Example 7-6, the submit button has a name, "s". We check for the presence of this parameter value
to see whether we have to produce a personality description. Figure 7-3 shows the multiple selection
page and the resulting output.

Figure 7-3. Multiple selection and its output

The same technique applies for any form field where multiple values can be returned. Example 7-7
shows a revised version of our personality form that is rewritten to use checkboxes instead of a select
box. Notice that only the HTML has changed—the code to process the form doesn't need to know
whether the multiple values came from checkboxes or a select box.

Example 7-7. Multiple selection values in checkboxes

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<html|>
<head> <title>Personality </title></head>
<body>

<form action="<?php $_SERVER['PHP_SELF'] ?>" method="GET">

Select your personality attributes:

Perky <input type="checkbox" name="attributes[]" value="perky" />

Morose <input type="checkbox" name="attributes[]" value="morose" />

Thinking <input type="checkbox" name="attributes[]" value="feeling" />

Feeling <input type="checkbox" name="attributes[]" value="feeling" />

Spend-thrift <input type="checkbox" name="attributes[]" value="thrifty" />

Shopper <input type="checkbox" name="attributes[]" value="thrifty" />

<input type="submit" name="s" value="Record my personality!" />

</form>

<?php

if (array_key_exists('s', $_GET)) {
$description = join (" ", $_GET['attributes']);
echo "You have a $description personality.";

b

?>

</body>
</html>

7.4.7 Sticky Multivalued Parameters

So now you're wondering, can I make multiple selection form elements sticky? You can, but it isn't
easy. You'll need to check to see whether each possible value in the form was one of the submitted
values. For example:

Perky: <input type="checkbox" name="attributes[]" value="perky"
<?=if (is_array($_GET[attributes']) and

in_array('perky', $_GET['attributes'])) {

"checked";

b

?> [>

You could use this technique for each checkbox, but that's repetitive and error-prone. At this point,
it's easier to write a function to generate the HTML for the possible values and work from a copy of
the submitted parameters. Example 7-8 shows a new version of the multiple selection checkboxes,
with the form made sticky. Although this form looks just like the one in Example 7-7, behind the
scenes, there are substantial changes to the way the form is generated.

Example 7-8. Sticky multivalued checkboxes

<html|>
<head> <title>Personality </title></head>
<body>

<?php

// fetch form values, if any

$attrs = $_GET['attributes'];

if (! is_array($attrs)) { $attrs = array(); }

// create HTML for identically-named checkboxes

function make_checkboxes ($name, $query, $options) {
foreach ($options as $value => $label) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

mi

printf('%s <input type="checkbox" name="%s[]" value="%s"",
$label, $name, $value);
if (in_array($value, $query)) { echo "checked "; }
echo "/>
\n";
b
b

// the list of values and labels for the checkboxes
$personality_attributes = array(

'perky' => '"Perky’,

'morose'’ => 'Morose',

'thinking' => 'Thinking',

'feeling' => 'Feeling’,

'thrifty' => 'Spend-thrift’,

'prodigal' => 'Shopper’'

)
?>

<form action="<?php $_SERVER['PHP_SELF'] ?>" method="GET">
Select your personality attributes:

<?php make_checkboxes('attributes', $attrs, $personality_attributes); ?>

<input type="submit" name="s" value="Record my personality!" />
</form>

<?php

if (array_key_exists('s', $_GET)) {
$description = join (" ", $_GET['attributes']);
echo "You have a $description personality.";

b

?>

</body>
</html>

The heart of this code is the make_checkboxes() subroutine. It takes three arguments: the name for
the group of checkboxes, the array of on-by-default values, and the array mapping values to
descriptions. The list of options for the checkboxes is in the $personality_attributes array.

7.4.8 File Uploads

To handle file uploads (supported in most modern browsers), use the $_FILES array. Using the various
authentication and file upload functions, you can control who is allowed to upload files and what to do
with those files once they're on your system. Security concerns to take note of are described in

Chapter 12.
The following code displays a form that allows file uploads to the same page:

<form enctype="multipart/form-data" action="<?= $PHP_SELF ?>" method="POST">
<input type="hidden" name="MAX_FILE_SIZE" value="10240">
File name: <input name="toProcess" type="file">
<input type="submit" value="Upload">

</form>

The biggest problem with file uploads is the risk of getting a file that is too large to process. PHP has
two ways of preventing this: a hard limit and a soft limit. The upload_max_filesize option in php.ini
gives a hard upper limit on the size of uploaded files (it is set to 2 MB by default). If your form
submits a parameter called MAX_FILE_SIZE before any file field parameters, PHP uses that value as
the soft upper limit. For instance, in the previous example, the upper limit is set to 10 KB. PHP
ignores attempts to set MAX_FILE_SIZE to a value larger than upload_max_filesize.

Each element in $_FILES is itself an array, giving information about the uploaded file. The keys are:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

name
The name of the file, as supplied by the browser. It's difficult to make meaningful use of this,
as the client machine may have different filename conventions than the web server (e.g., if the
client is a Windows machine that tells you the file is D:\PHOTOS\ME.JPG, while the web server
runs Unix, to which that path is meaningless).

type
The MIME type of the uploaded file, as guessed at by the client.

size
The size of the uploaded file (in bytes). If the user attempted to upload a file that was too
large, the size is reported as 0.

tmp_name

The name of the temporary file on the server that holds the uploaded file. If the user
attempted to upload a file that was too large, the name is reported as "none".

The correct way to test whether a file was successfully uploaded is to use the function
is_uploaded_file(), as follows:

if (is_uploaded_file($_FILES['toProcess']['tmp_name']) {
// successfully uploaded

}

Files are stored in the server's default temporary files directory, which is specified in php.ini with the
upload_tmp_dir option. To move a file, use the move_uploaded_file() function:

move_uploaded_file($_FILES['toProcess']['tmp_name'], "path/to/put/file/$file);

The call to move_uploaded_file() automatically checks whether it was an uploaded file. When a script
finishes, any files uploaded to that script are deleted from the temporary directory.

7.4.9 Form Validation

When you allow users to input data, you typically need to validate that data before using it or storing
it for later use. There are several strategies available for validating data. The first is JavaScript on the
client side. However, since the user can choose to turn JavaScript off, or may even be using a browser
that doesn't support it, this cannot be the only validation you do.

A more secure choice is to use PHP itself to do the validation. Example 7-9 shows a self-processing
page with a form. The page allows the user to input a media item; three of the form elements—the
name, media type, and filename—are required. If the user neglects to give a value to any of them,
the page is presented anew with a message detailing what's wrong. Any form fields the user already
filled out are set to the values she entered. Finally, as an additional clue to the user, the text of the
submit button changes from "Create" to "Continue" when the user is correcting the form.

Example 7-9. Form validation

<?php

$name = $_POST['name'];
$media_type = $_POST['media_type'];
$filename = $_POST[filename'];
$caption = $_POST['caption'];

$tried = ($_POST['tried'] == 'yes");

if ($tried) {
$validated = (lempty($name) && !lempty($media_type) && lempty($filename));

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (I$validated) {
?>
<p>
The name, media type, and filename are required fields. Please fill
them out to continue.
</p>
<?php
b
b

if ($tried && $validated) {
echo '<p>The item has been created.</p>";

b

// was this type of media selected? print "selected" if so
function media_selected ($type) {

global $media_type;

if ($media_type == $type) { echo "selected"; }

?>

<form action="<?= $PHP_SELF ?>" method="POST">

Name: <input type=text name="name" value="<?= $name ?>" />

Status: <input type="checkbox" name="status" value="active"

<?php if($status == "active') { echo 'checked’; } ?> /> Active

Media: <select name="media_type">
<option value="">Choose one</option>
<option value="picture" <?php media_selected('picture') ?> />Picture</option>
<option value="audio" <?php media_selected(‘audio") ?> />Audio</option>
<option value="movie" <?php media_selected('movie') ?> />Movie</option>

</select>

File: <input type="text" name="filename" value="<?= $filename ?>" />

Caption: <textarea name="caption"><?= $caption ?></textarea>

<input type="hidden" name="tried" value="yes" />
<input type="submit"
value="<?php echo $tried ? 'Continue' : 'Create'; ?>" />
</form>

In this case, the validation is simply a check that a value was supplied. We set $validated to be true
only if $name, $type, and $filename are all nonempty. Other possible validations include checking that
an email address is valid or checking that the supplied filename is local and exists.

For example, to validate an age field to ensure that it contains a nonnegative integer, use this code:

$age = $_POST['age'];
$valid_age = strspn($age, "1234567890") == strlen($age);

The call to strspn() finds the number of digits at the start of the string. In a nonnegative integer, the
whole string should be comprised of digits, so it's a valid age if the entire string is made of digits. We
could also have done this check with a regular expression:

$valid_age = preg_match('/~A\d+$/', $age);

Validating email addresses is a nigh-impossible task. There's no way to take a string and see whether
it corresponds to a valid email address. However, you can catch typos by requiring the user to enter
the email address twice (into two different fields). You can also prevent people from entering email
addresses like "me" or "me@aol" by requiring an at sign (@) and a period after it, and for bonus
points you can check for domains to which you don't want to send mail (e.g., whitehouse.gov, or a
competitor). For example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$emaill = strtolower($_POST['email1']);
$email2 = strtolower($_POST['email2']);
if ($emaill '== $email2) {
die("The email addresses didn't match");
b
if (! preg_match('/@.+\..+$/, $emaill)) {
die("The email address is invalid");
b
if (strpos($emaill, "whitehouse.gov")) {
die("I will not send mail to the White House");

}

Field validation is basically string manipulation. In this example, we've used regular expressions and
string functions to ensure that the string provided by the user is the type of string we expect.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

7.5 Setting Response Headers

As we've already discussed, the HTTP response that a server sends back to a client contains headers
that identify the type of content in the body of the response, the server that sent the response, how
many bytes are in the body, when the response was sent, etc. PHP and Apache normally take care of
the headers for you, identifying the document as HTML, calculating the length of the HTML page, and
so on. Most web applications never need to set headers themselves. However, if you want to send
back something that's not HTML, set the expiration time for a page, redirect the client's browser, or
generate a specific HTTP error, you'll need to use the header() function.

The only catch to setting headers is that you must do so before any of the body is generated. This
means that all calls to header() (or setcookie(), if you're setting cookies) must happen at the very top
of your file, even before the <html> tag. For example:

<?php

header('Content-Type: text/plain");
?>

Date: today

From: fred

To: barney

Subject: hands off!

My lunchbox is mine and mine alone. Get your own,
you filthy scrounger!

Attempting to set headers after the document has started results in this warning:

Warning: Cannot add header information - headers already sent
7.5.1 Different Content Types

The Content-Type header identifies the type of document being returned. Ordinarily this is "text/html",
indicating an HTML document, but there are other useful document types. For example, "text/plain"
forces the browser to treat the page as plain text. This type is like an automatic "view source," and it
is useful when debugging.

In Chapter 9 and Chapter 10, we'll make heavy use of the Content-Type header as we generate
documents that are really graphic images and Adobe PDF files.

7.5.2 Redirections

To send the browser to a new URL, known as a redirection , you set the Location header:

<?php

header('Location: http://www.example.com/elsewhere.html');
exit();

?>

If you provide a partial URL (e.g., "/elsewhere.html"), the redirection is handled internally by the web
server. This is only rarely useful, as the browser generally won't learn that it isn't getting the page it
requested. If there are relative URLs in the new document, the browser will interpret them as being
relative to the document it requested, not the document it was sent. In general, you'll want to
redirect to an absolute URL.

7.5.3 Expiration

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A server can explicitly inform the browser, and any proxy caches that might be between the server
and browser, of a specific date and time for the document to expire. Proxy and browser caches can
hold the document until that time or expire it earlier. Repeated reloads of a cached document do not
contact the server. However, an attempt to fetch an expired document does contact the server.

To set the expiration time of a document, use the Expires header:
header('Expires: Fri, 18 Jan 2002 05:30:00 GMT");

To expire a document three hours from the time the page was generated, use time() and gmstrftime(
) to generate the expiration date string:

$now = time();
$then = gmstrftime("%a, %d %b %Y %H:%M:%S GMT", $now + 60*60*3);
header("Expires: $then™);

To indicate that a document "never" expires, use the time a year from now:

$now = time();
$then = gmstrftime("%a, %d %b %Y %H:%M:%S GMT", $now + 365*86440);
header("Expires: $then");

To mark a document as already expired, use the current time or a time in the past:

$then = gmstrftime("%a, %d %b %Y %H:%M:%S GMT");
header("Expires: $then™);

This is the best way to prevent a browser or proxy cache from storing your document:

header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");
header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");
header("Cache-Control: no-store, no-cache, must-revalidate");
header("Cache-Control: post-check=0, pre-check=0", false);
header("Pragma: no-cache");

For more information on controlling the behavior of browser and web caches, see Chapter 6 of Web
Caching, by Duane Wessels (O'Reilly).

7.5.4 Authentication

HTTP authentication works through request headers and response statuses. A browser can send a
username and password (the credentials) in the request headers. If the credentials aren't sent or
aren't satsifactory, the server sends a "401 Unauthorized" response and identifies the realm of
authentication (a string such as "Mary's Pictures" or "Your Shopping Cart") via the WWW-Authenticate
header. This typically pops up an "Enter username and password for ..." dialog box on the browser,
and the page is then re-requested with the updated credentials in the header.

To handle authentication in PHP, check the username and password (the PHP_AUTH_USER and
PHP_AUTH_PW elements of $_SERVER) and call header() to set the realm and send a "401
Unauthorized" response:

header("WWW-Authenticate: Basic realm="Top Secret Files"");
header("HTTP/1.0 401 Unauthorized");

You can do anything you want to authenticate the username and password; for example, you could
consult a database, read a file of valid users, or consult a Microsoft domain server. This example
checks to make sure that the password is the username, reversed:

$auth_ok = 0;

$user = $_SERVER['PHP_AUTH_USER'];

$pass = $_SERVER['PHP_AUTH_PW'];

if (isset($user) && isset($pass) && $user === strrev($pass)) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$auth_ok = 1;

by

if (1$auth_ok) {
header("WWW-Authenticate: Basic realm="Top Secret Files"");
header("HTTP/1.0 401 Unauthorized');

}

Putting this into a document gives something like:

<?php

$auth_ok = 0;

$user = $_SERVER['PHP_AUTH_USER'];

$pass = $_SERVER['PHP_AUTH_PW'];

if (isset($user) && isset($pass) && $user === strrev($pass)) {
$auth_ok = 1;

b

if (!$auth_ok) {
header("WWW-Authenticate: Basic realm="Top Secret Files"');
header("HTTP/1.0 401 Unauthorized');
// anything else printed here is only seen if the client hits "Cancel"

?>
}<!-- your password-protected document goes here -->

If you're protecting more than one page, put the above code into a separate file and include it at the
top of every protected page.

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

7.6 Maintaining State

HTTP is a stateless protocol, which means that once a web server completes a client's request for a
web page, the connection between the two goes away. In other words, there is no way for a server to
recognize that a sequence of requests all originate from the same client.

State is useful, though. You can't build a shopping-cart application, for example, if you can't keep
track of a sequence of requests from a single user. You need to know when a user puts a item in his
cart, when he adds items, when he removes them, and what's in the cart when he decides to check
out.

To get around the Web's lack of state, programmers have come up with many tricks to keep track of
state information between requests (also known as session tracking). One such technique is to use
hidden form fields to pass around information. PHP treats hidden form fields just like normal form
fields, so the values are available in the $_GET and $_POST arrays. Using hidden form fields, you can
pass around the entire contents of a shopping cart. However, a more common technique is to assign
each user a unique identifier and pass the ID around using a single hidden form field. While hidden
form fields work in all browsers, they work only for a sequence of dynamically generated forms, so
they aren't as generally useful as some other techniques.

Another technique is URL rewriting, where every local URL on which the user might click is
dynamically modified to include extra information. This extra information is often specified as a
parameter in the URL. For example, if you assign every user a unique ID, you might include that ID in
all URLs, as follows:

http://www.example.com/catalog.php?userid=123

If you make sure to dynamically modify all local links to include a user ID, you can now keep track of
individual users in your application. URL rewriting works for all dynamically generated documents, not
just forms, but actually performing the rewriting can be tedious.

A third technique for maintaining state is to use cookies. A cookie is a bit of information that the
server can give to a client. On every subsequent request the client will give that information back to
the server, thus identifying itself. Cookies are useful for retaining information through repeated visits
by a browser, but they're not without their own problems. The main problem is that some browsers
don't support cookies, and even with browsers that do, the user can disable cookies. So any
application that uses cookies for state maintenance needs to use another technique as a fallback
mechanism. We'll discuss cookies in more detail shortly.

The best way to maintain state with PHP is to use the built-in session-tracking system. This system
lets you create persistent variables that are accessible from different pages of your application, as
well as in different visits to the site by the same user. Behind the scenes, PHP's session-tracking
mechanism uses cookies (or URLs) to elegantly solve most problems that require state, taking care of
all the details for you. We'll cover PHP's session-tracking system in detail later in this chapter.

7.6.1 Cookies

A cookie is basically a string that contains several fields. A server can send one or more cookies to a
browser in the headers of a response. Some of the cookie's fields indicate the pages for which the
browser should send the cookie as part of the request. The value field of the cookie is the payload—
servers can store any data they like there (within limits), such as a unique code identifying the user,
preferences, etc.

Use the setcookie() function to send a cookie to the browser:
setcookie(name [, value [, expire [, path [, domain [, secure 11111);

This function creates the cookie string from the given arguments and creates a Cookie header with
that string as its value. Because cookies are sent as headers in the response, setcookie() must be
called before any of the body of the document is sent. The parameters of setcookie() are:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

name

A unique name for a particular cookie. You can have multiple cookies with different names and
attributes. The name must not contain whitespace or semicolons.

value

The arbitrary string value attached to this cookie. The original Netscape specification limited
the total size of a cookie (including name, expiration date, and other information) to 4 KB, so
while there's no specific limit on the size of a cookie value, it probably can't be much larger
than 3.5 KB.

expire

The expiration date for this cookie. If no expiration date is specified, the browser saves the
cookie in memory and not on disk. When the browser exits, the cookie disappears. The
expiration date is specified as the number of seconds since midnight, January 1, 1970, GMT.
For example, pass time()+60*60*2 to expire the cookie in two hours' time.

path

The browser will return the cookie only for URLs below this path. The default is the directory in
which the current page resides. For example, if /store/front/cart.php sets a cookie and doesn't
specify a path, the cookie will be sent back to the server for all pages whose URL path starts
with /store/front/.

domain

The browser will return the cookie only for URLs within this domain. The default is the server
hostname.

secure

The browser will transmit the cookie only over https connections. The default is false, meaning
that it's okay to send the cookie over insecure connections.

When a browser sends a cookie back to the server, you can access that cookie through the $_COOKIE
array. The key is the cookie name, and the value is the cookie's value field. For instance, the following
code at the top of a page keeps track of the number of times the page has been accessed by this
client:

<?php

$page_accesses = $_COOKIE['accesses'];
setcookie('accesses', ++$page_accesses);
?>

When decoding cookies, any periods (.) in a cookie's name are turned into underscores. For instance,
a cookie named tip.top is accessible as $_COOKIE['tip_top'].

Example 7-10 shows an HTML page that gives a range of options for background and foreground
colors.

Example 7-10. Preference selection

<html|>

<head> <title>Set Your Preferences</title></head>
<body>

<form action="prefs.php" method="post">

Background:

<select name="background">

<option value="black">Black</option>
<option value="white">White</option>
<option value="red">Red</option>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<option value="blue">Blue</option>
</select>

Foreground:

<select name="foreground">

<option value="black">Black</option>
<option value="white">White</option>
<option value="red">Red</option>
<option value="blue">Blue</option>
</select><p />

<input type="submit" value="Change Preferences">
</form>
</body>
</html>

The form in Example 7-10 submits to the PHP script prefs.php, which is shown in Example 7-11. This
script sets cookies for the color preferences specified in the form. Note that the calls to setcookie()
are made before the HTML page is started.

Example 7-11. Setting preferences with cookies

<?php

$colors = array('black' => '#000000',
'white' => "#ffffff",
'red" => "#ff0000',
'blue' => "#0000ff");

$bg_name = $_POST['background'];
$fg_name = $_POST['foreground'];

setcookie('bg', $colors[$bg_name]);
setcookie('fg', $colors[$fg_name]);

?>

<html>

<head> <title>Preferences Set</title></head>
<body>

Thank you. Your preferences have been changed to:

Background: <?= $bg_name ?>

Foreground: <?= $fg_name ?>

Click here to see the preferences
in action.

</body>
</html>

The page created by Example 7-11 contains a link to another page, shown in Example 7-12, that uses
the color preferences by accessing the $_COOKIE array.

Example 7-12. Using the color preferences with cookies

<html|>

<head> <title>Front Door</title></head>

<?php

$bg = $_COOKIE['bg'];

$fg = $_COOKIE['fg'];

?>

<body bgcolor="<?= $bg ?>" text="<?= $fg ?>">

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<h1>Welcome to the Store</h1>

We have many fine products for you to view. Please feel free to browse
the aisles and stop an assistant at any time. But remember, you break it
you bought it!'<p>

Would you like to change your preferences?

</body>
</html>

There are plenty of caveats about the use of cookies. Not all clients support or accept cookies, and
even if the client does support cookies, the user may have turned them off. Furthermore, the cookie
specification says that no cookie can exceed 4 KB in size, only 20 cookies are allowed per domain, and
a total of 300 cookies can be stored on the client side. Some browsers may have higher limits, but
you can't rely on that. Finally, you have no control over when browsers actually expire cookies—if
they are at capacity and need to add a new cookie, they may discard a cookie that has not yet
expired. You should also be careful of setting cookies to expire quickly. Expiration times rely on the
client's clock being as accurate as yours. Many people do not have their system clocks set accurately,
so you can't rely on rapid expirations.

Despite these limitations, cookies are very useful for retaining information through repeated visits by
a browser.

7.6.2 Sessions

PHP has built-in support for sessions, handling all the cookie manipulation for you to provide
persistent variables that are accessible from different pages and across multiple visits to the site.
Sessions allow you to easily create multipage forms (such as shopping carts), save user
authentication information from page to page, and store persistent user preferences on a site.

Each first-time visitor is issued a unique session ID. By default, the session ID is stored in a cookie
called PHPSESSID. If the user's browser does not support cookies or has cookies turned off, the
session ID is propagated in URLs within the web site.

Every session has a data store associated with it. You can register variables to be loaded from the
data store when each page starts and saved back to the data store when the page ends. Registered
variables persist between pages, and changes to variables made on one page are visible from others.
For example, an "add this to your shopping cart" link can take the user to a page that adds an item to
a registered array of items in the cart. This registered array can then be used on another page to
display the contents of the cart.

7.6.2.1 Session basics

To enable sessions for a page, call session_start() before any of the document has been generated:

<?php session_start() ?>
<html>

</html>

This assigns a new session ID if it has to, possibly creating a cookie to be sent to the browser, and
loads any persistent variables from the store.

If you have registered objects, the class definitions for those objects must be loaded before the call to
session_start(). See Chapter 6 for discussion and an example.

You can register a variable with the session by passing the name of the variable to session_register() .
For example, here is a basic hit counter:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php

session_start();

session_register(‘hits");

++$hits;

?>

This page has been viewed <?= $hits ?> times.

The session_start() function loads registered variables into the associative array
$HTTP_SESSION_VARS. The keys are the variables' names (e.g., $HTTP_SESSION_VARS['hits']). If
register_globals is enabled in the php.ini file, the variables are also set directly. Because the array and
the variable both reference the same value, setting the value of one also changes the value of the
other.

You can unregister a variable from a session, which removes it from the data store, by calling
session_unregister(). The session_is_registered() function returns true if the given variable is
registered. If you're curious, the session_id() function returns the current session ID.

To end a session, call session_destroy(). This removes the data store for the current session, but it
doesn't remove the cookie from the browser cache. This means that, on subsequent visits to sessions-
enabled pages, the user will have the same session ID she had before the call to session_destroy(),
but none of the data.

Example 7-13 shows the first code block from Example 7-11 rewritten to use sessions instead of
manually setting cookies.

Example 7-13. Setting preferences with sessions

<?php
$colors = array('black' => '#000000',

'white' => "#ffffff',

'red" => "#ff0000',

'blue' => '#0000ff");
session_start();
session_register('bg");
session_register('fg");

$bg_name = $_POST['background'];
$fg_name = $_POST['foreground'];

$bg = $colors[$bg_name];
$fg = $colors[$fg_name];
?>

Example 7-14 shows Example 7-12 rewritten to use sessions. Once the session is started, the $bg and
$fg variables are created, and all the script has to do is use them.

Example 7-14. Using preferences from sessions

<?php session_start() ?>

<html>

<head> <title>Front Door</title></head>

<body bgcolor="<?= $bg ?>" text="<?= $fg ?>">
<h1>Welcome to the Store</h1>

We have many fine products for you to view. Please feel free to browse
the aisles and stop an assistant at any time. But remember, you break it

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

you bought it!<p>
Would you like to change your preferences?

</body>
</html>

By default, PHP session ID cookies expire when the browser closes. That is, sessions don't persist
after the browser exits. To change this, you'll need to set the session.cookie_lifetime option in php.ini
to the lifetime of the cookie, in seconds.

7.6.2.2 Alternatives to cookies

By default, the session ID is passed from page to page in the PHPSESSID cookie. However, PHP's
session system supports two alternatives: form fields and URLs. Passing the session ID via hidden
fields is extremely awkward, as it forces you to make every link between pages be a form's submit
button. We will not discuss this method further here.

The URL system for passing around the session ID, however, is very elegant. PHP can rewrite your
HTML files, adding the session ID to every relative link. For this to work, though, PHP must be
configured with the -enable-trans-id option when compiled (see Chapter 1). There is a performance
penalty for this, as PHP must parse and rewrite every page. Busy sites may wish to stick with cookies,
as they do not incur the slowdown caused by page rewriting.

7.6.2.3 Custom storage

By default, PHP stores session information in files in your server's temporary directory. Each session's
variables are stored in a separate file. Every variable is serialized into the file in a proprietary format.
You can change all of these things in the php.ini file.

You can change the location of the session files by setting the session.save_path value in php.ini. If
you are on a shared server with your own installation of PHP, set the directory to somewhere in your
own directory tree, so other users on the same machine cannot access your session files.

PHP can store session information in one of two formats in the current session store—either PHP's

built-in format, or WDDX (http://www.openwddx.org/). You can change the format by setting the

session.serialize_handler value in your php.ini file to either php for the default behavior, or wddx for
WDDX format.

You can write your own functions for reading and writing the registered variables. In this section, we'll
develop an example that stores session data in a database, which lets you share sessions between
multiple sites. It's easy to install your custom session store. First, set session.save_handler to user in
your php.ini file. Next, write functions for opening a new session, closing a session, reading session
information, writing session information, destroying a session, and cleaning up after a session. Then
register them with the session_set_save_handler() function:

session_set_save_handler(open_fn, close_fn, read_fn, write_fn, destroy _fn, gc_fn);

To make all the PHP files within a directory use your custom session store, set the following options in
your httpd.conf file:

<Directory "/var/html/test">
php_value session.save_handler user
php_value session.save_path mydb
php_value session.name session_store
</Directory>

The mydb value should be replaced with the name of the database containing the table. It is used by
the custom session store to find the database.

The following sample code uses a MySQL database for a session store (databases are discussed in full

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

in ChapIﬁLS) The table used in the example has the following structure:

CREATE TABLE session_store (
session_id char(32) not null PRIMARY KEY,
expiration timestamp,
value text not null

)

The first function you must provide is the open handler, which takes care of opening a new session. It
is called with the current value of session.save_path (from your php.ini file) and the name of the
variable containing the PHP session ID (which defaults to PHPSESSID and can be changed in the
php.ini file by setting session.name). Our open handler simply connects to the database and sets the
global variable $table to the name of the database table that holds the session information:

function open ($save_path,$session_name) {
global $table;

mysql_connect('localhost');
mysql_select_db($save_path);

$table = $session_name;

return true;

}

Once a session has been opened, the read and write handlers are called as necessary to get the
current state information and to store that state in a persistent manner. The read handler is given the
session ID, and the write handler is called with the session's ID and the data for the session. Our
database read and write handlers query and update the database table:

function read($session_id) {
global $table;
$result = mysql_query("SELECT value FROM $table
WHERE session_id="$session_id"");
if($result && mysqgl_num_rows($result)) {
return mysql_result($result,0);

} else {
error_log("read: ".mysql_error()."\n",3,"/tmp/errors.log");
return "";

b

}

function write($session_id, $data) {
global $table;
$data = addslashes($data);
mysql_query("REPLACE INTO $table (session_id,value)
VALUES('$session_id','$data")")
or error_log("write: ".mysql_error()."\n",3,"/tmp/errors.log");
return true;

}

Complementing the open handler is the close handler, which is called after each page's script is done
executing. It performs any cleanup necessary when closing a session (usually very minimal). Our
database close handler simply closes the database connection:

function close() {
mysql_close();

return true;

}

When a session is completed, the destroy handler is called. It is responsible for cleaning up anything

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

created during the open handler's call. In the case of the database storage system, we must remove
that session's entry in the table:

function destroy($session_id) {
global $table;

mysql_query("DELETE FROM $table WHERE session_id = '$session_id";

return true;

}

The final handler, the garbage-collection handler, is called at intervals to clean up expired session
data. The function should check for data that has not been used in longer than the lifetime given by
the call to the handler. Our database garbage-collection handler removes entries from the table
whose last-modified timestamp exceeds the maximum time:

function gc($max_time) {
global $table;
mysql_query(
"DELETE FROM $table WHERE UNIX_TIMESTAMP(expiration)
< UNIX_TIMESTAMP()-$max_time")
or error_log("gc: ".mysql_error()."\n",3,"/tmp/errors.log");
return true;

}

After creating all the handler functions, install them by calling session_set_save_handler() with the
appropriate function names. With the preceding examples, call:

session_set_save_handler(‘open’, 'close’, 'read', 'write', 'destroy’, 'gc’);

You must call session_set_save_handler() before starting a session with session_start(). This is
normally accomplished by putting the store functions and call to session_set_save_handler() in a file
that's included in every page that needs the custom session handler. For example:

<?php require_once 'database_store.inc';
session_start();
?>

Because the handlers are called after output for the script is sent, no function that generates output
can be called. If errors occur, log them into a file using error_log() , as we did earlier.

7.6.3 Combining Cookies and Sessions

Using a combination of cookies and your own session handler, you can preserve state across visits.
Any state that should be forgotten when a user leaves the site, such as which page the user is on, can
be left up to PHP's built-in sessions. Any state that should persist between user visits, such as a
unique user ID, can be stored in a cookie. With the user's ID, you can retrieve the user's more
permanent state, such as display preferences, mailing address, and so on, from a permanent store,
such as a database.

Example 7-15 allows the user to select text and background colors and stores those values in a
cookie. Any visits to the page within the next week send the color values in the cookie.

Example 7-15. Saving state across visits

<?php
if($_POST['bgcolor']) {

setcookie('bgcolor', $_POST['bgcolor'], time() + (60 * 60 * 24 * 7));
b

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$bgcolor = empty($bgcolor) ? 'gray' : $bgcolor;
?>

<body bgcolor="<?= $bgcolor ?>">

<form action="<?= $PHP_SELF ?>" method="POST">
<select name="bgcolor">
<option value="gray">Gray</option>
<option value="white">White</option>
<option value="black">Black</option>
<option value="blue">Blue</option>
<option value="green">Green</option>
<option value="red">Red</option>
</select>

<input type="submit" />
</form>
</body>

I |@ve RuBoard

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

7.7 SSL

The Secure Sockets Layer (SSL) provides a secure channel over which regular HTTP requests and
responses can flow. PHP doesn't specifically concern itself with SSL, so you cannot control the
encryption in any way from PHP. An https:// URL indicates a secure connection for that document,
unlike an http:// URL.

The HTTPS entry in the $_SERVER array is set to 'on' if the PHP page was generated in response to a
request over an SSL connection. To prevent a page from being generated over a nonencrypted
connection, simply use:

if ($_SERVER{'HTTPS'] !== 'on") {
die("Must be a secure connection.");

}

A common mistake is to send a form over a secure connection (e.g.,
https://www.example.com/form.html), but have the action of the form submit to an http:// URL. Any
form parameters entered by the user are sent over an insecure connection—a trivial packet sniffer can
reveal them.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Chapter 8. Databases

PHP has support for over 20 databases, including the most popular commercial and open source
varieties. Relational database systems such as MySQL, PostgreSQL, and Oracle are the backbone of
most modern dynamic web sites. In these are stored shopping-cart information, purchase histories,
product reviews, user information, credit-card numbers, and sometimes even web pages themselves.

This chapter covers how to access databases from PHP. We focus on the PEAR DB system, which lets
you use the same functions to access any database, rather than on the myriad database-specific
extensions. In this chapter, you'll learn how to fetch data from the database, how to store data in the
database, and how to handle errors. We finish with a sample application that shows how to put
various database techniques into action.

This book cannot go into all the details of creating web database applications with PHP. For a more in-
depth look at the PHP/MySQL combination, see Web Database Applications with PHP and MySQL, by
Hugh Williams and David Lane (O'Reilly).

{10ve RuBoard [+ evisus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

8.1 Using PHP to Access a Database

There are two ways to access databases from PHP. One is to use a database-specific extension; the
other is to use the database-independent PEAR DB library. There are advantages and disadvantages
to each approach.

If you use a database-specific extension, your code is intimately tied to the database you're using.
The MySQL extension's function names, parameters, error handling, and so on are completely
different from those of the other database extensions. If you want to move your database from
MySQL to PostgreSQL, it will involve significant changes to your code. The PEAR DB, on the other
hand, hides the database-specific functions from you; moving between database systems can be as
simple as changing one line of your program.

The portability of an abstraction layer like PEAR's DB library comes at a price. Features that are
specific to a particular database (for example, finding the value of an automatically assigned unique
row identifier) are unavailable. Code that uses the PEAR DB is also typically a little slower than code
that uses a database-specific extension.

Keep in mind that an abstraction layer like PEAR DB does absolutely nothing when it comes to making
sure your actual SQL queries are portable. If your application uses any sort of nongeneric SQL, you'll
have to do significant work to convert your queries from one database to another. For large
applications, you should consider writing a functional abstraction layer; that is, for each database your
application needs to support, write a set of functions that perform various database actions, such as
get_user_record(), insert_user_record(), and whatever else you need, then have a configuration
option that sets the type of database to which your application is connected. This approach lets you
use all the intricacies of each database you choose to support without the performance penalty and
limitations of an abstraction layer.

For simple applications, we prefer the PEAR DB to the database-specific extensions, not just for
portability but also for ease of use. The speed and feature costs are rarely significant enough to force
us into using the database-specific extensions. For the most part, the rest of this chapter gives
sample code using the PEAR DB abstraction objects.

For most databases, you'll need to recompile PHP with the appropriate database drivers built into it.
This is necessary whether or not you use the PEAR DB library. The help information for the configure
command in the PHP source distribution gives information on how to build PHP with support for
various databases. For example:

--with-mysql[=DIR] Include MySQL support. DIR is the MySQL base
directory. If unspecified, the bundled MySQL
library will be used.

--with-oci8[=DIR] Include Oracle-oci8 support. Default DIR is
ORACLE_HOME.

--with-ibm-db2[=DIR] Include IBM DB2 support. DIR is the DB2 base
install directory, defaults to
/home/db2inst1/sqllib

--with-pgsql[=DIR] Include PostgreSQL support. DIR is the PostgreSQL
base install directory, defaults to
/usr/local/pgsql.

You can't build PHP with support for a database whose client libraries you don't have on your system.
For example, if you don't have the Oracle client libraries, you can't build PHP with support for Oracle
databases.

Use the phpinfo() function to check for database support in your installation of PHP. For instance, if
you see a section in the configuration report for MySQL, you know you have MySQL support.

{1ove Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

8.2 Relational Databases and SQL

A Relational Database Management System (RDBMS) is a server that manages data for you. The data
is structured into tables, where each table has some number of columns, each of which has a name
and a type. For example, to keep track of James Bond movies, we might have a "movies" table that
records the title (a string), year of release (a number), and the actor who played Bond in each movie
(an index into a table of Bond actors).

Tables are grouped together into databases, so a James Bond database might have tables for movies,
actors playing Bond, and villains. An RDBMS usually has its own user system, which controls access
rights for databases (e.g., "user Fred can update database Bond").

PHP communicates with relational databases such as MySQL and Oracle using the Structured Query
Language (SQL). You can use SQL to create, modify, and query relational databases.

The syntax for SQL is divided into two parts. The first, Data Manipulation Language, or DML, is used
to retrieve and modify data in an existing database. DML is remarkably compact, consisting of only
four verbs: select, insert, update, and delete. The set of SQL commands, used to create and modify the
database structures that hold the data, is known as Data Definition Language, or DDL. The syntax for
DDL is not as standardized as that for DML, but as PHP just sends any SQL commands you give it to
the database, you can use any SQL commands your database supports.

Assuming you have a table called movies, this SQL statement would insert a new row:
INSERT INTO movies VALUES(O, 'Moonraker', 1979, 2)

This SQL statement inserts a new row but lists the columns for which there are values:
INSERT INTO movies (title, year, actor) VALUES ('Octopussy’, 1982, 2)

To delete all movies from 1979, we could use this SQL statement:

DELETE FROM movies WHERE year=1979

To change the year for Octopussy to 1983, use this SQL statement:

UPDATE movies SET year=1983 WHERE title='Octopussy'

To fetch only the movies made in the 1980s, use:

SELECT * FROM movies WHERE year >= 1980 AND year < 1990

You can also specify the fields you want returned. For example:

SELECT title, year FROM movies WHERE year >= 1980 AND year < 1990

You can issue queries that bring together information from multiple tables. For example, this query
joins together the movie and actor tables to let us see who starred in each movie:

SELECT movies.title, movies.year, actors.name
FROM movies,actors WHERE movies.star = actors.id
AND year >= 1980 AND year < 1990

For more on SQL, see SQL in a Nutshell, by Kevin Kline (O'Reilly).

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard 4 Fenvisu |
8.3 PEAR DB Basics

Example 8-1 is a program to build an HTML table of information about James Bond movies. It
demonstrates how to use the PEAR DB library (which comes with PHP) to connect to a database, issue
queries, check for errors, and transform the results of queries into HTML. The library is object-
oriented, with a mixture of class methods (DB::connect(), DB::iserror()) and object methods ($db-
>query(), $g->fetchInto()).

Example 8-1. Display movie information

<html><head> <title>Bond Movies</title></head>
<body>

<table border=1>
<tr><th>Movie</th><th>Year</th><th>Actor</th></tr>
<?php
// connect
require_once('DB.php");
$db = DB::connect("mysql://bondview:007@localhost/webdb");
if (DB::iserror($db)) {

die($db->getMessage());
b

// issue the query

$sql = "SELECT movies.title,movies.year,actors.name
FROM movies,actors
WHERE movies.actor=actors.id
ORDER BY movies.year ASC";

$q = $db->query($sql);

if (DB::iserror($q)) {
die($g->getMessage());

b

// generate the table

while ($g->fetchInto($row)) {

?>

<tr><td><?= $row[0] ?></td>
<td><?= $row[1] ?></td>
<td><?= $row[2] ?></td>

<[tr>

<?php

b

?>
The output of Example 8-1 is shown in Figure 8-1.

Figure 8-1. The movie page

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

8.3.1 Data Source Names

A data source name (DSN) is a string that specifies where the database is located, what kind of
database it is, the username and password to use when connecting to the database, and more. The
components of a DSN are assembled into a URL-like string:

type(dbsyntax).|| username: password@ protocol+ hostspec/ database

The only mandatory field is type, which specifies the PHP database backend to use. Table 8-1 lists the
implemented database types at the time of writing.

Table 8-1. PHP database types

Name Database
Mysql MySQL
Pgsql PostgreSQL
Ibase InterBase
Msql Mini SQL
Mssql Microsoft SQL Server
oci8 Oracle 7/8/8i
Odbc ODBC
Sybase SyBase
Ifx Informix
Fbsql FrontBase

The protocol is the communication protocol to use. The two common values are "tcp" and "unix",
corresponding to Internet and Unix domain sockets. Not every database backend supports every
communications protocol.

These are some sample valid data source names:

mysql:///webdb
mysql://localhost/webdb
mysql://bondview@localhost/webdb
mysql://bondview@tcp+localhost/webdb
mysql://bondview:007@localhost/webdb

In Example 8-1, we connected to the MySQL database webdb with the username bondview and
password 007.

A common development technique is to store the DSN in a PHP file and include that file in every page
that requires database connectivity. Doing this means that if the information changes, you don't have
to change every page. In a more sophisticated settings file, you might even switch DSNs based on
whether the application is running in development or deployment mode.

8.3.2 Connecting

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Once you have a DSN, create a connection to the database using the connect() method. This returns
a database object you'll use for tasks such as issuing queries and quoting parameters:

$db = DB::connect(DSN [, options 1);

The options value can either be Boolean, indicating whether or not the connection is to be persistent,
or an array of options settings. The options values are given in Table 8-2.

Table 8-2. Connection options

Option Controls
persistent Connection persists between accesses
optimize What to optimize for
debug Display debugging information

By default, the connection is not persistent and no debugging information is displayed. Permitted
values for optimize are 'performance' and 'portability’. The default is 'performance'. Here's how to enable
debugging and optimize for portability:

$db = DB::connect($dsn, array('debug' => 1, 'optimize' => 'portability"));
8.3.3 Error Checking

PEAR DB methods return DB_ERROR if an error occurs. You can check for this with DB::isError():

$db = DB::connect($datasource);

if (DB::isError($db)) {
die($db->getMessage());

b

The DB::isError() method returns true if an error occurred while working with the database object. If
there was an error, the usual behavior is to stop the program and display the error message reported
by the getMessage() method. You can call getMessage() on any PEAR DB object.

8.3.4 Issuing a Query
The query() method on a database object sends SQL to the database:

$result = $db->query(sgl);

A SQL statement that doesn't query the database (e.g., INSERT, UPDATE, DELETE) returns the DB_OK
constant to indicate success. SQL that performs a query (e.g., SELECT) returns an object that you can
use to access the results.

You can check for success with DB::isError():
$q = $db->query($sql);
if (DB::iserror($q)) {
die($g->getMessage());
8.3.5 Fetching Results from a Query
PEAR DB provides two methods for fetching data from a query result object. One returns an array

corresponding to the next row, and the other stores the row array into a variable passed as a
parameter.

8.3.5.1 Returning the row

The fetchRow() method on a query result returns an array of the next row of results:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$row = $result->fetchRow([mode 1);

This returns either an array of data, NULL if there is no more data, or DB_ERROR if an error occurred.
The mode parameter controls the format of the array returned, which is discussed later.

This common idiom uses the fetchRow() method to process a result, one row at a time, as follows:

while ($row = $result->fetchRow()) {
if (DB::isError($row)) {
die($row->getMessage());
by

// do something with the row

by
8.3.5.2 Storing the row

The fetchInto() method also gets the next row, but stores it into the array variable passed as a
parameter:

$success = $result->fetchInto(array, [model);
Like fetchRow(), fetchInto() returns NULL if there is no more data, or DB_ERROR if an error occurs.
The idiom to process all results looks like this with fetchInto():

while ($success = $result->fetchInto($row)) {
if (DB::isError($success)) {
die($success->getMessage());
¥

// do something with the row

by
8.3.5.3 Inside a row array

Just what are these rows that are being returned? By default, they're indexed arrays, where the
positions in the array correspond to the order of the columns in the returned result. For example:

$row = $result->fetchRow();
if (DB::isError($row)) {
die($row->getMessage());
b
var_dump($row);
array(3) {
[0]=>
string(5) "Dr No"
[1]=>
string(4) "1962"
[2]=>
string(12) "Sean Connery"

You can pass a mode parameter to fetchRow() or fetchInto() to control the format of the row array.
The default behavior, shown previously, is specified with DB_FETCHMODE_ORDERED.

The fetch mode DB_FETCHMODE_ASSOC creates an array whose keys are the column names and
whose values are the values from those columns:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$row = $result->fetchRow(DB_FETCHMODE_ASSOC);
if (DB::isError($row)) {
die($row->getMessage());
b
var_dump($row);
array(3) {
["title"]=>
string(5) "Dr No"
["year"]=>
string(4) "1962"
["name"]=>
string(12) "Sean Connery"

The DB_FETCHMODE_OBJECT mode turns the row into an object, with a property for each column in
the result row:

$row = $result->fetchRow(DB_FETCHMODE_ASSOC);
if (DB::isError($row)) {

die($row->getMessage());
b

var_dump($row);
object(stdClass)(3) {
["title"]=>
string(5) "Dr No"
["year"]=>
string(4) "1962"
["name"]=>
string(12) "Sean Connery"

To access data in the object, use the $object->property notation:

echo "{$row->title} was made in {$row->year}";
Dr No was made in 1962

8.3.5.4 Finishing the result

A query result object typically holds all the rows returned by the query. This may consume a lot of
memory. To return the memory consumed by the result of a query to the operating system, use the
free() method:

$result->free();

This is not strictly necessary, as free() is automatically called on all queries when the PHP script ends.
8.3.6 Disconnecting
To force PHP to disconnect from the database, use the disconnect() method on the database object:

$db->disconnect();

This is not strictly necessary, however, as all database connections are disconnected when the PHP
script ends.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

8.4 Advanced Database Techniques

PEAR DB goes beyond the database primitives shown earlier; it provides several shortcut functions for
fetching result rows, as well as a unique row ID system and separate prepare/execute steps that can
improve the performance of repeated queries.

8.4.1 Placeholders

Just as printf() builds a string by inserting values into a template, the PEAR DB can build a query by
inserting values into a template. Pass the query() function SQL with ? in place of specific values, and
add a second parameter consisting of the array of values to insert into the SQL:

$result = $db->query(SQL, values);
For example, this code inserts three entries into the movies table:

$movies = array(array('Dr No', 1962),
array('Goldfinger', 1965),
array('Thunderball’, 1965));
foreach ($movies as $movie) {
$db->query('INSERT INTO movies (title,year) VALUES (?,?)', $movie);

}

There are three characters that you can use as placeholder values in an SQL query:
?

A string or number, which will be quoted if necessary (recommended)

A string or number, which will never be quoted

A filename, the contents of which will be included in the statement (e.g., for storing an image
file in a BLOB field)

8.4.2 Prepare/Execute

When issuing the same query repeatedly, it can be more efficient to compile the query once and then
execute it multiple times, using the prepare() , execute(), and executeMultiple() methods.

The first step is to call prepare() on the query:
$compiled = $db->prepare(SQL);

This returns a compiled query object. The execute() method fills in any placeholders in the query and
sends it to the RDBMS:

$response = $db->execute(compiled, values),

The values array contains the values for the placeholders in the query. The return value is either a
query response object, or DB_ERROR if an error occurred.

For example, we could insert multiple values into the movies table like this:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$movies = array(array('Dr No', 1962),
array('Goldfinger', 1965),
array(‘Thunderball’, 1965));
$compiled = $g->prepare('INSERT INTO movies (title,year) VALUES (?,?)");
foreach ($movies as $movie) {
$db->execute($compiled, $movie);

}

The executeMultiple() method takes a two-dimensional array of values to insert:
$responses = $db->executeMultiple(compiled, values);

The values array must be numerically indexed from 0 and have values that are arrays of values to
insert. The compiled query is executed once for every entry in values, and the query responses are
collected in $responses.

A better way to write the movie-insertions code is:

$movies = array(array('Dr No', 1962),

array('Goldfinger', 1965),

array(‘Thunderball’, 1965));
$compiled = $g->prepare('INSERT INTO movies (title,year) VALUES (?,?)");
$db->insertMultiple($compiled, $movies);

8.4.3 Shortcuts

PEAR DB provides a number of methods that perform a query and fetch the results in one step:
getOne() , getRow(), getCol(), getAssoc(), and getAll(). All of these methods permit placeholders.

The getOne() method fetches the first column of the first row of data returned by an SQL query:
$value = $db->getOne(SQL [, values 1);
For example:

$when = $db->getOne("SELECT avg(year) FROM movies");
if (DB::isError($when)) {
die($when->getMessage());

echo "The average James Bond movie was made in $when";
The average James Bond movie was made in 1977

The getRow() method returns the first row of data returned by an SQL query:
$row = $db->getRow(SQL [, values1]);
This is useful if you know only one row will be returned. For example:
list($title, $actor) = $db->getRow(

"SELECT movies.title,actors.name FROM movies,actors

WHERE movies.year=1977 AND movies.actor=actors.id");

echo "($title, starring $actor)";
(The Spy Who Loved Me, starring Roger Moore)

The getCol() method returns a single column from the data returned by an SQL query:
$col = $db->getCol(SQL [, column [, values1]);

The column parameter can be either a number (0, the default, is the first column), or the column
name.

For example, this fetches the names of all the Bond movies in the database, ordered by the year they
were released:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$titles = $db->getAll("SELECT title FROM movies ORDER BY year ASC");
foreach ($titles as $title) {
echo "$title\n";

b
Dr No

From Russia With Love
Goldfinger

The getAll() method returns an array of all the rows returned by the query:
$all = $db->getAll(SQL [, values [, fetchmode 1]);

For example, the following code builds a select box containing the names of the movies. The ID of the
selected movie is submitted as the parameter value.

$results = $db->getAll("SELECT id,title FROM movies ORDER BY year ASC");
echo "<select name='movie'>\n";
foreach ($results as $result) {

echo "<option value={$result[0]}>{$result[1]}</option>\n";

echo "</select>";

All the get*() methods return DB_ERROR when an error occurs.
8.4.4 Details About a Query Response

Four PEAR DB methods provide you with information on a query result object: numRows() , numCols(
), affectedRows(), and tableInfo().

The numRows() and numCols() methods tell you the number of rows and columns returned from a
SELECT query:

$howmany = $response->numRows();
$howmany = $response->numCols();

The affectedRows() method tells you the number of rows affected by an INSERT, DELETE, or UPDATE
operation:

$howmany = $response->affectedRows();

The tableInfo() method returns detailed information on the type and flags of fields returned from a
SELECT operation:

$info = $response->tableInfo();
The following code dumps the table information into an HTML table:

$info = $response->tableInfo();
a_to_table($info);

function a_to_table ($a) {
echo "<table border=1>\n";
foreach ($a as $k => $v) {
echo "<tr valign=top align=Ileft><td>$k</td><td>";
if (is_array($v)) {
a_to_table($v);
}else {
print_r($v);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

echo "</td></tr>\n";

echo "</table>\n";

b
Figure 8-2 shows the output of the table information dumper.

Figure 8-2. The information from tableInfo()

8.4.5 Sequences

Not every RDBMS has the ability to assign unique row IDs, and those that do have wildly differing
ways of returning that information. PEAR DB sequences are an alternative to database-specific ID
assignment (for instance, MySQL's AUTO_INCREMENT).

The nextID() method returns the next ID for the given sequence:
$id = $db->nextID(sequence);

Normally you'll have one sequence per table for which you want unique IDs. This example inserts
values into the movies table, giving a unique identifier to each row:

$movies = array(array('Dr No', 1962),
array('Goldfinger', 1965),
array(‘Thunderball’, 1965));
foreach ($movies as $movie) {
$id = $db->nextID('movies");
splice($movie, 0, 0, $id);
$db->query('INSERT INTO movies (id,title,year) VALUES (?,?,?)', $movie);
by

A sequence is really a table in the database that keeps track of the last-assigned ID. You can explicitly
create and destroy sequences with the createSequence() and dropSequence() methods:

$res = $db->createSequence(sequence);
$res = $db->dropSequence(sequence);

The result will be the result object from the create or drop query, or DB_ERROR if an error occurred.

8.4.6 Metadata

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The getListOf() method lets you query the database for information on available databases, users,
views, and functions:

$data = $db->getListOf(what);

The what parameter is a string identifying the database feature to list. Most databases support

non

"databases"; some support "users", "views", and "functions".
For example, this stores a list of available databases in $dbs:

$dbs = $db->getListOf("databases");
8.4.7 Transactions

Some RDBMSs support transactions, in which a series of database changes can be committed (all
applied at once) or rolled back (discarded, with the changes not applied to the database). For
example, when a bank handles a money transfer, the withdrawal from one account and deposit into
another must happen together—neither should happen without the other, and there should be no time
between the two actions. PEAR DB offers the commit () and rollback() methods to help with
transactions:

$res = $db->commit();
$res = $db->rollback();

If you call commit() or rollback() on a database that doesn't support transactions, the methods return
DB_ERROR.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

8.5 Sample Application

Because web database applications are such a mainstay of web development, we've decided to show
you a complete sample application in this chapter. This section develops a self-maintaining business
listing service. Companies add their own records to the database and pick the category or categories
by which they want to be indexed.

Two HTML forms are needed to populate the database tables. One form provides the site
administrator with the means to add category IDs, titles, and descriptions. The second form, used by
the self-registering businesses, collects the business contact information and permits the registrant to
associate the listing with one or more categories. A separate page displays the listings by category on
the web page.

8.5.1 Database Tables

There are three tables: businesses to collect the address data for each business, categories to name
and describe each category, and an associative table called biz_categories to relate entries in the other
two tables to each other. These tables and their relationships are shown in Figure 8-3.

Figure 8-3. Database design for business listing service

Example 8-2 contains a dump of the table schema in MySQL format. Depending on your database's
features, the schema may have to be altered slightly.

Example 8-2. Database schema

#
#
Table structure for table 'biz_categories'
#

CREATE TABLE biz_categories (
business_id int(11) NOT NULL,
category_id char(10) NOT NULL,
PRIMARY KEY (business_id, category_id),
KEY business_id (business_id, category_id)

)

#
#
Table structure for table 'businesses'
#

CREATE TABLE businesses (
business_id int(11) NOT NULL auto_increment,
name varchar(255) NOT NULL,
address varchar(255) NOT NULL,
city varchar(128) NOT NULL,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

telephone varchar(64) NOT NULL,
url varchar(255),
PRIMARY KEY (business_id),
UNIQUE business_id (business_id),
KEY business_id_2 (business_id)

)i

#
#

Table structure for table 'categories'
#

CREATE TABLE categories (
category_id varchar(10) NOT NULL,
title varchar(128) NOT NULL,
description varchar(255) NOT NULL,
PRIMARY KEY (category_id),
UNIQUE category_id (category_id),
KEY category_id_2 (category_id)

)i

8.5.2 Database Connection

We've designed these pages to work with a MySQL, PostgreSQL, or Oracle 8/ backend. The only visible
sign of this in the PHP code is that we use commit() after every update. We've abstracted the

database-specific stuff to a db_login.php library, shown in Example 8-3, which selects an appropriate
DSN for MySQL, PostgreSQL, or Oracle.

Example 8-3. Database connection abstraction script (db_login.php)

<?php
require_once('DB.php");

// database connection setup section

$username = 'user';
$password = 'seekrit’;
$hostspec = 'localhost';
$database = 'phpbook’;

// select one of these three values for $phptype

/1 $phptype = 'pgsql’;
/] $phptype = 'oci8';
$phptype = 'mysql’;

// check for Oracle 8 - data source name syntax is different

if ($phptype = "oci8"){

$dsn = "$phptype://$username:$password@$hostspec/$database”;
}else {

$net8name = 'www';

$dsn = "$phptype://$username:$password@$net8name";
b

// establish the connection

$db = DB::connect($dsn);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (DB::isError($db)) {
die ($db->getMessage());

?>
8.5.3 Administrator's Page

Example 8-4 shows the backend page that allows administrators to add categories to the listing
service. The input fields for adding a new record appear after a dump of the current data. The
administrator fills in the form and presses the Add Category button, and the page redisplays with the
new record. If any of the three fields are not filled in, the page displays an error message.

Example 8-4. Backend administration page

<html|>

<head>

<?php
require_once('db_login.php");

?>

<title>

<?php

// print the window title and the topmost body heading
$doc_title = 'Category Administration';
echo "$doc_title\n";

?>

</title>

</head>

<body>

<h1l>

<?php

echo "$doc_title\n";

?>

</H1>

<?php
// add category record input section

// extract values from $_REQUEST
$Cat_ID = $_REQUEST['Cat_ID'];
$Cat_Title = $_REQUEST['Cat_Title'];
$Cat_Desc = $_REQUEST['Cat_Desc'];
$add_record = $_REQUEST['add_record'];

// determine the length of each input field
$len_cat_id = strlen($_REQUEST['Cat_ID']);
$len_cat_tl = strlen($_REQUEST['Cat_Title']);
$len_cat_de = strlen($_REQUEST['Cat_Desc']);

// validate and insert if the form script has been
// called by the Add Category button
if ($add_record == 1) {
if (($len_cat_id > 0) and ($len_cat_tl > 0) and ($len_cat_de > 0))
$sqgl = "insert into categories (category_id, title, description)";
$sql .= " values ('$Cat_ID', '$Cat_Title', '$Cat_Desc")";
$result = $db->query($sql);
$db->commit();
}else {
echo "<p>Please make sure all fields are filled in ";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

echo "and try again.</p>\n";
}
}

// list categories reporting section

// query all records in the table after any
// insertion that may have occurred above
$sql = "select * from categories";

$result = $db->query($sql);

?>

<form method="POST" action="cat_admin.php">

<table>
<tr><th bgcolor="#EEEEEE">Cat ID</th>
<th bgcolor="#EEEEEE">Title</th>
<th bgcolor="#EEEEEE">Description</th>
</tr>

<?php
// display any records fetched from the database
// plus an input line for a new category
while ($row = $result->fetchRow()){
echo "<tr><td>$row[0]</td><td>$row[1]</td><td>$row[2]</td></tr>\n";
b

?>

<tr><td><input type="text" name="Cat_ID" size="15" maxlength="10"></td>
<td><input type="text" name="Cat_Title" size="40" maxlength="128"></td>
<td><input type="text" name="Cat_Desc" size="45" maxlength="255"></td>

</tr>

</table>

<input type="hidden" name="add_record" value="1">

<input type="submit" name="submit" value="Add Category">

</body>

</html>

When the administrator submits a new category, we construct a query to add the category to the
database. Another query displays the table of all current categories. Figure 8-4 shows the page with
five records loaded.

Figure 8-4. The administration page

8.5.4 Adding a Business

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 8-5 shows the page that lets a business insert data into the business and biz_categories
tables. Figure 8-5 shows the form.

Figure 8-5. The business registration page

When the user enters data and clicks on the Add Business button, the script calls itself to display a
confirmation page. Figure 8-6 shows a confirmation page for a company listing assigned to two
categories.

Figure 8-6. Listing assigned to two categories

In the confirmation page, the Add Business button is replaced by a link that will invoke a fresh
instance of the script. A success message is displayed at the top of the page. Instructions for using
the scrolling pick list are replaced with explanatory text.

As shown in Example 8-5, we build the scrolling list from a query to select all the categories. As we
produce HTML for each of the results from that query, we also check to see whether the current
category was one of the categories submitted for the new business. If it was, we add a new record to

the biz_categories table.

Example 8-5. Adding a business

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<html>

<head>

<title>

<?php
$doc_title = 'Business Registration';
echo "$doc_title\n";

?>

</title>

</head>

<body>

<hl>

<?= $doc_title ?>

</h1>

<?php
require_once('db_login.php');

// fetch query parameters

$add_record = $_REQUEST['add_record'];
$Biz_Name = $_REQUEST['Biz_Name'];
$Biz_Address = $_REQUEST['Biz_Address'];
$Biz_City = $_REQUEST['Biz_City'];
$Biz_Telephone = $_REQUEST['Biz_Telephone'];
$Biz_URL = $_REQUEST['Biz_URL'];
$Biz_Categories = $_REQUEST['Biz_Categories'];

$pick_message = 'Click on one, or control-click on
multiple ';
$pick_message .= 'categories:';

// add new business
if ($add_record == 1) {
$pick_message = 'Selected category values
are highlighted:';
$sql = "INSERT INTO businesses (name, address, city, telephone, ';
$sql .= "url) VALUES (?,?,?,?, ?);
$params = array($Biz_Name, $Biz_Address, $Biz_City, $Biz_Telephone, $Biz_URL);
$query = $db->prepare($sql);
if (DB::isError($query)) die($query->getMessage());
$resp = $db->execute($query, $params);
if (DB::isError($resp)) die($resp->getMessage());
$resp = $db->commit();
if (DB::isError($resp)) die($resp->getMessage());
echo '<P CLASS="message">Record inserted as shown below.</P>";
$biz_id = $db->getOne('SELECT max(business_id) FROM businesses');
b

?>

<form method="POST" action="<?= $PHP_SELF ?>">

<table>

<tr><td class="picklist"><?= $pick_message ?>
<p>
<select name="Biz_Categories[]" size="4" multiple>
<?php

// build the scrolling pick list for the categories
$sql = "SELECT * FROM categories";
$result = $db->query($sql);
if (DB::isError($result)) die($result->getMessage());
while ($row = $result->fetchRow())
if (DB::isError($row)) die($row->getMessage());
if ($add_record == 1){
$selected = false;
// if this category was selected, add a new biz_categories row

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (in_array($row[1], $Biz_Categories)) {
$sql = 'INSERT INTO biz_categories';
$sql .= " (business_id, category_id)";
$sql .= " VALUES (?, ?)";
$params = array($biz_id, $row[0]);
$query = $db->prepare($sql);
if (DB::isError($query)) die($query->getMessage());
$resp = $db->execute($query, $params);
if (DB::isError($resp)) die($resp->getMessage());
$resp = $db->commit();
if (DB::isError($resp)) die($resp->getMessage());
echo "<option selected>$row[1]</option>\n";
$selected = true;

b

if ($selected == false) {
echo "<option>$row[1]</option>\n";

b

}else {
echo "<option>$row[1]</option>\n";
b

b

?>

</select>
</td>
<td class="picklist">
<table>
<tr><td class="FormLabel">Business Name:</td>
<td><input type="text" name="Biz_Name" size="40" maxlength="255"
value="<?= $Biz_Name ?>"</td>
</tr>
<tr><td class="FormLabel">Address: </td>
<td><input type="text" name="Biz_Address" size="40" maxlength="255"
value="<?= $Biz_Address ?>"</td>
</tr>
<tr><td class="FormLabel">City: </td>
<td><input type="text" name="Biz_City" size="40" maxlength="128"
value="<?= $Biz_City ?>"</td>
</tr>
<tr><td class="FormLabel">Telephone:</td>
<td><input type="text" name="Biz_Telephone" size="40" maxlength="64"
value="<?= $Biz_Telephone ?>"</td>
</tr>
<tr><td class="FormLabel">URL:</TD>
<td><input type="text" name="Biz_URL" size="40" maxlength="255"
value="<?= $Biz_URL ?>"</td>
</tr>
</table>
</td>
<[tr>
</table>
<p>
<input type="hidden" name="add_record" value="1">

<?php
// display the submit button on new forms; link to a fresh registration
// page on confirmations
if ($add_record == 1){
echo '<p>Add Another Business</p>';
}else {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

echo '<input type="submit" name="submit" value="Add Business">";

?>

</p>
</body>
</html>

8.5.5 Displaying the Database

Example 8-6 shows a page that displays the information in the database. The links on the left side of
the page are created from the categories table and link back to the script, adding a category ID. The
category ID forms the basis for a query on the businesses table and the biz_categories table.

Example 8-6. Business listing page

<html>

<head>

<title>

<?php

$doc_title = 'Business Listings';
echo "$doc_title\n";
?>

</title>

</head>

<body>

<hl>

<?= $doc_title ?>
</h1>

<?php
// establish the database connection

require_once('db_login.php");

$pick_message = 'Click on a category to find business listings:';
?>

<table>
<tr><td valign="top">
<table>
<tr><td class="picklist"><?= $pick_message ?></td></tr>
<p>
<?php
// build the scrolling pick list for the categories
$sqgl = "SELECT * FROM categories";
$result = $db->query($sql);
if (DB::isError($result)) die($result->getMessage());
while ($row = $result->fetchRow()){
if (DB::isError($row)) die($row->getMessage());
echo '<tr><td class="formlabel">";
echo "";
echo "$row[1]</td></tr>\n";
b
?>
</table>
</td>
<td valign="top">
<table>
<?php

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if ($cat_id) {

$sql = "SELECT * FROM businesses b, biz_categories bc where";
$sql .= " category_id = '$cat_id";
$sql .= " and b.business_id = bc.business_id";
$result = $db->query($sql);
if (DB::isError($result)) die($result->getMessage());
while ($row = $result->fetchRow()){

if (DB::isError($row)) die($row->getMessage());

if ($color == 1){

$bg_shade = 'dark’;

$color = 0;

} else {
$bg_shade = "light';
$color = 1;

b
echo "<tr>\n";
for($i = 0; $i < count($row); $i++) {
echo "<td class=\"$bg_shade\">$row[$i]</td>\n";

echo "</tr>\n";
b
b

?>

</table>
</td></tr>
</table>
</body>
</html>

The business listings page is illustrated in Figure 8-7.

Figure 8-7. Business listings page

Hove RuBoare [+ rrevious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Chapter 9. Graphics

The Web is more than just text. Images appear in the form of logos, buttons, photographs, charts,
advertisements, and icons. Many of these images are static, built with tools such as PhotoShop and
never changed. But many are dynamically created—from advertisements for Amazon's referral
program that include your name to Yahoo! Finance's graphs of stock performance.

PHP supports graphics creation with the GD and Imlib2 extensions. In this chapter we'll show you how
to generate images dynamically with PHP, using the GD extension.

{1ove Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

9.1 Embedding an Image in a Page

A common misconception is that there is a mixture of text and graphics flowing across a single HTTP
request. After all, when you view a page you see a single page containing such a mixture. It is
important to understand that a standard web page containing text and graphics is created through a
series of HTTP requests from the web browser, each answered by a response from the web server.
Each response can contain one and only one type of data, and each image requires a separate HTTP
request and web server response. Thus, if you see a page that contains some text and two images,
you know that it has taken three HTTP requests and corresponding responses to construct this page.

Take this HTML page, for example:

<html>
<head>
<title>Example Page</title>
</head>
<body>
This page contains two images.

</body>
</html>

The series of requests sent by the web browser for this page looks something like this:

GET /page.html HTTP/1.0
GET /imagel.jpg HTTP/1.0
GET /image2.jpg HTTP/1.0

The web server sends back a response to each of these requests. The Content-Type headers in these
responses look like this:

Content-Type: text/html
Content-Type: image/jpeg
Content-Type: image/jpeg

To embed a PHP-generated image in an HTML page, pretend that the PHP script that generates the
image is actually the image. Thus, if we have imagel.php and image2.php scripts that create images,
we can modify the previous HTML to look like this:

<html>
<head>
<title>Example Page</title>
</head>
<body>
This page contains two images.

</body>
</html>

Instead of referring to real images on your web server, the img tags now refer to the PHP scripts that
generate the images.

Furthermore, you can pass variables to these scripts, so instead of having separate scripts to
generate the two images, you could write your img tags like this:

Then, inside image.php, you can access $_GET['num'] (or $num, if register_globals is on) to generate

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the appropriate image.

I I@ve RuBoard

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

9.2 The GD Extension

Before you can start generating images with PHP, you need to check that you actually have image-
generation capabilities in your PHP installation. In this chapter we'll discuss using the GD extension,
which allows PHP to use the open source GD graphics library available from

http://www.boutell.com/gd/.

Load the familiar phpinfo() page and look for a section entitled "GD". You should see something
similar to the following.

ad

GD Support enabled

GD Version 2.0 or higher
FreeType Support enabled
FreeType Linkage with freetype
JPG Support enabled

PNG Support enabled
WBMP Support enabled

Pay close attention to the image types listed. These are the types of images you will be able to
generate.

There have been three major revisions of GD and its API. Versions of GD before 1.6 support only the
GIF format. Version 1.6 and later support JPEG, PNG, and WBMP, but not GIF (the GIF file format
uses patented algorithms that require royalties). Version 2.x of GD added several new drawing
primitives.

All GD 1.x versions are limited to 8-bit color. That is, the images you generate or manipulate with GD
1.x can contain only 256 different colors. For simple charts or graphs this is more than sufficient, but
if you are dealing with photos or other images with more than 256 colors you will find the results less
than satisfactory. Upgrade to GD 2.x to get true-color support, or use the Imlib2 library and
corresponding PHP extension instead. The API for the Imlib2 extension is somewhat different from the
GD extension API and is not covered in this chapter.

I1ave RuBoard (< revvious foaxi]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

9.3 Basic Graphics Concepts

An image is a rectangle of pixels that have various colors. Colors are identified by their position in the
palette, an array of colors. Each entry in the palette has three separate color values—one for red, one
for green, and one for blue. Each value ranges from 0 (this color not present) to 255 (this color at full
intensity).

Image files are rarely a straightforward dump of the pixels and the palette. Instead, various file
formats (GIF, JPEG, PNG, etc.) have been created that attempt to compress the data somewhat to
make smaller files.

Different file formats handle image transparency , which controls whether and how the background
shows through the image, in different ways. Some support an alpha channel, an extra value for every
pixel reflecting the transparency at that point. Others simply designate one entry in the palette as
indicating transparency.

Antialiasing is where pixels at the edge of a shape are moved or recolored to make a gradual
transition between the shape and its background. This prevents the rough and jagged edges that can
make for unappealing images. Some functions that draw on an image implement antialiasing.

With 256 possible values for each of red, green, and blue, there are 16,777,216 possible colors for
every pixel. Some file formats limit the number of colors you can have in a palette (e.g., GIF supports
no more than 256 colors); others let you have as many colors as you need. The latter are known as
true color formats, because 24-bit color (8 bits for each of red, green, and blue) gives more hues than
the human eye can distinguish.

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Hove RuBoare [+ erevious st]

9.4 Creating and Drawing Images

For now, let's start with the simplest possible GD example. Example 9-1 is a script that generates a
black filled square. The code works with any version of GD that supports the PNG image format.

Example 9-1. A black square on a white background (black.php)

<?php

$im = ImageCreate(200,200);

$white = ImageColorAllocate($im,0xFF,0xFF,0xFF);
$black = ImageColorAllocate($im,0x00,0x00,0x00);
ImageFilledRectangle($im,50,50,150,150,$black);
header('Content-Type: image/png');
ImagePNG($im);

?>

Example 9-1 illustrates the basic steps in generating any image: creating the image, allocating colors,

drawing the image, and then saving or sending the image. Figure 9-1 shows the output of Example 9-
1.

Figure 9-1. A black square on a white background

To see the result, simply point your browser at the black.php PHP page. To embed this image in a
web page, use:

9.4.1 The Structure of a Graphics Program

Most dynamic image-generation programs follow the same basic steps outlined in Example 9-1.
You can create a 256-color image with the ImageCreate() function, which returns an image handle:
$image = ImageCreate(width, height);

All colors used in an image must be allocated with the ImageColorAllocate() function. The first color
allocated becomes the background color for the image.m

[1] This is true only for images with a color palette. True color images created using
ImageCreateTrueColor() do not obey this rule.

$color = ImageColorAllocate(/image, red, green, blue);

The arguments are the numeric RGB (red, green, blue) components of the color. In Example 9-1, we
wrote the color values in hexadecimal, to bring the function call closer to the HTML color
representation "#FFFFFF" and "#000000".

There are many drawing primitives in GD. Example 9-1 uses ImageFilledRectangle(), in which you

specify the dimensions of the rectangle by passing the coordinates of the top-left and bottom-right
corners:

ImageFilledRectangle(image, tix, tly, brx, bry, colon);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The next step is to send a Content-Type header to the browser with the appropriate content type for
the kind of image being created. Once that is done, we call the appropriate output function. The
ImagelPEG() , ImagePNG(), and ImageWBMP() functions create JPEG, PNG, and WBMP files from the
image, respectively:

ImagelPEG(/mage [, filename [, quality 11);
ImagePNG(/image [, filename);
ImageWBMP(image [, filename);

If no filename is given, the image is sent to the browser. The guality argument for JPEGs is a number
from O (worst-looking) to 10 (best-looking). The lower the quality, the smaller the JPEG file. The
default setting is 7.5.

In Example 9-1, we set the HTTP header immediately before calling the output-generating function
ImagePNG(). If, instead, you set the Content-Type at the very start of the script, any errors that are
generated are treated as image data and the browser displays a broken image icon. Table 9-1 lists
the image formats and their Content-Type values.

Table 9-1. Content-Type values for image formats

Format Content-Type
GIF image/gif
JPEG image/jpeg
PNG image/png
WBMP image/vnd.wap.wbmp

9.4.2 Changing the Output Format

As you may have deduced, generating an image stream of a different type requires only two changes
to the script: send a different Content-Type and use a different image-generating function. Example
9-2 shows Example 9-1 modified to generate a JPEG instead of a PNG image.

Example 9-2. JPEG version of the black square

<?php

$im = ImageCreate(200,200);

$white = ImageColorAllocate($im,0xFF,0xFF,0xFF);
$black = ImageColorAllocate($im,0x00,0x00,0x00);
ImageFilledRectangle($im,50,50,150,150,$black);
header('Content-Type: image/jpeg');
Image]PEG($im);

?>

9.4.3 Testing for Supported Image Formats

If you are writing code that must be portable across systems that may support different image
formats, use the ImageTypes() function to check which image types are supported. This function
returns a bitfield; you can use the bitwise AND operator (&) to check if a given bit is set. The
constants IMG_GIF, IMG_JPG, IMG_PNG, and IMG_WBMP correspond to the bits for those image
formats.

Example 9-3 generates PNG files if PNG is supported, JPEG files if PNG is not supported, and GIF files
if neither PNG nor JPEG are supported.

Example 9-3. Checking for image format support

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php

$im = ImageCreate(200,200);

$white = ImageColorAllocate($im,0xFF,0xFF,0xFF);

$black = ImageColorAllocate($im,0x00,0x00,0x00);

ImageFilledRectangle($im,50,50,150,150,$black);

if (ImageTypes() & IMG_PNG) {
header("Content-Type: image/png");
ImagePNG($im);

} elseif (ImageTypes() & IMG_JPG) {
header("Content-Type: image/jpeg");
Image]PEG($im);

} elseif (ImageTypes() & IMG_GIF) {
header("Content-Type: image/gif");
ImageGIF($im);

?>
9.4.4 Reading an Existing File

If you want to start with an existing image and then modify it, use either ImageCreateFromJPEG() or
ImageCreateFromPNG():

$image = ImageCreateFromIPEG(filename);
$image = ImageCreateFromPNG(filename);

9.4.5 Basic Drawing Functions

GD has functions for drawing basic points, lines, arcs, rectangles, and polygons. This section describes
the base functions supported by GD 1.x.

The most basic function is ImageSetPixel() , which sets the color of a specified pixel:
ImageSetPixel(/image, X, y, colon);
There are two functions for drawing lines, ImageLine() and ImageDashedLine():

Imageline(image, start_x, start_ y, end_x, end_ y, color),
ImageDashedLine(/image, start_x, start_ y, end_x, end_ y, color);

There are two functions for drawing rectangles, one that simply draws the outline and one that fills
the rectangle with the specified color:

ImageRectangle(/image, tix, tly, brx, bry, colon);
ImageFilledRectangle(image, tix, tly, brx, bry, color);

Specify the location and size of the rectangle by passing the coordinates of the top-left and bottom-
right corners.

You can draw arbitrary polygons with the ImagePolygon() and ImageFilledPolygon() functions:

ImagePolygon(image, points, number, color);
ImageFilledPolygon(image, points, number, colon);

Both functions take an array of points. This array has two integers (the x and y coordinates) for each
vertex on the polygon. The number argument is the number of vertices in the array (typically
count($points)/2).

The ImageArc() function draws an arc (a portion of an ellipse):

ImageArc(image, center_x, center_ y, width, height, start, end, colon);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The ellipse is defined by its center, width, and height (height and width are the same for a circle). The
start and end points of the arc are given as degrees counting counterclockwise from 3 o'clock. Draw
the full ellipse with a start of 0 and an end of 360.

There are two ways to fill in already-drawn shapes. The ImageFill() function performs a flood fill,
changing the color of the pixels starting at the given location. Any change in pixel color marks the
limits of the fill. The ImageFillToBorder() function lets you pass the particular color of the limits of the
fill:

ImageFill(image, x, y, color);
ImageFillToBorder(image, X, y, border_color, colon);

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Hove RuBoare [+ erevious st]

9.5 Images with Text

Often it is necessary to add text to images. GD has built-in fonts for this purpose. Example 9-4 adds
some text to our black square image.

Example 9-4. Adding text to an image

<?php

$im = ImageCreate(200,200);

$white = ImageColorAllocate($im,0xFF,0xFF,0xFF);
$black = ImageColorAllocate($im,0x00,0x00,0x00);
ImageFilledRectangle($im,50,50,150,150,$black);
ImageString($im,5,50,160,"A Black Box",$black);
Header('Content-Type: image/png');
ImagePNG($im);

?>

Figure 9-2 shows the output of Example 9-4.

Figure 9-2. The image with text

fi Black Box

The ImageString() function adds text to an image. Specify the top-left point of the text, as well as the
color and the font to use:

ImageString(image, font, x, y, text, color),
9.5.1 Fonts

Fonts in GD are identified by numbers. The five built-in fonts are shown in Figure 9-3.

Figure 9-3. Native GD fonts

Fomt 1 RECDEFER1J
Fork 2@ ABCOEFghi,)

Font 3% ABCDEfghdij
Font 4: ABCDEFghi j
Font 5: ABCDE¥ghij

You can create your own fonts and load them into GD using the ImageLoadFont() function. However,
these fonts are binary and architecture-dependent. Using TrueType fonts with the TrueType functions
in GD provides much more flexibility.

9.5.2 TrueType Fonts

To use TrueType fonts with GD, PHP must have been compiled with TrueType support via the
FreeType library. Check your phpinfo() page (as described earlier in this chapter) to see if your "GD"
section includes an entry stating that "FreeType" support is enabled.

To add text in a TrueType font to an image, use ImageTTFText():

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ImageTTFText(image, size, angle, x, y, color, font, text);

The size is measured in pixels. angle is in degrees from 3 o'clock (0 gives horizontal text, 90 gives
vertical text going up the image, etc.). The xand y coordinates specify the lower-left corner of the
text (unlike in ImageString(), where the coordinates specify the upper-right corner). The text may

include UTF-8[2] sequences of the form ê to print high-bit ASCII characters.

[2] UTF-8 is an 8-bit Unicode encoding scheme. To learn more about Unicode, see

http://www.unicode.org.

In GD 1.x, the fontis a full path filename, including the .ttf extension. In GD 2.x, by default, the fonts
are looked up in /usr/share/fonts/truetype and the lowercase .ttf extension is automatically added for
you. Font sizing is also slightly different between GD 1.x and GD 2.x.

By default, text in a TrueType font is antialiased. This makes most fonts much easier to read,
although very slightly blurred. Antialiasing can make very small text harder to read, though—small
characters have fewer pixels, so the adjustments of antialiasing are more significant.

You can turn off antialiasing by using a negative color index (e.g., -4 means to use color index 4, but
to not antialias the text). Antialiasing of TrueType fonts on true color images is broken in GD 2.0.1 but
fixed as of GD 2.0.2.

Example 9-5 uses a TrueType font to add text to an image.
Example 9-5. Using a TrueType font

<?php

$im = ImageCreate(350, 70);

$white = ImageColorAllocate($im, OxFF,0xFF,0xFF);

$black = ImageColorAllocate($im, 0x00,0x00,0x00);

ImageTTFText ($im, 20, 0, 10, 40, $black, 'courbi', 'The Courier TTF font');
header('Content-Type: image/png');

ImagePNG($im);

?>

Figure 9-4 shows the output of Example 9-5.

Figure 9-4. Courier bold italic TrueType font

The Courier TTF font
Example 9-6 uses ImageTTFText() to add vertical text to an image.

Example 9-6. Displaying vertical TrueType text

<?php

$im = ImageCreate(70, 350);

$white = ImageColorAllocate ($im, 255, 255, 255);

$black = ImageColorAllocate ($im, 0, 0, 0);

ImageTTFText ($im, 20, 270, 28, 10, $black, 'courbi', 'The Courier TTF font');
header('Content-Type: image/png');

ImagePNG($im);

?>

Figure 9-5 shows the output of Example 9-6.

Figure 9-5. Vertical TrueType text

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard

JUuoy ALL XASeTANCD) ST

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

9.6 Dynamically Generated Buttons

A popular use for dynamically generated images is to create images for buttons on the fly. Normally,
a blank button background image is used and text is overlaid on top of it, as shown in Example 9-7.

Example 9-7. Creating a dynamic button

<?php

$font = 'times';

if (1$size) $size = 12;

$im = ImageCreateFromPNG('button.png");
// calculate position of text

$tsize = ImageTTFBBox($size,0,$font,$text);
$dx = abs($tsize[2]-$tsize[0]);

$dy = abs($tsize[5]-$tsize[3]);

$x = (ImageSx($im) - $dx) / 2;

$y = (ImageSy($im) - $dy) / 2 + $dy;

// draw text

$black = ImageColorAllocate($im,0,0,0);
ImageTTFText($im, $size, 0, $x, $y, $black, $font, $text);
header('Content-Type: image/png');
ImagePNG($im);

?>

In this case, the blank button (button.png) looks as shown in Figure 9-6.

Figure 9-6. Blank button

.

Note that if you are using GD 2.0.1, antialiased TrueType fonts work only if the background image is
indexed. If you are having problems with your text looking terrible, load your background image into
any image-editing tool and convert it from a true color image to one with an 8-bit indexed palette.
Alternatively, upgrade from GD 2.0.1 to GD 2.0.2 or later.

The script in Example 9-7 can be called from a page like this:

This HTML generates the button shown in Figure 9-7.

Figure 9-7. Generated button

PHP Butten|

The + character in the URL is the encoded form of a space. Spaces are illegal in URLs and must be
encoded. Use PHP's urlencode() function to encode your button strings. For example:

<img src="button.php?text=<?php echo urlencode('PHP Button")?>">
9.6.1 Caching the Dynamically Generated Buttons

It is somewhat slower to generate an image than to send a static image. For buttons that will always
look the same when called with the same text argument, a simple cache mechanism can be
implemented.

Example 9-8 generates the button only when no cache file for that button is found. The $path variable

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

holds a directory, writable by the web server user, where buttons can be cached. The filesize()
function returns the size of a file, and readfile() sends the contents of a file to the browser. Because
this script uses the text form parameter as the filename, it is very insecure (Chapter 12 explains why
and how to fix it).

Example 9-8. Caching dynamic buttons

<?php
header('Content-Type: image/png');
$path = "/tmp/buttons"; // button cache directory

$text = $_GET['text'];

if($bytes = @filesize("$path/$text.png")) { // send cached version
header("Content-Length: $bytes");
readfile("$path/$text.png");
}else { // build, send, and cache
$font = 'times';
if (1$_GET['size']) $_GET['size'] = 12;
$im = ImageCreateFromPNG('button.png");
$tsize = ImageTTFBBox($size, 0, $font, $text);
$dx = abs($tsize[2]-$tsize[0]); // center text
$dy = abs($tsize[5]-$tsize[3]);
$x = (imagesx($im) - $dx) / 2;
$y = (imagesy($im) - $dy) / 2 + $dy;
$black = ImageColorAllocate($im,0,0,0);
ImageTTFText($im, $_GET['size'], 0, $x, $y, -$black, $font, $text);

ImagePNG($im); // send image to browser
ImagePNG($im,"$path/$text.png"); // save image to file
b
?>
9.6.2 A Faster Cache

Example 9-8 is still not quite as quick as it could be. There is a more advanced caching technique that
completely eliminates PHP from the request once an image has been generated.

First, create a buttons directory somewhere under your web server's DocumentRoot and make sure
that your web server user has permissions to write to this directory. For example, if the DocumentRoot
directory is /var/www/html, create /var/www/html/buttons.

Second, edit your Apache httpd.conf file and add the following block:

<Location /buttons/>
ErrorDocument 404 /button.php
</Location>

This tells Apache that requests for nonexistent files in the buttons directory should be sent to your
button.php script.

Third, save Example 9-9 as button.php. This script creates new buttons, saving them to the cache and
sending them to the browser. There are several differences from Example 9-8, though. We don't have
form parameters in $_GET, because Apache handles error pages as redirections. Instead, we have to
pull apart values in $_SERVER to find out which button we're generating. While we're at it, we delete
the '.." in the filename to fix the security hole from Example 9-8.

Once button.php is installed, when a request comes in for something like
http://your.site/buttons/php.png, the web server checks whether the buttons/php.png file exists. If it
does not, the request is redirected to our button.php script, which creates the image (with the text
"php") and saves it to buttons/php.png. Any subsequent requests for this file are served up directly
without a line of PHP being run.

Example 9-9. More efficient caching of dynamic buttons

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php
// bring in redirected URL parameters, if any
parse_str($_SERVER['REDIRECT_QUERY_STRING']);

$button_dir = '/buttons/’;
$url = $_SERVER['REDIRECT_URL'];
$root = $_SERVER['DOCUMENT_ROOT'];

// pick out the extension
$ext = substr($url,strrpos($url,'."));

// remove directory and extension from $url string
$file = substr($url,strlen($button_dir),-strlen($ext));

// security - don't allow ".." in filename
$file = str_replace('..",", $file);

// text to display in button
$text = urldecode($file);

// build image

if(lisset($font)) $font = 'times';
if(lisset($size)) $size = 12;

$im = ImageCreateFromPNG('button.png");
$tsize = ImageTTFBBox($size,0,$font, $text);
$dx = abs($tsize[2]-$tsize[0]);

$dy = abs($tsize[5]-$tsize[3]);

$x = (ImageSx($im) - $dx) / 2;

$y = (ImageSy($im) - $dy) / 2 + $dy;
$black = ImageColorAllocate($im,0,0,0);
ImageTTFText($im, $size, 0, $x, $y, -1*$black, $font, $text);

// send and save the image
header('Content-Type: image/png');
ImagePNG($im);
ImagePNG($im,$root.$button_dir."$file.png");
ImageDestroy($im);

?>

The only drawback to the mechanism in Example 9-9 is that the button text cannot contain any
characters that are illegal in a filename. Nonetheless, this is the most efficient way to cache such
dynamically generated images. If you change the look of your buttons and you need to regenerate the
cached images, simply delete all the images in your buttons directory, and they will be recreated as
they are requested.

You can also take this a step further and get your button.php script to support multiple image types.
Simply check $ext and call the appropriate ImagePNG(), ImageJPEG(), or ImageGIF() function at the
end of the script. You can also parse the filename and add modifiers such as color, size, and font, or
pass them right in the URL. Because of the parse_str() call in the example, a URL such as
http://your.site/buttons/php.png?size=16 displays "php" in a font size of 16.

{1ove Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

9.7 Scaling Images

There are two ways to change the size of an image. The ImageCopyResized() function is available in
all versions of GD, but its resizing algorithm is crude and may lead to jagged edges in your new
images. The ImageCopyResampled() function is new in GD 2.x and features pixel interpolation to give
smooth edges and clarity to resized images (it is, however, slower than ImageCopyResized()). Both
functions take the same arguments:

ImageCopyResized(dest, src, dx, dy, sx, sy, dw, dh, sw, sh);
ImageCopyResampled(dest, src, dx, dy, sx, sy, dw, dh, sw, sh);

The dest and src parameters are image handles. The point (dx,dy) is the point in the destination image
where the region will be copied. The point (sx,Sy) is the upper-left corner of the source image. The sw,
sh, dw, and dh parameters give the width and height of the copy regions in the source and
destination.

Example 9-10 takes the php.jpg image shown in Figure 9-8 and smoothly scales it down to one-
quarter of its size, yielding the image in Figure 9-9.

Figure 9-8. Original php.jpg image

Example 9-10. Resizing with ImageCopyResampled()

<?php

$src = ImageCreateFromJPEG('php.jpg");

$width = ImageSx($src);

$height = ImageSy($src);

$x = $width/2; $y = $height/2;

$dst = ImageCreateTrueColor($x,$y);
ImageCopyResampled($dst,$src,0,0,0,0,$x,$y,$width,$height);
header('Content-Type: image/png');

ImagePNG($dst);

?>

The output of Example 9-10 is shown in Figure 9-9.

Figure 9-9. Resulting 1/4-sized image

Dividing the height and the width by 4 instead of 2 produces the output shown in Eigure 9-10.

Figure 9-10. Resulting 1/16-sized image

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I |@ve RuBoard

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

9.8 Color Handling

Color support improved markedly between GD 1.x and GD 2.x. In GD 1.x there was no notion of the
alpha channel, color handling was rather simple, and the library supported only 8-bit palette images
(256 colors). When creating GD 1.x 8-bit palette images, you use the ImageCreate() function, and the
first color you allocate using the ImageColorAllocate() function becomes the background color.

In GD 2.x there is support for true color images complete with an alpha channel. GD 2.x has a 7-bit
(0-127) alpha channel.

To create a true color image, use the ImageCreateTrueColor() function:

$image = ImageCreateTrueColor(width, height),

Use ImageColorResolveAlpha() to create a color index that includes transparency:
$color = ImageColorResolveAlpha(image, red, green, blue, alpha);

The alpha value is between 0 (opaque) and 127 (transparent).

While most people are used to an 8-bit (0-255) alpha channel, it is actually quite handy that GD's is
7-bit (0-127). Each pixel is represented by a 32-bit signed integer, with the four 8-bit bytes arranged
like this:

High Byte Low Byte
{Alpha Channel} {Red} {Green} {Blue}

For a signed integer, the leftmost bit, or the highest bit, is used to indicate whether the value is
negative, thus leaving only 31 bits of actual information. PHP's default integer value is a signed long
into which we can store a single GD palette entry. Whether that integer is positive or negative tells us
whether antialiasing is enabled for that palette entry.

Unlike with palette images, with GD 2.x true color images the first color you allocate does not
automatically become your background color. Call ImageFilledRectangle() to fill the image with any
background color you want.

Example 9-11 creates a true color image and draws a semitransparent orange ellipse on a white
background.

Example 9-11. A simple orange ellipse on a white background

<?php

$im = ImageCreateTrueColor(150,150);

$white = ImageColorAllocate($im,255,255,255);
ImageAlphaBlending($im, false);
ImageFilledRectangle($im,0,0,150,150,$white);
$red = ImageColorResolveAlpha($im,255,50,0,50);
ImageFilledEllipse($im,75,75,80,63,$red);
header('Content-Type: image/png');
ImagePNG($im);

?>

Figure 9-11 shows the output of Example 9-11.

Figure 9-11. An orange ellipse on a white background

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You can use the ImageTrueColorToPalette() function to convert a true color image to one with a color
index (also known as a paletted image).

9.8.1 Using the Alpha Channel

In Example 9-11, we turned off alpha blending before drawing our background and our ellipse. Alpha
blending is a toggle that determines whether the alpha channel, if present, should be applied when
drawing. If alpha blending is off, the old pixel is replaced with the new pixel. If an alpha channel
exists for the new pixel, it is maintained, but all pixel information for the original pixel being
overwritten is lost.

Example 9-12 illustrates alpha blending by drawing a gray rectangle with a 50% alpha channel over
an orange ellipse.

Example 9-12. A gray rectangle with a 50% alpha channel overlaid

<?php

$im = ImageCreateTrueColor(150,150);

$white = ImageColorAllocate($im,255,255,255);
ImageAlphaBlending($im, false);
ImageFilledRectangle($im,0,0,150,150,$white);
$red = ImageColorResolveAlpha($im,255,50,0,63);
ImageFilledEllipse($im,75,75,80,50,$red);

$gray = ImageColorResolveAlpha($im,70,70,70,63);
ImageAlphaBlending($im, false);
ImageFilledRectangle($im,60,60,120,120,$gray);
header('Content-Type: image/png');
ImagePNG($im);

?>

Figure 9-12 shows the output of Example 9-12 (alpha blending is still turned off).

Figure 9-12. A gray rectangle over the orange ellipse

If we change Example 9-12 to enable alpha blending just before the call to ImageFilledRectangle(), we
get the image shown in Figure 9-13.

Figure 9-13. Image with alpha blending enabled

9.8.2 Identifying Colors

To check the color index for a specific pixel in an image, use ImageColorAt() :
$color = ImageColorAt(image, x, y);

For images with an 8-bit color palette, the function returns a color index that you then pass to
ImageColorsForIndex() to get the actual RGB values:

$values = ImageColorsForIndex(image, index);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The array returned by ImageColorsForIndex() has keys "red", "green", and "blue". If you call
ImageColorsForIndex() on a color from a true color image, the returned array has an extra key,
"alpha".

9.8.3 True Color Color Indexes

The color index returned by ImageColorResolveAlpha() is really a 32-bit signed long, with the first
three 8-bit bytes holding the red, green, and blue values, respectively. The next bit indicates whether
antialiasing is enabled for this color, and the remaining seven bits hold the transparency value.

For example:
$green = ImageColorResolveAlpha($im,0,0,255,127);

This code sets $green to 2130771712, which in hex is 0Ox7FO0FF00 and in binary is
01111111000000001111111100000000.

This is equivalent to the following ImageColorResolveAlpha() call:
$green = 127<<24 | 0<<16 | 255<<8 | 0;

You can also drop the two 0 entries in this example and just make it:
$green = 127<<24 | 255<<8;

To deconstruct this value, you can use something like this:

$a = ($col & 0x7FO00000) >> 24;
$r = ($col & 0xO0FFO0000) >> 16;
$g = ($col & 0x0000FFO0) >> 8;

$b = ($col & 0x000000FF);

Direct manipulation of true color color values like this is rarely necessary. One application is to
generate a color-testing image that shows the pure shades of red, green, and blue. For example:

$im = ImageCreateTrueColor(256,60);

for($x=0; $x<256; $x++) {
ImageLine($im, $x, 0, $x, 19, $x);
ImageLine($im, 255-$x, 20, 255-$x, 39, $x<<8);
ImageLine($im, $x, 40, $x, 59, $x<<16);

by
ImagePNG($im);

Figure 9-14 shows the output of the color-testing program.

Figure 9-14. The color test

Obviously it will be much more colorful than what we can show you here in black and white, so try
this example for yourself. In this particular example it is much easier to simply calculate the pixel
color than to call ImageColorResolveAlpha() for every color.

9.8.4 Text Representation of an Image
An interesting use of the ImageColorAt() function is to loop through each pixel in an image and check
the color, and then do something with that color data. Example 9-13 displays a # character in the

appropriate color for each pixel.

Example 9-13. Converting an image to text

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<html><body bgcolor=#000000><tt>
<?php
$im = imagecreatefromjpeg('php-tiny.jpg");
$dx = imagesx($im);
$dy = imagesy($im);
for($y = 0; $y < $dy; $y++){
for($x=0; $x < $dx; $x++){
$col = imagecolorat($im, $x, $y);
$rgb = imagecolorsforindex($im,$col);
printf(' # < /font>"',
$rgb['red'], $rgb['green’],$rgb['blue']);

echo "
\n";
imagedestroy($im);

?>
</tt></body></html>

The result is an ASCII representation of the image, as shown in Figure 9-15.

Figure 9-15. ASCII representation of an image

I |@ve RuBoard

[+ rrivious [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Chapter 10. PDF

Adobe's Portable Document Format (PDF) provides a popular way to get a consistent look, both on
screen and when printed, for documents. This chapter shows how to dynamically create PDF files with
text, graphics, bookmarks, and more.

Dynamic construction of PDF files opens the door to many applications. You can create almost any
kind of business document, including form letters, invoices, and receipts. Most paperwork that
involves filling out a paper form can be automated by overlaying text onto a scan of the paper form
and saving the result as a PDF file.

I |@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

10.1 PDF Extensions

PHP has several libraries for generating PDF documents. This chapter shows how to use the popular
pdflib extension. One drawback of pdflib is that it is not an open source library. Its Aladdin license
allows free personal and noncommercial usage, but for any commercial use you must purchase a
license. See http://www.pdflib.com for details. Open source alternatives include clibpdf

(http://www.fastio.com) and the interesting FreeLibPDF (http://www.fpdf.org), which is written in
PHP.

Since pdflib is the most mature and has the most features, that is the library we cover in this chapter.
The basic concepts of the structure and features of a PDF file are common to all the libraries, though.

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Hove RuBoare [+ erevious st]

10.2 Documents and Pages

A PHP document is made up of a number of pages. Each page contains text and/or images. This
section shows you how to make a document, create pages in that document, put text onto the pages,
and send the pages back to the browser when you're done.

10.2.1 A Simple Example

Let's start with a simple PDF document. Example 10-1 simply places "Hello world!" on a page and
then displays the resulting PDF document.

Example 10-1. Hello world in PDF

<?php

$pdf = pdf_new();

pdf_open_file($pdf);
pdf_set_info($pdf,'Creator','hello.php');
pdf_set_info($pdf,'Author','Rasmus Lerdorf");
pdf_set_info($pdf, Title','Hello world (PHP)");
pdf_begin_page($pdf,612,792);

$font = pdf_findfont($pdf,'Helvetica-Bold','host',0);
pdf_setfont($pdf,$font,38.0);
pdf_show_xy($pdf,'Hello world!',50,700);

pdf_end_page($pdf);
pdf_set_parameter($pdf, "openaction", "fitpage");
pdf_close($pdf);

$buf = pdf_get_buffer($pdf);

$len = strlen($buf);

header('Content-Type: application/pdf");
header("Content-Length: $len™);
header('Content-Disposition: inline; filename=hello.pdf');
echo $buf;

pdf_delete($pdf);
?>

Example 10-1 follows the basic steps involved in creating a PDF document: creating a new document,
setting some metadata for the document, creating a page, and writing text to the page. Figure 10-1
shows the output of Example 10-1.

Figure 10-1. Hello world in a PDF document

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

10.2.2 Initializing the Document

In Example 10-1, we started by calling pdf_new(), to create a new PDF data structure, followed by
pdf_open_file() , to open a new document. pdf_open_file() takes an optional second argument that,
when set, specifies the filename to which to write the PDF data:

pdf_open_file(pdf[, filename]);

The output of pdf_open_file() is sent to stdout if the filename is "-". If no filename argument is
provided, the PDF data is written to a memory buffer, which can later be fetched by calling
pdf_get_buffer(). The latter approach is the one we used in Example 10-1.

10.2.3 Setting Metadata

The pdf_set_info() function inserts information fields into the PDF file:
pdf_set_info(pdf, fieldname, value);

There are five standard field names: Subject, Author, Title, Creator, and Keywords. You can also add
arbitrary information fields, as we did in Example 10-1.

In addition to informational fields, the pdflib library has various parameters that you can change with
pdf_get_parameter() and pdf_set_parameter():

$value = pdf_get_parameter(pdf, name);
pdf_set_parameter(pdf, name, value);

A useful parameter to set is openaction, which lets you specify the zoom (magnification) of the file
when it's opened. The values "fitpage", "fitwidth", and "fitheight" fit the file to the complete page, the
width of the page, and the height of the page, respectively. If you don't set openaction, your
document is displayed at whatever zoom the viewer had set at the time the document was opened.

10.2.4 Creating a Page
A page starts with a call to pdf_begin_page() and ends with a call to pdf_end_page():

pdf_end_page(pdf);

You specify the paper size in points in the call to pdf_begin_page(). Table 10-1 shows some typical

sizes.
Table 10-1. Paper sizes
Page format Width Height

US-Letter 612 792
US-Legal 612 1008
US-Ledger 1224 792
11 x17 792 1224
A0 2380 3368
Al 1684 2380
A2 1190 1684
A3 842 1190
A4 595 842

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A5 421 595
A6 297 421
B5 501 709

Here is some typical begin/end page code:

<?php

pdf_begin_page($pdf, 612, 792); // US-Letter

// code to create actual page content would go here
pdf_end_page($pdf);

?>

10.2.5 Outputting Basic Text

To put text on a page, you must select the font you want to use, set the default font to be that font at
a particular size, and then add the text. For example:

$font = pdf_findfont($pdf, "Times-Roman", "host", 0);
pdf_setfont($pdf, $font, 48);
pdf_show_xy($pdf, "Hello, World", 200, 200);

With PDF documents, the (0,0) coordinate indicates the bottom-left corner of the page. In later
sections we'll examine the different aspects of fonts and text layout and explain these functions in
detail.

10.2.6 Terminating and Streaming a PDF Document

Call pdf_close() to complete the PDF document. If no filename was provided in the pdf_open_file()
call, you can now use the pdf_get_buffer() function to fetch the PDF buffer from memory. To send the
file to the browser, you must send Content-Type, Content-Disposition, and Content-Length HTTP
headers, as shown in Example 10-1. Finally, call pdf_delete() to free the PDF file once it's sent to the
browser.

T1ove Rugoard [+ evisus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Hove RuBoare [+ erevious st]

10.3 Text

Text is the heart of a PDF file. As such, there are many options for changing the appearance and
layout of text. In this section, we'll discuss the coordinate system used in PDF documents, functions
for inserting text and changing text attributes, and font usage.

10.3.1 Coordinates

The origin ((0,0)) in a PDF document is in the bottom-left corner. All of the measurements are
specified in DTP points. A DTP point is equal to 1/72 of an inch, or 0.35277777778 mm.

Example 10-2 puts text in the corners and center of a page.
Example 10-2. Demonstrating coordinates

<?php

$pdf = pdf_new();

pdf_open_file($pdf);
pdf_set_info($pdf,"Creator","coords.php™);
pdf_set_info($pdf,"Author","Rasmus Lerdorf");
pdf_set_info($pdf,"Title","Coordinate Test (PHP)");
pdf_begin_page($pdf,612,792);

$font = pdf_findfont($pdf,"Helvetica-Bold","host",0);
pdf_setfont($pdf,$font,38.0);

pdf_show_xy($pdf, "Bottom Left", 10, 10);
pdf_show_xy($pdf, "Bottom Right", 350, 10);
pdf_show_xy($pdf, "Top Left", 10, 752);
pdf_show_xy($pdf, "Top Right", 420, 752);
pdf_show_xy($pdf, "Center",612/2-60,792/2-20);

pdf_end_page($pdf);
pdf_set_parameter($pdf, "openaction”, "fitpage™);
pdf_close($pdf);

$buf = pdf_get_buffer($pdf);

$len = strlen($buf);

header("Content-Type: application/pdf");
header("Content-Length: $len™);
header("Content-Disposition: inline; filename=coords.pdf");
echo $buf;

pdf_delete($pdf);

?>

The output of Example 10-2 is shown in Figure 10-2.

Figure 10-2. Coordinate demo output

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

It can be inconvenient to use a bottom-left origin. Example 10-3 puts the origin in the top-left corner
and displays a string near that corner.

Example 10-3. Changing the origin

<?php

$pdf = pdf_new();

pdf_open_file($pdf);

pdf_set_info($pdf,"Creator","coords.php");
pdf_set_info($pdf,"Author","Rasmus Lerdorf");
pdf_set_info($pdf,"Title","Coordinate Test (PHP)");
pdf_begin_page($pdf,612,792);

pdf_translate($pdf,0,792); // move origin

pdf_scale($pdf, 1, -1); // redirect horizontal coordinates
pdf_set_value($pdf,"horizscaling",-100); // keep normal text direction

$font = pdf_findfont($pdf,"Helvetica-Bold","host",0);
pdf_setfont($pdf,$font,-38.0); // text points upward
pdf_show_xy($pdf, "Top Left", 10, 40);

pdf_end_page($pdf);
pdf_set_parameter($pdf, "openaction”, "fitpage™");
pdf_close($pdf);

$buf = pdf_get_buffer($pdf);

$len = strlen($buf);
Header("Content-Type:application/pdf");
Header("Content-Length:$len");
Header("Content-Disposition:inline; filename=coords.pdf");
echo $buf;

pdf_delete($pdf);

?>

The output of Example 10-3 is shown in Eigure 10-3.

Figure 10-3. Changing the origin

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The pdf_translate() function moves the origin to the top of the page, and pdf_scale() inverts the Y-
axis coordinates. To avoid producing text that can be read only in a mirror, we set the horizscaling
parameter.

10.3.2 Text Functions

PDF files have the concept of the current text position. It's like a cursor—unless you specify another
location, when you insert text it appears at the current text location. You set the text location with the
pdf_set_textpos() function:

pdf_set_textpos(pdf, x, y);

Once you have positioned the cursor, use the pdf_show() function to draw text there:
pdf_show(pdff, text);

After you call pdf_show(), the cursor moves to the end of the inserted text.

You can also move the location and draw text in one function, with pdf_show_xy():
pdf_show_xy(pdf, text, x, y);

The pdf_continue_text() function moves to the next line and outputs text:

pdf_continue_text(pdf, text);

Set the leading parameter with pdf_set_parameter() to change the vertical separation between lines.

The pdf_show_boxed() function lets you define a rectangular area within which a string of text is
formatted:

$c = pdf_show_boxed(pdf, text, x, y, width, height, mode [, feature]);

The mode parameter controls the alignment of the text within the box, and can be "left", "right",
"center", "justify", or "fulljustify". The difference between "justify" and "fulljustify" is in the treatment of
the last line. The last line in a "justify"-formatted area is not justified, whereas in a "fulljustify" area it

is. Example 10-4 shows all five cases.
Example 10-4. Text alignment within a box

<?php

$pdf = pdf_new();
pdf_open_file($pdf);
pdf_begin_page($pdf,612,792);

$font = pdf_findfont($pdf,"Helvetica-Bold","host",0);
pdf_setfont($pdf,$font,38);

$text = <<<FOO

This is a lot of text inside a text box in a small pdf file.
FOO;

pdf_show_boxed($pdf, $text, 50, 590, 300, 180, "left");
pdf_rect($pdf,50,590,300,180); pdf_stroke($pdf);
pdf_show_boxed($pdf, $text, 50, 400, 300, 180, "right");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

pdf_rect($pdf,50,400,300,180); pdf_stroke($pdf);
pdf_show_boxed($pdf, $text, 50, 210, 300, 180, "justify");
pdf_rect($pdf,50,210,300,180);

pdf_stroke($pdf);

pdf_show_boxed($pdf, $text, 50, 20, 300, 180, "fulljustify");
pdf_rect($pdf,50,20,300,180);

pdf_stroke($pdf);

pdf_show_boxed($pdf, $text, 375, 235, 200, 300, "center");
pdf_rect($pdf,375,250,200,300);

pdf_stroke($pdf); pdf_end_page($pdf);
pdf_set_parameter($pdf, "openaction”, "fitpage™);
pdf_close($pdf);

$buf = pdf_get_buffer($pdf);

$len = strlen($buf);
header("Content-Type:application/pdf");
header("Content-Length:$len");
header("Content-Disposition:inline; filename=coords.pdf");
echo $buf;

pdf_delete($pdf);

?>

Figure 10-4 shows the output of Example 10-4.

Figure 10-4. Different text alignments

The pdf_show_boxed() function returns the number of characters that did not fit in the box. If the
feature parameter is present, it must be set to the string "blind". This prevents the text from being
drawn on the page and is useful for checking whether a string will fit in the box without actually
drawing it.

10.3.3 Text Attributes

There are three common ways to alter the appearance of text. One is to underline, overline, or strike
out the text using parameters. Another is to change the stroking and filling. The third is to change the
text's color.

Each of the underline, overline, and strikeout parameters may be set to "true" or "false" independently
of the others. For example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

pdf_set_parameter($pdf, "underline", "true"); // enable underlining

Stroking text means drawing a line around the path defined by the text. The effect is an outline of the
text. Filling text means to fill the shape defined by the text. You can set whether text should be
stroked or filled with the textrendering parameter. The valid values are shown in Table 10-2.

Table 10-2. Values for the textrendering parameter

Value Effect

Normal

Stroke (outline)

Fill and stroke

Invisible

Normal, add to clipping path

Fill and stroke, add to clipping path

A EY I DY E =)

Invisible, add to clipping path

You can select the text color using the pdf_setcolor() function:
pdf_setcolor(pdf, type, colorspace, cl1 [, c2, c3[, c4]);

The type parameter is either "stroke", "fill", or "both", indicating whether you're specifying the color to
be used for outlining the letters, filling the letters, or both. The colorspace parameter is one of "gray",

"rgb", "cmyk", "spot", or "pattern". The "gray", "spot", and "pattern" colorspaces take only one color
parameter, whereas "rgb" takes three and "cmyk" takes all four.

Example 10-5 shows colors, underlines, overlines, strikeouts, stroking, and filling at work.
Example 10-5. Changing text attributes

<?php

$p = pdf_new();
pdf_open_file($p);
pdf_begin_page($p,612,792);

$font = pdf_findfont($p,"Helvetica-Bold","host",0);
pdf_setfont($p,$font,38.0);
pdf_set_parameter($p, "overline", "true");
pdf_show_xy($p, "Overlined Text", 50,720);
pdf_set_parameter($p, "overline", "false");
pdf_set_parameter($p, "underline", "true");
pdf_continue_text($p, "Underlined Text");
pdf_set_parameter($p, "strikeout", "true");
pdf_continue_text($p, "Underlined strikeout Text");
pdf_set_parameter($p, "underline","false");
pdf_set_parameter($p, "strikeout","false");
pdf_setcolor($p,"fill","rgb", 1.0, 0.1, 0.1);
pdf_continue_text($p, "Red Text");
pdf_setcolor($p,"fill","rgb", 0, 0, 0);
pdf_set_value($p,"textrendering",1);
pdf_setcolor($p,"stroke","rgbh", 0, 0.5, 0);
pdf_continue_text($p, "Green Outlined Text");
pdf_set_value($p,"textrendering",2);
pdf_setcolor($p,"fill","rgb", 0, .2, 0.8);
pdf_setlinewidth($p,2);

pdf_continue_text($p, "Green Outlined Blue Text");
pdf_end_page($p);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

pdf_close($p);

$buf = pdf_get_buffer($p);

$len = strlen($buf);

header("Content-Type: application/pdf");
header("Content-Length: $len");
header("Content-Disposition: inline; filename=coord.pdf");
echo $buf;

pdf_delete($p);

?>

Figure 10-5 shows the output of Example 10-5.

Figure 10-5. Lining, stroking, filling, and coloring text

10.3.4 Fonts

There are 14 built-in fonts in PDF, as listed in Table 10-3. If you use only these fonts, the documents
you create will be smaller and more portable than if you use nonstandard fonts.

Table 10-3. Standard PDF fonts

Courier Courier-Bold Courier-BoldOblique Courier-Oblique
Helvetica Helvetica-Bold Helvetica-BoldOblique Helvetica-Oblique
Times-Bold Times-BoldItalic Times-Italic Times-Roman
Symbol ZapfDingbats

You can select a font with the pdf_findfont() function:
$font = pdf_findfont(pdf, fontname, encoding, embed);

The encoding parameter indicates how the internal numeric codes for characters map onto the font's
characters. The built-in encodings are "winansi" (Windows, a superset of ISO 8859-1, which is itself a
superset of ASCII), "macroman” (Macintosh), "ebcdic" (IBM mainframe), "builtin" (for symbol fonts),
and "host" ("macroman" on the Mac, "ebcdic" on EBCDIC-based systems, and "winansi" on everything
else). When using built-in fonts, stick to "host".

You can load nonstandard fonts if you have the PostScript font metrics or TrueType files. If you want
to embed the nonstandard fonts in the PDF file, rather than using whatever fonts on the viewer's
system most resemble them, set the embed parameter to 1. You do not need to embed the standard

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

fonts.

Using nonstandard fonts without embedding them makes your documents much less portable, while
embedding them makes your generated PDF files much larger. You also need to be careful of not
violating any font license terms, because some fonts are not supposed to be embedded. TrueType
font files have an indicator that is set if the font should not be embedded. This is honored by pdflib,
which produces an error if you try to embed such a font.

10.3.5 Embedding Fonts

To use nonstandard fonts, you must tell pdflib where they are with the FontAFM, FontPFM, or
FontOutline parameters. For example, to use a TrueType font, you can do this:

pdf_set_parameter($p,"FontOutline", "CANDY==/usr/fonts/candy.ttf");
$font = pdf_findfont($p, "CANDY", "host", 1);

The double equals sign in this code tells pdfiib that you are specifying an absolute path. A single
equals sign would indicate a path relative to the default font directory.

Instead of using explicit pdf_set_parameter() calls each time you want to use a nonstandard font, you
can tell your pdflib installation about these extra fonts by adding the FontAFM, FontPFM, and
FontOutline settings to pdflib's pdfiib.upr file.

Here's a sample set of additions to the FontAFM and FontOutline sections of the pdflib.upr file. The line
that starts with two slashes (//) indicates the default directory for font files. The format for the other
lines is simply fontname=filename:

//usr/share/fonts

FontAFM
LuciduxSans=lcdxsr.afm
Georgia=georgia.afm

FontOutline

Arial=arial.ttf

Century Gothic=GOTHIC.TTF

Century Gothic Bold=GOTHICB.TTF
Century Gothic Bold Italic=GOTHICBL.TTF
Century Gothic Italic=GOTHICI.TTF

You can specify an absolute path to a font file if you wish.

Example 10-6 shows most of the built-in fonts along with the five extra AFM (Adobe Font Metric) and
two extra TrueType fonts installed in the pdfiib.upr file above. It displays new Euro currency symbol
along with a collection of accented characters used in French.

Example 10-6. Font demonstration

<?php

$p = pdf_new();

pdf_open_file($p);

pdf_set_info($p,"Creator","hello.php");

pdf_set_info($p,"Author","Rasmus Lerdorf");

pdf_set_info($p,"Title","Hello world (PHP)");

pdf_set_parameter($p, "resourcefile”, '/usr/share/fonts/pdflib/pdflib.upr’);

pdf_begin_page($p,612,792);

pdf_set_text_pos($p,25,750);

$fonts = array('Courier'=>0,'Courier-Bold'=>0,'Courier-BoldOblique'=>0,
'Courier-Oblique'=>0,'Helvetica'=>0,'Helvetica-Bold'=>0,
'Helvetica-BoldOblique'=>0,'Helvetica-Oblique'=>0,
‘Times-Bold'=>0, Times-BoldItalic'=>0, 'Times-Italic'=>0,
'"Times-Roman'=>0, 'LuciduxSans'=>1,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

'Georgia' => 1, 'Arial' => 1, 'Century Gothic' => 1,
'Century Gothic Bold' => 1, 'Century Gothic Italic' => 1,
'‘Century Gothic Bold Italic' => 1
)
foreach($fonts as $f=>$embed) {
$font = pdf_findfont($p,$f,"host",$embed);
pdf_setfont($p,$font,25.0);
pdf_continue_text($p,"$f (".chr(128)." Cadaadacééé)"),
b
pdf_end_page($p);
pdf_close($p);
$buf = pdf_get_buffer($p);
$len = strlen($buf);
Header("Content-Type: application/pdf");
Header("Content-Length: $len");
Header("Content-Disposition: inline; filename=hello_php.pdf");
echo $buf;
pdf_delete($p);
?>

The output of Example 10-6 is shown in Figure 10-6.

Figure 10-6. Output of the font demonstration

H1ove RuBoare [+ erevious st]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

10.4 Images and Graphics

There's more to documents than text. Most PDF files contain some type of logo, diagram, illustration,
or picture. This section shows how to include image files, build your own line-art illustrations, and
repeat elements on every page (for instance, a header with a logo).

10.4.1 Images

PDF supports many different embedded image formats: PNG, JPEG, GIF, TIFF, CCITT, and a raw
image format that consists of a stream of the exact byte sequence of pixels. Not every feature of
every format is supported, however.

For PNG images, the alpha channel is lost (however, the later versions of pdflib and Acrobat do
support transparency, which means that you can indicate a color index to be the transparent color,
but you cannot have partial transparency). For JPEG, you only need to watch out for progressive
JPEGSs; they are not supported prior to Acrobat 4, so it is a good idea to stick to nonprogressive
JPEGs. For GIF images, avoid interlacing.

Adding an image to a PDF document is relatively simple. The first step is to call the appropriate open
function for the type of image you are using. These functions all take the form pdf_open_ format().
For instance:

$image = pdf_open_jpeg(pdf, filename);

Once you have opened the image, use pdf_place_image() to indicate where in your document the
image should be located. While you have an image open, you can place it multiple times throughout
your document; your generated file will contain only one copy of the actual image data. When you are
done placing your image, call the pdf_close_image() function:

pdf_place_image(pdf, image, x, y, scale);
pdf_close_image(pdf, image);

The scale parameter indicates the proportional scaling factor to be used when placing the image in the
document.

You can get the dimensions of an image via pdf_get_value() calls on the imagewidth and imageheight
keywords.

Example 10-7 places an image in several places on a page.

Example 10-7. Placing and scaling images

<?php

$p = pdf_new();

pdf_open_file($p);
pdf_set_info($p,"Creator","images.php");
pdf_set_info($p,"Author","Rasmus Lerdorf");
pdf_set_info($p,"Title","Images");
pdf_begin_page($p,612,792);

$im = pdf_open_jpeg($p, "php-big.jpg");
pdf_place_image($p, $im, 200, 700, 1.0);
pdf_place_image($p, $im, 200, 600, 0.75);
pdf_place_image($p, $im, 200, 535, 0.50);
pdf_place_image($p, $im, 200, 501, 0.25);
pdf_place_image($p, $im, 200, 486, 0.10);
$x = pdf_get_value($p, "imagewidth", $im);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$y = pdf_get_value($p, "imageheight", $im);
pdf_close_image ($p,$im);

$font = pdf_findfont($p,'Helvetica-Bold','host',0);
pdf_setfont($p,$font,38.0);

pdf_show_xy($p,"$x by $y",425,750);
pdf_end_page($p);

pdf_close($p);

$buf = pdf_get_buffer($p);

$len = strlen($buf);

header("Content-Type: application/pdf");
header("Content-Length: $len™);
header("Content-Disposition: inline; filename=images.pdf");
echo $buf;

pdf_delete($p);

?>

Figure 10-7 shows the output of Example 10-7.

Figure 10-7. Placed and scaled images

The scaled versions of the PHP logo in Example 10-7 kept their original proportions. To do
nonproportional scaling of an image, you must temporarily scale the coordinate system via a call to
pdf_scale():

pdf_scale(pdf, xscale, yscale),

All subsequent coordinates will be multiplied by the xscale and yscale values.

Example 10-8 shows nonproportional scaling in action. Note that we had to compensate for the
coordinate system scaling in the pdf_place_image() call to have the image show up in the right place.

Example 10-8. Nonproportional scaling

<?php

$im = pdf_open_jpeg($p, "php-big.jpg");
pdf_place_image($p, $im, 200, 700, 1.0);

pdf_save($p); // Save current coordinate system settings
$nx = 50/pdf_get_value($p,"imagewidth",$im);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$ny = 100/pdf_get_value($p,"imageheight",$im);
pdf_scale($p, $nx, $ny);

pdf_place_image($p, $im, 200/$nx, 600/$ny, 1.0);
pdf_restore($p); // Restore previous
pdf_close_image ($p,$im);

?>

The output of Example 10-8 is shown in Figure 10-8.

Figure 10-8. Nonproportional scaling

10.4.2 Graphics

To draw a graphical shape, first specify a path and then fill and/or stroke the path with appropriately
configured fill and/or stroke colors. The functions that define these paths are straightforward. For
example, to draw a line, you position the cursor at the starting point of the line using a call to
pdf_moveto() , then specify the path for this line with a call to pdf_lineto(). The starting points of
other functions, such as pdf_circle() and pdf_rect(), are defined directly in the calls.

The pdf_moveto() function starts the path at a particular point:
pdf_moveto(pdf, x, y);

With pdf_lineto(), you can draw a line from the current point to another point:
pdf_lineto(pdf, x, y);

Use pdf_circle() to draw a circle of radius rat a particular point:
pdf_circle(pdf, x, y, r);

The pdf_arc() function draws an arc of a circle:

pdf_arc(pdf, x, y, r, alpha, beta);

The circle is centered at (x,¥) and has radius r. The starting point of the arc is ajpha degrees
(measured counterclockwise from the horizontal axis), and the endpoint is beta degrees.

Use pdf_curveto() to draw a Bézier curve from the current point:

pdf_curveto(pdf, x1, y1, X2, y2, X3, y3);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The points (x1,y1), (x2,y2), and (x3,y3) are control points through which the curve must pass.

You can draw a rectangle with pdf_rect():

pdf_rect(pdf, x, y, width, height);

To draw a line from the current point back to the point that started the path, use pdf_closepath():
pdf_closepath(pdh;

Example 10-9 defines a simple path and strokes it.
Example 10-9. A simple graphic path

<?php

$p = pdf_new();

pdf_open_file($p);
pdf_begin_page($p,612,792);
pdf_moveto($p,150,150);
pdf_lineto($p,450,650);
pdf_lineto($p,100,700);
pdf_curveto($p,80,400,70,450,250,550);
pdf_stroke($p);

pdf_end_page($p);

pdf_close($p);

$buf = pdf_get_buffer($p);

$len = strlen($buf);
header("Content-Type:application/pdf");
header("Content-Length:$len");
header("Content-Disposition:inline; filename=gra.pdf");
echo $buf;

pdf_delete($p);

?>

The output of Example 10-9 is shown in Figure 10-9.

Figure 10-9. A sample path

We can use pdf_closepath() and pdf_fill_stroke() to close the path and then fill it with the current fill
color by replacing the pdf_stroke() call in Example 10-9 with these two lines:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

pdf_closepath($p);
pdf_fill_stroke($p);

The pdf_fill_stroke() function fills and strokes the path with the current fill and stroke colors. Our
output now looks like Figure 10-10.

Figure 10-10. Closed and filled path

Here's some code that experiments with different shapes and stroking or filling. Its output is shown in

// circle

pdf_setcolor($p,"fill","rgb", 0.8, 0.5, 0.8);
pdf_circle($p,400,600,75);
pdf_fill_stroke($p);

// funky arc

pdf_setcolor($p,"fill","rgb", 0.8, 0.5, 0.5);
pdf_moveto($p,200,600);
pdf_arc($p,300,600,50,0,120);
pdf_closepath($p);

pdf_fill_stroke($p);

// dashed rectangle
pdf_setcolor($p,"stroke","rgb", 0.3, 0.8, 0.3);
pdf_setdash($p,4,6);
pdf_rect($p,50,500,500,300);
pdf_stroke($p);

Figure 10-11. Different shapes and stroking and filling styles

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

10.4.3 Patterns

A pattern is a reusable component, defined outside of a page context, that is used in place of a color
for filling or stroking a path.

The pdf_begin_pattern() call returns a pattern handle:
$pattern = pdf_begin_pattern(pdf, width, height, xstep, ystep, painttype);

The width and height parameters specify the size of the pattern. If you are creating a pattern from an
image, these are the dimensions of the image. The xstep and ystep parameters specify the horizontal
and vertical tiling spacing (i.e., the distance between repetitions of the image). To tile the image
without a gap between repetitions, set the xstep and ystep arguments to the same values as width and
height. The final argument, painttype, can be either 1 or 2. 1 means that the pattern supplies its own
color information. 2 means that the current fill and stroke colors are used instead. Patterns based on
images only use a painttype of 1.

Example 10-10 creates a pattern from a small PHP logo image and uses it to fill a circle.
Example 10-10. Filling with a pattern

<?php
$p = pdf_new();
pdf_open_file($p);

$im = pdf_open_jpeg($p, "php-tiny.jpg");
$pattern = pdf_begin_pattern($p,64,34,64,34,1);
pdf_save($p);

pdf_place_image($p, $im, 0,0,1);
pdf_restore($p);

pdf_end_pattern($p);

pdf_close_image ($p,$im);

pdf_begin_page($p,612,792);
pdf_setcolor($p, "fill", "pattern", $pattern);
pdf_setcolor($p, "stroke", "pattern”, $pattern);
pdf_setlinewidth($p, 30.0);
pdf_circle($p,306,396,120);

pdf_stroke($p);

pdf_end_page($p);

pdf_close($p);
$buf = pdf_get_buffer($p);
$len = strlen($buf);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Header("Content-Type:application/pdf");
Header("Content-Length: $len");
Header("Content-Disposition: inline; filename=pat.pdf");
echo $buf;

pdf_delete($p);

?>

The output of Example 10-10 is shown in Figure 10-12.

Figure 10-12. Pattern filling a circle

10.4.4 Templates

It is common to have parts of a document, such as header/footer sections or background watermarks,
repeated on multiple pages. It would be trivial to write a little PHP function to generate such things on
each page, but if you did this the final PDF file would end up containing the same sequence of PDF
calls on every page. PDF has built-in functionality known as "Form XObjects" (renamed "Templates" in
pdflib) to more efficiently handle repeating elements.

To create a template, simply call pdf_begin_template(), perform the various operations to create the
PDF components you want this template to contain, then call pdf_end_template(). It is a good idea to
do a pdf_save() right after beginning the template and a pdf_restore() just before ending it to make
sure that any context changes you perform in your template don't leak out of this template into the
rest of the document.

The pdf_begin_template() function takes the dimensions of the template and returns a handle for the
template:

$template = pdf_begin_template(pdf, width, height);

The pdf_end_template(), pdf_save(), and pdf_restore() functions take no arguments beyond the pdf
handle:

pdf_end_template(pdf;
pdf_save(pdf);
pdf_restore(pdf);

Example 10-11 uses templates to create a two-page document with the PHP logo in the top-left and
top-right corners and the title "pdf Template Example" and a line at the top of each page. If you
wanted to add something like a page number to your header, you would need to do that on each
page. There is no way to put variable content in a template.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 10-11. Using a template

<?php
$p = pdf_new();
pdf_open_file($p);

// define template

$im = pdf_open_jpeg($p, "php-big.jpg");
$template = pdf_begin_template($p,612,792);
pdf_save($p);

pdf_place_image($p, $im, 14, 758, 0.25);
pdf_place_image($p, $im, 562, 758, 0.25);
pdf_moveto($p,0,750);
pdf_lineto($p,612,750);

pdf_stroke($p);

$font = pdf_findfont($p,"Times-Bold","host",0);
pdf_setfont($p,$font,38.0);
pdf_show_xy($p,"pdf Template Example",120,757);
pdf_restore($p);

pdf_end_template($p);

pdf_close_image ($p,$im);// build pages
pdf_begin_page($p,595,842);
pdf_place_image($p, $template, 0, 0, 1.0);
pdf_end_page($p);
pdf_begin_page($p,595,842);
pdf_place_image($p, $template, 0, 0, 1.0);
pdf_end_page($p);

pdf_close($p);

$buf = pdf_get_buffer($p);

$len = strlen($buf);

header("Content-Type: application/pdf");
header("Content-Length: $len");
header("Content-Disposition: inline; filename=templ.pdf");
echo $buf;

pdf_delete($p);

?>

The output of Example 10-11 is shown in Figure 10-13.

Figure 10-13. A templated page

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Some operations, such as opening an image, cannot be done within the context of a template
definition. Attempting to do so will cause an error. If you get such an error, simply move the
offending operation to just before the pdf_begin_template() call.

I l@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

10.5 Navigation

PDF provides several navigation features for PDF files. Bookmarks function as a table of contents for
the document, and you can provide viewers with thumbnail images indicating what's at the other end
of each bookmark. In addition, any part of a PDF page can be linked to another part of the current
PDF file, another PDF file, or a completely different file.

10.5.1 Bookmarks and Thumbnails

Bookmarks make it easy to quickly navigate through long PDF documents. You can create a bookmark
with the pdf_add_bookmark() function, which returns a bookmark handle:

$bookmark = pdf_add_bookmark(pdf, text, parent, open);

The text parameter is the label that the user sees. To create a nested menu of bookmarks, pass a
bookmark handle as the parent option. The current location in the PDF file (as it is being created) is
the destination of the bookmark.

Bookmarks can have thumbnails associated with them. To make a thumbnail, load an image and call
pdf_add_thumbnail():

pdf_add_thumbnail(pdf, image);

Example 10-12 creates a top-level bookmark named "Countries" and nests two bookmarks, "France"
and "New Zealand", under the "Countries" bookmark. It also creates a representative thumbnail
image for each page. These thumbnails can be viewed in Acrobat Reader's thumbnail panel.

Example 10-12. Using bookmarks and thumbnails

<?php
$p = pdf_new();
pdf_open_file($p);

pdf_begin_page($p,595,842);

$top = pdf_add_bookmark($p, "Countries");

$im = pdf_open_png($p, "fr-flag.png");
pdf_add_thumbnail($p, $im);

pdf_close_image($p,$im);

$font = pdf_findfont($p,"Helvetica-Bold","host",0);
pdf_setfont($p, $font, 20);

pdf_add_bookmark($p, "France", $top);
pdf_show_xy($p, "This is a page about France", 50, 800);

pdf_end_page($p);

pdf_begin_page($p,595,842);

$im = pdf_open_png($p, "nz-flag.png");
pdf_add_thumbnail($p, $im);

pdf_close_image($p,$im);

pdf_setfont($p, $font, 20);

pdf_add_bookmark($p, "Denmark", $top);

pdf_show_xy($p, "This is a page about New Zealand", 50, 800);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

pdf_end_page($p);

pdf_close($p);

$buf = pdf_get_buffer($p);

$len = strlen($buf);
header("Content-Type:application/pdf");
header("Content-Length:$len");
header("Content-Disposition:inline; filename=bm.pdf");
echo $buf;

pdf_delete($p);

?>

The thumbnails generated by Example 10-12 are shown in Figure 10-14.

Figure 10-14. Thumbnails

10.5.2 Links

pdflib supports functions that specify a region on a page that, when clicked on, takes the reader
somewhere else. The destination can be either another part of the same document, another PDF
document, some other application, or a web site.

The pdf_add_locallink() function adds a local link to another place within the current PDF file:
pdf_add_locallink(pdf, llx, lly, urx, ury, page, zoom);

All links in PDF files are rectangular. The lower-left coordinate is (urx,ury) and the upper-right
coordinate is (urx,ury). Valid zoom values are "retain", "fitpage", "fitwidth", "fitheight", and "fitbbox".

The following call defines a 50 x 50 area that, if clicked, takes the reader to page 3 and retains the
current zoom level:

pdf_add_locallink($p, 50, 700, 100, 750, 3, "retain");

The pdf_add_pdflink() function adds a link to another PDF file. It takes the same parameters as the
pdf_add_locallink() function, with the addition of a new parameter containing the filename to link to:

pdf_add_pdflink(pdf, lix, lly, urx, ury, filename, page, zoom);

For example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

pdf_add_pdflink($p, 50, 700, 100, 750, "another.pdf", 3, "retain");

The pdf_add_launchlink() function adds a link to another file, whose MIME type causes the appropriate
program to be launched to view the file:

pdf_add_launchlink($p, 50, 700, 100, 750, "/path/document.doc");

The pdf_add_weblink() function creates a link whose destination is a URL:
pdf_add_weblink(pdf, lix, lly, urx, ury, url);

Example 10-13 takes an image, figures out its size, puts it at position (50,700) in the document, then
adds a weblink such that if you click anywhere on the image you end up at http://www.php.net. The
pdf_set_border_style() call, with a line width of 0, gets rid of the box that would otherwise be drawn
around the image.

Example 10-13. Specifying a link

<?php
$p = pdf_new();
pdf_open_file($p);

$im = pdf_open_jpeg($p, "php.jpg");

$x = pdf_get_value($p, "imagewidth", $im);

$y = pdf_get_value($p, "imageheight", $im);
pdf_begin_page($p,612,792);

pdf_place_image($p, $im, 50, 700, 1.0);

pdf_set_border_style($p, "solid", 0);
pdf_add_weblink($p,50,700,50+$x,700+$y,"http://www.php.net");
pdf_end_page($p);

pdf_close_image($p, $im);

pdf_close($p);

$buf = pdf_get_buffer($p);

$len = strlen($buf);

header("Content-Type: application/pdf");
header("Content-Length: $len");
header("Content-Disposition: inline; filename=link.pdf");
echo $buf;

pdf_delete($p);

?>

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Hove RuBoare [+ erevious st]

10.6 Other PDF Features

PDF documents support a variety of other features, such as annotations, attached files, and page
transitions. These features can also be manipulated with pdfiib.

10.6.1 Note Annotations

Notes can be added on top of a PDF document using pdf_add_note():
pdf_add_note(pdf, llx, lly, urx, ury, contents, title, icon, open);

Specify the note area with two points: the lower-left corner (/lx,/ly) and upper-right corner (urx,ury).
The contents parameter holds the text of the note (maximum size 64 KB). The maximum size of the
title is 255 characters. The icon parameter indicates which icon should represent the note when it is

closed (allowable values are "comment", "insert", "note", "paragraph”, "newparagraph”, "key", and
"help"). The open parameter indicates whether the note should be open or closed by default.

Example 10-14 creates an open note on a page with the note icon.
Example 10-14. Creating an open note

<?php
$p = pdf_new();
pdf_open_file($p);

pdf_begin_page($p,612,792);
pdf_add_note($p,100,650,200,750,"This is a test annotation.","Testing","note",0);
pdf_end_page($p);

pdf_close($p);

$buf = pdf_get_buffer($p);

$len = strlen($buf);

header("Content-Type: application/pdf");
header("Content-Length: $len");
header("Content-Disposition: inline; filename=note.pdf");
echo $buf;

pdf_delete($p);
?>

The output of Example 10-14 is shown in Figure 10-15.

Figure 10-15. Open note

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Changing the open argument to php_add_note() from 1 to O creates the output shown in Figure 10-16
(a closed note).

Figure 10-16. Closed note

10.6.2 Attaching Files to a PDF Document

Arbitrary files can be attached to a PDF document. For example, a PDF version of this book might
have attachments for each program, saving the pain of copying and pasting.

To attach a file, use the pdf_attach_file() function:

pdf_attach_file(pdf, lix, lly, urx, ury, filename, description, author,
content_type, icon);

The content_type is the MIME type of the file (e.g., "text/plain"). The icon parameter can be "graph",

mn

"pushpin”, "paperclip”, or "tag". For example:
pdf_begin_page($p, 595, 842);
pdf_attach_file($p, 100, 600, 200, 700, "file.zip",

"Here is that file you wanted",
"Rasmus Lerdorf", "application/zip", "paperclip");

10.6.3 Page Transitions

PDF has the ability to apply special page transition effects similar to those you might see in
presentation programs such as Microsoft PowerPoint. Most viewers apply transitions only when in
fullscreen mode.

A page transition is set with the transition parameter. The available transitions are "split", "blinds",

"box", "wipe", "dissolve", "glitter", and "replace". The default transition is always the simple "replace",
which just replaces one page with the next.

To set the default time between pages, you can set the duration parameter. For example, to set the
duration between pages to 5 seconds and to switch to the "wipe" page transition from here on, you
can use:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php

pdf_set_value($p, "duration”, 5);
pdf_set_parameter($p, "transition
?>

I I@ve RuBoard

non
A

wipe");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

Chapter 11. XML

XML, the Extensible Markup Language, is a standardized data format. It looks a little like HTML, with
tags (<example>like this</example>) and entities (&). Unlike HTML, however, XML is designed to
be easy to parse, and there are rules for what you can and cannot do in an XML document. XML is
now the standard data format in fields as diverse as publishing, engineering, and medicine. It's used
for remote procedure calls, databases, purchase orders, and much more.

There are many scenarios where you might want to use XML. Because it is a common format for data
transfer, other programs can emit XML files for you to either extract information from (parse) or
display in HTML (transform). This chapter shows how to use the XML parser bundled with PHP, as well
as how to use the optional XSLT extension to transform XML. We also briefly cover generating XML.

Recently, XML has been used in remote procedure calls. A client encodes a function name and
parameter values in XML and sends them via HTTP to a server. The server decodes the function name
and values, decides what to do, and returns a response value encoded in XML. XML-RPC has proved a
useful way to integrate application components written in different languages. In this chapter, we'll
show you how to write XML-RPC servers and clients.

{1ove Rugoard [+ ervsus [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

11.1 Lightning Guide to XML
Most XML consists of elements (like HTML tags), entities, and regular data. For example:

<book isbn="1-56592-610-2">
<title>Programming PHP</title>
<authors>
<author>Rasmus Lerdorf</author>
<author>Kevin Tatroe</author>
</authors>
</book>

In HTML, you often have an open tag without a close tag. The most common example of this is:

In XML, that is illegal. XML requires that every open tag be closed. For tags that don't enclose
anything, such as the line break
, XML adds this syntax:

Tags can be nested but cannot overlap. For example, this is valid:
<book> <title>Programming PHP</title></book>

but this is not valid, because the book and title tags overlap:
<book> <title>Programming PHP</book> </title>

XML also requires that the document begin with a processing instruction that identifies the version of
XML being used (and possibly other things, such as the text encoding used). For example:

<?xml version="1.0" ?>

The final requirement of a well-formed XML document is that there be only one element at the top
level of the file. For example, this is well formed:

<?xml version="1.0" ?>

<library>
<title>Programming PHP</title>
<title>Programming Perl</title>
<title>Programming C# </title>

</library>

but this is not well formed, as there are three elements at the top level of the file:

<?xml version="1.0" ?>

<title>Programming PHP</title>
<title>Programming Perl</title>
<title>Programming C# </title>

XML documents generally are not completely ad hoc. The specific tags, attributes, and entities in an
XML document, and the rules governing how they nest, comprise the structure of the document.
There are two ways to write down this structure: the Document Type Definition (DTD) and the
Schema. DTDs and Schemas are used to validate documents; that is, to ensure that they follow the
rules for their type of document.

Most XML documents don't include a DTD. Many identify the DTD as an external with a line that gives
the name and location (file or URL) of the DTD:

<IDOCTYPE rss PUBLIC 'My DTD Identifier' 'http://www.example.com/my.dtd"'>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Sometimes it's convenient to encapsulate one XML document in another. For example, an XML
document representing a mail message might have an attachment element that surrounds an attached
file. If the attached file is XML, it's a nested XML document. What if the mail message document has a
body element (the subject of the message), and the attached file is an XML representation of a
dissection that also has a body element, but this element has completely different DTD rules? How
can you possibly validate or make sense of the document if the meaning of body changes partway
through?

This problem is solved with the use of namespaces. Namespaces let you qualify the XML tag—for
example, email:body and human:body.

There's a lot more to XML than we have time to go into here. For a gentle introduction to XML, read
Learning XML, by Erik Ray (O'Reilly). For a complete reference to XML syntax and standards, see XML
in a Nutshell, by Elliotte Rusty Harold and W. Scott Means (O'Reilly).

I I@ve RuBoard m m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

11.2 Generating XML

Just as PHP can be used to generate dynamic HTML, it can also be used to generate dynamic XML.
You can generate XML for other programs to consume based on forms, database queries, or anything
else you can do in PHP. One application for dynamic XML is Rich Site Summary (RSS), a file format for
syndicating news sites. You can read an article's information from a database or from HTML files
themselves and emit an XML summary file based on that information.

Generating an XML document from a PHP script is simple. Simply change the MIME type of the
document, using the header() function, to "text/xml". To emit the <?xml ... ?> declaration without it
being interpreted as a malformed PHP tag, you'll need to either disable short_open_tag in your php.ini
file, or simply echo the line from within PHP code:

<?php
echo '<?xml version="1.0" encoding="ISO-8859-1" ?>;
?>

Example 11-1 generates an RSS document using PHP. An RSS file is an XML document containing
several channel elements, each of which contains some news item elements. Each news item can have
a title, a description, and a link to the article itself. More properties of an item are supported by RSS
than Example 11-1 creates. Just as there are no special functions for generating HTML from PHP (you
just echo it), there are no special functions for generating XML. You just echo it!

Example 11-1. Generating an XML document

<?php header('Content-Type: text/xml'); ?>
<?xml version="1.0" encoding="ISO-8859-1" ?>
<IDOCTYPE rss PUBLIC '-//Netscape Communications//DTD RSS 0.91//EN'
'http://my.netscape.com/publish/formats/rss-0.91.dtd'>
<rss version="0.91">
<channel>
<?php
// news items to produce RSS for
$items = array(
array('title' => 'Man Bites Dog',
'link' => 'http://www.example.com/dog.php’,
'desc' => 'Tronic turnaround!"),
array('title' => 'Medical Breakthrough!,
'link' => 'http://www.example.com/doc.php’,
'desc' => 'Doctors announced a cure for me.")

)

foreach($items as $item) {
echo "<item>\n";
echo " <title>{$item[title]}</title>\n";
echo " <link>{$item[link]}</link>\n";
echo " <description>{$item[desc]}</description>\n";
echo " <language>en-us</language>\n";
echo "</item>\n";
b
?>
</channel>
</rss>
<?xml version="1.0"' encoding='ISO-8859-1"' ?>
<IDOCTYPE rss PUBLIC '-/ /Netscape Communications//DTD RSS 0.91//EN'
'http://my.netscape.com/publish/formats/rss-0.91.dtd'>
<rss version="0.91">

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<channel>
<item>

<title>Man Bites Dog</title>
<link>http://www.example.com/dog.php</link>
<description>Ironic turnaround!</description>
<language>en-us</language>

</item>

<item>
<title>Medical Breakthrough!</title>
<link>http://www.example.com/doc.php</link>
<description>Doctors announced a cure for me.</description>
<language>en-us</language>

</item>
</channel>

</rss>

H1ove RuBoare [+ previous Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

11.3 Parsing XML

Say you have a collection of books written in XML, and you want to build an index showing the
document title and its author. You need to parse the XML files to recognize the title and author
elements and their contents. You could do this by hand with regular expressions and string functions
such as strtok(), but it's a lot more complex than it seems. The easiest and quickest solution is to use
the XML parser that ships with PHP.

PHP's XML parser is based on the Expat C library, which lets you parse but not validate XML
documents. This means you can find out which XML tags are present and what they surround, but you
can't find out if they're the right XML tags in the right structure for this type of document. In practice,
this isn't generally a big problem.

PHP's XML parser is event-based, meaning that as the parser reads the document, it calls various
handler functions you provide as certain events occur, such as the beginning or end of an element.

In the following sections we discuss the handlers you can provide, the functions to set the handlers,
and the events that trigger the calls to those handlers. We also provide sample functions for creating
a parser to generate a map of the XML document in memory, tied together in a sample application
that pretty-prints XML.

11.3.1 Element Handlers

When the parser encounters the beginning or end of an element, it calls the start and end element
handlers. You set the handlers through the xml_set_element_handler() function:

xml_set_element_handler(parser, start_element, end_element);

The start_element and end_element parameters are the names of the handler functions.

The start element handler is called when the XML parser encounters the beginning of an element:
my_start_element_handler(parser, element, attributes);

It is passed three parameters: a reference to the XML parser calling the handler, the name of the
element that was opened, and an array containing any attributes the parser encountered for the
element. The attribute array is passed by reference for speed.

Example 11-2 contains the code for a start element handler. This handler simply prints the element
name in bold and the attributes in gray.

Example 11-2. Start element handler

function start_element($inParser, $inName, &$inAttributes) {
$attributes = array();
foreach($inAttributes as $key) {
$value = $inAttributes[$key];
$attributes[] = "$key=\"$value\" ";

}

echo '<"'. $inName . '". join(' ', $attributes) . '>";
by

The end element handler is called when the parser encounters the end of an element:

my_end_element_handler(parser, element);

It takes two parameters: a reference to the XML parser calling the handler, and the name of the
element that is closing.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 11-3 shows an end element handler that formats the element.
Example 11-3. End element handler

function end_element($inParser, $inName) {
echo '</$inName>";
by

11.3.2 Character Data Handler

All of the text between elements (character data, or CDATA in XML terminology) is handled by the
character data handler. The handler you set with the xml_set_character_data_handler() function is
called after each block of character data:

xml_set_character_data_handler(parser, handler);

The character data handler takes in a reference to the XML parser that triggered the handler and a
string containing the character data itself:

my_character_data_handler(parser, cdata);

Example 11-4 shows a simple character data handler that simply prints the data.
Example 11-4. Character data handler

function character_data($inParser, $inData) {
echo $inData;

}

11.3.3 Processing Instructions

Processing instructions are used in XML to embed scripts or other code into a document. PHP code
itself can be seen as a processing instruction and, with the <?php ... ?> tag style, follows the XML
format for demarking the code. The XML parser calls the processing instruction handler when it
encounters a processing instruction. Set the handler with the xml_set_processing_instruction_handler()
function:

xml_set_processing_instruction(parser, handler);
A processing instruction looks like:
<?target instructions ?>

The processing instruction handler takes in a reference to the XML parser that triggered the handler,
the name of the target (for example, "php"), and the processing instructions:

my_processing_instruction_handler(parser, target, instructions);

What you do with a processing instruction is up to you. One trick is to embed PHP code in an XML
document and, as you parse that document, execute the PHP code with the eval() function. Example
11-5 does just that. Of course, you have to trust the documents you're processing if you eval() code
in them. eval() will run any code given to it—even code that destroys files or mails passwords to a
hacker.

Example 11-5. Processing instruction handler

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

function processing_instruction($inParser, $inTarget, $inCode) {
if ($inTarget === "php') {
eval($inCode);
b
b

11.3.4 Entity Handlers

Entities in XML are placeholders. XML provides five standard entities (&, >, <, ", and
'), but XML documents can define their own entities. Most entity definitions do not trigger
events, and the XML parser expands most entities in documents before calling the other handlers.

Two types of entities, external and unparsed, have special support in PHP's XML library. An external
entity is one whose replacement text is identified by a filename or URL rather than explicitly given in
the XML file. You can define a handler to be called for occurrences of external entities in character
data, but it's up to you to parse the contents of the file or URL yourself if that's what you want.

An unparsed entity must be accompanied by a notation declaration, and while you can define handlers
for declarations of unparsed entities and notations, occurrences of unparsed entities are deleted from
the text before the character data handler is called.

11.3.4.1 External entities

External entity references allow XML documents to include other XML documents. Typically, an
external entity reference handler opens the referenced file, parses the file, and includes the results in
the current document. Set the handler with xml_set_external_entity_ref_handler(), which takes in a
reference to the XML parser and the name of the handler function:

xml_set_external_entity_ref_handler(parser, handler);

The external entity reference handler takes five parameters: the parser triggering the handler, the
entity's name, the base URI for resolving the identifier of the entity (which is currently always empty),
the system identifier (such as the filename), and the public identifier for the entity, as defined in the
entity's declaration:

$ok = my_ext_entity_handler(parser, entity, base, system, public),

If your external entity reference handler returns a false value (which it will if it returns no value), XML
parsing stops with an XML_ERROR_EXTERNAL_ENTITY_HANDLING error. If it returns true, parsing
continues.

Example 11-6 shows how you would parse externally referenced XML documents. Define two
functions, create_parser() and parse(), to do the actual work of creating and feeding the XML parser.
You can use them both to parse the top-level document and any documents included via external
references. Such functions are described later, in Section 11.3.7. The external entity reference
handler simply identifies the right file to send to those functions.

Example 11-6. External entity reference handler

function external_entity_reference($inParser, $inNames, $inBase,
$inSystemID, $inPublicID) {
if($inSystemID) {
if(!list($parser, $fp) = create_parser($inSystemID)) {
echo "Error opening external entity $inSystemID \n";
return false;
b
return parse($parser, $fp);
b

return false;

by

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

11.3.4.2 Unparsed entities

An unparsed entity declaration must be accompanied by a notation declaration:
<IDOCTYPE doc [

<INOTATION jpeg SYSTEM "image/jpeg">

<IENTITY logo SYSTEM "php-tiny.jpg" NDATA jpeg>

1>

Register a notation declaration handler with xml_set_notation_decl_handler():
xml_set_notation_decl_handler(parser, handler);

The handler will be called with five parameters:

my_notation_handler(parser, notation, base, system, public);

The base parameter is the base URI for resolving the identifier of the notation (which is currently
always empty). Either the system identifier or the public identifier for the notation will be set, but not
both.

Register an unparsed entity declaration with the xml_set_unparsed_entity_decl_handler() function:
xml_set_unparsed_entity_decl_handler(parser, handler);

The handler will be called with six parameters:

my_unp_entity_handler(parser, entity, base, system, public, notation);

The notation parameter identifies the notation declaration with which this unparsed entity is
associated.

11.3.5 Default Handler

For any other event, such as the XML declaration and the XML document type, the default handler is
called. To set the default handler, call the xml_set_default_handler() function:

xml_set_default_handler(parser, handler);
The handler will be called with two parameters:
my_default_handler(parser, text);

The text parameter will have different values depending on the kind of event triggering the default
handler. Example 11-7 just prints out the given string when the default handler is called.

Example 11-7. Default handler

function default($inParser, $inData) {
echo "XML: Default handler called with '$inData'\n";

}

11.3.6 Options

The XML parser has several options you can set to control the source and target encodings and case
folding. Use xml_parser_set_option() to set an option:

xml_parser_set_option(parser, option, value);

Similarly, use xml_parser_get_option() to interrogate a parser about its options:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$value = xml_parser_get_option(parser, option);
11.3.6.1 Character encoding

The XML parser used by PHP supports Unicode data in a number of different character encodings.
Internally, PHP's strings are always encoded in UTF-8, but documents parsed by the XML parser can
be in ISO-8859-1, US-ASCII, or UTF-8. UTF-16 is not supported.

When creating an XML parser, you can give it an encoding to use for the file to be parsed. If omitted,
the source is assumed to be in ISO-8859-1. If a character outside the range possible in the source
encoding is encountered, the XML parser will return an error and immediately stop processing the
document.

The target encoding for the parser is the encoding in which the XML parser passes data to the handler
functions; normally, this is the same as the source encoding. At any time during the XML parser's
lifetime, the target encoding can be changed. Any characters outside the target encoding's character
range are demoted by replacing them with a question mark character (?).

Use the constant XML_OPTION_TARGET_ENCODING to get or set the encoding of the text passed to
callbacks. Allowable values are: "ISO-8859-1" (the default), "US-ASCII", and "UTF-8".
11.3.6.2 Case folding

By default, element and attribute names in XML documents are converted to all uppercase. You can
turn off this behavior (and get case-sensitive element names) by setting the
XML_OPTION_CASE_FOLDING option to false with the xml_parser_set_option() function:

xml_parser_set_option(XML_OPTION_CASE_FOLDING, false);
11.3.7 Using the Parser

To use the XML parser, create a parser with xml_parser_create(), set handlers and options on the
parser, then hand chunks of data to the parser with the xml_parse() function until either the data
runs out or the parser returns an error. Once the processing is complete, free the parser by calling
xml_parser_free().

The xml_parser_create() function returns an XML parser:

$parser = xml_parser_create([encoding));

The optional encoding parameter specifies the text encoding ("ISO-8859-1", "US-ASCII", or "UTF-8") of
the file being parsed.

The xml_parse() function returns TRUE if the parse was successful or FALSE if it was not:

$success = xml_parse(parser, data [, final]);

The data argument is a string of XML to process. The optional final parameter should be true for the
last piece of data to be parsed.

To easily deal with nested documents, write functions that create the parser and set its options and
handlers for you. This puts the options and handler settings in one place, rather than duplicating them
in the external entity reference handler. Example 11-8 has such a function.

Example 11-8. Creating a parser
function create_parser ($filename) {

$fp = fopen('filename’, 'r');
$parser = xml_parser_create();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

xml_set_element_handler($parser, 'start_element', 'end_element');
xml_set_character_data_handler($parser, 'character_data');
xml_set_processing_instruction_handler($parser, 'processing_instruction');
xml_set_default_handler($parser, 'default’);

return array($parser, $fp);

function parse ($parser, $fp) {
$blockSize = 4 * 1024; // read in 4 KB chunks

while($data = fread($fp, $blockSize)) { // read in 4 KB chunks
if(Ixml_parse($parser, $data, feof($fp))) {
// an error occurred; tell the user where
echo 'Parse error: ' . xml_error_string($parser) . " at line " .
xml_get_current_line_number($parser));

return FALSE;

by
¥

return TRUE;
by

if (list($parser, $fp) = create_parser(‘test.xml")) {
parse($parser, $fp);
fclose($fp);
xml_parser_free($parser);

}

11.3.8 Errors

The xml_parse() function will return true if the parse completed successfully or false if there was an
error. If something did go wrong, use xml_get_error_code() to fetch a code identifying the error:

$err = xml_get_error_code();
The error code will correspond to one of these error constants:

XML_ERROR_NONE
XML_ERROR_NO_MEMORY
XML_ERROR_SYNTAX
XML_ERROR_NO_ELEMENTS
XML_ERROR_INVALID_TOKEN
XML_ERROR_UNCLOSED_TOKEN
XML_ERROR_PARTIAL_CHAR
XML_ERROR_TAG_MISMATCH
XML_ERROR_DUPLICATE_ATTRIBUTE
XML_ERROR_JUNK_AFTER_DOC_ELEMENT
XML_ERROR_PARAM_ENTITY_REF
XML_ERROR_UNDEFINED_ENTITY
XML_ERROR_RECURSIVE_ENTITY_REF
XML_ERROR_ASYNC_ENTITY
XML_ERROR_BAD_CHAR_REF
XML_ERROR_BINARY_ENTITY_REF
XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF
XML_ERROR_MISPLACED_XML_PI
XML_ERROR_UNKNOWN_ENCODING
XML_ERROR_INCORRECT_ENCODING
XML_ERROR_UNCLOSED_CDATA_SECTION
XML ERROR EXTERNAL ENTTTY HANDLING

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The constants generally aren't much use. Use xml_error_string() to turn an error code into a string
that you can use when you report the error:

$message = xml_error_string(code);
For example:

$err = xml_get_error_code($parser);
if ($err = XML_ERROR_NONE) die(xml_error_string($err));

11.3.9 Methods as Handlers

Because functions and variables are global in PHP, any component of an application that requires
several functions and variables is a candidate for object orientation. XML parsing typically requires
you to keep track of where you are in the parsing (e.g., "just saw an opening title element, so keep
track of character data until you see a closing title element") with variables, and of course you must
write several handler functions to manipulate the state and actually do something. Wrapping these
functions and variables into a class provides a way to keep them separate from the rest of your
program and easily reuse the functionality later.

Use the xml_set_object() function to register an object with a parser. After you do so, the XML parser
looks for the handlers as methods on that object, rather than as global functions:

xml_set_object(object);
11.3.10 Sample Parsing Application

Let's develop a program to parse an XML file and display different types of information from it. The
XML file, given in Example 11-9, contains information on a set of books.

Example 11-9. books.xml file

<?xml version="1.0" ?>
<library>
<book>
<title>Programming PHP</title>
<authors>
<author>Rasmus Lerdorf</author>
<author>Kevin Tatroe</author>
</authors>
<isbn>1-56592-610-2</isbn>
<comment>A great book!</comment>
</book>
<book>
<title>PHP Pocket Reference</title>
<authors>
<author>Rasmus Lerdorf</author>
</authors>
<isbn>1-56592-769-9</isbn>
<comment>It really does fit in your pocket</comment>
</book>
<book>
<title>Perl Cookbook</title>
<authors>
<author>Tom Christiansen</author>
<author>Nathan Torkington</author>
</authors>
<isbn>1-56592-243-3</isbn>
<comment>Hundreds of useful techniques, most just as applicable to
PHP as to Perl

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

</comment>
</book>
</library>

The PHP application parses the file and presents the user with a list of books, showing just the titles
and authors. This menu is shown in Figure 11-1. The titles are links to a page showing the complete
information for a book. A page of detailed information for Programming PHP is shown in Figure 11-2.

Figure 11-1. Book menu

Figure 11-2. Book details

We define a class, BookList, whose constructor parses the XML file and builds a list of records. There
are two methods on a BookList that generate output from that list of records. The show_menu()
method generates the book menu, and the show_book() method displays detailed information on a
particular book.

Parsing the file involves keeping track of the record, which element we're in, and which elements
correspond to records (book) and fields (title, author, isbn, and comment). The $record property holds
the current record as it's being built, and $current_field holds the name of the field we're currently
processing (e.g., 'title"). The $records property is an array of all the records we've read so far.

Two associative arrays, $field_type and $ends_record, tell us which elements correspond to fields in a
record and which closing element signals the end of a record. Values in $field_type are either 1 or 2,
corresponding to a simple scalar field (e.g., title) or an array of values (e.g., author) respectively. We
initialize those arrays in the constructor.

The handlers themselves are fairly straightforward. When we see the start of an element, we work out
whether it corresponds to a field we're interested in. If it is, we set the current_field property to be
that field name so when we see the character data (e.g., the title of the book) we know which field it's
the value for. When we get character data, we add it to the appropriate field of the current record if
current_field says we're in a field. When we see the end of an element, we check to see if it's the end
of a record—if so, we add the current record to the array of completed records.

One PHP script, given in Example 11-10, handles both the book menu and book details pages. The
entries in the book menu link back to the URL for the menu, with a GET parameter identifying the
ISBN of the book whose details are to be displayed.

Example 11-10. bookparse.xml

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<html>
<head> <title>My Library</title></head>
<body>
<?php
class BookList {
var $parser;
var $record;
var $current_field = ";
var $field_type;
var $ends_record;
var $records;

function BookList ($filename) {
$this->parser = xml_parser_create();
xml_set_object($this->parser, &$this);
xml_set_element_handler($this->parser, 'start_element’, 'end_element");
xml_set_character_data_handler($this->parser, 'cdata');

// 1 = single field, 2 = array field, 3 = record container
$this->field_type = array('title' => 1,

'author' => 2,

'ishn' => 1,

‘comment’' => 1);
$this->ends_record = array('book' => true);

$x = join("", file($filename));
xml_parse($this->parser, $x);
xml_parser_free($this->parser);

by

function start_element ($p, $element, &$attributes) {
$element = strtolower($element);
if ($this->field_type[$element] != 0) {
$this->current_field = $element;
}else {
$this->current_field = ";
b
b

function end_element ($p, $element) {
$element = strtolower($element);
if ($this->ends_record[$element]) {
$this->records[] = $this->record;
$this->record = array();
b
$this->current_field = ";

b

function cdata ($p, $text) {
if ($this->field_type[$this->current_field] === 2) {
$this->record[$this->current_field][] = $text;
} elseif ($this->field_type[$this->current_field] === 1) {
$this->record[$this->current_field] .= $text;

¥

function show_menu() {
echo "<table border=1>\n";
foreach ($this->records as $book) {
echo "<tr>";
$authors = join(', ', $book['author']);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

printf("<th>%s</th><td>%s</td></tr>\n",
$_SERVER['PHP_SELF'] . ?isbn="". $book]['isbn'],
$book['title'],
$authors);
echo "</tr>\n";
b
¥

function show_book ($isbn) {
foreach ($this->records as $book) {
if ($book['isbn'] == $isbn) {
continue;

by

$authors = join(', ', $book['author']);
printf("%s by %s.
", $book{'title'], $authors);
printf("ISBN: %s
", $book['isbn']);
printf("Comment: %s<p>\n", $book['comment']);
b
?>

Back to the <a href="<?= $_SERVER['PHP_SELF'] ?>">list of books.<p>
<?

}; // main program code

$my_library = new BookList ("books.xml");
if ($_GET['isbn']) {
// return info on one book
$my_library->show_book($_GET['isbn']);
}else {
// show menu of books
$my_library->show_menu();
b
?>
</body></html>

I |@ve RuBoard

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I I@ve RuBoard m m

11.4 Transforming XML with XSLT

Extensible Stylesheet Language Transformations (XSLT) is a language for transforming XML
documents into different XML, HTML, or any other format. For example, many web sites offer several
formats of their content—HTML, printable HTML, and WML (Wireless Markup Language) are common.
The easiest way to present these multiple views of the same information is to maintain one form of
the content in XML and use XSLT to produce the HTML, printable HTML, and WML.

PHP's XSLT extension uses the Sablotron C library to provide XSLT support. Sablotron does not ship
with PHP—you'll need to download it from http://www.gingerall.com, install it, and then rebuild PHP
with the --enable-xslt --with-xslt-sablot option to configure.

PHP's XSLT support is still experimental at the time of writing, and the exact implementation details
may change from what is described here. However, this description should give you a good foundation
for how to use PHP's XSLT functions, even if the implementation changes in the future.

Three documents are involved in an XSLT transformation: the original XML d